WO2016204061A1 - Liquid material coating device - Google Patents

Liquid material coating device Download PDF

Info

Publication number
WO2016204061A1
WO2016204061A1 PCT/JP2016/067189 JP2016067189W WO2016204061A1 WO 2016204061 A1 WO2016204061 A1 WO 2016204061A1 JP 2016067189 W JP2016067189 W JP 2016067189W WO 2016204061 A1 WO2016204061 A1 WO 2016204061A1
Authority
WO
WIPO (PCT)
Prior art keywords
application
needle
liquid material
application needle
light
Prior art date
Application number
PCT/JP2016/067189
Other languages
French (fr)
Japanese (ja)
Inventor
博明 大庭
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2016204061A1 publication Critical patent/WO2016204061A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C1/00Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating
    • B05C1/04Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating for applying liquid or other fluent material to work of indefinite length
    • B05C1/06Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating for applying liquid or other fluent material to work of indefinite length by rubbing contact, e.g. by brushes, by pads
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters

Definitions

  • the present invention relates to a liquid material coating apparatus, and more particularly to a liquid material coating apparatus that can be used for forming fine patterns such as semiconductors, electronic circuits, and flat panel displays.
  • a technique that has been conventionally used for correction work of a flat panel display, scribing work of a solar cell, and the like for example, JP 2007-233299 A, JP 2009-122259 A, JP 2012-6077 A). (See Patent Documents 1 to 3).
  • the technique using an application needle can be applied even with high-viscosity ink, which is not good for an ink jet dispenser, and has recently been used to form a thick film of 10 ⁇ m or thicker than a flat panel display pattern.
  • This technology is used, for example, for forming electronic circuit patterns and printed circuit board wiring of semiconductor devices such as MEMS (Micro Electro Mechanical Systems) and sensors. Patterns produced by printed electronics technology, which is a promising manufacturing technology in the future, are also classified as thick films. Therefore, the technique of applying a liquid material using an application needle is a processing technique that is expected to be used in the future.
  • FIG. 10 is an external view showing the configuration of the color filter defect correcting apparatus disclosed in Japanese Patent Laid-Open No. 2007-233299.
  • this color filter defect correcting apparatus includes a host computer 1, a control computer 2, an image processing unit 3, a Z-axis stage 4, an XY stage 5, a chuck base 6, and a cutting device.
  • a laser irradiation unit 7, a variable slit unit 8, an ink application unit 9, a monitor 10, and an objective lens 21 are provided.
  • the cutting laser irradiation unit 7, the variable slit unit 8, and the ink application unit 9 constitute a correction processing unit 50.
  • the Z axis stage 4 and the XY stage 5 constitute a positioning mechanism 51.
  • the operator confirms the defect displayed on the monitor of the host computer 1 and instructs the ink application position.
  • the image on the monitor is enlarged and displayed by the objective lens 21, and the application position on the XY plane is designated by clicking a point on the monitor with a mouse or the like.
  • the host computer 1 converts the clicked position into the coordinate value P of the XY stage 5 and stores it inside.
  • the operator moves the Z-axis stage 4 by manual operation to adjust the focus, or moves the Z-axis stage 4 by automatic focusing by the image processing unit 3. match the focal point.
  • the relative positional relationship in the Z-axis direction between the ink application unit 9 and the surface of the application target is set to an appropriate positional relationship.
  • the operator instructs the host computer 1 to perform a coating operation.
  • the host computer 1 calculates the coordinate P ′ by adding the relative coordinate value of the ink application unit 9 to the objective lens 21 to the stored coordinate value P.
  • the host computer 1 moves the XY stage 5 based on the coordinates P ′, controls the ink application unit 9 to apply ink, and then moves the XY stage 5 to the original position. Finally, the operator confirms the state of the ink displayed on the monitor of the host computer 1.
  • the ink application unit 9 is attached at a position offset in the horizontal direction with respect to the objective lens 21, the object to be applied is the objective lens during alignment in the Z-axis direction. It is necessary to move below the ink application part 9 at the time of application.
  • FIG. 11 is a schematic diagram for explaining the surface shape of an object to be coated, which is a problem in the conventional apparatus.
  • movement cannot be performed with respect to the application
  • the reason is that the lowering amount of the application needle of the ink application unit 9 is set to a predetermined value, and is the same height for one alignment operation in the Z-axis direction for focusing under the objective lens. This is because the coating can be performed only on the flat surface.
  • the present invention has been made to solve such a problem, and an object of the present invention is to have means for accurately measuring the relative distance between the ink application part and the application target part of the application object.
  • An object of the present invention is to provide a liquid material coating apparatus capable of positioning the positional relationship in the Z-axis direction between the coating section and the surface of the coating target portion of the coating target object with high accuracy.
  • the present invention is a liquid material application device, an application needle for applying a liquid material to a tip and applying it to an object, and an application needle in the vertical direction along the application needle with respect to the object.
  • the measuring apparatus includes a projector that emits laser light and a light receiver that receives the reflected light of the laser light reflected by the surface of the object.
  • the application needle, the light projecting axis of the light projector, and the light receiving axis of the light receiver are arranged on the same plane.
  • the application needle is disposed between the light projector and the light receiver on the plane.
  • the application portion is a contact point on the surface of the object where the tip of the application needle contacts the object.
  • the spot of the laser beam emitted from the projector is adjusted so as to substantially coincide with the contact point.
  • the drive device includes a first drive mechanism that moves the application needle in the vertical direction and a second drive mechanism that moves the support member to which the first drive mechanism and the measurement device are fixed in the vertical direction.
  • the movement distance is the sum of the first movement distance of the application needle by the first drive mechanism and the second movement distance of the support member by the second drive mechanism.
  • the control device sets the first movement distance as a fixed length and changes the second movement distance based on the relative distance.
  • the measuring device is fixed to the support member, irradiates the portion to be coated with laser light, and acquires the relative distance based on the reflected light.
  • the relative position of the tip of the application needle and the application target portion of the object can be positioned with high accuracy.
  • the needle contact position and the laser beam spot are substantially coincident with each other, it is not necessary to perform the focusing operation even on surfaces with different heights, and the operating time of the driving mechanism of the coating apparatus can be shortened. Can do.
  • FIG. It is a figure which shows the structure of the liquid material coating device which concerns on this Embodiment. It is a figure which shows the detailed structure of the application
  • FIG. It is a figure showing signs that the locus of reflected light R changes on a plane including laser light L and reflected light R in order to explain the principle of detecting the distance in the Z direction. It is a figure which shows the structure of the control block of a liquid material coating device.
  • FIG. 5 is a flowchart showing control contents executed by a control device that controls the application mechanism unit 101; It is a 1st figure for demonstrating the raising / lowering operation
  • 1 is an external view showing a configuration of a color filter defect correcting device disclosed in Japanese Patent Application Laid-Open No. 2007-233299. It is a schematic diagram for demonstrating the surface shape of the coating target object which becomes a problem in the conventional apparatus.
  • FIG. 1 is a diagram showing a configuration of a liquid material coating apparatus according to the present embodiment.
  • the present embodiment is characterized in that the ink application unit 9 in FIG. 10 is replaced with an application mechanism unit 101 shown in FIG.
  • a liquid material coating apparatus 300 includes a monitor 10 that displays an image observed by an observation optical system that observes the surface of an object to be coated with ink (such as a circuit board), and an observation.
  • a laser irradiation unit for cutting 7 that irradiates an object with laser light through an optical system to cut unnecessary portions; and an application mechanism unit 101 that applies ink to a target region of an object by attaching ink to the tip of an application needle;
  • the image processing unit 3 for recognizing the target area, the host computer 1 for controlling the entire apparatus, and the control computer 2 for controlling the operation of the coating mechanism unit 101 are included.
  • the liquid material coating apparatus 300 further includes an XY stage 5 that moves an object having a target area in the XY direction (horizontal direction), a chuck base 6 that holds the object on the XY stage 5, and an observation optical system. And a Z stage 4 that moves the coating mechanism 101 in the Z direction (vertical direction).
  • the XY stage 5 is used to relatively move an object to an appropriate position when applying ink to the object area by the application mechanism 101 or observing the surface of the object by an observation optical system.
  • the XY stage 5 has a configuration in which two uniaxial stages are stacked in a perpendicular direction.
  • the XY stage 5 is not limited as long as it can move the object relative to the observation optical system and the coating mechanism unit 101, and is limited to the configuration of the XY stage 5 shown in FIG. is not.
  • a gantry-type XY stage that can move independently in the X-axis direction and the Y-axis direction may be used.
  • FIG. 2 is a diagram showing a detailed configuration of the coating mechanism unit 101 of the liquid material coating apparatus according to the present embodiment.
  • an application mechanism unit 101 is provided with a container 107 into which a liquid material is injected, an application needle 106 for applying the liquid material to a tip portion and applying it to an object, and an application needle 106.
  • a slide mechanism 105 for sliding the application needle 106 in the Z direction, a second drive mechanism 104 for attaching the slide mechanism 105 and positioning the slide mechanism 105 in the Z direction, and a second drive mechanism 104 are attached.
  • a first drive mechanism 103 for positioning the support member 102 in the Z direction.
  • FIG. 3 is an enlarged view of the application needle 106 and the container 107.
  • FIG. 3 shows the dimensional relationship between the first hole 21 a opened in the bottom of the container 107, the second hole 23 a opened in the lid 23, and the application needle 106.
  • the diameter of the first hole 21a is Dd
  • the diameter of the second hole 23a is Du
  • the diameter of the application needle 106 is D
  • Dd and Du are larger than D and Dd> Du> D.
  • This relational expression is valid when the application needle 106 is not a step but a straight type.
  • half of the difference (one-side gap) between the diameter Dd of the first hole 21a and the diameter D of the application needle 106 is ⁇ d
  • half of the difference between the diameter Du of the second hole 23a and the diameter D of the application needle 106 is ⁇ d
  • half of the difference between the diameter Du of the second hole 23a and the diameter D of the application needle 106 is ⁇ u
  • ⁇ d> ⁇ u there is a relationship of ⁇ d> ⁇ u, and the first hole opened at the bottom of the container 107 rather than the gap between the second hole 23a opened at the lid 23 and the application needle 106.
  • the gap between 21a and application needle 106 is set larger.
  • the posture of the container 107 can be maintained by the second hole 23a and the application needle 106, and even if the application needle 106 is in contact with the inner surface of the second hole 23a, the application needle 106 is Since it does not contact the inner surface of the first hole 21a, deformation due to wear of the first hole 21a can be suppressed. Accordingly, since the amount of the ink 22 adhering to the tip end portion 24a of the application needle 106 does not change, stable application is possible.
  • the coating mechanism unit 101 further includes a measuring device 111 that detects the relative distance between the coating mechanism unit 101 and the object 108.
  • the measuring device 111 includes a projector 109 and a light receiver 110.
  • a light projector 109 and a light receiver 110 are attached to the support member 102.
  • This measuring device 111 is for detecting the distance in the Z direction between the vicinity including the contact point P on the object 108 (scheduled application portion) and the measuring device 111 based on the known triangulation principle. It is.
  • the light projector 109 is fixed on the support member 102 so that the spot of the laser light L emitted from the point A substantially coincides with the point P.
  • the light receiver 110 is fixed on the support member 102 so that the optical axes of the laser light L and the reflected light R are symmetric with respect to the Z direction. Thereby, the reflected light R at the point P of the laser light L is incident on the point B of the light receiver 110.
  • FIG. 4 is a diagram showing how the locus of the reflected light R changes on the plane including the laser light L and the reflected light R in order to explain the principle of detecting the distance in the Z direction.
  • a semiconductor laser emitter is disposed at point A
  • a linear image sensor is disposed at point P.
  • the Z axis coincides with the trajectory through which the application needle 106 passes.
  • a point P is a contact point of the object 108 when the application target portion of the object 108 is at an optimal position with respect to the application mechanism unit 101.
  • the correspondence between the shift amount of the light receiving position and the distance is calculated in advance and stored as a map in the measuring device controller 215 in FIG. 5, and the distance is referred to the map from the shift amount of the light receiving position at the time of measurement. You may ask for it.
  • the light receiving surface of the light receiver is set to the same height as the point A, the angle of the triangle ⁇ BAP and ⁇ ABP formed by the three points A, B, and P is fixed. Based on the position (the length of the side AB), the distance (the height of the triangle PAB) may be calculated by the measuring device controller 215 in FIG.
  • FIG. 5 is a diagram showing the configuration of the control block of the liquid material coating apparatus. Referring to FIG. 5, in order to control the first drive mechanism 103, the second drive mechanism 104, and the measurement device 111, the first drive mechanism driver 213, the second drive mechanism driver 214, and the measurement device Controller 215 and controller 212 are provided.
  • the first drive mechanism 103 operates based on an electrical command from the first drive mechanism driver 213.
  • the second drive mechanism 104 operates based on an electrical command from the second drive mechanism driver 214.
  • the measurement device controller 215 measures the distance by controlling the irradiation of the laser light L of the projector 109 and analyzing the reflected light R incident on the light receiver 110.
  • the control device 212 outputs a command to the first drive mechanism driver 213 and the second drive mechanism driver 214 to control the coating operation.
  • the distance is acquired from the measurement device controller 215, and the amount of movement of the first drive mechanism 103 is determined based on the acquired distance.
  • the support member 102 of the application mechanism unit 101 is previously attached and fixed to the liquid material application apparatus 300 using the application mechanism unit 101, and the distance between the application target portion of the object 108 and the tip of the application needle is set.
  • the distance from the reference plane of the measuring apparatus for example, the plane orthogonal to the Z axis and passing through points A and B) to the point P when the optimum distance is set is obtained from the measuring apparatus controller 215, and as shown in FIG. far.
  • the first drive mechanism 103 and the second drive mechanism 104 are controlled, and the amount of movement of the first drive mechanism 103 when the application needle 106 is moved in the + Z direction and brought into contact with the point P is determined. Let it be Z0.
  • the movement amount K (K ⁇ 0) of the second drive mechanism 104 is fixed.
  • FIG. 6 is a flowchart showing the contents of control executed by the control device that controls the coating mechanism unit 101.
  • control device 212 obtains a current distance D ⁇ b> 1 from measurement device controller 215 to point P immediately before the application operation.
  • the distance D1 changes as shown in D1 (+) when the application target portion of the object 108 is shifted in the + direction of the Z axis as shown in FIG. Changes as indicated by D1 ( ⁇ ) when is shifted in the negative direction of the Z-axis.
  • D1-D0 indicates the amount by which the current distance between the application target part and the application mechanism part 101 is deviated from the reference distance Z0.
  • control apparatus 212 calculates
  • Z1 D1-D0 + Z0 (1)
  • the control device 212 designates a positive movement amount + K to the second drive mechanism driver 214 and moves the second drive mechanism 104 in the + Z direction.
  • the state of the coating mechanism after the movement is shown in FIG. If a positive value is designated as the movement amount, the second drive mechanism 104 moves in the + Z direction.
  • + Z1 is designated as the movement amount of the first drive mechanism 103 to the first drive mechanism driver 213, and the first drive mechanism 103 is moved in the + Z direction.
  • the state of the coating mechanism after movement is shown in FIG.
  • the application needle 106 contacts the object 108. If a positive value is specified as the movement amount, the first drive mechanism 103 moves in the + Z direction. Further, depending on the liquid material, the application needle 106 may not be in contact with the object 108. In such a case, the value of Z1 can be further reduced. Thereby, since the moving amount
  • step S4 the application needle 106 is in contact with the object 108 and waits for a predetermined time. As a result, the liquid material is filled from the tip of the application needle 106 to the surface of the object 108.
  • step S5 -Z1 is designated as the movement amount of the first drive mechanism 103 to the first drive mechanism driver 213, and the first drive mechanism 103 is moved in the -Z direction.
  • step S6 the negative movement amount -K is designated to the second drive mechanism driver 214, and the second drive mechanism 104 is moved in the -Z direction.
  • the state of the coating mechanism 101 after the movement returns to the state shown in FIG.
  • step S1 As described above, a series of coating operations are completed by sequentially executing the processing from step S1 to step S6.
  • FIG. 9 is a diagram for specifically explaining the lifting operation.
  • the measurement device 111 is omitted in FIG. 9, but the projector 109 of the measurement device 111 is disposed on the front side of the container 107, and is opposite to the projector 109 with respect to the container 107.
  • the light receiver 110 of the measuring device is arranged, and the container 107 and the measuring device 111 are moved up and down integrally.
  • the coating mechanism shown in FIG. 9 includes a sub-Z stage 34 that lowers and raises the coating unit 20 in the Z-axis direction (vertical direction, the length direction of the coating needle 106), and a support base 29 attached to the drive shaft 34a. And an air cylinder 30 for moving the application needle 106 in the Z-axis direction with respect to the support base 29, and a linear motion guide member 26 for sliding the application needle 106 relative to the support base 29.
  • the sub-Z stage 34 has a drive shaft 34 a that expands and contracts in the Z-axis direction, and the tip of the drive shaft 34 a is fixed to the upper end of the support base 29.
  • the sub Z stage 34 has a function of moving the drive shaft 34a from a first coordinate in an arbitrary Z-axis direction to a second coordinate in an arbitrary Z-axis direction at a desired speed.
  • the linear motion guide member 26 corresponds to the slide mechanism 105 of FIG.
  • the air cylinder 30 corresponds to the second drive mechanism 104 for positioning the slide mechanism 105 in FIG. 2 in the Z direction.
  • the support base 29 corresponds to the support member 102 to which the second drive mechanism 104 in FIG. 2 is attached.
  • the sub Z stage 34 corresponds to the first drive mechanism 103 for positioning the support member 102 of FIG. 2 in the Z direction.
  • the substrate 35 corresponds to the target object 108, and the target area 35a corresponds to the application planned portion.
  • the coating unit 20 and the substrate 35 are moved relative to each other using the XY stage 5 and the Z stage 4 of FIG. 1, and the tip of the coating needle 106 is located above the target area 35a of the substrate 35. Place.
  • the output shaft 30a of the air cylinder 30 is moved downward (in the direction in which the output shaft 30a is pulled in), and the drive plate 31 that moves integrally with the output shaft 30a is moved.
  • the pin 31 a fixed to the tip of the drive plate 31 is in contact with a notch 25 a provided on the application needle fixing plate 25 from below, and the application needle fixing plate 25 moves along the linear motion guide member 26 as the drive plate 31 descends.
  • Move down Accordingly, the application needle 106 also moves downward, and the distal end portion 24a of the application needle 106 protrudes from the first hole 21a opened at the bottom of the container 107.
  • the ink 22 is attached to the distal end portion 24a of the application needle 106, and the application needle 106 can be applied.
  • the tip of the application needle 106 is disposed immediately above the target region 35a, and the distance between the tip of the application needle 106 and the surface of the target region 35a is set to a predetermined distance. That is, the tip of the application needle 106 is arranged at a predetermined position above the target area 35a.
  • the entire coating unit 20 is lowered at a predetermined speed using the sub Z stage 34, and the tip of the coating needle 106 to which the ink 22 has adhered contacts the target area 35 a of the substrate 35.
  • the ink 22 of the application needle tip 24a is applied to the target area 35a, and the ink layer 22a is formed.
  • the output shaft 30a of the air cylinder 30 is moved upward (in the direction in which the output shaft 30a protrudes).
  • the tip 24a of the application needle 106 is returned to the state immersed in the ink 22 of the container 107, and the drive shaft 34a of the sub-Z stage 34 is moved upward to move the entire application unit 20 upward.
  • the coating operation is completed.
  • liquid material application apparatus 300 includes application needle 106, drive apparatus 120, measurement apparatus 111, and control apparatus 212.
  • the application needle 106 applies a liquid material to the tip 108 by applying it to the tip.
  • the driving device 120 moves the application needle 106 relative to the object 108 in the vertical direction (Z-axis direction) along the application needle 106.
  • the measuring device 111 is configured so that the application portion of the object 108 is positioned so that the planned application portion of the object 108 is positioned below the application needle 106. Detect relative distance.
  • the control device 212 obtains the movement distance of the application needle 106 based on the relative distance detected by the measuring device 111, moves the application needle 106 by the movement distance and brings the tip into contact with the object 108, and then applies the application needle.
  • the driving device 120 is controlled so as to move the tip 106 and detach the tip from the object 108.
  • the measuring device 111 includes a projector 109 that emits the laser light L and a light receiver 110 that receives the reflected light R of the laser light reflected by the surface of the object 108.
  • the application needle 106, the light projecting axis of the light projector 109, and the light receiving axis of the light receiver 110 are arranged on the same plane. As shown in FIG. 2, the application needle 106 is disposed between the light projector 109 and the light receiver 110 on the plane.
  • the application scheduled portion is a contact point P on the surface of the object 108 where the tip of the application needle 106 contacts the object 108.
  • the spot of the laser light L emitted from the projector 109 is adjusted so as to substantially coincide with the contact point P.
  • the driving device 120 includes a first driving mechanism 103 that moves the application needle 106 in the vertical direction, and a support member to which the first driving mechanism 103 and the measuring device 111 are fixed. And a second drive mechanism 104 that moves the sensor vertically.
  • the movement distance of the application needle 106 is the sum of the first movement distance of the application needle 106 by the first drive mechanism 103 and the second movement distance of the support member by the second drive mechanism 104.
  • the control device 212 sets the first movement distance to a fixed length K (K ⁇ 0) and changes the second movement distance Z1 based on the relative distance.
  • the measuring device 111 is fixed to the support member 102, irradiates the application target portion with the laser light L, and acquires the relative distance based on the reflected light R.
  • the tip of the needle can be positioned with high accuracy with respect to the object to be coated. Further, as described with reference to FIGS. 2 and 4, since the needle contact position and the laser beam spot are substantially matched, the focusing operation as in Patent Document 1 is unnecessary, and the operation time of the coating mechanism is shortened. can do.

Abstract

Provided is a liquid material coating device (300) comprising a drive device (120), a measurement device (111), and a control device (212). The drive device (120) causes a coating needle (106) to move in the vertical direction with respect to an object (108). The measurement device (111) detects the relative distance between a part to be coated of the object (108) and a tip section (24a) while in a state in which the object (108) is positioned so that the part to be coated is positioned below the coating needle (106). The control device (212) determines the movement distance of the coating needle (106) on the basis of the relative distance detected by the measurement device (111), moves the coating needle (106) by the movement distance, brings the tip section into contact with the object (108), and subsequently controls the drive device (120) so that the tip section of the coating needle (106) is separated from the object (108). Configuring in this manner provides a liquid material coating device capable of positioning the Z-axis positional relationship between an ink coating section and the surface of an object to be coated with high precision.

Description

液状材料塗布装置Liquid material applicator
 この発明は、液状材料塗布装置に関し、特に、半導体や電子回路、フラットパネルディスプレイなどの微細パターンの形成に用いることが可能な液状材料塗布装置に関する。 The present invention relates to a liquid material coating apparatus, and more particularly to a liquid material coating apparatus that can be used for forming fine patterns such as semiconductors, electronic circuits, and flat panel displays.
 先端径が数十μmの塗布針を用いてインクのような液状材料を塗布する技術や、スポット径が数μm~数十μmのレーザ光を用いてパターンを加工する技術を、マイクロメートル精度の精密位置決め技術と組み合わせると、微細なパターンを作成したり、パターンの所定の位置を正確に加工することが可能となる。このような技術は、フラットパネルディスプレイの修正作業や太陽電池のスクライブ作業などに従来から利用されている(たとえば、特開2007-233299号公報、特開2009-122259号公報、特開2012-6077号公報(特許文献1~3)参照)。 A technology that applies a liquid material such as ink using a coating needle with a tip diameter of several tens of μm, and a technology that processes a pattern using laser light with a spot diameter of several μm to several tens of μm. When combined with precision positioning technology, it is possible to create a fine pattern and accurately process a predetermined position of the pattern. Such a technique has been conventionally used for correction work of a flat panel display, scribing work of a solar cell, and the like (for example, JP 2007-233299 A, JP 2009-122259 A, JP 2012-6077 A). (See Patent Documents 1 to 3).
 特に塗布針を用いる技術は、インクジェット式のディスペンサが不得意とする粘度の高いインクでも塗布できるので、最近では、フラットパネルディプレイのパターンなどよりも厚い10μm以上の厚膜の形成にも利用されている。この技術は、たとえば、MEMS(Micro Electro Mechanical Systems)やセンサなどの半導体デバイスの電子回路パターンやプリント基板配線の形成に用いられる。また、将来的に有望な製造技術であるプリンテッドエレクトロニクス技術で作製されるパターンも厚膜に分類される。したがって、塗布針を用いて液状材料を塗布する技術は、今後の用途拡大が期待される加工技術である。 In particular, the technique using an application needle can be applied even with high-viscosity ink, which is not good for an ink jet dispenser, and has recently been used to form a thick film of 10 μm or thicker than a flat panel display pattern. Yes. This technology is used, for example, for forming electronic circuit patterns and printed circuit board wiring of semiconductor devices such as MEMS (Micro Electro Mechanical Systems) and sensors. Patterns produced by printed electronics technology, which is a promising manufacturing technology in the future, are also classified as thick films. Therefore, the technique of applying a liquid material using an application needle is a processing technique that is expected to be used in the future.
特開2007-233299号公報JP 2007-233299 A 特開2009-122259号公報JP 2009-122259 A 特開2012-6077号公報JP 2012-6077 A
 本発明が解決しようとする課題について、特開2007-233299号公報(特許文献1)の図を用いて説明する。図10は、特開2007-233299号公報に開示されたカラーフィルタ欠陥修正装置の構成を示す外観図である。図10を参照して、このカラーフィルタ欠陥修正装置は、ホストコンピュータ1と、制御用コンピュータ2と、画像処理部3と、Z軸ステージ4と、XYステージ5と、チャック台6と、カット用レーザ照射部7と、可変スリット部8と、インク塗布部9と、モニタ10と、対物レンズ21とを備える。カット用レーザ照射部7と、可変スリット部8と、インク塗布部9とは、修正処理部50を構成する。Z軸ステージ4と、XYステージ5とは、位置決め機構51を構成する。 The problem to be solved by the present invention will be described with reference to the figure of JP 2007-233299 A (Patent Document 1). FIG. 10 is an external view showing the configuration of the color filter defect correcting apparatus disclosed in Japanese Patent Laid-Open No. 2007-233299. Referring to FIG. 10, this color filter defect correcting apparatus includes a host computer 1, a control computer 2, an image processing unit 3, a Z-axis stage 4, an XY stage 5, a chuck base 6, and a cutting device. A laser irradiation unit 7, a variable slit unit 8, an ink application unit 9, a monitor 10, and an objective lens 21 are provided. The cutting laser irradiation unit 7, the variable slit unit 8, and the ink application unit 9 constitute a correction processing unit 50. The Z axis stage 4 and the XY stage 5 constitute a positioning mechanism 51.
 次に、インクの塗布手順について説明する。作業者は、ホストコンピュータ1のモニタに表示された欠陥を確認し、インクの塗布位置を指示する。モニタ上の画像は対物レンズ21により拡大表示されており、マウスなどでモニタ上の点をクリックすることによりXY平面における塗布位置を指定する。この際、ホストコンピュータ1は、クリックされた位置をXYステージ5の座標値Pに変換して内部に記憶する。 Next, the ink application procedure will be described. The operator confirms the defect displayed on the monitor of the host computer 1 and instructs the ink application position. The image on the monitor is enlarged and displayed by the objective lens 21, and the application position on the XY plane is designated by clicking a point on the monitor with a mouse or the like. At this time, the host computer 1 converts the clicked position into the coordinate value P of the XY stage 5 and stores it inside.
 このときに画像の焦点が合っていない場合は、作業者は、マニュアル操作によってZ軸ステージ4を移動させて焦点を合わせるか、画像処理部3による自動焦点合わせによってZ軸ステージ4を移動させて焦点を合わせる。この動作によって、インク塗布部9と塗布対象物の表面とのZ軸方向の相対位置関係が適切な位置関係に設定される。この後、作業者はホストコンピュータ1に塗布動作を指示する。 If the image is out of focus at this time, the operator moves the Z-axis stage 4 by manual operation to adjust the focus, or moves the Z-axis stage 4 by automatic focusing by the image processing unit 3. match the focal point. By this operation, the relative positional relationship in the Z-axis direction between the ink application unit 9 and the surface of the application target is set to an appropriate positional relationship. Thereafter, the operator instructs the host computer 1 to perform a coating operation.
 インクの塗布動作が指示されると、ホストコンピュータ1は、記憶しておいた座標値Pにインク塗布部9の対物レンズ21に対する相対座標値を加えて座標P’を算出する。ホストコンピュータ1は、座標P’に基づいてXYステージ5を移動させインク塗布部9を制御してインクを塗布した後、XYステージ5を元の位置に移動させる。最後に、作業者は、ホストコンピュータ1のモニタに表示されたインクの状態を確認する。 When the ink application operation is instructed, the host computer 1 calculates the coordinate P ′ by adding the relative coordinate value of the ink application unit 9 to the objective lens 21 to the stored coordinate value P. The host computer 1 moves the XY stage 5 based on the coordinates P ′, controls the ink application unit 9 to apply ink, and then moves the XY stage 5 to the original position. Finally, the operator confirms the state of the ink displayed on the monitor of the host computer 1.
 以上のように、特許文献1の構成では、インク塗布部9が対物レンズ21に対して水平方向にオフセットした位置に取り付けられているので、塗布対象物は、Z軸方向の位置合わせ時に対物レンズの下に移動し、塗布時にはインク塗布部9の下に移動する必要がある。 As described above, in the configuration of Patent Document 1, since the ink application unit 9 is attached at a position offset in the horizontal direction with respect to the objective lens 21, the object to be applied is the objective lens during alignment in the Z-axis direction. It is necessary to move below the ink application part 9 at the time of application.
 図11は、従来の装置において問題となる塗布対象物の表面形状を説明するための模式図である。図11(a)のように表面に段差があったり、図11(b)のように表面が傾斜している塗布対象物に対しては、連続した塗布動作はできない。その理由は、インク塗布部9の塗布針の下降量は予め定められた値に設定されており、対物レンズの下で焦点を合わせるZ軸方向の位置合わせ操作1回に対して、同一高さの平面にしか塗布を行なうことができないからである。 FIG. 11 is a schematic diagram for explaining the surface shape of an object to be coated, which is a problem in the conventional apparatus. A continuous application | coating operation | movement cannot be performed with respect to the application | coating target object which has a level | step difference on the surface like Fig.11 (a), or the surface inclined like FIG.11 (b). The reason is that the lowering amount of the application needle of the ink application unit 9 is set to a predetermined value, and is the same height for one alignment operation in the Z-axis direction for focusing under the objective lens. This is because the coating can be performed only on the flat surface.
 したがって、図11に示したような形状の塗布対象物に対しては、同一高さの平面上の塗布動作が完了したら、再度対物レンズ21で塗布対象物を確認して、次の高さの対象面に焦点を合わせることによって対象面とインク塗布部9とのZ軸方向の位置関係を合わせてから塗布する必要がある。このため、タクトタイムの短縮が難しい。 Therefore, for a coating object having a shape as shown in FIG. 11, when the coating operation on the same height plane is completed, the object to be coated is confirmed again with the objective lens 21, and the next height is applied. It is necessary to apply after adjusting the positional relationship in the Z-axis direction between the target surface and the ink application unit 9 by focusing on the target surface. For this reason, it is difficult to shorten the tact time.
 本発明は、このような課題を解決するためになされたものであって、その目的は、インク塗布部と塗布対象物の塗布予定部との相対距離を正確に測定する手段を有し、インク塗布部と塗布対象物の塗布予定部の表面とのZ軸方向の位置関係を高精度に位置決めすることが可能な液状材料塗布装置を提供することである。 The present invention has been made to solve such a problem, and an object of the present invention is to have means for accurately measuring the relative distance between the ink application part and the application target part of the application object. An object of the present invention is to provide a liquid material coating apparatus capable of positioning the positional relationship in the Z-axis direction between the coating section and the surface of the coating target portion of the coating target object with high accuracy.
 この発明は、要約すると、液状材料塗布装置であって、液状材料を先端部に付着させて対象物に塗布するための塗布針と、塗布針に沿う上下方向に塗布針を対象物に対して相対的に移動させる駆動装置と、対象物の塗布予定部が塗布針の下に位置するように対象物が位置決めされた状態で、塗布予定部と先端部との相対距離を検出する測定装置と、測定装置によって検出された相対距離に基づいて塗布針を移動させて先端部を対象物に接触させた後、塗布針を移動させて先端部を対象物から離脱させるように駆動装置を制御する制御装置とを備える。 In summary, the present invention is a liquid material application device, an application needle for applying a liquid material to a tip and applying it to an object, and an application needle in the vertical direction along the application needle with respect to the object. A drive device for relatively moving, and a measuring device for detecting a relative distance between the planned application portion and the tip portion in a state where the target object is positioned so that the predetermined application portion of the target object is positioned below the application needle; Then, after moving the application needle based on the relative distance detected by the measuring device to bring the tip portion into contact with the object, the drive device is controlled so as to move the application needle and remove the tip portion from the object. And a control device.
 好ましくは、測定装置は、レーザ光を出射する投光器と、対象物の表面で反射されたレーザ光の反射光を受光する受光器とを含む。 Preferably, the measuring apparatus includes a projector that emits laser light and a light receiver that receives the reflected light of the laser light reflected by the surface of the object.
 より好ましくは、塗布針と、投光器の投光軸と、受光器の受光軸は同一の平面上に配置される。塗布針は、その平面上において、投光器と受光器の中間に配置される。 More preferably, the application needle, the light projecting axis of the light projector, and the light receiving axis of the light receiver are arranged on the same plane. The application needle is disposed between the light projector and the light receiver on the plane.
 さらに好ましくは、塗布予定部は、塗布針の先端部が対象物に接触する対象物の表面上の接触点である。投光器から出射されるレーザ光のスポットは、接触点に略一致するように調整されている。 More preferably, the application portion is a contact point on the surface of the object where the tip of the application needle contacts the object. The spot of the laser beam emitted from the projector is adjusted so as to substantially coincide with the contact point.
 好ましくは、駆動装置は、塗布針を上下方向に移動させる第一の駆動機構と、第一の駆動機構および測定装置が固定された支持部材を上下方向に移動させる第二の駆動機構とを含む。移動距離は、第一の駆動機構による塗布針の第1の移動距離と、第二の駆動機構による支持部材の第2の移動距離との合計である。制御装置は、第1の移動距離を固定長とし、第2の移動距離を相対距離に基づいて変化させる。 Preferably, the drive device includes a first drive mechanism that moves the application needle in the vertical direction and a second drive mechanism that moves the support member to which the first drive mechanism and the measurement device are fixed in the vertical direction. . The movement distance is the sum of the first movement distance of the application needle by the first drive mechanism and the second movement distance of the support member by the second drive mechanism. The control device sets the first movement distance as a fixed length and changes the second movement distance based on the relative distance.
 より好ましくは、測定装置は、支持部材に固定され、塗布予定部にレーザ光を照射し反射光に基づいて相対距離を取得する。 More preferably, the measuring device is fixed to the support member, irradiates the portion to be coated with laser light, and acquires the relative distance based on the reflected light.
 本発明によれば、塗布針の先端部と対象物の塗布予定部の相対位置を高精度に位置決めすることができる。さらに、針接触位置とレーザ光のスポットを略一致させる構成のため、高さが異なる面に対してもその都度の焦点合わせ動作は不要であり、塗布装置の駆動機構の動作時間を短くすることができる。 According to the present invention, the relative position of the tip of the application needle and the application target portion of the object can be positioned with high accuracy. In addition, since the needle contact position and the laser beam spot are substantially coincident with each other, it is not necessary to perform the focusing operation even on surfaces with different heights, and the operating time of the driving mechanism of the coating apparatus can be shortened. Can do.
本実施の形態に係る液状材料塗布装置の構成を示す図である。It is a figure which shows the structure of the liquid material coating device which concerns on this Embodiment. 本実施の形態に係る液状材料塗布装置の塗布機構部101の詳細な構成を示す図である。It is a figure which shows the detailed structure of the application | coating mechanism part 101 of the liquid material application | coating apparatus which concerns on this Embodiment. 塗布針106と容器107を拡大した図である。It is the figure which expanded the application needle | hook 106 and the container 107. FIG. Z方向の距離を検出する原理を説明するためにレーザ光Lと反射光Rを含む平面上において、反射光Rの軌跡が変化する様子を示した図である。It is a figure showing signs that the locus of reflected light R changes on a plane including laser light L and reflected light R in order to explain the principle of detecting the distance in the Z direction. 液状材料塗布装置の制御ブロックの構成を示す図である。It is a figure which shows the structure of the control block of a liquid material coating device. 塗布機構部101を制御する制御装置で実行される制御内容を示すフローチャートである。5 is a flowchart showing control contents executed by a control device that controls the application mechanism unit 101; 塗布針の昇降動作を説明するための第1の図である。It is a 1st figure for demonstrating the raising / lowering operation | movement of a coating needle. 塗布針の昇降動作を説明するための第2の図である。It is a 2nd figure for demonstrating the raising / lowering operation | movement of a coating needle. 昇降動作を具体的に説明するための図である。It is a figure for demonstrating concrete raising / lowering operation | movement. 特開2007-233299号公報に開示されたカラーフィルタ欠陥修正装置の構成を示す外観図である。1 is an external view showing a configuration of a color filter defect correcting device disclosed in Japanese Patent Application Laid-Open No. 2007-233299. 従来の装置において問題となる塗布対象物の表面形状を説明するための模式図である。It is a schematic diagram for demonstrating the surface shape of the coating target object which becomes a problem in the conventional apparatus.
 以下、図面に基づいてこの発明の実施の形態を説明する。なお、以下の図面において、同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 図1は、本実施の形態に係る液状材料塗布装置の構成を示す図である。本実施の形態では、図10のインク塗布部9を、図1に示す塗布機構部101で置き換えたことが特徴である。 FIG. 1 is a diagram showing a configuration of a liquid material coating apparatus according to the present embodiment. The present embodiment is characterized in that the ink application unit 9 in FIG. 10 is replaced with an application mechanism unit 101 shown in FIG.
 図1を参照して、本実施の形態に係る液状材料塗布装置300は、インク塗布の対象物(回路基板など)の表面を観察する観察光学系で観察された画像を映し出すモニタ10と、観察光学系を介して対象物にレーザ光を照射し不要部をカットするカット用レーザ照射部7と、インクを塗布針の先端部に付着させて対象物の対象領域に塗布する塗布機構部101と、対象領域を認識する画像処理部3と、装置全体を制御するホストコンピュータ1と、塗布機構部101の動作を制御する制御用コンピュータ2とを含む。液状材料塗布装置300は、さらに、その他に対象領域を有する対象物をXY方向(水平方向)に移動させるXYステージ5と、XYステージ5上で対象物を保持するチャック台6と、観察光学系および塗布機構部101をZ方向(垂直方向)に移動させるZステージ4などを含む。 Referring to FIG. 1, a liquid material coating apparatus 300 according to the present embodiment includes a monitor 10 that displays an image observed by an observation optical system that observes the surface of an object to be coated with ink (such as a circuit board), and an observation. A laser irradiation unit for cutting 7 that irradiates an object with laser light through an optical system to cut unnecessary portions; and an application mechanism unit 101 that applies ink to a target region of an object by attaching ink to the tip of an application needle; The image processing unit 3 for recognizing the target area, the host computer 1 for controlling the entire apparatus, and the control computer 2 for controlling the operation of the coating mechanism unit 101 are included. The liquid material coating apparatus 300 further includes an XY stage 5 that moves an object having a target area in the XY direction (horizontal direction), a chuck base 6 that holds the object on the XY stage 5, and an observation optical system. And a Z stage 4 that moves the coating mechanism 101 in the Z direction (vertical direction).
 XYステージ5は、塗布機構部101によってインクを対象領域に塗布する際や、観察光学系によって対象物の表面を観察する際などに、対象物を適切な位置に相対移動させるために用いられる。XYステージ5は、2つの一軸ステージを直角方向に重ねた構成を有している。ただし、このXYステージ5は、観察光学系や塗布機構部101に対して対象物を相対的に移動させることができるものであればよく、図1に示すXYステージ5の構成に限定されるものではない。対象物のサイズが大きい場合には、X軸方向とY軸方向にそれぞれ独立して移動可能なガントリ型のXYステージを用いてもよい。 The XY stage 5 is used to relatively move an object to an appropriate position when applying ink to the object area by the application mechanism 101 or observing the surface of the object by an observation optical system. The XY stage 5 has a configuration in which two uniaxial stages are stacked in a perpendicular direction. However, the XY stage 5 is not limited as long as it can move the object relative to the observation optical system and the coating mechanism unit 101, and is limited to the configuration of the XY stage 5 shown in FIG. is not. When the size of the object is large, a gantry-type XY stage that can move independently in the X-axis direction and the Y-axis direction may be used.
 図2は、本実施の形態に係る液状材料塗布装置の塗布機構部101の詳細な構成を示す図である。図2を参照して、塗布機構部101は、液状材料が注入された容器107と、液状材料を先端部に付着させて対象物に塗布するための塗布針106と、塗布針106が取り付けられ塗布針106をZ方向にスライドするためのスライド機構105と、スライド機構105が取り付けられスライド機構105をZ方向に位置決めするための第二の駆動機構104と、第二の駆動機構104が取り付けられた支持部材102と、支持部材102をZ方向に位置決めするための第一の駆動機構103とを含む。 FIG. 2 is a diagram showing a detailed configuration of the coating mechanism unit 101 of the liquid material coating apparatus according to the present embodiment. Referring to FIG. 2, an application mechanism unit 101 is provided with a container 107 into which a liquid material is injected, an application needle 106 for applying the liquid material to a tip portion and applying it to an object, and an application needle 106. A slide mechanism 105 for sliding the application needle 106 in the Z direction, a second drive mechanism 104 for attaching the slide mechanism 105 and positioning the slide mechanism 105 in the Z direction, and a second drive mechanism 104 are attached. And a first drive mechanism 103 for positioning the support member 102 in the Z direction.
 図3は、塗布針106と容器107を拡大した図である。図3には、容器107の底に開口された第1の孔21aと、その蓋23に開口された第2の孔23aと、塗布針106との寸法関係を表したものである。第1の孔21aの径をDdとし、第2の孔23aの径をDuとし、塗布針106の径をDとすると、DdとDuはDよりも大きく、Dd>Du>Dの関係にある。なお、この関係式は、塗布針106が段付ではなく、ストレートのタイプの場合に成り立つ。 FIG. 3 is an enlarged view of the application needle 106 and the container 107. FIG. 3 shows the dimensional relationship between the first hole 21 a opened in the bottom of the container 107, the second hole 23 a opened in the lid 23, and the application needle 106. When the diameter of the first hole 21a is Dd, the diameter of the second hole 23a is Du, and the diameter of the application needle 106 is D, Dd and Du are larger than D and Dd> Du> D. . This relational expression is valid when the application needle 106 is not a step but a straight type.
 また、第1の孔21aの径Ddと塗布針106の径Dとの差の半分(片側隙間)をΔdとし、第2の孔23aの径Duと塗布針106の径Dとの差の半分(片側隙間)をΔuとすると、Δd>Δuの関係にあり、蓋23に開口された第2の孔23aと塗布針106との隙間よりも、容器107の底に開口された第1の孔21aと塗布針106との隙間の方が大きく設定されている。このため、第2の孔23aと塗布針106で容器107の姿勢を保つことができ、さらに、塗布針106が第2の孔23aの内面に接触した状態にあっても、塗布針106が第1の孔21aの内面に接触しないため、第1の孔21aの磨耗による変形を抑制できる。したがって、塗布針106の先端部24aに付着するインク22の液量が変化しないので安定した塗布が可能となる。 Further, half of the difference (one-side gap) between the diameter Dd of the first hole 21a and the diameter D of the application needle 106 is Δd, and half of the difference between the diameter Du of the second hole 23a and the diameter D of the application needle 106. When (one-side gap) is Δu, there is a relationship of Δd> Δu, and the first hole opened at the bottom of the container 107 rather than the gap between the second hole 23a opened at the lid 23 and the application needle 106. The gap between 21a and application needle 106 is set larger. For this reason, the posture of the container 107 can be maintained by the second hole 23a and the application needle 106, and even if the application needle 106 is in contact with the inner surface of the second hole 23a, the application needle 106 is Since it does not contact the inner surface of the first hole 21a, deformation due to wear of the first hole 21a can be suppressed. Accordingly, since the amount of the ink 22 adhering to the tip end portion 24a of the application needle 106 does not change, stable application is possible.
 再び図2に戻って、塗布機構部101は、塗布機構部101と対象物108との相対距離を検出する測定装置111をさらに含む。測定装置111は、投光器109と受光器110とを含む。支持部材102には、投光器109と受光器110が取り付けられる。この測定装置111は、対象物108上の接触点Pを含む近傍(塗布予定部)と測定装置111との間のZ方向の距離を、公知の三角測量の原理に基づいて検出するためのものである。 2 again, the coating mechanism unit 101 further includes a measuring device 111 that detects the relative distance between the coating mechanism unit 101 and the object 108. The measuring device 111 includes a projector 109 and a light receiver 110. A light projector 109 and a light receiver 110 are attached to the support member 102. This measuring device 111 is for detecting the distance in the Z direction between the vicinity including the contact point P on the object 108 (scheduled application portion) and the measuring device 111 based on the known triangulation principle. It is.
 投光器109は、点Aから出射されるレーザ光Lのスポットが点Pに略一致するように支持部材102上に固定される。また、受光器110は、レーザ光Lと反射光Rの光軸がZ方向に対して対称になるように支持部材102上に固定される。これにより、レーザ光Lの点Pでの反射光Rは受光器110の点Bに入射する。 The light projector 109 is fixed on the support member 102 so that the spot of the laser light L emitted from the point A substantially coincides with the point P. The light receiver 110 is fixed on the support member 102 so that the optical axes of the laser light L and the reflected light R are symmetric with respect to the Z direction. Thereby, the reflected light R at the point P of the laser light L is incident on the point B of the light receiver 110.
 図4は、Z方向の距離を検出する原理を説明するためにレーザ光Lと反射光Rを含む平面上において、反射光Rの軌跡が変化する様子を示した図である。図2、図4を参照して、点Aには半導体レーザ発光器が配置され、点Pにはリニアイメージセンサが配置される。Z軸は、塗布針106が通過する軌跡と一致している。点Pは、対象物108の塗布予定部が塗布機構部101に対して最適な位置にあるときの対象物108の接触点である。 FIG. 4 is a diagram showing how the locus of the reflected light R changes on the plane including the laser light L and the reflected light R in order to explain the principle of detecting the distance in the Z direction. 2 and 4, a semiconductor laser emitter is disposed at point A, and a linear image sensor is disposed at point P. The Z axis coincides with the trajectory through which the application needle 106 passes. A point P is a contact point of the object 108 when the application target portion of the object 108 is at an optimal position with respect to the application mechanism unit 101.
 対象物108の塗布予定部が最適な位置からZ+方向に遠ざかると、レーザ光Lの反射位置は点Pから点P(+)に変化する。すると、反射光Rの軌跡が平行移動し受光器における受光位置が点Bから点B(+)に変化する。 When the application portion of the object 108 moves away from the optimum position in the Z + direction, the reflection position of the laser light L changes from the point P to the point P (+). Then, the locus of the reflected light R moves in parallel, and the light receiving position in the light receiver changes from the point B to the point B (+).
 逆に、対象物108の塗布予定部が最適な位置からZ-方向に遠ざかると、レーザ光Lの反射位置は点Pから点P(-)に変化する。すると、反射光Rの軌跡が平行移動し受光器における受光位置が点Bから点B(-)に変化する。 Conversely, when the application portion of the object 108 moves away from the optimum position in the Z-direction, the reflection position of the laser light L changes from the point P to the point P (-). Then, the locus of the reflected light R moves in parallel, and the light receiving position in the light receiver changes from the point B to the point B (−).
 このように、受光器における受光位置と塗布機構部101から対象物の塗布予定部までの距離との間には相関関係がある。したがって、たとえば、受光位置のずれ量と距離との対応関係を予め計算してマップにして図5の測定装置用コントローラ215に記憶しておき、測定時に受光位置のずれ量から距離をマップを参照して求めても良い。また、受光器の受光面を点Aと同じ高さになるようにしておけば、3つの点A、B、Pで構成される三角形の∠BAPと∠ABPの角度が固定であるので、受光位置(辺ABの長さ)に基づいて、その距離(三角形PABの高さ)を図5の測定装置用コントローラ215で算出しても良い。 Thus, there is a correlation between the light receiving position in the light receiver and the distance from the coating mechanism unit 101 to the target coating target portion. Therefore, for example, the correspondence between the shift amount of the light receiving position and the distance is calculated in advance and stored as a map in the measuring device controller 215 in FIG. 5, and the distance is referred to the map from the shift amount of the light receiving position at the time of measurement. You may ask for it. In addition, if the light receiving surface of the light receiver is set to the same height as the point A, the angle of the triangle ∠BAP and ∠ABP formed by the three points A, B, and P is fixed. Based on the position (the length of the side AB), the distance (the height of the triangle PAB) may be calculated by the measuring device controller 215 in FIG.
 図5は、液状材料塗布装置の制御ブロックの構成を示す図である。図5を参照して、第一の駆動機構103、第二の駆動機構104、測定装置111を制御するために、第一の駆動機構用ドライバ213、第二の駆動機構用ドライバ214、測定装置用コントローラ215および制御装置212が設けられる。 FIG. 5 is a diagram showing the configuration of the control block of the liquid material coating apparatus. Referring to FIG. 5, in order to control the first drive mechanism 103, the second drive mechanism 104, and the measurement device 111, the first drive mechanism driver 213, the second drive mechanism driver 214, and the measurement device Controller 215 and controller 212 are provided.
 第一の駆動機構103は、第一の駆動機構用ドライバ213の電気的指令に基づいて動作する。第二の駆動機構104も同様に、第二の駆動機構用ドライバ214の電気的指令に基づいて動作する。測定装置用コントローラ215は、投光器109のレーザ光Lの照射制御や、受光器110に入射する反射光Rの解析を行ない、距離を測定する。 The first drive mechanism 103 operates based on an electrical command from the first drive mechanism driver 213. Similarly, the second drive mechanism 104 operates based on an electrical command from the second drive mechanism driver 214. The measurement device controller 215 measures the distance by controlling the irradiation of the laser light L of the projector 109 and analyzing the reflected light R incident on the light receiver 110.
 制御装置212は、第一の駆動機構用ドライバ213および第二の駆動機構用ドライバ214に指令を出力し、塗布動作を制御する。このとき、測定装置用コントローラ215から距離を取得し、取得した距離に基づいて第一の駆動機構103の移動量を決定する。 The control device 212 outputs a command to the first drive mechanism driver 213 and the second drive mechanism driver 214 to control the coating operation. At this time, the distance is acquired from the measurement device controller 215, and the amount of movement of the first drive mechanism 103 is determined based on the acquired distance.
 次に、フローチャートを用いて、塗布機構部101による液状材料の塗布動作について説明する。その前処理として、あらかじめ、塗布機構部101の支持部材102を、塗布機構部101を使用する液状材料塗布装置300に取り付けて固定し、対象物108の塗布予定部と塗布針先端との距離を最適距離に設定したときの測定装置の基準面(たとえばZ軸に直交し点A、Bを通る面)から点Pまでの距離を測定装置用コントローラ215から取得し、図4に示すようにD0とおく。また、このとき、第一の駆動機構103および第二の駆動機構104を制御し、塗布針106を+Z方向に移動させて点Pに接触させたときの第一の駆動機構103の移動量をZ0とおく。なお、ここでは、第二の駆動機構104の移動量K(K≧0)は固定とする。 Next, the operation of applying the liquid material by the application mechanism unit 101 will be described using a flowchart. As the pretreatment, the support member 102 of the application mechanism unit 101 is previously attached and fixed to the liquid material application apparatus 300 using the application mechanism unit 101, and the distance between the application target portion of the object 108 and the tip of the application needle is set. The distance from the reference plane of the measuring apparatus (for example, the plane orthogonal to the Z axis and passing through points A and B) to the point P when the optimum distance is set is obtained from the measuring apparatus controller 215, and as shown in FIG. far. At this time, the first drive mechanism 103 and the second drive mechanism 104 are controlled, and the amount of movement of the first drive mechanism 103 when the application needle 106 is moved in the + Z direction and brought into contact with the point P is determined. Let it be Z0. Here, the movement amount K (K ≧ 0) of the second drive mechanism 104 is fixed.
 図6は、塗布機構部101を制御する制御装置で実行される制御内容を示すフローチャートである。図6を参照して、制御装置212は、塗布動作のステップS1において、塗布動作の直前に、現在の測定装置用コントローラ215から点Pまでの距離D1を取得する。距離D1は、図4に示すように対象物108の塗布対象部がZ軸の+方向にずれているときは、D1(+)に示すように変化し、逆に対象物108の塗布対象部がZ軸の-方向にずれているときは、D1(-)に示すように変化する。D1-D0は、塗布対象部と塗布機構部101との現在の距離が基準距離Z0からずれている量を示す。 FIG. 6 is a flowchart showing the contents of control executed by the control device that controls the coating mechanism unit 101. Referring to FIG. 6, in step S <b> 1 of the application operation, control device 212 obtains a current distance D <b> 1 from measurement device controller 215 to point P immediately before the application operation. The distance D1 changes as shown in D1 (+) when the application target portion of the object 108 is shifted in the + direction of the Z axis as shown in FIG. Changes as indicated by D1 (−) when is shifted in the negative direction of the Z-axis. D1-D0 indicates the amount by which the current distance between the application target part and the application mechanism part 101 is deviated from the reference distance Z0.
 そして、制御装置212は、下記式(1)に基づいて第一の駆動機構103の移動量Z1を求める。
Z1=D1-D0+Z0  …(1)
 続いて、制御装置212は、ステップS2において、第二の駆動機構用ドライバ214に正の移動量+Kを指定し、第二の駆動機構104を+Z方向に移動する。移動後の塗布機構の状態を図7に示す。なお、移動量として正の値を指定すると、第二の駆動機構104は+Z方向に移動する。
And the control apparatus 212 calculates | requires the movement amount Z1 of the 1st drive mechanism 103 based on following formula (1).
Z1 = D1-D0 + Z0 (1)
Subsequently, in step S2, the control device 212 designates a positive movement amount + K to the second drive mechanism driver 214 and moves the second drive mechanism 104 in the + Z direction. The state of the coating mechanism after the movement is shown in FIG. If a positive value is designated as the movement amount, the second drive mechanism 104 moves in the + Z direction.
 ステップS3では、第一の駆動機構用ドライバ213に第一の駆動機構103の移動量として+Z1を指定し、第一の駆動機構103を+Z方向に移動する。移動後の塗布機構の状態を図8に示す。このとき、塗布針106が対象物108に接触する。なお、移動量として正の値を指定すると、第一の駆動機構103は+Z方向に移動する。また、液状材料によっては塗布針106を対象物108に接触させなくてもよい場合があり、このような場合はZ1の値をより小さくすることができる。これにより、第一の駆動機構103の移動量を小さくできるので、塗布動作時間を短縮することができる。 In step S3, + Z1 is designated as the movement amount of the first drive mechanism 103 to the first drive mechanism driver 213, and the first drive mechanism 103 is moved in the + Z direction. The state of the coating mechanism after movement is shown in FIG. At this time, the application needle 106 contacts the object 108. If a positive value is specified as the movement amount, the first drive mechanism 103 moves in the + Z direction. Further, depending on the liquid material, the application needle 106 may not be in contact with the object 108. In such a case, the value of Z1 can be further reduced. Thereby, since the moving amount | distance of the 1st drive mechanism 103 can be made small, application | coating operation time can be shortened.
 ステップS4では、塗布針106が対象物108に接触した状態で、あらかじめ決められた時間だけ待機する。これにより、塗布針106の先から対象物108の表面に液状材料が充填される。 In step S4, the application needle 106 is in contact with the object 108 and waits for a predetermined time. As a result, the liquid material is filled from the tip of the application needle 106 to the surface of the object 108.
 ステップS5では、第一の駆動機構用ドライバ213に第一の駆動機構103の移動量として-Z1を指定し、第一の駆動機構103を-Z方向に移動する。移動後の塗布機構の状態は、再び図7に示した状態となる。 In step S5, -Z1 is designated as the movement amount of the first drive mechanism 103 to the first drive mechanism driver 213, and the first drive mechanism 103 is moved in the -Z direction. The state of the coating mechanism after the movement again becomes the state shown in FIG.
 ステップS6では、第二の駆動機構用ドライバ214に負の移動量-Kを指定し、第二の駆動機構104を-Z方向に移動する。移動後の塗布機構部101の状態は、図2に示した状態に戻る。 In step S6, the negative movement amount -K is designated to the second drive mechanism driver 214, and the second drive mechanism 104 is moved in the -Z direction. The state of the coating mechanism 101 after the movement returns to the state shown in FIG.
 以上説明したように、一連の塗布動作は、ステップS1からステップS6までの処理を順次実行することにより完了する。 As described above, a series of coating operations are completed by sequentially executing the processing from step S1 to step S6.
 なお、図2、図7、図8は、模式的に塗布機構部101の構造を記載しているので塗布針の昇降動作についてやや理解しにくい面がある。このため、塗布機構部101の昇降動作について、より具体的な形状を示した図を例示しておく。図9は、昇降動作を具体的に説明するための図である。なお、図示の簡単のため、図9では、測定装置111は省略されているが、容器107の紙面手前側に測定装置111の投光器109が配置され、容器107に対して投光器109と反対側に測定装置の受光器110が配置されており、容器107と測定装置111とは一体的に昇降する。 2, 7, and 8 schematically illustrate the structure of the application mechanism unit 101, and therefore, it is somewhat difficult to understand the raising and lowering operation of the application needle. For this reason, the figure which showed the more specific shape about the raising / lowering operation | movement of the application | coating mechanism part 101 is illustrated. FIG. 9 is a diagram for specifically explaining the lifting operation. For simplicity of illustration, the measurement device 111 is omitted in FIG. 9, but the projector 109 of the measurement device 111 is disposed on the front side of the container 107, and is opposite to the projector 109 with respect to the container 107. The light receiver 110 of the measuring device is arranged, and the container 107 and the measuring device 111 are moved up and down integrally.
 図9に示された塗布機構は、塗布ユニット20をZ軸方向(垂直方向、塗布針106の長さ方向)に下降および上昇させる副Zステージ34と、駆動軸34aに取り付けられた支持台29と、塗布針106を支持台29に対してZ軸方向に移動させるためのエアシリンダ30と、支持台29に対して塗布針106をスライドさせるための直動案内部材26とを含む。 The coating mechanism shown in FIG. 9 includes a sub-Z stage 34 that lowers and raises the coating unit 20 in the Z-axis direction (vertical direction, the length direction of the coating needle 106), and a support base 29 attached to the drive shaft 34a. And an air cylinder 30 for moving the application needle 106 in the Z-axis direction with respect to the support base 29, and a linear motion guide member 26 for sliding the application needle 106 relative to the support base 29.
 副Zステージ34は、Z軸方向に伸縮する駆動軸34aを有し、駆動軸34aの先端部が支持台29の上端部に固定されている。副Zステージ34は、駆動軸34aを任意のZ軸方向の第1座標から任意のZ軸方向の第2座標まで所望の速度で移動させる機能を有する。 The sub-Z stage 34 has a drive shaft 34 a that expands and contracts in the Z-axis direction, and the tip of the drive shaft 34 a is fixed to the upper end of the support base 29. The sub Z stage 34 has a function of moving the drive shaft 34a from a first coordinate in an arbitrary Z-axis direction to a second coordinate in an arbitrary Z-axis direction at a desired speed.
 以下の説明において、直動案内部材26は、図2のスライド機構105に相当する。エアシリンダ30は、図2のスライド機構105をZ方向に位置決めするための第二の駆動機構104に相当する。支持台29は、図2の第二の駆動機構104が取り付けられた支持部材102に相当する。副Zステージ34は、図2の支持部材102をZ方向に位置決めするための第一の駆動機構103に相当する。基板35は、対象物108に相当し、対象領域35aは塗布予定部に相当する。 In the following description, the linear motion guide member 26 corresponds to the slide mechanism 105 of FIG. The air cylinder 30 corresponds to the second drive mechanism 104 for positioning the slide mechanism 105 in FIG. 2 in the Z direction. The support base 29 corresponds to the support member 102 to which the second drive mechanism 104 in FIG. 2 is attached. The sub Z stage 34 corresponds to the first drive mechanism 103 for positioning the support member 102 of FIG. 2 in the Z direction. The substrate 35 corresponds to the target object 108, and the target area 35a corresponds to the application planned portion.
 まず、図9(A)に示すように、図1のXYステージ5およびZステージ4を用いて塗布ユニット20と基板35を相対移動させ、基板35の対象領域35aの上方に塗布針106の先端を配置する。 First, as shown in FIG. 9A, the coating unit 20 and the substrate 35 are moved relative to each other using the XY stage 5 and the Z stage 4 of FIG. 1, and the tip of the coating needle 106 is located above the target area 35a of the substrate 35. Place.
 次に図9(B)に示すように、エアシリンダ30の出力軸30aを下方(図では、出力軸30aを引き込む方向)に移動させ、出力軸30aと一体となって移動する駆動板31を下方に移動させる。駆動板31の先端に固着したピン31aは、塗布針固定板25に設けた切り欠き部25aに下方から接しており、駆動板31の下降により塗布針固定板25は直動案内部材26に沿って下方に移動する。それに合わせて塗布針106も下方に移動し、容器107の底に開口された第1の孔21aから塗布針106の先端部24aが突出する。この状態で、塗布針106の先端部24aにはインク22が付着しており、塗布できる状態となる。このとき、塗布針106の先端は対象領域35aの真上に配置され、塗布針106の先端と対象領域35aの表面との間隔は所定の距離に設定されている。つまり、対象領域35aの上方の予め定められた位置に塗布針106の先端が配置される。 Next, as shown in FIG. 9B, the output shaft 30a of the air cylinder 30 is moved downward (in the direction in which the output shaft 30a is pulled in), and the drive plate 31 that moves integrally with the output shaft 30a is moved. Move down. The pin 31 a fixed to the tip of the drive plate 31 is in contact with a notch 25 a provided on the application needle fixing plate 25 from below, and the application needle fixing plate 25 moves along the linear motion guide member 26 as the drive plate 31 descends. Move down. Accordingly, the application needle 106 also moves downward, and the distal end portion 24a of the application needle 106 protrudes from the first hole 21a opened at the bottom of the container 107. In this state, the ink 22 is attached to the distal end portion 24a of the application needle 106, and the application needle 106 can be applied. At this time, the tip of the application needle 106 is disposed immediately above the target region 35a, and the distance between the tip of the application needle 106 and the surface of the target region 35a is set to a predetermined distance. That is, the tip of the application needle 106 is arranged at a predetermined position above the target area 35a.
 その後、図9(C)に示すように、副Zステージ34を用いて塗布ユニット20全体を所定の速度で下降させ、インク22が付着した塗布針106の先端を基板35の対象領域35aに接触させる。これにより、塗布針先端部24aのインク22が対象領域35aに塗布され、インク層22aが形成される。 Thereafter, as shown in FIG. 9C, the entire coating unit 20 is lowered at a predetermined speed using the sub Z stage 34, and the tip of the coating needle 106 to which the ink 22 has adhered contacts the target area 35 a of the substrate 35. Let Thereby, the ink 22 of the application needle tip 24a is applied to the target area 35a, and the ink layer 22a is formed.
 塗布針106の先端を一定時間、対象領域35aに接触させた後、図9(D)に示すように、エアシリンダ30の出力軸30aを上方(図では、出力軸30aを突出させる方向)に移動させ、塗布針106の先端部24aを容器107のインク22中に浸漬した状態に戻すとともに、副Zステージ34の駆動軸34aを上方に移動させて塗布ユニット20全体を上方に移動させ、1回の塗布動作が終了する。 After the tip of the application needle 106 is brought into contact with the target region 35a for a certain period of time, as shown in FIG. 9D, the output shaft 30a of the air cylinder 30 is moved upward (in the direction in which the output shaft 30a protrudes). The tip 24a of the application needle 106 is returned to the state immersed in the ink 22 of the container 107, and the drive shaft 34a of the sub-Z stage 34 is moved upward to move the entire application unit 20 upward. The coating operation is completed.
 最後に、再び本実施の形態の液状材料塗布装置について総括する。図1、図2を参照して、本実施の形態に係る液状材料塗布装置300は、塗布針106と、駆動装置120と、測定装置111と、制御装置212とを含む。塗布針106は、液状材料を先端部に付着させて対象物108に塗布する。駆動装置120は、塗布針106に沿う上下方向(Z軸方向)に塗布針106を対象物108に対して相対的に移動させる。測定装置111は、対象物108の塗布予定部が塗布針106の下に位置するように対象物108が位置決めされた状態で、図4で説明したように、塗布予定部と先端部24aとの相対距離を検出する。制御装置212は、測定装置111によって検出された相対距離に基づいて塗布針106の移動距離を求め、塗布針106を移動距離だけ移動させて先端部を対象物108に接触させた後、塗布針106を移動させて先端部を対象物108から離脱させるように駆動装置120を制御する。 Finally, the liquid material applicator of this embodiment will be summarized again. Referring to FIGS. 1 and 2, liquid material application apparatus 300 according to the present embodiment includes application needle 106, drive apparatus 120, measurement apparatus 111, and control apparatus 212. The application needle 106 applies a liquid material to the tip 108 by applying it to the tip. The driving device 120 moves the application needle 106 relative to the object 108 in the vertical direction (Z-axis direction) along the application needle 106. As described with reference to FIG. 4, the measuring device 111 is configured so that the application portion of the object 108 is positioned so that the planned application portion of the object 108 is positioned below the application needle 106. Detect relative distance. The control device 212 obtains the movement distance of the application needle 106 based on the relative distance detected by the measuring device 111, moves the application needle 106 by the movement distance and brings the tip into contact with the object 108, and then applies the application needle. The driving device 120 is controlled so as to move the tip 106 and detach the tip from the object 108.
 好ましくは、図2に示すように、測定装置111は、レーザ光Lを出射する投光器109と、対象物108の表面で反射されたレーザ光の反射光Rを受光する受光器110とを含む。 Preferably, as shown in FIG. 2, the measuring device 111 includes a projector 109 that emits the laser light L and a light receiver 110 that receives the reflected light R of the laser light reflected by the surface of the object 108.
 より好ましくは、図2、図4に示すように、塗布針106と、投光器109の投光軸と、受光器110の受光軸は同一の平面上に配置される。図2に示すように、塗布針106は、その平面上において、投光器109と受光器110の中間に配置される。 More preferably, as shown in FIGS. 2 and 4, the application needle 106, the light projecting axis of the light projector 109, and the light receiving axis of the light receiver 110 are arranged on the same plane. As shown in FIG. 2, the application needle 106 is disposed between the light projector 109 and the light receiver 110 on the plane.
 さらに好ましくは、塗布予定部は、塗布針106の先端部が対象物108に接触する対象物108の表面上の接触点Pである。図2、図4に示すように、投光器109から出射されるレーザ光Lのスポットは、接触点Pに略一致するように調整されている。 More preferably, the application scheduled portion is a contact point P on the surface of the object 108 where the tip of the application needle 106 contacts the object 108. As shown in FIGS. 2 and 4, the spot of the laser light L emitted from the projector 109 is adjusted so as to substantially coincide with the contact point P.
 好ましくは、図2、図4に示すように駆動装置120は、塗布針106を上下方向に移動させる第一の駆動機構103と、第一の駆動機構103および測定装置111が固定された支持部材を上下方向に移動させる第二の駆動機構104とを含む。塗布針106の移動距離は、第一の駆動機構103による塗布針106の第1の移動距離と、第二の駆動機構104による支持部材の第2の移動距離との合計である。制御装置212は、図7、図8に示すように、第1の移動距離を固定長K(K≧0)とし、第2の移動距離Z1を相対距離に基づいて変化させる。 Preferably, as shown in FIGS. 2 and 4, the driving device 120 includes a first driving mechanism 103 that moves the application needle 106 in the vertical direction, and a support member to which the first driving mechanism 103 and the measuring device 111 are fixed. And a second drive mechanism 104 that moves the sensor vertically. The movement distance of the application needle 106 is the sum of the first movement distance of the application needle 106 by the first drive mechanism 103 and the second movement distance of the support member by the second drive mechanism 104. As shown in FIGS. 7 and 8, the control device 212 sets the first movement distance to a fixed length K (K ≧ 0) and changes the second movement distance Z1 based on the relative distance.
 より好ましくは、図2に示すように、測定装置111は、支持部材102に固定され、塗布予定部にレーザ光Lを照射し反射光Rに基づいて相対距離を取得する。 More preferably, as shown in FIG. 2, the measuring device 111 is fixed to the support member 102, irradiates the application target portion with the laser light L, and acquires the relative distance based on the reflected light R.
 本発明によれば、針先端部を塗布対象物に対して高精度に位置決めすることができる。さらに、図2、図4で説明したように、針接触位置とレーザ光のスポットを略一致させる構成のため、特許文献1のような焦点合わせ動作は不要であり、塗布機構の動作時間を短くすることができる。 According to the present invention, the tip of the needle can be positioned with high accuracy with respect to the object to be coated. Further, as described with reference to FIGS. 2 and 4, since the needle contact position and the laser beam spot are substantially matched, the focusing operation as in Patent Document 1 is unnecessary, and the operation time of the coating mechanism is shortened. can do.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 ホストコンピュータ、2 制御用コンピュータ、3 画像処理部、4,5,34 ステージ、6 チャック台、7 カット用レーザ照射部、8 可変スリット部、9 インク塗布部、10 モニタ、20 塗布ユニット、21 対物レンズ、21a 第1の孔、22 インク、22a インク層、23 蓋、23a 第2の孔、25 塗布針固定板、26 直動案内部材、29 支持台、30 エアシリンダ、30a 出力軸、31 駆動板、31a ピン、34a 駆動軸、35 基板、35a 対象領域、50 修正処理部、51 位置決め機構、101 塗布機構部、102 支持部材、103 第一の駆動機構、104 第二の駆動機構、105 スライド機構、106 塗布針、107 容器、108 対象物、109 投光器、110 受光器、111 測定装置、120 駆動装置、212 制御装置、213 第一の駆動機構用ドライバ、214 第二の駆動機構用ドライバ、215 測定装置用コントローラ、300 液状材料塗布装置。 1 host computer, 2 control computer, 3 image processing unit, 4, 5, 34 stage, 6 chuck base, 7 cutting laser irradiation unit, 8 variable slit unit, 9 ink coating unit, 10 monitor, 20 coating unit, 21 Objective lens, 21a first hole, 22 ink, 22a ink layer, 23 lid, 23a second hole, 25 application needle fixing plate, 26 linear motion guide member, 29 support base, 30 air cylinder, 30a output shaft, 31 Drive plate, 31a pin, 34a drive shaft, 35 substrate, 35a target area, 50 correction processing section, 51 positioning mechanism, 101 coating mechanism section, 102 support member, 103 first drive mechanism, 104 second drive mechanism, 105 Slide mechanism, 106 coating needle, 107 container, 108 object, 109 throw Vessel, 110 photodetector, 111 measuring device, 120 drive, 212 control unit, 213 first drive mechanism driver, 214 a second drive mechanism for the driver, 215 measuring device controller, 300 a liquid material application apparatus.

Claims (6)

  1.  液状材料を先端部に付着させて対象物に塗布するための塗布針と、
     前記塗布針に沿う上下方向に前記塗布針を前記対象物に対して相対的に移動させる駆動装置と、
     前記対象物の塗布予定部が前記塗布針の下に位置するように前記対象物が位置決めされた状態で、前記塗布予定部と前記先端部との相対距離を検出する測定装置と、
     前記測定装置によって検出された前記相対距離に基づいて前記塗布針を移動させて前記先端部を前記対象物に接触させた後、前記塗布針を移動させて前記先端部を前記対象物から離脱させるように前記駆動装置を制御する制御装置とを備える、液状材料塗布装置。
    An application needle for attaching a liquid material to the tip and applying it to an object;
    A drive device that moves the application needle relative to the object in the vertical direction along the application needle;
    A measuring device for detecting a relative distance between the planned application part and the tip part in a state where the target object is positioned such that the planned application part of the target object is located below the application needle;
    The application needle is moved based on the relative distance detected by the measuring device to bring the tip portion into contact with the object, and then the application needle is moved to detach the tip portion from the object. A liquid material application device comprising: a control device for controlling the drive device.
  2.  前記測定装置は、
     レーザ光を出射する投光器と、
     前記対象物の表面で反射された前記レーザ光の反射光を受光する受光器とを含む、請求項1に記載の液状材料塗布装置。
    The measuring device is
    A projector that emits laser light;
    The liquid material application device according to claim 1, further comprising: a light receiver that receives reflected light of the laser light reflected by the surface of the object.
  3.  前記塗布針と、前記投光器の投光軸と、前記受光器の受光軸は同一の平面上に配置され、
     前記塗布針は、前記平面上において、前記投光器と前記受光器の中間に配置される、請求項2に記載の液状材料塗布装置。
    The coating needle, the light projecting axis of the light projector, and the light receiving axis of the light receiver are arranged on the same plane,
    The liquid material applicator according to claim 2, wherein the applicator needle is disposed between the light projector and the light receiver on the plane.
  4.  前記塗布予定部は、前記塗布針の前記先端部が前記対象物に接触する前記対象物の表面上の接触点であり、
     前記投光器から出射されるレーザ光のスポットは、前記接触点に略一致するように調整されている、請求項3に記載の液状材料塗布装置。
    The application portion is a contact point on the surface of the object where the tip of the application needle contacts the object;
    The liquid material coating apparatus according to claim 3, wherein a spot of the laser beam emitted from the projector is adjusted so as to substantially coincide with the contact point.
  5.  前記駆動装置は、
     前記塗布針を上下方向に移動させる第一の駆動機構と、
     前記第一の駆動機構および前記測定装置が固定された支持部材を上下方向に移動させる第二の駆動機構とを含み、
     前記塗布針の移動距離は、前記第一の駆動機構による前記塗布針の第1の移動距離と、前記第二の駆動機構による前記支持部材の第2の移動距離との合計であり、
     前記制御装置は、前記第1の移動距離を固定長とし、前記第2の移動距離を前記相対距離に基づいて変化させる、請求項1に記載の液状材料塗布装置。
    The driving device includes:
    A first drive mechanism for moving the application needle in the vertical direction;
    A first drive mechanism and a second drive mechanism for moving the support member to which the measuring device is fixed in the up-down direction,
    The movement distance of the application needle is the sum of the first movement distance of the application needle by the first drive mechanism and the second movement distance of the support member by the second drive mechanism,
    2. The liquid material coating apparatus according to claim 1, wherein the control device sets the first moving distance as a fixed length and changes the second moving distance based on the relative distance.
  6.  前記測定装置は、前記支持部材に固定され、前記塗布予定部にレーザ光を照射し反射光に基づいて前記相対距離を取得する、請求項5に記載の液状材料塗布装置。 The liquid material coating apparatus according to claim 5, wherein the measurement apparatus is fixed to the support member, irradiates the application scheduled portion with laser light, and acquires the relative distance based on reflected light.
PCT/JP2016/067189 2015-06-18 2016-06-09 Liquid material coating device WO2016204061A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-122792 2015-06-18
JP2015122792A JP6599655B2 (en) 2015-06-18 2015-06-18 Liquid material applicator

Publications (1)

Publication Number Publication Date
WO2016204061A1 true WO2016204061A1 (en) 2016-12-22

Family

ID=57545606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067189 WO2016204061A1 (en) 2015-06-18 2016-06-09 Liquid material coating device

Country Status (3)

Country Link
JP (1) JP6599655B2 (en)
TW (1) TW201711755A (en)
WO (1) WO2016204061A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279721A (en) * 2002-03-26 2003-10-02 Dainippon Printing Co Ltd Method and apparatus for correcting defect of color filter
JP2004281328A (en) * 2003-03-18 2004-10-07 Dainippon Printing Co Ltd Defective correction method and defective correction device of electrode for organic el panel
JP2007268354A (en) * 2006-03-30 2007-10-18 Ntn Corp Pattern-correcting device and its application unit
JP2010194490A (en) * 2009-02-26 2010-09-09 Micronics Japan Co Ltd Coating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279721A (en) * 2002-03-26 2003-10-02 Dainippon Printing Co Ltd Method and apparatus for correcting defect of color filter
JP2004281328A (en) * 2003-03-18 2004-10-07 Dainippon Printing Co Ltd Defective correction method and defective correction device of electrode for organic el panel
JP2007268354A (en) * 2006-03-30 2007-10-18 Ntn Corp Pattern-correcting device and its application unit
JP2010194490A (en) * 2009-02-26 2010-09-09 Micronics Japan Co Ltd Coating device

Also Published As

Publication number Publication date
JP6599655B2 (en) 2019-10-30
JP2017009692A (en) 2017-01-12
TW201711755A (en) 2017-04-01

Similar Documents

Publication Publication Date Title
CN106814546B (en) Focal plane detection device, focal plane scaling method and silicon wafer exposure method
JP5556774B2 (en) Exposure equipment
JP6411735B2 (en) Application member, application device, and application method
TWI592239B (en) A laser apparatus and a method of directing laser to a workpiece surface
JP6404654B2 (en) Coating method and coating apparatus
JP2008015314A (en) Exposure device
JP6599655B2 (en) Liquid material applicator
JP6460694B2 (en) Coating method and coating apparatus
JP5689952B2 (en) Liquid ejection device with optical system for observation
JP7112341B2 (en) Mounting equipment and mounting method
JP2008212941A (en) Laser beam machining apparatus and its control method
JP6665028B2 (en) Shape measuring device and coating device equipped with the same
US10845185B2 (en) Measuring apparatus and method for measuring film thickness using relative heights in combination with refractive index
JP2019053599A (en) Substrate observation device, application device, and positioning method
JP2018020325A (en) Coating member, coating device, and coating method
WO2016204062A1 (en) Shape measurement device and coating device equipped with same
US10751747B2 (en) Application mechanism, application apparatus, method for manufacturing object to which application material is applied, and method for manufacturing substrate
JP4166672B2 (en) Microparts laminating apparatus and microparts laminating method
KR20170080980A (en) Paste dispenser
JP2023184135A (en) Applicator and application method
JP4131807B2 (en) Focusing method of scanning probe microscope
JP2008119717A (en) Laser beam machining apparatus
JP2009066576A (en) Coating apparatus and method of manufacturing display device
JP2006220560A (en) Substrate, minute structure, reference scale manufacturing method, and minute structure length measuring method
JP2017106778A (en) Observation optical system-attached working device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811536

Country of ref document: EP

Kind code of ref document: A1