WO2016204082A1 - 密封軸受 - Google Patents

密封軸受 Download PDF

Info

Publication number
WO2016204082A1
WO2016204082A1 PCT/JP2016/067334 JP2016067334W WO2016204082A1 WO 2016204082 A1 WO2016204082 A1 WO 2016204082A1 JP 2016067334 W JP2016067334 W JP 2016067334W WO 2016204082 A1 WO2016204082 A1 WO 2016204082A1
Authority
WO
WIPO (PCT)
Prior art keywords
seal body
sliding contact
bearing
sealed bearing
contact portion
Prior art date
Application number
PCT/JP2016/067334
Other languages
English (en)
French (fr)
Inventor
奈央 林
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2016204082A1 publication Critical patent/WO2016204082A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/44Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/56Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members

Definitions

  • the present invention relates to a rolling bearing provided with a sealing device.
  • Rolling bearings used in a dusty environment may shorten the service life due to dust entering the bearing and scratching the raceway surface, and a sealing device is provided outside or inside the bearing.
  • a sealing device is provided outside the bearing, it may be necessary to reduce the size and weight in addition to the reason that the number of parts increases, and it is preferable to provide the sealing device inside the bearing.
  • a sealing body When a sealing device is provided inside the bearing, a sealing body is fixed to either the rotating side or the stationary side of the bearing ring, and dust penetration is prevented by reducing or eliminating the gap between the sealing body and the other bearing ring. It becomes a structure to prevent.
  • an elastomer, engineering plastic, fiber, or the like is employed as the sealing body, and a structure is employed in which the other raceway is elastically contacted and slid without gaps.
  • the elastic deformation amount of the elastic contact portion can be set large, and can be applied even in usages where the temperature change is large.
  • the range of use of the seal body is also limited by the modification of the material due to temperature.
  • silicone rubber which is an elastomer, becomes brittle at about ⁇ 60 ° C. at low temperatures and deteriorates due to main chain breakage at about 200 ° C. at high temperatures, so that the elasticity of the rubber required for the sealing body is lost.
  • Polytetrafluoroethylene (PTFE) resin which is an engineering plastic, begins to deteriorate at about 250 ° C, and becomes brittle at about -100 ° C at low temperatures. There is also a risk and it is difficult to use at extremely low temperatures.
  • polyester resin becomes brittle at about -70 ° C and melts at about 250 ° C. there were.
  • woven fabrics and knitted fabrics can be expected to increase strength and prevent fibers from falling off.
  • the regular orientation of the fibers may increase the dimensional change of the sealing body itself against temperature changes. There is.
  • Patent Document 1 and Patent Document 2 are proposed as specific examples of the sealing structure provided inside the bearing.
  • Patent Document 1 describes a sealing structure using an elastomer or engineering plastic as a sealing body.
  • Patent Document 1 uses an elastomer or engineering plastic that is an elastic body as a seal body, so that the seal body is elastically deformed at the contact portion between the seal body and the race (here, a sliding member fitted to a shaft). It has a structure that keeps hermetically sealed.
  • the sliding counterpart member is bearing steel, the sealing body is slid at a position of PTFE resin, diameter 10 mm, the temperature change is 100 ° C., If an attempt is made to fit the amount of change in the distance of the sliding member to the seal body as an elastic deformation amount, the generated hoop stress slightly exceeds the tensile strength of the PTFE resin. Even in an environment where there is no temperature change, depending on the use temperature, for example, silicone rubber and PTFE resin cannot be applied because of the above-described material modification.
  • Patent Document 2 describes a sealing structure using a porous lip made of woven fabric or felt as a sealing body (filter seal having a through hole).
  • a porous lip is used for the purpose of filtering the lubricating oil, and the porous lip is held by a core bar extending to the vicinity of the outer diameter of the inner ring to strengthen the waist.
  • Patent Document 2 there is no limitation regarding the material of the filter, and in reality, it is considered that a nonwoven fabric of wool or polyester resin is used as described above, and the operating temperature range is limited. . There is no knowledge about the amount of elastic deformation at the time of elastic contact of the porous lip with the raceway.
  • the present invention has been made to cope with such problems, and is lightweight, compact and has high sealing performance even in an environment at a very low temperature of ⁇ 100 ° C. or lower, a high temperature of 250 ° C. or higher, or an environment having a large temperature change. It is an object of the present invention to provide a contact seal type sealed bearing capable of realizing the above.
  • the sealed bearing of the present invention is a bearing disposed in a pair of race rings, a plurality of rolling elements interposed between the race rings, a cage for holding the rolling elements, and an opening between the pair of race rings.
  • a sealed bearing comprising a sealing body for sealing an inner space, wherein the sealing body is formed of a meta-type wholly aromatic polyamide fiber, and one end of the sealing body is fixed to one of the bearing rings, The other end portion of the seal body is in sliding contact with the other of the raceway to seal the bearing inner space.
  • the seal body is in sliding contact with the other race ring while being elastically deformed, and the diameter of the seal body is A (mm) when the diameter of the slide contact portion position with the seal body in the other race ring is defined as A (mm).
  • the amount of elastic deformation in the direction is A / 100 (mm) or more.
  • the seal body is a woven fabric, a non-woven fabric, or a knitted fabric of the meta-type wholly aromatic polyamide fiber. Further, the seal body is selected from a structure in which a sliding contact portion with the other raceway is impregnated with a lubricating resin and a structure in which reinforcing fibers are knitted into at least a part other than the sliding contact portion. It is characterized by having at least one.
  • the other raceway ring is characterized in that a peripheral surface having a diameter larger than a diameter of a sliding contact portion with the seal body is provided between the seal body and the rolling element. Further, the other raceway ring has a groove on the rolling element side with respect to the sliding contact portion with the seal body or with respect to the sliding contact portion. Further, in the other race ring, a hard coating is formed at a sliding contact portion with the seal body.
  • the raceway, the rolling element, and the cage are made of stainless steel, and at least one member selected from the raceway, the rolling element, and the cage has a solid lubricant film on the contact surface with the other member. It is formed.
  • the above-mentioned sealed bearing is used in at least one temperature range selected from ⁇ 100 ° C. or lower and 250 ° C. or higher, and is used under conditions where oil lubrication is not performed.
  • the sealed bearing of the present invention uses a contact seal formed of a meta-type wholly aromatic polyamide fiber as a seal body that is disposed at both axial openings in a pair of bearing rings and seals the bearing inner space. It is a lightweight and compact sealed bearing that can be used even under high temperature conditions or in a wide operating temperature range.
  • the diameter of the seal body Since the amount of elastic deformation in the direction is A / 100 (mm) or more, the amount of elastic deformation at the sliding contact portion is set to be large, and the environment is extremely low from -100 ° C or lower to 250 ° C or higher, or the temperature changes greatly. High sealing performance can be maintained even in the environment.
  • the sealed bearing of the present invention is a rolling bearing mainly used in a dust environment, and includes a seal body to prevent dust from entering the inside of the bearing.
  • This seal body also serves as a seal that suppresses leakage of these lubricants to the outside of the bearing when the bearing is used with oil or grease lubrication depending on the use conditions.
  • the sealed bearing of the present invention is characterized in that the seal body of the rolling bearing is formed from a meta-type wholly aromatic polyamide fiber (meta-type aramid fiber).
  • the meta-type wholly aromatic polyamide resin is a resin having a repeating unit as shown in the following formula. This resin is obtained, for example, by co-condensation polymerization of m-phenylenediamine and isophthalic acid chloride.
  • a sealing body is formed from a meta-aramid fiber obtained by fiberizing this resin.
  • Aramid fibers have a meta type and a para type due to the difference in their molecular skeletons.
  • the para type is more rigid and high-strength compared to the meta type, and is a material for a sealing body that makes elastic contact with the raceway. It is not preferable.
  • the meta-type aramid fiber that can be used in the present invention include Nomex (registered trademark) manufactured by DuPont Toray Kevlar and Conex (registered trademark) manufactured by Teijin.
  • the sealing body in the present invention may be formed from a meta-type wholly aromatic polyamide fiber. That is, it may be a structure formed using a meta-type wholly aromatic polyamide fiber as a main material.
  • woven fabrics, non-woven fabrics or knitted fabrics with processed fibers, sheet materials in which the fiber direction is aligned in one direction and impregnated with a thermosetting resin such as epoxy resin or phenol resin, meta type wholly aromatic polyamide resin examples thereof include a paper material obtained by producing a short fiber and a synthetic pulp from a polymer and dispersing the same in water and using a paper machine.
  • it is preferable to use a woven fabric, a non-woven fabric, or a knitted fabric because it is excellent in sealing performance due to elastic contact, work surface, and the like.
  • Non-woven seals are preferred when pursuing weight reduction and cost reduction.
  • the fiber diameter should be reduced and the density increased.
  • a woven fabric or a knitted fabric having an elastic knitting structure may be applied in view of the effect of preventing the fibers from falling off and the high rigidity of the sealing body.
  • the sliding contact portion may be impregnated with a lubricious resin having excellent heat resistance and lubricity depending on use conditions.
  • a lubricious resin having excellent heat resistance and lubricity depending on use conditions.
  • Partial impregnation may be performed.
  • reinforcing fibers such as high-strength metal fibers may be knitted in a range that does not interfere with the sliding contact portion in order to reinforce the sealing body.
  • Meta-type wholly aromatic polyamide fibers are chemically stable due to the above structure, do not lose fiber properties even at extremely low temperatures such as -196 ° C, and can be used as fibers up to 400 ° C or higher at melting points and decomposition points.
  • the glass transition point is in the vicinity of 270 ° C.
  • the dimensional change of the fiber is extremely stable up to about 250 ° C. and is a stable fiber. Therefore, when the meta-type wholly aromatic polyamide fiber is used as the seal body, the use temperature can be extended to a very low temperature or a high temperature. In general, if the fiber is a woven fabric or a knitted fabric, an increase in strength and prevention of fiber dropping can be expected.
  • FIG. 1 is an axial cross-sectional view of a radial rolling bearing (deep groove ball bearing) using the above-described seal body.
  • the sealed bearing 1 includes an inner ring 2 having an inner ring rolling surface on an outer diameter surface and an outer ring 3 having an outer ring rolling surface on an inner diameter surface.
  • the inner ring rolling surface and the outer ring rolling are arranged concentrically. It has a structure in which a plurality of rolling elements 4 are arranged between the running surface. The rolling elements 4 are held at equal intervals in the circumferential direction by a cage 5.
  • the seal body 6 is a hollow disk-like structure disposed at both axial opening portions of the inner and outer rings which are track rings, and one end portion in the radial direction is fixed to the outer ring 3 and the other end portion in the radial direction. While sliding in contact with the outer diameter portion 8 of the inner ring 2, the bearing inner space is sealed.
  • the seal body 6 is in elastic contact with the outer diameter portion 8 of the inner ring 2 (the seal body is in contact with the outer diameter portion of the inner ring while being elastically deformed).
  • the seal body 6 is inserted into an annular groove 3 a provided on the inner diameter surface of the outer ring 3.
  • a retaining ring 7 for fixing the seal body is further inserted into the annular groove 3 a, and the seal body 6 is fixed to the outer ring 3.
  • the inner diameter of the seal body 6 is smaller than the diameter of the sliding contact portion position of the inner ring 2 with the seal body 6 (the diameter of the outer diameter part 8), and the operating temperature is maintained so as to keep the elastic contact with the outer diameter part of the inner ring 2.
  • the gap is not generated when the radial relative displacement of the raceway is maximized, and the gap is changed when the diameter of the sliding contact portion changes due to temperature change.
  • the value of the inner diameter is set so that it is not possible.
  • the amount of elastic deformation of the seal body 6 differs from the generated stress depending on the density of the fiber, and may have a balance with torque. However, when the diameter of the outer diameter portion 8 of the inner ring 2 is A (mm), A / 100 If an elastic deformation amount of (mm) or more is provided in advance, the seal can be reliably maintained without generating a gap with respect to a change in the dimensions of the race.
  • the diameter of the outer diameter portion 8 of the inner ring 2 is A (mm)
  • FIG. 2 is an axial cross-sectional view of a radial rolling bearing (deep groove ball bearing) using the above-described seal body.
  • the sealed bearing 1 shown in FIG. 2 has the same configuration as that shown in FIG. 1 except that a step portion 9 is provided on the outer diameter surface of the inner ring 2.
  • the step portion 9 is a sliding contact portion with the seal body 6.
  • the elastic deformation amount of the seal body 6 can be set similarly to the case shown in FIG. 1 with the diameter A ′ of the step portion 9 of the inner ring 2 as a reference.
  • the outer diameter surface of the inner ring 2 between the seal body 6 and the rolling element 4 is a peripheral surface having a diameter larger than the diameter (outer diameter) of the stepped portion 9. Accordingly, even if dust or dropped fibers enter the bearing from the sliding contact portion, it is possible to prevent these foreign substances from entering the contact portion between the rolling element and the raceway surface.
  • FIG. 3A is an axial sectional view of a radial rolling bearing (deep groove ball bearing) using the above-described seal body
  • FIG. 3B is a partially enlarged view of FIG.
  • the sealed bearing 1 shown in FIG. 3 has the same configuration as that shown in FIG. 1 except that the inclined portion 10 is provided on the outer diameter surface of the inner ring 2.
  • the inclined portion 10 is a sliding contact portion with the seal body 6.
  • the seal body 6 is inserted into an annular groove 3 a provided on the inner diameter surface of the outer ring 3 together with a retaining ring 7 for fixing the seal body, and is fixed to the outer ring 3.
  • the elastic deformation amount of the seal body is the same as the diameter B of the seal ring 6 fixed position and the diameter C of the sliding contact portion in the inner ring 2, and the sliding contact portion diameter A and the sealing body inner diameter in the case shown in FIG. Can be set similarly to the case shown in FIG.
  • the fixing position 10b of the seal body 6 is set to the bearing center side in the axial direction with respect to the contact point 10a with the seal body 6 on the side surface of the inclined portion 10 provided on both sides of the inner ring. Hold the seal.
  • the amount of axial deflection of the seal body 6 is such that there is no gap when the relative displacement in the axial direction and radial direction of the bearing ring is maximum with respect to the gap where the bearing internal clearance is maximum within the operating temperature range.
  • the gap is set so that there is no gap even when the diameter of the sliding contact portion changes due to temperature change.
  • FIG. 4 is an axial cross-sectional view of a radial rolling bearing (deep groove ball bearing) using the above-described seal body.
  • the sealed bearing 1 shown in FIG. 4 has the same configuration as that shown in FIG. 1 except that the groove 11 is provided on the outer diameter surface of the inner ring 2.
  • the groove 11 is a groove that traps (captures) these foreign matters so as not to enter the inside of the bearing when dust or dropped fibers enter the sliding contact surface.
  • This groove can be provided in the sliding contact portion with the seal body 6 or on the rolling element 4 side from the sliding contact portion.
  • the sliding contact portions (the outer diameter portion 8 in FIG. 1, the step portion 9 in FIG. 2, the inclined portion 10 in FIG. 3, etc.) of the inner ring 2 are worn when dust enters the sliding contact surface.
  • a hard film having a hardness higher than that of dust that is supposed to enter may be formed.
  • the risk of wear at the sliding contact portion increases, so that the reliability is improved by applying a hard coating.
  • the hard coating may be a single layer or a laminate of diamond like carbon (DLC), titanium nitride (TiN), chromium nitride (CrN), chromium nitride silicon (CrSiN), titanium aluminum nitride (TiAlN), titanium silicon nitride (TiSiN), etc.
  • DLC diamond like carbon
  • TiN titanium nitride
  • CrN chromium nitride
  • CrSiN chromium nitride silicon
  • TiAlN titanium aluminum nitride
  • TiSiN titanium silicon nitride
  • plating such as chrome plating, nickel plating, and zinc plating may be applied as the base of the hard coating.
  • steel materials and ceramics generally used as bearing materials can be used without limitation.
  • Steel materials include high carbon chromium bearing steel (SUJ1, SUJ2, SUJ3, SUJ4, SUJ5, etc .; JIS G 4805), carburized steel (SCr420, SCM420, etc .; JIS G 4053), stainless steel (SUS440C, etc .; JIS G 4303), High speed steel (M50 etc.), cold rolled steel, etc. are mentioned.
  • the ceramic include silicon nitride (Si 3 N 4 ), silicon carbide (SIC), alumina (Al 2 O 3 ), zirconia (ZrO 2 ), and sialon.
  • stainless steel such as SUS440C is used as a material for the race ring, rolling element, and cage, and at least one member selected from these members is another member. It is preferable to form a solid lubricating film on the contact surface.
  • the solid lubricant film can be formed by surface treatment such as sputtering using molybdenum disulfide, tungsten disulfide, graphite or the like as a material.
  • the deep groove ball bearing is described as an example of the sealed bearing of the present invention, but the present invention is not limited to this. That is, the present invention can be applied to all types of bearings such as angular ball bearings, cylindrical roller bearings, tapered roller bearings, etc. by changing the shape and fixing method according to the allowable space, and the bearing type is not limited. . Moreover, it does not depend on rotation division, and is not limited to inner ring rotation or outer ring rotation.
  • the sealed bearing of the present invention can realize a light, compact and high sealing performance even in an environment of extremely low temperature of ⁇ 100 ° C. or lower, a temperature of 250 ° C. or higher, or an environment having a large temperature change. It can be suitably used as a sealed bearing used in space dust environment where oil lubrication cannot be used in vacuum.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sealing Of Bearings (AREA)
  • Rolling Contact Bearings (AREA)
  • Sealing With Elastic Sealing Lips (AREA)
  • Sealing Devices (AREA)

Abstract

-100℃以下の極低温や250℃以上の高温の環境、もしくは温度変化の大きい環境においても、軽量かつコンパクトで高い密封性を実現できる接触シール式の密封軸受を提供する。密封軸受(1)は、軌道輪である内輪(2)および外輪(3)と、内外輪間で保持器(5)により保持された複数個の転動体(4)と、内外輪間の開口部に配置されて軸受内空間を密封するシール体(6)とを備え、このシール体(6)は、メタ型全芳香族ポリアミド繊維から形成され、該シール体の一端部が外輪に固定され、該シール体の他端部が内輪(2)に所定の弾性変形量で弾性接触しつつ摺動して、軸受内空間を密封している。

Description

密封軸受
 本発明は、密封装置を備えた転がり軸受に関する。
 粉塵環境で使用される転がり軸受は、粉塵が軸受内部に侵入することで軌道面に傷をつけるなどの理由から短寿命化するおそれがあり、軸受外部もしくは内部に密封装置を設けている。軸受外部に密封装置を設ける場合は、部品点数が多くなってしまう等の理由のほか、コンパクト化や軽量化を要する場合もあり、軸受内部に密封装置を設けることが好ましい。
 軸受内部に密封装置を設ける場合、回転側もしくは固定側のどちらか一方の軌道輪にシール体を固定し、該シール体ともう一方の軌道輪との隙間を小さく、もしくは無くすことで粉塵侵入を防ぐ構造となる。特に高い密封性を得るためには、シール体としてエラストマーやエンジニアリングプラスチック、繊維などを採用し、もう一方の軌道輪に弾性接触させ、隙間の無い状態で摺動させる構造を採用する。
 一般に、シール体による密封性を高めるためには弾性接触部での弾性変形量を大きくしなければならず、発生応力が大きくなってしまい摩耗もしやすくなるため、トルクおよびシール寿命とのトレードオフとなる。特に、エンジニアリングプラスチックの場合は、剛性が高く、弾性接触部での高面圧を避けるため、大きな弾性変形量を設定することができない。特に、温度変化が大きい使用用途においては温度による軸受およびシール体の寸法変化と、軸受内部隙間の変化に伴い、シール体と摺動相手の軸受との相対距離も変化するため、大きな弾性変形量を設定しておかなくては隙間が発生するリスクが高い。
 繊維をシール体として適用する場合、繊維同士の間に空隙があり、繊維の移動によりシール体としての弾性を発揮するため、エラストマーやエンジニアリングプラスチックと比較して、はるかに変形に対する発生応力が小さく、弾性接触部の弾性変形量を大きく設定することができ、温度変化が大きい使用用途においても適用することができる。
 シール体の使用範囲は温度による素材の変性によっても限定される。例えば、エラストマーであるシリコーンゴムでは低温では約-60℃で脆化、高温では約200℃で主鎖切断による劣化が発生するため、シール体に必要とされるゴムの弾性を失ってしまう。エンジニアリングプラスチックであるポリテトラフルオロエチレン(PTFE)樹脂も約250℃程度で劣化が始まり、低温では-100℃程度で脆化してしまうため、弾性変形を加えるようなシールの使用用途からは割れが生じるリスクもあり、極低温での使用は困難である。
 従来、繊維シールに多く使用されてきたのはウールやポリエステル樹脂の不織布だった。しかし、それら繊維も使用温度範囲は素材の変性により限定され、例えばポリエステル樹脂では約-70℃で脆化、約250℃で融解するため、それらを超える極低温もしくは高温範囲での使用はリスクがあった。また、織布や編物とすることで強度の増加や繊維の脱落防止を期待できるが、繊維が規則的に配向することで、温度変化に対し、シール体自体の寸法変化が大きくなってしまうおそれがある。
特許第3128062号公報 実公平4-48336号公報
 軸受内部に設ける密封構造の具体例を提案するものとして、例えば、特許文献1と特許文献2が挙げられる。特許文献1には、エラストマーもしくはエンジニアリングプラスチックをシール体として用いた密封構造が記載されている。特許文献1は、弾性体であるエラストマーもしくはエンジニアリングプラスチックをシール体として使用することで、シール体と軌道輪(ここでは軸に嵌合された摺動用の部材)の接触部でシール体に弾性変形を持たせ密封を保つ構造としている。
 しかし、温度変化が大きい場合、シール体と摺動相手部材の線膨張係数の違いや軸受内部隙間の変化により、シール体と摺動相手部材の相対位置が変化するため、シール体と摺動相手部材の距離が最大となる位置関係を計算し、隙間ができないよう、あらかじめ弾性変形量としてはめあいを持たせておかなければならない。例えば、線膨張係数の違いによる寸法変化だけを考えたとしても、摺動相手部材が軸受鋼、シール体がPTFE樹脂、径10mmの位置で摺動させ、温度変化が100℃として、シール体と摺動相手部材の距離の変化分をシール体に弾性変形量としてはめあいを持たせておこうとすると、発生するフープ応力はPTFE樹脂の引張強さを軽く超えてしまう。また、温度変化がないような環境であっても、その使用温度によっては、例えばシリコーンゴムやPTFE樹脂では上述した材料の変性のため、適用ができない。
 特許文献2には、織布やフェルトからなる多孔質リップをシール体(貫通孔を有するフィルターシール)として使用した密封構造が記載されている。この考案では、潤滑油の濾過を目的として多孔質リップを使用しており、この多孔質リップを内輪外径近傍まで延ばした芯金により保持して腰を強くしている。
 しかし、特許文献2には、フィルターの材質に関しての限定はなく、現実的には、上述のようにウールやポリエステル樹脂の不織布などが使用されていると考えられ、使用温度範囲が限定されている。また、多孔質リップの軌道輪への弾性接触時の弾性変形量に関する知見はない。
 以上のように、従来使用されてきた、エラストマー、エンジニアリングプラスチック、繊維のシール体の材質では、材質の変性のため、-100℃以下の極低温や250℃以上の高温で使用できるシール体がなかった。また、温度変化が大きい場合にも密封性を保持できる構造が明確化されていなかった。
 本発明はこのような問題に対処するためになされたものであり、-100℃以下の極低温や250℃以上の高温の環境、もしくは温度変化の大きい環境においても、軽量かつコンパクトで高い密封性を実現できる接触シール式の密封軸受を提供することを目的とする。
 本発明の密封軸受は、一対の軌道輪と、該軌道輪間に介在する複数の転動体と、これら転動体を保持する保持器と、上記一対の軌道輪間の開口部に配置されて軸受内空間を密封するシール体とを備えてなる密封軸受であって、上記シール体は、メタ型全芳香族ポリアミド繊維から形成され、該シール体の一端部が上記軌道輪の一方に固定され、該シール体の他端部が上記軌道輪の他方に摺接して、上記軸受内空間を密封することを特徴とする。
 上記シール体は、弾性変形しつつ上記他方の軌道輪に摺接し、上記他方の軌道輪における該シール体との摺接部位置の径をA(mm)としたときに、上記シール体の径方向の弾性変形量がA/100(mm)以上であることを特徴とする。
 上記シール体は、上記メタ型全芳香族ポリアミド繊維の織布、不織布、または編物であることを特徴とする。また、上記シール体は、上記他方の軌道輪との摺接部に潤滑性樹脂を含浸してなる構造、および、上記摺接部以外の少なくとも一部に補強繊維を編み込んでなる構造、から選ばれる少なくとも1つを有することを特徴とする。
 上記他方の軌道輪において、上記シール体と上記転動体との間に、上記シール体との摺接部位置の径よりも大径の周面を有することを特徴とする。また、上記他方の軌道輪において、上記シール体との摺接部または該摺接部よりも上記転動体側に溝を有することを特徴とする。また、上記他方の軌道輪において、上記シール体との摺接部に硬質被膜が形成されていることを特徴とする。
 上記軌道輪、上記転動体、および上記保持器がステンレス鋼からなり、上記軌道輪、上記転動体、および上記保持器から選ばれる少なくとも1つの部材において、他部材との接触表面に固体潤滑被膜が形成されていることを特徴とする。
 上記密封軸受は、-100℃以下および250℃以上から選ばれる少なくとも一方の温度領域で使用され、かつ、油潤滑を行わない条件下で使用されることを特徴とする。
 本発明の密封軸受は、一対の軌道輪における軸方向両端開口部に配置して軸受内空間を密封するシール体として、メタ型全芳香族ポリアミド繊維から形成される接触シールを用いるので、極低温や高温の条件下、もしくはその中で使用温度範囲の広い場合にも使用できる軽量かつコンパクトな密封軸受となる。
 特にこのシール体が、弾性変形しつつ上記他方の軌道輪に摺接し、上記他方の軌道輪における該シール体との摺接部位置の径をA(mm)としたときに、シール体の径方向の弾性変形量をA/100(mm)以上とするので、摺接部での弾性変形量が大きく設定され、-100℃以下の極低温から250℃以上高温の環境、もしくは温度変化の大きい環境でも、高い密封性を維持できる。
本発明の密封軸受の一例を示す軸方向断面図である。 本発明の密封軸受の他の例(段差部)を示す軸方向断面図である。 本発明の密封軸受の他の例(傾斜部)を示す軸方向断面図および拡大図である。 本発明の密封軸受の他の例(トラップ溝)を示す軸方向断面図である。
 本発明の密封軸受は、主に粉塵環境で使用される転がり軸受であり、粉塵が軸受内部に侵入することを防止すべくシール体を備えるものである。なお、このシール体は、使用条件に応じて該軸受を油やグリース潤滑で使用する場合には、これら潤滑剤の軸受外部への漏れを抑制するシールの役割も果たす。
 本発明の密封軸受は、転がり軸受のシール体を、メタ型全芳香族ポリアミド繊維(メタ型アラミド繊維)から形成している点に特徴を有する。メタ型の全芳香族ポリアミド樹脂は、下記式に示すような繰り返し単位を有する樹脂である。この樹脂は、例えば、m-フェニレンジアミンとイソフタル酸クロリドとを共縮重合して得られる。本発明では、この樹脂を繊維化したメタ型アラミド繊維からシール体を構成している。アラミド繊維には、その分子骨格の差によりメタ型とパラ型があるが、パラ型はメタ型と比較して剛直で高強度であり、軌道輪に弾性接触させるシール体の材料とするには好ましくない。本発明で使用できるメタ型アラミド繊維としては、デュポン・東レ・ケブラー社製:ノーメックス(登録商標)、帝人社製:コーネックス(登録商標)が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 本発明におけるシール体は、メタ型全芳香族ポリアミド繊維から形成されていればよい。すなわち、メタ型全芳香族ポリアミド繊維を主材料として形成された構造体であればよい。具体的には、繊維を加工した織布、不織布または編物、繊維方向を一方向に揃えてエポキシ樹脂やフェノール樹脂などの熱硬化性樹脂を含浸させたシート材、メタ型全芳香族ポリアミド樹脂(重合体)から短繊維と合成パルプを製造し、これを水中で分散させて抄紙機を用いて得られた紙材などが挙げられる。これらの中でも、弾性接触による密封性や作業面などに優れることから、織布、不織布または編物を用いることが好ましい。
 軽量化、低コスト化などを追求する場合などには、不織布のシール体が好ましい。不織布の防塵性能を高めたい場合は、繊維の径を小さくし、密度を高くするとよい。また、繊維の脱落防止効果や、シール体の高剛性などを期待して、弾性編み構造の織布や編物を適用してもよい。
 また、潤滑性を向上させるため、使用条件によっては摺接部に耐熱性や潤滑性に優れる潤滑性樹脂を含浸してもよい。ただし、温度変化が大きい場合は、樹脂の線膨張係数に留意する。なお、部分的な含浸をしてもよい。また、シール体の補強のために摺接部に干渉しない範囲で高強度の金属繊維などの補強繊維を編み込むなどしてもよい。
 メタ型全芳香族ポリアミド繊維は、上記構造から化学的に安定であり、-196℃などの極低温でも繊維性を失わず、融点および分解点も400℃以上と高温まで繊維としての使用が可能であり、かつガラス転移点が270℃付近にあるため繊維の寸法変化も約250℃まででは極めて少なく安定な繊維である。そのため、メタ型全芳香族ポリアミド繊維をシール体とした場合、使用温度を極低温や高温まで広げることが可能となる。また、一般に、繊維を織布や編物とすれば強度の増加や繊維の脱落防止を期待できるが、繊維が配向するため寸法変化が顕著となる。しかし、本発明で用いるメタ型全芳香族ポリアミドの場合は、繊維自身の寸法安定性の高さから、織布や編物として繊維が規則的に配向した状態でも、温度変化に対して織布全体の寸法変化が小さくなる。
 本発明の密封軸受の一例を図1に基づいて説明する。図1は上述のシール体を用いたラジアル転がり軸受(深溝玉軸受)の軸方向断面図である。図1に示すように、密封軸受1は、外径面に内輪転走面を有する内輪2と内径面に外輪転走面を有する外輪3とが同心に配置され、内輪転走面と外輪転走面との間に複数個の転動体4が配置された構造を有する。この転動体4は、保持器5により周方向等間隔に保持される。シール体6は、軌道輪である内・外輪の軸方向両端開口部に配置される中空円盤状の構造体であり、その径方向の一端部が外輪3に固定され、径方向の他端部が内輪2の外径部8に摺接しながら、軸受内空間を密封している。シール体6は、内輪2の外径部8に弾性接触(シール体が弾性変形しつつ内輪の外径部に接触)している。
 シール体6は、外輪3の内径面に設けられた環状溝3aに挿入されている。環状溝3aに、さらにシール体固定用の止め輪7を挿入し、シール体6を外輪3に固定している。シール体6の内径は、内輪2のシール体6との摺接部位置の径(外径部8の径)よりも小さく、内輪2の外径部に弾性接触した状態を保つよう、使用温度範囲内で軸受内部隙間が最大となる隙間に対し、軌道輪の径方向相対変位が最大となるときに隙間ができないように、また、摺接部位置の径が温度変化により変化した際に隙間ができないように、内径の値を設定している。
 シール体6の弾性変形量としては、繊維の密度により発生応力が異なるため、トルクとの兼ね合いもあるが、内輪2の外径部8の径をA(mm)としたときに、A/100(mm)以上の弾性変形量をあらかじめ持たせておけば、軌道輪の寸法変化に対しすきまが発生することなく確実に密封を保つことができる。
 この弾性変形量を考慮したシール体6の内径の目安としては、内輪2の外径部8の径をA(mm)としたとき、(A-2×A/100)mm以下とするとよい。繊維からなるシール体は、弾性接触に伴う発生応力が小さいため、使用温度の違いに伴う摺接部の径の変化および軸受内部隙間の違いに対し、十分大きな弾性接触量を設定することが可能なので軸受の使用温度ごとにシール体の内径を変えることなく、汎用的に使用できる。
 本発明の密封軸受の他の例を図2に基づいて説明する。図2は、上述のシール体を用いたラジアル転がり軸受(深溝玉軸受)の軸方向断面図である。図2に示す密封軸受1は、内輪2の外径面に段差部9を設けている以外は、図1に示す場合と同じ構成である。段差部9が、シール体6との摺接部である。この形態の場合、シール体6の弾性変形量は、内輪2の段差部9の径A’を基準として、図1に示す場合と同様に設定できる。ここで、シール体6と転動体4との間の内輪2の外径面は、段差部9の径(外径)よりも大径の周面となる。これにより、万が一、摺接部から軸受内部へ粉塵や脱落した繊維が入り込んでしまった際にも、これらの異物が転動体と軌道面との接触部まで侵入することを防止できる。
 本発明の密封軸受の他の例を図3に基づいて説明する。図3(a)は上述のシール体を用いたラジアル転がり軸受(深溝玉軸受)の軸方向断面図であり、図3(b)は図3(a)の一部拡大図である。図3に示す密封軸受1は、内輪2の外径面に傾斜部10を設けている以外は、図1に示す場合と同じ構成である。傾斜部10が、シール体6との摺接部である。シール体6は、外輪3の内径面に設けられた環状溝3aにシール体固定用の止め輪7とともに挿入されて、外輪3に固定されている。この形態の場合、シール体の弾性変形量は、内輪2におけるシール体6固定位置の径Bと摺接部の径Cを、それぞれ図1に示す場合の摺接部の径Aとシール体内径とみなせば、図1に示す場合と同様に設定できる。
 ここで、シール体6の固定位置10bは、内輪の両側に設けた傾斜部10の側面におけるシール体6との接触点10aに対し、軸方向に軸受中心側に設定し、シール体6にたわみをもたせて密封を保持する。シール体6の軸方向たわみ量は、使用温度範囲内で軸受内部隙間が最大となる隙間に対し、軌道輪の軸方向および径方向の相対変位が最大となるときに隙間ができないように、また、摺接部の径が温度変化により変化した際にも隙間ができないように設定する。
 シール体6の固定位置10bの目安としては、固定位置10bでの内輪外径B(mm)、摺接点10aでの径C(mm)とすると、(B-C)>(2×B/100)mmとなるように設定するとよい。繊維からなるシール体はたわみに伴う発生応力が小さいため、使用温度の違いに伴う摺接部の径の変化および軸受内部隙間の変化量に対し、十分大きなたわみ量を設定しておくことが可能なので軸受の使用温度ごとにシール体の固定位置を変えることなく、汎用的に使用できる。
 本発明の密封軸受の他の例を図4に基づいて説明する。図4は、上述のシール体を用いたラジアル転がり軸受(深溝玉軸受)の軸方向断面図である。図4に示す密封軸受1は、内輪2の外径面に溝11を設けている以外は、図1に示す場合と同じ構成である。溝11は、摺接面に粉塵や脱落した繊維が入り込んだ際に、これらの異物が軸受内部まで侵入しないようにトラップ(捕捉)する溝である。この溝は、シール体6との摺接部または該摺接部よりも転動体4側に設けることができる。
 内輪2におけるシール体6との摺接部(図1の外径部8、図2の段差部9、図3の傾斜部10など)には、粉塵が摺接面に入り込んだ際に摩耗を防ぐため、侵入が想定される粉塵よりも高硬度の硬質被膜を形成してもよい。特に、油が適用できない極低温や高真空の場合などには、摺接部での摩耗リスクが高まるため、硬質被膜を適用することで信頼性が向上する。硬質被膜としては、ダイアモンドライクカーボン(DLC)、窒化チタン(TiN)、窒化クロム(CrN)、窒化クロム珪素(CrSiN)、窒化チタンアルミ(TiAlN)、窒化チタン珪素(TiSiN)などの単層または積層被膜が挙げられる。さらに、硬質被膜の下地として、クロムメッキ、ニッケルメッキ、亜鉛メッキなどのメッキを施してもよい。
 密封軸受におけるシール体以外の軸受部材(軌道輪、保持器、転動体、止め輪)の材料としては、軸受材料として一般的に用いられる鋼材およびセラミックが限定なく使用できる。鋼材としては、高炭素クロム軸受鋼(SUJ1、SUJ2、SUJ3、SUJ4、SUJ5など;JIS G 4805)、浸炭鋼(SCr420、SCM420など;JIS G 4053)、ステンレス鋼(SUS440Cなど;JIS G 4303)、高速度鋼(M50など)、冷間圧延鋼などが挙げられる。セラミックとしては、窒化珪素(Si34)、炭化珪素(SIC)、アルミナ(Al23)、ジルコニア(ZrO2)、サイアロンなどが挙げられる。
 極低温や高真空のために油が使用できない場合には、軌道輪、転動体、および保持器の材料としてSUS440Cなどのステンレス鋼を使用し、これら部材から選ばれる少なくとも1つの部材において、他部材との接触表面に固体潤滑被膜を形成することが好ましい。固体潤滑剤被膜は、二硫化モリブデン、二硫化タングステン、グラファイトなどを材料として用い、スパッタリングなどの表面処理により形成することができる。
 以上の各図では、本発明の密封軸受として深溝玉軸受を例に説明したが、本発明はこれに限定されるものではない。すなわち、本発明はアンギュラ玉軸受や円筒ころ軸受、円すいころ軸受など、すべての形式の軸受に対し、許容されるスペースに合わせて形状および固定方式を変えれば適用可能であり、軸受形式は限定されない。また、回転区分にもよらず、内輪回転にも外輪回転にも限定されない。
 本発明の密封軸受は、-100℃以下の極低温や250℃以上の高温の環境、もしくは温度変化の大きい環境においても、軽量かつコンパクトで高い密封性を実現できるので、例えば、極低温や高真空で油潤滑の使用できない宇宙の粉塵環境で用いる密封軸受として好適に利用できる。
 1 密封軸受(転がり軸受)
 2 内輪
 3 外輪
 4 転動体
 5 保持器
 6 シール体
 7 止め輪
 8 外径部
 9 段差部
 10 傾斜部
 11 溝

Claims (9)

  1.  一対の軌道輪と、該軌道輪間に介在する複数の転動体と、これら転動体を保持する保持器と、前記一対の軌道輪間の開口部に配置されて軸受内空間を密封するシール体とを備えてなる密封軸受であって、
     前記シール体は、メタ型全芳香族ポリアミド繊維から形成され、該シール体の一端部が前記軌道輪の一方に固定され、該シール体の他端部が前記軌道輪の他方に摺接して、前記軸受内空間を密封することを特徴とする密封軸受。
  2.  前記シール体は、弾性変形しつつ前記他方の軌道輪に摺接し、
     前記他方の軌道輪における該シール体との摺接部位置の径をA(mm)としたときに、前記シール体の径方向の弾性変形量がA/100(mm)以上であることを特徴とする請求項1記載の密封軸受。
  3.  前記シール体は、前記メタ型全芳香族ポリアミド繊維の織布、不織布、または編物であることを特徴とする請求項1記載の密封軸受。
  4.  前記シール体は、前記他方の軌道輪との摺接部に潤滑性樹脂を含浸してなる構造、および、前記摺接部以外の少なくとも一部に補強繊維を編み込んでなる構造、から選ばれる少なくとも1つを有することを特徴とする請求項1記載の密封軸受。
  5.  前記他方の軌道輪は、前記シール体と前記転動体との間に、前記シール体との摺接部位置の径よりも大径の周面を有することを特徴とする請求項1記載の密封軸受。
  6.  前記他方の軌道輪は、前記シール体との摺接部または該摺接部よりも前記転動体側に溝を有することを特徴とする請求項1記載の密封軸受。
  7.  前記他方の軌道輪において、前記シール体との摺接部に硬質被膜が形成されていることを特徴とする請求項1記載の密封軸受。
  8.  前記軌道輪、前記転動体、および前記保持器がステンレス鋼からなり、
     前記軌道輪、前記転動体、および前記保持器から選ばれる少なくとも1つの部材において、他部材との接触表面に固体潤滑被膜が形成されていることを特徴とする請求項1記載の密封軸受。
  9.  前記密封軸受は、-100℃以下および250℃以上から選ばれる少なくとも一方の温度領域で使用され、かつ、油潤滑を行わない条件下で使用されることを特徴とする請求項1記載の密封軸受。
PCT/JP2016/067334 2015-06-17 2016-06-10 密封軸受 WO2016204082A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-121959 2015-06-17
JP2015121959A JP6588246B2 (ja) 2015-06-17 2015-06-17 密封軸受

Publications (1)

Publication Number Publication Date
WO2016204082A1 true WO2016204082A1 (ja) 2016-12-22

Family

ID=57545277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067334 WO2016204082A1 (ja) 2015-06-17 2016-06-10 密封軸受

Country Status (2)

Country Link
JP (1) JP6588246B2 (ja)
WO (1) WO2016204082A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379966U (ja) * 1976-12-07 1978-07-03
JPH0448336Y2 (ja) * 1986-04-18 1992-11-13
JPH10109025A (ja) * 1996-10-04 1998-04-28 Nippon Spindle Mfg Co Ltd 混練機におけるシール機構
JPH10205541A (ja) * 1997-01-21 1998-08-04 Koyo Seiko Co Ltd 転がり軸受
JP2002021863A (ja) * 2000-07-05 2002-01-23 Nsk Ltd 転がり軸受
JP2011074954A (ja) * 2009-09-29 2011-04-14 Ntn Corp 固体潤滑玉軸受
JP2012007686A (ja) * 2010-06-25 2012-01-12 Ntn Corp 転がり軸受装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106971A (ja) * 2008-10-30 2010-05-13 Ntn Corp 転がり軸受

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379966U (ja) * 1976-12-07 1978-07-03
JPH0448336Y2 (ja) * 1986-04-18 1992-11-13
JPH10109025A (ja) * 1996-10-04 1998-04-28 Nippon Spindle Mfg Co Ltd 混練機におけるシール機構
JPH10205541A (ja) * 1997-01-21 1998-08-04 Koyo Seiko Co Ltd 転がり軸受
JP2002021863A (ja) * 2000-07-05 2002-01-23 Nsk Ltd 転がり軸受
JP2011074954A (ja) * 2009-09-29 2011-04-14 Ntn Corp 固体潤滑玉軸受
JP2012007686A (ja) * 2010-06-25 2012-01-12 Ntn Corp 転がり軸受装置

Also Published As

Publication number Publication date
JP6588246B2 (ja) 2019-10-09
JP2017008964A (ja) 2017-01-12

Similar Documents

Publication Publication Date Title
JP5195958B2 (ja) 合成樹脂製の軸受用保持器、その製造方法および転がり軸受
JP2005090657A (ja) 転がり軸受用保持器及び該保持器を組み込んだ転がり軸受
JP2008185107A (ja) 玉軸受
JP2003329045A (ja) ハイブリッド車駆動モータ用転がり軸受及びハイブリッド車駆動モータ
JP2010151048A (ja) ロータリ型流体機械及び冷凍サイクル装置
US7891881B2 (en) Drawn cup roller bearing
JPH06337016A (ja) 耐食性転がり軸受
JP2009138863A (ja) 軸受用保持器
JP3651591B2 (ja) 転がり軸受
JP6588246B2 (ja) 密封軸受
JP2006207684A (ja) 転がり軸受
US10954071B1 (en) Bearing and bearing protector apparatus and methods
JP6275433B2 (ja) 固体潤滑転がり軸受
JPS6249017A (ja) 転がり軸受
JP2006046373A (ja) 転がり軸受
JP2013036608A (ja) 冠形保持器及び転がり軸受
JP2006046380A (ja) 玉軸受
JP2003227522A (ja) 軸受密封装置
KR102490414B1 (ko) 무급유형 베어링.
JP2006329219A (ja) スラストころ軸受
JPH084773A (ja) 固体潤滑転がり軸受
JP2019168069A (ja) 密封軸受
JP7152849B2 (ja) 転がり軸受
JP2017172678A (ja) 極低温環境用転がり軸受
WO2017098886A1 (ja) 転がり軸受

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811556

Country of ref document: EP

Kind code of ref document: A1