WO2016199931A1 - Double-sealed terminal header and method of manufacturing double-sealed terminal header - Google Patents

Double-sealed terminal header and method of manufacturing double-sealed terminal header Download PDF

Info

Publication number
WO2016199931A1
WO2016199931A1 PCT/JP2016/067466 JP2016067466W WO2016199931A1 WO 2016199931 A1 WO2016199931 A1 WO 2016199931A1 JP 2016067466 W JP2016067466 W JP 2016067466W WO 2016199931 A1 WO2016199931 A1 WO 2016199931A1
Authority
WO
WIPO (PCT)
Prior art keywords
annular
annular sealing
ceramic sleeve
length
sealing
Prior art date
Application number
PCT/JP2016/067466
Other languages
French (fr)
Japanese (ja)
Inventor
中島 広
Original Assignee
中島 広
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015118154A external-priority patent/JP5801009B1/en
Priority claimed from JP2015118055A external-priority patent/JP5801008B1/en
Priority claimed from JP2016067092A external-priority patent/JP6674815B2/en
Application filed by 中島 広 filed Critical 中島 広
Publication of WO2016199931A1 publication Critical patent/WO2016199931A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels

Definitions

  • the present invention relates to a double-sealed terminal header used in a penetrating portion of a low-temperature tank that stores liquefied natural gas and the like, and a manufacturing method thereof, and more particularly to a double-sealed terminal header that suppresses the influence of thermal stress and manufacturing efficiency.
  • the present invention relates to a method for manufacturing a double-sealed terminal header with improved performance.
  • a submerged motor pump is installed inside a low temperature tank for storing a low temperature liquefied gas such as LNG / LPG to send out a low temperature liquefied gas such as LNG / LPG to the outside of the tank.
  • the motor of this submerged motor pump is driven by supplying electric power from the outside of the low temperature tank. Since the inside of the low-temperature tank and the pump section are in a low-temperature and high-pressure state, it is necessary to prevent problems caused by liquid leakage and low temperature when power is supplied into the low-temperature tank. Conventionally, a double sealed terminal header has been used as a through bushing.
  • this type of double-sealed terminal header is used in a penetrating portion of a low-temperature tank or the like for storing liquefied natural gas such as LNG / LPG.
  • the double-sealed terminal header includes a partition flange that is fixed so as to close the penetrating portion of the tank, a ceramic sleeve that is inserted and fixed in a through hole provided in the partition flange, and a hollow inside the ceramic sleeve. And a conductor inserted through the portion, and a portion that needs to be sealed is sealed with a sealing material.
  • this type of double sealed terminal header is manufactured and provided by a conventional manufacturing method. FIG.
  • FIG. 21 is an enlarged view showing a main part of a double sealed terminal header manufactured by a conventional manufacturing method.
  • the enlarged view of the main part of the double sealed terminal header shown in FIG. 21 is cited from Japanese Patent No. 5801008.
  • the double sealed terminal header TH shown in FIG. 21 is cited from Japanese Patent No. 5801008.
  • 21 1 is a partition flange, 2 is a ceramic sleeve, 3 is an annular long sealing tube, 4 is a central conductor, 5 is a first annular sealing metal fitting, 6 Is a second annular sealing bracket, 7 is a third annular sealing bracket, 8 is a fourth annular sealing bracket, 10 is a through-hole drilled in the partition flange 1, 11 is a large-diameter hole, 12 is a small-diameter hole, 13 and 20 are spaces, 21 is a thick cylindrical part, 22 is a thin cylindrical part, 23 is a first concave part, 24 is a second concave part, and 25 is a convex part.
  • the ceramic sleeve 2 is inserted into the partition flange 1 from the large-diameter hole 11 side, the other end of the first annular sealing bracket 5 is inserted into the partition flange 1, and the third annular sealing bracket 7 is mounted. The other end is welded to the partition flange 1.
  • a first object of the present invention is to provide a double-sealed terminal header that eliminates the disadvantages of the structure of the apparatus and reduces the influence of thermal stress.
  • the second object of the present invention is to provide a double seal capable of eliminating the disadvantages of the method of manufacturing the above apparatus, eliminating the deterioration of the welded portion, facilitating the welding work, and preventing the ceramic sleeve from being damaged. It is to provide a method of manufacturing a type terminal header.
  • a double sealed terminal header is a double sealed terminal header used in a penetration part of a low temperature tank for storing liquefied natural gas or the like.
  • a partition flange that is fixed so as to close the penetrating portion and has a predetermined thickness and has a through hole, and a through hole formed in a hollow cylindrical shape and formed in the partition flange.
  • the through-hole provided in the partition flange has a predetermined first length from the central axis toward the second side face contacting the room temperature and atmospheric pressure side from the first side face contacting the low temperature and high pressure side.
  • the ceramic sleeve is formed into a hollow cylindrical body having a predetermined length
  • the part in contact with the low temperature pressure side is formed with a predetermined length with an outer diameter slightly smaller than the inner diameter of the large-diameter hole portion of the partition flange, and has an outer shape that fits into the large-diameter hole portion of the partition flange with a predetermined gap.
  • 1 outer diameter part A second portion having an outer shape that is formed in a predetermined length with a radius slightly smaller than the inner diameter of the small-diameter hole portion of the partition flange, and that fits into the small-diameter hole portion of the partition flange with a predetermined gap.
  • the ceramic sleeve is fitted in the through hole of the partition flange, Fixing one end of the first sealing fitting at a predetermined position on the inner peripheral surface of the large-diameter hole of the partition flange; One end of the second sealing fitting is fixed at a predetermined position of the first outer diameter portion of the ceramic sleeve, and the other end of the first sealing fitting and the other ends of the second sealing fitting are fixed. And One end of the third sealing fitting is fixed to a predetermined position on the inner peripheral surface of the small-diameter hole of the partition flange, and a fourth sealing fitting is fixed to a predetermined position on the second outer diameter portion of the ceramic sleeve.
  • a double-sealed terminal bedder is the double-sealed terminal bedder according to the first aspect, wherein the first annular sealing metal fitting has an outer peripheral surface at an inner peripheral surface of a large-diameter hole portion of a partition flange.
  • the second annular sealing metal fitting is fixed at its inner peripheral surface at one end to a second recess provided in the ceramic sleeve, and the other annular inner surface of the first annular sealing metal fitting and the second annular sealing metal fitting.
  • the outer peripheral surface of the other end of the sealing fitting is fixed at the boundary position between the large diameter hole portion and the small diameter hole portion of the first recess
  • One end outer peripheral surface of the third annular sealing bracket is fixed to the inner peripheral surface of the small-diameter hole portion of the partition flange
  • the fourth annular sealing bracket is one end inner peripheral surface of the convex portion provided on the ceramic sleeve.
  • the other end inner peripheral surface of the third annular sealing bracket and the other end outer peripheral surface of the fourth annular sealing bracket are formed between the large-diameter hole portion and the small-diameter hole portion on the low-temperature pressure side from the convex portion. It is characterized by being fixed at the boundary position.
  • a double-sealed terminal bedder is the double-sealed terminal bedding according to the first or second aspect, wherein the first sealing metal fitting and the third sealing metal fitting have a coefficient of thermal expansion of the partition flange. It is characterized by being made of a material having a thermal expansion coefficient that is substantially the same or within a certain range with respect to the thermal expansion coefficient of the partition flange.
  • the double-sealed terminal bedder according to the first or second aspect, wherein the second sealing metal fitting and the fourth sealing metal fitting are substantially equal to a thermal expansion coefficient of the ceramic sleeve.
  • a double-sealed terminal header according to claim 5 according to the present invention, In the double-sealed terminal header used for the penetration part of the cryogenic tank that stores liquefied natural gas, Concentrically with the central axis, the central conductor, annular sealing tube, and ceramic sleeve are arranged in this order from the central axis side.
  • the annular sealing tube is formed in a cylindrical shape with a predetermined length and a predetermined thickness in the central axis direction by Kovar on the outer periphery of the central conductor, and the ceramic sleeve is formed on the outer periphery of the annular sealing tube. It is formed in a cylindrical shape with a predetermined length and a predetermined thickness in the central axis direction, and the ceramic sleeve is integrated with a low-temperature tank fixing partition flange,
  • the annular sealing tube is formed with an inner diameter that maintains a predetermined gap between the inner peripheral surface and the outer peripheral surface of the central conductor, and the ceramic sleeve has a predetermined gap between the inner peripheral surface and the Kovar outer peripheral surface.
  • the central conductor forms a convex portion at a portion located on the normal temperature and atmospheric pressure side when installed in the penetration portion of the low-temperature tank, and the convex portion has a first length in the central axis direction and is sealed Formed to the same outer diameter as the outer diameter of the pipe,
  • the annular sealing tube is composed of an annular long sealing tube and an annular short sealing tube, and the annular long sealing tube is formed to have a second length in the central axis direction and is a convex portion of the central conductor.
  • the annular short sealing tube is formed in a third length in the central axis direction to form the central conductor.
  • the first length in the central axis direction of the convex portion of the central conductor, the second length in the central axis direction of the annular long sealed tube, and the third length in the central axis direction of the annular short sealed tube The total length of the ceramic sleeve and the length in the central axis direction of the ceramic sleeve, And the expansion value in the central axis direction due to thermal expansion and thermal contraction of the annular long sealing tube and the short annular sealing tube and the expansion value in the central axis direction due to thermal expansion and thermal contraction of the convex portion of the central conductor
  • the length of the convex portion of the central conductor and the annular seal are such that the added value of the ceramic sleeve and the expansion / contraction value in the central axis direction due to thermal expansion and contraction of the ceramic sleeve are maintained within substantially the same
  • a double-sealed terminal header according to a sixth aspect of the present invention is the double-sealed terminal header according to the fifth aspect, wherein the first length in the central axis direction of the convex portion of the central conductor is long in the central axis direction of the ceramic sleeve. It is set to about 20.8% of the And the total length of the second length in the central axis direction of the annular long sealed tube and the third length in the central axis direction of the annular short sealed tube is the total axial direction of the ceramic sleeve The length is set to approximately 79.2% of the length.
  • the double-sealed terminal header according to claim 7 is the invention according to claim 5 or 6,
  • the length in the central axis direction of the ceramic sleeve is L10, its thermal expansion coefficient is ⁇ 10, the first length in the central axis direction of the convex portion of the central conductor is L20, its thermal expansion coefficient is ⁇ 20, and
  • the coefficient of thermal expansion is ⁇ 30
  • L10 L20 + L30
  • L10 ⁇ ⁇ 10 (L20 ⁇ ⁇ 20) + (L30 ⁇ ⁇ 30)
  • the relationship is established.
  • a method for manufacturing a double-sealed terminal header according to the invention of claim 8 comprises: In the manufacturing method of the double-sealed terminal header used in the penetrating part of the low temperature tank for storing liquefied natural gas etc., A first processing step of processing the shape of the partition flange and the ceramic sleeve into a predetermined shape; A second processing step of processing the first annular sealing bracket, the second annular sealing bracket, the third annular sealing bracket and the fourth annular sealing bracket, and the hollow cylindrical protective bracket; A first processing step in which the second annular sealing metal fitting, the hollow tube type metal fitting and the fourth annular sealing metal fitting are arranged at predetermined positions of the ceramic sleeve and then brazed; The first annular sealing bracket is positioned and positioned on the second annular sealing bracket, the third annular sealing bracket is positioned and positioned on the fourth annular sealing bracket, and the first annular sealing bracket is positioned.
  • a second processing step of welding one end side surface of the sealing metal fitting and the second annular sealing metal fitting and one end side surface of the third annular sealing metal fitting and the fourth annular sealing metal fitting After the ceramic sleeve is disposed in the through hole of the partition flange with the first annular sealing bracket, the second annular sealing bracket, the third annular sealing bracket and the fourth annular sealing bracket attached.
  • the method for manufacturing a double-sealed terminal header according to a ninth aspect of the present invention is the method according to the eighth aspect, wherein the second processing step is such that one end side of the fourth annular sealing bracket is the other side surface.
  • the one end side of the third annular sealing bracket is formed in a shape that fits into the bent portion of the fourth annular sealing bracket, and the bent portion on the one end side of the third annular sealing bracket is the fourth It is characterized by comprising a processing step of forming a shape in which the side surfaces of the bent portions are aligned when fitted to the bent portions of the annular sealing metal fitting.
  • a method for manufacturing a double-sealed terminal header according to the eighth aspect, wherein the second processing step is to replace the hollow cylindrical body of the hollow cylindrical protective metal fitting with the third thick cylinder of the ceramic sleeve. It includes a step of fitting and brazing to the part.
  • the through-hole comprising the large-diameter hole portion and the small-diameter hole portion is formed in the partition flange, and the ceramic sleeve is used as the first outer-diameter portion.
  • the second outer diameter portion so that the first outer diameter portion fits into the large diameter hole portion and the second outer diameter portion fits into the small diameter hole portion with a certain gap.
  • a structure having a predetermined shape is provided at the boundary with the outer diameter portion, and the first outer diameter portion of the partition flange and the large diameter hole portion of the ceramic sleeve are fixed by the first sealing fitting and the second sealing fitting.
  • the structure absorbs thermal stress. As a result, thermal stress in the axial direction of partition flanges, ceramic sleeves, conductors, etc. does not occur and metal fatigue An excellent effect that there is no possible cause.
  • a convex shape is formed at a portion of the central conductor located on the normal temperature and atmospheric pressure side A first length in the central axis direction of the convex portion of the central conductor, a second length in the central axis direction of the annular long sealing tube, and a central axial direction of the annular short sealing tube.
  • the total length of the third length and the length in the central axis direction of the ceramic sleeve are substantially the same, and the central axis by thermal expansion and contraction of the annular long sealing tube and the annular short sealing tube
  • the expansion value in the central axis direction due to thermal expansion and thermal contraction of the ceramic sleeve and the expansion value in the central axis direction due to thermal expansion and thermal contraction of the ceramic sleeve are substantially the same. To a value maintained within a certain range.
  • the length of the convex portion, the length of the annular sealing tube, and the length of the ceramic sleeve are set to predetermined lengths, the center conductor, the annular long sealing tube, and the annular short sealing tube and ceramic
  • the sleeve expands and contracts to substantially the same value, and an excellent effect is obtained that the influence of thermal stress along the central axis direction can be reduced.
  • the method for manufacturing a double-sealed terminal header according to the eighth aspect of the invention the following excellent effects are obtained. (1) Since the influence of the heat treatment process can be eliminated by adopting the above manufacturing process, it is possible to prevent deterioration of the welded portion of each annular sealing metal fitting.
  • FIG. 1 is a cross-sectional view showing an example of an embodiment of a double sealed terminal header according to the first embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view of the central portion of the double sealed terminal header according to the first embodiment of the present invention.
  • FIG. 3 is an enlarged sectional view showing a cold pressure side end portion of a ceramic sleeve or the like of the double sealed terminal header according to the first embodiment of the present invention.
  • FIG. 4 is an enlarged sectional view showing a normal temperature atmospheric pressure side end portion of a ceramic sleeve or the like of the double sealed terminal header according to the first embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing an example of an embodiment of a double sealed terminal header according to the first embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view of the central portion of the double sealed terminal header according to the first embodiment of the present invention.
  • FIG. 3 is an enlarged sectional view showing a cold pressure side
  • FIG. 5 is a cross-sectional view showing a partition flange, which is a partial component of the double sealed terminal header according to the first embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing a ceramic sleeve which is a partial component of the double sealed terminal header according to the first embodiment of the present invention.
  • FIG. 7 is an enlarged cross-sectional view showing another configuration example of the cold pressure side end portion such as the ceramic sleeve of the double sealed terminal header according to the first embodiment of the present invention.
  • FIG. 8 is an enlarged cross-sectional view showing another configuration example of the end portion on the normal temperature and atmospheric pressure side such as the ceramic sleeve of the double sealed terminal header according to the first embodiment of the present invention.
  • FIG. 9 is a cross-sectional view schematically showing the structure of a double sealed terminal header according to the second embodiment of the present invention.
  • 10 is a cross-sectional view taken along the line AA ′ of FIG.
  • FIG. 11 is a cross-sectional view taken along line BB ′ of FIG.
  • 12 is a cross-sectional view taken along the line CC ′ of FIG. 13 is a cross-sectional view taken along the line DD ′ of FIG.
  • FIG. 14 is an enlarged cross-sectional view showing the low temperature pressure side end portion of the ceramic sleeve or the like of the double sealed terminal header according to the second embodiment of the present invention.
  • FIG. 11 is a cross-sectional view taken along line BB ′ of FIG.
  • FIG. 14 is an enlarged cross-sectional view showing the low temperature pressure
  • FIG. 15 is an enlarged cross-sectional view showing a normal temperature atmospheric pressure side end portion of a ceramic sleeve or the like of a double sealed terminal header according to a second embodiment of the present invention.
  • FIG. 16 is an enlarged cross-sectional view showing another configuration example of the cold pressure side end portion such as the ceramic sleeve of the double sealed terminal header according to the second embodiment of the present invention.
  • FIG. 17 is an enlarged cross-sectional view showing another configuration example of a normal temperature atmospheric pressure side end portion such as a ceramic sleeve of a double sealed terminal header according to a second embodiment of the present invention.
  • FIG. 16 is an enlarged cross-sectional view showing another configuration example of the cold pressure side end portion such as the ceramic sleeve of the double sealed terminal header according to the second embodiment of the present invention.
  • FIG. 17 is an enlarged cross-sectional view showing another configuration example of a normal temperature atmospheric pressure side end portion such as a ceramic sleeve of a double sealed terminal header according
  • FIG. 18 is a cross-sectional view showing a double sealed terminal header manufactured by a method for manufacturing a double sealed terminal header according to a third embodiment of the present invention.
  • FIG. 19 is an enlarged cross-sectional view showing a main part of a double sealed terminal header manufactured by a method for manufacturing a double sealed terminal header according to a third embodiment of the present invention.
  • FIG. 20 is a process diagram for explaining a method for manufacturing a double sealed terminal header according to the third embodiment of the present invention.
  • FIG. 20 (a) shows the first process step
  • FIG. FIG. 20C shows the second processing step
  • FIG. 20C shows the third processing step.
  • FIG. 21 is a cross-sectional view showing a main part of a conventional double sealed terminal header.
  • the embodiment of the double-sealed terminal header TH according to the first embodiment of the present invention is also a low-temperature tank for storing liquefied natural gas such as LNG / LPG. It is used for the penetration part.
  • This double sealed terminal header TH includes a partition flange 1, a ceramic sleeve 2, an annular long sealing tube 3, a center conductor 4, a first annular sealing metal fitting 5, and a second annular sealing.
  • FIG. 1 is configured as follows. That is, the partition flange 1 is configured by a plate body having a predetermined thickness (La + Lb) made of, for example, SUS316L, and a through hole 10 is formed in the plate body.
  • the through hole 10 formed in the partition flange 1 includes a large diameter hole portion 11 and a small diameter hole portion 12.
  • the large-diameter hole portion 11 has a predetermined first length from the first side surface Sa side of the partition wall flange 1 in contact with the low temperature and high pressure side toward the second side surface Sb side of the partition wall flange 1 in contact with the room temperature and atmospheric pressure side.
  • the first radius Ra is drilled from the central axis O.
  • the small-diameter hole portion 12 extends from the radius Ra of the large-diameter hole portion 11 over a second length Lb from the second side surface Sb side to the first side surface Sa side to the large-diameter hole portion 11.
  • a small radius is drilled from the central axis O while maintaining the second radius Rb.
  • the ceramic sleeve 2 is configured as follows.
  • the ceramic sleeve 2 is made of a ceramic insulator made of, for example, 92% alumina (material name of Nippon Special Ceramics Co., Ltd .: HA-92), and is a hollow cylindrical body having a predetermined length Lc.
  • the ceramic sleeve 2 is formed in a shape composed of a thick cylindrical portion 21 and a thin cylindrical portion 22.
  • the thick cylindrical portion 21 is formed to have a predetermined length Ld with an outer diameter Rc slightly smaller than the inner diameter Ra of the large-diameter hole portion 11 of the partition flange 1 at a portion in contact with the low-temperature pressure side.
  • 11 is formed in an outer shape that can be fitted with a predetermined gap Da.
  • the narrow cylindrical portion 22 is formed to have a predetermined length Le with a radius Rd slightly smaller than the inner diameter of the small-diameter hole portion 12 of the partition flange 1 at a portion in contact with the room temperature and atmospheric pressure side. It is formed in an outer shape that can be fitted with a predetermined gap Db.
  • the ceramic sleeve 2 is configured in a predetermined shape on both sides of the boundary F between the thick cylindrical portion 21 and the thin cylindrical portion 22. A predetermined radius Re from the boundary F between the thick cylindrical portion 21 and the thin cylindrical portion 22 of the ceramic sleeve 2 on the low temperature pressure side and to the outer peripheral portion of the ceramic sleeve 2 toward the low temperature pressure side. Thus, the first recess 23 is formed.
  • the first concave portion is formed on the outer peripheral portion of the ceramic sleeve 2 on the left side of the first concave portion 23 on the low temperature pressure side from the boundary F between the thick cylindrical portion 21 and the thin cylindrical portion 22 of the ceramic sleeve 2.
  • a second recess 24 is formed which has a radius Rf larger than the radius Re of 23 and smaller than the outer diameter Rc.
  • the ceramic sleeve 2 is located at a predetermined position on the normal temperature and atmospheric pressure side at a predetermined position on the normal temperature and atmospheric pressure side from the boundary F between the thick cylindrical portion 21 and the thin cylindrical portion 22.
  • a convex portion 25 having a radius Rg larger than the radius Rd of the thin cylindrical portion 22 and smaller than the radius Rb of the small-diameter hole portion 12 of the partition flange 1 is formed.
  • the partition flange 1 at the boundary portion between the large-diameter hole portion 11 and the small-diameter hole portion 12, the semicircular shape as illustrated from the boundary portion on the large-diameter hole portion 11 side toward the room temperature and atmospheric pressure side.
  • a space 13 is formed.
  • the ceramic sleeve 2 at the boundary F portion between the thick cylindrical portion 21 and the thin cylindrical portion 22, as shown in the drawing, from the position of the boundary F on the thin cylindrical portion 22 side toward the low-temperature pressure side.
  • a space 20 is formed in a circular shape.
  • the large cylindrical part 21 of the said ceramic sleeve 2 is arrange
  • the narrow cylindrical portion 22 of the ceramic sleeve 2 is arranged as shown in FIGS.
  • first annular sealing metal fitting 5 is fixed to the inner peripheral surface of the large-diameter hole portion 11 of the partition flange 1.
  • An inner peripheral surface of one end of the second annular sealing metal fitting 6 is fixed to a predetermined portion of the first outer diameter portion 21 of the ceramic sleeve 2. Further, the first annular sealing metal fitting 5 and the second annular sealing metal fitting 6 are fixed at the other ends thereof, so that the large-diameter hole portion 11 of the partition flange 1 and the ceramic sleeve 2 are thick.
  • the cylindrical part 21 is connected.
  • one end side outer peripheral surface of the first annular sealing metal fitting 5 is fixed to the inner peripheral surface of the large-diameter hole portion 11 of the partition flange 1 by, for example, TIG welding.
  • the inner peripheral surface of one end side of the second annular sealing metal fitting 6 is fixed to the flat surface of the second concave portion 24 which is a predetermined portion of the thick cylindrical portion 21 of the ceramic sleeve 2 by, for example, brazing.
  • the outer circumferential surface on the other end side of the second annular sealing bracket 6 is fixed at the position of the boundary F of the space 13 by, for example, TIG welding.
  • the first annular sealing metal fitting 5 is made of, for example, SUS316L, and is substantially the same as the thermal expansion coefficient of the partition flange 1 or a material having a thermal expansion coefficient within a certain range with respect to the thermal expansion coefficient of the partition flange 1. May be configured.
  • the second annular sealing metal fitting 6 is made of, for example, Kovar, and is approximately the same as the thermal expansion coefficient of the ceramic sleeve 2 or within a certain range with respect to the thermal expansion coefficient of the ceramic sleeve. What is necessary is just to comprise from the material of. Furthermore, when the partition flange 1 and the ceramic sleeve 2 are arranged as shown in FIGS.
  • the small-diameter hole portion 12 of the partition flange 1 and the narrow cylindrical portion 22 of the ceramic sleeve 2 are 3 is connected by the fourth annular sealing bracket 7 and the fourth annular sealing bracket 8. That is, one end of the third annular sealing fitting 7 is fixed to the inner peripheral surface of the small diameter hole 12 of the partition flange 1. A fourth annular sealing fitting 8 is fixed to a predetermined portion of the second outer diameter portion of the small diameter hole portion 12 of the ceramic sleeve 2. Then, the other ends of the third annular sealing metal fitting 7 and the fourth annular sealing metal fitting 8 are fixed to each other, so that the small diameter hole portion 12 of the partition wall flange 1 and the thin cylinder of the ceramic sleeve 2 are provided.
  • the part 22 is connected. More specifically, the outer peripheral surface of one end side of the third annular sealing metal fitting 7 is fixed to the inner peripheral surface of the small-diameter hole portion 12 of the partition flange 1 by, for example, TIG welding. On the flat surface of the convex portion 25 as a predetermined portion of the thin cylindrical portion 22 of the ceramic sleeve 2, the one end side inner peripheral surface of the fourth annular sealing metal fitting 8 is fixed by brazing, for example. On the inner peripheral surface of the third annular sealing bracket 7, the outer peripheral surface on the other end side of the fourth annular sealing bracket 8 is fixed at the position of the boundary F of the space 20 by, for example, TIG welding.
  • the third annular sealing bracket 7 is made of, for example, SUS316L and has a thermal expansion coefficient that is substantially the same as the thermal expansion coefficient of the partition flange 1 or within a certain range with respect to the thermal expansion coefficient of the partition flange 1. What is necessary is just to comprise from a material.
  • the fourth annular sealing bracket 8 is made of, for example, Kovar, and has a thermal expansion coefficient that is substantially the same as the thermal expansion coefficient of the ceramic sleeve 2 or within a certain range with respect to the thermal expansion coefficient of the ceramic sleeve 2. What is necessary is just to comprise from a material. Next, the relationship between the ceramic sleeve 2, the annular long sealing tube 3 and the center conductor 4 will be described with reference to FIGS. 1, 3 and 4.
  • the ceramic sleeve 2 is formed into a hollow cylindrical body.
  • the ceramic sleeve 2 having a hollow cylindrical shape is provided with a through hole 26.
  • an annular groove 27 having a predetermined depth in the axial direction and a predetermined width in the radial direction is provided at an end portion of the through hole 26 of the ceramic sleeve 2 on the low-temperature pressure side.
  • an annular long sealing tube 3 formed to a predetermined length Li is fitted with no gap.
  • the annular long sealing tube 3 is formed with an annular flange 31 that fits in the annular groove 27 of the ceramic sleeve 2 without a gap.
  • the annular flange 31 of the annular long sealed tube 3 is fixed by, for example, brazing in a state of fitting in the annular groove 27 of the ceramic sleeve 2.
  • the central conductor 4 is formed in a cylindrical shape, and is formed so as to be housed in the through hole of the annular long sealed tube 3 and the through hole 26 of the ceramic sleeve 2.
  • the central conductor 4 has a first convex portion 41 on the low temperature pressure side and in contact with the inner peripheral surface of the annular long sealing tube 3 at a certain length near the annular flange 31 of the annular long sealing tube 3. Is formed.
  • the first convex portion 41 is in contact with the annular flange 31 of the annular long sealed tube 3 with a predetermined gap, but is not sealed.
  • the center conductor 4 is formed with a second convex portion 42 that is in contact with the inner peripheral surface of the annular long sealing tube 3 at a constant length Lj on the end side of the annular long sealing tube 3. .
  • the central conductor 4 is formed with a convex portion 43 having a constant length Lk from the end of the annular long sealed tube 3 toward the room temperature and atmospheric pressure side.
  • the convex portion 43 is referred to as a third convex portion.
  • a stepped portion 43 a that fits to the inner peripheral surface of the annular short sealed tube 9 is formed at the end of the convex portion 43 on the room temperature and atmospheric pressure side. As shown in FIGS.
  • the central conductor 4 is formed between the first convex portion 41 and the second convex portion 42, and between the second convex portion 42 and the third convex portion 42. Between the convex portions 43, the radius is smaller than the radius of each convex portion. As described above, the third convex portion 43 is formed with the step portion 43a on the normal temperature and atmospheric pressure side. Then, as shown in FIG.
  • an annular short sealing tube 9 is fitted into the step 43a on the room temperature atmospheric pressure side of the third convex portion 43 of the central conductor 4, and the annular short sealing tube 9 and the ceramic sleeve 2 are fixed by, for example, brazing or welding, and the annular short sealed tube 9 and the center conductor 4 are fixed by, for example, brazing.
  • a terminal attachment portion 45a is formed at the end of the central conductor 4 on the low temperature pressure side, and a terminal Pa is attached to the terminal attachment portion 45a.
  • a terminal mounting portion 45b is formed at an end of the central conductor 4 on the room temperature and atmospheric pressure side, and a terminal Pb is mounted on the terminal mounting portion 45b.
  • the double-sealed terminal header configured in this way includes a first annular sealing metal fitting 5 fixed to the inner peripheral surface of the large-diameter hole 11 of the partition flange 1 and a second of the ceramic sleeve 2.
  • the second annular sealing metal fitting 6 fixed to the outer peripheral surface of the recess 24 is fixed at the position of the boundary F of the space 13 and further fixed to the inner peripheral surface of the small-diameter hole portion 12 of the partition flange 1.
  • a structure in which the third annular sealing bracket 7 and the fourth annular sealing bracket 8 fixed to the outer peripheral surface of the convex portion 25 of the ceramic sleeve 2 are fixed at the position of the boundary F of the space 20. is doing.
  • first annular sealing metal fitting 5 and the third annular sealing metal fitting 7 have substantially the same thermal expansion coefficient as that of the partition flange 1 or a heat within a certain range with respect to the thermal expansion coefficient of the partition flange 1. It is composed of a material having an expansion coefficient.
  • second annular sealing metal fitting 6 and the fourth annular sealing metal fitting 8 are substantially the same as the thermal expansion coefficient of the ceramic sleeve 2 or within a certain range with respect to the thermal expansion coefficient of the ceramic sleeve. It is comprised from the material of the thermal expansion coefficient of.
  • the embodiment according to the present invention described above has a structure constituted by the material, the thermal stress in the axial direction of the central conductor and the like is absorbed by the structure, so that the partition flange, the ceramic sleeve, and the No thermal stress is generated in the axial direction of the conductor or the like, metal fatigue does not occur, and there is an excellent advantage that it can withstand long-term use without failure. Furthermore, since the embodiment according to the present invention described above has a structure constituted by the above material, the force applied from the low temperature and high pressure side to the normal temperature and atmospheric pressure side applied to the ceramic sleeve 2 is the thick cylinder of the ceramic sleeve 2.
  • the annular long sealing tube 3 is inserted and fixed in the through hole 26 of the ceramic sleeve 2, and the annular long sealing is performed.
  • the receiving tube 3 is tightly fixed to the annular groove 27 of the ceramic sleeve 2 by an annular flange 31.
  • the central conductor 4 is in non-fixed contact with the annular long sealed tube 3 at the first convex portion 41, and the second convex portion 42 is formed on the inner peripheral surface of the annular long sealed tube 3, for example. It is fixed by brazing. And the said center conductor 4 inserts the cyclic
  • the short sealing tube 9 and the ceramic sleeve 2 are fixed by brazing.
  • FIG. 7 is an enlarged cross-sectional view illustrating a part of another configuration example of the low-temperature pressure side end portion such as the ceramic sleeve of the double sealed terminal header according to the first embodiment of the present invention.
  • FIG. 8 is an enlarged cross-sectional view showing a part of another configuration example of the normal temperature and atmospheric pressure side end portion such as the ceramic sleeve of the double sealed terminal header according to the first embodiment of the present invention.
  • FIG. 8 there is a feature only in the other configuration example portion of the normal temperature and atmospheric pressure side end portion such as a ceramic sleeve, and the other configuration is not changed. Omitted.
  • this embodiment appears symmetrically with respect to the central axis O, only one cross section will be shown and described.
  • the center conductor 4 is fitted with a circular short sealing tube 9a having a length as shown in FIG. 8 in a step portion 43a provided on the normal temperature and atmospheric pressure side of the third convex portion 43.
  • An annular sealing tube C57 having a length as shown in FIG. 8 is fitted on the outer periphery of the short sealing tube 9a.
  • annular short sealed tube 9a and the annular sealed tube C57 are welded as indicated by a symbol Y in FIG. 7 and 8 as described above, the thickness in the diametrical direction can be reduced, so that the thermal stress generated in the diametrical direction can be reduced, the proof stress of each material can be reduced, and no failure occurs.
  • a double-sealed terminal header with advantages can be provided. Second Embodiment Since the structure of the double sealed terminal header in the second embodiment of the present invention is almost the same as that shown in FIG. 1, the same reference numerals are given and the entire structure description is omitted. Features of the double sealed terminal header according to the second embodiment of the present invention will be described below with reference to FIGS. FIG.
  • FIGS. 1 and 9 is a cross-sectional view schematically showing the structure of the double sealed terminal header according to the second embodiment of the present invention.
  • 10 is a cross-sectional view taken along the line AA ′ of FIG.
  • FIG. 11 is a cross-sectional view taken along line BB ′ of FIG.
  • 12 is a cross-sectional view taken along the line CC ′ of FIG. 13 is a cross-sectional view taken along the line DD ′ of FIG.
  • the double sealed terminal header TH according to the second embodiment of the present invention is formed concentrically with the central axis O from the central axis side, An annular long sealing tube 3, an annular short sealing tube 9, and a ceramic sleeve 2 are arranged in this order.
  • the center conductor 4 is made of metal and has a predetermined length Lc or more in the direction of the central axis O as described above, and is formed in a cylindrical shape with a predetermined radius Rp as shown in FIG.
  • the annular long sealing tube 3 and the annular short sealing tube 9 have a predetermined length Li and Ls in the direction of the central axis O with Kovar on the outer periphery of the region Li and Ls of the central conductor 4, and As shown in FIG. 9, it is formed in a cylindrical shape having a predetermined thickness Wm.
  • the ceramic sleeve 2 is formed in a cylindrical shape having a predetermined length L10 in the direction of the central axis O and a predetermined thickness Wn on the outer periphery of the annular long sealing tube 3 and the annular short sealing tube 9. ing. Further, as already described, the ceramic sleeve 2 is fitted and integrated with the low-temperature tank fixing partition flange 1.
  • the annular long sealing tube 3 and the annular short sealing tube 9 are formed to have an inner diameter Rs in which a predetermined gap Dpn is maintained between the inner peripheral surface and the outer peripheral surface of the central conductor 4. .
  • the ceramic sleeve 2 is formed to have an inner diameter Rt in which a predetermined gap Dmn is maintained between the inner peripheral surface thereof and the outer peripheral surfaces of the annular long sealing tube 3 and the annular short sealing tube 9.
  • the central conductor 4 forms a convex portion 43 at a portion located on the normal temperature and atmospheric pressure side when installed in the penetrating portion of the low temperature tank.
  • the convex portion 43 has a first length Lk in the direction of the central axis O and has the same outer diameter as the outer diameters of the annular long sealing tube 3 and the annular short sealing tube 9.
  • the annular long sealing tube 3 and the annular short sealing tube 9 may be integrated with the annular sealing tube.
  • the annular long sealing tube 3 is formed in a second length Li in the direction of the central axis O, and is disposed in a region on the low temperature and high pressure side from the convex portion 43 of the central conductor 4.
  • the support 4 is engaged by a support structure that fits into the convex portion 42 of the convex portion 43 of the conductor 4.
  • the annular short sealing tube 9 is formed in a third length Ls in the direction of the central axis O, and is disposed in a region closer to the room temperature and atmospheric pressure than the convex portion 43 of the central conductor 4, and the center
  • the support 4 is engaged with a support structure that fits into the step 43 a of the convex portion 43 of the conductor 4.
  • the first length Lk ( L20) of the convex portion 43 of the central conductor 4 in the direction of the central axis O, the annular sealing tube (the direction of the central axis O of the annular long sealing tube 3).
  • the length L20 of the convex portion of the central conductor 4 and the annular sealing tube ( And Jo long sealing tube 3 and annular short sealing tube 9) of the length L30, is a ceramic sleeve 2 lengths L10 and those set respectively.
  • the first length of the convex portion 43 of the central conductor 4 in the central axis O direction is L20, and the coefficient of thermal expansion is ⁇ 20.
  • the total length of the second length Lk of the annular long sealed tube 3 in the direction of the central axis O and the third length Ls of the annular short sealed tube 9 in the direction of the central axis O is defined as L30.
  • the expansion coefficient is ⁇ 30, the following formula 1 is established.
  • a convex portion 43 is formed at a portion of the central conductor 4 located on the normal temperature and atmospheric pressure side, and the central conductor 4
  • the total length L30 of the three lengths Ls and the length L10 of the ceramic sleeve 2 in the direction of the central axis O are substantially the same, and the annular long sealing tube 3 and the annular short sealing tube 9
  • the expansion / contraction value in the central axis O direction is almost the same or within a certain range.
  • the length L20 of the convex portion of the central conductor 4, the length L30 of the annular sealing tube (the annular long sealing tube 3 and the annular short sealing tube 9), and the length L10 of the ceramic sleeve 2 Since the central conductor 4, the annular long sealing tube 3 and the annular short sealing tube 9, and the ceramic sleeve 2 expand and contract to substantially the same value, the central axis O There is an excellent effect that the influence of the thermal stress along the direction can be reduced. Further, according to the second embodiment, since the thermal stress in the axial direction of the central conductor and the like is absorbed by the structure, the thermal stress in the axial direction of the central conductor and the like is not generated, and metal fatigue occurs.
  • the double-sealed terminal header since the double-sealed terminal header has a structure made of the above material, the force applied from the low temperature and high pressure side applied to the ceramic sleeve 2 to the normal temperature and atmospheric pressure side is the ceramic sleeve. Since the end portion of the thick cylindrical portion 21 is pressed against the partition wall of the large-diameter hole portion 11 of the partition flange 1, an accident that the ceramic sleeve 2 comes off from the partition flange 1 does not occur.
  • the double sealed terminal header has an annular long sealing tube 3 inserted and fixed in the through hole 26 of the ceramic sleeve 2, and the annular long sealing tube 3 is annular.
  • the flange portion 31 is closely fixed to the annular groove 27 of the ceramic sleeve 2.
  • the central conductor 4 is in non-fixed contact with the annular long sealed tube 3 at the first convex portion 41, and the second convex portion 42 is formed on the inner peripheral surface of the annular long sealed tube 3, for example. It is fixed by brazing.
  • the said center conductor 4 inserts the cyclic
  • the short sealing tube 9 and the ceramic sleeve 2 are fixed by brazing.
  • FIG. 16 is an enlarged cross-sectional view showing a part of another configuration example of the low temperature pressure side end portion such as the ceramic sleeve of the double sealed terminal header according to the present invention.
  • annular sealing fitting C55 is interposed between the outer periphery of the annular flange 31 of the annular long sealing tube 3 and the inner peripheral surface of the annular groove 27 of the ceramic sleeve 2.
  • the annular flange 31 and the annular sealing metal fitting C55 are welded as indicated by a symbol Y in FIG.
  • FIG. 17 is an enlarged cross-sectional view showing a part of another configuration example of the normal temperature atmospheric pressure side end portion such as the ceramic sleeve of the double sealed terminal header according to the present invention.
  • FIG. 17 there is a feature only in other structural example portions such as a ceramic sleeve and the other end of the normal temperature and atmospheric pressure side, and other configurations are not changed. Therefore, the same members as those in the above embodiment are denoted by the same reference numerals. The description is omitted. Since this embodiment appears symmetrically with respect to the central axis O, only one cross section will be shown and described.
  • the central conductor 4 is fitted with a ring-shaped short sealing tube 9a having a length as shown in FIG.
  • An annular sealing tube C57 having a length as shown in FIG. 17 is fitted on the outer periphery of the short sealing tube 9a.
  • the thickness in the diametrical direction can be reduced, so that the thermal stress generated in the diametrical direction can be reduced, the proof stress of each material can be reduced, failure, etc. It is possible to provide a double-sealed terminal header having an advantage that does not occur.
  • the advantages of the configuration shown in FIG. 1 and the advantages of the present embodiment can be added to cope with a higher level of thermal stress (especially thermal stress in the central axis direction). Become.
  • the expansion / contraction value due to heat of the ceramic sleeve 2 is determined.
  • the expansion / contraction value of the ceramic sleeve 2 due to heat is obtained from Equation 2. It is done.
  • the expansion / contraction value due to heat of the convex portion 43 of the center conductor 4 is determined.
  • the expansion / contraction value by heat of 43 is calculated
  • the expansion / contraction value due to heat of the annular sealing tube (the annular long sealing tube 3 and the annular short sealing tube 9) is determined.
  • annular sealing pipe (The cyclic
  • the double-sealed terminal header TH shown in these drawings is also used for a penetrating portion such as a low-temperature tank for storing liquefied natural gas such as LNG / LPG.
  • subjected to each member shown in FIG.18 and FIG.19 shall attach
  • This double sealed terminal header TH includes a partition flange 1, a ceramic sleeve 2, an annular long sealing tube 3, a center conductor 4, a first annular sealing metal fitting 5, and a second annular sealing.
  • a fitting 6, a third annular sealing fitting 7, a fourth annular sealing fitting 8, an annular short sealing tube 9, and terminals Pa and Pb are provided, and a portion requiring sealing is sealed. It is formed by sealing with a material.
  • the partition flange 1 is configured as follows. That is, the partition flange 1 is configured by a plate body having a predetermined thickness (La + Lb) made of, for example, SUS316L, and a through hole 10 is formed in the plate body.
  • the through hole 10 formed in the partition flange 1 includes a large diameter hole portion 11 and a small diameter hole portion 12.
  • the large-diameter hole portion 11 has a predetermined first length from the first side surface Sa side of the partition wall flange 1 in contact with the low temperature and high pressure side toward the second side surface Sb side of the partition wall flange 1 in contact with the room temperature and atmospheric pressure side. Over the length La, the first radius Ra is drilled from the central axis O.
  • the small-diameter hole portion 12 extends from the radius Ra of the large-diameter hole portion 11 over a second length Lb from the second side surface Sb side to the first side surface Sa side to the large-diameter hole portion 11. A small radius is drilled from the central axis O while maintaining the second radius Rb.
  • the partition flange 1 has a radius Rh larger than the diameter Rb of the small meridian part 12 by a predetermined length Lh from the boundary part F of the large meridian part 11 and the small meridian part 12 toward the small meridian part 12 side.
  • the second small acupuncture hole 15 is formed by perforating.
  • the ceramic sleeve 2 is configured as follows. That is, the ceramic sleeve 2 is made of a ceramic insulator made of, for example, 92% alumina (material name of Nippon Special Ceramics Co., Ltd .: HA-92), and is a hollow cylindrical body having a predetermined length Lc. Thus, it is formed in a shape composed of a thick cylindrical portion 21 and a thin cylindrical portion 22.
  • the thick cylindrical portion 21 is formed to have a predetermined length Ld with an outer diameter Rc slightly smaller than the inner diameter Ra of the large-diameter hole portion 11 of the partition flange 1 at a portion in contact with the low-temperature pressure side.
  • 11 is formed in an outer shape that can be fitted with a predetermined gap Da.
  • the narrow cylindrical portion 22 is formed to have a predetermined length Le with a radius Rd slightly smaller than the inner diameter of the small-diameter hole portion 12 of the partition flange 1 at a portion in contact with the room temperature and atmospheric pressure side. It is formed in an outer shape that can be fitted with a predetermined gap Db.
  • the ceramic sleeve 2 is configured in a predetermined shape on both sides of the boundary F between the thick cylindrical portion 21 and the thin cylindrical portion 22.
  • a second thick cylindrical portion 24 and a third thick cylindrical portion 23 are formed with a predetermined radius Rj over Lj.
  • the boundary surface of the boundary F between the thick cylindrical portion 21 and the thin cylindrical portion 22 is a predetermined flat surface. It is formed in the shape of.
  • the ceramic sleeve 2 is located at a predetermined position on the normal temperature and atmospheric pressure side at a predetermined position on the normal temperature and atmospheric pressure side from the boundary F between the thick cylindrical portion 21 and the thin cylindrical portion 22.
  • a convex portion 25 having a radius Rg larger than the radius Rd of the thin cylindrical portion 22 and smaller than the radius Rb of the small-diameter hole portion 12 of the partition flange 1 is formed.
  • the partition flange 1 at the boundary portion between the large-diameter hole portion 11 and the small-diameter hole portion 12, the semicircular shape as illustrated from the boundary portion on the large-diameter hole portion 11 side toward the room temperature and atmospheric pressure side.
  • a space 13 is formed.
  • the large cylindrical part 21 of the said ceramic sleeve 2 is arrange
  • the narrow cylindrical portion 22 of the ceramic sleeve 2 is arranged as shown in FIGS.
  • One end of the first annular sealing metal fitting 5 is fixed to the inner peripheral surface of the large-diameter hole portion 11 of the partition flange 1.
  • An inner peripheral surface of one end of the second annular sealing metal fitting 6 is fixed to a predetermined portion of the thick cylindrical portion 21 of the ceramic sleeve 2.
  • first annular sealing metal fitting 5 and the second annular sealing metal fitting 6 are fixed at the other ends thereof, so that the large-diameter hole portion 11 of the partition flange 1 and the ceramic sleeve 2 are thick.
  • the cylindrical part 21 is connected.
  • the outer peripheral surface of one end side of the first annular sealing metal fitting 5 is fixed to the inner peripheral surface of the large-diameter hole portion 11 of the partition flange 1 by, for example, TIG welding.
  • the inner peripheral surface of one end side of the second annular sealing metal fitting 6 is fixed to the flat surface of the first recess 23 which is a predetermined portion of the thick cylindrical portion 21 of the ceramic sleeve 2 by, for example, brazing.
  • the outer peripheral surface of the other end side of the second annular sealing metal fitting 6 is fixed to the inner peripheral surface of the first annular sealing metal fitting 5 by, for example, TIG welding.
  • the first annular sealing metal fitting 5 is made of, for example, SUS316L, and is substantially the same as the thermal expansion coefficient of the partition flange 1 or a material having a thermal expansion coefficient within a certain range with respect to the thermal expansion coefficient of the partition flange 1. May be configured.
  • the second annular sealing metal fitting 6 is made of, for example, Kovar, and is approximately the same as the thermal expansion coefficient of the ceramic sleeve 2 or within a certain range with respect to the thermal expansion coefficient of the ceramic sleeve. What is necessary is just to comprise from the material of. As shown in FIG.
  • the hollow cylindrical protective metal fitting 90 is a metal fitting made of Kovar having a concave cross-sectional shape in which a hollow cylindrical body 91 is provided at the edge of the circular body 92, and the inner side of the hollow cylindrical body 91 is the first. It is comprised so that it can fit in the 3 thick cylindrical part 23.
  • the disc body 92 of the hollow cylindrical protection metal fitting 90 has a shape in which a through hole 93 having a diameter Rh (approximately the same length Rh as the second small acupuncture portion 15) from the center is formed. is doing.
  • This hollow cylindrical protective metal fitting 90 is made of Kovar.
  • a third annular sealing bracket 7 is disposed in the small-diameter hole 12 of the partition flange 1, and one end of the third annular sealing bracket 7 is fixed to the partition flange 1.
  • a fourth annular sealing metal fitting 8 is fixed to the convex portion 25 of the small diameter hole portion 12 of the ceramic sleeve 2. Then, the other ends of the third annular sealing metal fitting 7 and the fourth annular sealing metal fitting 8 are fixed to each other, so that the small diameter hole portion 12 of the partition wall flange 1 and the thin cylinder of the ceramic sleeve 2 are provided. The part 22 is sealed.
  • the shapes of the third annular sealing bracket 7 and the fourth annular sealing bracket 8 are characterized.
  • the fourth annular sealing metal fitting 8 has a shape in which one end side is bent in a circular shape so that the side surface on the one end side faces the other end side. Further, the third annular sealing metal fitting 7 is formed in such a shape that one end side thereof fits into a bent portion of the fourth annular sealing metal fitting 8. Further, the third annular sealing bracket 7 has a shape in which the side surfaces of the folded portions of the fourth annular sealing bracket 7 are aligned when the folded portion on one end side is fitted to the folded portion of the fourth annular sealing bracket 8. Is formed. Then, the bent portion of the third annular sealing fitting 7 and the bent portion of the fourth annular sealing fitting 8 are fitted to each other, and both sides of which the side surfaces are aligned are welded together. ing.
  • the outer peripheral surface of one end side of the third annular sealing metal fitting 7 is fixed to the inner peripheral surface of the small-diameter hole portion 12 of the partition flange 1 by, for example, TIG welding.
  • the one end side inner peripheral surface of the fourth annular sealing metal fitting 8 is fixed by brazing, for example. Both surfaces of the one end side surface of the third annular sealing bracket 7 and the one end side surface of the fourth annular sealing bracket 8 are fixed by, for example, TIG welding.
  • the third annular sealing bracket 7 is made of, for example, SUS316L and has a thermal expansion coefficient that is substantially the same as the thermal expansion coefficient of the partition flange 1 or within a certain range with respect to the thermal expansion coefficient of the partition flange 1. What is necessary is just to comprise from a material.
  • the fourth annular sealing bracket 8 is made of, for example, Kovar, and has a thermal expansion coefficient that is substantially the same as the thermal expansion coefficient of the ceramic sleeve 2 or within a certain range with respect to the thermal expansion coefficient of the ceramic sleeve 2. What is necessary is just to comprise from a material.
  • the double-sealed terminal header having the above-described structure is manufactured by a manufacturing method including the following manufacturing process.
  • first, the shape of the partition flange 1 and the shape of the ceramic sleeve 2 are processed into predetermined shapes so that each component can be accommodated. Specifically, a predetermined shape is obtained in the next processing step of the partition flange 1 and the processing step of the ceramic sleeve 2.
  • the partition flange 1 is larger than the diameter Rb of the small meridian part 12 by a predetermined length Lh from the boundary F between the large meridian part 11 and the small meridian part 12 to the small meridian part 12 side.
  • the second small acupuncture part 15 is formed by the longitude Rh.
  • the ceramic sleeve 2 has a predetermined length Lj from the boundary between the thick cylindrical portion 21 and the thin cylindrical portion 22 toward the thick cylindrical portion 21 and a second thicker radius Rj than the thick cylindrical portion 21 by a predetermined radius Rj.
  • a cylindrical portion 24 and a third thick cylindrical portion 23 are formed.
  • first annular sealing bracket 5, the second annular sealing bracket 6, the third annular sealing bracket 7, the fourth annular sealing bracket 8, and the hollow cylindrical protective bracket 90 are processed into a predetermined shape. To do. The processing steps for each component will be described in detail next.
  • the first annular sealing fitting 5 is formed in a cylindrical shape with substantially the same radius from one end portion to the other end portion, and the outer peripheral surface on one end side is fitted to the inner periphery of the large-diameter hole portion 11 of the partition flange 1.
  • the inner peripheral surface of the other end is formed to have an inner diameter that fits with the outer peripheral surface of the other end of the second annular sealing metal fitting 6.
  • the second annular sealing metal fitting 6 has an inner diameter in which a fixed length portion on one end side can be fitted into the second thick cylindrical portion 24, and a fixed length portion on the other end side on the other end of the first annular sealing fitting 5. It is formed in the shape fitted to the inner peripheral surface.
  • the fourth annular sealing metal fitting 8 is bent in a circular shape so that one end side faces the other end side, as shown in FIGS. It is formed in a J shape.
  • FIG. 20 is a process diagram for explaining the method for manufacturing a double-sealed terminal header according to the present invention.
  • FIG. 20 (a) shows the first processing step
  • FIG. 20 (b) shows the first process step
  • FIG. 20C shows the second processing step
  • FIG. 20C shows the third processing step.
  • FIG. 20A is a diagram for explaining the first processing step.
  • the second annular sealing metal fitting 6 is fitted into a predetermined position of the second thick cylindrical portion 24 of the ceramic sleeve 2 and positioned as shown in FIG.
  • the hollow cylindrical body 92 of the hollow cylindrical protective metal fitting 90 is fitted into the third thick cylindrical portion 23 of the ceramic sleeve 2 and positioned as shown in FIG.
  • the fourth annular sealing fitting 8 is fitted into the ceramic sleeve 2 and positioned as shown in FIG. Next, the region 101 between the fourth annular sealing bracket 8 and the convex portion 25 of the ceramic sleeve 2, the inner peripheral surface of the second annular sealing bracket 6, and the second thick cylindrical portion 24 of the ceramic sleeve 2 are arranged. A region 102 between the outer peripheral surface and a region 103 between the inner peripheral surface of the hollow cylindrical body 92 of the hollow cylindrical protective metal fitting 90 and the outer peripheral surface of the third thick cylindrical portion 23 of the ceramic sleeve 2 are brazed. do.
  • FIG. 20B is a diagram for explaining the second processing step.
  • the first annular sealing bracket 5 is fitted into the second annular sealing bracket 6, and both end surfaces of the second annular sealing bracket 6 and the first annular sealing bracket 5. After positioning, both end surfaces 201 are welded.
  • FIG. 20C is a diagram for explaining the third processing step.
  • the first annular sealing bracket 5, the second annular sealing bracket 6, the third annular sealing bracket 7, and the fourth annular sealing bracket 8 are provided.
  • the ceramic sleeve 2 is fitted and positioned from the large meridian 11 side of the partition flange 1, and then a region 301 including the end side surface of the first annular sealing bracket 5 and the surface of the partition flange 1 is formed. Welding is performed to weld the region 302 including the side surface of the end portion of the third annular sealing fitting 7 and the surface of the partition flange 1.
  • the manufacturing method of the double sealing type terminal header is comprised including each said process process and a process process.
  • the double sealing type terminal header shown in FIG.1 and FIG.9 was manufactured by this manufacturing method. According to the manufacturing method of the double sealed terminal header according to the third embodiment of the present invention, there are excellent effects as follows.
  • the ceramic sleeve and the partition flange are in contact with the ceramic sleeve through a hollow cylindrical protective fitting fixed by brazing, the ceramic portion does not directly contact the partition flange, so even if the ceramic sleeve is exposed to high pressure, Since stress concentration does not occur in the ceramic portion, the ceramic sleeve is not damaged or cracked, and a strong double sealed terminal header can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

In this double-sealed terminal header, for use in portions of penetration through low-temperature tanks for storing liquefied natural gas or the like: one end of a first annular seal fitting (5) is fixed to an inner circumferential surface of a large-diameter hole portion (11) in a separating wall flange (1); one end of a second annular seal fitting (6) is fixed to a prescribed part of a first outer diameter portion (21) of a ceramic sleeve (2); the first annular seal fitting and the other end of the second annular seal fitting are fixed to one another; one end of a third annular seal fitting (7) is fixed to an inner circumferential surface of a small-diameter hole portion (12) of the separating wall flange; a fourth seal fixture (8) is fixed to a predetermined part of a second outer diameter portion of a small-diameter hole portion of the ceramic sleeve; and the third seal fitting and the other end of the fourth seal fixture are fixed to one another.

Description

二重封止型ターミナルヘッダ及び二重封止型ターミナルヘッダの製造方法Double sealed terminal header and method for manufacturing double sealed terminal header
 本発明は、液化天然ガス等を貯蔵する低温タンクの貫通部分で用いられる二重封止型ターミナルヘッダおよびその製造方法に関し、特に熱応力の影響を抑えた二重封止型ターミナルヘッダおよび製造効率を向上させた二重封止型ターミナルヘッダの製造方法に関するものである。 The present invention relates to a double-sealed terminal header used in a penetrating portion of a low-temperature tank that stores liquefied natural gas and the like, and a manufacturing method thereof, and more particularly to a double-sealed terminal header that suppresses the influence of thermal stress and manufacturing efficiency. The present invention relates to a method for manufacturing a double-sealed terminal header with improved performance.
 LNG/LPG等の低温液化ガスを貯蔵する低温タンク内部には、LNG/LPG等の低温液化ガスをタンク外部に送り出すためサブマージドモータポンプが設置されている。このサブマージドモータポンプのモータは、低温タンク外部から電力を供給することにより駆動されている。
 この低温タンク内部およびポンプ部は、低温高圧の状況にあるため、低温タンク内に電力を供給する際には、液漏れや低温による不具合が発生しないようにする必要がある。そのための貫通ブッシングとして、従来から、二重封止型ターミナルヘッダが用いられている。
 この種の二重封止型ターミナルヘッダは、周知のとおり、LNG/LPG等の液化天然ガスを貯蔵する低温タンク等の貫通部分に用いられている。この二重封止型ターミナルヘッダは、前記タンクの貫通部を塞ぐように固定される隔壁フランジと、前記隔壁フランジに設けた透孔に挿通固定されたセラミックスリーブと、前記セラミックスリーブの内部の中空部に挿通された導体とを備え、封止が必要な箇所を封止材にて封止してなるものが知られている。
 また、この種の二重封止型ターミナルヘッダは従前の製造方法により製造されて提供されている。
 図21は、従前の製造方法で製造された二重封止型ターミナルヘッダの要部を拡大して示す図である。この図21に示す二重封止型ターミナルヘッダの要部の拡大図は、特許第5801008号公報から引用したものである。
 図21に示す二重封止型ターミナルヘッダTHおいて、1は隔壁フランジ、2はセラミックスリーブ、3は環状長尺封着管、4は中心導体、5は第1の環状封着金具、6は第2の環状封着金具、7は第3の環状封着金具、8は第4の環状封着金具、10は前記隔壁フランジ1に穿設された透孔、11は大径孔部、12は小径孔部、13及び20は空間、21は太円柱部、22は細円柱部、23は第1の凹部、24は第2の凹部、25は凸部である。
 このような二重封止型ターミナルヘッダを製造する従前の製造方法において、一部の工程を次のようにしている。まず、第1の工程において、第1の環状封着金具5の一端と第2の環状封着金具6の一端を溶接し、第3の環状封着金具7の一端と第4の環状封着金具8の一端とを溶接する。次に、第2の工程において、第2の環状封着金具6を第2の凹部24にロー付けし、第4の環状封着金具8を凸部25にロー付けしている。
 これらの終了後に、セラミックスリーブ2を隔壁フランジ1に大径孔部11側から挿入して、第1の環状封着金具5の他端を隔壁フランジ1に、第3の環状封着金具7の他端を隔壁フランジ1にそれぞれ溶接している。
A submerged motor pump is installed inside a low temperature tank for storing a low temperature liquefied gas such as LNG / LPG to send out a low temperature liquefied gas such as LNG / LPG to the outside of the tank. The motor of this submerged motor pump is driven by supplying electric power from the outside of the low temperature tank.
Since the inside of the low-temperature tank and the pump section are in a low-temperature and high-pressure state, it is necessary to prevent problems caused by liquid leakage and low temperature when power is supplied into the low-temperature tank. Conventionally, a double sealed terminal header has been used as a through bushing.
As is well known, this type of double-sealed terminal header is used in a penetrating portion of a low-temperature tank or the like for storing liquefied natural gas such as LNG / LPG. The double-sealed terminal header includes a partition flange that is fixed so as to close the penetrating portion of the tank, a ceramic sleeve that is inserted and fixed in a through hole provided in the partition flange, and a hollow inside the ceramic sleeve. And a conductor inserted through the portion, and a portion that needs to be sealed is sealed with a sealing material.
Also, this type of double sealed terminal header is manufactured and provided by a conventional manufacturing method.
FIG. 21 is an enlarged view showing a main part of a double sealed terminal header manufactured by a conventional manufacturing method. The enlarged view of the main part of the double sealed terminal header shown in FIG. 21 is cited from Japanese Patent No. 5801008.
In the double sealed terminal header TH shown in FIG. 21, 1 is a partition flange, 2 is a ceramic sleeve, 3 is an annular long sealing tube, 4 is a central conductor, 5 is a first annular sealing metal fitting, 6 Is a second annular sealing bracket, 7 is a third annular sealing bracket, 8 is a fourth annular sealing bracket, 10 is a through-hole drilled in the partition flange 1, 11 is a large-diameter hole, 12 is a small-diameter hole, 13 and 20 are spaces, 21 is a thick cylindrical part, 22 is a thin cylindrical part, 23 is a first concave part, 24 is a second concave part, and 25 is a convex part.
In a conventional manufacturing method for manufacturing such a double-sealed terminal header, some processes are as follows. First, in the first step, one end of the first annular seal fitting 5 and one end of the second annular seal fitting 6 are welded, and one end of the third annular seal fitting 7 and the fourth annular seal are welded. One end of the metal fitting 8 is welded. Next, in the second step, the second annular sealing bracket 6 is brazed to the second recess 24 and the fourth annular sealing bracket 8 is brazed to the projection 25.
After these operations, the ceramic sleeve 2 is inserted into the partition flange 1 from the large-diameter hole 11 side, the other end of the first annular sealing bracket 5 is inserted into the partition flange 1, and the third annular sealing bracket 7 is mounted. The other end is welded to the partition flange 1.
実開昭64−35637号公報Japanese Utility Model Publication No. 64-35637 特開平8−338596号公報JP-A-8-338596 特開平10−116530号公報JP 10-116530 A 特許第5801008号公報Japanese Patent No. 5801008
 上記従来の二重封止型ターミナルヘッダでは、温度変化に応じて発生する熱応力を吸収するための構造が提供されているものの、特許文献1記載の従来技術では軸方向に耐力以上の熱応力が発生して金属疲労を起こす恐れがあり、特許文献2記載の従来技術では導体の中間部分の断面積を小さくして可撓性をもたせることにより熱応力を吸収させようとしているが、低温のため可撓性がなくなる恐れがあり、さらに特許文献3記載の従来技術ではベロー構造を採用して熱応力を吸収しようとしているが、そのベロー構造部分で金属疲労が発生してしまうという不都合があった。
 一方、二重封止型ターミナルヘッダを製造する方法においては、第1の工程において第1の環状封着金具5や第3の環状封着金具7に施された溶接部が、第2の工程のロー付け時の熱処理工程の温度の関係で劣化してしまう不具合が発生するという欠点があった。
 また、第3の環状封着金具7の一端と第4の環状封着金具8の一端との溶接工程において、それら一端がセラミックスリーブ2の空間20に入り込んだ構造をいるため、構造上溶接がしにくいという欠点があった。
 また、図21符号Aの領域に示すように、大径孔部11と小径孔部12との境界Fの面と、太円柱部21と細円柱部22の境界面とが当接していることから、セラミックスリーブ2が高圧に晒されて応力を受けることになったときに、セラミックスリーブ2にひびが入ったり破損したりする欠点があった。
 本発明の第1の目的は、上記装置の構造の不都合な点を解消し、熱応力の影響を少なくしたく二重封止型ターミナルヘッダを提供することにある。
 本発明の第2の目的は、上記装置を製造する方法の不都合な点を解消し、溶接部の劣化をなくし、溶接作業を容易にし、かつ、セラミックスリーブの破損等を防止できる二重封止型ターミナルヘッダの製造方法を提供することにある。
In the conventional double-sealed terminal header, a structure for absorbing the thermal stress generated according to the temperature change is provided. However, in the conventional technique described in Patent Document 1, the thermal stress exceeding the proof stress in the axial direction is provided. However, the conventional technology described in Patent Document 2 attempts to absorb thermal stress by reducing the cross-sectional area of the intermediate portion of the conductor to provide flexibility. Therefore, the flexibility may be lost, and the prior art described in Patent Document 3 uses a bellows structure to absorb thermal stress. However, there is a disadvantage that metal fatigue occurs in the bellows structure portion. It was.
On the other hand, in the method of manufacturing the double sealed terminal header, the welded portion applied to the first annular sealing bracket 5 and the third annular sealing bracket 7 in the first step is the second step. There is a drawback that a problem occurs that the temperature deteriorates due to the temperature of the heat treatment process during brazing.
Further, in the welding process of one end of the third annular sealing bracket 7 and one end of the fourth annular sealing bracket 8, since the one end enters the space 20 of the ceramic sleeve 2, welding is structurally performed. There was a drawback that it was difficult to do.
In addition, as shown in the area of FIG. 21A, the boundary F surface between the large-diameter hole portion 11 and the small-diameter hole portion 12 and the boundary surface between the thick cylindrical portion 21 and the thin cylindrical portion 22 are in contact with each other. Therefore, when the ceramic sleeve 2 is subjected to stress by being exposed to a high pressure, there is a defect that the ceramic sleeve 2 is cracked or broken.
A first object of the present invention is to provide a double-sealed terminal header that eliminates the disadvantages of the structure of the apparatus and reduces the influence of thermal stress.
The second object of the present invention is to provide a double seal capable of eliminating the disadvantages of the method of manufacturing the above apparatus, eliminating the deterioration of the welded portion, facilitating the welding work, and preventing the ceramic sleeve from being damaged. It is to provide a method of manufacturing a type terminal header.
 上記第1の目的を達成するため、請求項1記載の発明に係る二重封止型ターミナルヘッダは、液化天然ガス等を貯蔵する低温タンクの貫通部に使用される二重封止型ターミナルヘッダであって、前記貫通部を塞ぐように固定され所定厚みを有し透孔が穿設されている隔壁フランジと、中空円柱形状に形成されていて前記隔壁フランジに穿設された透孔に挿通固定されたセラミックスリーブと、前記セラミックスリーブの中空部に挿通固定された導体とを備え、封止が必要な箇所を封止材にて封止してなる二重封止型ターミナルヘッダにおいて、
 前記隔壁フランジに設けた透孔は、低温高圧側に接する第1の側面側から常温大気圧側に接する第2の側面側に向かって、所定の第1の長さで中心軸から第1の半径に穿設してなる大径孔部と、
 第2の側面側から第1の側面側に向けて前記大径孔部まで穿設されていて、大径孔部の半径より小さい半径で前記中心軸から第2の半径に形成されてなる小径孔部とからなり、
 前記セラミックスリーブは、所定の長さの中空円柱形状体に形成されていて、
 低温圧力側に接する部分が前記隔壁フランジの大径孔部の内径よりやや小さい外径で所定長さに形成され前記隔壁フランジの大径孔部に所定の間隙をもって嵌まり合える外形形状をした第1外径部と、
 常温大気圧側と接する部分が前記隔壁フランジの小径孔部の内径よりやや小さい半径で所定の長さに形成され前記隔壁フランジの小径孔部に所定の間隙をもって嵌まり合える外形形状をした第2外径部とを有し、
 隔壁フランジの透孔にセラミックスリーブを嵌め込んだ状態にされていて、
 前記隔壁フランジの大径孔部の内周面の所定位置に第1の封着金具の一端を固定し、
 前記セラミックスリーブの前記第1外径部の所定位置に第2の封着金具の一端を固定し、第1の封着金具の他端と第2の封着金具の他端同士とを固定してなり、
 前記隔壁フランジの小径孔部の内周面の所定位置に第3の封着金具の一端を固定し、  前記セラミックスリーブの前記第2外径部の所定位置に第4の封着金具を固定し、
 前記第3の封着金具の他端と第4の封着金具の他端同士とを固定してなることを特徴とするものである。
 請求項2記載の発明に係る二重封止型ターミナルベッダは、請求項1記載において、前記第1の環状封着金具は隔壁フランジの大径孔部の内周面にその一端外周面が固定され、第2の環状封着金具はセラミックスリーブに設けた第2の凹部にその一端内周面が固定され、前記第1の環状封着金具の他端内周面と前記第2の環状封着金具の他端外周面が第1の凹部の大径孔部と小径孔部の境界位置で固定されており、
 前記第3の環状封着金具は隔壁フランジの小径孔部の内周面にその一端外周面が固定され、前記第4の環状封着金具はセラミックスリーブに設けた凸部にその一端内周面が固定され、前記第3の環状封着金具の他端内周面と第4の環状封着金具の他端外周面とが前記凸部より低温圧力側の大径孔部と小径孔部の境界位置で固定されていることを特徴とするものである。
 請求項3記載の発明に係る二重封止型ターミナルベッダは、請求項1または2記載において、前記第1の封着金具および前記第3の封着金具は、隔壁フランジの熱膨張率とほぼ同じか隔壁フランジの熱膨張率に対して一定範囲内の熱膨張率の材料から構成したことを特徴とするものである。
 請求項4記載の発明に係る二重封止型ターミナルベッダは、請求項1または2記載において、前記第2の封着金具および第4の封着金具は、セラミックスリーブの熱膨張率とほぼ同じか、セラミックスリーブの熱膨張率に対して一定範囲内の熱膨張率の材料から構成したことを特徴とするものである。
 上記第1の目的を達成するため、本発明に係る請求項5記載の二重封止型ターミナルヘッダは、
 液化天然ガス等を貯蔵する低温タンクの貫通部に使用される二重封止型ターミナルヘッダにおいて、
 中心軸に対して同心状に、中心軸側から中心導体、環状封着管及びセラミックスリーブと順に配置し、前記中心導体は金属で中心軸方向に所定長さで所定の半径の円柱形状に形成し、前記環状封着管は当該中心導体の外周にコバールで中心軸方向に所定の長さで所定の肉厚をもった円筒形状に形成し、前記セラミックスリーブは当該環状封着管の外周に中心軸方向に所定の長さで所定の肉厚をもった円筒形状に形成し、かつ、当該セラミックスリーブを低温タンク固定用隔壁フランジに嵌合させて一体化し、
 前記環状封着管はその内周面と前記中心導体外周面との間で所定の間隙が保たれる内径に形成し、当該セラミックスリーブはその内周面とコバール外周面との間で所定の間隙が保たれる内径に形成し、
 かつ、当該中心導体、封着管及びセラミックスリーブは所定の位置にて支持構造にて支持された二重封止型ターミナルヘッダであって、
 当該中心導体は、低温タンクの貫通部に設置されたときに常温大気圧側に位置する部位に凸状部分を形成し、当該凸状部分は中心軸方向に第1の長さでかつ封着管の外径と同一外径に形成し、
 前記環状封着管は環状長尺封着管と環状短尺封着管とからなり、前記環状長尺封着管は中心軸方向に第2の長さに形成して前記中心導体の凸状部分より低温高圧側となる領域に配置して前記中心導体の凸状部分に支持構造で係着し、前記環状短尺封着管は中心軸方向に第3の長さに形成して前記中心導体の凸状部分より常温大気圧側となる領域に配置して前記中心導体の凸状部分に支持構造で係着し、
 前記中心導体の凸状部分の中心軸方向の第1の長さ、環状長尺封着管の中心軸方向の第2の長さ及び環状短尺封着管の中心軸方向の第3の長さの合計長さと、前記セラミックスリーブの中心軸方向の長さとをほぼ同一にし、
 かつ、前記環状長尺封着管および前記環状短尺封着管の熱膨張および熱収縮による中心軸方向の伸縮値および前記中心導体の凸状部分の熱膨張および熱収縮による中心軸方向の伸縮値の加算値と、前記セラミックスリーブの熱膨張および熱収縮による中心軸方向の伸縮値とがほぼ同一ないし一定の範囲内に維持されるように、前記中心導体の凸状部分の長さ、環状封着管の長さおよびセラミックスリーブの長さをそれぞれ所定の割合による長さに設定したことを特徴とするものである。
 請求項6記載の発明に係る二重封止型ターミナルヘッダは、請求項5記載において、前記中心導体の凸状部分の中心軸方向の第1の長さは、セラミックスリーブの中心軸方向に長さの概ね20.8%程度に設定されていて、
 かつ、前記環状長尺封着管の中心軸方向の第2の長さと、前記環状短尺封着管の中心軸方向の第3の長さを加えた合計長さは、セラミックスリーブの中心軸方向に長さの概ね79.2%程度に設定されていることを特徴とするものである。
 請求項7記載の発明に係る二重封止型ターミナルヘッダは、請求項5又は6記載において、
 前記セラミックスリーブの中心軸方向の長さをL10、その熱膨張率をα10とし、中心導体の凸状部分の中心軸方向の第1の長さをL20、その熱膨張率をα20とし、かつ、環状長尺封着管の中心軸方向の第2の長さと環状短尺封着管の中心軸方向の第3の長さの合計長さをL30、その熱膨張率をα30としたときに、
 L10=L20+L30
 L10×α10=(L20×α20)+(L30×α30)
の関係が成立することを特徴とするものである。
 上記第2の目的を達成するため、請求項8記載の発明に係る二重封止型ターミナルヘッダの製造方法は、
 液化天然ガス等を貯蔵する低温タンクの貫通部分で用いられる二重封止型ターミナルヘッダの製造方法において、
 隔壁フランジ及びセラミックスリーブの形状を所定形状に加工する第1加工工程と、
 第1の環状封着金具、第2の環状封着金具、第3の環状封着金具及び第4の環状封着金具、中空筒型保護金具を所定形状に加工する第2加工工程と、
 第2の環状封着金具、中空筒型当金具及び第4の環状封着金具をセラミックスリーブの所定位置に配置して位置決め後に、ロー付けする第1の処理工程と、
 第1の環状封着金具を第2の環状封着金具に配置して位置決めするとともに、第3の環状封着金具を第4の環状封着金具に配置して位置決めし、かつ第1の環状封着金具と第2の環状封着金具との一端側面及び第3の環状封着金具と第4の環状封着金具との一端側面を溶接する第2の処理工程と、
 第1の環状封着金具、第2の環状封着金具、第3の環状封着金具及び第4の環状封着金具が取り付けられた状態で、セラミックスリーブを隔壁フランジの透孔に配置した後、第1の環状封着金具の端部側面と隔壁フランジ及び第3の環状封着金具の端部側面と隔壁フランジをそれぞれ溶接する第3の処理工程とからなることを特徴とするものである。
 請求項9記載の発明の二重封止型ターミナルヘッダの製造方法は、請求項8記載において、前記第2加工工程が、第4の環状封着金具の一端側をその一端側の側面が他端側を向くように円形状に折り曲げて断面略J字形状に形成する加工工程と、
 第3の環状封着金具の一端側が、第4の環状封着金具の折り曲げた部分に嵌まり合う形状に形成するとともに、第3の環状封着金具の一端側の折り曲げた部分が第4の環状封着金具の折り曲げた部分に嵌まり合ったときに、互いの折り曲げた部分の側面が揃う形状に形成する加工工程とからなることを特徴とするものである。
 請求項10記載の発明に係る二重封止型ターミナルヘッダの製造方法は、請求項8記載において、第2の処理工程が、中空筒型保護金具の中空円筒体をセラミックスリーブの第3太円柱部に嵌合し、ロー付けする工程を含むことを特徴とするものである。
In order to achieve the first object, a double sealed terminal header according to the first aspect of the present invention is a double sealed terminal header used in a penetration part of a low temperature tank for storing liquefied natural gas or the like. A partition flange that is fixed so as to close the penetrating portion and has a predetermined thickness and has a through hole, and a through hole formed in a hollow cylindrical shape and formed in the partition flange. In a double-sealed terminal header comprising a fixed ceramic sleeve and a conductor inserted and fixed in the hollow portion of the ceramic sleeve, and sealing a portion that requires sealing with a sealing material,
The through-hole provided in the partition flange has a predetermined first length from the central axis toward the second side face contacting the room temperature and atmospheric pressure side from the first side face contacting the low temperature and high pressure side. A large-diameter hole formed in the radius;
A small diameter formed from the second side surface side to the first side surface side to the large diameter hole portion and having a radius smaller than the radius of the large diameter hole portion and formed from the central axis to the second radius. With holes,
The ceramic sleeve is formed into a hollow cylindrical body having a predetermined length,
The part in contact with the low temperature pressure side is formed with a predetermined length with an outer diameter slightly smaller than the inner diameter of the large-diameter hole portion of the partition flange, and has an outer shape that fits into the large-diameter hole portion of the partition flange with a predetermined gap. 1 outer diameter part,
A second portion having an outer shape that is formed in a predetermined length with a radius slightly smaller than the inner diameter of the small-diameter hole portion of the partition flange, and that fits into the small-diameter hole portion of the partition flange with a predetermined gap. An outer diameter portion,
The ceramic sleeve is fitted in the through hole of the partition flange,
Fixing one end of the first sealing fitting at a predetermined position on the inner peripheral surface of the large-diameter hole of the partition flange;
One end of the second sealing fitting is fixed at a predetermined position of the first outer diameter portion of the ceramic sleeve, and the other end of the first sealing fitting and the other ends of the second sealing fitting are fixed. And
One end of the third sealing fitting is fixed to a predetermined position on the inner peripheral surface of the small-diameter hole of the partition flange, and a fourth sealing fitting is fixed to a predetermined position on the second outer diameter portion of the ceramic sleeve. ,
The other end of the third sealing bracket and the other end of the fourth sealing bracket are fixed to each other.
A double-sealed terminal bedder according to a second aspect of the present invention is the double-sealed terminal bedder according to the first aspect, wherein the first annular sealing metal fitting has an outer peripheral surface at an inner peripheral surface of a large-diameter hole portion of a partition flange. The second annular sealing metal fitting is fixed at its inner peripheral surface at one end to a second recess provided in the ceramic sleeve, and the other annular inner surface of the first annular sealing metal fitting and the second annular sealing metal fitting. The outer peripheral surface of the other end of the sealing fitting is fixed at the boundary position between the large diameter hole portion and the small diameter hole portion of the first recess,
One end outer peripheral surface of the third annular sealing bracket is fixed to the inner peripheral surface of the small-diameter hole portion of the partition flange, and the fourth annular sealing bracket is one end inner peripheral surface of the convex portion provided on the ceramic sleeve. The other end inner peripheral surface of the third annular sealing bracket and the other end outer peripheral surface of the fourth annular sealing bracket are formed between the large-diameter hole portion and the small-diameter hole portion on the low-temperature pressure side from the convex portion. It is characterized by being fixed at the boundary position.
A double-sealed terminal bedder according to a third aspect of the present invention is the double-sealed terminal bedding according to the first or second aspect, wherein the first sealing metal fitting and the third sealing metal fitting have a coefficient of thermal expansion of the partition flange. It is characterized by being made of a material having a thermal expansion coefficient that is substantially the same or within a certain range with respect to the thermal expansion coefficient of the partition flange.
According to a fourth aspect of the present invention, there is provided the double-sealed terminal bedder according to the first or second aspect, wherein the second sealing metal fitting and the fourth sealing metal fitting are substantially equal to a thermal expansion coefficient of the ceramic sleeve. It is the same or is made of a material having a thermal expansion coefficient within a certain range with respect to the thermal expansion coefficient of the ceramic sleeve.
In order to achieve the first object, a double-sealed terminal header according to claim 5 according to the present invention,
In the double-sealed terminal header used for the penetration part of the cryogenic tank that stores liquefied natural gas,
Concentrically with the central axis, the central conductor, annular sealing tube, and ceramic sleeve are arranged in this order from the central axis side. The annular sealing tube is formed in a cylindrical shape with a predetermined length and a predetermined thickness in the central axis direction by Kovar on the outer periphery of the central conductor, and the ceramic sleeve is formed on the outer periphery of the annular sealing tube. It is formed in a cylindrical shape with a predetermined length and a predetermined thickness in the central axis direction, and the ceramic sleeve is integrated with a low-temperature tank fixing partition flange,
The annular sealing tube is formed with an inner diameter that maintains a predetermined gap between the inner peripheral surface and the outer peripheral surface of the central conductor, and the ceramic sleeve has a predetermined gap between the inner peripheral surface and the Kovar outer peripheral surface. It is formed on the inner diameter where the gap is maintained,
And the said center conductor, a sealing pipe | tube, and a ceramic sleeve are the double sealing type terminal headers supported by the support structure in the predetermined position,
The central conductor forms a convex portion at a portion located on the normal temperature and atmospheric pressure side when installed in the penetration portion of the low-temperature tank, and the convex portion has a first length in the central axis direction and is sealed Formed to the same outer diameter as the outer diameter of the pipe,
The annular sealing tube is composed of an annular long sealing tube and an annular short sealing tube, and the annular long sealing tube is formed to have a second length in the central axis direction and is a convex portion of the central conductor. It is arranged in a region on the lower temperature and high pressure side and is attached to the convex portion of the central conductor by a support structure, and the annular short sealing tube is formed in a third length in the central axis direction to form the central conductor. Arranged in the region on the room temperature and atmospheric pressure side from the convex part, and attached to the convex part of the central conductor with a support structure,
The first length in the central axis direction of the convex portion of the central conductor, the second length in the central axis direction of the annular long sealed tube, and the third length in the central axis direction of the annular short sealed tube The total length of the ceramic sleeve and the length in the central axis direction of the ceramic sleeve,
And the expansion value in the central axis direction due to thermal expansion and thermal contraction of the annular long sealing tube and the short annular sealing tube and the expansion value in the central axis direction due to thermal expansion and thermal contraction of the convex portion of the central conductor The length of the convex portion of the central conductor and the annular seal are such that the added value of the ceramic sleeve and the expansion / contraction value in the central axis direction due to thermal expansion and contraction of the ceramic sleeve are maintained within substantially the same or constant range. The length of the tube and the length of the ceramic sleeve are set to predetermined lengths, respectively.
A double-sealed terminal header according to a sixth aspect of the present invention is the double-sealed terminal header according to the fifth aspect, wherein the first length in the central axis direction of the convex portion of the central conductor is long in the central axis direction of the ceramic sleeve. It is set to about 20.8% of the
And the total length of the second length in the central axis direction of the annular long sealed tube and the third length in the central axis direction of the annular short sealed tube is the total axial direction of the ceramic sleeve The length is set to approximately 79.2% of the length.
The double-sealed terminal header according to claim 7 is the invention according to claim 5 or 6,
The length in the central axis direction of the ceramic sleeve is L10, its thermal expansion coefficient is α10, the first length in the central axis direction of the convex portion of the central conductor is L20, its thermal expansion coefficient is α20, and When the total length of the second length in the central axis direction of the annular long sealed tube and the third length in the central axis direction of the annular short sealed tube is L30, and the coefficient of thermal expansion is α30,
L10 = L20 + L30
L10 × α10 = (L20 × α20) + (L30 × α30)
The relationship is established.
In order to achieve the second object, a method for manufacturing a double-sealed terminal header according to the invention of claim 8 comprises:
In the manufacturing method of the double-sealed terminal header used in the penetrating part of the low temperature tank for storing liquefied natural gas etc.,
A first processing step of processing the shape of the partition flange and the ceramic sleeve into a predetermined shape;
A second processing step of processing the first annular sealing bracket, the second annular sealing bracket, the third annular sealing bracket and the fourth annular sealing bracket, and the hollow cylindrical protective bracket;
A first processing step in which the second annular sealing metal fitting, the hollow tube type metal fitting and the fourth annular sealing metal fitting are arranged at predetermined positions of the ceramic sleeve and then brazed;
The first annular sealing bracket is positioned and positioned on the second annular sealing bracket, the third annular sealing bracket is positioned and positioned on the fourth annular sealing bracket, and the first annular sealing bracket is positioned. A second processing step of welding one end side surface of the sealing metal fitting and the second annular sealing metal fitting and one end side surface of the third annular sealing metal fitting and the fourth annular sealing metal fitting,
After the ceramic sleeve is disposed in the through hole of the partition flange with the first annular sealing bracket, the second annular sealing bracket, the third annular sealing bracket and the fourth annular sealing bracket attached. And a third processing step of welding the end side surface of the first annular sealing bracket and the partition flange and the end side surface of the third annular sealing bracket and the partition flange, respectively. .
The method for manufacturing a double-sealed terminal header according to a ninth aspect of the present invention is the method according to the eighth aspect, wherein the second processing step is such that one end side of the fourth annular sealing bracket is the other side surface. A processing step of forming a substantially J-shaped cross-section by bending into a circular shape so as to face the end side;
The one end side of the third annular sealing bracket is formed in a shape that fits into the bent portion of the fourth annular sealing bracket, and the bent portion on the one end side of the third annular sealing bracket is the fourth It is characterized by comprising a processing step of forming a shape in which the side surfaces of the bent portions are aligned when fitted to the bent portions of the annular sealing metal fitting.
According to a tenth aspect of the present invention, there is provided a method for manufacturing a double-sealed terminal header according to the eighth aspect, wherein the second processing step is to replace the hollow cylindrical body of the hollow cylindrical protective metal fitting with the third thick cylinder of the ceramic sleeve. It includes a step of fitting and brazing to the part.
 請求項1記載の発明に係る二重封止型ターミナルベッダによれば、隔壁フランジに大径孔部と小径孔部とからなる透孔を形成し、かつ、セラミックスリーブを第1外径部と第2外径部に形成し、第1外径部が大径孔部に、第2外径部が小径孔部に一定の間隙で嵌まり合うようにし、第1外径部と第2外径部との境界部分にそれぞれ所定の形状の構造を設け、隔壁フランジの第1外径部とセラミックスリーブの大径孔部を第1の封着金具と第2の封着金具とで固定し、隔壁フランジの第2外径部とセラミックスリーブの小径孔部を前記第3の封着金具と前記第4の封着金具とで固定した構造にしたので、この構造により熱応力の吸収ができるので、隔壁フランジ、セラミックスリーブおよび導体等の軸方向に向かう熱応力が発生せず、金属疲労を起こすことがないという優れた効果を奏する。
 請求項5記載の発明に係る二重封止型ターミナルベッダによれば、前記中心導体が低温タンクの貫通部に設置されたときに常温大気圧側に位置する前記中心導体の部位に凸状部分を形成し、前記中心導体の凸状部分の中心軸方向の第1の長さ、環状長尺封着管の中心軸方向の第2の長さ及び環状短尺封着管の中心軸方向の第3の長さの合計長さと、前記セラミックスリーブの中心軸方向の長さとをほぼ同一にし、かつ、前記環状長尺封着管及び前記環状短尺封着管の熱膨張および熱収縮による中心軸方向の伸縮値及び前記中心導体の凸状部分の熱膨張および熱収縮による中心軸方向の伸縮値の加算値と、前記セラミックスリーブの熱膨張および熱収縮による中心軸方向の伸縮値とがほぼ同一ないし一定の範囲内に維持される値に、前記中心導体の凸状部分の長さと環状封着管の長さとセラミックスリーブの長さをそれぞれ所定の割合による長さに設定したので、中心導体、環状長尺封着管および前記環状短尺封着管とセラミックスリーブとがほぼ同一値に伸縮して中心軸方向に沿う熱応力による影響を軽減できるという優れた効果を奏する。
 請求項8記載の発明に係る二重封止型ターミナルヘッダの製造方法によれば、次のような優れた作用効果がある。
 (1)上記製造工程を採用することにより熱処理工程の影響をなくすことができたので、各環状封着金具の溶接部の劣化を防止することができる。
 (2)第4の環状封着金具と第3の環状封着金具のそれぞれの一端側面がそれぞれの他端側を向いているため、溶接作業が著しく容易である。
 (3)セラミックスリーブの太円柱部と細円柱部の境界部分において中空型保護金具の中空円筒体をセラミックスリーブの第2太円柱部に嵌合してロー付けしてある。セラミックスリーブと隔壁フランジとはセラミックスリーブとロー付けによって固定された中空円筒保護金具を介して当接しているため、セラミック部が直接隔壁フランジに接しないので、セラミックスリーブが高圧に晒されても、セラミック部分に応力集中が発生しないために、セラミックスリーブが破損したりひびが入ったりすることがなく、強度の強い二重封止型ターミナルヘッダを得ることができる。
According to the double-sealed terminal bedder according to the first aspect of the present invention, the through-hole comprising the large-diameter hole portion and the small-diameter hole portion is formed in the partition flange, and the ceramic sleeve is used as the first outer-diameter portion. And the second outer diameter portion so that the first outer diameter portion fits into the large diameter hole portion and the second outer diameter portion fits into the small diameter hole portion with a certain gap. A structure having a predetermined shape is provided at the boundary with the outer diameter portion, and the first outer diameter portion of the partition flange and the large diameter hole portion of the ceramic sleeve are fixed by the first sealing fitting and the second sealing fitting. Since the second outer diameter portion of the partition flange and the small diameter hole portion of the ceramic sleeve are fixed by the third sealing metal fitting and the fourth sealing metal fitting, the structure absorbs thermal stress. As a result, thermal stress in the axial direction of partition flanges, ceramic sleeves, conductors, etc. does not occur and metal fatigue An excellent effect that there is no possible cause.
According to the double-sealed terminal bedder according to the invention of claim 5, when the central conductor is installed in the penetrating portion of the low-temperature tank, a convex shape is formed at a portion of the central conductor located on the normal temperature and atmospheric pressure side A first length in the central axis direction of the convex portion of the central conductor, a second length in the central axis direction of the annular long sealing tube, and a central axial direction of the annular short sealing tube. The total length of the third length and the length in the central axis direction of the ceramic sleeve are substantially the same, and the central axis by thermal expansion and contraction of the annular long sealing tube and the annular short sealing tube The expansion value in the central axis direction due to thermal expansion and thermal contraction of the ceramic sleeve and the expansion value in the central axis direction due to thermal expansion and thermal contraction of the ceramic sleeve are substantially the same. To a value maintained within a certain range. Since the length of the convex portion, the length of the annular sealing tube, and the length of the ceramic sleeve are set to predetermined lengths, the center conductor, the annular long sealing tube, and the annular short sealing tube and ceramic The sleeve expands and contracts to substantially the same value, and an excellent effect is obtained that the influence of thermal stress along the central axis direction can be reduced.
According to the method for manufacturing a double-sealed terminal header according to the eighth aspect of the invention, the following excellent effects are obtained.
(1) Since the influence of the heat treatment process can be eliminated by adopting the above manufacturing process, it is possible to prevent deterioration of the welded portion of each annular sealing metal fitting.
(2) Since one end side surfaces of the fourth annular sealing metal fitting and the third annular sealing metal fitting face the other end side, the welding operation is remarkably easy.
(3) The hollow cylindrical body of the hollow protective metal fitting is fitted and brazed to the second thick cylindrical portion of the ceramic sleeve at the boundary between the thick cylindrical portion and the thin cylindrical portion of the ceramic sleeve. Since the ceramic sleeve and the partition flange are in contact with the ceramic sleeve through a hollow cylindrical protective fitting fixed by brazing, the ceramic portion does not directly contact the partition flange, so even if the ceramic sleeve is exposed to high pressure, Since stress concentration does not occur in the ceramic portion, the ceramic sleeve is not damaged or cracked, and a strong double sealed terminal header can be obtained.
 図1は本発明の第1実施形態に係る二重封止型ターミナルヘッダの実施形態の一例を示す断面図である。
 図2は本発明の第1実施形態に係る二重封止型ターミナルヘッダの中心部を拡大して示す断面図である。
 図3は本発明の第1実施形態に係る二重封止型ターミナルヘッダのセラミックスリーブ等の低温圧力側端部を拡大して示す断面図である。
 図4は本発明の第1実施形態に係る二重封止型ターミナルヘッダのセラミックスリーブ等の常温大気圧側端部を拡大して示す断面図である。
 図5は本発明の第1実施形態に係る二重封止型ターミナルヘッダの一部構成要素である隔壁フランジを示す断面図である。
 図6は本発明の第1実施形態に係る二重封止型ターミナルヘッダの一部構成要素であるセラミックスリーブを示す断面図である。
 図7は本発明の第1実施形態に係る二重封止型ターミナルヘッダのセラミックスリーブ等の低温圧力側端部の他の構成例を拡大して示す断面図である。
 図8は本発明の第1実施形態に係る二重封止型ターミナルヘッダのセラミックスリーブ等の常温大気圧側端部の他の構成例を拡大して示す断面図である。
 図9は本発明の第2実施形態に係る二重封止型ターミナルヘッダの構造を模式的に示す断面図である。
 図10は図9のA−A′線に沿って示す断面図である。
 図11は図9のB−B′線に沿って示す断面図である。
 図12は図9のC−C′線に沿って示す断面図である。
 図13は図9のD−D′線に沿って示す断面図である。
 図14は本発明の第2実施形態に係る二重封止型ターミナルヘッダのセラミックスリーブ等の低温圧力側端部を拡大して示す断面図である。
 図15は本発明の第2実施形態に係る二重封止型ターミナルヘッダのセラミックスリーブ等の常温大気圧側端部を拡大して示す断面図である。
 図16は本発明の第2実施形態に係る二重封止型ターミナルヘッダのセラミックスリーブ等の低温圧力側端部の他の構成例を拡大して示す断面図である。
 図17は本発明の第2実施形態に係る二重封止型ターミナルヘッダのセラミックスリーブ等の常温大気圧側端部の他の構成例を拡大して示す断面図である。
 図18は本発明の第3実施形態に係る二重封止型ターミナルヘッダの製造方法で製造された二重封止型ターミナルヘッダを示す断面図である。
 図19は本発明の第3実施形態に係る二重封止型ターミナルヘッダの製造方法で製造された二重封止型ターミナルヘッダの要部を拡大して示す断面図である。
 図20は本発明の第3実施形態に係る二重封止型ターミナルヘッダの製造方法を説明するために示す工程図であって、図20(a)が第1の処理工程を、図20(b)が第2の処理工程を、図20(c)が第3の処理工程を、それぞれ示すものである。
 図21は従来の二重封止型ターミナルヘッダの要部を示す断面図である。
FIG. 1 is a cross-sectional view showing an example of an embodiment of a double sealed terminal header according to the first embodiment of the present invention.
FIG. 2 is an enlarged cross-sectional view of the central portion of the double sealed terminal header according to the first embodiment of the present invention.
FIG. 3 is an enlarged sectional view showing a cold pressure side end portion of a ceramic sleeve or the like of the double sealed terminal header according to the first embodiment of the present invention.
FIG. 4 is an enlarged sectional view showing a normal temperature atmospheric pressure side end portion of a ceramic sleeve or the like of the double sealed terminal header according to the first embodiment of the present invention.
FIG. 5 is a cross-sectional view showing a partition flange, which is a partial component of the double sealed terminal header according to the first embodiment of the present invention.
FIG. 6 is a cross-sectional view showing a ceramic sleeve which is a partial component of the double sealed terminal header according to the first embodiment of the present invention.
FIG. 7 is an enlarged cross-sectional view showing another configuration example of the cold pressure side end portion such as the ceramic sleeve of the double sealed terminal header according to the first embodiment of the present invention.
FIG. 8 is an enlarged cross-sectional view showing another configuration example of the end portion on the normal temperature and atmospheric pressure side such as the ceramic sleeve of the double sealed terminal header according to the first embodiment of the present invention.
FIG. 9 is a cross-sectional view schematically showing the structure of a double sealed terminal header according to the second embodiment of the present invention.
10 is a cross-sectional view taken along the line AA ′ of FIG.
FIG. 11 is a cross-sectional view taken along line BB ′ of FIG.
12 is a cross-sectional view taken along the line CC ′ of FIG.
13 is a cross-sectional view taken along the line DD ′ of FIG.
FIG. 14 is an enlarged cross-sectional view showing the low temperature pressure side end portion of the ceramic sleeve or the like of the double sealed terminal header according to the second embodiment of the present invention.
FIG. 15 is an enlarged cross-sectional view showing a normal temperature atmospheric pressure side end portion of a ceramic sleeve or the like of a double sealed terminal header according to a second embodiment of the present invention.
FIG. 16 is an enlarged cross-sectional view showing another configuration example of the cold pressure side end portion such as the ceramic sleeve of the double sealed terminal header according to the second embodiment of the present invention.
FIG. 17 is an enlarged cross-sectional view showing another configuration example of a normal temperature atmospheric pressure side end portion such as a ceramic sleeve of a double sealed terminal header according to a second embodiment of the present invention.
FIG. 18 is a cross-sectional view showing a double sealed terminal header manufactured by a method for manufacturing a double sealed terminal header according to a third embodiment of the present invention.
FIG. 19 is an enlarged cross-sectional view showing a main part of a double sealed terminal header manufactured by a method for manufacturing a double sealed terminal header according to a third embodiment of the present invention.
FIG. 20 is a process diagram for explaining a method for manufacturing a double sealed terminal header according to the third embodiment of the present invention. FIG. 20 (a) shows the first process step, and FIG. FIG. 20C shows the second processing step, and FIG. 20C shows the third processing step.
FIG. 21 is a cross-sectional view showing a main part of a conventional double sealed terminal header.
 以下、本発明の実施の形態を図面に基づいて説明する。
<第1実施形態>
 図1、図2、図5および図6において、本発明の第1実施形態に係る二重封止型ターミナルヘッダTHの実施の形態も、LNG/LPG等の液化天然ガスを貯蔵する低温タンク等の貫通部分に用いられるものである。
 この二重封止型ターミナルヘッダTHは、隔壁フランジ1と、セラミックスリーブ2と、環状長尺封着管3と、中心導体4と、第1の環状封着金具5と、第2の環状封着金具6と、第3の環状封着金具7と、第4の環状封着金具8と、環状短尺封着管9と、端子Pa、Pbとを備え、封止が必要な箇所を封止材にて封止してなるものである。
さらに、二重封止型ターミナルヘッダTHの各部構成要素について、図1、図2、図5および図6を参照して詳説する。
 隔壁フランジ1は、次のように構成されている。すなわち、前記隔壁フランジ1は、例えばSUS316Lからなる所定厚み(La+Lb)の板体で構成されており、この板体には透孔10が穿設されている。前記隔壁フランジ1に穿設された透孔10は、大径孔部11と、小径孔部12とから構成されている。
 前記大径孔部11は、低温高圧側に接する隔壁フランジ1の第1の側面Sa側から常温大気圧側に接する隔壁フランジ1の第2の側面Sb側に向かって、所定の第1の長さLaにわたって、中心軸Oから第1の半径Raに保たれて穿設されている。
 前記小径孔部12は、前記第2の側面Sb側から前記第1の側面Sa側に向けて前記大径孔部11までの第2の長さLbにわたって、大径孔部11の半径Raより小さい半径であって前記中心軸Oから第2の半径Rbに保たれて穿設されている。
 次に、セラミックスリーブ2は、次のように構成されている。すなわち、前記セラミックスリーブ2は、例えばアルミナ92%(日本特殊陶業株式会社の材質名称:HA−92)の材質からなるセラミック絶縁体から構成されていて、所定の長さLcの中空円柱形状体であって、太円柱部21と細円柱部22とからなる形状に形成されている。
前記太円柱部21は、低温圧力側に接する部分が前記隔壁フランジ1の大径孔部11の内径Raよりやや小さい外径Rcで所定長さLdに形成され前記隔壁フランジ1の大径孔部11に所定の間隙Daをもって嵌まり合える外形形状に形成されている。
 前記細円柱部22は、常温大気圧側と接する部分が前記隔壁フランジ1の小径孔部12の内径よりやや小さい半径Rdで所定の長さLeに形成され前記隔壁フランジ1の小径孔部12に所定の間隙Dbをもって嵌まり合える外形形状に形成されている。
また、前記セラミックスリーブ2は、太円柱部21と細円柱部22との境界Fの両側において所定の形状に構成されている。
 前記セラミックスリーブ2の前記太円柱部21と前記細円柱部22との境界Fより低温圧力側であって前記セラミックスリーブ2の外周部分に、当該境界Fより低温圧力側に向かって所定の半径Reで第1の凹部23が形成されている。また、前記セラミックスリーブ2の前記太円柱部21と前記細円柱部22との境界Fより低温圧力側で第1の凹部23の図示左側の前記セラミックスリーブ2の外周部分に、前記第1の凹部23の半径Reより大きく外径Rcより小さい半径Rfに形成した第2の凹部24が形成されている。
 さらに、前記セラミックスリーブ2であって前記太円柱部21と前記細円柱部22との境界Fより常温大気圧側の外周部分に、常温大気圧側の所定の位置であって前記セラミックスリーブ2の細円柱部22の半径Rdよりは大きく前記隔壁フランジ1の小径孔部12の半径Rbよりは小さな半径Rgで一定長さに作成した凸部25が形成されている。
 なお、前記隔壁フランジ1にあっては、大径孔部11と小径孔部12との境界部分において、大径孔部11側の境界部分から常温大気圧側に向かって図示のように半円状に空間13が形成されている。また、前記セラミックスリーブ2にあっては、太円柱部21と細円柱部22との境界Fの部分において、細円柱部22側の境界Fの位置から低温圧力側に向かって図示のように半円状に空間20が形成されている。
 そして、前記隔壁フランジ1の大径孔部11に、前記セラミックスリーブ2の太円柱部21が図1および図2に示すように配置されており、その配置によって、当然、前記隔壁フランジ1の小径孔部12に、前記セラミックスリーブ2の細円柱部22が図1および図2に示すような配置にされている。
前記隔壁フランジ1とセラミックスリーブ2とが図1および図2に示すような配置状態において、前記隔壁フランジ1の大径孔部11と前記セラミックスリーブ2の太円柱部21とが、第1の環状封着金具5と第2の環状封着金具6とにより連結されていることを説明する。
 すなわち、前記隔壁フランジ1の大径孔部11の内周面には、第1の環状封着金具5の一端が固定されている。前記セラミックスリーブ2の第1外径部21の所定部分には、第2の環状封着金具6の一端内周面が固定されている。また、第1の環状封着金具5と第2の環状封着金具6とは、それぞれの他端同士が固定されることにより、隔壁フランジ1の大径孔部11と、セラミックスリーブ2の太円柱部21とが連結されている。
 さらに説明すると、前記隔壁フランジ1の大径孔部11の内周面には、第1の環状封着金具5の一端側外周面が例えばTIG溶接により固定されている。前記セラミックスリーブ2の太円柱部21の所定部分である第2の凹部24の平面には、第2の環状封着金具6の一端側内周面が例えばロー付けにより固着されている。前記第1の環状封着金具5の内周面には、第2の環状封着金具6の他端側外周面が、空間13の境界Fの位置で例えばTIG溶接により固着されている。
 前記第1の環状封着金具5は、例えばSUS316Lから構成されていて、隔壁フランジ1の熱膨張率とほぼ同じか、隔壁フランジ1の熱膨張率に対して一定範囲内の熱膨張率の材料から構成すればよい。また、前記第2の環状封着金具6は、例えばコバールから構成されていて、前記セラミックスリーブ2の熱膨張率とほぼ同じか当該セラミックスリーブの熱膨張率に対して一定範囲内の熱膨張率の材料から構成すればよい。
さらにまた、前記隔壁フランジ1と前記セラミックスリーブ2とが図1および図2に示すような配置状態において、前記隔壁フランジ1の小径孔部12と前記セラミックスリーブ2の細円柱部22とが、第3の環状封着金具7と第4の環状封着金具8とにより連結されていることを説明する。
 すなわち、前記隔壁フランジ1の小径孔部12の内周面には、第3の環状封着金具7の一端を固定されている。前記セラミックスリーブ2の小径孔部12の第2外径部の所定部分には、第4の環状封着金具8が固定されている。そして、第3の環状封着金具7と第4の環状封着金具8とはそれぞれの他端同士が固定されることにより、前記隔壁フランジ1の小径孔部12と前記セラミックスリーブ2の細円柱部22とが連結されている。
 さらに説明すると、前記隔壁フランジ1の小径孔部12の内周面には、第3の環状封着金具7の一端側外周面が例えばTIG溶接により固定されている。前記セラミックスリーブ2の細円柱部22の所定部分としての凸部25の平面には、第4の環状封着金具8の一端側内周面が例えばロー付けにより固着されている。第3の環状封着金具7の内周面には、前記第4の環状封着金具8の他端側外周面が、空間20の境界Fの位置において、例えばTIG溶接により固着されている。
 前記第3の環状封着金具7は、例えばSUS316Lから構成されていて、前記隔壁フランジ1の熱膨張率とほぼ同じか当該隔壁フランジ1の熱膨張率に対して一定範囲内の熱膨張率の材料から構成すればよい。前記第4の環状封着金具8は、例えばコバールから構成されていて、前記セラミックスリーブ2の熱膨張率とほぼ同じか当該セラミックスリーブ2の熱膨張率に対して一定範囲内の熱膨張率の材料から構成すればよい。
 次に、前記セラミックスリーブ2、環状長尺封着管3および中心導体4の関係を、図1、図3および図4を参照して説明する。
 前記セラミックスリーブ2は、中空円柱形状体に成形されている。この中空円柱形状体をしたセラミックスリーブ2には貫通孔26が設けられている。このセラミックスリーブ2の貫通孔26の低温圧力側端部には、図1および図3に示すように軸方向に一定深さで半径方向に所定の幅に環状溝27が設けられている。
 前記セラミックスリーブ2の貫通孔26には、所定長さLiに形成した環状長尺封着管3が隙間の無い状態で嵌め込まれている。この環状長尺封着管3には、前記セラミックスリーブ2の環状溝27に隙間なく嵌まり合う環状鍔部31が形成されている。この環状長尺封着管3の環状鍔部31は前記セラミックスリーブ2の環状溝27に嵌まり合った状態で例えばロー付けにより固定されている。
 前記中心導体4は円柱状体に形成されており、環状長尺封着管3の貫通孔とセラミックスリーブ2の貫通孔26に収納可能に形成されている。この中心導体4は、低温圧力側であって環状長尺封着管3の環状鍔部31付近で環状長尺封着管3の内周面に一定長で接する第1の凸状部分41が形成されている。この第1の凸状部分41は、環状長尺封着管3の環状鍔部31部で所定の間隙をもって接してはいるが、封止はされていない。
 また、中心導体4は、環状長尺封着管3の端部側でかつ環状長尺封着管3の内周面に一定長さLjで接する第2の凸状部分42が形成されている。さらに、中心導体4は、環状長尺封着管3の端部から常温大気圧側に向かって一定長さLkに凸状部分43が形成されている。この凸状部分43は、ここでは、第3の凸と称する。さらに、凸状部分43の常温大気圧側の端部には、環状短尺封着管9の内周面に嵌合する段部43aが形成されている。
 そして、中心導体4は、図1、図3および図4に示すように、第1の凸状部分41および第2の凸状部分42の間と、第2の凸状部分42および第3の凸状部分43の間は、前記各凸状部分の半径より小さい半径に形成されている。また前記のように第3の凸状部分43には常温大気圧側に段部43aが形成されている。
 そして、前記中心導体4の第3の凸状部分43の常温大気圧側の段部43aには、図4に示すように、環状短尺封着管9が嵌め込まれており、環状短尺封着管9とセラミックスリーブ2とが例えばロー付けやら溶接により固定されており、また、環状短尺封着管9と中心導体4とが例えばロー付けにより固定されている。
 また、中心導体4の低温圧力側端部には端子取付部45aが形成されていて、この端子取付部45aに端子Paが取り付けられている。同様に、中心導体4の常温大気圧側端部には端子取付部45bが形成されていて、この端子取付部45bに端子Pbが取り付けられている。
 このように構成された二重封止型ターミナルヘッダは、前記隔壁フランジ1の大径孔部11の内周面に固定された第1の環状封着金具5と、前記セラミックスリーブ2の第2の凹部24の外周面に固定された第2の環状封着金具6とが空間13の境界Fの位置で固定されていて、さらに、前記隔壁フランジ1の小径孔部12の内周面に固定された第3の環状封着金具7と、前記セラミックスリーブ2の凸部25の外周面に固定された第4の環状封着金具8とが空間20の境界Fの位置で固定された構造をしている。
 また、前記第1の環状封着金具5と第3の環状封着金具7とは、隔壁フランジ1の熱膨張率とほぼ同じか、隔壁フランジ1の熱膨張率に対して一定範囲内の熱膨張率の材料から構成したものである。加えて、前記第2の環状封着金具6と第4の環状封着金具8とは、前記セラミックスリーブ2の熱膨張率とほぼ同じか、当該セラミックスリーブの熱膨張率に対して一定範囲内の熱膨張率の材料から構成したものである。
 したがって、上述した本発明に係る実施の形態は、上記材料によって構成されてなる構造にしたので、中心導体等の軸方向に向かう熱応力が上記構造体によって吸収されるため隔壁フランジ、セラミックスリーブおよび導体等の軸方向に向かう熱応力が発生せず、金属疲労を起こすことがなく、故障することなく長時間の使用に耐えるという優れた利点を有することになる。
 さらに、上述した本発明に係る実施の形態は、上記材料によって構成されてなる構造にしたので、セラミックスリーブ2に加わる低温高圧側から常温大気圧側に向かう力が、前記セラミックスリーブ2の太円柱部21の端部が前記隔壁フランジ1の大径孔部11の隔壁に押しつけられることになることから、セラミックスリーブ2が隔壁フランジ1から抜けてしまう事故が発生することがない。
 また、上述した本発明の第1実施形態に係る二重封止型ターミナルヘッダにおいて、前記セラミックスリーブ2の貫通孔26には環状長尺封着管3が挿入固定されており、環状長尺封着管3は環状鍔部31により前記セラミックスリーブ2の環状溝27に密着固定されている。さらに、前記中心導体4は、第1の凸状部分41で環状長尺封着管3と非固定接触し、第2の凸状部分42は環状長尺封着管3の内周面に例えばロー付けによって固定されている。かつ、前記中心導体4は、第3の凸状部分43の常温大気圧側に設けた段部43aに環状短尺封着管9を嵌め込み、環状短尺封着管9と中心導体4とを、環状短尺封着管9とセラミックスリーブ2とをロー付けで固定している。
 したがって、本発明の第1実施形態に係る二重封止型ターミナルヘッダにおいては、前記セラミックスリーブ2と環状長尺封着管3と中心導体4とが上述したような構造になっているので、直径方向の厚みを少なくでき、直径方向に発生する熱応力を小さくすることができ、各材料の耐力以下にできることから、故障等が発生しない二重封止型ターミナルヘッダを提供できる利点がある。
 図7は、本発明の第1実施形態に係る二重封止型ターミナルヘッダのセラミックスリーブ等の低温圧力側端部の他の構成例の一部を拡大して示す断面図である。図7においては、セラミックスリーブ等の低温圧力側端部の他の構成例部分にのみ特徴があり、その他の構成には変更がないので、上記実施形態と同一符号を付し、その説明を省略する。なお、本実施形態は、中心軸Oに対して対称に現れるので、一方の断面のみを示し説明することにする。
 この図7において、環状長尺封着管3の環状鍔部31の外周と前記セラミックスリーブ2の環状溝27の内周面との間には、図7に示すように、環状封着金具C55を介装している。そして、前記環状鍔部31と環状金具C55とは図7に符号Yで示すように溶接されおり、かつ、環状溝27の内周面と環状封着金具C55の外周面とは図7に符号Jで示すようにロー付で固定されている。
 図8は、本発明の第1実施形態に係る二重封止型ターミナルヘッダのセラミックスリーブ等の常温大気圧側端部の他の構成例の一部を拡大して示す断面図である。図8においては、セラミックスリーブ等の常温大気圧側端部の他の構成例部分にのみ特徴があり、その他の構成には変更がないので、上記実施形態と同一符号を付し、その説明を省略する。なお、本実施形態は、中心軸Oに対して対称に現れるので、一方の断面のみを示し説明することにする。
 図8において、前記中心導体4は、第3の凸状部分43の常温大気圧側に設けた段部43aに、図8に示すような長さの環状短尺封着管9aを嵌め込み、さらに環状短尺封着管9aの外周に図8に示すような長さの環状封着管C57を嵌め込んでいる。そして、前記環状短尺封着管9aと中心導体4の第3の凸状部分43における段部43aとの間、及び前記環状封着管C57の外周と前記セラミックスリーブ2の内周との間は、図8に符号Jで示すようにロー付けでそれぞれ固定されている。また、前記環状短尺封着管9aと前記環状封着管C57との間は、図8の符号Yで示すように溶接されている。
 このように図7及び図8に示す構造としても、直径方向の厚みを少なくできるので、直径方向に発生する熱応力を小さくすることができ、各材料の耐力以下にでき、故障等が発生しない利点を持つ二重封止型ターミナルヘッダを提供できることになる。
<第2実施形態>
 本発明の第2実施形態における二重封止型ターミナルヘッダの構造は、図1に示すものとほぼ同一なので、同一符号を付して全体の構造説明は省略する。本発明の第2実施形態に係る二重封止型ターミナルヘッダの特徴部分については、図9ないし図17を用いて以下説明する。
 図9は、本発明の第2実施形態に係る二重封止型ターミナルヘッダの構造を模式的に示す断面図である。図10は、図9のA−A′線に沿って示す断面図である。図11は、図9のB−B′線に沿って示す断面図である。図12は、図9のC−C′線に沿って示す断面図である。図13は、図9のD−D′線に沿って示す断面図である。
 本発明の第2実施形態に係る二重封止型ターミナルヘッダTHは、図1、図9~図17に示すように、中心軸Oに対して同心状に、中心軸側から中心導体4、環状長尺封着管3及び環状短尺封着管9、セラミックスリーブ2と順に配置されている。
 前記中心導体4は、上述したように金属で中心軸O方向に所定長さLc以上に形成されており、また、図9に示すように所定の半径Rpの円柱形状に形成されている。
 前記環状長尺封着管3及び環状短尺封着管9は、当該中心導体4の領域Li及びLsの部分の外周において、コバールで中心軸O方向に所定の長さLi及びLsで、かつ、図9に示すように所定の肉厚Wmをもった円筒形状に形成されている。
 前記セラミックスリーブ2は、当該環状長尺封着管3及び環状短尺封着管9の外周において、中心軸O方向に所定の長さL10で、所定の肉厚Wnをもった円筒形状に形成されている。
 また、当該セラミックスリーブ2は、既に説明したように、低温タンク固定用隔壁フランジ1に嵌合させて一体化されている。
 また、前記環状長尺封着管3及び環状短尺封着管9は、その内周面と前記中心導体4の外周面との間で所定の間隙Dpnが保たれる内径Rsに形成されている。
 当該セラミックスリーブ2はその内周面と環状長尺封着管3及び環状短尺封着管9の外周面との間で所定の間隙Dmnが保たれる内径Rtに形成されている。
 なお、既に説明したが、当該中心導体4、環状長尺封着管3、環状短尺封着管9、及びセラミックスリーブ2は所定の位置にて支持構造にて支持されている。当該中心導体4は、低温タンクの貫通部に設置されたときに常温大気圧側に位置する部位に凸状部分43を形成している。当該凸状部分43は中心軸O方向に第1の長さLkでかつ環状長尺封着管3及び環状短尺封着管9の外径と同一外径に形成されている。
 前記環状長尺封着管3及び環状短尺封着管9で環状封着管と一括することもある。前記環状長尺封着管3は中心軸O方向に第2の長さLiに形成してあり、前記中心導体4の凸状部分43より低温高圧側となる領域に配置されており、前記中心導体4の凸状部分43の凸状部分42に嵌合する支持構造によって係着されている。前記環状短尺封着管9は中心軸O方向に第3の長さLsに形成してあり、前記中心導体4の凸状部分43より常温大気圧側となる領域に配置してあり、前記中心導体4の凸状部分43の段部43aに嵌合する支持構造で係着されている。
 ここで、本発明では、前記中心導体4の凸状部分43の中心軸O方向の第1の長さLk(=L20)、環状封着管(環状長尺封着管3の中心軸O方向の第2の長さLiおよび環状短尺封着管9の中心軸O方向の第3の長さLs)の長さL30の合計長さ(=L20+L30)と、前記セラミックスリーブ2の中心軸O方向の長さL10とをほぼ同一にし、かつ、環状封着管(環状長尺封着管3及び環状短尺封着管9)の熱膨張率α30による中心軸O方向の伸縮値と、前記中心導体4の凸状部分43の熱膨張率α20による中心軸O方向の伸縮値との加算値と、前記セラミックスリーブ2の熱膨張率α10による中心軸O方向の伸縮値とがほぼ同一ないし一定の範囲内に維持されるように、前記中心導体4の凸部の長さL20と、環状封着管(環状長尺封着管3及び環状短尺封着管9)の長さL30と、セラミックスリーブ2の長さL10とをそれぞれ設定したものである。
 本発明の第2実施形態に係る二重封止型ターミナルヘッダにおいて、前記中心導体4の凸状部分43の中心軸O方向の第1の長さLk(=L20)は、セラミックスリーブ2の中心軸O方向に長さL10の概ね20.8%程度に設定することが好ましい。また、前記環状長尺封着管3の中心軸O方向の第2の長さLiと、前記環状短尺封着管9の中心軸O方向の第3の長さLs(L30=Li+Ls)は、セラミックスリーブ2の中心軸O方向に長さL10の概ね79.2%程度に設定することが好ましい。
 すなわち、前記セラミックスリーブ2の中心軸O方向の長さをL10とし、その熱膨張率をα10とする。また、前記中心導体4の凸状部分43の中心軸O方向の第1の長さをL20とし、その熱膨張率をα20とする。さらに、環状長尺封着管3の中心軸O方向の第2の長さLk及び環状短尺封着管9の中心軸O方向の第3の長さLsの合計長さをL30とし、その熱膨張率をα30としたときに、次の数式1が成立するものとする。
Figure JPOXMLDOC01-appb-M000001
 本第2実施形態では、前記中心導体4が低温タンクの貫通部に設置されたときに常温大気圧側に位置する前記中心導体4の部位に凸状部分43を形成し、前記中心導体4の凸状部分43の中心軸O方向の第1の長さL20、環状長尺封着管3の中心軸O方向の第2の長さLiおよび環状短尺封着管9の中心軸O方向の第3の長さLsの合計長さL30と、前記セラミックスリーブ2の中心軸O方向の長さL10とをほぼ同一にし、かつ、前記環状長尺封着管3および前記環状短尺封着管9の熱膨張率α30による中心軸O方向の伸縮値および前記中心導体4の凸状部分43の熱膨張率α20による中心軸O方向の伸縮値の加算値と、前記セラミックスリーブ2の熱膨張率α10による中心軸O方向の伸縮値とがほぼ同一ないし一定の範囲内に維持されるように、前記中心導体4の凸部の長さL20と環状封着管(環状長尺封着管3及び環状短尺封着管9)の長さL30とセラミックスリーブ2の長さL10とをそれぞれ所定の割合による長さに設定したので、中心導体4、環状長尺封着管3及び前記環状短尺封着管9と、セラミックスリーブ2とがほぼ同一値に伸縮するので、中心軸O方向に沿う熱応力による影響を軽減できるという優れた効果を奏する。
 また、本第2実施形態によれば、中心導体等の軸方向に向かう熱応力が上記構造体によって吸収されるため中心導体等の軸方向に向かう熱応力が発生せず、金属疲労を起こすことがなく、故障することなく長時間の使用に耐えるという優れた利点を有することになる。
 さらに、第2実施形態において、二重封止型ターミナルヘッダは、上記材料によって構成されてなる構造にしたので、セラミックスリーブ2に加わる低温高圧側から常温大気圧側に向かう力が、前記セラミックスリーブ2の太円柱部21の端部が前記隔壁フランジ1の大径孔部11の隔壁に押しつけられることになることから、セラミックスリーブ2が隔壁フランジ1から抜けてしまう事故が発生することがない。
 また、第2実施形態において、二重封止型ターミナルヘッダは、前記セラミックスリーブ2の貫通孔26には環状長尺封着管3が挿入固定されており、環状長尺封着管3は環状鍔部31により前記セラミックスリーブ2の環状溝27に密着固定されている。さらに、前記中心導体4は、第1の凸状部分41で環状長尺封着管3と非固定接触し、第2の凸状部分42は環状長尺封着管3の内周面に例えばロー付けによって固定されている。かつ、前記中心導体4は、第3の凸状部分43の常温大気圧側に設けた段部43aに環状短尺封着管9を嵌め込み、環状短尺封着管9と中心導体4とを、環状短尺封着管9とセラミックスリーブ2とをロー付けで固定している。
 これにより、第2実施形態において、二重封止型ターミナルヘッダは、前記セラミックスリーブ2と環状長尺封着管3と中心導体4とが上述したような構造になっているので、直径方向の厚みを少なくできたので、直径方向に発生する熱応力を小さくすることができ、各材料の耐力以下にできたから、故障等が発生しない二重封止型ターミナルヘッダを提供できる利点がある。
 図16は、本発明に係る二重封止型ターミナルヘッダのセラミックスリーブ等の低温圧力側端部の他の構成例の一部を拡大して示す断面図である。図16においては、セラミックスリーブ等の低温圧力側端部の他の構成例部分にのみ特徴があり、その他の構成には変更がないので、上記実施形態と同一符号を付して、その説明を省略する。尚、本実施形態においては、中心軸Oに対して対称に現れるので、一方の断面のみを示し説明することにする。
 この図16において、環状長尺封着管3の環状鍔部31の外周と前記セラミックスリーブ2の環状溝27の内周面との間には、環状封着金具C55を介装している。そして、前記環状鍔部31と環状封着金具C55とは図16に符号Yで示すように溶接されており、かつ、環状溝27の内周面と環状封着金具C55の外周面とは図7に符号Jで示すようにロー付で固定されている。
 図17は、本発明に係る二重封止型ターミナルヘッダのセラミックスリーブ等の常温大気圧側端部の他の構成例の一部を拡大して示す断面図である。図17においては、セラミックスリーブ等の常温大気圧側端部の他の構成例部分にのみ特徴があり、その他の構成は変更がないので、上記実施形態と同一部材には同一の符号を付して、その説明を省略する。尚、本実施形態は、中心軸Oに対して対称に現れるので、一方の断面のみを示し説明することにする。
 図17において、前記中心導体4は、第3の凸状部分43の常温大気圧側に設けた段部43aに、図15に示すような長さの環状短尺封着管9aを嵌め込み、さらに環状短尺封着管9aの外周に図17に示すような長さの環状封着管C57を嵌め込んでいる。そして、前記環状短尺封着管9aと中心導体4の第3の凸状部分43における段部43aとの間、および前記環状封着管C57の外周と前記セラミックスリーブ2の内周との間は、図17に符号Jで示すようにロー付けでそれぞれ固定されている。また、前記環状短尺封着管9aと前記環状封着管C57との間は、図17の符号Yで示すように溶接されている。
 このように、図16及び図17に示す構造としても、直径方向の厚味を少なくできるので、直径方向に発生する熱応力を小さくすることができ、各材料の耐力以下にでき、故障等が発生しない利点を持つ二重封止型ターミナルヘッダを提供できることになる。
 本第2実施形態によれば、上記図1に示す構成の利点と、本実施の形態による利点とが加わって、更に高いレベルの熱応力対応(特に中心軸方向の熱応力対応)ができることになる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<First Embodiment>
1, FIG. 2, FIG. 5 and FIG. 6, the embodiment of the double-sealed terminal header TH according to the first embodiment of the present invention is also a low-temperature tank for storing liquefied natural gas such as LNG / LPG. It is used for the penetration part.
This double sealed terminal header TH includes a partition flange 1, a ceramic sleeve 2, an annular long sealing tube 3, a center conductor 4, a first annular sealing metal fitting 5, and a second annular sealing. A fitting 6, a third annular sealing fitting 7, a fourth annular sealing fitting 8, an annular short sealing tube 9, and terminals Pa and Pb are provided, and a portion requiring sealing is sealed. It is formed by sealing with a material.
Furthermore, each component of the double-sealed terminal header TH will be described in detail with reference to FIGS. 1, 2, 5, and 6. FIG.
The partition flange 1 is configured as follows. That is, the partition flange 1 is configured by a plate body having a predetermined thickness (La + Lb) made of, for example, SUS316L, and a through hole 10 is formed in the plate body. The through hole 10 formed in the partition flange 1 includes a large diameter hole portion 11 and a small diameter hole portion 12.
The large-diameter hole portion 11 has a predetermined first length from the first side surface Sa side of the partition wall flange 1 in contact with the low temperature and high pressure side toward the second side surface Sb side of the partition wall flange 1 in contact with the room temperature and atmospheric pressure side. Over the length La, the first radius Ra is drilled from the central axis O.
The small-diameter hole portion 12 extends from the radius Ra of the large-diameter hole portion 11 over a second length Lb from the second side surface Sb side to the first side surface Sa side to the large-diameter hole portion 11. A small radius is drilled from the central axis O while maintaining the second radius Rb.
Next, the ceramic sleeve 2 is configured as follows. That is, the ceramic sleeve 2 is made of a ceramic insulator made of, for example, 92% alumina (material name of Nippon Special Ceramics Co., Ltd .: HA-92), and is a hollow cylindrical body having a predetermined length Lc. Thus, it is formed in a shape composed of a thick cylindrical portion 21 and a thin cylindrical portion 22.
The thick cylindrical portion 21 is formed to have a predetermined length Ld with an outer diameter Rc slightly smaller than the inner diameter Ra of the large-diameter hole portion 11 of the partition flange 1 at a portion in contact with the low-temperature pressure side. 11 is formed in an outer shape that can be fitted with a predetermined gap Da.
The narrow cylindrical portion 22 is formed to have a predetermined length Le with a radius Rd slightly smaller than the inner diameter of the small-diameter hole portion 12 of the partition flange 1 at a portion in contact with the room temperature and atmospheric pressure side. It is formed in an outer shape that can be fitted with a predetermined gap Db.
The ceramic sleeve 2 is configured in a predetermined shape on both sides of the boundary F between the thick cylindrical portion 21 and the thin cylindrical portion 22.
A predetermined radius Re from the boundary F between the thick cylindrical portion 21 and the thin cylindrical portion 22 of the ceramic sleeve 2 on the low temperature pressure side and to the outer peripheral portion of the ceramic sleeve 2 toward the low temperature pressure side. Thus, the first recess 23 is formed. Further, the first concave portion is formed on the outer peripheral portion of the ceramic sleeve 2 on the left side of the first concave portion 23 on the low temperature pressure side from the boundary F between the thick cylindrical portion 21 and the thin cylindrical portion 22 of the ceramic sleeve 2. A second recess 24 is formed which has a radius Rf larger than the radius Re of 23 and smaller than the outer diameter Rc.
Further, the ceramic sleeve 2 is located at a predetermined position on the normal temperature and atmospheric pressure side at a predetermined position on the normal temperature and atmospheric pressure side from the boundary F between the thick cylindrical portion 21 and the thin cylindrical portion 22. A convex portion 25 having a radius Rg larger than the radius Rd of the thin cylindrical portion 22 and smaller than the radius Rb of the small-diameter hole portion 12 of the partition flange 1 is formed.
In the partition flange 1, at the boundary portion between the large-diameter hole portion 11 and the small-diameter hole portion 12, the semicircular shape as illustrated from the boundary portion on the large-diameter hole portion 11 side toward the room temperature and atmospheric pressure side. A space 13 is formed. Further, in the ceramic sleeve 2, at the boundary F portion between the thick cylindrical portion 21 and the thin cylindrical portion 22, as shown in the drawing, from the position of the boundary F on the thin cylindrical portion 22 side toward the low-temperature pressure side. A space 20 is formed in a circular shape.
And the large cylindrical part 21 of the said ceramic sleeve 2 is arrange | positioned as shown in FIG.1 and FIG.2 in the large diameter hole part 11 of the said partition flange 1, and naturally the small diameter of the said partition flange 1 by the arrangement | positioning. In the hole 12, the narrow cylindrical portion 22 of the ceramic sleeve 2 is arranged as shown in FIGS.
When the partition flange 1 and the ceramic sleeve 2 are arranged as shown in FIGS. 1 and 2, the large-diameter hole portion 11 of the partition flange 1 and the thick cylindrical portion 21 of the ceramic sleeve 2 are in a first annular shape. The connection by the sealing metal fitting 5 and the second annular sealing metal fitting 6 will be described.
That is, one end of the first annular sealing metal fitting 5 is fixed to the inner peripheral surface of the large-diameter hole portion 11 of the partition flange 1. An inner peripheral surface of one end of the second annular sealing metal fitting 6 is fixed to a predetermined portion of the first outer diameter portion 21 of the ceramic sleeve 2. Further, the first annular sealing metal fitting 5 and the second annular sealing metal fitting 6 are fixed at the other ends thereof, so that the large-diameter hole portion 11 of the partition flange 1 and the ceramic sleeve 2 are thick. The cylindrical part 21 is connected.
More specifically, one end side outer peripheral surface of the first annular sealing metal fitting 5 is fixed to the inner peripheral surface of the large-diameter hole portion 11 of the partition flange 1 by, for example, TIG welding. The inner peripheral surface of one end side of the second annular sealing metal fitting 6 is fixed to the flat surface of the second concave portion 24 which is a predetermined portion of the thick cylindrical portion 21 of the ceramic sleeve 2 by, for example, brazing. On the inner circumferential surface of the first annular sealing bracket 5, the outer circumferential surface on the other end side of the second annular sealing bracket 6 is fixed at the position of the boundary F of the space 13 by, for example, TIG welding.
The first annular sealing metal fitting 5 is made of, for example, SUS316L, and is substantially the same as the thermal expansion coefficient of the partition flange 1 or a material having a thermal expansion coefficient within a certain range with respect to the thermal expansion coefficient of the partition flange 1. May be configured. Further, the second annular sealing metal fitting 6 is made of, for example, Kovar, and is approximately the same as the thermal expansion coefficient of the ceramic sleeve 2 or within a certain range with respect to the thermal expansion coefficient of the ceramic sleeve. What is necessary is just to comprise from the material of.
Furthermore, when the partition flange 1 and the ceramic sleeve 2 are arranged as shown in FIGS. 1 and 2, the small-diameter hole portion 12 of the partition flange 1 and the narrow cylindrical portion 22 of the ceramic sleeve 2 are 3 is connected by the fourth annular sealing bracket 7 and the fourth annular sealing bracket 8.
That is, one end of the third annular sealing fitting 7 is fixed to the inner peripheral surface of the small diameter hole 12 of the partition flange 1. A fourth annular sealing fitting 8 is fixed to a predetermined portion of the second outer diameter portion of the small diameter hole portion 12 of the ceramic sleeve 2. Then, the other ends of the third annular sealing metal fitting 7 and the fourth annular sealing metal fitting 8 are fixed to each other, so that the small diameter hole portion 12 of the partition wall flange 1 and the thin cylinder of the ceramic sleeve 2 are provided. The part 22 is connected.
More specifically, the outer peripheral surface of one end side of the third annular sealing metal fitting 7 is fixed to the inner peripheral surface of the small-diameter hole portion 12 of the partition flange 1 by, for example, TIG welding. On the flat surface of the convex portion 25 as a predetermined portion of the thin cylindrical portion 22 of the ceramic sleeve 2, the one end side inner peripheral surface of the fourth annular sealing metal fitting 8 is fixed by brazing, for example. On the inner peripheral surface of the third annular sealing bracket 7, the outer peripheral surface on the other end side of the fourth annular sealing bracket 8 is fixed at the position of the boundary F of the space 20 by, for example, TIG welding.
The third annular sealing bracket 7 is made of, for example, SUS316L and has a thermal expansion coefficient that is substantially the same as the thermal expansion coefficient of the partition flange 1 or within a certain range with respect to the thermal expansion coefficient of the partition flange 1. What is necessary is just to comprise from a material. The fourth annular sealing bracket 8 is made of, for example, Kovar, and has a thermal expansion coefficient that is substantially the same as the thermal expansion coefficient of the ceramic sleeve 2 or within a certain range with respect to the thermal expansion coefficient of the ceramic sleeve 2. What is necessary is just to comprise from a material.
Next, the relationship between the ceramic sleeve 2, the annular long sealing tube 3 and the center conductor 4 will be described with reference to FIGS. 1, 3 and 4.
The ceramic sleeve 2 is formed into a hollow cylindrical body. The ceramic sleeve 2 having a hollow cylindrical shape is provided with a through hole 26. As shown in FIGS. 1 and 3, an annular groove 27 having a predetermined depth in the axial direction and a predetermined width in the radial direction is provided at an end portion of the through hole 26 of the ceramic sleeve 2 on the low-temperature pressure side.
In the through hole 26 of the ceramic sleeve 2, an annular long sealing tube 3 formed to a predetermined length Li is fitted with no gap. The annular long sealing tube 3 is formed with an annular flange 31 that fits in the annular groove 27 of the ceramic sleeve 2 without a gap. The annular flange 31 of the annular long sealed tube 3 is fixed by, for example, brazing in a state of fitting in the annular groove 27 of the ceramic sleeve 2.
The central conductor 4 is formed in a cylindrical shape, and is formed so as to be housed in the through hole of the annular long sealed tube 3 and the through hole 26 of the ceramic sleeve 2. The central conductor 4 has a first convex portion 41 on the low temperature pressure side and in contact with the inner peripheral surface of the annular long sealing tube 3 at a certain length near the annular flange 31 of the annular long sealing tube 3. Is formed. The first convex portion 41 is in contact with the annular flange 31 of the annular long sealed tube 3 with a predetermined gap, but is not sealed.
Further, the center conductor 4 is formed with a second convex portion 42 that is in contact with the inner peripheral surface of the annular long sealing tube 3 at a constant length Lj on the end side of the annular long sealing tube 3. . Further, the central conductor 4 is formed with a convex portion 43 having a constant length Lk from the end of the annular long sealed tube 3 toward the room temperature and atmospheric pressure side. Here, the convex portion 43 is referred to as a third convex portion. Furthermore, a stepped portion 43 a that fits to the inner peripheral surface of the annular short sealed tube 9 is formed at the end of the convex portion 43 on the room temperature and atmospheric pressure side.
As shown in FIGS. 1, 3 and 4, the central conductor 4 is formed between the first convex portion 41 and the second convex portion 42, and between the second convex portion 42 and the third convex portion 42. Between the convex portions 43, the radius is smaller than the radius of each convex portion. As described above, the third convex portion 43 is formed with the step portion 43a on the normal temperature and atmospheric pressure side.
Then, as shown in FIG. 4, an annular short sealing tube 9 is fitted into the step 43a on the room temperature atmospheric pressure side of the third convex portion 43 of the central conductor 4, and the annular short sealing tube 9 and the ceramic sleeve 2 are fixed by, for example, brazing or welding, and the annular short sealed tube 9 and the center conductor 4 are fixed by, for example, brazing.
Further, a terminal attachment portion 45a is formed at the end of the central conductor 4 on the low temperature pressure side, and a terminal Pa is attached to the terminal attachment portion 45a. Similarly, a terminal mounting portion 45b is formed at an end of the central conductor 4 on the room temperature and atmospheric pressure side, and a terminal Pb is mounted on the terminal mounting portion 45b.
The double-sealed terminal header configured in this way includes a first annular sealing metal fitting 5 fixed to the inner peripheral surface of the large-diameter hole 11 of the partition flange 1 and a second of the ceramic sleeve 2. The second annular sealing metal fitting 6 fixed to the outer peripheral surface of the recess 24 is fixed at the position of the boundary F of the space 13 and further fixed to the inner peripheral surface of the small-diameter hole portion 12 of the partition flange 1. A structure in which the third annular sealing bracket 7 and the fourth annular sealing bracket 8 fixed to the outer peripheral surface of the convex portion 25 of the ceramic sleeve 2 are fixed at the position of the boundary F of the space 20. is doing.
Further, the first annular sealing metal fitting 5 and the third annular sealing metal fitting 7 have substantially the same thermal expansion coefficient as that of the partition flange 1 or a heat within a certain range with respect to the thermal expansion coefficient of the partition flange 1. It is composed of a material having an expansion coefficient. In addition, the second annular sealing metal fitting 6 and the fourth annular sealing metal fitting 8 are substantially the same as the thermal expansion coefficient of the ceramic sleeve 2 or within a certain range with respect to the thermal expansion coefficient of the ceramic sleeve. It is comprised from the material of the thermal expansion coefficient of.
Therefore, since the embodiment according to the present invention described above has a structure constituted by the material, the thermal stress in the axial direction of the central conductor and the like is absorbed by the structure, so that the partition flange, the ceramic sleeve, and the No thermal stress is generated in the axial direction of the conductor or the like, metal fatigue does not occur, and there is an excellent advantage that it can withstand long-term use without failure.
Furthermore, since the embodiment according to the present invention described above has a structure constituted by the above material, the force applied from the low temperature and high pressure side to the normal temperature and atmospheric pressure side applied to the ceramic sleeve 2 is the thick cylinder of the ceramic sleeve 2. Since the end of the portion 21 is pressed against the partition wall of the large-diameter hole portion 11 of the partition flange 1, an accident that the ceramic sleeve 2 comes off from the partition flange 1 does not occur.
In the double sealed terminal header according to the first embodiment of the present invention described above, the annular long sealing tube 3 is inserted and fixed in the through hole 26 of the ceramic sleeve 2, and the annular long sealing is performed. The receiving tube 3 is tightly fixed to the annular groove 27 of the ceramic sleeve 2 by an annular flange 31. Further, the central conductor 4 is in non-fixed contact with the annular long sealed tube 3 at the first convex portion 41, and the second convex portion 42 is formed on the inner peripheral surface of the annular long sealed tube 3, for example. It is fixed by brazing. And the said center conductor 4 inserts the cyclic | annular short sealing pipe | tube 9 in the step part 43a provided in the normal temperature atmospheric pressure side of the 3rd convex-shaped part 43, and cyclic | annular short sealing pipe | tube 9 and the central conductor 4 are cyclic | annular. The short sealing tube 9 and the ceramic sleeve 2 are fixed by brazing.
Therefore, in the double sealed terminal header according to the first embodiment of the present invention, the ceramic sleeve 2, the annular long sealed tube 3 and the central conductor 4 have the above-described structure. Since the thickness in the diameter direction can be reduced, the thermal stress generated in the diameter direction can be reduced, and the proof stress of each material can be reduced, there is an advantage that it is possible to provide a double-sealed terminal header that does not cause a failure or the like.
FIG. 7 is an enlarged cross-sectional view illustrating a part of another configuration example of the low-temperature pressure side end portion such as the ceramic sleeve of the double sealed terminal header according to the first embodiment of the present invention. In FIG. 7, there is a feature only in another configuration example portion of the low temperature pressure side end portion such as a ceramic sleeve, and the other configurations are not changed. Therefore, the same reference numerals as those in the above embodiment are given, and description thereof is omitted. To do. In addition, since this embodiment appears symmetrically with respect to the central axis O, only one cross section will be shown and described.
In FIG. 7, between the outer periphery of the annular flange 31 of the annular long sealing tube 3 and the inner peripheral surface of the annular groove 27 of the ceramic sleeve 2, as shown in FIG. Is intervening. And the said annular collar part 31 and the cyclic | annular metal fitting C55 are welded as shown by the code | symbol Y in FIG. 7, and the internal peripheral surface of the annular groove 27 and the outer peripheral surface of the cyclic | annular sealing metal fitting C55 are code | symbol in FIG. As shown by J, it is fixed with brazing.
FIG. 8 is an enlarged cross-sectional view showing a part of another configuration example of the normal temperature and atmospheric pressure side end portion such as the ceramic sleeve of the double sealed terminal header according to the first embodiment of the present invention. In FIG. 8, there is a feature only in the other configuration example portion of the normal temperature and atmospheric pressure side end portion such as a ceramic sleeve, and the other configuration is not changed. Omitted. In addition, since this embodiment appears symmetrically with respect to the central axis O, only one cross section will be shown and described.
In FIG. 8, the center conductor 4 is fitted with a circular short sealing tube 9a having a length as shown in FIG. 8 in a step portion 43a provided on the normal temperature and atmospheric pressure side of the third convex portion 43. An annular sealing tube C57 having a length as shown in FIG. 8 is fitted on the outer periphery of the short sealing tube 9a. Between the annular short sealed tube 9a and the step 43a in the third convex portion 43 of the central conductor 4, and between the outer periphery of the annular sealed tube C57 and the inner periphery of the ceramic sleeve 2. 8 are fixed by brazing as indicated by the symbol J in FIG. Further, the annular short sealed tube 9a and the annular sealed tube C57 are welded as indicated by a symbol Y in FIG.
7 and 8 as described above, the thickness in the diametrical direction can be reduced, so that the thermal stress generated in the diametrical direction can be reduced, the proof stress of each material can be reduced, and no failure occurs. A double-sealed terminal header with advantages can be provided.
Second Embodiment
Since the structure of the double sealed terminal header in the second embodiment of the present invention is almost the same as that shown in FIG. 1, the same reference numerals are given and the entire structure description is omitted. Features of the double sealed terminal header according to the second embodiment of the present invention will be described below with reference to FIGS.
FIG. 9 is a cross-sectional view schematically showing the structure of the double sealed terminal header according to the second embodiment of the present invention. 10 is a cross-sectional view taken along the line AA ′ of FIG. FIG. 11 is a cross-sectional view taken along line BB ′ of FIG. 12 is a cross-sectional view taken along the line CC ′ of FIG. 13 is a cross-sectional view taken along the line DD ′ of FIG.
As shown in FIGS. 1 and 9 to 17, the double sealed terminal header TH according to the second embodiment of the present invention is formed concentrically with the central axis O from the central axis side, An annular long sealing tube 3, an annular short sealing tube 9, and a ceramic sleeve 2 are arranged in this order.
The center conductor 4 is made of metal and has a predetermined length Lc or more in the direction of the central axis O as described above, and is formed in a cylindrical shape with a predetermined radius Rp as shown in FIG.
The annular long sealing tube 3 and the annular short sealing tube 9 have a predetermined length Li and Ls in the direction of the central axis O with Kovar on the outer periphery of the region Li and Ls of the central conductor 4, and As shown in FIG. 9, it is formed in a cylindrical shape having a predetermined thickness Wm.
The ceramic sleeve 2 is formed in a cylindrical shape having a predetermined length L10 in the direction of the central axis O and a predetermined thickness Wn on the outer periphery of the annular long sealing tube 3 and the annular short sealing tube 9. ing.
Further, as already described, the ceramic sleeve 2 is fitted and integrated with the low-temperature tank fixing partition flange 1.
The annular long sealing tube 3 and the annular short sealing tube 9 are formed to have an inner diameter Rs in which a predetermined gap Dpn is maintained between the inner peripheral surface and the outer peripheral surface of the central conductor 4. .
The ceramic sleeve 2 is formed to have an inner diameter Rt in which a predetermined gap Dmn is maintained between the inner peripheral surface thereof and the outer peripheral surfaces of the annular long sealing tube 3 and the annular short sealing tube 9.
As already described, the central conductor 4, the annular long sealing tube 3, the annular short sealing tube 9, and the ceramic sleeve 2 are supported by a support structure at predetermined positions. The central conductor 4 forms a convex portion 43 at a portion located on the normal temperature and atmospheric pressure side when installed in the penetrating portion of the low temperature tank. The convex portion 43 has a first length Lk in the direction of the central axis O and has the same outer diameter as the outer diameters of the annular long sealing tube 3 and the annular short sealing tube 9.
The annular long sealing tube 3 and the annular short sealing tube 9 may be integrated with the annular sealing tube. The annular long sealing tube 3 is formed in a second length Li in the direction of the central axis O, and is disposed in a region on the low temperature and high pressure side from the convex portion 43 of the central conductor 4. The support 4 is engaged by a support structure that fits into the convex portion 42 of the convex portion 43 of the conductor 4. The annular short sealing tube 9 is formed in a third length Ls in the direction of the central axis O, and is disposed in a region closer to the room temperature and atmospheric pressure than the convex portion 43 of the central conductor 4, and the center The support 4 is engaged with a support structure that fits into the step 43 a of the convex portion 43 of the conductor 4.
Here, in the present invention, the first length Lk (= L20) of the convex portion 43 of the central conductor 4 in the direction of the central axis O, the annular sealing tube (the direction of the central axis O of the annular long sealing tube 3). The total length (= L20 + L30) of the second length Li and the third length Ls of the annular short sealed tube 9 in the direction of the central axis O, and the direction of the central axis O of the ceramic sleeve 2 The length L10 of the annular seal tube (annular long sealed tube 3 and annular short sealed tube 9) is expanded and contracted in the direction of the central axis O by the coefficient of thermal expansion α30, and the central conductor. 4 and the expansion value in the central axis O direction by the thermal expansion coefficient α20 of the convex portion 43 and the expansion value in the central axis O direction by the thermal expansion coefficient α10 of the ceramic sleeve 2 are substantially the same or constant. The length L20 of the convex portion of the central conductor 4 and the annular sealing tube ( And Jo long sealing tube 3 and annular short sealing tube 9) of the length L30, is a ceramic sleeve 2 lengths L10 and those set respectively.
In the double sealed terminal header according to the second embodiment of the present invention, the first length Lk (= L20) of the convex portion 43 of the central conductor 4 in the direction of the central axis O is the center of the ceramic sleeve 2 It is preferable to set to approximately 20.8% of the length L10 in the axis O direction. Further, the second length Li of the annular long sealing tube 3 in the direction of the central axis O and the third length Ls of the annular short sealing tube 9 in the direction of the central axis O (L30 = Li + Ls) are: It is preferable to set the length of the ceramic sleeve 2 to approximately 79.2% of the length L10 in the central axis O direction.
That is, the length of the ceramic sleeve 2 in the direction of the central axis O is L10, and the coefficient of thermal expansion is α10. The first length of the convex portion 43 of the central conductor 4 in the central axis O direction is L20, and the coefficient of thermal expansion is α20. Further, the total length of the second length Lk of the annular long sealed tube 3 in the direction of the central axis O and the third length Ls of the annular short sealed tube 9 in the direction of the central axis O is defined as L30. When the expansion coefficient is α30, the following formula 1 is established.
Figure JPOXMLDOC01-appb-M000001
In the second embodiment, when the central conductor 4 is installed in the penetration portion of the low-temperature tank, a convex portion 43 is formed at a portion of the central conductor 4 located on the normal temperature and atmospheric pressure side, and the central conductor 4 The first length L20 of the convex portion 43 in the direction of the central axis O, the second length Li of the annular long sealing tube 3 in the direction of the central axis O, and the first length of the annular short sealing tube 9 in the direction of the central axis O. The total length L30 of the three lengths Ls and the length L10 of the ceramic sleeve 2 in the direction of the central axis O are substantially the same, and the annular long sealing tube 3 and the annular short sealing tube 9 The sum of the expansion / contraction value in the central axis O direction by the thermal expansion coefficient α30 and the expansion / contraction value in the central axis O direction by the thermal expansion coefficient α20 of the convex portion 43 of the central conductor 4 and the thermal expansion coefficient α10 of the ceramic sleeve 2 The expansion / contraction value in the central axis O direction is almost the same or within a certain range. As described above, the length L20 of the convex portion of the central conductor 4, the length L30 of the annular sealing tube (the annular long sealing tube 3 and the annular short sealing tube 9), and the length L10 of the ceramic sleeve 2 Since the central conductor 4, the annular long sealing tube 3 and the annular short sealing tube 9, and the ceramic sleeve 2 expand and contract to substantially the same value, the central axis O There is an excellent effect that the influence of the thermal stress along the direction can be reduced.
Further, according to the second embodiment, since the thermal stress in the axial direction of the central conductor and the like is absorbed by the structure, the thermal stress in the axial direction of the central conductor and the like is not generated, and metal fatigue occurs. Therefore, it has an excellent advantage of withstanding long-term use without failure.
Furthermore, in the second embodiment, since the double-sealed terminal header has a structure made of the above material, the force applied from the low temperature and high pressure side applied to the ceramic sleeve 2 to the normal temperature and atmospheric pressure side is the ceramic sleeve. Since the end portion of the thick cylindrical portion 21 is pressed against the partition wall of the large-diameter hole portion 11 of the partition flange 1, an accident that the ceramic sleeve 2 comes off from the partition flange 1 does not occur.
In the second embodiment, the double sealed terminal header has an annular long sealing tube 3 inserted and fixed in the through hole 26 of the ceramic sleeve 2, and the annular long sealing tube 3 is annular. The flange portion 31 is closely fixed to the annular groove 27 of the ceramic sleeve 2. Further, the central conductor 4 is in non-fixed contact with the annular long sealed tube 3 at the first convex portion 41, and the second convex portion 42 is formed on the inner peripheral surface of the annular long sealed tube 3, for example. It is fixed by brazing. And the said center conductor 4 inserts the cyclic | annular short sealing pipe | tube 9 in the step part 43a provided in the normal temperature atmospheric pressure side of the 3rd convex-shaped part 43, and cyclic | annular short sealing pipe | tube 9 and the central conductor 4 are cyclic | annular. The short sealing tube 9 and the ceramic sleeve 2 are fixed by brazing.
Thereby, in 2nd Embodiment, since the said ceramic sleeve 2, the cyclic | annular elongate sealing pipe | tube 3, and the center conductor 4 are the structures as mentioned above in the double sealing type | mold terminal header, Since the thickness can be reduced, the thermal stress generated in the diametric direction can be reduced and the yield strength of each material can be reduced. Therefore, there is an advantage that it is possible to provide a double sealed terminal header that does not cause a failure or the like.
FIG. 16 is an enlarged cross-sectional view showing a part of another configuration example of the low temperature pressure side end portion such as the ceramic sleeve of the double sealed terminal header according to the present invention. In FIG. 16, there is a feature only in another configuration example portion of the low-temperature pressure side end portion such as a ceramic sleeve, and the other configurations are not changed. Omitted. In the present embodiment, since it appears symmetrical with respect to the central axis O, only one cross section will be shown and described.
In FIG. 16, an annular sealing fitting C55 is interposed between the outer periphery of the annular flange 31 of the annular long sealing tube 3 and the inner peripheral surface of the annular groove 27 of the ceramic sleeve 2. The annular flange 31 and the annular sealing metal fitting C55 are welded as indicated by a symbol Y in FIG. 16, and the inner peripheral surface of the annular groove 27 and the outer peripheral surface of the annular sealing metal fitting C55 are illustrated in FIG. As shown by 7 in FIG.
FIG. 17 is an enlarged cross-sectional view showing a part of another configuration example of the normal temperature atmospheric pressure side end portion such as the ceramic sleeve of the double sealed terminal header according to the present invention. In FIG. 17, there is a feature only in other structural example portions such as a ceramic sleeve and the other end of the normal temperature and atmospheric pressure side, and other configurations are not changed. Therefore, the same members as those in the above embodiment are denoted by the same reference numerals. The description is omitted. Since this embodiment appears symmetrically with respect to the central axis O, only one cross section will be shown and described.
In FIG. 17, the central conductor 4 is fitted with a ring-shaped short sealing tube 9a having a length as shown in FIG. An annular sealing tube C57 having a length as shown in FIG. 17 is fitted on the outer periphery of the short sealing tube 9a. Between the annular short sealed tube 9a and the step 43a in the third convex portion 43 of the central conductor 4, and between the outer periphery of the annular sealed tube C57 and the inner periphery of the ceramic sleeve 2. 17 are fixed by brazing as indicated by a symbol J in FIG. Further, the annular short sealed tube 9a and the annular sealed tube C57 are welded as indicated by a symbol Y in FIG.
Thus, even in the structure shown in FIGS. 16 and 17, the thickness in the diametrical direction can be reduced, so that the thermal stress generated in the diametrical direction can be reduced, the proof stress of each material can be reduced, failure, etc. It is possible to provide a double-sealed terminal header having an advantage that does not occur.
According to the second embodiment, the advantages of the configuration shown in FIG. 1 and the advantages of the present embodiment can be added to cope with a higher level of thermal stress (especially thermal stress in the central axis direction). Become.
<第2実施形態における実施例>
 第2実施形態の実施例について具体的に数値を代入して説明することにする。
 まず、セラミックスリーブ2の熱よる伸縮値を求めることにする。
 ここで、セラミックスリーブ2の長さL10を例えば216[mm]とし、熱膨張率α10=7.5×10(のマイナス6乗)とすると、数式2からセラミックスリーブ2の熱による伸縮値が求められる。
Figure JPOXMLDOC01-appb-M000002
 次に、中心導体4の凸状部分43の熱による伸縮値を求めることにする。
 ここで、セラミックスリーブ2の長さL10を例えば216[mm]としたので、中心導体4の凸状部分43の長さは、そのL10の約20.8%の長さであるので、L20=45[mm]となり、以下この値で計算する。
 すなわち、中心導体4の凸状部分43の長さL20=45[mm]とし、熱膨張率α20=17.0×10(のマイナス6乗)とすると、数式3から中心導体4の凸状部分43の熱による伸縮値が求められる。
Figure JPOXMLDOC01-appb-M000003
 加えて、環状封着管(環状長尺封着管3、環状短尺封着管9)の熱による伸縮値を求めることにする。
 こごて、環状封着管(3、9)は、セラミックスリーブ2の長さL10が例えば216[mm]と設定されたので、それの約79.2%の長さであるとすると、L30=171[mm]となり、以下この値で計算する。環状封着管(環状長尺封着管3、環状短尺封着管9)の長さL30=171[mm]とし、熱膨張率α30=5.0×10(のマイナス6乗)とすると、数式4から環状封着管(環状長尺封着管3、環状短尺封着管9)の熱による伸縮値が求められる。
Figure JPOXMLDOC01-appb-M000004
 上記数式2~数式4で求めた結果を検討すると次のようになる。
 そして、数式3の結果と、数式4の結果を加算すると、765×10(のマイナス6乗)+855×10(のマイナス6乗)=1620×10(のマイナス6乗)となって、数式2の結果と一致し、同一熱膨張または同一熱収縮となって、ここの構成要素が個々別々に熱膨張または熱収縮しないので、伸縮値の違いによる破壊等が防止できることが確認できる。
 よって、上述のような本第2実施形態による利点が得られることになる。
<第3実施形態>
 図18及び図19には、本発明の第3実施の形態に係る二重封止型ターミナルヘッダの製造方法で製造された二重封止型ターミナルヘッダが示されている。
 これらの図に示す二重封止型ターミナルヘッダTHも、LNG/LPG等の液化天然ガスを貯蔵する低温タンク等の貫通部分に用いられるものである。なお、図18及び図19に示す各部材につける符号は、図21に示す部材と同一のものには同一の符号を基本的に付すものとする。
 この二重封止型ターミナルヘッダTHは、隔壁フランジ1と、セラミックスリーブ2と、環状長尺封着管3と、中心導体4と、第1の環状封着金具5と、第2の環状封着金具6と、第3の環状封着金具7と、第4の環状封着金具8と、環状短尺封着管9と、端子Pa、Pbとを備え、封止が必要な箇所を封止材にて封止してなるものである。
 隔壁フランジ1は、次のように構成されている。すなわち、前記隔壁フランジ1は、例えばSUS316Lからなる所定厚み(La+Lb)の板体で構成されており、この板体には透孔10が穿設されている。前記隔壁フランジ1に穿設された透孔10は、大径孔部11と、小径孔部12とから構成されている。
 前記大径孔部11は、低温高圧側に接する隔壁フランジ1の第1の側面Sa側から常温大気圧側に接する隔壁フランジ1の第2の側面Sb側に向かって、所定の第1の長さLaにわたって、中心軸Oから第1の半径Raに保たれて穿設されている。
 前記小径孔部12は、前記第2の側面Sb側から前記第1の側面Sa側に向けて前記大径孔部11までの第2の長さLbにわたって、大径孔部11の半径Raより小さい半径であって前記中心軸Oから第2の半径Rbに保たれて穿設されている。
 隔壁フランジ1には、大経孔部11と小経孔部12の境界部Fから小経孔部12側に向かって所定の長さLhで小経孔部12の径Rbよりも大きい半径Rhに穿設することにより第2小経孔部15を形成している。
 次に、セラミックスリーブ2は、次のように構成されている。すなわち、前記セラミックスリーブ2は、例えばアルミナ92%(日本特殊陶業株式会社の材質名称:HA−92)の材質からなるセラミック絶縁体から構成されていて、所定の長さLcの中空円柱形状体であって、太円柱部21と細円柱部22とからなる形状に形成されている。
 前記太円柱部21は、低温圧力側に接する部分が前記隔壁フランジ1の大径孔部11の内径Raよりやや小さい外径Rcで所定長さLdに形成され前記隔壁フランジ1の大径孔部11に所定の間隙Daをもって嵌まり合える外形形状に形成されている。
 前記細円柱部22は、常温大気圧側と接する部分が前記隔壁フランジ1の小径孔部12の内径よりやや小さい半径Rdで所定の長さLeに形成され前記隔壁フランジ1の小径孔部12に所定の間隙Dbをもって嵌まり合える外形形状に形成されている。
 また、前記セラミックスリーブ2は、太円柱部21と細円柱部22との境界Fの両側において所定の形状に構成されている。
 前記セラミックスリーブ2の前記太円柱部21と前記細円柱部22との境界Fより低温圧力側であって前記セラミックスリーブ2の外周部分に、当該境界Fより低温圧力側に向かって所定の長さLjにわたって所定の半径Rjで第2太円柱部24と第3太円柱部23を形成している。
 また、前記セラミックスリーブ2にあって、太円柱部21と細円柱部22との境界Fの境界面(太円柱部21の細円柱部22側の境界面)は一部が平坦面となる所定の形状に形成されている。
 さらに、前記セラミックスリーブ2であって前記太円柱部21と前記細円柱部22との境界Fより常温大気圧側の外周部分に、常温大気圧側の所定の位置であって前記セラミックスリーブ2の細円柱部22の半径Rdよりは大きく前記隔壁フランジ1の小径孔部12の半径Rbよりは小さな半径Rgで一定長さに作成した凸部25が形成されている。
 なお、前記隔壁フランジ1にあっては、大径孔部11と小径孔部12との境界部分において、大径孔部11側の境界部分から常温大気圧側に向かって図示のように半円状に空間13が形成されている。
 そして、前記隔壁フランジ1の大径孔部11に、前記セラミックスリーブ2の太円柱部21が図1および図9に示すように配置されており、その配置によって、当然、前記隔壁フランジ1の小径孔部12に、前記セラミックスリーブ2の細円柱部22が図1および図9に示すような配置にされている。
 前記隔壁フランジ1の大径孔部11の内周面には、第1の環状封着金具5の一端が固定されている。前記セラミックスリーブ2の太円柱部21の所定部分には、第2の環状封着金具6の一端内周面が固定されている。また、第1の環状封着金具5と第2の環状封着金具6とは、それぞれの他端同士が固定されることにより、隔壁フランジ1の大径孔部11と、セラミックスリーブ2の太円柱部21とが連結されている。
 前記隔壁フランジ1の大径孔部11の内周面には、第1の環状封着金具5の一端側外周面が例えばTIG溶接により固定されている。前記セラミックスリーブ2の太円柱部21の所定部分である第1の凹部23の平面には、第2の環状封着金具6の一端側内周面が例えばロー付けにより固着されている。前記第1の環状封着金具5の内周面には、第2の環状封着金具6の他端側外周面が、例えばTIG溶接により固着されている。
 前記第1の環状封着金具5は、例えばSUS316Lから構成されていて、隔壁フランジ1の熱膨張率とほぼ同じか、隔壁フランジ1の熱膨張率に対して一定範囲内の熱膨張率の材料から構成すればよい。また、前記第2の環状封着金具6は、例えばコバールから構成されていて、前記セラミックスリーブ2の熱膨張率とほぼ同じか当該セラミックスリーブの熱膨張率に対して一定範囲内の熱膨張率の材料から構成すればよい。
 セラミックスリーブ2の第3太円柱部23には、図19に示すように、中空筒型保護金具90の中空円筒体91部分が嵌め込まれている。中空筒型保護金具90は、円板体92の円縁端部に中空円筒体91が設けられた断面凹形状をしたコバールで構成した当金具であって、当該中空円筒体91の内側が第3太円柱部23に嵌合できるように構成されている。また、中空筒型保護金具90の円板体92には中心から一定大きさの径Rh(第2小経孔部15の経とほぼ同じ経Rh)の透孔93が穿設された形状をしている。この中空筒型保護金具90はコバールで構成されている。
 前記隔壁フランジ1の小径孔部12の内には、第3の環状封着金具7が配置されていて、第3の環状封着金具7の一端が隔壁フランジ1に固定されている。前記セラミックスリーブ2の小径孔部12の凸部25には、第4の環状封着金具8が固定されている。そして、第3の環状封着金具7と第4の環状封着金具8とはそれぞれの他端同士が固定されることにより、前記隔壁フランジ1の小径孔部12と前記セラミックスリーブ2の細円柱部22とが封止されることになる。
 この第3実施形態では、第3の環状封着金具7と第4の環状封着金具8の形状に特徴を持たせた。まず、第4の環状封着金具8は、その一端側を、その一端側の側面が他端側を向くように円形状に折り曲げた形状をしている。
 また、第3の環状封着金具7は、その一端側が、第4の環状封着金具8の折り曲げた部分に嵌まり合う形状に形成されている。
 さらに、第3の環状封着金具7は、その一端側の折り曲げた部分が第4の環状封着金具8の折り曲げた部分に嵌まり合ったときに、互いの折り曲げた部分の側面が揃う形状に形成されている。
 そして、第3の環状封着金具7の折り曲がった部分と第4の環状封着金具8の折り曲がった部分とが嵌まり合って互いの側面が揃った両面を溶接して両者を接合している。
 前記隔壁フランジ1の小径孔部12の内周面には、第3の環状封着金具7の一端側外周面が例えばTIG溶接により固定されている。前記セラミックスリーブ2の細円柱部22の所定部分としての凸部25の平面には、第4の環状封着金具8の一端側内周面が例えばロー付けにより固着されている。第3の環状封着金具7の一端側側面と前記第4の環状封着金具8の一端側側面との両面は、例えばTIG溶接により固着されている。
 前記第3の環状封着金具7は、例えばSUS316Lから構成されていて、前記隔壁フランジ1の熱膨張率とほぼ同じか当該隔壁フランジ1の熱膨張率に対して一定範囲内の熱膨張率の材料から構成すればよい。前記第4の環状封着金具8は、例えばコバールから構成されていて、前記セラミックスリーブ2の熱膨張率とほぼ同じか当該セラミックスリーブ2の熱膨張率に対して一定範囲内の熱膨張率の材料から構成すればよい。
 上述した構造の二重封止型ターミナルヘッダは、次の製造工程を含む製造方法により製造されることになる。
<隔壁フランジ1及びセラミックスリーブ2の第1加工工程>
 本発明の実施の形態に係る製造方法では、まず、隔壁フランジ1の形状及びセラミックスリーブ2の形状を各部品が収納できるようにするため所定形状に加工する。具体的には、次の隔壁フランジ1の加工工程と、セラミックスリーブ2の加工工程で所定の形状を得ている。
[隔壁フランジ1の加工工程]
 隔壁フランジ1は、この加工工程において、大経孔部11と小経孔部12の境界部Fから小経孔部12側に所定の長さLhで小経孔部12の径Rbよりも大きい経Rhで第2小経孔部15を形成する。
[セラミックスリーブ2の加工工程]
 セラミックスリーブ2は、この加工工程において、太円柱部21と細円柱部22との境界から太円柱部21側に所定の長さLjで、太円柱部21より所定経小さい半径Rjで第2太円柱部24と第3太円柱部23を形成している。
<第1~4の環状封着金具と中空筒型保護金具の第2加工工程>
 本発明の実施の形態に係る製造方法では、次に、第1~4の環状封着金具5~8と中空筒型保護金具90の各部品を上記構造に示すような所定の形状に加工する。つまり、第1の環状封着金具5、第2の環状封着金具6、第3の環状封着金具7及び第4の環状封着金具8と、中空筒型保護金具90を所定形状に加工する。各部品の加工工程は、次に詳細に説明する。
[第1の環状封着金具5の加工工程]
 第1の環状封着金具5は一端部から他端部までほぼ同一半径で円筒状に形成し、その一端側の外周面が隔壁フランジ1の大径孔部11の内周に嵌合する外経に、また、その他端の内周面が第2の環状封着金具6の他端の外周面に嵌合する内径に形成している。
[第2の環状封着金具6の加工工程]
 第2の環状封着金具6は、一端側の一定長さ部分が第2太円柱部24に嵌め込める内径に、他端側の一定長さ部分を第1の環状封着金具5の他端の内周面に嵌合する形状に形成されている。
[第4の環状封着金具8の加工工程]
 第4の環状封着金具8は、この加工工程において、図1ないし図20に示すように、その一端側をその一端側の側面が他端側を向くように円形状に折り曲げて、断面略J字形状に形成する。
[第3の環状封着金具7の加工工程]
 第3の環状封着金具7は、その一端側が、第4の環状封着金具8の折り曲げた部分に嵌まり合う形状に形成する。さらに、第3の環状封着金具7は、その一端側の折り曲げた部分が第4の環状封着金具8の折り曲げた部分に嵌まり合ったときに、互いの折り曲げた部分の側面が揃う形状に形成する。
 図20は、本発明に係る二重封止型ターミナルヘッダの製造方法を説明するために示す工程図であって、図20(a)が第1の処理工程を、図20(b)が第2の処理工程を、図20(c)が第3の処理工程を、それぞれ示している。また、図20(a)~(c)では、中心線Oから図示上半分のみを示している。
<第1の処理工程>
 次に、第1の処理工程において、第2の環状封着金具6、中空筒型当金具90及び第4の環状封着金具8をセラミックスリーブ2の所定位置に配置して位置決め後に、ロー付けする。具体的には、次のようにする。
 図20(a)は、第1の処理工程を説明するための図である。図20(a)において、第2の環状封着金具6をセラミックスリーブ2の第2太円柱部24の所定位置に嵌込み図20(a)に示すように位置決めをする。
 中空筒型保護金具90の中空円筒体92をセラミックスリーブ2の第3太円柱部23に嵌合して図20(a)に示すように位置決めをする。
 第4の環状封着金具8をセラミックスリーブ2に嵌込み図20(a)に示すように位置決めをする。
 次いで、第4の環状封着金具8とセラミックスリーブ2の凸部25との間の領域101と、第2の環状封着金具6の内周面とセラミックスリーブ2の第2太円柱部24の外周面との間の領域102と、中空筒型保護金具90の中空円筒体92の内周面とセラミックスリーブ2の第3太円柱部23の外周面との間の領域103を、それぞれロー付けをする。
<第2の処理工程>
 第2の処理工程において、第1の環状封着金具5を第2の環状封着金具6に、第3の環状封着金具7を第4の環状封着金具8にそれぞれ配置して位置決め後に、第1の環状封着金具5と第2の環状封着金具6との一端側面及び第3の環状封着金具7と第4の環状封着金具8との一端側面を溶接する。具体的には、次のようにする。
 図20(b)は、第2の処理工程を説明するための図である。図20(b)において、第2の環状封着金具6に対して第1の環状封着金具5を嵌込み、第2の環状封着金具6と第1の環状封着金具5の両端面を位置決めした後、その両端面201を溶接する。
 第3の環状封着金具7の一端側の折り曲げた部分を、第4の環状封着金具8の折り曲げた部分に嵌合して位置決めすると、第4の環状封着金具8の折り曲げた部分の側面と第3の環状封着金具7の一端側の側面とが面が揃うので、その揃った両側面202を溶接する。
<第3の処理工程>
 第3の処理工程において、第1の環状封着金具5、第2の環状封着金具6、第3の環状封着金具7及び第4の環状封着金具8が取り付けられた状態で、セラミックスリーブ2を隔壁フランジ1の透孔に配置した後、第1の環状封着金具5の端部側面と隔壁フランジ1の部分を含む領域301を溶接するともに、第3の環状封着金具7の端部側面と隔壁フランジ1の部分を含む領域302を溶接する。具体的には次のようにする。
 図20(c)は、第3の処理工程を説明するための図である。図20(c)において、これらが終了した段階で、第1の環状封着金具5、第2の環状封着金具6、第3の環状封着金具7及び第4の環状封着金具8が取り付けられた状態で、セラミックスリーブ2を、隔壁フランジ1の大経11側から嵌め込んで位置決めした後、第1の環状封着金具5の端部側面と隔壁フランジ1の面を含む領域301を溶接し、第3の環状封着金具7の端部側面と隔壁フランジ1の面を含む領域302を溶接する。
 二重封止型ターミナルヘッダの製造方法は、上記各加工工程、処理工程を含んで構成されている。また、この製造方法により、図1及び図9に示す二重封止型ターミナルヘッダが製造されたことになる。
 本発明の第3実施形態に係る二重封止型ターミナルヘッダの製造方法によれば、次のように優れた作用効果がある。
 (1)上記製造工程を採用することにより熱処理工程の影響をなくすことができたので、各環状封着金具の溶接部の劣化を防止することができる。
 (2)第4の環状封着金具と第3の環状封着金具のそれぞれの一端側面がそれぞれの他端側を向いているため、溶接作業が著しく容易である。
 (3)セラミックスリーブの太円柱部と細円柱部の境界部分において中空型保護金具の中空円筒体をセラミックスリーブの第2太円柱部に嵌合してロー付けしてある。セラミックスリーブと隔壁フランジとはセラミックスリーブとロー付けによって固定された中空円筒保護金具を介して当接しているため、セラミック部が直接隔壁フランジに接しないので、セラミックスリーブが高圧に晒されても、セラミック部分に応力集中が発生しないために、セラミックスリーブが破損したりひびが入ったりすることがなく、強度の強い二重封止型ターミナルヘッダを得ることができる。
<Example in the second embodiment>
An example of the second embodiment will be described by specifically substituting numerical values.
First, the expansion / contraction value due to heat of the ceramic sleeve 2 is determined.
Here, when the length L10 of the ceramic sleeve 2 is 216 [mm], for example, and the thermal expansion coefficient α10 = 7.5 × 10 (minus the sixth power), the expansion / contraction value of the ceramic sleeve 2 due to heat is obtained from Equation 2. It is done.
Figure JPOXMLDOC01-appb-M000002
Next, the expansion / contraction value due to heat of the convex portion 43 of the center conductor 4 is determined.
Here, since the length L10 of the ceramic sleeve 2 is set to 216 [mm], for example, the length of the convex portion 43 of the central conductor 4 is about 20.8% of the length L10. It is 45 [mm] and is calculated with this value below.
That is, when the length L20 of the convex portion 43 of the central conductor 4 is set to 45 [mm] and the coefficient of thermal expansion α20 = 17.0 × 10 (minus the sixth power), the convex portion of the central conductor 4 is obtained from Equation 3. The expansion / contraction value by heat of 43 is calculated | required.
Figure JPOXMLDOC01-appb-M000003
In addition, the expansion / contraction value due to heat of the annular sealing tube (the annular long sealing tube 3 and the annular short sealing tube 9) is determined.
Since the length L10 of the ceramic sleeve 2 is set to, for example, 216 [mm], the annular sealing tube (3, 9) has a length of about 30% of L30. = 171 [mm], and calculation is performed with this value. When the length L30 = 171 [mm] of the annular sealing tube (annular long sealing tube 3, annular short sealing tube 9) and the coefficient of thermal expansion α30 = 5.0 × 10 (minus the sixth power), The expansion / contraction value by the heat | fever of a cyclic | annular sealing pipe (The cyclic | annular long sealing pipe | tube 3, the cyclic | annular short sealing pipe | tube 9) is calculated | required from Numerical formula 4.
Figure JPOXMLDOC01-appb-M000004
Examining the results obtained by the above formulas 2 to 4, the results are as follows.
When the result of Expression 3 and the result of Expression 4 are added, 765 × 10 (minus the sixth power) + 855 × 10 (minus the sixth power) = 1620 × 10 (minus the sixth power) is obtained. The same thermal expansion or the same thermal contraction is obtained, and the constituent elements here are not individually thermally expanded or contracted, so that it can be confirmed that breakage due to the difference in expansion and contraction values can be prevented.
Therefore, the advantages of the second embodiment as described above can be obtained.
<Third Embodiment>
18 and 19 show a double sealed terminal header manufactured by the method for manufacturing a double sealed terminal header according to the third embodiment of the present invention.
The double-sealed terminal header TH shown in these drawings is also used for a penetrating portion such as a low-temperature tank for storing liquefied natural gas such as LNG / LPG. In addition, the code | symbol attached | subjected to each member shown in FIG.18 and FIG.19 shall attach | subject the same code | symbol fundamentally to the same thing as the member shown in FIG.
This double sealed terminal header TH includes a partition flange 1, a ceramic sleeve 2, an annular long sealing tube 3, a center conductor 4, a first annular sealing metal fitting 5, and a second annular sealing. A fitting 6, a third annular sealing fitting 7, a fourth annular sealing fitting 8, an annular short sealing tube 9, and terminals Pa and Pb are provided, and a portion requiring sealing is sealed. It is formed by sealing with a material.
The partition flange 1 is configured as follows. That is, the partition flange 1 is configured by a plate body having a predetermined thickness (La + Lb) made of, for example, SUS316L, and a through hole 10 is formed in the plate body. The through hole 10 formed in the partition flange 1 includes a large diameter hole portion 11 and a small diameter hole portion 12.
The large-diameter hole portion 11 has a predetermined first length from the first side surface Sa side of the partition wall flange 1 in contact with the low temperature and high pressure side toward the second side surface Sb side of the partition wall flange 1 in contact with the room temperature and atmospheric pressure side. Over the length La, the first radius Ra is drilled from the central axis O.
The small-diameter hole portion 12 extends from the radius Ra of the large-diameter hole portion 11 over a second length Lb from the second side surface Sb side to the first side surface Sa side to the large-diameter hole portion 11. A small radius is drilled from the central axis O while maintaining the second radius Rb.
The partition flange 1 has a radius Rh larger than the diameter Rb of the small meridian part 12 by a predetermined length Lh from the boundary part F of the large meridian part 11 and the small meridian part 12 toward the small meridian part 12 side. The second small acupuncture hole 15 is formed by perforating.
Next, the ceramic sleeve 2 is configured as follows. That is, the ceramic sleeve 2 is made of a ceramic insulator made of, for example, 92% alumina (material name of Nippon Special Ceramics Co., Ltd .: HA-92), and is a hollow cylindrical body having a predetermined length Lc. Thus, it is formed in a shape composed of a thick cylindrical portion 21 and a thin cylindrical portion 22.
The thick cylindrical portion 21 is formed to have a predetermined length Ld with an outer diameter Rc slightly smaller than the inner diameter Ra of the large-diameter hole portion 11 of the partition flange 1 at a portion in contact with the low-temperature pressure side. 11 is formed in an outer shape that can be fitted with a predetermined gap Da.
The narrow cylindrical portion 22 is formed to have a predetermined length Le with a radius Rd slightly smaller than the inner diameter of the small-diameter hole portion 12 of the partition flange 1 at a portion in contact with the room temperature and atmospheric pressure side. It is formed in an outer shape that can be fitted with a predetermined gap Db.
The ceramic sleeve 2 is configured in a predetermined shape on both sides of the boundary F between the thick cylindrical portion 21 and the thin cylindrical portion 22.
A predetermined length from the boundary F of the ceramic sleeve 2 to the low temperature pressure side from the boundary F between the thick cylindrical portion 21 and the thin cylindrical portion 22 and toward the low temperature pressure side from the boundary F. A second thick cylindrical portion 24 and a third thick cylindrical portion 23 are formed with a predetermined radius Rj over Lj.
In the ceramic sleeve 2, the boundary surface of the boundary F between the thick cylindrical portion 21 and the thin cylindrical portion 22 (the boundary surface on the thin cylindrical portion 22 side of the thick cylindrical portion 21) is a predetermined flat surface. It is formed in the shape of.
Further, the ceramic sleeve 2 is located at a predetermined position on the normal temperature and atmospheric pressure side at a predetermined position on the normal temperature and atmospheric pressure side from the boundary F between the thick cylindrical portion 21 and the thin cylindrical portion 22. A convex portion 25 having a radius Rg larger than the radius Rd of the thin cylindrical portion 22 and smaller than the radius Rb of the small-diameter hole portion 12 of the partition flange 1 is formed.
In the partition flange 1, at the boundary portion between the large-diameter hole portion 11 and the small-diameter hole portion 12, the semicircular shape as illustrated from the boundary portion on the large-diameter hole portion 11 side toward the room temperature and atmospheric pressure side. A space 13 is formed.
And the large cylindrical part 21 of the said ceramic sleeve 2 is arrange | positioned in the large diameter hole part 11 of the said partition flange 1 as shown in FIG.1 and FIG.9, Naturally the small diameter of the said partition flange 1 by the arrangement | positioning. In the hole 12, the narrow cylindrical portion 22 of the ceramic sleeve 2 is arranged as shown in FIGS.
One end of the first annular sealing metal fitting 5 is fixed to the inner peripheral surface of the large-diameter hole portion 11 of the partition flange 1. An inner peripheral surface of one end of the second annular sealing metal fitting 6 is fixed to a predetermined portion of the thick cylindrical portion 21 of the ceramic sleeve 2. Further, the first annular sealing metal fitting 5 and the second annular sealing metal fitting 6 are fixed at the other ends thereof, so that the large-diameter hole portion 11 of the partition flange 1 and the ceramic sleeve 2 are thick. The cylindrical part 21 is connected.
The outer peripheral surface of one end side of the first annular sealing metal fitting 5 is fixed to the inner peripheral surface of the large-diameter hole portion 11 of the partition flange 1 by, for example, TIG welding. The inner peripheral surface of one end side of the second annular sealing metal fitting 6 is fixed to the flat surface of the first recess 23 which is a predetermined portion of the thick cylindrical portion 21 of the ceramic sleeve 2 by, for example, brazing. The outer peripheral surface of the other end side of the second annular sealing metal fitting 6 is fixed to the inner peripheral surface of the first annular sealing metal fitting 5 by, for example, TIG welding.
The first annular sealing metal fitting 5 is made of, for example, SUS316L, and is substantially the same as the thermal expansion coefficient of the partition flange 1 or a material having a thermal expansion coefficient within a certain range with respect to the thermal expansion coefficient of the partition flange 1. May be configured. Further, the second annular sealing metal fitting 6 is made of, for example, Kovar, and is approximately the same as the thermal expansion coefficient of the ceramic sleeve 2 or within a certain range with respect to the thermal expansion coefficient of the ceramic sleeve. What is necessary is just to comprise from the material of.
As shown in FIG. 19, the hollow cylindrical body 91 of the hollow cylindrical protective metal fitting 90 is fitted into the third thick cylindrical portion 23 of the ceramic sleeve 2. The hollow cylindrical protective metal fitting 90 is a metal fitting made of Kovar having a concave cross-sectional shape in which a hollow cylindrical body 91 is provided at the edge of the circular body 92, and the inner side of the hollow cylindrical body 91 is the first. It is comprised so that it can fit in the 3 thick cylindrical part 23. FIG. In addition, the disc body 92 of the hollow cylindrical protection metal fitting 90 has a shape in which a through hole 93 having a diameter Rh (approximately the same length Rh as the second small acupuncture portion 15) from the center is formed. is doing. This hollow cylindrical protective metal fitting 90 is made of Kovar.
A third annular sealing bracket 7 is disposed in the small-diameter hole 12 of the partition flange 1, and one end of the third annular sealing bracket 7 is fixed to the partition flange 1. A fourth annular sealing metal fitting 8 is fixed to the convex portion 25 of the small diameter hole portion 12 of the ceramic sleeve 2. Then, the other ends of the third annular sealing metal fitting 7 and the fourth annular sealing metal fitting 8 are fixed to each other, so that the small diameter hole portion 12 of the partition wall flange 1 and the thin cylinder of the ceramic sleeve 2 are provided. The part 22 is sealed.
In the third embodiment, the shapes of the third annular sealing bracket 7 and the fourth annular sealing bracket 8 are characterized. First, the fourth annular sealing metal fitting 8 has a shape in which one end side is bent in a circular shape so that the side surface on the one end side faces the other end side.
Further, the third annular sealing metal fitting 7 is formed in such a shape that one end side thereof fits into a bent portion of the fourth annular sealing metal fitting 8.
Further, the third annular sealing bracket 7 has a shape in which the side surfaces of the folded portions of the fourth annular sealing bracket 7 are aligned when the folded portion on one end side is fitted to the folded portion of the fourth annular sealing bracket 8. Is formed.
Then, the bent portion of the third annular sealing fitting 7 and the bent portion of the fourth annular sealing fitting 8 are fitted to each other, and both sides of which the side surfaces are aligned are welded together. ing.
The outer peripheral surface of one end side of the third annular sealing metal fitting 7 is fixed to the inner peripheral surface of the small-diameter hole portion 12 of the partition flange 1 by, for example, TIG welding. On the flat surface of the convex portion 25 as a predetermined portion of the thin cylindrical portion 22 of the ceramic sleeve 2, the one end side inner peripheral surface of the fourth annular sealing metal fitting 8 is fixed by brazing, for example. Both surfaces of the one end side surface of the third annular sealing bracket 7 and the one end side surface of the fourth annular sealing bracket 8 are fixed by, for example, TIG welding.
The third annular sealing bracket 7 is made of, for example, SUS316L and has a thermal expansion coefficient that is substantially the same as the thermal expansion coefficient of the partition flange 1 or within a certain range with respect to the thermal expansion coefficient of the partition flange 1. What is necessary is just to comprise from a material. The fourth annular sealing bracket 8 is made of, for example, Kovar, and has a thermal expansion coefficient that is substantially the same as the thermal expansion coefficient of the ceramic sleeve 2 or within a certain range with respect to the thermal expansion coefficient of the ceramic sleeve 2. What is necessary is just to comprise from a material.
The double-sealed terminal header having the above-described structure is manufactured by a manufacturing method including the following manufacturing process.
<First processing step of partition flange 1 and ceramic sleeve 2>
In the manufacturing method according to the embodiment of the present invention, first, the shape of the partition flange 1 and the shape of the ceramic sleeve 2 are processed into predetermined shapes so that each component can be accommodated. Specifically, a predetermined shape is obtained in the next processing step of the partition flange 1 and the processing step of the ceramic sleeve 2.
[Process for partition wall flange 1]
In this processing step, the partition flange 1 is larger than the diameter Rb of the small meridian part 12 by a predetermined length Lh from the boundary F between the large meridian part 11 and the small meridian part 12 to the small meridian part 12 side. The second small acupuncture part 15 is formed by the longitude Rh.
[Processing of ceramic sleeve 2]
In this processing step, the ceramic sleeve 2 has a predetermined length Lj from the boundary between the thick cylindrical portion 21 and the thin cylindrical portion 22 toward the thick cylindrical portion 21 and a second thicker radius Rj than the thick cylindrical portion 21 by a predetermined radius Rj. A cylindrical portion 24 and a third thick cylindrical portion 23 are formed.
<Second processing step of first to fourth annular sealing metal fittings and hollow cylindrical protective metal fittings>
In the manufacturing method according to the embodiment of the present invention, each of the first to fourth annular sealing metal fittings 5 to 8 and the hollow cylindrical protective metal fitting 90 is then processed into a predetermined shape as shown in the above structure. . That is, the first annular sealing bracket 5, the second annular sealing bracket 6, the third annular sealing bracket 7, the fourth annular sealing bracket 8, and the hollow cylindrical protective bracket 90 are processed into a predetermined shape. To do. The processing steps for each component will be described in detail next.
[Processing of first annular sealing metal fitting 5]
The first annular sealing fitting 5 is formed in a cylindrical shape with substantially the same radius from one end portion to the other end portion, and the outer peripheral surface on one end side is fitted to the inner periphery of the large-diameter hole portion 11 of the partition flange 1. In addition, the inner peripheral surface of the other end is formed to have an inner diameter that fits with the outer peripheral surface of the other end of the second annular sealing metal fitting 6.
[Processing process of second annular sealing metal fitting 6]
The second annular sealing metal fitting 6 has an inner diameter in which a fixed length portion on one end side can be fitted into the second thick cylindrical portion 24, and a fixed length portion on the other end side on the other end of the first annular sealing fitting 5. It is formed in the shape fitted to the inner peripheral surface.
[Process of Fourth Ring Sealing Bracket 8]
In this processing step, as shown in FIGS. 1 to 20, the fourth annular sealing metal fitting 8 is bent in a circular shape so that one end side faces the other end side, as shown in FIGS. It is formed in a J shape.
[Processing of third annular sealing bracket 7]
The third annular sealing bracket 7 is formed in a shape in which one end side fits into a bent portion of the fourth annular sealing bracket 8. Further, the third annular sealing bracket 7 has a shape in which the side surfaces of the folded portions of the fourth annular sealing bracket 7 are aligned when the folded portion on one end side is fitted to the folded portion of the fourth annular sealing bracket 8. To form.
FIG. 20 is a process diagram for explaining the method for manufacturing a double-sealed terminal header according to the present invention. FIG. 20 (a) shows the first processing step, and FIG. 20 (b) shows the first process step. FIG. 20C shows the second processing step, and FIG. 20C shows the third processing step. 20A to 20C, only the upper half of the drawing from the center line O is shown.
<First treatment process>
Next, in the first processing step, the second annular sealing metal fitting 6, the hollow cylindrical abutting metal fitting 90, and the fourth annular sealing metal fitting 8 are arranged at predetermined positions of the ceramic sleeve 2, and then brazed. To do. Specifically:
FIG. 20A is a diagram for explaining the first processing step. In FIG. 20A, the second annular sealing metal fitting 6 is fitted into a predetermined position of the second thick cylindrical portion 24 of the ceramic sleeve 2 and positioned as shown in FIG.
The hollow cylindrical body 92 of the hollow cylindrical protective metal fitting 90 is fitted into the third thick cylindrical portion 23 of the ceramic sleeve 2 and positioned as shown in FIG.
The fourth annular sealing fitting 8 is fitted into the ceramic sleeve 2 and positioned as shown in FIG.
Next, the region 101 between the fourth annular sealing bracket 8 and the convex portion 25 of the ceramic sleeve 2, the inner peripheral surface of the second annular sealing bracket 6, and the second thick cylindrical portion 24 of the ceramic sleeve 2 are arranged. A region 102 between the outer peripheral surface and a region 103 between the inner peripheral surface of the hollow cylindrical body 92 of the hollow cylindrical protective metal fitting 90 and the outer peripheral surface of the third thick cylindrical portion 23 of the ceramic sleeve 2 are brazed. do.
<Second treatment process>
In the second processing step, after positioning the first annular sealing bracket 5 on the second annular sealing bracket 6 and the third annular sealing bracket 7 on the fourth annular sealing bracket 8, respectively. The one end side surface of the first annular sealing metal fitting 5 and the second annular sealing metal fitting 6 and the one end side surface of the third annular sealing metal fitting 7 and the fourth annular sealing metal fitting 8 are welded. Specifically:
FIG. 20B is a diagram for explaining the second processing step. In FIG. 20 (b), the first annular sealing bracket 5 is fitted into the second annular sealing bracket 6, and both end surfaces of the second annular sealing bracket 6 and the first annular sealing bracket 5. After positioning, both end surfaces 201 are welded.
When the bent portion on one end side of the third annular sealing bracket 7 is fitted and positioned on the folded portion of the fourth annular sealing bracket 8, the bent portion of the fourth annular sealing bracket 8 is positioned. Since the side surface and the side surface on the one end side of the third annular sealing member 7 are aligned, the aligned side surfaces 202 are welded.
<Third treatment process>
In the third processing step, the first annular sealing metal fitting 5, the second annular sealing metal fitting 6, the third annular sealing metal fitting 7, and the fourth annular sealing metal fitting 8 are attached. After the sleeve 2 is disposed in the through hole of the partition flange 1, the side surface of the end portion of the first annular sealing bracket 5 and the region 301 including the partition flange flange 1 are welded and the third annular sealing bracket 7 The region 302 including the end side surface and the partition flange 1 portion is welded. Specifically:
FIG. 20C is a diagram for explaining the third processing step. In FIG. 20 (c), when these are finished, the first annular sealing bracket 5, the second annular sealing bracket 6, the third annular sealing bracket 7, and the fourth annular sealing bracket 8 are provided. In the attached state, the ceramic sleeve 2 is fitted and positioned from the large meridian 11 side of the partition flange 1, and then a region 301 including the end side surface of the first annular sealing bracket 5 and the surface of the partition flange 1 is formed. Welding is performed to weld the region 302 including the side surface of the end portion of the third annular sealing fitting 7 and the surface of the partition flange 1.
The manufacturing method of the double sealing type terminal header is comprised including each said process process and a process process. Moreover, the double sealing type terminal header shown in FIG.1 and FIG.9 was manufactured by this manufacturing method.
According to the manufacturing method of the double sealed terminal header according to the third embodiment of the present invention, there are excellent effects as follows.
(1) Since the influence of the heat treatment process can be eliminated by adopting the above manufacturing process, it is possible to prevent deterioration of the welded portion of each annular sealing metal fitting.
(2) Since one end side surfaces of the fourth annular sealing metal fitting and the third annular sealing metal fitting face the other end side, the welding operation is remarkably easy.
(3) The hollow cylindrical body of the hollow protective metal fitting is fitted and brazed to the second thick cylindrical portion of the ceramic sleeve at the boundary between the thick cylindrical portion and the thin cylindrical portion of the ceramic sleeve. Since the ceramic sleeve and the partition flange are in contact with the ceramic sleeve through a hollow cylindrical protective fitting fixed by brazing, the ceramic portion does not directly contact the partition flange, so even if the ceramic sleeve is exposed to high pressure, Since stress concentration does not occur in the ceramic portion, the ceramic sleeve is not damaged or cracked, and a strong double sealed terminal header can be obtained.
 1 隔壁フランジ
 2 セラミックスリーブ
 3 環状長尺封着管
 4 中心導体
 5 第1の環状封着金具
 6 第2の環状封着金具
 7 第3の環状封着金具
 8 第4の環状封着金具
 9 環状短尺封着管
 9a 環状短尺封着管
 10 透孔
 11 大径孔部
 12 小径孔部
 13 空間
 15 第2小経孔部
 20 空間
 21 太円柱部
 22 細円柱部
 23 第1の凹部(第3太円柱部)
 24 第2の凹部(第2太円柱部)
 25 凸部
 26 貫通孔
 31 環状鍔部
 41 第1の凸状部分
 42 第2の凸状部分
 43 第3の凸状部分
 43a 段部
 C55、C57 環状封着金具
 L10 セラミックスリーブの中心軸O方向の長さ
 L20 中心導体の凸状部分43の長さ
 L30 環状長尺封着管Liと環状短尺封着管長さLsの合計長さ
 α10 セラミックスリーブの熱膨張率
 α20 中心導体の熱膨張率
 α30 環状長尺封着管および環状短尺封着管の熱膨張率
 90 中空筒型保護金具
DESCRIPTION OF SYMBOLS 1 Bulkhead flange 2 Ceramic sleeve 3 Annular long sealing tube 4 Center conductor 5 First annular sealing bracket 6 Second annular sealing bracket 7 Third annular sealing bracket 8 Fourth annular sealing bracket 9 Annular Short sealing tube 9a Annular short sealing tube 10 Through-hole 11 Large-diameter hole 12 Small-diameter hole 13 Space 15 Second small meridian 20 Space 21 Thick cylindrical portion 22 Narrow cylindrical portion 23 First concave portion (third thick) Cylindrical part)
24 2nd recessed part (2nd thick cylindrical part)
25 convex portion 26 through hole 31 annular flange 41 first convex portion 42 second convex portion 43 third convex portion 43a step portion C55, C57 annular sealing fitting L10 in the direction of the central axis O of the ceramic sleeve Length L20 Length of the convex portion 43 of the central conductor L30 Total length of the annular long sealing tube Li and the annular short sealing tube length Ls α10 Thermal expansion coefficient of the ceramic sleeve α20 Thermal expansion coefficient of the central conductor α30 Circular length Coefficient of thermal expansion of long sealed tube and annular short sealed tube 90

Claims (10)

  1.  液化天然ガス等を貯蔵する低温タンクの貫通部に使用される二重封止型ターミナルヘッダであって、前記貫通部を塞ぐように固定され所定厚みを有し透孔が穿設されている隔壁フランジと、中空円柱形状に形成されていて前記隔壁フランジに穿設された透孔に挿通固定されたセラミックスリーブと、前記セラミックスリーブの中空部に挿通固定された導体とを備え、封止が必要な箇所を封止材にて封止してなる二重封止型ターミナルヘッダにおいて、
     前記隔壁フランジに設けた透孔は、
     低温高圧側に接する第1の側面側から常温大気圧側に接する第2の側面側に向かって、所定の第1の長さで中心軸から第1の半径に穿設してなる大径孔部と、
     第2の側面側から第1の側面側に向けて前記大径孔部まで穿設されていて、大径孔部の半径より小さい半径で前記中心軸から第2の半径に形成されてなる小径孔部とからなり、
     前記セラミックスリーブは、所定の長さの中空円柱形状体に形成されていて、
     低温圧力側に接する部分が前記隔壁フランジの大径孔部の内径よりやや小さい外径で所定長さに形成され前記隔壁フランジの大径孔部に所定の間隙をもって嵌まり合える外形形状をした第1外径部と、
     常温大気圧側と接する部分が前記隔壁フランジの小径孔部の内径よりやや小さい半径で所定の長さに形成され前記隔壁フランジの小径孔部に所定の間隙をもって嵌まり合える外形形状をした第2外径部とを有し、 隔壁フランジの透孔にセラミックスリーブを嵌め込んだ状態にされていて、
     前記隔壁フランジの大径孔部の内周面の所定位置に第1の封着金具の一端を固定し、
     前記セラミックスリーブの前記第1外径部の所定位置に第2の封着金具の一端を固定し、第1の封着金具の他端と第2の封着金具の他端とを固定してなり、
     前記隔壁フランジの小径孔部の内周面の所定位置に第3の封着金具の一端を固定し、  前記セラミックスリーブの前記第2外径部の所定位置に第4の封着金具を固定し、
     前記第3の封着金具の他端と第4の封着金具の他端とを固定してなることを特徴とする二重封止型ターミナルヘッダ。
    A double-sealed terminal header used in a penetration part of a low-temperature tank for storing liquefied natural gas or the like, which is fixed so as to close the penetration part and has a predetermined thickness and has a through-hole. Sealing is required, including a flange, a ceramic sleeve formed in a hollow cylindrical shape and inserted and fixed in a through hole formed in the partition flange, and a conductor inserted and fixed in the hollow portion of the ceramic sleeve In double-sealed terminal headers, which are formed by sealing various parts with a sealing material,
    The through hole provided in the partition flange is
    A large-diameter hole drilled from the central axis to the first radius with a predetermined first length from the first side surface in contact with the low temperature and high pressure side toward the second side surface in contact with the room temperature and atmospheric pressure side And
    A small diameter formed from the second side surface side to the first side surface side to the large diameter hole portion and having a radius smaller than the radius of the large diameter hole portion and formed from the central axis to the second radius. With holes,
    The ceramic sleeve is formed into a hollow cylindrical body having a predetermined length,
    The part in contact with the low temperature pressure side is formed with a predetermined length with an outer diameter slightly smaller than the inner diameter of the large-diameter hole portion of the partition flange, and has an outer shape that fits into the large-diameter hole portion of the partition flange with a predetermined gap. 1 outer diameter part,
    A second portion having an outer shape that is formed in a predetermined length with a radius slightly smaller than the inner diameter of the small-diameter hole portion of the partition flange, and that fits into the small-diameter hole portion of the partition flange with a predetermined gap. An outer diameter portion, and a ceramic sleeve is fitted in the through hole of the partition flange,
    Fixing one end of the first sealing fitting at a predetermined position on the inner peripheral surface of the large-diameter hole of the partition flange;
    Fixing one end of the second sealing fitting to a predetermined position of the first outer diameter portion of the ceramic sleeve, and fixing the other end of the first sealing fitting and the other end of the second sealing fitting; Become
    One end of the third sealing fitting is fixed to a predetermined position on the inner peripheral surface of the small-diameter hole of the partition flange, and a fourth sealing fitting is fixed to a predetermined position on the second outer diameter portion of the ceramic sleeve. ,
    A double-sealed terminal header, wherein the other end of the third sealing bracket and the other end of the fourth sealing bracket are fixed.
  2.  前記第1の環状封着金具は隔壁フランジの大径孔部の内周面にその一端外周面が固定され、第2の環状封着金具はセラミックスリーブに設けた第2の凹部にその一端内周面が固定され、前記第1の環状封着金具5の他端内周面と前記第2の環状封着金具6の他端外周面が第1の凹部の大径孔部と小径孔部の境界位置で固定されており、
     前記第3の環状封着金具は隔壁フランジの小径孔部の内周面にその一端外周面が固定され、前記第4の環状封着金具はセラミックスリーブに設けた凸部にその一端内周面が固定され、前記第3の環状封着金具の他端内周面と第4の環状封着金具の他端外周面とが前記凸部より低温圧力側の大径孔部と小径孔部の境界位置で固定されていることを特徴とする請求項1記載の二重封止型ターミナルヘッダ。
    One end outer peripheral surface of the first annular sealing metal fitting is fixed to the inner peripheral surface of the large-diameter hole portion of the partition flange, and the second annular sealing metal fitting is inserted into a second recess provided in the ceramic sleeve. The peripheral surface is fixed, and the other end inner peripheral surface of the first annular sealing bracket 5 and the other end outer peripheral surface of the second annular sealing bracket 6 are the large-diameter hole portion and the small-diameter hole portion of the first recess. Is fixed at the boundary position of
    One end outer peripheral surface of the third annular sealing bracket is fixed to the inner peripheral surface of the small-diameter hole portion of the partition flange, and the fourth annular sealing bracket is one end inner peripheral surface of the convex portion provided on the ceramic sleeve. The other end inner peripheral surface of the third annular sealing bracket and the other end outer peripheral surface of the fourth annular sealing bracket are formed between the large-diameter hole portion and the small-diameter hole portion on the low-temperature pressure side from the convex portion. 2. The double sealed terminal header according to claim 1, wherein the double sealed terminal header is fixed at a boundary position.
  3.  前記第1の封着金具および前記第3の封着金具は、隔壁フランジの熱膨張率とほぼ同じか隔壁フランジの熱膨張率に対して一定範囲内の熱膨張率の材料から構成したことを特徴とする請求項1または2記載の二重封止型ターミナルヘッダ。 The first sealing metal fitting and the third sealing metal fitting are made of a material having a thermal expansion coefficient that is substantially the same as the thermal expansion coefficient of the partition flange or within a certain range with respect to the thermal expansion coefficient of the partition flange. The double-sealed terminal header according to claim 1 or 2, characterized in that:
  4.  前記第2の封着金具および第4の封着金具は、セラミックスリーブの熱膨張率とほぼ同じか、セラミックスリーブの熱膨張率に対して一定範囲内の熱膨張率の材料から構成したことを特徴とする請求項1または2記載の二重封止型ターミナルヘッダ。 The second sealing metal fitting and the fourth sealing metal fitting are made of a material having a thermal expansion coefficient that is substantially the same as the thermal expansion coefficient of the ceramic sleeve or within a certain range with respect to the thermal expansion coefficient of the ceramic sleeve. The double-sealed terminal header according to claim 1 or 2, characterized in that:
  5.  液化天然ガス等を貯蔵する低温タンクの貫通部に使用される二重封止型ターミナルヘッダにおいて、
     中心軸に対して同心状に、中心軸側から中心導体、環状封着管及びセラミックスリーブと順に配置し、前記中心導体は金属で中心軸方向に所定長さで所定の半径の円柱形状に形成し、前記環状封着管は当該中心導体の外周にコバールで中心軸方向に所定の長さで所定の肉厚をもった円筒形状に形成し、前記セラミックスリーブは当該環状封着管の外周に中心軸方向に所定の長さで所定の肉厚をもった円筒形状に形成し、かつ、当該セラミックスリーブを低温タンク固定用隔壁フランジに嵌合させて一体化し、
     前記環状封着管はその内周面と前記中心導体外周面との間で所定の間隙が保たれる内径に形成し、当該セラミックスリーブはその内周面とコバール外周面との間で所定の間隙が保たれる内径に形成し、
     かつ、当該中心導体、封着管及びセラミックスリーブは所定の位置にて支持構造にて支持された二重封止型ターミナルヘッダであって、
     当該中心導体は、低温タンクの貫通部に設置されたときに常温大気圧側に位置する部位に凸状部分を形成し、当該凸状部分は中心軸方向に第1の長さでかつ封着管の外径と同一外径に形成し、
     前記環状封着管は環状長尺封着管と環状短尺封着管とからなり、前記環状長尺封着管は中心軸方向に第2の長さに形成して前記中心導体の凸状部分より低温高圧側となる領域に配置して前記中心導体の凸状部分に支持構造で係着し、前記環状短尺封着管は中心軸方向に第3の長さに形成して前記中心導体の凸状部分より常温大気圧側となる領域に配置して前記中心導体の凸状部分に支持構造で係着し、
     前記中心導体の凸状部分の中心軸方向の第1の長さ、環状長尺封着管の中心軸方向の第2の長さ及び環状短尺封着管の中心軸方向の第3の長さの合計長さと、前記セラミックスリーブの中心軸方向の長さとをほぼ同一にし、
     かつ、前記環状長尺封着管および前記環状短尺封着管の熱膨張および熱収縮による中心軸方向の伸縮値および前記中心導体の凸状部分の熱膨張および熱収縮による中心軸方向の伸縮値の加算値と、前記セラミックスリーブの熱膨張および熱収縮による中心軸方向の伸縮値とがほぼ同一ないし一定の範囲内に維持されるように、前記中心導体の凸状部分の長さ、環状封着管の長さおよびセラミックスリーブの長さをそれぞれ所定の割合による長さに設定したことを特徴とする二重封止型ターミナルヘッダ。
    In the double-sealed terminal header used for the penetration part of the cryogenic tank that stores liquefied natural gas,
    Concentrically with the central axis, the central conductor, annular sealing tube, and ceramic sleeve are arranged in this order from the central axis side. The annular sealing tube is formed in a cylindrical shape with a predetermined length and a predetermined thickness in the central axis direction by Kovar on the outer periphery of the central conductor, and the ceramic sleeve is formed on the outer periphery of the annular sealing tube. It is formed in a cylindrical shape with a predetermined length and a predetermined thickness in the central axis direction, and the ceramic sleeve is integrated with a low-temperature tank fixing partition flange,
    The annular sealing tube is formed with an inner diameter that maintains a predetermined gap between the inner peripheral surface and the outer peripheral surface of the central conductor, and the ceramic sleeve has a predetermined gap between the inner peripheral surface and the Kovar outer peripheral surface. It is formed on the inner diameter where the gap is maintained,
    And the said center conductor, a sealing pipe | tube, and a ceramic sleeve are the double sealing type terminal headers supported by the support structure in the predetermined position,
    The central conductor forms a convex portion at a portion located on the normal temperature and atmospheric pressure side when installed in the penetration portion of the low-temperature tank, and the convex portion has a first length in the central axis direction and is sealed Formed to the same outer diameter as the outer diameter of the pipe,
    The annular sealing tube is composed of an annular long sealing tube and an annular short sealing tube, and the annular long sealing tube is formed to have a second length in the central axis direction and is a convex portion of the central conductor. It is arranged in a region on the lower temperature and high pressure side and is attached to the convex portion of the central conductor by a support structure, and the annular short sealing tube is formed in a third length in the central axis direction to form the central conductor. Arranged in the region on the room temperature and atmospheric pressure side from the convex part, and attached to the convex part of the central conductor with a support structure,
    The first length in the central axis direction of the convex portion of the central conductor, the second length in the central axis direction of the annular long sealed tube, and the third length in the central axis direction of the annular short sealed tube The total length of the ceramic sleeve and the length in the central axis direction of the ceramic sleeve,
    And the expansion value in the central axis direction due to thermal expansion and thermal contraction of the annular long sealing tube and the short annular sealing tube and the expansion value in the central axis direction due to thermal expansion and thermal contraction of the convex portion of the central conductor The length of the convex portion of the central conductor and the annular seal are such that the added value of the ceramic sleeve and the expansion / contraction value in the central axis direction due to thermal expansion and contraction of the ceramic sleeve are maintained within substantially the same or constant range. A double-sealed terminal header, characterized in that the length of the receiving tube and the length of the ceramic sleeve are set to predetermined lengths, respectively.
  6. 前記中心導体の凸状部分の中心軸方向の第1の長さは、セラミックスリーブの中心軸方向に長さの概ね20.8%程度に設定されていて、
     かつ、前記環状長尺封着管の中心軸方向の第2の長さと、前記環状短尺封着管の中心軸方向の第3の長さを加えた合計長さは、セラミックスリーブの中心軸方向に長さの概ね79.2%程度に設定されていることを特徴とする請求項5記載の二重封止型ターミナルヘッダ。
    The first length in the central axis direction of the convex portion of the central conductor is set to approximately 20.8% of the length in the central axis direction of the ceramic sleeve,
    And the total length of the second length in the central axis direction of the annular long sealed tube and the third length in the central axis direction of the annular short sealed tube is the total axial direction of the ceramic sleeve The double-sealed terminal header according to claim 5, wherein the length is set to approximately 79.2% of the length.
  7.  前記セラミックスリーブの中心軸方向の長さをL10、その熱膨張率をα10とし、中心導体の凸状部分の中心軸方向の第1の長さをL20、その熱膨張率をα20とし、かつ、環状長尺封着管の中心軸方向の第2の長さと環状短尺封着管の中心軸方向の第3の長さの合計長さをL30、その熱膨張率をα30としたときに、
     L10=L20+L30
     L10× α10=(L20×α20)+(L30× α30)
    の関係が成立することを特徴とする請求項5又は6記載の二重封止型ターミナルヘッダ。
    The length in the central axis direction of the ceramic sleeve is L10, its thermal expansion coefficient is α10, the first length in the central axis direction of the convex portion of the central conductor is L20, its thermal expansion coefficient is α20, and When the total length of the second length in the central axis direction of the annular long sealed tube and the third length in the central axis direction of the annular short sealed tube is L30, and the coefficient of thermal expansion is α30,
    L10 = L20 + L30
    L10 × α10 = (L20 × α20) + (L30 × α30)
    The double-sealed terminal header according to claim 5 or 6, wherein the relationship is established.
  8.  液化天然ガス等を貯蔵する低温タンクの貫通部分で用いられる二重封止型ターミナルヘッダの製造方法において、
     隔壁フランジ及びセラミックスリーブの形状を所定形状に加工する第1加工工程と、
     第1の環状封着金具、第2の環状封着金具、第3の環状封着金具及び第4の環状封着金具、中空筒型保護金具を所定形状に加工する第2加工工程と、
     第2の環状封着金具、中空筒型当金具及び第4の環状封着金具をセラミックスリーブの所定位置に配置して位置決め後に、ロー付けする第1の処理工程と、
     第1の環状封着金具を第2の環状封着金具に配置して位置決めするとともに、第3の環状封着金具を第4の環状封着金具に配置して位置決めし、かつ第1の環状封着金具と第2の環状封着金具との一端側面及び第3の環状封着金具と第4の環状封着金具との一端側面を溶接する第2の処理工程と、
     第1の環状封着金具、第2の環状封着金具、第3の環状封着金具及び第4の環状封着金具が取り付けられた状態で、セラミックスリーブを隔壁フランジの透孔に配置した後、第1の環状封着金具の端部側面と隔壁フランジ及び第3の環状封着金具の端部側面と隔壁フランジをそれぞれ溶接する第3の処理工程とからなることを特徴とする二重封止型ターミナルヘッダの製造方法。
    In the manufacturing method of the double-sealed terminal header used in the penetrating part of the low temperature tank for storing liquefied natural gas etc.,
    A first processing step of processing the shape of the partition flange and the ceramic sleeve into a predetermined shape;
    A second processing step of processing the first annular sealing bracket, the second annular sealing bracket, the third annular sealing bracket and the fourth annular sealing bracket, and the hollow cylindrical protective bracket;
    A first processing step in which the second annular sealing metal fitting, the hollow tube type metal fitting and the fourth annular sealing metal fitting are arranged at predetermined positions of the ceramic sleeve and then brazed;
    The first annular sealing bracket is positioned and positioned on the second annular sealing bracket, the third annular sealing bracket is positioned and positioned on the fourth annular sealing bracket, and the first annular sealing bracket is positioned. A second processing step of welding one end side surface of the sealing metal fitting and the second annular sealing metal fitting and one end side surface of the third annular sealing metal fitting and the fourth annular sealing metal fitting,
    After the ceramic sleeve is disposed in the through hole of the partition flange with the first annular sealing bracket, the second annular sealing bracket, the third annular sealing bracket and the fourth annular sealing bracket attached. And a third processing step of welding the end side surface of the first annular sealing bracket and the partition flange and the end side surface of the third annular sealing bracket and the partition flange, respectively. A manufacturing method for a stationary terminal header.
  9.  前記第2加工工程は、第4の環状封着金具の一端側をその一端側の側面が他端側を向くように円形状に折り曲げて断面略J字形状に形成する加工工程と、
     第3の環状封着金具の一端側が、第4の環状封着金具の折り曲げた部分に嵌まり合う形状に形成するとともに、第3の環状封着金具の一端側の折り曲げた部分が第4の環状封着金具の折り曲げた部分に嵌まり合ったときに、互いの折り曲げた部分の側面が揃う形状に形成する加工工程とからなることを特徴とする請求項8記載の二重封止型ターミナルヘッダの製造方法。
    The second processing step is a processing step of bending the one end side of the fourth annular sealing fitting into a circular shape so that the side surface of the one end side faces the other end side, and forming a substantially J-shaped cross section;
    The one end side of the third annular sealing bracket is formed in a shape that fits into the bent portion of the fourth annular sealing bracket, and the bent portion on the one end side of the third annular sealing bracket is the fourth 9. The double-sealed terminal according to claim 8, further comprising a processing step in which the side surfaces of the bent portions are aligned when fitted to the bent portions of the annular sealing metal fitting. Header manufacturing method.
  10.  前記第2の処理工程は、中空筒型保護金具の中空円筒体をセラミックスリーブの第3太円柱部に嵌合し、ロー付けする工程を含むことを特徴とする請求項8記載の二重封止型ターミナルヘッダの製造方法。 The double sealing according to claim 8, wherein the second processing step includes a step of fitting and brazing the hollow cylindrical body of the hollow cylindrical protective metal fitting to the third thick cylindrical portion of the ceramic sleeve. A manufacturing method for a stationary terminal header.
PCT/JP2016/067466 2015-06-11 2016-06-06 Double-sealed terminal header and method of manufacturing double-sealed terminal header WO2016199931A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015118154A JP5801009B1 (en) 2015-06-11 2015-06-11 Double sealed terminal header
JP2015118055A JP5801008B1 (en) 2015-06-11 2015-06-11 Double sealed terminal header
JP2015-118055 2015-06-11
JP2015-118154 2015-06-11
JP2016067092A JP6674815B2 (en) 2016-03-30 2016-03-30 Method for manufacturing double-sealed terminal header
JP2016-067092 2016-03-30

Publications (1)

Publication Number Publication Date
WO2016199931A1 true WO2016199931A1 (en) 2016-12-15

Family

ID=57504909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067466 WO2016199931A1 (en) 2015-06-11 2016-06-06 Double-sealed terminal header and method of manufacturing double-sealed terminal header

Country Status (1)

Country Link
WO (1) WO2016199931A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112236006A (en) * 2020-10-16 2021-01-15 安擎(天津)计算机有限公司 Combined server rack structure and connecting method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06131935A (en) * 1991-12-16 1994-05-13 Kunitaka Mizobe Lead-in device for wire or pipe
JPH08338596A (en) * 1995-06-13 1996-12-24 Furukawa Electric Co Ltd:The Double seal type terminal header
JPH10116530A (en) * 1996-10-09 1998-05-06 Furukawa Electric Co Ltd:The Double sealed terminal header
JP2011102544A (en) * 2009-11-10 2011-05-26 Nishishiba Electric Co Ltd Electric wire lead-out device of submerged motor pump
WO2014027102A1 (en) * 2012-08-16 2014-02-20 Vialle Alternative Fuel Systems B.V. Assembly for buffering a liquefied petroleum gas in a liquefied petroleum gas storage and storage bag therefore
JP5801009B1 (en) * 2015-06-11 2015-10-28 中島 広 Double sealed terminal header
JP5801008B1 (en) * 2015-06-11 2015-10-28 中島 広 Double sealed terminal header

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06131935A (en) * 1991-12-16 1994-05-13 Kunitaka Mizobe Lead-in device for wire or pipe
JPH08338596A (en) * 1995-06-13 1996-12-24 Furukawa Electric Co Ltd:The Double seal type terminal header
JPH10116530A (en) * 1996-10-09 1998-05-06 Furukawa Electric Co Ltd:The Double sealed terminal header
JP2011102544A (en) * 2009-11-10 2011-05-26 Nishishiba Electric Co Ltd Electric wire lead-out device of submerged motor pump
WO2014027102A1 (en) * 2012-08-16 2014-02-20 Vialle Alternative Fuel Systems B.V. Assembly for buffering a liquefied petroleum gas in a liquefied petroleum gas storage and storage bag therefore
JP5801009B1 (en) * 2015-06-11 2015-10-28 中島 広 Double sealed terminal header
JP5801008B1 (en) * 2015-06-11 2015-10-28 中島 広 Double sealed terminal header

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112236006A (en) * 2020-10-16 2021-01-15 安擎(天津)计算机有限公司 Combined server rack structure and connecting method thereof
CN112236006B (en) * 2020-10-16 2022-10-04 安擎(天津)计算机有限公司 Combined server rack structure and connecting method thereof

Similar Documents

Publication Publication Date Title
CN105190786B (en) High pressure airtight terminal
KR101289570B1 (en) Sealing structure of discharge lamp
JP7152857B2 (en) Fluid handling fittings and fluid handling equipment
EP2297821A2 (en) Electric power terminal feed-through
JP2020510174A (en) Damping tube and method of manufacturing the same
JP5801008B1 (en) Double sealed terminal header
WO2016199931A1 (en) Double-sealed terminal header and method of manufacturing double-sealed terminal header
JP5801009B1 (en) Double sealed terminal header
WO2016059755A1 (en) Joint structure for vacuum-heat-insulated double tube for low temperature fluid
JP6674815B2 (en) Method for manufacturing double-sealed terminal header
JP2007198721A (en) Heat exchanger
EP3123005A1 (en) Flexible conduit tube and a connecting device for use in exhaust systems
JP2018185051A (en) Drain vent for petrochemical fluid pressure-sending device and method for manufacturing the same
JP2007120581A (en) Pipe body connection structure
CN108533333B (en) Steam turbine cannula sealing device and use method thereof
US11552531B2 (en) Electrical machine and method for manufacturing same
JP2019105620A (en) Gas sensor
CN111590255B (en) Probe adapter for an exhaust system
CN220602262U (en) Heat exchanger and tube plate welding structure thereof
JP4486826B2 (en) Check valve manufacturing method
JP2010135102A (en) Vacuum valve
JP2006083913A (en) Flexible tube and method for manufacturing the same
JP6580500B2 (en) Discharge lamp
JP5925920B2 (en) Exhaust system assembly unit consisting of parts made of different materials with improved durability
CN116336280A (en) Corrugated metal hose based on braze welding in furnace

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807635

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16807635

Country of ref document: EP

Kind code of ref document: A1