WO2016202245A1 - 3d成像方法及装置 - Google Patents

3d成像方法及装置 Download PDF

Info

Publication number
WO2016202245A1
WO2016202245A1 PCT/CN2016/085749 CN2016085749W WO2016202245A1 WO 2016202245 A1 WO2016202245 A1 WO 2016202245A1 CN 2016085749 W CN2016085749 W CN 2016085749W WO 2016202245 A1 WO2016202245 A1 WO 2016202245A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarized light
light
imaging
module
source
Prior art date
Application number
PCT/CN2016/085749
Other languages
English (en)
French (fr)
Inventor
梁捷
甄焱鲲
Original Assignee
广州优视网络科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州优视网络科技有限公司 filed Critical 广州优视网络科技有限公司
Priority to RU2018101695A priority Critical patent/RU2678004C1/ru
Publication of WO2016202245A1 publication Critical patent/WO2016202245A1/zh
Priority to US15/843,994 priority patent/US10502969B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/24Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type involving temporal multiplexing, e.g. using sequentially activated left and right shutters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/337Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using polarisation multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/341Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using temporal multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/398Synchronisation thereof; Control thereof
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0128Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-mechanical, magneto-mechanical, elasto-optic effects
    • G02F1/0131Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-mechanical, magneto-mechanical, elasto-optic effects based on photo-elastic effects, e.g. mechanically induced birefringence
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0136Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  for the control of polarisation, e.g. state of polarisation [SOP] control, polarisation scrambling, TE-TM mode conversion or separation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/07Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-optical liquids exhibiting Kerr effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect

Definitions

  • the present application relates to the field of optical technologies, and in particular, to a 3D imaging method and apparatus.
  • 3D imaging technology With the development of 3D (3Dimensions, 3D) imaging technology, its application range has been popularized in many fields such as industrial design, mold design, film and television animation, etc., bringing real and three-dimensional visual enjoyment to people.
  • the traditional 3D imaging system alternately projects the left eye image and the right eye image through two projection devices with the same parameters, and then the left and right eye images are entered into the human eye through the corresponding lenses at the correct time through the corresponding 3D glasses, thereby
  • the brain can synthesize the left and right eye images into a three-dimensional image with true depth of field and no ghosting according to the parallax of the left and right eyes.
  • the above 3D imaging system uses two projection devices to respectively project left and right eye images, which not only leads to complicated system structure, but also increases system cost.
  • the 3D glasses used in conjunction with the projection device generally include both a shutter type and a polarization type. If shutter-type 3D glasses are used, the system cost will be further increased, especially in applications such as theaters where multiple 3D glasses need to be configured, and the system cost will be higher; if polarized 3D glasses are used, it is prone to ghosting, 3D effects. Poor, and easy to cause eye fatigue. Therefore, how to reduce the cost of the 3D imaging system and ensure the 3D effect achieved by it is an urgent problem to be solved in the field.
  • the present application provides a 3D imaging method and apparatus.
  • a first aspect of the present application provides a 3D imaging device, including: a light source separation module, an optical path adjustment module, and a controllable switch module, wherein the optical path adjustment module is disposed between the light source separation module and the controllable switch module;
  • the light source separating module is configured to separate the source 3D image light into a first polarized light carrying left eye image information and a second polarized light carrying right eye image information by a birefringence effect;
  • the optical path adjusting module is configured to adjust according to an imaging position An optical path of the first polarized light and the second polarized light;
  • the controllable switch module is configured to control the first polarized light and the second polarized light to be alternately emitted, wherein the first polarized light and the second polarized light It The alternating frequency between the two is the same as the frame frequency of the source 3D image ray.
  • the light source separation module is configured such that the first polarized light and the second polarized light have different exit directions.
  • the optical path adjustment module is configured to converge the first polarized light and the second polarized light respectively to the imaging position; and the controllable switch module is disposed at the imaging position.
  • the first polarized light and the second polarized light are respectively directed to the left and right eyes of the user after being emitted from the controllable switch module.
  • the apparatus further comprises: a brightness compensation module, configured to emit auxiliary parallel rays to the controllable switch module, such that the auxiliary parallel rays are emitted together with the first polarized light and the second polarized light.
  • a brightness compensation module configured to emit auxiliary parallel rays to the controllable switch module, such that the auxiliary parallel rays are emitted together with the first polarized light and the second polarized light.
  • the light source separation module comprises any one of the following: a uniaxial crystal capable of generating a natural birefringence effect, a colorless optical glass capable of generating a stress birefringence effect, a transparent liquid capable of generating an electroluminescence birefringence effect, and an applied electric field thereof.
  • the method further comprises: an image projection module for projecting the source 3D image ray to the beam splitting module at the frame frequency, the source 3D image ray comprising left-eye image ray and right alternated frame by frame Eye image light.
  • a second aspect of the present application provides a 3D imaging method, the method comprising: separating a source 3D image light into a first polarized light carrying left eye image information and a second polarized light carrying right eye image information by a birefringence effect; An imaging position adjusts optical paths of the first polarized light and the second polarized light; controlling the first polarized light and the second polarized light to alternately emit, wherein an alternating frequency between the first polarized light and the second polarized light The frame frequency is the same as the source 3D image ray.
  • the first polarized light and the second polarized light separated by a birefringence effect have different exit directions.
  • the adjusting the optical paths of the first polarized light and the second polarized light according to the imaging position comprises: concentrating the first polarized light and the second polarized light respectively to the imaging position.
  • the step of controlling the first polarized light and the second polarized light to be alternately emitted includes controlling the first polarized light and the second polarized light to be alternately emitted by a controllable switch module disposed at the imaging position.
  • the first polarized light and the second polarized light passing through the controllable switch module are directed to the left and right eyes of the user, respectively.
  • the method further comprises: controlling the auxiliary parallel rays to be emitted together with the first polarized light and the second polarized light.
  • the birefringence effect comprises: a natural birefringence effect based on a uniaxial crystal, a stress birefringence effect based on a colorless optical glass, an electro-optic birefringence effect based on a transparent liquid and an applied electric field thereof, and a transparent liquid based thereon
  • the magnetically induced birefringence effect produced by the applied magnetic field.
  • the method further comprises: projecting the source 3D image ray at the frame frequency, the source 3D image ray comprising a left eye image ray and a right eye image ray alternating frame by frame.
  • the embodiment of the present application separates the source 3D image light into two beams of polarized light carrying image information, adjusts the optical paths of the two polarized rays obtained by birefringence, and controls the two polarized rays to alternately emit.
  • 3D imaging can be realized; since the implementation of the above imaging method requires only one imaging device with corresponding functions, two sets of imaging devices must be used compared to the conventional 3D projection technology, so the application can simplify the system structure and reduce the system cost.
  • the parallax caused by the two polarized rays carrying the image information alternately projecting the projection device may be that the observer directly sees the 3D image, and does not need to wear the corresponding 3D glasses, that is, the naked eye 3D imaging is realized, thereby saving the configuration of the 3D glasses. Investing to further reduce system costs.
  • FIG. 1 is a flow chart of a 3D imaging method provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a 3D imaging method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of another 3D imaging method provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a 3D imaging apparatus according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another 3D imaging apparatus provided by an embodiment of the present application.
  • FIG. 1 is a flowchart of a 3D imaging method according to an embodiment of the present application. As shown in Figure 1, the method includes the following steps.
  • the source 3D image ray is separated by the birefringence effect into a first polarized ray carrying left eye image information and a second polarized ray carrying right eye image information.
  • the so-called birefringence effect that is, a beam of natural light incident on an anisotropic medium (the incident direction may be any direction other than the optical axis of the medium) refracts two linearly polarized light phenomena; wherein, two beams of linearly polarized light The vibration directions are perpendicular to each other.
  • FIG. 2 is a schematic diagram of a 3D imaging method according to an embodiment of the present application, where S represents a source 3D image ray, M represents an anisotropic medium; S is incident on M in a direction other than the optical axis L, The linearly polarized lights o and e (i.e., the first polarized light and the second polarized light) whose polarization directions are perpendicular to each other are refracted, and the image information carried by the two linearly polarized lights is taken as a left eye image and a right eye image, respectively.
  • S represents a source 3D image ray
  • M represents an anisotropic medium
  • S is incident on M in a direction other than the optical axis L
  • the linearly polarized lights o and e i.e., the first polarized light and the second polarized light
  • the image information carried by the two linearly polarized lights is taken as a left eye image and a right eye image, respectively.
  • the source 3D image ray is projected at a predetermined frame frequency.
  • the source 3D image light can be a beam of light that carries the image information of a whole image so that a whole image can be projected.
  • the source 3D image ray includes a left-eye image ray that alternates frame by frame (a full left-eye image corresponds to a left-eye image beam) and a right-eye image ray (a full right-eye image corresponds to a right-eye image beam), that is, one frame
  • the left eye image is immediately followed by a frame of right eye image light, followed by the left eye image light.
  • the left eye image light and the right eye image light may be unpolarized light.
  • the beam of the entire image is separated into two beams having different exit directions.
  • the optical paths of the first polarized light (first polarized light beam) and the second polarized light (second polarized light beam) can be separately controlled so as to be finally guided into the left and right eyes of the user, respectively.
  • step S12 the optical paths of the first polarized light and the second polarized light are adjusted according to the imaging position.
  • first polarized light first polarized light beam
  • second polarized light second polarized light beam
  • step S13 the first polarized light and the second polarized light are controlled to be alternately emitted.
  • the alternating frequency between the first polarized light and the second polarized light is the same as the frame frequency of the source 3D image light.
  • the first polarized light (first polarized light beam) and the second polarized light (second polarized light beam) may be alternately emitted by a controllable switch module disposed at the imaging position.
  • the first polarized light (first polarized light beam) is emitted, and the second polarized light (second polarized light beam) is blocked.
  • the second polarized light (second polarized light beam) is emitted, and the first polarized light (first polarized light beam) is blocked.
  • first polarized light first polarized light beam
  • second polarized light second polarized light beam
  • the first polarized light (first polarized light beam) and the second polarized light (second polarized light beam) separated from the birefringence effect have different emission directions, respectively, corresponding to different optical paths, they converge to the imaging position.
  • the direction (injected into the controllable switch module) is also different. Accordingly, the direction of exit from the controllable switch module is also different.
  • the controllable switch module may be disposed to substantially not change the traveling direction of the first polarized light (first polarized light beam) and the second polarized light (second polarized light beam).
  • the first polarized light (first polarized light beam) and the second polarized light (second polarized light beam) passing through the controllable switch module can be directed to the left and right eyes of the user, respectively.
  • the controllable switch module blocks the second polarized light (the second polarized light beam), and the first polarized light beam (the first polarized light beam) carries the left eye image information to enter the left side of the user.
  • the controllable switch module blocks the first when the source 3D image is the right eye image
  • the polarized beam (the first polarized beam) and the second polarized ray (the second polarized beam) carry the right eye image information into the right eye of the user.
  • the embodiment of the present application passes Adjusting the optical paths of the two polarized rays o and e to control the convergence point, that is, controlling the imaging position, and on the other hand, by controlling the two polarized rays o and e to alternately emit, thereby forming the parallax of the observer's left and right eyes, and thus the observer Synthesize 3D images in the brain.
  • the optical paths of the polarized rays o and e can be changed by the refraction of the lens N, and the o and e are alternately emitted by the liquid crystal mask switch K.
  • the embodiment of the present application can implement 3D imaging through only one set of imaging devices, wherein the imaging device has three functions: separating the source 3D image light into two beams of polarized light carrying image information by a birefringence effect, Adjust the optical path of the two polarized rays obtained by birefringence, and control the two polarized rays to alternately emit.
  • the application of the present application embodiment can save a set of imaging devices for each 3D imaging system, thereby simplifying the system structure and reducing the system cost;
  • the parallax caused by the two polarized rays of the image information being alternately emitted from the projection device may be that the observer directly sees the 3D image, and does not need to wear the corresponding 3D glasses, that is, the embodiment of the present application can implement the naked eye 3D technology, which can save the investment of configuring the 3D glasses. , further reducing system costs.
  • specific application scenarios of the 3D imaging method provided by the embodiments of the present application include a near-eye 3D display, a 3D movie projector, and the like.
  • the birefringence effect of separating the source 3D image light into two polarized light rays includes, but is not limited to, any one of the following four.
  • a uniaxial crystal is an anisotropic medium, and birefringence can occur when natural light is incident in any direction outside the optical axis; wherein, since the uniaxial crystal is naturally formed Therefore, the birefringence effect produced by it is also called the natural birefringence effect.
  • Electro-optic birefringence effect based on transparent liquid and its applied electric field transparent liquid is outside
  • the anisotropic property can be exhibited by the application of an electric field, which produces a birefringence effect, also known as an electro-optic birefringence effect or a Kerr effect.
  • Magnetic-induced birefringence effect based on transparent liquid and its external magnetic field transparent liquid can exhibit anisotropic properties under the action of external magnetic field, resulting in birefringence effect, also known as magnetic birefringence effect or Coton-Murton effect (Cotton-Mouton effect).
  • the step of obtaining two polarized rays by using the birefringence effect can pass through a common uniaxial crystal, a colorless optical glass, a transparent liquid to which an electric field or a magnetic field is applied. Realized, thus ensuring the low cost of the system.
  • the auxiliary parallel light and the first polarized light and the second polarization may be controlled while controlling the first polarized light and the second polarized light to be alternately emitted. The light is shot together.
  • the embodiment of the present application compensates for the brightness of the emitted polarized light by the auxiliary parallel light, thereby improving the brightness of the light incident into the human eye and avoiding visual fatigue of the observer.
  • the auxiliary parallel light is obtained by the auxiliary light source and the convex lens, that is, the scattered auxiliary light source is placed at the focus of one side of the convex lens, and the parallel light is obtained on the other side of the convex lens. It can be seen that the embodiment of the present application can achieve brightness compensation at a lower cost, which can improve the imaging effect and ensure the low cost of the imaging system.
  • FIG. 4 is a schematic structural diagram of a 3D imaging apparatus according to an embodiment of the present application.
  • the device includes a light source separation module 100, an optical path adjustment module 200, and a controllable switch module 300.
  • the optical path adjustment module 200 is disposed between the light source separation module 100 and the controllable switch module 300.
  • the light source separating module 100 is configured to separate the source 3D image light into a first polarized light carrying left eye image information and a second polarized light carrying right eye image information by a birefringence effect.
  • the 3D imaging device may further include an image projection module (not shown) for projecting the source 3D image light to the beam splitting module 100 at a predetermined frame frequency.
  • Source 3D image light can be A beam of light carries the image information of a whole image so that a whole image can be projected.
  • only one image projection module may be needed to project both the left eye image light and the right eye image light without separately setting the image transmission module for the left eye image light and the right eye image light, respectively.
  • the source 3D image ray includes a left-eye image ray that alternates frame by frame (a full left-eye image corresponds to a left-eye image beam) and a right-eye image ray (a full right-eye image corresponds to a right-eye image beam), that is, one frame
  • the left eye image is immediately followed by a frame of right eye image light, followed by the left eye image light.
  • the left eye image light and the right eye image light may be unpolarized light.
  • the light source separation module 100 may be configured such that the first polarized light and the second polarized light have different exit directions. Accordingly, the beam of the entire image is separated into two beams having different exit directions.
  • a birefringent crystal having a triangular prism shape may be used such that polarized light (o light and e light) having different refractive indices respectively exit in different directions.
  • the optical paths of the first polarized light (first polarized light beam) and the second polarized light (second polarized light beam) can be separately controlled so as to be finally guided into the left and right eyes of the user, respectively.
  • the optical path adjustment module 200 is configured to adjust optical paths of the first polarized light and the second polarized light according to an imaging position.
  • the optical path adjustment module 200 may be configured to converge the first polarized light (first polarized light beam) and the second polarized light (second polarized light beam) to the same imaging position, respectively.
  • first polarized light beam first polarized light beam
  • second polarized light beam second polarized light beam
  • the controllable switch module 300 is configured to control the first polarized light and the second polarized light to alternately emit the 3D imaging device.
  • the alternating frequency between the first polarized light and the second polarized light is the same as the frame frequency of the source 3D image light.
  • controllable switch module 300 may be disposed at an imaging position to control the first polarized light (first polarized light beam) and the second polarized light (second polarized light beam) to be alternately emitted.
  • first polarized light first polarized light beam
  • second polarized light second polarized light beam
  • the first polarized light first polarized light beam
  • the second polarized light second polarized light beam
  • controllable switch module 300 Since both the first polarized beam and the second polarized beam are concentrated to a smaller imaging position, only a small controllable switch module 300 is needed to control the exit and block of the polarized mouse. The larger the controllable switch module 300, the more difficult it is to control the synchronization of its various parts. Thereby reducing equipment manufacturing The cost and complexity of control.
  • first polarized light first polarized light beam
  • second polarized light second polarized light beam
  • the first polarized light (first polarized light beam) and the second polarized light (second polarized light beam) separated from the light source separating module 100 respectively have different emitting directions, corresponding to different optical paths, they converge to the imaging position.
  • the direction (incident to the controllable switch module 300) is also different. Accordingly, the direction of exit from the controllable switch module 300 is also different.
  • the controllable switch module 300 may be disposed to substantially not change the traveling direction of the first polarized light (first polarized light beam) and the second polarized light (second polarized light beam).
  • the first polarized light (first polarized light beam) and the second polarized light (second polarized light beam) passing through the controllable switch module 300 can be directed to the left and right eyes of the user, respectively.
  • the controllable switch module 300 blocks the second polarized light (the second polarized light beam), and the first polarized light beam (the first polarized light beam) carries the left eye image information to enter the user.
  • the left eye when the source 3D image is the right eye image, the controllable switch module 300 blocks the first polarized light beam (the first polarized light beam), and the second polarized light beam (the second polarized light beam) carries the right eye image information to enter the right of the user eye.
  • FIG. 4 is a schematic diagram showing light propagation during operation of the above 3D imaging device, wherein the arrow labeled 1 indicates the source 3D imaging light, and the arrow labeled 2 indicates the first polarized light and the second polarized light. Light.
  • the source 3D light is separated into two polarized rays whose directions are perpendicular to each other by the light source separating module, and the two polarized rays are alternately emitted by the optical path adjusting module and the controllable switch module, and respectively Alternating into the observer's left and right eyes, causing the parallax of the observer's left and right eyes, thereby synthesizing the source 3D image in the observer's brain;
  • only one 3D imaging device provided by the embodiment of the present application can be used in each 3D imaging system. 3D imaging is completed, and the corresponding 3D glasses need not be configured, thereby simplifying the system structure and reducing system cost.
  • the optical path adjustment module 200 may specifically adopt a lens with a high transmittance, that is, the first polarized light and the refraction of the light by the lens. Adjustment of the optical path of the second polarized light.
  • controllable switch module 300 can employ a liquid crystal shielding switch.
  • the light source separating module 100 may specifically adopt any one of the following: a single-axis crystal, a colorless optical glass, a transparent liquid, a first optical device composed of an applied electric field, a transparent liquid, and a second optical device composed of an applied magnetic field.
  • the uniaxial crystal can produce natural birefringence
  • the optical glass can generate stress birefringence
  • the first optical device can generate electro-optical birefringence
  • the second optical device can generate magnetic birefringence, thereby realizing separation of the source 3D image light image into The first polarized light and the second polarized light.
  • the 3D imaging device further includes: a brightness compensation module 400, as shown in FIG. 5; the brightness compensation module 400 is configured to emit auxiliary parallel rays to the controllable switch module, so that The auxiliary parallel rays are emitted together with the first polarized light and the second polarized light.
  • FIG. 5 also shows a schematic diagram of light propagation during operation of the above 3D imaging device, with arrows labeled 1 indicating the source 3D imaging light, and arrows labeled 2 indicating the first polarized light and the second. Polarized light, the arrow labeled 3 indicates auxiliary parallel rays.
  • the auxiliary parallel light is used for brightness compensation of the first polarized light and the second polarized light, thereby improving imaging brightness and avoiding visual fatigue of the observer.
  • the brightness compensation module 400 may include an auxiliary light source and a convex lens. According to the optical characteristics of the convex lens, the auxiliary light source is disposed at one side focus of the convex lens, so that parallel light can be obtained on the other side.

Abstract

一种3D成像方法及装置,其通过双折射效应将源3D图像光线分离为两束携带图像信息的偏振光线、调整双折射得到的两束偏振光线的光路,并控制两束偏振光线交替射出,即可实现3D成像;由于上述成像方法的实施仅需要一台具有相应功能的成像装置,相对于传统3D投影技术必须使用两套成像设备的情况,可以简化系统结构,降低系统成本;另外,由于携带图像信息的两束偏振光线交替射出投影设备造成的视差可以是观察者直接看到3D图像,不需要佩戴相应的3D眼镜,故可以节省配置3D眼镜的投资,进一步降低系统成本。

Description

3D成像方法及装置 技术领域
本申请涉及光学技术领域,尤其涉及一种3D成像方法及装置。
背景技术
随着三维(3Dimensions,3D)成像技术的发展,其应用范围已普及到工业设计、模具设计、影视动漫等多个领域,给人们带来真实、立体的视觉享受。传统的3D成像系统通过两台完全相同参数的投影设备分别交替投射左眼图像和右眼图像,再通过相应的3D眼镜使左右眼图像在正确的时间透过相应的镜片进入人眼,进而人的大脑就可以根据左右眼的视差将左右眼图像合成为具有真实景深、无重影的三维立体图像。
可见,上述3D成像系统采用两台投影设备分别投射左右眼图像,不仅导致系统结构复杂,还增加了系统成本。另外,与投影设备配套使用的3D眼镜一般包括快门式和偏振式两种。如果采用快门式3D眼镜,则会进一步提高系统成本,特别是影院等需要配置多个3D眼镜的应用场景,系统成本会更高;如果采用偏振式3D眼镜,则易发生重影现象,3D效果差,且易造成眼疲劳。因此,如何降低3D成像系统的成本,并保证其实现的3D效果,成为本领域亟需解决的问题。
发明内容
为克服相关技术中存在的问题,本申请提供一种3D成像方法及装置。
本申请第一方面提供一种3D成像装置,该装置包括:光源分离模块、光路调整模块和可控开关模块,所述光路调整模块设置于所述光源分离模块和可控开关模块之间;所述光源分离模块用于将源3D图像光线通过双折射效应分离为携带左眼图像信息的第一偏振光线和携带右眼图像信息的第二偏振光线;所述光路调整模块用于根据成像位置调整所述第一偏振光线和第二偏振光线的光路;所述可控开关模块用于控制所述第一偏振光线和第二偏振光线交替射出,其中,所述第一偏振光线和第二偏振光线之 间的交替频率与所述源3D图像光线的帧频率相同。
优选地,所述光源分离模块被配置为使得所述第一偏振光线和所述第二偏振光线具有不同的出射方向。
优选地,所述光路调整模块被配置为将所述第一偏振光线和所述第二偏振光线分别汇聚到所述成像位置;并且所述可控开关模块设置在所述成像位置处。
优选地,所述第一偏振光线和所述第二偏振光线从所述可控开关模块出射之后,分别被引导向用户的左眼和右眼。
优选地,该装置还包括:亮度补偿模块,用于向所述可控开关模块发射辅助平行光线,以使得所述辅助平行光线与所述第一偏振光线和第二偏振光线共同射出。
优选地,所述光源分离模块包括以下任意一种:能够产生自然双折射效应的单轴晶体、能够产生应力双折射效应的无色光学玻璃、能够产生电光双折射效应的透明液体及其外加电场构成的第一光学器件、能够产生磁致双折射效应的透明液体及其外加磁场构成的第二光学器件。
优选地,该方法还包括:图像投射模块,用于以所述帧频率向所述光束分离模块投射所述源3D图像光线,所述源3D图像光线包括逐帧交替的左眼图像光线和右眼图像光线。
本申请第二方面提供一种3D成像方法,该方法包括:将源3D图像光线通过双折射效应分离为携带左眼图像信息的第一偏振光线和携带右眼图像信息的第二偏振光线;根据成像位置调整所述第一偏振光线和第二偏振光线的光路;控制所述第一偏振光线和第二偏振光线交替射出,其中,所述第一偏振光线和第二偏振光线之间的交替频率与所述源3D图像光线的帧频率相同。
优选地,通过双折射效应分离出的所述第一偏振光线和所述第二偏振光线具有不同的出射方向。
优选地,所述根据成像位置调整所述第一偏振光线和第二偏振光线的光路的步骤包括:将所述第一偏振光线和所述第二偏振光线分别汇聚到所述成像位置。所述控制所述第一偏振光线和第二偏振光线交替射出的步骤包括:通过设置在所述成像位置处的可控开关模块来控制所述第一偏振光线和第二偏振光线交替射出。
优选地,将经过所述可控开关模块的所述第一偏振光线和所述第二偏振光线分别引导向用户的左眼和右眼。
优选地,该方法还包括:控制辅助平行光线与所述第一偏振光线和第二偏振光线共同射出。
优选地,所述双折射效应包括:基于单轴晶体的自然双折射效应、基于无色光学玻璃的应力双折射效应,基于透明液体与其外加电场产生的电光双折射效应,以及,基于透明液体与其外加磁场产生的磁致双折射效应。
优选地,该方法还包括:以所述帧频率投射所述源3D图像光线,所述源3D图像光线包括逐帧交替的左眼图像光线和右眼图像光线。
由以上技术方案可知,本申请实施例通过双折射效应将源3D图像光线分离为两束携带图像信息的偏振光线、调整双折射得到的两束偏振光线的光路,并控制两束偏振光线交替射出,即可实现3D成像;由于上述成像方法的实施仅需要一台具有相应功能的成像装置,相对于传统3D投影技术必须使用两套成像设备的情况,因此本申请可以简化系统结构,降低系统成本;另外,由于携带图像信息的两束偏振光线交替射出投影设备造成的视差可以是观察者直接看到3D图像,不需要佩戴相应的3D眼镜,即实现裸眼3D成像,故可以节省配置3D眼镜的投资,进一步降低系统成本。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是本申请实施例提供的一种3D成像方法的流程图。
图2是本申请实施例提供的一种3D成像方法的原理图。
图3是本申请实施例提供的另一种3D成像方法的原理图。
图4是本申请实施例提供的一种3D成像装置的结构示意图。
图5是本申请实施例提供的另一种3D成像装置的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
图1为本申请实施例提供的一种3D成像方法的流程图。如图1所示,该方法包括以下步骤。
在步骤S11,将源3D图像光线通过双折射效应分离为携带左眼图像信息的第一偏振光线和携带右眼图像信息的第二偏振光线。所谓双折射效应,即一束自然光入射到各向异性的媒介中(入射方向可以为该媒介的光轴以外的任意方向)折射出两束线偏振光的现象;其中,两束线偏振光的振动方向相互垂直。如图2所示的本申请实施例所述的3D成像方法的原理图,S表示源3D图像光线、M表示各向异性的媒介;S沿光轴L外的某一方向入射到M中,折射出偏振方向互相垂直的线偏振光o和e(即上述第一偏振光线和第二偏振光线),两束线偏振光携带的图像信息分别作为左眼图像和右眼图像。
源3D图像光线是以预定的帧频率投射的。源3D图像光线可以是一束光线,携带一整幅图像的图像信息,从而可以投影一整幅图像。
源3D图像光线包括逐帧交替的左眼图像光线(一整幅左眼图像对应于左眼图像光束)和右眼图像光线(一整幅右眼图像对应于右眼图像光束),即一帧左眼图像光线紧接着一帧右眼图像光线,然后是左眼图像光线。这里,左眼图像光线和右眼图像光线可以是非偏振光线。
在此,可以设置为使得通过双折射效应分离出的第一偏振光线和第二偏振光线具有不同的出射方向。相应地,整幅图像的光束被分离为具有不同出射方向的两个光束。
这样,可以分别控制第一偏振光线(第一偏振光束)和第二偏振光线(第二偏振光束)的光路,从而使其最终分别被引导进入用户的左眼和右眼。
在步骤S12,根据成像位置调整所述第一偏振光线和第二偏振光线的光路。
这里,可以将第一偏振光线(第一偏振光束)和第二偏振光线(第二偏振光束)分别汇聚到相同的成像位置。通过汇聚,使得在该成像位置处第一偏振光束和第二偏振光束的截面变得相对较小,甚至可以接近于一个点。
在步骤S13,控制所述第一偏振光线和第二偏振光线交替射出。
其中,所述第一偏振光线和第二偏振光线之间的交替频率与所述源3D图像光线的帧频率相同。
这里,可以通过设置在成像位置处的可控开关模块来控制第一偏振光线(第一偏振光束)和第二偏振光线(第二偏振光束)交替射出。在对应于左眼图像的帧周期内,第一偏振光线(第一偏振光束)出射,而第二偏振光线(第二偏振光束)被阻挡。在对应于右眼图像的帧周期内,第二偏振光线(第二偏振光束)出射,而第一偏振光线(第一偏振光束)被阻挡。
由于第一偏振光束和第二偏振光束均被汇聚到较小的成像位置,所以只需要较小的可控开关模块来控制偏振光鼠的出射与阻挡。而可控开关模块越大,其各部分的同步等控制越困难。由此,降低了设备制造的成本和控制的复杂性。
又由于第一偏振光线(第一偏振光束)和第二偏振光线(第二偏振光束)被汇聚到同一个成像位置,所以只需要一个可控开关模块。由此,不需要为两个偏振光束分别设置可控开关模块,降低了设备制造成本,也避免了两个可控开关模块之间的同步等控制。
由于从经过双折射效应分离出的第一偏振光线(第一偏振光束)和第二偏振光线(第二偏振光束)分别具有不同的出射方向,对应着不同的光路,因此,它们汇聚到成像位置(入射到可控开关模块)的方向也不同。相应地,从可控开关模块出射的方向也不同。这里,可控开关模块可以被设置为基本上不改变第一偏振光线(第一偏振光束)和第二偏振光线(第二偏振光束)的行进方向。
接下来,可以将经过可控开关模块的第一偏振光线(第一偏振光束)和第二偏振光线(第二偏振光束)分别引导向用户的左眼和右眼。
具体说来,在源3D图像为左眼图像时,可控开关模块阻挡了第二偏振光线(第二偏振光束),第一偏振光束(第一偏振光束)携带左眼图像信息进入用户的左眼;在源3D图像为右眼图像时,可控开关模块阻挡了第一 偏振光束(第一偏振光束),第二偏振光线(第二偏振光束)携带右眼图像信息进入用户的右眼。
在得到携带左眼图像和右眼图像的偏振光线o和e后,为实现3D成像,需要将两束偏振光线在预设位置处汇聚为3D图像;有鉴于此,本申请实施例一方面通过调整两束偏振光线o和e的光路来控制其汇聚点,也即控制成像位置,另一方面通过控制两束偏振光线o和e交替射出,从而形成观察者左右眼的视差,进而在观察者大脑中合成3D图像。如图2所示,可以通过透镜N的折射作用改变偏振光线o和e的光路,通过液晶遮蔽开关K控制o和e交替射出。
基于以上原理可知,本申请实施例可以仅通过一套成像设备实现3D成像,其中该成像设备具有如下三个功能:通过双折射效应将源3D图像光线分离为两束携带图像信息的偏振光线、调整双折射得到的两束偏振光线的光路,以及控制两束偏振光线交替射出。因此,与传统3D投影技术必须使用两套成像设备的情况相比,应用本申请实施例可以为每个3D成像系统省去一套成像设备,从而简化系统结构,降低系统成本;另外,由于携带图像信息的两束偏振光线交替射出投影设备造成的视差可以是观察者直接看到3D图,不需要佩戴相应的3D眼镜,即本申请实施例可以实现裸眼3D技术,可以节省配置3D眼镜的投资,进一步降低系统成本。
另外,本申请实施例提供的3D成像方法的具体应用场景包括近眼3D显示器、3D电影放映机等。
本申请实施例所述的将源3D图像光线分离为两束偏振光线的双折射效应,其具体实施方式包括但不限于以下四种中的任意一种。
1)基于单轴晶体实现自然双折射效应:单轴晶体为各向异性的媒介,自然光沿其光轴外的任一方向射入即可发生双折射;其中,由于单轴晶体为自然形成的,故由其产生的双折射效应又称为自然双折射效应。
2)基于无色光学玻璃实现应力双折射效应:因内部密度不完全相同,故无色光学玻璃也是各向异性的媒介,也可以产生双折射效应;其中,由于无色光学玻璃内部的密度差是由外力造成的,故由其产生的双折射效应又称为应力双折射效应。
3)基于透明液体与其外加电场实现电光双折射效应:透明液体在外 加电场的作用下可以呈现各向异性的性质,产生双折射效应,又称电光双折射效应或克尔效应(Kerr effect)。
4)基于透明液体与其外加磁场实现磁致双折射效应:透明液体在外加磁场的作用下可以呈现各向异性的性质,产生双折射效应,又称磁致双折射效应或科顿—穆顿效应(Cotton-Mouton effect)。
由以上实施方式可知,作为本申请提供的3D成像方法的关键步骤,利用双折射效应得到两束偏振光线的步骤可以通过常见的单轴晶体、无色光学玻璃、外加有电场或磁场的透明液体实现,从而可以保证系统的低成本。
在本申请一个可行的实施例公开的3D成像方法中,在控制所述第一偏振光线和第二偏振光线交替射出的同时,还可以控制辅助平行光线与所述第一偏振光线和第二偏振光线共同射出。
传统3D成像技术中,携带左右眼图像的光线交替透过3D眼镜时,会产生亮度损耗,即摄入人眼的光线亮度降低,进而易造成观察者视觉疲劳;类似的,本申请实施例中的携带图像信息的两束偏振光线在交替射出时,也存在亮度损耗。如图3所示的原理图,有鉴于此,本申请实施例通过辅助平行光线对射出的偏振光线进行亮度补偿,从而可以提高入射至人眼中的光线的亮度,避免观察者视觉疲劳。
可选的,上述辅助平行光线通过辅助光源和凸透镜获得,即将散射的辅助光源置于凸透镜一侧的焦点处,在该凸透镜的另一侧就可以得到平行光。可见,本申请实施例可以通过较低的成本实现亮度补偿,既可以提高成像效果,又可以保证成像系统的低成本。
图4为本申请实施例提供的3D成像装置的结构示意图。参见图4,该装置包括:光源分离模块100、光路调整模块200和可控开关模块300。光路调整模块200设置于光源分离模块100和可控开关模块300之间。
其中,该光源分离模块100用于,将源3D图像光线通过双折射效应分离为携带左眼图像信息的第一偏振光线和携带右眼图像信息的第二偏振光线。
该3D成像装置还可以包括图像投射模块(图中未示出),用于以预定帧频率向光束分离模块100投射源3D图像光线。源3D图像光线可以是 一束光线,携带一整幅图像的图像信息,从而可以投影一整幅图像。在本申请的技术方案中,可以只需要一个图像投射模块来既投射左眼图像光线,又投射右眼图像光线,而不需要分别为左眼图像光线和右眼图像光线分别设置图像透射模块。
源3D图像光线包括逐帧交替的左眼图像光线(一整幅左眼图像对应于左眼图像光束)和右眼图像光线(一整幅右眼图像对应于右眼图像光束),即一帧左眼图像光线紧接着一帧右眼图像光线,然后是左眼图像光线。这里,左眼图像光线和右眼图像光线可以是非偏振光线。
在此,光源分离模块100可以被配置为使得第一偏振光线和第二偏振光线具有不同的出射方向。相应地,整幅图像的光束被分离为具有不同出射方向的两个光束。例如,可以使用具有三棱柱形状的双折射晶体,使得具有不同折射率的偏振光(o光和e光)分别向不同的方向出射。
这样,可以分别控制第一偏振光线(第一偏振光束)和第二偏振光线(第二偏振光束)的光路,从而使其最终分别被引导进入用户的左眼和右眼。
该光路调整模块200用于,根据成像位置调整所述第一偏振光线和第二偏振光线的光路。
这里,光路调整模块200可以被配置为将第一偏振光线(第一偏振光束)和第二偏振光线(第二偏振光束)分别汇聚到相同的成像位置。通过汇聚,使得在该成像位置处第一偏振光束和第二偏振光束的截面变得相对较小,甚至可以接近于一个点。
该可控开关模块300用于,控制所述第一偏振光线和第二偏振光线交替射出3D成像装置。其中,所述第一偏振光线和第二偏振光线之间的交替频率与所述源3D图像光线的帧频率相同。
这里,可以将可控开关模块300设置在成像位置处,以便控制第一偏振光线(第一偏振光束)和第二偏振光线(第二偏振光束)交替射出。在对应于左眼图像的帧周期内,第一偏振光线(第一偏振光束)出射,而第二偏振光线(第二偏振光束)被阻挡。在对应于右眼图像的帧周期内,第二偏振光线(第二偏振光束)出射,而第一偏振光线(第一偏振光束)被阻挡。
由于第一偏振光束和第二偏振光束均被汇聚到较小的成像位置,所以只需要较小的可控开关模块300来控制偏振光鼠的出射与阻挡。而可控开关模块300越大,其各部分的同步等控制越困难。由此,降低了设备制造 的成本和控制的复杂性。
又由于第一偏振光线(第一偏振光束)和第二偏振光线(第二偏振光束)被汇聚到同一个成像位置,所以只需要一个可控开关模块300。由此,不需要为两个偏振光束分别设置可控开关模块,降低了设备制造成本,也避免了两个可控开关模块之间的同步等控制。
由于从光源分离模块100分离出的第一偏振光线(第一偏振光束)和第二偏振光线(第二偏振光束)分别具有不同的出射方向,对应着不同的光路,因此,它们汇聚到成像位置(入射到可控开关模块300)的方向也不同。相应地,从可控开关模块300出射的方向也不同。这里,可控开关模块300可以被设置为基本上不改变第一偏振光线(第一偏振光束)和第二偏振光线(第二偏振光束)的行进方向。
接下来,可以将经过可控开关模块300的第一偏振光线(第一偏振光束)和第二偏振光线(第二偏振光束)分别引导向用户的左眼和右眼。
具体说来,在源3D图像为左眼图像时,可控开关模块300阻挡了第二偏振光线(第二偏振光束),第一偏振光束(第一偏振光束)携带左眼图像信息进入用户的左眼;在源3D图像为右眼图像时,可控开关模块300阻挡了第一偏振光束(第一偏振光束),第二偏振光线(第二偏振光束)携带右眼图像信息进入用户的右眼。
图4中以带标号的箭头标示出了上述3D成像装置工作过程中的光线传播示意图,其中,标号为①的箭头表示源3D成像光线,标号为②的箭头表示第一偏振光线和第二偏振光线。
由以上装置结构可知,本申请实施例通过光源分离模块将源3D光线分离为两束振动方向相互垂直的偏振光线,并通过光路调整模块和可控开关模块将两束偏振光线交替射出,并分别交替进入观察者的左右眼,造成观察者左右眼的视差,从而在观察者的大脑中合成源3D图像;可见,每个3D成像系统中仅需一台本申请实施例提供的3D成像装置即可完成3D成像,且不需要配置相应的3D眼镜,因而可以简化系统结构,降低系统成本。
在本申请一个可行的实施例中,光路调整模块200具体可以采用透光率较高的透镜,即通过透镜对光线的折射作用实现对上述第一偏振光线和 第二偏振光线的光路的调节。
在本申请另一个可行的实施例中,可控开关模块300可采用液晶遮蔽开关。
光源分离模块100具体可采用以下任意一种:单轴晶体、无色光学玻璃、透明液体及其外加电场构成的第一光学器件、透明液体及其外加磁场构成的第二光学器件。其中,单轴晶体可以产生自然双折射,光学玻璃可以产生应力双折射,第一光学器件可以产生电光双折射,第二光学器件可以产生磁致双折射,从而实现将源3D图像光像分离为上述第一偏振光线和第二偏振光线。
在本申请又一个可行的实施例中,上述3D成像装置还包括:亮度补偿模块400,如图5所示;该亮度补偿模块400用于向所述可控开关模块发射辅助平行光线,以使得所述辅助平行光线与所述第一偏振光线和第二偏振光线共同射出。其中,图5中亦以带标号的箭头标示出了上述3D成像装置工作过程中的光线传播示意图,标号为①的箭头表示源3D成像光线,标号为②的箭头表示第一偏振光线和第二偏振光线,标号为③的箭头表示辅助平行光线。
上述辅助平行光线用于对第一偏振光线和第二偏振光线进行亮度补偿,从而提高成像亮度,避免观察者视觉疲劳。可选的,上述亮度补偿模块400可以包括辅助光源和凸透镜,根据凸透镜的光学特性,将该辅助光源设置于凸透镜的一侧焦点处,即可在另一侧得到平行光线。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本申请旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (14)

  1. 一种3D成像装置,其特征在于,包括:光源分离模块、光路调整模块和可控开关模块,所述光路调整模块设置于所述光源分离模块和可控开关模块之间;
    所述光源分离模块用于将源3D图像光线通过双折射效应分离为携带左眼图像信息的第一偏振光线和携带右眼图像信息的第二偏振光线;
    所述光路调整模块用于根据成像位置调整所述第一偏振光线和第二偏振光线的光路;并且
    所述可控开关模块用于控制所述第一偏振光线和第二偏振光线交替射出;其中,所述第一偏振光线和第二偏振光线之间的交替频率与所述源3D图像光线的帧频率相同。
  2. 根据权利要求1所述的3D成像装置,其特征在于,
    所述光源分离模块被配置为使得所述第一偏振光线和所述第二偏振光线具有不同的出射方向。
  3. 根据权利要求2所述的3D成像装置,其特征在于,
    所述光路调整模块被配置为将所述第一偏振光线和所述第二偏振光线分别汇聚到所述成像位置;并且
    所述可控开关模块设置在所述成像位置处。
  4. 根据权利要求3所述的3D成像装置,其特征在于,
    所述第一偏振光线和所述第二偏振光线从所述可控开关模块出射之后,分别被引导向用户的左眼和右眼。
  5. 根据权利要求1所述的3D成像装置,其特征在于,还包括:
    亮度补偿模块,用于向所述可控开关模块发射辅助平行光线,以使得所述辅助平行光线与所述第一偏振光线和第二偏振光线共同射出。
  6. 根据权利要求1至5中任何一项所述的3D成像装置,其特征在于, 所述光源分离模块包括以下任意一种:
    能够产生自然双折射效应的单轴晶体、能够产生应力双折射效应的无色光学玻璃、能够产生电光双折射效应的透明液体及其外加电场构成的第一光学器件、能够产生磁致双折射效应的透明液体及其外加磁场构成的第二光学器件。
  7. 根据权利要求1-5中任何一项所述的3D成像装置,其特征在于,还包括:
    图像投射模块,用于以所述帧频率向所述光束分离模块投射所述源3D图像光线,所述源3D图像光线包括逐帧交替的左眼图像光线和右眼图像光线。
  8. 一种3D成像方法,其特征在于,包括:
    将源3D图像光线通过双折射效应分离为携带左眼图像信息的第一偏振光线和携带右眼图像信息的第二偏振光线;
    根据成像位置调整所述第一偏振光线和第二偏振光线的光路;以及
    控制所述第一偏振光线和第二偏振光线交替射出,其中,所述第一偏振光线和第二偏振光线之间的交替频率与所述源3D图像光线的帧频率相同。
  9. 根据权利要求8所述的3D成像方法,其特征在于,
    通过双折射效应分离出的所述第一偏振光线和所述第二偏振光线具有不同的出射方向。
  10. 根据权利要求9所述的3D成像方法,其特征在于,
    所述根据成像位置调整所述第一偏振光线和第二偏振光线的光路的步骤包括:将所述第一偏振光线和所述第二偏振光线分别汇聚到所述成像位置,并且
    所述控制所述第一偏振光线和第二偏振光线交替射出的步骤包括:通过设置在所述成像位置处的可控开关模块来控制所述第一偏振光线和第 二偏振光线交替射出。
  11. 根据权利要求10所述的3D成像方法,其特征在于,
    将经过所述可控开关模块的所述第一偏振光线和所述第二偏振光线分别引导向用户的左眼和右眼。
  12. 根据权利要求8所述的3D成像方法,其特征在于,还包括:
    控制辅助平行光线与所述第一偏振光线和第二偏振光线共同射出。
  13. 根据权利要求8-12中任何一项所述的3D成像方法,其特征在于,所述双折射效应包括:基于单轴晶体的自然双折射效应,或者基于无色光学玻璃的应力双折射效应,或者基于透明液体与其外加电场产生的电光双折射效应,或者基于透明液体与其外加磁场产生的磁致双折射效应。
  14. 根据权利要求8-12中任何一项所述的3D成像方法,其特征在于,还包括:
    以所述帧频率投射所述源3D图像光线,所述源3D图像光线包括逐帧交替的左眼图像光线和右眼图像光线。
PCT/CN2016/085749 2015-06-18 2016-06-14 3d成像方法及装置 WO2016202245A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2018101695A RU2678004C1 (ru) 2015-06-18 2016-06-14 Способ и устройство для формирования трехмерных изображений
US15/843,994 US10502969B2 (en) 2015-06-18 2017-12-15 3D imaging method and apparatus for alternately irradiating first and second polarized light

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510346485.4A CN105511093B (zh) 2015-06-18 2015-06-18 3d成像方法及装置
CN201510346485.4 2015-06-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/843,994 Continuation US10502969B2 (en) 2015-06-18 2017-12-15 3D imaging method and apparatus for alternately irradiating first and second polarized light

Publications (1)

Publication Number Publication Date
WO2016202245A1 true WO2016202245A1 (zh) 2016-12-22

Family

ID=55719187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085749 WO2016202245A1 (zh) 2015-06-18 2016-06-14 3d成像方法及装置

Country Status (4)

Country Link
US (1) US10502969B2 (zh)
CN (1) CN105511093B (zh)
RU (1) RU2678004C1 (zh)
WO (1) WO2016202245A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105511093B (zh) 2015-06-18 2018-02-09 广州优视网络科技有限公司 3d成像方法及装置
CN117331271A (zh) * 2022-06-24 2024-01-02 华为技术有限公司 投影装置、显示设备及交通工具

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100182688A1 (en) * 2009-01-21 2010-07-22 Korea Institute Of Science And Technology 3d image display device
CN102364378A (zh) * 2011-11-16 2012-02-29 合肥工业大学 一种基于液晶光阀幕装置的裸眼立体显示装置
CN102375245A (zh) * 2011-11-16 2012-03-14 合肥工业大学 一种用于裸眼立体显示的分光系统
CN102749717A (zh) * 2012-07-27 2012-10-24 深圳超多维光电子有限公司 一种裸眼式立体显示装置
JP2015099321A (ja) * 2013-11-20 2015-05-28 株式会社東芝 立体画像表示装置
CN105511093A (zh) * 2015-06-18 2016-04-20 广州优视网络科技有限公司 3d成像方法及装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6937348B2 (en) * 2000-01-28 2005-08-30 Genex Technologies, Inc. Method and apparatus for generating structural pattern illumination
AU2001264776A1 (en) * 2000-05-22 2001-12-03 Adc Telecommunications Inc. Polarization control of uv writing
US8035612B2 (en) * 2002-05-28 2011-10-11 Intellectual Ventures Holding 67 Llc Self-contained interactive video display system
JP4408368B2 (ja) * 2003-12-24 2010-02-03 株式会社 日立ディスプレイズ 表示装置および表示方法およびこれらを用いる機器
TWI255962B (en) * 2004-08-20 2006-06-01 Coretronic Corp Dimensional image projector
US8267521B2 (en) * 2005-08-31 2012-09-18 Sanyo Electric Co., Ltd. Optical element, illuminating device, and projection type video display
CN102187382B (zh) * 2008-10-20 2013-12-18 日本电气株式会社 图像显示系统、图像显示设备和光学快门
US8467858B2 (en) * 2009-04-29 2013-06-18 Tomophase Corporation Image-guided thermotherapy based on selective tissue thermal treatment
US8649094B2 (en) * 2010-05-21 2014-02-11 Eastman Kodak Company Low thermal stress birefringence imaging lens
WO2012002207A1 (ja) * 2010-06-29 2012-01-05 国立大学法人京都工芸繊維大学 偏光イメージング装置および偏光イメージング方法
US8184215B2 (en) * 2010-08-17 2012-05-22 Lc-Tec Displays Ab High-speed liquid crystal polarization modulator
JP5612424B2 (ja) * 2010-10-01 2014-10-22 株式会社ジャパンディスプレイ 立体画像表示装置
CN102088615A (zh) * 2010-11-05 2011-06-08 广东威创视讯科技股份有限公司 基于光控时分法的数字立体显示系统及显示方法
CN103403528B (zh) * 2011-02-28 2015-05-13 国立大学法人香川大学 光学特性测量装置以及光学特性测量方法
KR20130020456A (ko) * 2011-08-19 2013-02-27 삼성디스플레이 주식회사 입체영상 표시장치 및 이의 구동방법
KR20130035457A (ko) * 2011-09-30 2013-04-09 삼성전자주식회사 디스플레이장치 및 영상처리방법
JP6010895B2 (ja) * 2011-11-14 2016-10-19 ソニー株式会社 撮像装置
US20130141420A1 (en) * 2011-12-02 2013-06-06 The Boeing Company Simulation of Three-Dimensional (3D) Cameras
JP5865727B2 (ja) * 2012-02-21 2016-02-17 株式会社ジャパンディスプレイ 表示装置
JP5974658B2 (ja) * 2012-06-19 2016-08-23 ソニー株式会社 撮像装置
JP2014048383A (ja) * 2012-08-30 2014-03-17 Sony Corp 投影装置
JP5942129B2 (ja) * 2013-03-14 2016-06-29 株式会社ジャパンディスプレイ 表示装置
TWI625551B (zh) * 2013-03-15 2018-06-01 傲思丹度科技公司 具有改良之視角深度及解析度之三維光場顯示器及方法
EP3103059A1 (de) * 2014-02-04 2016-12-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. 3d-bildanalysator zur blickrichtungsbestimmung
JP2016162392A (ja) * 2015-03-05 2016-09-05 セイコーエプソン株式会社 3次元画像処理装置および3次元画像処理システム
KR102121392B1 (ko) * 2015-05-14 2020-06-10 삼성전자주식회사 3차원 영상 표시 장치 및 그 영상 표시 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100182688A1 (en) * 2009-01-21 2010-07-22 Korea Institute Of Science And Technology 3d image display device
CN102364378A (zh) * 2011-11-16 2012-02-29 合肥工业大学 一种基于液晶光阀幕装置的裸眼立体显示装置
CN102375245A (zh) * 2011-11-16 2012-03-14 合肥工业大学 一种用于裸眼立体显示的分光系统
CN102749717A (zh) * 2012-07-27 2012-10-24 深圳超多维光电子有限公司 一种裸眼式立体显示装置
JP2015099321A (ja) * 2013-11-20 2015-05-28 株式会社東芝 立体画像表示装置
CN105511093A (zh) * 2015-06-18 2016-04-20 广州优视网络科技有限公司 3d成像方法及装置

Also Published As

Publication number Publication date
US20180107013A1 (en) 2018-04-19
CN105511093A (zh) 2016-04-20
RU2678004C1 (ru) 2019-01-22
CN105511093B (zh) 2018-02-09
US10502969B2 (en) 2019-12-10

Similar Documents

Publication Publication Date Title
CN107247333B (zh) 可切换显示模式的显示系统
WO2017181590A1 (zh) 显示装置及显示方法
WO2019205995A1 (zh) 显示设备、光学系统和虚拟现实头戴显示设备
CN107889552B (zh) 使用调制器不对称驱动器的高亮度图像显示设备及其操作方法
WO2019041812A1 (zh) 显示系统和显示方法
TWI457605B (zh) 立體顯示裝置
KR20090100361A (ko) 교대로 편광하기 위한 회전 반투명 실린더를 갖는 2d/3d 프로젝터
CN109870822B (zh) 一种显示系统及其控制方法、介质
WO2018166194A1 (zh) 光场显示装置
TWI448791B (zh) 顯示裝置與顯示影像的方法
KR101483471B1 (ko) 시각피로 없는 안경식 스테레오스코픽 디스플레이 구동 방법 및 굴절률 가변 셔터 안경
CN102520575A (zh) 一种基于液晶偏振旋转的三维投影显示系统
WO2016202245A1 (zh) 3d成像方法及装置
CN111351572A (zh) 一种基于偏振特性的分布式反射消除的装置及方法
US10802281B2 (en) Periodic lenses systems for augmented reality
JP3790226B2 (ja) 三次元表示装置
US9612520B2 (en) Polarized projection device and polarized projection system using the same
KR20140147542A (ko) 2d/3d 영상표시장치
US20120200793A1 (en) 3-D Cinema and Display Technology
US9442301B2 (en) Autostereoscopic display device and autostereoscopic display method using the same
JP3825414B2 (ja) 三次元表示装置
CN108732772B (zh) 一种显示设备及其驱动方法
JP2006330327A (ja) 投影型三次元画像表示装置
US9612447B2 (en) Wide angle viewing device
KR20110067438A (ko) 입체 영상 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16810986

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018101695

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 16810986

Country of ref document: EP

Kind code of ref document: A1