WO2016199286A1 - Strain detection system and attachment method - Google Patents

Strain detection system and attachment method Download PDF

Info

Publication number
WO2016199286A1
WO2016199286A1 PCT/JP2015/066960 JP2015066960W WO2016199286A1 WO 2016199286 A1 WO2016199286 A1 WO 2016199286A1 JP 2015066960 W JP2015066960 W JP 2015066960W WO 2016199286 A1 WO2016199286 A1 WO 2016199286A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain
detection system
sealing material
strain detection
semiconductor element
Prior art date
Application number
PCT/JP2015/066960
Other languages
French (fr)
Japanese (ja)
Inventor
拓人 山口
太田 裕之
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/066960 priority Critical patent/WO2016199286A1/en
Publication of WO2016199286A1 publication Critical patent/WO2016199286A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge

Definitions

  • the present invention relates to a sensor structure such as a semiconductor strain sensor.
  • sensors that measure various physical quantities are attracting attention in order to improve product safety and optimize performance by grasping the status of devices and parts such as social infrastructure, industrial equipment, and automobiles.
  • sensors such as force, light, and acceleration, and their uses are also various.
  • a system for monitoring a state of a structure by attaching a large number of strain sensors to a large structure such as a bridge has been studied. This initiative will detect signs of structural damage and improve maintainability and safety.
  • metal foil strain gauges that utilize the fact that the resistance value of metal foil changes due to strain, but it is difficult to ensure accuracy, durability, heat resistance, and energy saving.
  • Patent Document 1 states that “a semiconductor device includes a substrate 1 in which first and second through holes 1a and 1b are formed, and an electrode pad 6 is formed around an upper surface side opening of the first through hole 1a.
  • the upper main surface electrode 5 is opposed to the lower surface side opening of the substrate 1 in the first through hole 1a and the contact detection sensor unit 4 is opposed to the lower surface side opening of the substrate 1 in the second through hole 1b.
  • the semiconductor element 3 whose upper main surface is bonded to the lower surface of the substrate 1, the conductive connection line for electrically connecting the electrode 5 and the electrode pad 6 through the first through hole 1a, the electrode 5, and the conductive connection And the resin 2 that covers the wire and the electrode pad 6 and is filled in the first through-hole 1a (see the summary solution section).
  • Sensing targets range from social infrastructure structures such as bridges, power plants, windmills, etc., moving bodies such as railway vehicles, construction machinery, and automobiles, and industrial equipment such as motors, boilers, and machine tools.
  • Patent Document 1 there is a portion where the semiconductor element is not covered, and there is no description on how the semiconductor device is attached to the measurement target.
  • Patent Document 1 is an invention that is supposed to be used for a fingerprint detection device, a biosensor device, etc. for personal authentication and personal identification, what is a structure that considers application to social infrastructure equipment monitors and construction methods? is not.
  • An object of the present invention is to provide a structure that allows simple mounting of a sensor while maintaining the detection accuracy of the sensor.
  • an example of the present invention includes a semiconductor element that detects strain, a substrate that transmits strain to the semiconductor element, and a bonding material that bonds the semiconductor element and a substrate that transmits the semiconductor element.
  • a strain measurement unit, a strain measurement unit, and a circuit board connected to the strain measurement unit are sealed with a semiconductor element, a bonding material, and a substrate to be transmitted by a first sealing material. It is the distortion
  • an example of the present invention is a first sensor unit including a member for detecting strain and a part or all of a power supply line and a signal line connected to the member for detecting strain.
  • a method for attaching a strain detection system comprising: sealing a substrate with a second sealing material 2.
  • a strain sensor that is highly reliable and easy to mount can be realized.
  • FIG. 1 is a schematic cross-sectional view of a sensor structure according to Example 1 of the present invention, and FIG. The sensor structure invented by the present inventors will be described.
  • FIG 1 and 2 show a structure for detecting strain generated in the measurement object 5.
  • the strain generated in the measurement object 5 is transmitted to the semiconductor element 10 that detects the strain through the strain transmission substrate 11 that transmits the strain to the semiconductor element 10.
  • the semiconductor element 10 and the strain transmission substrate 11 are connected by a bonding material 12. Further, a power supply line 13 for supplying power and a signal line 14 for taking out an output signal are shown which are connected to the electrodes of the semiconductor element 10.
  • the configuration of these strain measurement units is referred to as a sensor unit 1 or a strain sensor structure in the present specification.
  • the sensor unit 1 is connected to the circuit board 2 via the wiring 15.
  • the semiconductor element 10, the bonding material 12, the power supply line 13, the signal line 14, the wiring 15, and the strain transmission substrate 11 are previously sealed with the first sealing material 3.
  • the wiring 15 connecting the semiconductor element 10 and the circuit board 2 may be configured to be partially or entirely sealed. Desirably, the power supply line 13 and the signal line 14 are covered with the first sealing material 3 and a part of the wiring 15 is sealed.
  • the strain sensor structure is a structure that enables strain measurement by transmitting strain generated in the measurement object 5 to the semiconductor element 10 via the strain transmission substrate 11 and the bonding material 12. An example is shown.
  • the periphery of the semiconductor element 10 can be sealed with the first sealing material 3, and moisture resistance can be obtained. Further, since different sealing materials can be selected for the first sealing material 3 and the second sealing material, it is possible to have different characteristics.
  • high cleanliness can be obtained by preventing contamination of the surface of the semiconductor element 10 after the semiconductor element 10 is installed on the measurement object 5 and before the mounting work of the entire sensor structure including the circuit board 2 is completed. Can do. Further, disconnection of the power line 13 and the signal line 14 can be prevented.
  • the first sealing material 3 is soft. This is because when a hard material is used, if the measurement environment temperature changes, the measurement result fluctuates because the thermal strain of the encapsulant is added to the measured value of the semiconductor element in addition to the strain of the strain measurement target. is there.
  • the first sealing material 3 can be implemented as long as the elastic modulus is lower than that of Si as the semiconductor element 10. If it is a semiconductor other than Si, the member of the 1st sealing material 3 can be implemented if the elasticity modulus is lower than the elasticity modulus of semiconductors other than Si.
  • the elastic modulus of the first sealing material 3 is preferably 10 MPa or less, and the elastic modulus of the second sealing material is preferably in the range of 100 kPa to 1 GPa.
  • a suitable sealing material can be selected without using a special material, and transmission performance can be obtained on that.
  • the member of the first sealing material 3 is selected from fluororesins, silicones, epoxies, urethanes, olefins, acrylics, etc., according to the softness of the members and the required life of the sensor structure. Good.
  • the connecting portion may be at both ends of the strain transmission substrate, or may be the entire surface.
  • the fixing method requires a strong connection. Even when the strain transmission substrate 11 and the measuring object 5 are connected to the whole surface with an adhesive, it is desirable to use a hard adhesive.
  • the connected circuit board 2 has at least a function of relaying power and signals, and the power supply line 15 and the signal line 16 are connected to the power supply line 13 and the signal line 14 connected to the semiconductor element 10, respectively.
  • the power supply lines 13 and 15 and the signal lines 14 and 16 may be formed of a coated metal wire, a carbon wire, a flexible substrate, or the like.
  • the power supply line 13 and the signal line 14 are sealed with the 1st sealing material 3, they can also be comprised with the metal wire which is not coat
  • the first sealing material 3 can serve as a covering material.
  • control circuit for semiconductor element 10 Power storage circuit, power generation device, wired power / signal line / connector, wireless power / signal transmission circuit / antenna, filtering circuit, measurement data display device, etc. You may have. Note that the circuit board 2 may not be in a state where the printed board is exposed, but may be housed in a case.
  • the first sealing material 3 that seals the semiconductor element 10 and the power supply line 13 and the signal line 14 connected to the semiconductor element 10, and a circuit that is not covered with the first sealing material 3
  • the second sealing material 4 is attached and fixed to the measurement object 5. What is sealed with the second sealing material 4 is called a strain detection system.
  • the first sealing material 3 covering the semiconductor element 10 and the like is preferably cured before the sensor unit 1 is attached to the measurement object 5. By hardening before attaching to the measuring object 5, the attachment work time in the next step can be reduced.
  • the semiconductor element 10 As a first step, the semiconductor element 10, the bonding material 12, a part or all of the power supply line 13 and the signal line 14 connected to the semiconductor element 10, and a part of the power supply line 15 and the signal line 16
  • the strain transmitting substrate 11 is sealed with the first sealing material 3.
  • one end of the power supply line 15 and the signal line 16 is connected to the power supply line 13 and the signal line 16, respectively. The other end is connected to the circuit board 2 in the next step.
  • the sealed sensor unit 1 and circuit board 2 are fixed to the measurement object 5.
  • the power supply line 15 and the signal line 16 are connected to the circuit board 2.
  • the fixed sensor unit 1 and the circuit board 2 are sealed with the second sealing material 2 and cured.
  • the hardening of the sealing material is only the sealing time of the second sealing material 4, so that the installation work time can be reduced. . That is, the mounting itself is facilitated while reducing the curing time that occupies most of the mounting work time.
  • the semiconductor element 10 is sealed with the first sealing material 3 in advance, the semiconductor element 10 is exposed to the outside air for a short time, so that the life of the semiconductor element 10 can be extended.
  • Example 2 which is a modification of Example 1 will be described with reference to FIG. The description of the same reference numerals as those in FIGS.
  • a state in which the second sealing material 4 is also applied to the space formed between the lower surface of the circuit board 2 and the measurement object 5 is shown. That is, the circuit board 2 is covered with the second sealing material 4, and the circuit board 2 is connected to the measurement object 5 via the second sealing material 4.
  • the circuit board 2 can be temporarily fixed to the measurement object 5 with the second sealing material 4, and the second surface of the circuit board and the sensor unit periphery can be secured without waiting for the sealing material 4 to be completely cured.
  • the sealing material 4 can be used for sealing. Thereby, the time for temporary fixing and curing can be reduced.
  • the second sealing material 4 can impart moisture resistance, stress resistance, and impact resistance to the semiconductor element 10, the power supply line 15, the signal line 16, and the circuit board 2.
  • the second sealing material 4 needs to have a degree of flexibility that does not affect the sensor measurement value.
  • the second sealing material 4 plays a role of attaching to the measuring object 5 when used outdoors.
  • a one-component moisture-curing resin is easy to use among fluorine-based, silicone-based, epoxy-based, urethane-based, olefin-based, acrylic-based resins, and the like. This is because the softness of the material itself and the compatibility between moisture and the like are taken into consideration and it is suitable for the outdoor environment.
  • thermosetting resin can be applied using a heater.
  • non-flowable resin is desirable.
  • fluid resin can also be used by preventing liquid dripping by covering the second sealing material 4 during the curing time.
  • Example 2 For the sensor structure of Example 2 attached in this way, the sensor unit 1 and the like were operated from an external power source, and the measured values were displayed on the external display device. It was confirmed that measurements can be performed stably for a long time in an environment exposed to outdoor wind and rain.
  • Example 3 will be described with reference to FIG. The description of the same reference numerals as those described in the first and second embodiments is omitted.
  • the sensor unit 1 having the sensor structure described in the first embodiment is sealed with the first sealing material 3, and the circuit board 2 is added to the structure sealed with the second sealing material 4.
  • a state in which the protective cover 6 is covered with a metal or resin cover 6 and the protective cover 6 is also fixed with the third sealing material 4a is shown.
  • any sealing material may be used for the third sealing material 4 a covering the protective cover 6.
  • the material is water-resistant or highly antifouling because it is exposed to the outside air.
  • the provision of the protective cover 6 can protect the second sealing material 4 and, in turn, can reduce the influence on the sensor unit 1 including the semiconductor element 10 from the external environment. In addition, the sensor can be prevented from being destroyed due to a large stress such as a collision with a stone. With this configuration, since the protective cover 6 can bear the impact resistance, the material of the second sealing material 4 can be selected to have other characteristics, and the material selectivity is improved.
  • noise such as electromagnetic waves that are disturbances can be reduced.
  • the detection accuracy of the semiconductor element is improved.
  • it may be connected to the ground side of the power source or electrically grounded together with the measurement object. If the surface of the metal member can be protected by an oxide film or the like, the strength and the like are improved by applying the protective film.
  • the internal structure of the protective cover 6 is filled with the second sealing material 4, whereas in the present embodiment, there is a gap between the second sealing material 4 and the protective cover 6. 7 is different. In other words, the gap 7 was provided between the second sealing material 4 that seals the sensor unit 1 and the circuit board 2 and the protective cover 6.
  • the strain signal information obtained by converting the strain detected by the semiconductor element 10 into a signal can be communicated by wireless communication.
  • the strain sensor structure such as the sensor unit 1 is sealed by the second sealing material 4, but at a position away from the sensor unit 1 by adding a wireless communication module to the circuit board 2 or the like, The strain of the measuring object 5 can be detected.
  • remote monitoring is also possible by receiving strain information through wireless communication and displaying the strain information on a display or the like.
  • wireless communication not only wireless communication but also wired communication is possible by passing a signal line or a power line so as to penetrate the second sealing material 4 or the protective cover 6.
  • Strain is measured from large structures such as bridges, tunnels, power plants, and windmills, to mobile bodies such as automobiles, railways, and construction machines, industrial equipment such as motors, boilers, and machine tools, and structures such as floors and fences.
  • mobile bodies such as automobiles, railways, and construction machines, industrial equipment such as motors, boilers, and machine tools, and structures such as floors and fences.
  • industrial equipment such as motors, boilers, and machine tools
  • structures such as floors and fences.
  • Various examples include the inside of electronic parts such as bodies and power modules.
  • the physical quantity to be measured is basically strain, but various physical quantities can be estimated by measuring strain such as pressure, vibration, and torque.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

In the present invention, a structure is provided to which a sensor can be attached with ease while maintaining sensor detection accuracy. Provided is a strain detection system characterized by having a semiconductor element for detecting strain, a substrate for transmitting strain to the semiconductor element, and a junction material for joining the semiconductor element with the substrate for transmitting strain, with a strain measurement unit in which the semiconductor element, the junction material, and the substrate for transmitting strain are sealed using a first sealing material, wherein the strain measurement unit and a circuit substrate connected to the strain measurement unit are sealed using a second sealing material.

Description

ひずみ検出システム、および取り付け方法Strain detection system and mounting method
 本発明は半導体ひずみセンサなどのセンサ構造に関する。 The present invention relates to a sensor structure such as a semiconductor strain sensor.
 近年、社会インフラや産業用機器、自動車など、装置・部品の状態を把握することにより、製品の安全性向上、性能の最適化を実現するため、様々な物理量を測定するセンサが注目されている。力、光、加速度など、センサの種類は多岐に渡り、その用途も様々である。例えば、橋梁などの大型構造物に多数のひずみセンサを取り付け、構造物の状態をモニタリングするシステムが検討されている。本取り組みにより、構造物の破壊の予兆を検知し、保守性・安全性の改善が実現される。 In recent years, sensors that measure various physical quantities are attracting attention in order to improve product safety and optimize performance by grasping the status of devices and parts such as social infrastructure, industrial equipment, and automobiles. . There are various types of sensors, such as force, light, and acceleration, and their uses are also various. For example, a system for monitoring a state of a structure by attaching a large number of strain sensors to a large structure such as a bridge has been studied. This initiative will detect signs of structural damage and improve maintainability and safety.
 ひずみセンサとしては、金属箔の抵抗値がひずみによって変化することを利用した金属箔ひずみゲージがあるが、精度・耐久性・耐熱性・省エネ性を確保することが難しい。 ひ ず み As strain sensors, there are metal foil strain gauges that utilize the fact that the resistance value of metal foil changes due to strain, but it is difficult to ensure accuracy, durability, heat resistance, and energy saving.
 特許文献1には、「半導体装置は、第1および第2の貫通孔1a,1bが形成され、第1の貫通孔1aの上面側開口の周囲に電極パッド6が形成されている基板1と、上側主面の電極5が第1の貫通孔1aの基板1の下面側開口に対向するとともに接触検知センサ部4が第2の貫通孔1bの基板1の下面側開口に対向するように、基板1の下面に上側主面が接着された半導体素子3と、電極5および電極パッド6を第1の貫通孔1aを通って電気的に接続する導電性接続線と、電極5、導電性接続線および電極パッド6を覆うとともに第1の貫通孔1aに充填された樹脂2とを具備している。(要約の解決手段参照)」することが開示されている。 Patent Document 1 states that “a semiconductor device includes a substrate 1 in which first and second through holes 1a and 1b are formed, and an electrode pad 6 is formed around an upper surface side opening of the first through hole 1a. The upper main surface electrode 5 is opposed to the lower surface side opening of the substrate 1 in the first through hole 1a and the contact detection sensor unit 4 is opposed to the lower surface side opening of the substrate 1 in the second through hole 1b. The semiconductor element 3 whose upper main surface is bonded to the lower surface of the substrate 1, the conductive connection line for electrically connecting the electrode 5 and the electrode pad 6 through the first through hole 1a, the electrode 5, and the conductive connection And the resin 2 that covers the wire and the electrode pad 6 and is filled in the first through-hole 1a (see the summary solution section).
特開2004-226254号公報JP 2004-226254 A
 センシング対象は、橋梁、発電プラント、風車等の社会インフラ構造物や、鉄道車両、建設機械、自動車などの移動体、モーター、ボイラー、工作機器などの産業機器など多岐に渡る。 Sensing targets range from social infrastructure structures such as bridges, power plants, windmills, etc., moving bodies such as railway vehicles, construction machinery, and automobiles, and industrial equipment such as motors, boilers, and machine tools.
 上記の機器を代表とする社会インフラ機器のモニタリングは、センサの取り付け作業が必然的に屋外作業となる。 In the monitoring of social infrastructure equipment represented by the above equipment, the sensor installation work is inevitably an outdoor work.
 このような場合の課題として、電源の取れない環境での取り付け作業に必要な装置が限られる。さらに、施工日程が制限され、短時間での多数のセンサ取り付けが要求される。また、天井面や壁面など取り付け面・角度を選ばない施工方法が要求される。さらに、取り付けた後も屋外環境で風雨、海塩、砂、石、振動、温度変化など、過酷環境に曝されながらも、必要な性能を維持する信頼性の高いセンサ構造が求められる。 As a problem in such a case, there are limited devices required for installation work in an environment where the power supply cannot be taken. Furthermore, the construction schedule is limited, and a large number of sensors must be attached in a short time. In addition, a construction method that does not select any mounting surface or angle such as a ceiling surface or a wall surface is required. Furthermore, there is a need for a highly reliable sensor structure that maintains the required performance while being exposed to harsh environments such as wind, rain, sea salt, sand, stones, vibrations, and temperature changes even after installation.
 以上のように、センサ取り付けには作業性と信頼性の両立が必要とされている。 As described above, sensor mounting requires both workability and reliability.
 センシングに半導体素子によりひずみを検知するひずみセンサを用いた場合に、半導体素子を外部からの熱、応力、水などの因子から保護することは半導体素子の性能・信頼性を維持するために必須である。 When using a strain sensor that detects strain with a semiconductor element for sensing, protecting the semiconductor element from external factors such as heat, stress, and water is essential to maintain the performance and reliability of the semiconductor element. is there.
 一方、強固な保護材で素子を覆った場合、保護効果は十分に発揮されるが、保護材そのものの熱ひずみがセンサに伝達され、本来測定したいひずみ以外のノイズが測定値に上乗せされてしまうという課題がある。 On the other hand, when the element is covered with a strong protective material, the protective effect is sufficiently exerted, but the thermal strain of the protective material itself is transmitted to the sensor, and noise other than the strain to be originally measured is added to the measured value. There is a problem.
 また、所定の施工時間内にセンサならびに電子回路基板を測定対象に固定しなければならないという作業性の制約がある。 Also, there is a workability restriction that the sensor and the electronic circuit board must be fixed to the measurement target within a predetermined construction time.
 特許文献1には、半導体素子の被覆がされていない箇所があり、また、当該半導体装置がどのように測定対象に取り付けられるかについては記載がない。 In Patent Document 1, there is a portion where the semiconductor element is not covered, and there is no description on how the semiconductor device is attached to the measurement target.
 特許文献1は、個人認証や個人識別のための指紋検知装置、バイオセンサ装置等に用いられることを想定した発明であるため、社会インフラ機器のモニタへの適用と施工方法を考慮した構造とはなっていない。 Since Patent Document 1 is an invention that is supposed to be used for a fingerprint detection device, a biosensor device, etc. for personal authentication and personal identification, what is a structure that considers application to social infrastructure equipment monitors and construction methods? is not.
 そのため、社会インフラ機器の長期間のモニタを実現するセンサ構造は考慮されていない。したがって、先に述べた過酷な屋外環境での利用や当該環境下で耐え得る保護材と熱ひずみとの関係については記載も示唆もされていない。 Therefore, the sensor structure that realizes long-term monitoring of social infrastructure equipment is not considered. Therefore, there is no description or suggestion about the relationship between the thermal strain and the protective material that can withstand use in the harsh outdoor environment described above or the environment.
 本発明の課題は、センサの検出精度を維持しつつ、センサの簡易な取り付けが可能となる構造を提供することである。 An object of the present invention is to provide a structure that allows simple mounting of a sensor while maintaining the detection accuracy of the sensor.
 上記課題を解決するために本発明の一例は、ひずみを検出する半導体素子と、半導体素子へひずみを伝達させる基板と、半導体素子と伝達させる基板とを接合する接合材とを有しており、半導体素子と、接合材と、伝達させる基板と、を第一の封止材により封止されたひずみ計測部と、ひずみ計測部と、ひずみ計測部と接続された回路基板とを、第二の封止材により封止されたことを特徴とするひずみ検出システムである。 In order to solve the above problems, an example of the present invention includes a semiconductor element that detects strain, a substrate that transmits strain to the semiconductor element, and a bonding material that bonds the semiconductor element and a substrate that transmits the semiconductor element. A strain measurement unit, a strain measurement unit, and a circuit board connected to the strain measurement unit are sealed with a semiconductor element, a bonding material, and a substrate to be transmitted by a first sealing material. It is the distortion | strain detection system characterized by sealing with the sealing material.
 また、上記課題を解決するために本発明の一例は、ひずみを検出する部材と、ひずみを検出する部材に接続された電源線および信号線の一部または全部と、をセンサユニットとして第一の封止材で接着固定する工程と、接着センサユニットと、回路基板とを測定対象物に固定し、電源線および信号線と回路基板とを接続する取り付け工程と、取り付けられたセンサユニットと、回路基板と、を第二の封止材2で封止する工程とを有するひずみ検出システムの取り付け方法。 In order to solve the above-described problem, an example of the present invention is a first sensor unit including a member for detecting strain and a part or all of a power supply line and a signal line connected to the member for detecting strain. A step of bonding and fixing with a sealing material, an attachment step of fixing an adhesive sensor unit and a circuit board to an object to be measured, and connecting a power line and a signal line to the circuit board; an attached sensor unit; and a circuit A method for attaching a strain detection system, comprising: sealing a substrate with a second sealing material 2.
 本発明によれば、信頼性が高く、取り付けが容易なひずみセンサを実現できる。 According to the present invention, a strain sensor that is highly reliable and easy to mount can be realized.
本発明の実施例1に係るひずみ検出システムの断面を示す図である。It is a figure which shows the cross section of the distortion | strain detection system which concerns on Example 1 of this invention. 本発明の実施例1に係るひずみ検出システムの上面図を示す図である。It is a figure which shows the top view of the distortion | strain detection system which concerns on Example 1 of this invention. 本発明の実施例2に係るひずみ検出システムを示す図である。It is a figure which shows the distortion | strain detection system which concerns on Example 2 of this invention. 本発明の実施例3に係るひずみ検出システムを示す図である。It is a figure which shows the distortion | strain detection system which concerns on Example 3 of this invention. 本発明の実施例4に係るひずみ検出システムを示す図である。It is a figure which shows the distortion | strain detection system which concerns on Example 4 of this invention.
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一部材には原則として同一の符号を付し、その繰り返しの説明は省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted.
 図1に本発明の実施例1に係るセンサ構造の断面模式図、図2に同じく上面模式図を示す。本願発明者らが発明したセンサ構造について説明する。 FIG. 1 is a schematic cross-sectional view of a sensor structure according to Example 1 of the present invention, and FIG. The sensor structure invented by the present inventors will be described.
 図1、2には、測定対象5に生じるひずみを検知する構造を示す。測定対象5に生じたひずみを当該半導体素子10に伝達するひずみ伝達基板11を介して、ひずみを検知する半導体素子10に伝達される。 1 and 2 show a structure for detecting strain generated in the measurement object 5. The strain generated in the measurement object 5 is transmitted to the semiconductor element 10 that detects the strain through the strain transmission substrate 11 that transmits the strain to the semiconductor element 10.
 この半導体素子10とひずみ伝達基板11は接合材12によって接続されている。また、当該半導体素子10の電極に接続されており、電力を供給する電源線13ならびに出力信号を取り出す信号線14が示されている。 The semiconductor element 10 and the strain transmission substrate 11 are connected by a bonding material 12. Further, a power supply line 13 for supplying power and a signal line 14 for taking out an output signal are shown which are connected to the electrodes of the semiconductor element 10.
 これらのひずみ計測部の構成を本願明細書ではセンサユニット1またはひずみセンサ構造体と呼ぶ。このセンサユニット1は、配線15を介して回路基板2に接続されている。 The configuration of these strain measurement units is referred to as a sensor unit 1 or a strain sensor structure in the present specification. The sensor unit 1 is connected to the circuit board 2 via the wiring 15.
 このうち、半導体素子10と、接合材12と、電源線13および信号線14と配線15とひずみ伝達基板11は予め第一の封止材3で封止されている。 Among these, the semiconductor element 10, the bonding material 12, the power supply line 13, the signal line 14, the wiring 15, and the strain transmission substrate 11 are previously sealed with the first sealing material 3.
 半導体素子10と回路基板2とを繋ぐ配線15については、一部または全部が封止されているように構成してもよい。望ましくは、第一の封止材3によって電源線13と信号線14が覆うようにし、配線15の一部が封止されるよう構成されるとよい。 The wiring 15 connecting the semiconductor element 10 and the circuit board 2 may be configured to be partially or entirely sealed. Desirably, the power supply line 13 and the signal line 14 are covered with the first sealing material 3 and a part of the wiring 15 is sealed.
 電源線13と信号線は他の部材に直接接触しなくとも、封止材によって固定することができるためである。 This is because the power line 13 and the signal line can be fixed by a sealing material without directly contacting other members.
 当該ひずみセンサ構造体は上記のように、測定対象5に生じたひずみがひずみ伝達基板11と接合材12を介して、半導体素子10に伝達されることで、ひずみの測定が可能となる構造体の一例を示すものである。 As described above, the strain sensor structure is a structure that enables strain measurement by transmitting strain generated in the measurement object 5 to the semiconductor element 10 via the strain transmission substrate 11 and the bonding material 12. An example is shown.
 第一の封止材3によって半導体素子10周辺を封止することができ、防湿性を得ることが可能となる。また、第一の封止材3と第二の封止材とを別の封止材を選択することができるため、それぞれ異なる特性を持たせることも可能である。 The periphery of the semiconductor element 10 can be sealed with the first sealing material 3, and moisture resistance can be obtained. Further, since different sealing materials can be selected for the first sealing material 3 and the second sealing material, it is possible to have different characteristics.
 また、半導体素子10を測定対象5に設置してから、回路基板2等を含めたセンサ構造全体の取り付け作業の完了までの間に半導体素子10表面の汚染を防ぐことで高い清浄度を得ることができる。また、電源線13や信号線14の断線を防ぐことができる。 Moreover, high cleanliness can be obtained by preventing contamination of the surface of the semiconductor element 10 after the semiconductor element 10 is installed on the measurement object 5 and before the mounting work of the entire sensor structure including the circuit board 2 is completed. Can do. Further, disconnection of the power line 13 and the signal line 14 can be prevented.
 当該第一の封止材3は、柔らかいことが肝要である。なぜならば、硬い材料を用いると、測定環境温度が変化した場合、ひずみ測定対象のひずみ以外に、封止材の熱ひずみが半導体素子の測定値に上乗せされることによって測定結果が変動するためである。具体的には、第一の封止材3の部材は半導体素子10であるSiより低い弾性率であれば実施可能である。Si以外の半導体であれば、第一の封止材3の部材は、Si以外の半導体の弾性率より低い弾性率であれば実施可能である。 It is important that the first sealing material 3 is soft. This is because when a hard material is used, if the measurement environment temperature changes, the measurement result fluctuates because the thermal strain of the encapsulant is added to the measured value of the semiconductor element in addition to the strain of the strain measurement target. is there. Specifically, the first sealing material 3 can be implemented as long as the elastic modulus is lower than that of Si as the semiconductor element 10. If it is a semiconductor other than Si, the member of the 1st sealing material 3 can be implemented if the elasticity modulus is lower than the elasticity modulus of semiconductors other than Si.
 また、Siの弾性率より十分に低い値として、180Gpaの1/10000以下であることが望ましい。この程度の値を取ることで伝達性が良くなるためである。 Also, as a value sufficiently lower than the elastic modulus of Si, it is desirable that it is 1/10000 or less of 180 Gpa. This is because the transferability is improved by taking this value.
 また、さらに好適な値としては、第一の封止材3の弾性率は10MPa以下であって、第二の封止材の弾性率は、100kPaから1GPaの範囲内であることが望ましい。この値を取ることで、特殊な材料を用いることなく好適な封止材を選択でき、その上で伝達性能を得ることができるためである。 Further, as a more preferable value, the elastic modulus of the first sealing material 3 is preferably 10 MPa or less, and the elastic modulus of the second sealing material is preferably in the range of 100 kPa to 1 GPa. By taking this value, a suitable sealing material can be selected without using a special material, and transmission performance can be obtained on that.
 第一の封止材3の部材はフッ素系、シリコーン系、エポキシ系、ウレタン系、オレフィン系、アクリル系などの樹脂から部材の柔らかさとセンサ構造の要求寿命に応じて適切なものを選択してよい。 The member of the first sealing material 3 is selected from fluororesins, silicones, epoxies, urethanes, olefins, acrylics, etc., according to the softness of the members and the required life of the sensor structure. Good.
 当該センサユニット1と回路基板2をひずみ測定対象物5に取り付けるにあたって、ひずみ伝達基板11と測定対象5を接続する構成について説明する。 A configuration for connecting the strain transmission substrate 11 and the measurement target 5 when the sensor unit 1 and the circuit board 2 are attached to the strain measurement target 5 will be described.
 ひずみ伝達基板11と測定対象5と接続には、溶接、接着剤、ねじ、圧着、はんだなど様々な手法を採用できる。接続部はひずみ伝達基板の両端であっても良いし、全面であっても良い。 接 続 Various methods such as welding, adhesive, screw, crimping, and soldering can be used to connect the strain transmission substrate 11 and the measurement target 5. The connecting portion may be at both ends of the strain transmission substrate, or may be the entire surface.
 測定対象のひずみを損失なくひずみ伝達基板ならびに半導体素子に伝達しなければ、高精度な測定が実現できない。そのため、固定方法は強固な接続が必要である。たとえひずみ伝達基板11と測定対象5とを接着剤で全面接続する場合でも、硬い接着剤を用いることが望ましい。 ∙ High-precision measurement cannot be realized unless the strain to be measured is transmitted to the strain transmission board and semiconductor element without loss. Therefore, the fixing method requires a strong connection. Even when the strain transmission substrate 11 and the measuring object 5 are connected to the whole surface with an adhesive, it is desirable to use a hard adhesive.
 続いて、回路基板2に接続される電源線15と信号線16とが接続される構成について説明する。接続された回路基板2は少なくとも電力と信号を中継する機能を持ち、電源線15と信号線16は、それぞれ半導体素子10に接続される電源線13と信号線14とに接続されている。 Subsequently, a configuration in which the power supply line 15 and the signal line 16 connected to the circuit board 2 are connected will be described. The connected circuit board 2 has at least a function of relaying power and signals, and the power supply line 15 and the signal line 16 are connected to the power supply line 13 and the signal line 14 connected to the semiconductor element 10, respectively.
 電源線13,15、信号線14、16は、被覆された金属ワイヤ、カーボン線、フレキシブル基板等で構成されていてもよい。なお、電源線13と信号線14は、第一の封止材3により封止されるため、被覆されない金属線で構成することも可能である。この場合は、第一の封止材3が被覆材の役割を担うことができる。 The power supply lines 13 and 15 and the signal lines 14 and 16 may be formed of a coated metal wire, a carbon wire, a flexible substrate, or the like. In addition, since the power supply line 13 and the signal line 14 are sealed with the 1st sealing material 3, they can also be comprised with the metal wire which is not coat | covered. In this case, the first sealing material 3 can serve as a covering material.
 必要に応じて、半導体素子10の制御回路、蓄電回路、発電デバイス、有線用の電力・信号線・コネクタ、無線用の電力・信号送信回路・アンテナ、フィルタリング回路、測定データの表示装置などの機能を有していてもよい。なお、回路基板2はプリント基板がむき出しとなる状態ではなく、ケース内に収められていても良い。 Functions such as control circuit for semiconductor element 10, power storage circuit, power generation device, wired power / signal line / connector, wireless power / signal transmission circuit / antenna, filtering circuit, measurement data display device, etc. You may have. Note that the circuit board 2 may not be in a state where the printed board is exposed, but may be housed in a case.
 センサユニット1と回路基板2とを測定対象面に第二の封止材4でまとめて固定される様子について説明する。 The state in which the sensor unit 1 and the circuit board 2 are fixed together on the measurement target surface with the second sealing material 4 will be described.
 具体的には、半導体素子10と半導体素子10に接続される電源線13および信号線14とを封止する第一の封止材3と、第一の封止材3で被覆されていない回路基板2と、回路基板2に接続される電源線15および信号線16のうち第一の封止材3で覆われていない一部分と、ひずみ伝達基板11の主面である上面と側面と、を覆うように第二の封止材4を用いて接着または固定されている。 Specifically, the first sealing material 3 that seals the semiconductor element 10 and the power supply line 13 and the signal line 14 connected to the semiconductor element 10, and a circuit that is not covered with the first sealing material 3 The substrate 2, a portion of the power supply line 15 and the signal line 16 connected to the circuit board 2 that are not covered with the first sealing material 3, and an upper surface and a side surface that are main surfaces of the strain transmission substrate 11. It is adhered or fixed using the second sealing material 4 so as to cover it.
 このようにして、第二の封止材4によって、測定対象5に取り付けられ、固定されている。この第二の封止材4で封止されたものをひずみ検出システムと呼ぶ。 In this way, the second sealing material 4 is attached and fixed to the measurement object 5. What is sealed with the second sealing material 4 is called a strain detection system.
 この半導体素子10等を覆う第一の封止材3は、センサユニット1を測定対象5に取り付ける前に硬化していることが望ましい。測定対象5に取り付ける前に硬化させておくことで、次の工程での取り付け作業時間を削減できる。 The first sealing material 3 covering the semiconductor element 10 and the like is preferably cured before the sensor unit 1 is attached to the measurement object 5. By hardening before attaching to the measuring object 5, the attachment work time in the next step can be reduced.
 ここで、実施例1の構成を測定対象5に対して取り付ける方法について説明する。 Here, a method for attaching the configuration of the first embodiment to the measurement object 5 will be described.
 まず、第一の工程として、半導体素子10と、接合材12と、半導体素子10に接続された電源線13および信号線14の一部または全部と、電源線15と信号線16の一部とひずみ伝達基板11と、を第一の封止材3で封止する。ここで、電源線15と信号線16の一端は、電源線13と信号線16とにそれぞれ接続されている。もう一端は、次の工程で、回路基板2に接続されることとなる。 First, as a first step, the semiconductor element 10, the bonding material 12, a part or all of the power supply line 13 and the signal line 14 connected to the semiconductor element 10, and a part of the power supply line 15 and the signal line 16 The strain transmitting substrate 11 is sealed with the first sealing material 3. Here, one end of the power supply line 15 and the signal line 16 is connected to the power supply line 13 and the signal line 16, respectively. The other end is connected to the circuit board 2 in the next step.
 第二の工程は、封止されたセンサユニット1と回路基板2を測定対象5に固定する。併せて、電源線15と信号線16を回路基板2に接続する。 In the second step, the sealed sensor unit 1 and circuit board 2 are fixed to the measurement object 5. In addition, the power supply line 15 and the signal line 16 are connected to the circuit board 2.
 第三の工程は、固定されたセンサユニット1と回路基板2とを、第二の封止材2で封止し硬化させる。 In the third step, the fixed sensor unit 1 and the circuit board 2 are sealed with the second sealing material 2 and cured.
 上記の取り付け工程によって、測定対象5にセンサユニット1等を取り付けてからは、封止材の硬化は第二の封止材4の封止時間だけであるので、取り付け作業時間を減らすことができる。つまり、取り付け作業時間のうち多くを占める硬化時間を減少させた上で、取り付け自体も容易となる。 After the sensor unit 1 or the like is attached to the measurement object 5 by the above attachment process, the hardening of the sealing material is only the sealing time of the second sealing material 4, so that the installation work time can be reduced. . That is, the mounting itself is facilitated while reducing the curing time that occupies most of the mounting work time.
 また、予め半導体素子10を第一の封止材3で封止していることから、半導体素子10は外気に晒される時間が短くなるため、半導体素子10の寿命を延ばすことができる。 In addition, since the semiconductor element 10 is sealed with the first sealing material 3 in advance, the semiconductor element 10 is exposed to the outside air for a short time, so that the life of the semiconductor element 10 can be extended.
 実施例1の変形例である実施例2について図3を用いて説明する。図1,2と同一の符号については説明を省略する。 Example 2 which is a modification of Example 1 will be described with reference to FIG. The description of the same reference numerals as those in FIGS.
 回路基板2の下面と測定対象5との間に構成される空間にも第二の封止材4を塗布した様子が示される。つまり、回路基板2は第二の封止材4に覆われており、回路基板2は第二の封止材4を介して測定対象5に接続されている。 A state in which the second sealing material 4 is also applied to the space formed between the lower surface of the circuit board 2 and the measurement object 5 is shown. That is, the circuit board 2 is covered with the second sealing material 4, and the circuit board 2 is connected to the measurement object 5 via the second sealing material 4.
 この場合は、第二の封止材4で回路基板2を測定対象5に仮固定することができ、当該封止材4の完全硬化を待つことなく、回路基板上面やセンサユニット周囲を第二の封止材4で封止できる。これにより仮固定および硬化の時間も削減することが可能となる。 In this case, the circuit board 2 can be temporarily fixed to the measurement object 5 with the second sealing material 4, and the second surface of the circuit board and the sensor unit periphery can be secured without waiting for the sealing material 4 to be completely cured. The sealing material 4 can be used for sealing. Thereby, the time for temporary fixing and curing can be reduced.
 また、第二の封止材4は、半導体素子10ならびに電源線15、信号線16、回路基板2への耐湿性、耐応力・衝撃性を付与することが可能となる。ただし、第二の封止材4は、センサ測定値に影響しない程度の柔軟性を有する必要がある。 Further, the second sealing material 4 can impart moisture resistance, stress resistance, and impact resistance to the semiconductor element 10, the power supply line 15, the signal line 16, and the circuit board 2. However, the second sealing material 4 needs to have a degree of flexibility that does not affect the sensor measurement value.
 また、第二の封止材4は、第一の封止材3とは異なり、屋外で用いる場合に測定対象5に取り付ける役割を果たす。 Also, unlike the first sealing material 3, the second sealing material 4 plays a role of attaching to the measuring object 5 when used outdoors.
 そこで、適切な材料としては、フッ素系、シリコーン系、エポキシ系、ウレタン系、オレフィン系、アクリル系などの樹脂の中で、一液性湿気硬化型の樹脂が使いやすい。材料自体の柔らかさと水分との相性等を考慮し、屋外環境に適しているためである。 Therefore, as a suitable material, a one-component moisture-curing resin is easy to use among fluorine-based, silicone-based, epoxy-based, urethane-based, olefin-based, acrylic-based resins, and the like. This is because the softness of the material itself and the compatibility between moisture and the like are taken into consideration and it is suitable for the outdoor environment.
 ここで、測定対象5にセンサユニット1や回路基板の取り付ける場合に、電源が確保できるようであれば、ヒータを用いて熱硬化型の樹脂も適用できる。壁面や天井面への取り付けの場合、非流動性の樹脂が望ましい。 Here, when the sensor unit 1 or the circuit board is attached to the measurement target 5, if a power source can be secured, a thermosetting resin can be applied using a heater. In the case of mounting on a wall surface or ceiling surface, non-flowable resin is desirable.
 流動性の樹脂の場合、塗布後、硬化するまでの間に樹脂が液ダレし、所定の場所に基板を固定できなかったり、所定の封止部を封止できなかったりするためである。なお、硬化時間中に、第二の封止材4を覆う等によって液ダレを起こさないようにすることで、流動性の樹脂も使用することが可能である。 This is because in the case of a fluid resin, the resin drips before being cured after being applied, and the substrate cannot be fixed at a predetermined place or a predetermined sealing portion cannot be sealed. In addition, fluid resin can also be used by preventing liquid dripping by covering the second sealing material 4 during the curing time.
 このようにして取り付けた実施例2のセンサ構造について、外部電源からセンサユニット1等を稼動させ、測定値を外部表示装置に表示させた。屋外の風雨に曝される環境下で長期間、安定して測定できることを確認した。 For the sensor structure of Example 2 attached in this way, the sensor unit 1 and the like were operated from an external power source, and the measured values were displayed on the external display device. It was confirmed that measurements can be performed stably for a long time in an environment exposed to outdoor wind and rain.
 次に、実施例3について図4を用いて説明する。実施例1,2で説明した符号と同一の符号については説明を省略する。 Next, Example 3 will be described with reference to FIG. The description of the same reference numerals as those described in the first and second embodiments is omitted.
 実施例1説明したセンサ構造であるセンサユニット1を第一の封止材3で封止し、回路基板2を第二の封止材4で封止した構造に追加して、その周囲をさらに金属または樹脂の保護カバー6で覆い、保護カバー6も第三の封止材4aで固定した様子を示す。 The sensor unit 1 having the sensor structure described in the first embodiment is sealed with the first sealing material 3, and the circuit board 2 is added to the structure sealed with the second sealing material 4. A state in which the protective cover 6 is covered with a metal or resin cover 6 and the protective cover 6 is also fixed with the third sealing material 4a is shown.
 保護カバー6を覆う第三の封止材4aはどのような封止材を用いてもよい。望ましくは、外気に晒されることから、耐水性があるものや、防汚性の高い材料であるとよい。 Any sealing material may be used for the third sealing material 4 a covering the protective cover 6. Desirably, the material is water-resistant or highly antifouling because it is exposed to the outside air.
 また、第二の封止材4と同一の材料からなる封止材を用いることで、硬化時間をコントロールしやすくなる。また、センサユニット1等の取り付け作業の際には、複数の封止材を用意する必要がないため、作業性を向上させることができる。 Moreover, it becomes easy to control the curing time by using a sealing material made of the same material as the second sealing material 4. In addition, when the sensor unit 1 or the like is attached, it is not necessary to prepare a plurality of sealing materials, so that workability can be improved.
 本保護カバー6を設けること第二の封止材4を保護でき、ひいては、外部環境からの半導体素子10を含むセンサユニット1への影響を小さくすることできる。また、石などの衝突などの大きな応力からセンサの破壊を抑制できる。この構成によって、耐衝撃性は保護カバー6が担うことができるため、第二の封止材4の材料は、他の特性がよいものを選択することができ、材料の選択性が向上する。 The provision of the protective cover 6 can protect the second sealing material 4 and, in turn, can reduce the influence on the sensor unit 1 including the semiconductor element 10 from the external environment. In addition, the sensor can be prevented from being destroyed due to a large stress such as a collision with a stone. With this configuration, since the protective cover 6 can bear the impact resistance, the material of the second sealing material 4 can be selected to have other characteristics, and the material selectivity is improved.
 保護カバー6を金属部材、例えば、アルミニウムやSUS、鉄等の材料を用いることで、外乱である電磁波等の雑音を低減させることが可能となる。これにより、半導体素子の検出精度が向上する。この場合は、電源のグランド側に接続させるか、測定対象物と共に電気的に接地するとよい。金属部材の表面は酸化被膜等により保護できるものであれば、当該保護膜を施すと強度等が向上する。 By using a metal member such as aluminum, SUS, or iron for the protective cover 6, noise such as electromagnetic waves that are disturbances can be reduced. Thereby, the detection accuracy of the semiconductor element is improved. In this case, it may be connected to the ground side of the power source or electrically grounded together with the measurement object. If the surface of the metal member can be protected by an oxide film or the like, the strength and the like are improved by applying the protective film.
 なお、第三の封止材4aを除いた構成とすることもできる。この場合は、保護カバー6は第二の封止材4により固定されることとなる。 In addition, it can also be set as the structure except the 3rd sealing material 4a. In this case, the protective cover 6 is fixed by the second sealing material 4.
 図5に示すように、実施例3で作製したセンサ構造と異なる構成を中心に説明する。 As shown in FIG. 5, the description will focus on a configuration different from the sensor structure produced in Example 3.
 実施例3は、保護カバー6の内部構造は第二の封止材4で充填されていたのに対して、本実施例では、第二の封止材4と保護カバー6との間は空隙7で構成されている点が異なる。すなわち、センサユニット1と回路基板2を封止する第二の封止材4と、保護カバー6との間に、空隙7を設けた。 In the third embodiment, the internal structure of the protective cover 6 is filled with the second sealing material 4, whereas in the present embodiment, there is a gap between the second sealing material 4 and the protective cover 6. 7 is different. In other words, the gap 7 was provided between the second sealing material 4 that seals the sensor unit 1 and the circuit board 2 and the protective cover 6.
 この構造により、保護カバー6に石などが当たった場合には、その衝撃が半導体素子10に伝達されることとなるが、空隙7を設けることによって、保護カバー6内部の第二の封止材4に伝わらない。そのため、石などの外乱による衝撃または振動等が半導体素子10であるセンサがひずみを測定する値に上乗せされる現象を回避できる。これにより、測定対象5に生じるひずみの測定値の信頼性を向上できた。 With this structure, when a stone or the like hits the protective cover 6, the impact is transmitted to the semiconductor element 10. By providing the gap 7, the second sealing material inside the protective cover 6 is provided. Not transmitted to 4. For this reason, it is possible to avoid a phenomenon in which an impact or vibration due to a disturbance such as a stone is added to a value at which the sensor which is the semiconductor element 10 measures strain. Thereby, the reliability of the measured value of the strain generated in the measurement object 5 could be improved.
 これら説明したひずみ検出システムの実施例について、半導体素子10が検出したひずみを信号変換したひずみ信号情報は、無線通信により通信されるよう構成することができる。 For the embodiments of the strain detection system described above, the strain signal information obtained by converting the strain detected by the semiconductor element 10 into a signal can be communicated by wireless communication.
 つまり、第二の封止材4によってセンサユニット1等のひずみセンサ構造体が封止されているが、回路基板2等に無線通信モジュールを付加することでセンサユニット1等から離れた位置で、測定対象5のひずみを検出可能することができる。 That is, the strain sensor structure such as the sensor unit 1 is sealed by the second sealing material 4, but at a position away from the sensor unit 1 by adding a wireless communication module to the circuit board 2 or the like, The strain of the measuring object 5 can be detected.
 また、このように無線通信によって、ひずみ情報を受信し、ディスプレイ等にひずみ情報を表示することで遠隔監視も可能となる。このディスプレイ等の
 なお、無線通信だけでなく、第二の封止材4や保護カバー6を貫通するように信号線や電源線を通すことで、有線でも通信が可能である。センサユニット1等の構成を封止することを考慮すると無線通信を採用し、ひずみセンサ構造体全体を封止材で覆うことが望ましい。
In addition, remote monitoring is also possible by receiving strain information through wireless communication and displaying the strain information on a display or the like. Note that not only wireless communication but also wired communication is possible by passing a signal line or a power line so as to penetrate the second sealing material 4 or the protective cover 6. In consideration of sealing the configuration of the sensor unit 1 and the like, it is desirable to employ wireless communication and cover the entire strain sensor structure with a sealing material.
 以上、本発明者によってなされた発明の実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。 As described above, the present invention has been specifically described based on the embodiment of the invention. However, the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.
 ひずみの測定対象については、橋梁、トンネル、発電プラント、風車などの大型構造物から、自動車、鉄道、建設機械などの移動体、モーター、ボイラー、工作機器などの産業装置、床、柵などの構造体、パワーモジュールなどの電子部品の内部など様々挙げられる。 Strain is measured from large structures such as bridges, tunnels, power plants, and windmills, to mobile bodies such as automobiles, railways, and construction machines, industrial equipment such as motors, boilers, and machine tools, and structures such as floors and fences. Various examples include the inside of electronic parts such as bodies and power modules.
 測定する物理量はひずみが基本となるが、圧力や振動、トルクなど、ひずみを測定することで様々な物理量を推定することもできる。 The physical quantity to be measured is basically strain, but various physical quantities can be estimated by measuring strain such as pressure, vibration, and torque.
1・・・センサユニット
10・・・半導体素子
11・・・ひずみ伝達基板
12・・・接合材
13、15・・・電源線
14、16・・・信号線
2・・・回路基板
3・・・第一の封止材
4・・・第二の封止材
4a・・・第三の封止材
5・・・測定対象
6・・・保護カバー
7・・・空隙
DESCRIPTION OF SYMBOLS 1 ... Sensor unit 10 ... Semiconductor element 11 ... Strain transmission board | substrate 12 ... Bonding material 13, 15 ... Power supply line 14, 16 ... Signal line 2 ... Circuit board 3 ... -1st sealing material 4 ... 2nd sealing material 4a ... 3rd sealing material 5 ... Measurement object 6 ... Protective cover 7 ... Air gap

Claims (15)

  1.  ひずみを検出する半導体素子と、
     前記半導体素子へひずみを伝達させる基板と、
     前記半導体素子と前記伝達させる基板とを接合する接合材とを有しており、
     前記半導体素子と、前記接合材と、前記伝達させる基板と、を第一の封止材により封止されたひずみ計測部と、
     前記ひずみ計測部と、ひずみ計測部と接続された回路基板とを、第二の封止材により封止されたこと
    を特徴とするひずみ検出システム。
    A semiconductor element for detecting strain;
    A substrate for transmitting strain to the semiconductor element;
    A bonding material for bonding the semiconductor element and the substrate to be transmitted;
    A strain measuring unit in which the semiconductor element, the bonding material, and the substrate to be transmitted are sealed with a first sealing material;
    A strain detection system, wherein the strain measurement unit and a circuit board connected to the strain measurement unit are sealed with a second sealing material.
  2.  請求項1に記載のひずみ検出システムであって、
     前記半導体素子に接続された電源線と信号線を有しており、
     前記半導体素子に接続された電源線と信号線は前記第一の封止材により封止されたこと
    を特徴とするひずみ検出システム。
    The strain detection system according to claim 1,
    A power line and a signal line connected to the semiconductor element;
    A strain detection system, wherein a power supply line and a signal line connected to the semiconductor element are sealed with the first sealing material.
  3.  請求項1に記載のひずみ検出システムであって、
     前記半導体素子に接続された電源線と信号線を有しており、
     前記半導体素子に接続された電源線と信号線は、前記回路基板に接続された電源線と信号線とにそれぞれ接続され、
     前記半導体素子に接続された電源線と信号線と、前記回路基板に接続された電源線と信号線の一部とが、前記第一の封止材により封止されたこと
    を特徴とするひずみ検出システム。
    The strain detection system according to claim 1,
    A power line and a signal line connected to the semiconductor element;
    The power line and the signal line connected to the semiconductor element are respectively connected to the power line and the signal line connected to the circuit board,
    A strain characterized in that a power line and a signal line connected to the semiconductor element, and a part of the power line and the signal line connected to the circuit board are sealed with the first sealing material. Detection system.
  4.  請求項1に記載のひずみ検出システムであって、
     前記回路基板の底面が第二の封止材で覆われたこと
    を特徴とするひずみ検出システム。
    The strain detection system according to claim 1,
    A strain detection system, wherein a bottom surface of the circuit board is covered with a second sealing material.
  5.  請求項1に記載のひずみ検出システムであって、
     前記第二の封止材の外周部には保護部材が設けられたこと
    を特徴とするひずみ検出システム。
    The strain detection system according to claim 1,
    A strain detection system, wherein a protective member is provided on an outer peripheral portion of the second sealing material.
  6.  請求項5に記載のひずみ検出システムであって、
     前記保護部材と前記第二の封止材とが構成される空間は空隙であること
    を特徴とするひずみ検出システム。
    The strain detection system according to claim 5,
    The strain detection system, wherein a space in which the protective member and the second sealing material are formed is a gap.
  7.  請求項5に記載のひずみ検出システムであって、
     前記保護部材の外周は前記第二の封止材で接着されたこと
    を特徴とするひずみ検出システム。
    The strain detection system according to claim 5,
    The strain detection system, wherein an outer periphery of the protective member is bonded with the second sealing material.
  8.  請求項5に記載のひずみ検出システムであって、
     前記保護部材は金属で構成され、電気的に接地されていること
    を特徴とするひずみ検出システム。
    The strain detection system according to claim 5,
    The strain detection system, wherein the protection member is made of metal and is electrically grounded.
  9.  請求項1に記載のひずみ検出システムであって、
     前記第二の封止材は前記第一の封止材と異なる材料で構成されること
    を特徴とするひずみ検出システム。
    The strain detection system according to claim 1,
    The strain detection system, wherein the second sealing material is made of a material different from that of the first sealing material.
  10.  請求項1に記載のひずみ検出システムであって、
     回路基板に接続される送信手段と、前記回路基板とは異なる基板に接続される受信手段と、表示手段と、を有しており、
     前記送信手段は、前記ひずみ計測部によって取得されたひずみ情報を送信し、
     前記受信手段は、送信された前記ひずみ情報を受信し、
     前記表示手段は、受信されたひずみ情報に基づいた情報を表示すること
    を特徴とするひずみ検出システム。
    The strain detection system according to claim 1,
    A transmission means connected to the circuit board, a reception means connected to a board different from the circuit board, and a display means,
    The transmission means transmits strain information acquired by the strain measurement unit,
    The receiving means receives the transmitted strain information;
    The display means displays information based on the received strain information.
  11.  請求項1に記載のひずみ検出システムであって、
     前記伝達させる基板は、屋外の計測対象に取り付けられたこと
    を特徴とするひずみ検出システム。
    The strain detection system according to claim 1,
    The strain detection system, wherein the substrate to be transmitted is attached to an outdoor measurement target.
  12.  請求項11に記載のひずみ検出システムであって、
     前記計測対象は、社会インフラ構造物、移動体または産業機器であること
    を特徴とするひずみ検出システム。
    The strain detection system according to claim 11,
    The measurement object is a social infrastructure structure, a mobile object, or an industrial device.
  13.  請求項1に記載のひずみ検出システムであって、
     前記第二の封止材の弾性率は前記第一の封止材の弾性率よりも高いこと
    を特徴とするひずみ検出システム。
    The strain detection system according to claim 1,
    The strain detection system, wherein the elastic modulus of the second sealing material is higher than the elastic modulus of the first sealing material.
  14.  請求項13に記載のひずみ検出システムであって、
     前記第一の封止材の弾性率は10MPa以下であって、
     前記第二の封止材の弾性率は、100kPaから1GPaの範囲内であること
    を特徴とするひずみ検出システム。
    The strain detection system according to claim 13,
    The elastic modulus of the first sealing material is 10 MPa or less,
    The strain detection system, wherein the elastic modulus of the second sealing material is in a range of 100 kPa to 1 GPa.
  15.  ひずみを検出する部材と、前記ひずみを検出する部材に接続された電源線および信号線の一部または全部と、をセンサユニットとして第一の封止材で接着固定する工程と、
     接着センサユニットと、回路基板とを測定対象物に固定し、前記電源線および信号線と前記回路基板とを接続する取り付け工程と、
     取り付けられたセンサユニットと、前記回路基板と、を第二の封止材2で封止する工程と
    を有するひずみ検出システムの取り付け方法。
    A step of bonding and fixing a member for detecting strain and a part or all of a power line and a signal line connected to the member for detecting strain with a first sealing material as a sensor unit;
    An attachment step of fixing the adhesive sensor unit and the circuit board to the measurement object, and connecting the power supply line and the signal line to the circuit board;
    A method for attaching a strain detection system, comprising: a step of sealing the attached sensor unit and the circuit board with a second sealing material 2.
PCT/JP2015/066960 2015-06-12 2015-06-12 Strain detection system and attachment method WO2016199286A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/066960 WO2016199286A1 (en) 2015-06-12 2015-06-12 Strain detection system and attachment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/066960 WO2016199286A1 (en) 2015-06-12 2015-06-12 Strain detection system and attachment method

Publications (1)

Publication Number Publication Date
WO2016199286A1 true WO2016199286A1 (en) 2016-12-15

Family

ID=57503116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066960 WO2016199286A1 (en) 2015-06-12 2015-06-12 Strain detection system and attachment method

Country Status (1)

Country Link
WO (1) WO2016199286A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022209550A1 (en) 2022-09-13 2024-03-14 Zf Friedrichshafen Ag Connection of a sensor arrangement arranged on a mounting plate with a measurement object
DE102022209554A1 (en) 2022-09-13 2024-03-14 Zf Friedrichshafen Ag Connection of a sensor arrangement with a measurement object
DE102022209552A1 (en) 2022-09-13 2024-03-14 Zf Friedrichshafen Ag Connection of a sensor arrangement arranged on a mounting plate with a measurement object
DE102022209553A1 (en) 2022-09-13 2024-03-14 Zf Friedrichshafen Ag Connection of a sensor arrangement arranged on a mounting plate with a measurement object

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01131425A (en) * 1987-11-17 1989-05-24 Ricoh Co Ltd Force detector
JPH0447271A (en) * 1990-06-15 1992-02-17 Hitachi Ltd Acceleration sensor and method for controlling output voltage thereof
JPH0735628A (en) * 1993-07-16 1995-02-07 Kyowa Electron Instr Co Ltd Structure and method for covering strain gate affixed part
JP2005156298A (en) * 2003-11-25 2005-06-16 Hitachi Ltd Wheel load/lateral pressure measuring apparatus
JP2006339503A (en) * 2005-06-03 2006-12-14 Mitsubishi Gas Chem Co Inc Printed circuit board for semiconductor package
JP2011179817A (en) * 2010-02-26 2011-09-15 Taiheiyo Cement Corp Strain measuring device and strain measuring system
JP2012035337A (en) * 2010-08-03 2012-02-23 Dainippon Printing Co Ltd Mems device and method for manufacturing the same
WO2013084294A1 (en) * 2011-12-06 2013-06-13 株式会社日立製作所 Dynamic quantity measuring device
JP2015094646A (en) * 2013-11-12 2015-05-18 日立オートモティブシステムズ株式会社 Dynamic quantity measuring device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01131425A (en) * 1987-11-17 1989-05-24 Ricoh Co Ltd Force detector
JPH0447271A (en) * 1990-06-15 1992-02-17 Hitachi Ltd Acceleration sensor and method for controlling output voltage thereof
JPH0735628A (en) * 1993-07-16 1995-02-07 Kyowa Electron Instr Co Ltd Structure and method for covering strain gate affixed part
JP2005156298A (en) * 2003-11-25 2005-06-16 Hitachi Ltd Wheel load/lateral pressure measuring apparatus
JP2006339503A (en) * 2005-06-03 2006-12-14 Mitsubishi Gas Chem Co Inc Printed circuit board for semiconductor package
JP2011179817A (en) * 2010-02-26 2011-09-15 Taiheiyo Cement Corp Strain measuring device and strain measuring system
JP2012035337A (en) * 2010-08-03 2012-02-23 Dainippon Printing Co Ltd Mems device and method for manufacturing the same
WO2013084294A1 (en) * 2011-12-06 2013-06-13 株式会社日立製作所 Dynamic quantity measuring device
JP2015094646A (en) * 2013-11-12 2015-05-18 日立オートモティブシステムズ株式会社 Dynamic quantity measuring device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022209550A1 (en) 2022-09-13 2024-03-14 Zf Friedrichshafen Ag Connection of a sensor arrangement arranged on a mounting plate with a measurement object
DE102022209554A1 (en) 2022-09-13 2024-03-14 Zf Friedrichshafen Ag Connection of a sensor arrangement with a measurement object
DE102022209552A1 (en) 2022-09-13 2024-03-14 Zf Friedrichshafen Ag Connection of a sensor arrangement arranged on a mounting plate with a measurement object
DE102022209553A1 (en) 2022-09-13 2024-03-14 Zf Friedrichshafen Ag Connection of a sensor arrangement arranged on a mounting plate with a measurement object

Similar Documents

Publication Publication Date Title
WO2016199286A1 (en) Strain detection system and attachment method
US20170315035A1 (en) Tensile Stress Measurement Device with Attachment Plates and Related Methods
US20080222884A1 (en) Packaging for chip-on-board pressure sensor
US10775407B2 (en) Sensor system and cover device for a sensor system
JP4379360B2 (en) Mechanical quantity measuring device
US8436433B1 (en) Unattached contained semiconductor devices
CN102132136A (en) Sensor device packaging and method
JP2007255953A (en) Dynamic quantity measuring device
CN102714031B (en) There is the sensor of damping unit
US20170182786A1 (en) Encapsulants to retain wires at bond pads
JP2013186030A (en) Sensor module, force detection device, and robot
EP2574891B1 (en) Temperature sensor attachment facilitating thermal conductivity to a measurement point and insulation from a surrounding environment
EP2886904B1 (en) Integral housing load cell system and apparatus
CN105424238A (en) Stress strain sensor
JP5717972B2 (en) Strain measuring device and strain measuring system
US9030842B2 (en) Sealed overmolded circuit board with sensor seal and edge connector seal and production method of the same
CN207850282U (en) A kind of strain gauge of sensor
JP2018040758A (en) Pressure sensor, relay board thereof, and relay board unit thereof
US20130113055A1 (en) Sensor device manufacturing method and sensor device
KR101732710B1 (en) A Sensor Array with a Structure of Flexible Strip and a method for Producing the Same
JP2008076264A (en) Compound sensor
CN111566462A (en) Pressure measuring unit and connection unit for a motor vehicle transmission
JP7383312B2 (en) wireless sensor
US20230086733A1 (en) Apparatus and method for the detection of properties of a pipe
JP2020112355A (en) Temperature sensor device and sensor system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15894971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP