WO2016197922A1 - 电池切换的方法、发送电池切换信号的方法及装置 - Google Patents

电池切换的方法、发送电池切换信号的方法及装置 Download PDF

Info

Publication number
WO2016197922A1
WO2016197922A1 PCT/CN2016/085149 CN2016085149W WO2016197922A1 WO 2016197922 A1 WO2016197922 A1 WO 2016197922A1 CN 2016085149 W CN2016085149 W CN 2016085149W WO 2016197922 A1 WO2016197922 A1 WO 2016197922A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
temperature
output
source circuit
predetermined temperature
Prior art date
Application number
PCT/CN2016/085149
Other languages
English (en)
French (fr)
Inventor
王璐
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016197922A1 publication Critical patent/WO2016197922A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • This document relates to, but is not limited to, the field of communications, and relates to a method for battery switching, a method and device for transmitting a battery switching signal.
  • VRLA Value Regulated Lead Acid Battery
  • iron-lithium battery instead of a VRLA battery.
  • the iron-lithium battery has small volume, light weight, long cycle life and long service life (5 to 10 times that of lead-acid batteries), strong load capacity (stable discharge platform), and short charging time. (Can be charged with 0.2C-1.0C), no memory effect, green environmental protection (non-toxic and non-polluting) and many other advantages, it is very suitable for base station equipment, outdoor power supply, and areas with frequent power outages, and can greatly reduce the overall TCO cost.
  • the second is the use of hybrid batteries.
  • hybrid batteries For example, the mixing of new and old lead-acid batteries, iron lithium and lead-acid batteries.
  • the use of hybrid batteries is currently as good as possible, to ensure the huge investment in the previous battery.
  • BMS battery management system
  • Battery Management System Battery Management System
  • the core technology of battery mixing is to achieve battery switching.
  • the main battery is used for charging and discharging. Therefore, the battery is connected and disconnected through contactors, etc.
  • the BMS of the iron-lithium battery needs the CSU (Center Supervision Unit) of the DC power system to output the desired voltage amplitude for charge management, and may need to be self-charged after charging protection occurs.
  • the CSU is required to adjust the voltage to a suitable value to close the charging loop.
  • the BMS Since the battery is connected and disconnected, especially the access action, and the DC power system is strongly related, the BMS must communicate with the CSU of the DC power system through communication, and adjust the output voltage of the rectifier and the battery terminal through the CSU. If the pressure is close, you can access it. If you can't complete the smooth switch, the system will run normally. Obviously, whether it is battery mixing or the use of iron-lithium batteries, for a large number of base station power supplies on the live network (such as China Tower with 1.3 million base station power supplies), it is necessary to transform, especially upgrade CSU software, and joint debugging. To allow the BMS to interact with the CSU of the DC power system. However, this investment is extremely huge, and this is the most important reason why it has not been widely applied at present.
  • the DC power supply system needs to be modified, upgraded or debugged to interact with the BMS.
  • the process of upgrading and debugging is complicated, the engineering quantity is large, and the implementation cost is high. Therefore, the direct switching of the battery cannot be directly realized. That is, it is impossible to directly use the iron-lithium battery and the mixed battery, resulting in lower system performance.
  • the embodiment of the invention provides a battery switching method, a method and a device for transmitting a battery switching signal, and solves the problems that the related art needs to modify, upgrade or debug the DC power system to interact with the BMS, upgrade, debug, etc. It is complicated and has a large amount of engineering, and the implementation cost is high, and the problem of direct switching of the battery cannot be directly realized.
  • Embodiments of the present invention provide a battery switching method, including:
  • the predetermined temperature is a temperature corresponding to a voltage output when the battery to be switched is switched;
  • the method further includes: before receiving the signal corresponding to the predetermined temperature of the battery management system BMS analog output, the BMS simulates outputting a signal corresponding to a predetermined temperature;
  • the BMS transmits a signal corresponding to the predetermined temperature to a central supervisory unit CSU of the DC power system.
  • the BMS simulates outputting a signal corresponding to a predetermined temperature, including:
  • temperature-compensating the constant current source circuit according to the signal corresponding to the predetermined temperature to adjust the output voltage of the constant current source circuit to a preset value including:
  • the CSU performs temperature adjustment of the constant current source circuit for heating or cooling according to the current temperature to adjust a voltage output by the constant current source circuit to the preset value.
  • the invention also provides a method for transmitting a battery switching signal, comprising:
  • the battery management system BMS simulates outputting a signal corresponding to a predetermined temperature, wherein the predetermined temperature is a temperature corresponding to a voltage output when the battery to be switched is switched;
  • the BMS sends a signal corresponding to the predetermined temperature to a central supervisory unit CSU of the DC power system, so that the CSU performs temperature compensation on the constant current source circuit according to the signal corresponding to the predetermined temperature, and adjusts the constant current source.
  • the output voltage of the circuit reaches a preset value to implement a switching operation between the current power supply battery and the battery to be switched.
  • the invention also provides a device for battery switching, comprising:
  • a receiving module configured to receive a signal corresponding to a predetermined temperature of the battery management system BMS analog output, wherein the predetermined temperature is a temperature corresponding to a voltage output when the battery to be switched is switched;
  • the temperature compensation module is configured to perform temperature compensation on the constant current source circuit according to the signal corresponding to the predetermined temperature, to adjust the output voltage of the constant current source circuit to a preset value, to realize switching between the current power supply battery and the battery to be switched operating.
  • the temperature compensation module includes:
  • a determining unit configured to determine a current temperature of the constant current source circuit according to a current value of the received current; wherein the current is a signal corresponding to a predetermined temperature of the BMS analog output;
  • the temperature compensation unit is configured to perform temperature adjustment of the constant current source circuit for heating or cooling according to the current temperature to adjust a voltage output by the constant current source circuit to the preset value.
  • the embodiment of the invention further provides an apparatus for transmitting a battery switching signal, which interacts with the foregoing battery switching apparatus, and includes:
  • An output module configured to analogly output a signal corresponding to a predetermined temperature
  • the sending module is configured to send the signal corresponding to the predetermined temperature to the central supervisory unit CSU of the DC power system.
  • the output module includes:
  • a calculating unit configured to determine, according to a terminal voltage of the battery to be switched, a voltage output by the constant current source circuit, and a preset battery temperature compensation coefficient, a temperature that the constant current source circuit needs to reach when switching, and determine to reach The current value that needs to be output when describing the temperature;
  • the output unit is configured to adjust a current value of the current output by the constant current source circuit to the current value, so as to set a current corresponding to the current value to a signal corresponding to the predetermined temperature for output.
  • the embodiment of the invention further provides a battery switching system, comprising:
  • the BMS comprises: an analog temperature signal generator, a signal channel switching switch;
  • the analog temperature signal generator is configured to receive a trigger signal for performing battery switching, Generating a signal corresponding to the predetermined temperature, and performing the output, wherein the predetermined temperature is a temperature corresponding to a voltage output when the battery to be switched is switched;
  • the signal channel switching switch is configured to, when receiving a trigger signal for performing the battery switching, connect the CSU to a loop where the analog temperature signal generator is located, so that the analog temperature signal generator is a signal corresponding to the predetermined temperature is output to the CSU;
  • the CSU is configured to receive a signal corresponding to the predetermined temperature from the analog temperature signal generator, and perform temperature compensation on the constant current source circuit according to the signal corresponding to the predetermined temperature to adjust the output of the constant current source circuit
  • the voltage reaches a preset value to implement a switching operation between the current power supply battery and the battery to be switched.
  • Embodiments of the present invention also provide a computer readable storage medium having stored therein computer executable instructions, the method of implementing battery switching when the computer executable instructions are executed.
  • Embodiments of the present invention also provide a computer readable storage medium having stored therein computer executable instructions that implement a method of transmitting a battery switching signal when the computer executable instructions are executed.
  • the embodiment of the present invention receives a signal corresponding to a predetermined temperature of the BMS analog output, where the predetermined temperature is a temperature corresponding to a voltage output when the analog battery to be switched is switched; and temperature compensation is performed according to the temperature to adjust a voltage output by the constant current source circuit.
  • the voltage is adjusted to a preset value, when the voltage is adjusted to the terminal pressure of the battery to be switched, the seamless switching operation between the current power supply battery and the battery to be switched can be successfully completed.
  • the above technical solution does not require any improvement on the DC power supply system, the switching efficiency is high, and the system performance is greatly improved.
  • the related technologies need to modify, upgrade or debug the DC power supply system to interact with the BMS, upgrade,
  • the process of debugging and the like is complicated and the amount of engineering is large, the implementation cost is high, and the problem of direct switching of the battery cannot be directly realized.
  • Embodiment 1 is a flow chart of a method for switching a battery in Embodiment 1 of the present invention
  • FIG. 2 is a flowchart of a method for transmitting a battery switching signal according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic structural diagram of an apparatus for switching a battery in Embodiment 2 of the present invention.
  • FIG. 4 is a schematic structural diagram of a device temperature compensation module for battery switching according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic structural diagram of an apparatus for transmitting a battery switching signal according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic structural diagram of an apparatus output module for transmitting a battery switching signal according to Embodiment 2 of the present invention.
  • FIG. 7 is a schematic structural diagram of a battery switching system in Embodiment 2 of the present invention.
  • FIG. 8 is a schematic structural diagram of a battery switching system in Embodiment 3 of the present invention.
  • FIG. 9 is a schematic diagram of a topology of a switch switching circuit in Embodiment 3 of the present invention.
  • the embodiment of the invention provides a battery switching method.
  • the process of the method is as shown in FIG. 1 and includes steps S102 to S104:
  • Step S102 Receive a signal corresponding to a predetermined temperature of the BMS analog output, where the predetermined temperature is a temperature corresponding to a voltage output when the battery to be switched is switched;
  • Step S104 performing temperature compensation on the constant current source circuit according to the signal corresponding to the predetermined temperature, so as to adjust the output voltage of the constant current source circuit to a preset value, thereby realizing the switching operation between the current power supply battery and the battery to be switched.
  • the embodiment of the invention receives the signal corresponding to the predetermined temperature of the BMS analog output, and the predetermined temperature is the temperature corresponding to the voltage output when the simulated battery to be switched is switched, so that the temperature compensation can be performed according to the temperature to adjust the output of the constant current source circuit.
  • Voltage when the voltage is adjusted to a preset value, that is, when the voltage is adjusted to the terminal voltage of the battery to be switched, the seamless switching operation between the current power supply battery and the battery to be switched can be successfully completed, and the method does not need to do any work on the DC power supply system. Improvement, high switching efficiency, system performance has been greatly improved, and the related technologies need to modify the DC power system. Upgrade or debug, in order to interact with the BMS, the process of upgrading, debugging, etc. is complicated and the amount of engineering is large, the implementation cost is high, and the problem of direct switching of various types of batteries cannot be directly realized.
  • the BMS before receiving the signal corresponding to the predetermined temperature of the battery management system BMS analog output, for the BMS side, the BMS needs to analogly output a signal corresponding to a predetermined temperature, and then send a signal corresponding to the predetermined temperature to the CSU of the DC power system.
  • the BMS simulates outputting a signal corresponding to a predetermined temperature, including: determining a constant current according to a terminal voltage of the battery to be switched, a voltage output by the constant current source circuit, and a preset battery temperature compensation coefficient.
  • the temperature that the source circuit needs to reach when switching determine the current value that needs to be output when the temperature is reached, and adjust the current output current of the constant current source circuit to the current value to set the current corresponding to the current value to a predetermined temperature.
  • Signal to output including: determining a constant current according to a terminal voltage of the battery to be switched, a voltage output by the constant current source circuit, and a preset battery temperature compensation coefficient.
  • the temperature that the source circuit needs to reach when switching determine the current value that needs to be output when the temperature is reached, and adjust the current output current of the constant current source circuit to the current value to set the current corresponding to the current value to a predetermined temperature.
  • the process of performing temperature compensation on the constant current source circuit according to the signal corresponding to the predetermined temperature to adjust the output voltage of the constant current source circuit to a preset value includes: the CSU corresponding to the received current value The current determines the current temperature of the constant current source circuit; the temperature of the constant current source circuit is adjusted according to the current temperature to adjust the temperature of the constant current source circuit to a preset value.
  • the embodiment of the present invention establishes a preliminary condition for implementing the process according to the method of temperature compensation. After the pre-conditions are established, the switch can be directly implemented.
  • the embodiment of the invention further provides a method for transmitting a battery switching signal, and the process of the method is as shown in FIG. 2, including steps S202 to S204:
  • Step S202 the BMS simulates outputting a signal corresponding to a predetermined temperature, wherein the predetermined temperature is a temperature corresponding to a voltage output when the battery to be switched is switched;
  • Step S204 the BMS sends a signal corresponding to the predetermined temperature to the central supervisory unit CSU of the DC power system, so that the CSU performs temperature compensation on the constant current source circuit according to the signal corresponding to the predetermined temperature, and adjusts the output voltage of the constant current source circuit to a preset value.
  • the switching operation between the current power supply battery and the battery to be switched is realized.
  • the process of transmitting a battery switching signal that is, the process of simulating a signal corresponding to a predetermined temperature on the BMS side, wherein the BMS analog outputting a signal corresponding to a predetermined temperature may include the following: according to the terminal pressure of the battery to be switched, The voltage outputted by the constant current source circuit and the preset battery temperature compensation coefficient determine the temperature that the constant current source circuit needs to reach when switching; and then it is determined that the temperature is required to be reached. The current value to be output, and the current output current of the constant current source circuit is adjusted to a current value to set a current corresponding to the current value to a signal corresponding to the predetermined temperature for output.
  • the embodiment of the present invention further provides a battery switching device.
  • the structure of the device is as shown in FIG. 3, and includes: a receiving module 10 configured to receive a signal corresponding to a predetermined temperature of a battery management system BMS analog output, wherein the predetermined The temperature is a temperature corresponding to the voltage output when the battery to be switched is switched; the temperature compensation module 20 is coupled to the receiving module 10, and is configured to perform temperature compensation on the constant current source circuit according to a signal corresponding to the predetermined temperature to adjust the output voltage of the constant current source circuit. To the preset value, the switching operation between the current power supply battery and the battery to be switched is realized.
  • the structure of the temperature compensation module 20 is as shown in FIG. 4, including: a determining unit 201, configured to determine a current temperature of the constant current source circuit according to a current value of the received current; wherein the current is a BMS analog output The predetermined temperature corresponds to the signal; the temperature compensation unit 202 is coupled to the determining unit 201, and is configured to adjust the temperature of the constant current source circuit according to the current temperature to adjust the temperature of the constant current source circuit to a preset value. .
  • the embodiment of the present invention further provides a device for transmitting a battery switching signal, and the device interacts with the battery switching device described above, and the structure thereof is as shown in FIG. 5, including: an output module 30, configured to simulate outputting a predetermined temperature corresponding to The signal transmitting module 40 is coupled to the output module 30 and configured to send a signal corresponding to the predetermined temperature to the central supervisory unit CSU of the DC power system.
  • the structure of the output module 30 is as shown in FIG. 6 , and includes: a calculating unit 301 configured to determine a constant current according to a terminal voltage of the battery to be switched, a voltage output by the constant current source circuit, and a preset battery temperature compensation coefficient. The temperature that the source circuit needs to reach when switching, and determines the current value that needs to be output when the temperature is reached; the output unit 302 is coupled to the calculation unit 301, and is configured to adjust the current output current of the constant current source circuit to a current value to The current corresponding to the current value is set to a signal corresponding to the predetermined temperature to be output.
  • the foregoing apparatus for transmitting a battery switching signal may further include a switching module configured to implement a switching operation of the current power supply battery and the battery to be switched.
  • the embodiment of the present invention further provides a battery switching system.
  • the architecture of the system is shown in FIG. 7 and includes: a BMS and a CSU of a DC power system.
  • the BMS includes: an analog temperature signal generator, a signal channel switching switch, and an analog temperature signal generator configured to generate a signal corresponding to the predetermined temperature and output the signal when receiving the trigger signal for performing battery switching, wherein the predetermined temperature
  • the controller outputs a signal corresponding to the predetermined temperature to the CSU; the CSU is configured to receive a signal corresponding to the predetermined temperature from the analog temperature signal generator, and perform temperature compensation on the constant current source circuit according to the signal corresponding to the predetermined temperature to adjust the constant current source circuit.
  • the output voltage reaches a preset value to realize the switching operation between the current power supply battery and the battery to be switched.
  • the DC power supply system needs to be modified, upgraded or debugged to interact with the BMS.
  • the process of upgrading and debugging is complicated, the engineering quantity is large, and the implementation cost is high. Therefore, whether the lithium iron battery can be directly Mixing and using the battery is an urgent problem to be solved, that is, how to seamlessly switch between the batteries without any modification, upgrade or debugging of the DC power system.
  • Embodiments of the present invention provide a battery switching method and a battery switching system using the same, which relate to a process for implementing stable switching and protection of a battery in a communication DC power supply system.
  • an analog temperature sensor is used to skillfully utilize DC.
  • the temperature compensation function of the power system itself realizes the switching of different battery circuits and the adjustment of the charging voltage, prevents the large current caused by the excessive difference between the voltage of the input end and the battery terminal during charging, reduces the damage rate of the device, and reduces the cost of the BMS system.
  • the strong coupling application between the BMS system and the DC power supply system is eliminated, which makes the battery mixing extremely simple and easy to use, thereby greatly reducing the operation and maintenance costs of the telecom operators.
  • an analog temperature signal generator is added to the BMS.
  • the signal generator can controllably output a signal according to the need, which can simulate the signal output of the battery temperature sensor used by the DC power system; and the DC power supply
  • the CSU in the system is deceptively temperature compensated according to this analog signal, thereby adjusting the output voltage of the rectifier (that is, the constant current source circuit) to the desired amplitude of the BMS system, so that each battery can be accessed very safely. And disconnected.
  • FIG. 8 The architecture of the battery switching system provided by the embodiment of the present invention is shown in FIG. 8.
  • An analog temperature signal generator is added to the BMS, and a signal channel switching switch is further added.
  • This analog signal generator can simulate the signal output of different types of temperature sensors; this analog signal generator is controlled by the MCU (Microcontroller Unit) in the BMS system, and outputs signals of different amplitudes or frequencies as needed.
  • MCU Microcontroller Unit
  • the signal channel switch is connected to the original temperature sensor signal, the CSU of the DC power system is normally performing temperature replenishment and battery management; in the BMS system, the battery access action is required, or the rectifier voltage needs to be adjusted (such as overcurrent) Before charging requires buck), first adjust the analog temperature signal generator to output the desired signal; the signal switching switch turns on the analog signal; CSU performs temperature compensation according to the analog signal, adjusts the rectifier output voltage to the desired amplitude; BMS system security The battery is connected or controlled; after each battery access or control action is completed, it returns to the normal state, that is, the original temperature sensor signal that the signal channel switching switch is turned back on.
  • the channel switching of the electromagnetic relay is controlled by the MCU on the BMS.
  • the output terminals of the electromagnetic relay are COM, NO, and NC.
  • the COM is connected to the battery temperature detection input of the DC power supply CSU; the NC is connected to the output of the original AD590; and the NO is connected to the output of the controllable constant current source.
  • the analog temperature signal generator can be a controllable constant current source circuit.
  • the output current of the constant current source is controlled by the MCU on the BMS.
  • the BMS does not control the electromagnetic relay under normal working conditions. Therefore, by default, the CSU battery temperature is detected by the original AD590, which is the actual temperature of the battery; the CSU can perform normal monitoring and control.
  • the BMS system adopts a strategy of preferential charging and discharging of the main battery pack; when the main battery pack is fully charged, it needs to be switched to the auxiliary battery pack for charging.
  • the steps are: closing the A circuit of the main battery; closing the B circuit of the main battery; and disconnecting the A circuit of the main battery. ; close the D circuit of the auxiliary battery; disconnect the B circuit of the main battery; close the C circuit of the auxiliary battery; disconnect the D circuit of the auxiliary battery.
  • the constant current source circuit needs to output based on the terminal voltage of the auxiliary battery pack, the current output voltage of the rectifier, and the battery temperature compensation coefficient.
  • the current auxiliary battery pack terminal voltage is 51.0V
  • the rectifier output voltage is 53.5V
  • the MCU in the BMS system performs electromagnetic relay control, and turns on the 332.7 ⁇ A of the constant current source to the battery temperature detecting end of the DC power source CSU;
  • the MCU in the BMS system resets the electromagnetic relay control, turns on the original AD590 to the battery temperature detection end of the DC power supply CSU, and performs normal battery temperature detection.
  • the rectifier voltage and the battery terminal voltage are generally allowed to have a voltage deviation of 0.3V. Therefore, the constant current source circuit design does not need absolute precision, which can effectively reduce the hardware cost;
  • the analog temperature signal generator does not have to be implemented by a constant current source circuit. It can also be completed with a real AD590+ semiconductor heating chiller. By adjusting the effect of the heating chiller, the AD590 attached to the semiconductor heating chiller outputs the desired temperature. Signals; for a false alarm that may have a high battery temperature, since the battery temperature is usually a slowly changing data, you can filter the false alarm by extending the judgment time of the alarm; it can be executed at the network management center or CSU.
  • the embodiment of the invention simulates the temperature signal generator on the BMS, and informs the CSU to perform voltage regulation by means of the temperature compensation function of the DC power system itself, so as to realize the switching of the old and the old battery and the protection of the iron-lithium battery, which will directly replace the iron-lithium battery with the traditional one.
  • the combination of lead-acid batteries and batteries has become extremely simple and easy to use, ultimately greatly accelerating the pace of battery mixing and iron-lithium battery applications, while significantly reducing the operation and maintenance costs of telecom operators.
  • the technology provided by the embodiment of the present invention removes the strong coupling application between the BMS system and the DC power supply system itself, enabling the telecommunication operator and the tower company to seamlessly use the iron-lithium battery and realize the mixing of the old and new batteries. It is as simple and convenient as using a traditional VRLA battery, which can greatly accelerate the pace of battery mixing and iron-lithium battery applications, while significantly saving customers' huge investment in the early stage and reducing the operation and maintenance costs in the later stage.
  • Embodiments of the present invention also provide a computer readable storage medium having stored therein computer executable instructions, the method of implementing battery switching when the computer executable instructions are executed.
  • the embodiment of the invention further provides a computer readable storage medium, the computer readable storage medium
  • the computer stores executable instructions that implement a method of transmitting a battery switching signal when the computer executable instructions are executed.
  • each module/unit in the above embodiment may be implemented in the form of hardware, for example, by implementing an integrated circuit to implement its corresponding function, or may be implemented in the form of a software function module, for example, executing a program stored in the memory by a processor. / instruction to achieve its corresponding function.
  • This application is not limited to any specific combination of hardware and software.
  • the above technical solution can realize direct switching of the battery, the switching efficiency is high, and the system performance is greatly improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

一种电池切换的方法、发送电池切换信号的方法及装置,该电池切换的方法包括:接收BMS模拟输出的预定温度对应的信号,其中,预定温度为待切换电池切换时输出的电压对应的温度(S102);根据预定温度对应的信号对恒流源电路进行温度补偿,以调节恒流源电路输出电压到预设值,实现当前供电电池与待切换电池的切换操作(S104)。该方法可以顺利完成当前供电电池与待切换电池的无缝切换操作,不需要对直流电源系统做任何改进,切换效率较高,系统性能有较大提升,解决了需要将直流电源系统做修改、升级或调试,才能与BMS进行交互,升级、调试等过程复杂且工程量较大,实现成本较高的问题。

Description

电池切换的方法、发送电池切换信号的方法及装置 技术领域
本文涉及但不限于通讯领域,涉及一种电池切换的方法、发送电池切换信号的方法及装置。
背景技术
在过去的二十年时间内,全球的电信业务,尤其是2G/3G/4G无线通讯,获得了飞速的发展。电信运营商的通信基站和电信机房建设规模越来越大,网络的运营维护支出也越来越大。作为保障电信设备不间断稳健运行的基础设备——通信直流电源,投入和运维的成本也日趋庞大。在通讯资费逐年下降,而网络运维成本逐年上升的趋势下,如何提高运维效率,降低运维成本已经成为各电信运营商面临的共同难题。
传统上,通信直流电源系统,一般采用阀控铅酸电池(VRLA,Valve Regulated Lead Acid Battery)作为备电,防止交流停电后,能够不间断的供电给电信设备。通常,电池的投入成本在整个电源系统中占比非常高,一般在50%左右。因此,在电池的投入和运维上下功夫,是降低运维成本关键所在。
目前电信运营商趋向于两种方案:
一是使用寿命更长的铁锂电池来代替VRLA电池。虽然铁锂电池初始投入较高,但是铁锂电池拥有体积小、重量轻、循环寿命和使用寿命长(是铅酸电池的5~10倍)、负载能力强(放电平台稳定)、充电时间短(可用0.2C-1.0C充电)、无记忆效应、绿色环保(无毒无污染)等诸多优势,非常适合于基站设备、户外电源、以及停电频繁的地区使用,也能大大降低总体TCO成本。
二是混合电池使用。比如新旧铅酸电池、铁锂和铅酸电池的混用等。显然,使用混合电池,目前就是尽可能的利旧,保障前期电池的巨大投入。
多年来,尽管电信运营商、以及电源设备厂家都在极力推进这两种方案,但是不幸的是,目前并没有得到大规模的应用。究其原因,无论是电池混用、还是铁锂电池的使用,都需要独立的管理部件,如BMS(电池管理系统, Battery Management System),来实现电池的切换和调压。比如,电池混用最核心的技术是要实现电池的切换,通常情况下优先使用主电池进行充电和放电,因此都会通过接触器等实现各路电池的接入和断开;对于铁锂电池来说,更是如此,铁锂电池的BMS需要直流电源系统的CSU(中心监理单元,Center Supervision Unit)输出期望的电压幅值以进行充电管理,在发生充电保护后可能需要自补电,这时也需要CSU调节电压到合适值,以便闭合充电回路。
由于电池的接入和断开,尤其是接入动作,和直流电源系统强相关,因此,BMS必须通过通讯的方式,和直流电源系统的CSU进行交互,通过CSU调节整流器的输出电压与电池端压相近,才能接入,如无法完成顺利切换,威胁系统正常运行。显然,无论是电池混用、还是铁锂电池的使用,对于现网大量的基站电源来说(比如中国铁塔有130万基站电源),都需要通过改造,尤其是升级CSU的软件,并进行联调,来使得BMS可以和直流电源系统的CSU进行交互。然而,这个投入是极其巨大的,这也是目前未能大规模应用的最重要原因。
相关技术中,都需要将直流电源系统做修改、升级或调试,才能与BMS进行交互,升级、调试等过程复杂且工程量较大,实现成本较高,因此,不能直接实现电池的直接切换使用,即无法直接把铁锂电池以及混用电池拿来即用,导致系统性能较低。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提出一种电池切换的方法、发送电池切换信号的方法及装置,解决了相关技术中都需要将直流电源系统做修改、升级或调试,才能与BMS进行交互,升级、调试等过程复杂且工程量较大,实现成本较高,不能直接实现电池的直接切换使用的问题。
本发明实施例提供一种电池切换的方法,包括:
接收电池管理系统BMS模拟输出的预定温度对应的信号,其中,所述 预定温度为待切换电池切换时输出的电压对应的温度;
根据所述预定温度对应的信号对恒流源电路进行温度补偿,以调节所述恒流源电路输出电压到预设值,实现当前供电电池与所述待切换电池的切换操作。
可选地,所述方法还包括:接收电池管理系统BMS模拟输出的预定温度对应的信号之前,所述BMS模拟输出一个预定温度对应的信号;
所述BMS将所述预定温度对应的信号发送至直流电源系统的中心监理单元CSU。
可选地,所述BMS模拟输出一个预定温度对应的信号,包括:
根据所述待切换电池的端压、所述恒流源电路输出的电压和预设电池温度补偿系数确定所述恒流源电路在切换时需要达到的温度;
确定达到所述温度时需要输出的电流值,并将所述恒流源电路当前输出的电流的大小调整为所述电流值,以将所述电流值对应的电流设置为所述预定温度对应的信号来进行输出。
可选地,根据所述预定温度对应的信号对恒流源电路进行温度补偿,以调节所述恒流源电路输出电压到预设值,包括:
所述CSU根据接收到的所述电流值对应的电流确定所述恒流源电路当前的温度;
所述CSU根据所述当前的温度对所述恒流源电路进行升温或降温的温度调节,以调节所述恒流源电路输出的电压至所述预设值。
本发明还提供一种发送电池切换信号的方法,包括:
电池管理系统BMS模拟输出一个预定温度对应的信号,其中,所述预定温度为待切换电池切换时输出的电压对应的温度;
所述BMS将所述预定温度对应的信号发送至直流电源系统的中心监理单元CSU,以使所述CSU根据所述预定温度对应的信号对恒流源电路进行温度补偿,调节所述恒流源电路输出电压到预设值,实现当前供电电池与所述待切换电池的切换操作。
本发明还提供一种电池切换的装置,包括:
接收模块,设置为接收电池管理系统BMS模拟输出的预定温度对应的信号,其中,所述预定温度为待切换电池切换时输出的电压对应的温度;
温度补偿模块,设置为根据所述预定温度对应的信号对恒流源电路进行温度补偿,以调节所述恒流源电路输出电压到预设值,实现当前供电电池与所述待切换电池的切换操作。
可选地,所述温度补偿模块包括:
确定单元,设置为根据接收到的电流的电流值确定所述恒流源电路当前的温度;其中,所述电流为所述BMS模拟输出的预定温度对应的信号;
温度补偿单元,设置为根据所述当前的温度对所述恒流源电路进行升温或降温的温度调节,以调节所述恒流源电路输出的电压至所述预设值。
本发明实施例还提供一种发送电池切换信号的装置,与前述的电池切换的装置交互,包括:
输出模块,设置为模拟输出一个预定温度对应的信号;
发送模块,设置为将所述预定温度对应的信号发送至直流电源系统的中心监理单元CSU。
可选地,所述输出模块包括:
计算单元,设置为根据所述待切换电池的端压、所述恒流源电路输出的电压和预设电池温度补偿系数确定所述恒流源电路在切换时需要达到的温度,并确定达到所述温度时需要输出的电流值;
输出单元,设置为将所述恒流源电路当前输出的电流的大小调整为所述电流值,以将所述电流值对应的电流设置为所述预定温度对应的信号来进行输出。
本发明实施例还提供一种电池切换系统,包括:
电池管理系统BMS和直流电源系统的中心监理单元CSU;
其中,所述BMS包括:模拟温度信号发生器,信号通道切换开关;
所述模拟温度信号发生器,设置为在接收到进行电池切换的触发信号时, 产生预定温度对应的信号,并进行输出,其中,所述预定温度为待切换电池切换时输出的电压对应的温度;
所述信号通道切换开关,设置为在接收到进行所述电池切换的触发信号时,将所述CSU接入到所述模拟温度信号发生器所在回路,以使所述模拟温度信号发生器将所述预定温度对应的信号输出至所述CSU;
所述CSU,设置为接收来自所述模拟温度信号发生器的所述预定温度对应的信号,根据所述预定温度对应的信号对恒流源电路进行温度补偿,以调节所述恒流源电路输出电压到预设值,实现当前供电电池与所述待切换电池的切换操作。
本发明实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机可执行指令,所述计算机可执行指令被执行时实现电池切换的方法。
本发明实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机可执行指令,所述计算机可执行指令被执行时实现发送电池切换信号的方法。
本发明实施例接收BMS模拟输出的预定温度对应的信号,该预定温度是模拟的待切换电池切换时输出的电压对应的温度;根据该温度进行温度补偿,来调节恒流源电路输出的电压,在电压调节到预设值时,即将电压调节到待切换电池的端压时,就可以顺利完成当前供电电池与待切换电池的无缝切换操作。上述技术方案不需要对直流电源系统做任何改进,切换效率较高,系统性能有较大提升,解决了相关技术都需要将直流电源系统做修改、升级或调试,才能与BMS进行交互,升级、调试等过程复杂且工程量较大,实现成本较高,不能直接实现电池的直接切换使用的问题。
在阅读并理解了附图和详细描述后,可以明白其它方面。
附图说明
图1是本发明实施例一中的电池切换的方法的流程图;
图2是本发明实施例一中的发送电池切换信号的方法的流程图;
图3是本发明实施例二中的电池切换的装置的结构示意图;
图4是本发明实施例二中的电池切换的装置温度补偿模块的结构示意图;
图5是本发明实施例二中的发送电池切换信号的装置的结构示意图;
图6是本发明实施例二中的发送电池切换信号的装置输出模块的结构示意图;
图7是本发明实施例二中的电池切换系统的架构示意图;
图8是本发明实施例三中的电池切换系统的架构示意图;
图9是本发明实施例三中的开关切换电路拓扑示意图。
具体实施方式
以下结合附图以及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不限定本申请。
实施例一
本发明实施例提供了一种电池切换的方法,该方法的流程如图1所示,包括步骤S102至S104:
步骤S102,接收BMS模拟输出的预定温度对应的信号,其中,预定温度为待切换电池切换时输出的电压对应的温度;
步骤S104,根据预定温度对应的信号对恒流源电路进行温度补偿,以调节恒流源电路输出电压到预设值,实现当前供电电池与待切换电池的切换操作。
本发明实施例接收BMS模拟输出的预定温度对应的信号,该预定温度是模拟的待切换电池切换时输出的电压对应的温度,因此可以根据该温度进行温度补偿,来调节恒流源电路输出的电压,在电压调节到预设值时,即将电压调节到待切换电池的端压时,就可以顺利完成当前供电电池与待切换电池的无缝切换操作,该方法不需要对直流电源系统做任何改进,切换效率较高,系统性能有较大提升,解决了相关技术都需要将直流电源系统做修改、 升级或调试,才能与BMS进行交互,升级、调试等过程复杂且工程量较大,实现成本较高,不能直接实现各类电池的直接切换使用的问题。
实现时,在接收电池管理系统BMS模拟输出的预定温度对应的信号之前,对于BMS侧,BMS需要模拟输出一个预定温度对应的信号,再将预定温度对应的信号发送至直流电源系统的CSU。
可选地,在本实施例中,在BMS模拟输出一个预定温度对应的信号的过程中包括:根据待切换电池的端压、恒流源电路输出的电压和预设电池温度补偿系数确定恒流源电路在切换时需要达到的温度;确定达到温度时需要输出的电流值,并将恒流源电路当前输出的电流的大小调整为电流值,以将电流值对应的电流设置为预定温度对应的信号来进行输出。
可选地,在本实施例中,根据预定温度对应的信号对恒流源电路进行温度补偿,以调节恒流源电路输出电压到预设值的过程包括:CSU根据接收到的电流值对应的电流确定恒流源电路当前的温度;根据当前的温度对恒流源电路进行升温或降温的温度调节,以调节恒流源电路输出的电压至预设值。为了顺利完成电池间的无缝切换,需要将恒流源电路输出的电压控制在待接入电池的可接受范围内,因此,本发明实施例根据温度补偿的方法来为实现该过程建立预备条件,在预备条件建立完成后,就可以直接实现切换。
本发明实施例还提供一种发送电池切换信号的方法,该方法的流程如图2所示,包括步骤S202至S204:
步骤S202,BMS模拟输出一个预定温度对应的信号,其中,预定温度为待切换电池切换时输出的电压对应的温度;
步骤S204,BMS将预定温度对应的信号发送至直流电源系统的中心监理单元CSU,以使CSU根据预定温度对应的信号对恒流源电路进行温度补偿,调节恒流源电路输出电压到预设值,实现当前供电电池与待切换电池的切换操作。
本实施例为发送电池切换信号的过程,即BMS侧如何模拟出预定温度对应的信号的过程,其中,BMS模拟输出一个预定温度对应的信号的过程可以包括如下:根据待切换电池的端压、恒流源电路输出的电压和预设电池温度补偿系数确定恒流源电路在切换时需要达到的温度;再确定达到温度时需 要输出的电流值,并将恒流源电路当前输出的电流的大小调整为电流值,以将电流值对应的电流设置为预定温度对应的信号来进行输出。
实施例二
本发明实施例还提供了一种电池切换的装置,该装置的结构示意如图3所示,包括:接收模块10,设置为接收电池管理系统BMS模拟输出的预定温度对应的信号,其中,预定温度为待切换电池切换时输出的电压对应的温度;温度补偿模块20,与接收模块10耦合,设置为根据预定温度对应的信号对恒流源电路进行温度补偿,以调节恒流源电路输出电压到预设值,实现当前供电电池与待切换电池的切换操作。
可选地,温度补偿模块20的结构示意可以如图4所示,包括:确定单元201,设置为根据接收到的电流的电流值确定恒流源电路当前的温度;其中,电流为BMS模拟输出的预定温度对应的信号;温度补偿单元202,与确定单元201耦合,设置为根据当前的温度对恒流源电路进行升温或降温的温度调节,以调节恒流源电路输出的电压至预设值。
本发明实施例还提供一种发送电池切换信号的装置,该装置与上述的电池切换的装置交互,其结构示意如图5所示,包括:输出模块30,设置为模拟输出一个预定温度对应的信号;发送模块40,与输出模块30耦合,设置为将预定温度对应的信号发送至直流电源系统的中心监理单元CSU。
可选地,上述输出模块30的结构示意如图6所示,包括:计算单元301,设置为根据待切换电池的端压、恒流源电路输出的电压和预设电池温度补偿系数确定恒流源电路在切换时需要达到的温度,并确定达到温度时需要输出的电流值;输出单元302,与计算单元301耦合,设置为将恒流源电路当前输出的电流的大小调整为电流值,以将电流值对应的电流设置为预定温度对应的信号来进行输出。
可选地,上述发送电池切换信号的装置还可以包括切换模块,设置为实现将当前供电电池与待切换电池的切换操作。
本发明实施例还提供了一种电池切换系统,该系统的架构示意如图7所示,包括:BMS和直流电源系统的CSU。
其中,BMS包括:模拟温度信号发生器,信号通道切换开关;模拟温度信号发生器,设置为在接收到进行电池切换的触发信号时,产生预定温度对应的信号,并进行输出,其中,预定温度为待切换电池切换时输出的电压对应的温度;信号通道切换开关,设置为在接收到进行电池切换的触发信号时,将CSU接入到模拟温度信号发生器所在回路,以使模拟温度信号发生器将预定温度对应的信号输出至CSU;CSU,设置为接收来自模拟温度信号发生器的预定温度对应的信号,根据预定温度对应的信号对恒流源电路进行温度补偿,以调节恒流源电路输出电压到预设值,实现当前供电电池与待切换电池的切换操作。
实施例三
相关技术中,都需要将直流电源系统做修改、升级或调试,才能与BMS进行交互,升级、调试等过程复杂且工程量较大,实现成本较高,因此,是否能够直接把铁锂电池以及混用电池拿来即用成为一个亟待解决的问题,即如何不对直流电源系统做任何的修改、升级或调试就可以进行电池间的无缝切换。
本发明实施例提供一种电池的切换方法和应用该方法的电池切换系统,涉及一种通信直流电源系统中,实现蓄电池稳健切换和保护的过程,在BMS领域,通过模拟温度传感器,巧妙借助直流电源系统本身的温度补偿功能,实现不同电池回路的切换和充电电压的调节,防止充电时接入端与电池端电压相差过大引起的大电流,降低器件的损坏率,降低BMS系统的成本,解除了BMS系统与直流电源系统本身的强耦合应用,使得电池混用变得极其简单易用,从而大大降低电信运营商的运维成本。
相关技术中,无论是铁锂电池的应用、还是新旧电池或不同类型的混用,都有一个独立的控制单元BMS。本发明实施例是在BMS上增加一个模拟温度信号发生器,这个信号发生器可以根据需要,受控地输出一个信号,这个信号可以模仿直流电源系统使用的电池温度传感器的信号输出;而直流电源系统中的CSU被欺骗地根据这个模拟信号,进行温度补偿,从而调节整流器(也就是恒流源电路)的输出电压到BMS系统期望的幅值,这样每路电池就可以非常安全的进行接入和断开。
下面对本发明实施例进行说明。
本发明实施例提供的电池切换系统的架构示意如图8所示,在BMS上增加一个模拟温度信号发生器,还增加一路信号通道切换开关。这个模拟信号发生器,能模仿不同类型的温度传感器的信号输出;这个模拟信号发生器,接受BMS系统中MCU(微控制单元,Microcontroller Unit)的控制,按照需要输出不同幅值或频率的信号。
正常情况下,信号通道切换开关接通的是原温度传感器信号,直流电源系统的CSU正常进行温度补充和电池管理;在BMS系统需要进行电池的接入动作、或者需要调节整流器电压(比如过流充电要求降压)前,首先调节模拟温度信号发生器,以输出期望的信号;信号切换开关接通模拟信号;CSU根据模拟信号,进行温度补偿,调节整流器输出电压到期望幅值;BMS系统安全进行电池的接入或控制;每路电池接入或控制动作都完成后,返回正常状态,即信号通道切换开关重新接通的原温度传感器信号。
下面结合附图以新旧电池切换过程为示例对本发明实施例进行详细说明。
一铁塔公司成立后,启动了大规模的存量基站电源的维护改造,其中一个非常重要的需求就是要求实现新旧铅酸电池的混用,以便尽可能地节省前期的巨额投入。根据该铁塔公司的要求,一电源厂家完成了一个智能化的电池混用切换系统(本实施例中为BMS);根据本发明实施例方案,在此切换系统上增加了相应的模拟温度传感器和信号切换装置,实现了BMS系统的独立运行,原电源CSU也不需要进行任何的软件升级和调试。使得旧站点的改造变得极其简单、方便、可行。本示例的实现包括如下过程:
在原BMS上增加一路信号通道切换开关;由于传输的是普通传感器信号,因此,选用普通的电磁继电器即可。电磁继电器的通道切换由BMS上的MCU控制完成。电磁继电器的输出端有COM、NO、NC。其中COM连接到直流电源CSU的电池温度检测输入端;NC连接到原AD590的输出端;NO连接到可控恒流源的输出端。
在原BMS上增加一个模拟温度信号发生器;由于该电源主要的温度传感器为AD590,是一个典型的电流信号。因此,模拟温度信号发生器可以是一个可控的恒流源电路。恒流源的输出电流大小由BMS上的MCU控制。
BMS在正常工作情况下,不对电磁继电器进行控制,因此,缺省情况下,CSU电池温度检测的就是原先的AD590,也就是电池的实际温度;CSU可以进行正常的监测和控制。
由于主辅电池组性能不同,因此对主辅电池组的使用上,要单独进行充电或放电。比如BMS系统采取主电池组优先充电和放电的策略;当主电池组充电完毕,需要切换到辅助电池组进行充电。如图9所示,在进行切换时,进行主电池的A回路切换到辅助电池的D回路,步骤依次为:闭合主电池的A回路;闭合主电池的B回路;断开主电池的A回路;闭合辅电池的D回路;断开主电池的B回路;闭合辅电池的C回路;断开辅电池的D回路。通过上述过程,就实现了由主电池切换备用电池全过程。
在闭合辅D前,为了避免主备电池之前有大电压差造成大电流对开关的冲击,需要进行电磁继电器和恒流源电路的控制,包括以下步骤:
(1)根据辅助电池组的端压、整流器当前的输出电压、以及电池温度补偿系数,计算出恒流源电路需要输出的信号值。比如当前辅助电池组端压为51.0V、整流器输出电压53.5V、温度补偿系数为3mV/℃。因此,恒流源电路需要输出的温度为(53.5-51.0)/(0.003*24)+25=59.7℃;
(2)根据AD590的特性,计算出其输出的电流值。AD590的测温范围为-55℃~+150℃;其以绝对温度零度(-273℃)为基准,每增加1℃,它会增加1μA输出电流,因此在59.7℃时,其输出电流Iout=(273+59.7)=332.7μA;
(3)BMS系统中的MCU调节恒流源电流,输出332.7μA;
(4)BMS系统中的MCU,进行电磁继电器的控制,接通恒流源的332.7μA到直流电源CSU的电池温度检测端;
(5)直流电源CSU,检测到电池温度输出端为332.7μA,通过计算后,误以为当前的电池温度为59.7℃;因此通过温度补偿进行调压,整流器输出电压降低到51.0V;
(6)当整流器电压与辅电池电压匹配相同后,即可实现后半段切换到辅助回路的过程:闭合辅电池的D回路;断开主电池的B回路;闭合辅电池的 C回路;断开辅电池的D回路;
(7)调压完成切换后,BMS系统中的MCU,复位电磁继电器的控制,接通原始的AD590到直流电源CSU的电池温度检测端,进行正常电池温度检测。
通过一段时间的充电后,辅电池已经充满容量。这时候就需要从辅电池切换回缺省的主电池回路了,为了无缝切换,重复上述过程(1)至(7)即可,此处不再赘述。
在具体实现时,由于电池的切换/接入,一般情况下允许整流器电压和电池端压有0.3V的电压偏差,因此,恒流源电路设计上不需要绝对精准,这样可以有效降低硬件成本;模拟温度信号发生器不一定要用恒流源电路实现,也可以用真实的AD590+半导体加热致冷片完成,通过调节加热致冷片效果,使得附着在半导体加热致冷片上的AD590输出期望的温度信号;对于可能会存在电池温度高的误告警问题,由于电池温度通常是一个缓变数据,可以通过延长告警的判断时间,来过滤这个误告警;在网管中心或者CSU端都可以执行。
本发明实施例通过在BMS上模拟温度信号发生器,借助直流电源系统本身的温度补偿功能,通知CSU进行调压,以便实现新旧电池的切换和铁锂电池保护,将使得铁锂电池直接替换传统铅酸电池、以及电池混用成为极其简单易用,最终大大加速电池混用和铁锂电池应用的步伐,同时显著降低电信运营商的运维成本。
综上所述,通过本发明实施例提供的技术,解除了BMS系统与直流电源系统本身的强耦合应用,能够使电信运营商和铁塔公司无缝地使用铁锂电池以及实现新旧电池混用,就像使用传统的VRLA电池一样简单方便,这样,可以大大加速电池混用和铁锂电池应用的步伐,同时显著节省了客户前期的巨额投入、也降低了后期的运维成本。
本发明实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机可执行指令,所述计算机可执行指令被执行时实现电池切换的方法。
本发明实施例还提供一种计算机可读存储介质,所述计算机可读存储介 质中存储有计算机可执行指令,所述计算机可执行指令被执行时实现发送电池切换信号的方法。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件(例如处理器)完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,例如通过集成电路来实现其相应功能,也可以采用软件功能模块的形式实现,例如通过处理器执行存储于存储器中的程序/指令来实现其相应功能。本申请不限制于任何特定形式的硬件和软件的结合。本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或者等同替换,而不脱离本申请技术方案的精神和范围,均应涵盖在本申请的权利要求范围当中。
工业实用性
上述技术方案可以实现电池的直接切换,切换效率较高,系统性能有较大提升。

Claims (10)

  1. 一种电池切换的方法,包括:
    接收电池管理系统BMS模拟输出的预定温度对应的信号,其中,所述预定温度为待切换电池切换时输出的电压对应的温度;
    根据所述预定温度对应的信号对恒流源电路进行温度补偿,以调节所述恒流源电路输出电压到预设值,实现当前供电电池与所述待切换电池的切换操作。
  2. 如权利要求1所述的方法,所述方法还包括:接收电池管理系统BMS模拟输出的预定温度对应的信号之前,所述BMS模拟输出一个预定温度对应的信号;
    所述BMS将所述预定温度对应的信号发送至直流电源系统的中心监理单元CSU。
  3. 如权利要求2所述的方法,其中,所述BMS模拟输出一个预定温度对应的信号,包括:
    根据所述待切换电池的端压、所述恒流源电路输出的电压和预设电池温度补偿系数确定所述恒流源电路在切换时需要达到的温度;
    确定达到所述温度时需要输出的电流值,并将所述恒流源电路当前输出的电流的大小调整为所述电流值,以将所述电流值对应的电流设置为所述预定温度对应的信号来进行输出。
  4. 如权利要求3所述的方法,其中,根据所述预定温度对应的信号对恒流源电路进行温度补偿,以调节所述恒流源电路输出电压到预设值,包括:
    所述CSU根据接收到的所述电流值对应的电流确定所述恒流源电路当前的温度;
    所述CSU根据所述当前的温度对所述恒流源电路进行升温或降温的温度调节,以调节所述恒流源电路输出的电压至所述预设值。
  5. 一种发送电池切换信号的方法,包括:
    电池管理系统BMS模拟输出一个预定温度对应的信号,其中,所述预 定温度为待切换电池切换时输出的电压对应的温度;
    所述BMS将所述预定温度对应的信号发送至直流电源系统的中心监理单元CSU,以使所述CSU根据所述预定温度对应的信号对恒流源电路进行温度补偿,调节所述恒流源电路输出电压到预设值,实现当前供电电池与所述待切换电池的切换操作。
  6. 一种电池切换的装置,包括:
    接收模块,设置为接收电池管理系统BMS模拟输出的预定温度对应的信号,其中,所述预定温度为待切换电池切换时输出的电压对应的温度;
    温度补偿模块,设置为根据所述预定温度对应的信号对恒流源电路进行温度补偿,以调节所述恒流源电路输出电压到预设值,实现当前供电电池与所述待切换电池的切换操作。
  7. 如权利要求6所述的装置,所述温度补偿模块包括:
    确定单元,设置为根据接收到的电流的电流值确定所述恒流源电路当前的温度;其中,所述电流为所述BMS模拟输出的预定温度对应的信号;
    温度补偿单元,设置为根据所述当前的温度对所述恒流源电路进行升温或降温的温度调节,以调节所述恒流源电路输出的电压至所述预设值。
  8. 一种发送电池切换信号的装置,与权利要求6或7中的电池切换的装置交互,包括:
    输出模块,设置为模拟输出一个预定温度对应的信号;
    发送模块,设置为将所述预定温度对应的信号发送至直流电源系统的中心监理单元CSU。
  9. 如权利要求8所述的装置,所述输出模块包括:
    计算单元,设置为根据所述待切换电池的端压、所述恒流源电路输出的电压和预设电池温度补偿系数确定所述恒流源电路在切换时需要达到的温度,并确定达到所述温度时需要输出的电流值;
    输出单元,设置为将所述恒流源电路当前输出的电流的大小调整为所述电流值,以将所述电流值对应的电流设置为所述预定温度对应的信号来进行 输出。
  10. 一种电池切换系统,包括:
    电池管理系统BMS和直流电源系统的中心监理单元CSU;
    其中,所述BMS包括:模拟温度信号发生器,信号通道切换开关;
    所述模拟温度信号发生器,设置为在接收到进行电池切换的触发信号时,产生预定温度对应的信号,并进行输出,其中,所述预定温度为待切换电池切换时输出的电压对应的温度;
    所述信号通道切换开关,设置为在接收到进行所述电池切换的触发信号时,将所述CSU接入到所述模拟温度信号发生器所在回路,以使所述模拟温度信号发生器将所述预定温度对应的信号输出至所述CSU;
    所述CSU,设置为接收来自所述模拟温度信号发生器的所述预定温度对应的信号,根据所述预定温度对应的信号对恒流源电路进行温度补偿,以调节所述恒流源电路输出电压到预设值,实现当前供电电池与所述待切换电池的切换操作。
PCT/CN2016/085149 2015-10-08 2016-06-07 电池切换的方法、发送电池切换信号的方法及装置 WO2016197922A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510646444.7 2015-10-08
CN201510646444.7A CN106571647B (zh) 2015-10-08 2015-10-08 电池切换的方法、发送电池切换信号的方法及装置

Publications (1)

Publication Number Publication Date
WO2016197922A1 true WO2016197922A1 (zh) 2016-12-15

Family

ID=57502982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085149 WO2016197922A1 (zh) 2015-10-08 2016-06-07 电池切换的方法、发送电池切换信号的方法及装置

Country Status (2)

Country Link
CN (1) CN106571647B (zh)
WO (1) WO2016197922A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6911516B2 (ja) * 2017-05-18 2021-07-28 コニカミノルタ株式会社 情報処理装置、制御方法及びコンピュータープログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5640059A (en) * 1995-12-21 1997-06-17 Reltec Corporation Power supply system including thermal current limiting protection
CN102148525A (zh) * 2010-02-04 2011-08-10 丰田自动车株式会社 车辆用电源设备
CN103018680A (zh) * 2012-12-11 2013-04-03 矽力杰半导体技术(杭州)有限公司 一种电池电量计量方法、计量装置以及电池供电设备
CN104423524A (zh) * 2013-08-29 2015-03-18 纬创资通股份有限公司 电源供应系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1108822A (zh) * 1994-03-16 1995-09-20 加拿大独立电动产品公司 电池再充电系统的电池温度补偿装置
JP5481018B2 (ja) * 2007-05-17 2014-04-23 矢崎エナジーシステム株式会社 電池電圧低下検出装置
CN104319427B (zh) * 2014-08-26 2017-05-10 惠州Tcl移动通信有限公司 一种电池温度的获取装置、移动终端、及调试方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5640059A (en) * 1995-12-21 1997-06-17 Reltec Corporation Power supply system including thermal current limiting protection
CN102148525A (zh) * 2010-02-04 2011-08-10 丰田自动车株式会社 车辆用电源设备
CN103018680A (zh) * 2012-12-11 2013-04-03 矽力杰半导体技术(杭州)有限公司 一种电池电量计量方法、计量装置以及电池供电设备
CN104423524A (zh) * 2013-08-29 2015-03-18 纬创资通股份有限公司 电源供应系统

Also Published As

Publication number Publication date
CN106571647B (zh) 2021-08-31
CN106571647A (zh) 2017-04-19

Similar Documents

Publication Publication Date Title
CN205509569U (zh) 一种光伏基站用锂电池后备电源系统
JP2013531448A (ja) ストレージバッテリから電力を供給する方法、装置、及びシステム
CN102522798B (zh) 一种电池组模块之间的主动均衡电路
CN102651572B (zh) 一种零时备电系统和零时备电方法
CN108321827A (zh) 后备蓄电池储能放电控制系统及方法
WO2018149153A1 (zh) 柔性充电控制系统及方法、柔性充电系统
WO2010060338A1 (zh) 混合电池管理系统、电池管理方法和混合备电电源系统
CN111049168A (zh) 电池储能系统能量管控方法及系统
CN105449778A (zh) 一种充电控制电路及控制方法
CN102969715B (zh) 一种快速双向切换的电能补充管理装置和方法
CN105071525A (zh) 不间断供电系统
WO2016197922A1 (zh) 电池切换的方法、发送电池切换信号的方法及装置
CN204761145U (zh) 一种用于ups自动切换备用回路的控制装置
CN106100102A (zh) 智能供电切换装置、应用该装置的供电系统及控制方法
CN105391112A (zh) 一种通信用移动应急电源及其电压自适应方法
CN205666679U (zh) 一种旁路自动切换型的ups
CN204258440U (zh) 低压停电监测终端
CN208369223U (zh) 后备蓄电池储能放电控制系统
CN106026356A (zh) 一种实现电池扩容的方法
CN202772599U (zh) 一种发电系统
CN204967410U (zh) 零功耗直流ups切换系统
CN103904776A (zh) 智能配电房电源系统
CN203504232U (zh) 一种网络智能多用途eps应急电源
CN202798015U (zh) 一种逆变、回馈放电一体化装置
CN202798130U (zh) 一种不间断电源、电池管理系统及不间断供电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16806820

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16806820

Country of ref document: EP

Kind code of ref document: A1