JP2015094646A - Dynamic quantity measuring device - Google Patents

Dynamic quantity measuring device Download PDF

Info

Publication number
JP2015094646A
JP2015094646A JP2013233616A JP2013233616A JP2015094646A JP 2015094646 A JP2015094646 A JP 2015094646A JP 2013233616 A JP2013233616 A JP 2013233616A JP 2013233616 A JP2013233616 A JP 2013233616A JP 2015094646 A JP2015094646 A JP 2015094646A
Authority
JP
Japan
Prior art keywords
strain
semiconductor chip
plate material
mounting surface
resin substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013233616A
Other languages
Japanese (ja)
Inventor
高田 健太郎
Kentaro Takada
健太郎 高田
相馬 敦郎
Atsuro Soma
敦郎 相馬
芦田 喜章
Yoshiaki Ashida
喜章 芦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2013233616A priority Critical patent/JP2015094646A/en
Publication of JP2015094646A publication Critical patent/JP2015094646A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a dynamic quantity measuring device that can reduce the amount of strain applied to substrates and electronic components so as to secure reliability.SOLUTION: A dynamic quantity measuring device includes: a semiconductor chip that includes a plurality of semiconductor piezoresistors and includes a plurality of electrodes electrically connected to the plurality of semiconductor piezoresistors; an electrode section that includes a plurality of wirings electrically connected to the plurality of electrodes; a chip mounting surface where the semiconductor chip is mounted; a loading surface that is located on an opposite side of the chip mounting surface and fixed to an object to be measured; a plate material where the semiconductor chip is fixed via a bonding material so as to make a rear surface of the semiconductor chip face the chip mounting surface; a resin substrate that is fixed in an identical direction on a surface parallel to the chip mounting surface of the plate material via an adhesive material; and a wiring section that connects the electrode section and an electrode section of the resin substrate. The plate material includes: a first region facing the rear surface of the semiconductor chip; and a second region facing a rear surface of the resin substrate. The thickness of the second region of the plate material is greater than the thickness of the first region of the plate material.

Description

本発明は、構造物のひずみや応力を測定できる半導体ひずみセンサを用いた力学量測定装置に関する。   The present invention relates to a mechanical quantity measuring apparatus using a semiconductor strain sensor capable of measuring strain and stress of a structure.

背景技術として、例えば、特許文献1にはシリコンなどの半導体を利用した、従来の金属薄膜を用いた歪ゲージよりも高感度な半導体ひずみセンサが記載されている。また、特許文献2には力学量測定装置と同様のものであるロードセルに付属させる電気回路部基板について、前記ロードセルの剛体部にひずみが起こっても、前記電気回路部が安定した動作ができるようなロードセルが記載されている。また、特許文献3にはひずみ量を緩和する伸縮自在部を備えた歪ゲージ用FPC(Flexible Printed Circuits)が記載されている。   As a background art, for example, Patent Document 1 describes a semiconductor strain sensor using a semiconductor such as silicon and having higher sensitivity than a conventional strain gauge using a metal thin film. Further, Patent Document 2 discloses that an electric circuit unit substrate attached to a load cell, which is the same as a mechanical quantity measuring device, can operate stably even if the rigid body portion of the load cell is distorted. A simple load cell is described. Patent Document 3 describes a strain gauge FPC (Flexible Printed Circuits) including a stretchable part that relieves strain.

特開2009−264976号公報JP 2009-264976 A 特開平10−176964号公報Japanese Patent Laid-Open No. 10-176964 特開2012−225685号公報Japanese Patent Application Laid-Open No. 2012-225685

構造物のひずみや応力を測定する方法として、最も普及しているのは、ひずみゲージを用いる方法である。ひずみゲージは、ポリイミドやエポキシ樹脂フィルム上に、Cu−Ni系合金やNi−Cr系合金の金属薄膜の配線パターンを形成して、引出しリード線を設けた構造であり、被測定物に接着剤で接着して使用する。金属薄膜の変形に起因した抵抗値の変化から、ひずみ量を算出することができる。   The most popular method for measuring the strain and stress of a structure is a method using a strain gauge. A strain gauge has a structure in which a wiring pattern of a Cu-Ni alloy or Ni-Cr alloy metal thin film is formed on a polyimide or epoxy resin film and a lead wire is provided. Adhere with and use. The amount of strain can be calculated from the change in resistance value resulting from the deformation of the metal thin film.

これに対して、より高精度なひずみ計測を行う方法として、半導体を用いた半導体ひずみセンサの開発が進んでいる。ひずみ検知部を金属薄膜ではなく、シリコン(Si)などの半導体に不純物をドープして形成した半導体ピエゾ抵抗を利用するデバイスである。半導体ひずみセンサは、ひずみに対する抵抗変化率が金属薄膜を用いたひずみゲージの数10倍と大きく、微小なひずみを測定することが可能である。また、金属薄膜のひずみゲージでは、抵抗変化が小さいため、得られる電気信号を増幅するための外部のアンプが必要となる。半導体ひずみセンサは抵抗変化が大きいため、得られた電気信号を外部のアンプを用いずに使用することもでき、また半導体ひずみセンサの半導体チップにアンプ回路を作りこむことも可能であるため、適用用途や使用上の利便性が大きく広がると期待される。   On the other hand, development of semiconductor strain sensors using semiconductors is progressing as a method for measuring strain with higher accuracy. This is a device that uses a semiconductor piezoresistor formed by doping an impurity in a semiconductor such as silicon (Si) instead of a metal thin film. A semiconductor strain sensor has a resistance change rate with respect to strain as large as several tens of times that of a strain gauge using a metal thin film, and can measure a minute strain. In addition, since the resistance change is small in the metal thin film strain gauge, an external amplifier for amplifying the obtained electric signal is required. Since the semiconductor strain sensor has a large resistance change, the obtained electrical signal can be used without using an external amplifier, and it is also possible to build an amplifier circuit on the semiconductor chip of the semiconductor strain sensor. It is expected that the convenience of use and usage will be greatly expanded.

荷重や力を電気信号に変えるものとして、前記ひずみゲージや前記半導体ひずみセンサを起歪体に貼り付けたロードセルがある。近年、前記ロードセルには、前記ロードセルに必要な電気的機能を搭載した基板も備えられるようになった。前記ロードセルに備えられる前記基板は、前記ロードセルの起歪体に搭載されるため、前記起歪体のひずみの影響を受け、基板上の半田や電子部品等の電気回路部が破損してしまうおそれがあった。従来のロードセルの前記課題の解決方法として特許文献2や特許文献3がある。しかし、電子部品を半田で搭載している基板を接着材を介して起歪体に接着した力学量測定装置では、前記起歪体全体が一様にひずむことと、FPCよりも硬い基板を利用していることから、特許文献2や特許文献3による課題解決ができない。そのため、力学量を測定中における前記電子部品や前記半田へのひずみによる影響に関しては未だ改善の余地が残されている。
本発明の目的は、基板や電子部品にかかるひずみ量を低減し信頼性を確保することである。
There is a load cell in which the strain gauge or the semiconductor strain sensor is attached to a strain generating body as a means for converting a load or force into an electric signal. In recent years, the load cell is also provided with a substrate on which an electrical function necessary for the load cell is mounted. Since the substrate provided in the load cell is mounted on the strain generating body of the load cell, there is a possibility that an electric circuit portion such as solder or electronic parts on the substrate may be damaged due to the strain of the strain generating body. was there. As a method for solving the above-described problem of the conventional load cell, there are Patent Document 2 and Patent Document 3. However, in a mechanical quantity measuring device in which a substrate on which electronic components are mounted with solder is bonded to a strain generating body via an adhesive, the entire strain generating body is uniformly distorted and a substrate harder than FPC is used. Therefore, the problems described in Patent Document 2 and Patent Document 3 cannot be solved. For this reason, there is still room for improvement with respect to the influence of strain on the electronic component and the solder during measurement of the mechanical quantity.
An object of the present invention is to reduce the amount of strain applied to a substrate or an electronic component and ensure reliability.

本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、以下の通りである。複数の半導体ピエゾ抵抗を備え前記複数の半導体ピエゾ抵抗と電気的に接続された複数の電極を備える半導体チップと、前記複数の電極と電気的に接続される複数の配線を備える電極部と、前記半導体チップが搭載されるチップ搭載面と、前記チップ搭載面の反対側に位置し被測定物に固定される実装面と、前記半導体チップの前記裏面が前記チップ搭載面と対向するように前記半導体チップが接合材を介して固定される板材と、前記板材の前記チップ搭載面と平行な面に同じ方向に接着材を介して固定される樹脂基板と、前記電極部と前記樹脂基板の電極部を繋ぐ配線部と、を有し、前記板材は、前記半導体チップの前記裏面と対向する第1領域と、前記樹脂基板の裏面と対向する第2領域と、を備え、前記板材の前記第2領域の厚さは、前記板材の前記第1領域の厚さよりも大きい構成とした。   The present application includes a plurality of means for solving the above-described problems, and an example thereof is as follows. A semiconductor chip comprising a plurality of semiconductor piezoresistors and a plurality of electrodes electrically connected to the plurality of semiconductor piezoresistors; an electrode portion comprising a plurality of wires electrically connected to the plurality of electrodes; A chip mounting surface on which a semiconductor chip is mounted; a mounting surface located on the opposite side of the chip mounting surface and fixed to the object to be measured; and the semiconductor so that the back surface of the semiconductor chip faces the chip mounting surface. A plate member on which a chip is fixed via a bonding material, a resin substrate fixed in the same direction on a surface parallel to the chip mounting surface of the plate member via an adhesive material, the electrode portion, and an electrode portion of the resin substrate And the plate member includes a first region facing the back surface of the semiconductor chip, and a second region facing the back surface of the resin substrate, and the second member of the plate member. The thickness of the area is It was larger configuration than the thickness of the first region of the serial plate.

本発明によれば、力学量測定装置の起歪体に接着された基板にかかるひずみ量を低減することができ、樹脂基板上の電子部品および半田の信頼性を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the distortion amount concerning the board | substrate adhere | attached on the strain body of the mechanical quantity measuring apparatus can be reduced, and the reliability of the electronic component and solder on a resin substrate can be improved.

本発明の一実施の形態である樹脂基板を接着した起歪体を含む力学量測定装置の拡大平面図である。1 is an enlarged plan view of a mechanical quantity measuring device including a strain generating body to which a resin substrate is bonded according to an embodiment of the present invention. 図1のA−A線に沿った拡大断面図であるIt is an expanded sectional view along the AA line of FIG. 板材側面1eの厚さに対する樹脂基板3の上面3aのひずみ量のグラフであるIt is a graph of the distortion amount of the upper surface 3a of the resin substrate 3 with respect to the thickness of the board | plate material side surface 1e. 板材側面1eの厚さと、板材1の搭載面1aに対する樹脂基板3の上面3aのひずみ量低減率のグラフであるIt is a graph of the thickness reduction of the board | plate material side surface 1e, and the distortion amount reduction rate of the upper surface 3a of the resin substrate 3 with respect to the mounting surface 1a of the board | plate material 1. 搭載する電子部品の電極が測定するひずみ方向に並んだ時の力学量測定装置の拡大平面図であるIt is an enlarged plan view of a mechanical quantity measuring device when electrodes of electronic components to be mounted are arranged in a strain direction to be measured. 搭載する電子部品の電極が測定するひずみ方向に対して垂直に並んだ時の力学量測定装置の拡大平面図であるIt is an enlarged plan view of the mechanical quantity measuring device when the electrodes of the electronic components to be mounted are arranged perpendicular to the strain direction to be measured. 電子部品の電極配置パターンを示した平面図であるIt is the top view which showed the electrode arrangement pattern of an electronic component

以下の実施の形態では同一または同様の部分は同一または類似の符号または参照番号で示し、特に必要なとき以外は同一または同様の部分の説明を原則として繰り返さない。さらに、以下の実施の形態では便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明などの関係にある。また、以下の実施の形態において、要素の数など(個数、数値、量、範囲などを含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合などを除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも良いものとする。また、以下の実施の形態において、その構成要素は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、以下の実施の形態において、構成要素等について、「Aからなる」、「Aよりなる」、「Aを有する」、「Aを含む」と言うときは、特にその要素のみである旨明示した場合等を除き、それ以外の要素を排除するものでないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。   In the following embodiments, the same or similar parts are denoted by the same or similar reference numerals or reference numerals, and the description of the same or similar parts will not be repeated in principle unless particularly necessary. Further, in the following embodiment, when it is necessary for the sake of convenience, the description will be divided into a plurality of sections or embodiments, but they are not irrelevant to each other unless otherwise specified. The other part or all of the modifications, details, supplementary explanations, and the like are related. Also, in the following embodiments, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), particularly when clearly indicated and when clearly limited to a specific number in principle, etc. Except, it is not limited to the specific number, and it may be more or less than the specific number. In the following embodiments, it is needless to say that the constituent elements are not necessarily indispensable except for the case where they are clearly indicated and the case where they are clearly considered to be indispensable in principle. Further, in the following embodiments, regarding constituent elements and the like, when “consisting of A”, “consisting of A”, “having A”, and “including A” are specifically indicated that only those elements are included. It goes without saying that other elements are not excluded except in the case of such cases. Similarly, in the following embodiments, when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numerical values and ranges.

また、添付図面においては、却って、煩雑になる場合または空隙との区別が明確である場合には、断面であってもハッチング等を省略する場合がある。これに関連して、説明等から明らかである場合等には、平面的に閉じた孔であっても、背景の輪郭線を省略する場合がある。更に、断面でなくとも、空隙でないことを明示するために、ハッチングを付すことがある。   In the accompanying drawings, hatching or the like may be omitted even in a cross section when it becomes complicated or when the distinction from the gap is clear. In relation to this, when it is clear from the description etc., the contour line of the background may be omitted even if the hole is planarly closed. Furthermore, even if it is not a cross section, it may be hatched to clearly indicate that it is not a void.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments, and the repetitive description thereof will be omitted.

本実施の形態の力学量測定装置の基本構成について図を用いて説明する。なお、図1では封止体8の内部構造を示すため封止体8の輪郭を二点鎖線で示し、封止体8を透過した内部構造を示している。   A basic configuration of the mechanical quantity measuring apparatus according to the present embodiment will be described with reference to the drawings. In FIG. 1, in order to show the internal structure of the sealing body 8, the outline of the sealing body 8 is indicated by a two-dot chain line, and the internal structure that has passed through the sealing body 8 is illustrated.

図1および図2に示すように、本実施の形態である力学量測定装置12は、起歪体1の実装面1aにおいて接着剤18を介して構造物19に接着され、構造物19のひずみ量を測定するものである。力学量測定装置12は内部に半導体ピエゾ抵抗を備えた半導体ひずみセンサである半導体チップ2と、接合材14を介して半導体チップ2が搭載される板材1と、半導体チップ2を封止する封止体8と、板材1に接着材7を介して接合され、かつ半導体チップ2と半導体チップ2に搭載される配線接続部10及びワイヤ(導電性部材)11を介して電気的に接続される電気回路部を持つ基板13と、を有している。半導体チップ2と板材1を接合する接合材は、本実施例では金属素材としているが、前記金属素材に限らず樹脂素材等でも問題ない。また、基板13は板材1の上面1cに接着材7を介して接合される樹脂基板3と、樹脂基板3にプリント配線されるプリント線15と、樹脂基板3上の複数の電極17に半田6を介して電気接続部16と接続される電子部品4と、を有している。板材1はヤング率197GPaのステンレス鋼であり、樹脂基板3はヤング率20GPaのガラスエポキシ基板で構成される。前記それぞれのヤング率は、ステンレス鋼のヤング率よりガラスエポキシ基板のヤング率の方が小さいことを除けば、各素材の構成によってその数値に限定されるものではない。   As shown in FIGS. 1 and 2, the mechanical quantity measuring device 12 according to the present embodiment is bonded to the structure 19 via the adhesive 18 on the mounting surface 1 a of the strain generating body 1, and the strain of the structure 19 is The amount is to be measured. The mechanical quantity measuring device 12 includes a semiconductor chip 2 which is a semiconductor strain sensor having a semiconductor piezoresistor inside, a plate material 1 on which the semiconductor chip 2 is mounted via a bonding material 14, and a seal for sealing the semiconductor chip 2. The body 8 is electrically connected to the plate member 1 via the adhesive 7 and is electrically connected via the semiconductor chip 2 and the wiring connection part 10 and the wire (conductive member) 11 mounted on the semiconductor chip 2. And a substrate 13 having a circuit portion. In the present embodiment, the bonding material for bonding the semiconductor chip 2 and the plate material 1 is a metal material. However, the present invention is not limited to the metal material, and there is no problem with a resin material or the like. Further, the substrate 13 is soldered to the resin substrate 3 bonded to the upper surface 1c of the plate member 1 via the adhesive 7, the printed line 15 printed on the resin substrate 3, and the plurality of electrodes 17 on the resin substrate 3. The electronic component 4 is connected to the electrical connection portion 16 via the connector. The plate material 1 is stainless steel having a Young's modulus of 197 GPa, and the resin substrate 3 is composed of a glass epoxy substrate having a Young's modulus of 20 GPa. The respective Young's moduli are not limited to the numerical values depending on the composition of each material except that the Young's modulus of the glass epoxy substrate is smaller than that of stainless steel.

図2に示す例では、板材1は半導体チップ2が搭載される領域31と、基板13が搭載される領域32と、を備え、領域32の上面1cは半導体チップが搭載される領域32の上面1bよりも構造物19から離れた位置に配置される。つまり領域31の板材1の側面1dの厚さよりも領域32の板材1の側面1eの厚さの方が大きい。一方、板材1の実装面1aは、構造体19との接着強度を保つため、領域31、32共に平坦化されている。このように板材1において、領域31よりも領域32を厚くすることで得られる効果は後述する。   In the example shown in FIG. 2, the plate 1 includes a region 31 where the semiconductor chip 2 is mounted and a region 32 where the substrate 13 is mounted, and the upper surface 1 c of the region 32 is the upper surface of the region 32 where the semiconductor chip is mounted. It arrange | positions in the position away from the structure 19 rather than 1b. That is, the thickness of the side surface 1e of the plate 1 in the region 32 is larger than the thickness of the side 1d of the plate 1 in the region 31. On the other hand, the mounting surface 1 a of the plate 1 is flattened in both the regions 31 and 32 in order to maintain the adhesive strength with the structure 19. Thus, the effect obtained by making the area | region 32 thicker than the area | region 31 in the board | plate material 1 is mentioned later.

図1および図2に示すように、基板13の樹脂基板3の上面3aには半導体チップ2の複数の電極10と電気的に接続される複数のワイヤ11が接続される複数の電極9が配置される。前記配線はワイヤボンディング技術をもちいて行われている。また、樹脂基板3上の配線においては、樹脂基板3上の電極9から複数のプリント配線15を介して電極17および半田6に電気的に接続され、電子部品4の電極16と電気的に接続する。電子部品4については、例えば測定したひずみ量のデータを伝達するコネクタ、もしくは抵抗、コンデンサ等をさすが、半田で接合可能な電気的機能を持った電子部品であること以外は特に限定しない。ワイヤ11は例えば線径が10μm〜200μm程度の金線(Au線)であって、封止体8により封止されている。封止体8でワイヤ11を覆うことにより、隣り合うワイヤ11同士の短絡を防止できる。基板13上の配線、電子部品は半導体チップ2とやりとりする電気的信号の変換処理や、半導体チップ2と図示しない外部機器との間で入出力電流を伝送すること等ができればよく、図1および図2に示す態様には限定されない。   As shown in FIGS. 1 and 2, a plurality of electrodes 9 to which a plurality of wires 11 electrically connected to a plurality of electrodes 10 of the semiconductor chip 2 are connected are arranged on the upper surface 3 a of the resin substrate 3 of the substrate 13. Is done. The wiring is performed using a wire bonding technique. In the wiring on the resin substrate 3, the electrode 9 on the resin substrate 3 is electrically connected to the electrode 17 and the solder 6 through the plurality of printed wirings 15, and is electrically connected to the electrode 16 of the electronic component 4. To do. The electronic component 4 is, for example, a connector that transmits data of the measured strain amount, a resistor, a capacitor, or the like, but is not particularly limited except that it is an electronic component having an electrical function that can be joined by solder. The wire 11 is, for example, a gold wire (Au wire) having a wire diameter of about 10 μm to 200 μm, and is sealed by the sealing body 8. By covering the wire 11 with the sealing body 8, a short circuit between the adjacent wires 11 can be prevented. The wiring on the substrate 13 and the electronic components only need to be able to convert electrical signals exchanged with the semiconductor chip 2 and transmit input / output current between the semiconductor chip 2 and an external device (not shown). It is not limited to the aspect shown in FIG.

次に力学量測定装置12の機能について記述する。力学量測定装置12は実装面1aを構造物19の平面に接着剤18を介して接着することで構造物19のひずみを検知し、前記ひずみが接着剤18を介して板材1に伝わり、さらに接合面1b及び接合材14を介して、半導体チップ2に伝達し、半導体チップ2に伝わったひずみを半導体チップ2内の半導体ピエゾ抵抗を使って測定するものである。例えば図1に示すような矢印STの方向に板材にひずみ(引張ひずみ)がかかった場合、同方向のひずみが接合面1b、接合材14、半導体チップ2にも発生し、半導体チップ2にて同方向のひずみをセンシングする。この時、板材1および接合材14を介することで半導体チップ2に伝達されるひずみ量は一定量緩和される。また、板材1の厚さ、図2でいうと側面1dの大きさを変えることで半導体チップ2に伝達されるひずみ量を変えることができ、これによって測定する構造体19のひずみ量のダイナミックレンジを変えることができる。   Next, the function of the mechanical quantity measuring device 12 will be described. The mechanical quantity measuring device 12 detects the strain of the structure 19 by bonding the mounting surface 1a to the plane of the structure 19 via the adhesive 18, and the strain is transmitted to the plate 1 via the adhesive 18. The strain is transmitted to the semiconductor chip 2 through the joint surface 1b and the joint material 14, and the strain transmitted to the semiconductor chip 2 is measured using the semiconductor piezoresistor in the semiconductor chip 2. For example, when a strain (tensile strain) is applied to the plate material in the direction of the arrow ST as shown in FIG. 1, the strain in the same direction is also generated on the bonding surface 1 b, the bonding material 14, and the semiconductor chip 2. Sensing strain in the same direction. At this time, the amount of strain transmitted to the semiconductor chip 2 through the plate material 1 and the bonding material 14 is alleviated by a certain amount. In addition, the amount of strain transmitted to the semiconductor chip 2 can be changed by changing the thickness of the plate 1, in FIG. 2, the size of the side surface 1 d, and thereby the dynamic range of the strain amount of the structure 19 to be measured. Can be changed.

一方、板材1にかかる前記ひずみは同時に上面1c、接着材7、樹脂基板3を介してプリント配線15や半田6にも伝達される。特に半田6にかかるひずみによって、半田6が破損する恐れがある。これを解決するために、板材1の側面1eの長さを大きくして、板材1の領域32部分を厚くした。これによって構造物19から伝わるひずみが板材1の内部で緩和され、領域31よりも領域32の方が大きくひずみ量を低減できる、つまり樹脂基板3の上面3aにかかるひずみを低減することができる。この際、板材1の厚さつまり側面1eの大きさが大きいほど板材1の体積が増え、内部で緩和されるひずみ量が大きくなるため、樹脂基板3の上面3aにかかるひずみの低減量は大きくなる。しかし、半導体チップ2にかかるひずみは、測定のダイナミックレンジによって設定されるため、安易に領域31における板材1の厚み、つまり側面1dの厚みを変えることはできない。そのため、半導体チップ2にかかるひずみ量のダイナミックレンジを保ちながら、半田6の破損を防ぐ必要がある。ゆえに板材1において、基板13が接着される領域32の側面1eを半導体チップ2が接合される領域31の側面1dよりも厚くすることで、半導体チップ2に伝わるひずみ量を変えることなく半田6にかかるひずみ量を低減することができる。   On the other hand, the strain applied to the plate 1 is simultaneously transmitted to the printed wiring 15 and the solder 6 via the upper surface 1 c, the adhesive 7, and the resin substrate 3. In particular, the solder 6 may be damaged by the strain applied to the solder 6. In order to solve this, the length of the side surface 1e of the plate material 1 is increased, and the region 32 portion of the plate material 1 is thickened. As a result, the strain transmitted from the structure 19 is relaxed inside the plate member 1, and the strain amount can be greatly reduced in the region 32 than in the region 31, that is, the strain applied to the upper surface 3 a of the resin substrate 3 can be reduced. At this time, the larger the thickness of the plate material 1, that is, the size of the side surface 1e, the larger the volume of the plate material 1 and the larger the amount of strain that is relieved inside, so the amount of reduction in strain applied to the upper surface 3a of the resin substrate 3 is large. Become. However, since the strain applied to the semiconductor chip 2 is set by the dynamic range of the measurement, the thickness of the plate 1 in the region 31, that is, the thickness of the side surface 1d cannot be easily changed. Therefore, it is necessary to prevent breakage of the solder 6 while maintaining the dynamic range of the strain amount applied to the semiconductor chip 2. Therefore, in the plate material 1, the side surface 1 e of the region 32 to which the substrate 13 is bonded is made thicker than the side surface 1 d of the region 31 to which the semiconductor chip 2 is bonded, so that the amount of strain transmitted to the semiconductor chip 2 is not changed. This amount of strain can be reduced.

図3は、板材1の素材をステンレス鋼(ヤング率197GPa)とし、樹脂基板3をガラスエポキシ基板(ヤング率20GPa)とし、側面1dを0.5mm、側面1eを1.0mm〜2.0mmとして、基板を搭載する板材の実装面1aに矢印ST方向に2900μεのひずみが発生した時に同時に樹脂基板3の上面3aにかかるひずみ量を有限要素法解析によって示したものである。また、その際の板材1の実装面1aのひずみ量に対する、前記上面3aのひずみ量低減率を示したものが図4である。図4に示すように、矢印STで示す方向に引張ひずみが前記実装面1aに付加されたとき、前記実装面1aのひずみ量に対する前記上面3aのひずみ量は25%低減されることがわかる。また、素材を同条件とし、側面1dを0.5mm、側面1eを2.0mmとすると、前記実装面1aのひずみ量に対する前記上面3aのひずみ量は53%低減されることがわかる。上記により前記上面3a、前記上面3aに接続される半田6および電子部品4にかかるひずみ量を低減することができ、基板13の信頼性を確保することができる。   In FIG. 3, the material of the plate material 1 is stainless steel (Young's modulus 197 GPa), the resin substrate 3 is a glass epoxy substrate (Young's modulus 20 GPa), the side surface 1d is 0.5 mm, and the side surface 1e is 1.0 mm to 2.0 mm. The strain amount applied to the upper surface 3a of the resin substrate 3 at the same time when a strain of 2900 με occurs in the arrow ST direction on the mounting surface 1a of the plate material on which the substrate is mounted is shown by finite element analysis. FIG. 4 shows the strain amount reduction rate of the upper surface 3a with respect to the strain amount of the mounting surface 1a of the plate 1 at that time. As shown in FIG. 4, when a tensile strain is applied to the mounting surface 1a in the direction indicated by the arrow ST, it can be seen that the strain amount of the upper surface 3a with respect to the strain amount of the mounting surface 1a is reduced by 25%. Further, when the material is the same, and the side surface 1d is 0.5 mm and the side surface 1e is 2.0 mm, the strain amount of the upper surface 3a with respect to the strain amount of the mounting surface 1a is reduced by 53%. As described above, the amount of strain applied to the upper surface 3a, the solder 6 connected to the upper surface 3a, and the electronic component 4 can be reduced, and the reliability of the substrate 13 can be ensured.

一方、板材1の厚さつまり側面1eを厚くするのではなく、樹脂基板3の側面3bを厚くすることも前記上面3a、前記上面3aに接続される半田6および電子部品4にかかるひずみ量を低減する方法の一つとして考えられる。これについても上記同様に板材1の実装面1aに矢印ST方向に2900μεのひずみが発生した時に同時に樹脂基板3の上面3aにかかるひずみ量に対して有限要素法解析を行うと、板材1の側面1eを1.0mmとし、樹脂基板3の側面3bを0.1mmとした場合、最大2160με(低減率25%)となり、側面1eを0.5mm、樹脂基板3の側面3bを0.6mmとした場合、最大2720με(低減率6%)となる。このため、側面3bと側面1eを足した長さを変えないまま前記どちらかの部材の側面を厚くする場合、樹脂基板3の側面3bを厚くするより、板材1の側面1eを厚くした方がひずみ量低減効果が高いことがわかる。   On the other hand, the thickness of the plate 1, that is, the side surface 1 e is not increased, but the side surface 3 b of the resin substrate 3 is also increased to reduce the strain applied to the upper surface 3 a, the solder 6 connected to the upper surface 3 a and the electronic component 4. It can be considered as one of the methods of reducing. In this case as well, when a finite element method analysis is performed on the amount of strain applied to the upper surface 3a of the resin substrate 3 when a strain of 2900 με is generated in the direction of the arrow ST on the mounting surface 1a of the plate material 1 as described above, When 1e is 1.0 mm and the side surface 3b of the resin substrate 3 is 0.1 mm, the maximum is 2160 με (reduction rate 25%), the side surface 1e is 0.5 mm, and the side surface 3b of the resin substrate 3 is 0.6 mm. In this case, the maximum is 2720 με (reduction rate 6%). For this reason, when the side surface of one of the members is thickened without changing the length of the side surface 3b and the side surface 1e, the side surface 1e of the plate 1 is thicker than the side surface 3b of the resin substrate 3 is thickened. It can be seen that the strain reduction effect is high.

本実施例では図5および図6に示される電子部品の搭載方法について記述する。実施例1では基板13にかかるひずみ量の低減方法として、板材1の厚さつまり図2における板材1の側面1eの大きさを大きくすることで前記ひずみ量の低減を図った。しかし、図5および図6において、電子部品4および電子部品22の搭載の向きによっては電子部品自体にかかるひずみ量が変わる。   In this embodiment, a method for mounting the electronic component shown in FIGS. 5 and 6 will be described. In Example 1, as a method of reducing the amount of strain applied to the substrate 13, the amount of strain was reduced by increasing the thickness of the plate 1, that is, the size of the side surface 1e of the plate 1 in FIG. However, in FIGS. 5 and 6, the amount of strain applied to the electronic component itself varies depending on the mounting direction of the electronic component 4 and the electronic component 22.

上記ひずみ量がかわる理由について、図7を用いて記述する。図7に示すような電子部品51、電子部品54、電子部品57において、それぞれの電子部品本体52、電子部品本体55、電子部品本体58に接続する電極53、電極56、電極59は矢印Xと同じ方向に並んでいる。これらに類似する電子部品を搭載する際に、図7の矢印Yと図5における矢印STが同じ方向になるように電子部品を配置する場合は、図7の矢印Xと図5における矢印STが同じ方向になるように電子部品を配置する場合に比べて、1つの電子部品においてひずみの方向に対して電極が並び、かつ電極と電極の間に電子部品本体があるかないかの違いがある。図5および図6において板材1においてST方向にかかるひずみが十分大きく、電子部品や半田の剛性が前記ひずみに及ぼす影響が十分少ない場合、1つの電子部品において、ひずみの方向に対して電極と電極の間に電子部品本体がある、つまり図7の矢印Xと図5における矢印STが同じ方向になるように電子部品を配置する場合は、1つの電子部品の電極と電極の間に電子部品本体がない、つまり図7の矢印Yと図5における矢印STが同じ方向になるように電子部品を配置する場合と比べて、それぞれの電極の間にある電子部品にもひずみが発生しているため、電子部品本体にかかるひずみ量が大きくなる。一方、前記に比べて、図7に示す電子部品60、電子部品63、電子部品66、のように一方向だけに電極が並んでいない場合には、それぞれの電子部品本体61、64、67にかかるひずみ量は方向に依存することが少なくなる。従って、図7の電子部品51(図5の電子部品4、図6の電子部品22に相当)、電子部品54、電子部品57のように一方向に電極が並んでいる電子部品を樹脂基板3に搭載する際には、電極が並んでいる方向を図1の矢印STと垂直の方向にして前記電子部品を搭載することで、電子部品へのひずみの影響を低減することができる。従って、図5の電子部品4は図6の電子部品22と比べてST方向のひずみに対する、電子部品へのひずみ量の影響は少なくなり、信頼性が向上する。上記記述は、一方向に限らず、測定するひずみの方向によって電子部品の配置の向きを最適化することを阻むものではない。   The reason why the amount of strain changes will be described with reference to FIG. In the electronic component 51, the electronic component 54, and the electronic component 57 as shown in FIG. 7, the electrode 53, the electrode 56, and the electrode 59 that are connected to the electronic component main body 52, the electronic component main body 55, and the electronic component main body 58 are indicated by an arrow X. They are lined up in the same direction. When mounting electronic components similar to these in such a manner that the arrow Y in FIG. 7 and the arrow ST in FIG. 5 are in the same direction, the arrow X in FIG. 7 and the arrow ST in FIG. Compared to the case where the electronic components are arranged so as to be in the same direction, there is a difference in whether the electrodes are aligned in the direction of strain in one electronic component and the electronic component main body is between the electrodes. 5 and 6, when the strain in the ST direction is sufficiently large in the plate material 1 and the influence of the rigidity of the electronic component or solder on the strain is sufficiently small, in one electronic component, the electrode and the electrode with respect to the strain direction When there is an electronic component body between the electrodes, that is, when the electronic component is arranged so that the arrow X in FIG. 7 and the arrow ST in FIG. 5 are in the same direction, the electronic component body is between the electrodes of one electronic component. In other words, as compared with the case where the electronic components are arranged so that the arrow Y in FIG. 7 and the arrow ST in FIG. 5 are in the same direction, distortion is also generated in the electronic components between the respective electrodes. The amount of strain applied to the electronic component body increases. On the other hand, when the electrodes are not arranged in only one direction as in the electronic component 60, the electronic component 63, and the electronic component 66 shown in FIG. Such strain is less dependent on direction. Accordingly, the electronic component 51 in FIG. 7 (corresponding to the electronic component 4 in FIG. 5 and the electronic component 22 in FIG. 6), the electronic component 54, and the electronic component 57 are arranged in one direction. When mounting the electronic component, the influence of the strain on the electronic component can be reduced by mounting the electronic component with the direction in which the electrodes are arranged perpendicular to the arrow ST in FIG. Therefore, the electronic component 4 in FIG. 5 is less affected by the amount of strain on the electronic component with respect to the strain in the ST direction than the electronic component 22 in FIG. 6, and the reliability is improved. The above description is not limited to optimizing the arrangement direction of the electronic component according to the direction of strain to be measured, not limited to one direction.

最後に、実施例1および2の組合せについて説明する。実施例1および2において、外的な環境や、求められる強度等によって、それぞれの実施例の特徴を組合せることで最適な形状を選択することが出来る。前記特徴をどのように選択するかは、求められる信頼性、素材の特性等によって最適に合わせていくものである。   Finally, the combination of Examples 1 and 2 will be described. In the first and second embodiments, the optimum shape can be selected by combining the features of the respective embodiments according to the external environment, required strength, and the like. How to select the feature is optimally matched according to required reliability, material characteristics, and the like.

1 板材
2 半導体チップ
3 樹脂基板
9,10 電極
11 ワイヤ
15 プリント配線
31,32 領域
DESCRIPTION OF SYMBOLS 1 Board | plate material 2 Semiconductor chip 3 Resin board | substrates 9 and 10 Electrode 11 Wire 15 Printed wiring 31 and 32 area | region

Claims (4)

複数の半導体ピエゾ抵抗を備え前記複数の半導体ピエゾ抵抗と電気的に接続された複数の電極を備える半導体チップと、
前記複数の電極と電気的に接続される複数の配線を備える電極部と、
前記半導体チップが搭載されるチップ搭載面と、
前記チップ搭載面の反対側に位置し被測定物に固定される実装面と、
前記半導体チップの前記裏面が前記チップ搭載面と対向するように前記半導体チップが接合材を介して固定される板材と、
前記板材の前記チップ搭載面と平行な面に同じ方向に接着材を介して固定される樹脂基板と、
前記電極部と前記樹脂基板の電極部を繋ぐ配線部と、を有し、
前記板材は、前記半導体チップの前記裏面と対向する第1領域と、前記樹脂基板の裏面と対向する第2領域と、を備え、
前記板材の前記第2領域の厚さは、前記板材の前記第1領域の厚さよりも大きいことを特徴とする力学量測定装置。
A semiconductor chip comprising a plurality of semiconductor piezoresistors and a plurality of electrodes electrically connected to the plurality of semiconductor piezoresistors;
An electrode portion comprising a plurality of wires electrically connected to the plurality of electrodes;
A chip mounting surface on which the semiconductor chip is mounted;
A mounting surface located on the opposite side of the chip mounting surface and fixed to the object to be measured;
A plate material on which the semiconductor chip is fixed via a bonding material such that the back surface of the semiconductor chip faces the chip mounting surface;
A resin substrate fixed to the surface of the plate material parallel to the chip mounting surface in the same direction via an adhesive;
A wiring portion connecting the electrode portion and the electrode portion of the resin substrate,
The plate member includes a first region facing the back surface of the semiconductor chip, and a second region facing the back surface of the resin substrate,
The mechanical quantity measuring apparatus according to claim 1, wherein a thickness of the second region of the plate material is larger than a thickness of the first region of the plate material.
請求項1に記載の力学量測定装置において、
前記板材は金属材料で構成されることを特徴とする力学量測定装置。
The mechanical quantity measuring device according to claim 1,
The plate material is made of a metal material.
請求項2に記載の力学量測定装置において、
前記力学量測定装置は、前記板材の前記実装面に沿って負荷するひずみを測定することを特徴とする力学量測定装置。
The mechanical quantity measuring device according to claim 2,
The mechanical quantity measuring device measures strain applied along the mounting surface of the plate material.
請求項1に記載の力学量測定装置において
前記樹脂基板は、電子部品が搭載されており、
前記電子部品は、複数の電極が一方向に並んでおり、前記複数の電極の並ぶ方向と測定するひずみの方向が垂直になるように配置されていることを特徴とする力学量測定装置。
The mechanical quantity measuring device according to claim 1, wherein the resin substrate is mounted with an electronic component,
The electronic component has a plurality of electrodes arranged in one direction, and is arranged so that a direction in which the plurality of electrodes are arranged and a strain direction to be measured are perpendicular to each other.
JP2013233616A 2013-11-12 2013-11-12 Dynamic quantity measuring device Pending JP2015094646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013233616A JP2015094646A (en) 2013-11-12 2013-11-12 Dynamic quantity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013233616A JP2015094646A (en) 2013-11-12 2013-11-12 Dynamic quantity measuring device

Publications (1)

Publication Number Publication Date
JP2015094646A true JP2015094646A (en) 2015-05-18

Family

ID=53197139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013233616A Pending JP2015094646A (en) 2013-11-12 2013-11-12 Dynamic quantity measuring device

Country Status (1)

Country Link
JP (1) JP2015094646A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199286A1 (en) * 2015-06-12 2016-12-15 株式会社日立製作所 Strain detection system and attachment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199286A1 (en) * 2015-06-12 2016-12-15 株式会社日立製作所 Strain detection system and attachment method

Similar Documents

Publication Publication Date Title
JP5779662B2 (en) Mechanical quantity measuring device
WO2013175636A1 (en) Mechanical-quantity measuring device
JP4617943B2 (en) Mechanical quantity measuring device
JP6293982B2 (en) Mechanical quantity measuring device
JP6216879B2 (en) Torque detection device
JP2006266683A (en) Mechanical quantity measuring instrument
CN110160681B (en) Load sensing device, package and system
US8516892B2 (en) Pressure sensor module and electronic component
JP2014048072A (en) Pressure sensor module
WO2012144048A1 (en) Dynamic quantity measuring apparatus
JP2015094646A (en) Dynamic quantity measuring device
WO2017043384A1 (en) Method of inspecting pressure pulse wave sensor, and method of manufacturing pressure pulse wave sensor
JP2009533660A (en) Sensor device
JP2005274219A (en) Semiconductor acceleration sensor device and its manufacturing method
JP2015017848A (en) Dynamic quantity measuring device
WO2022137828A1 (en) Strain sensor
JP5779487B2 (en) Pressure sensor module
JP2023006657A (en) Mechanical quantity measuring device
KR20110059028A (en) Pressure sensor module and the packaging method using the semiconductor strain gage
JP6036326B2 (en) Sensor and sensor manufacturing method
JP2021181942A (en) Strain sensor module
JP2015200546A (en) sensor structure