WO2016197840A1 - 一种推挽式x轴磁电阻传感器 - Google Patents

一种推挽式x轴磁电阻传感器 Download PDF

Info

Publication number
WO2016197840A1
WO2016197840A1 PCT/CN2016/084227 CN2016084227W WO2016197840A1 WO 2016197840 A1 WO2016197840 A1 WO 2016197840A1 CN 2016084227 W CN2016084227 W CN 2016084227W WO 2016197840 A1 WO2016197840 A1 WO 2016197840A1
Authority
WO
WIPO (PCT)
Prior art keywords
push
pull
magnetic flux
soft magnetic
gap
Prior art date
Application number
PCT/CN2016/084227
Other languages
English (en)
French (fr)
Inventor
迪克·詹姆斯·G
周志敏
Original Assignee
江苏多维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏多维科技有限公司 filed Critical 江苏多维科技有限公司
Priority to JP2017564329A priority Critical patent/JP6991862B2/ja
Priority to US15/578,508 priority patent/US10330748B2/en
Priority to EP16806738.7A priority patent/EP3309571B1/en
Publication of WO2016197840A1 publication Critical patent/WO2016197840A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0011Arrangements or instruments for measuring magnetic variables comprising means, e.g. flux concentrators, flux guides, for guiding or concentrating the magnetic flux, e.g. to the magnetic sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0005Geometrical arrangement of magnetic sensor elements; Apparatus combining different magnetic sensor types
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices

Definitions

  • the present invention relates to the field of magnetic sensors, and in particular to a push-pull X-axis magnetoresistive sensor.
  • the Y-axis magnetoresistive sensor proposed above mainly has the following problems: the push arm and the wrist arm cannot realize the integrated manufacturing process, and the process of using the discrete slice flying line connection also increases the complexity of the process and affects the measurement accuracy of the sensor.
  • the present invention proposes a push-pull X-axis magnetoresistive sensor, which uses a staggered U-shaped, H-shaped or U-and H-mixed soft magnetic flux concentrator to realize a magnetic circuit change, and realizes X.
  • the external magnetic field is transformed into an enhanced external magnetic field having an opposite magnetoresistance change between the X-direction push arm having the X magnetic field sensitive direction and the -X direction pull arm, and when the Y-direction external magnetic field acts, the push arm X magnetic field component is included
  • the magnetoresistance sensing unit with the opposite magnetic field changes, the final average magnetic field changes to 0, and the arm contains a characteristic that the magnetoresistance changes very little with the magnetic field, thereby realizing an equivalent arm-type magnetoresistive sensing unit.
  • the bridge realizes the enhanced output of the X magnetic field signal and the shielding effect on the Y magnetic field.
  • a push-pull X-axis magnetoresistive sensor comprises: a substrate, a staggered soft magnetic flux concentrator array on the substrate, and a push-pull magnetoresistive sensing unit bridge;
  • the staggered soft magnetic flux concentrator array includes at least two soft magnetic flux concentrators, each of the soft magnetic flux concentrators comprising a rectangular positive X-direction bar1 strip, a negative X-direction bar2 strip, and a 0-magneto-resistance bridge.
  • the long axis of the bar1 strip and the bar2 strip are parallel to the Y-axis direction and the short axis is parallel to the X-axis direction, the long axis of the 0-magneto-resistance bridge is parallel to the X-axis direction, the short axis is parallel to the Y-axis direction, and both ends of the long axis are Separating from the bar1 strip and the bar2 strip, respectively, forming a staggered structure between the soft magnetic flux concentrators, and forming a staggered gap GapX1 and an unallocated column gap GapX2 in the X direction;
  • the push-pull magnetoresistive sensing unit bridge includes at least one push arm and one pull arm, the push arm includes at least one push magnetoresistive sensing unit string, and the pull arm includes at least one magnetoresistive resistance sensing unit a string, the push and pull magnetoresistive sensing unit strings each include a plurality of interconnected magnetoresistive sensing units, the push magnetoresistive sensing unit string is located at the staggered gap GapX1, and the magnetizing resistance sensing The cell string is located at the unallocated column gap GapX2, and the magnetic field sensing direction of the magnetoresistive sensing unit is the X direction.
  • the push-pull X-axis magnetoresistive sensor further includes a calibration coil and/or a reset coil;
  • the calibration coil includes a push-calibrated straight wire and a pull-aligned straight wire that are parallel to the push-pull-pull-resistance sensing unit string,
  • a calibration magnetic field component having the same amplitude in the X and -X directions is generated at the magnetoresistive sensing unit string and the magnetizing resistance sensing unit string, respectively;
  • the reset coil includes a reset straight wire perpendicular to the magnetoresistive sensing cell string, and when the reset coil passes the reset current, a reset magnetic field of the same amplitude is generated in the Y direction at all the magnetoresistive sensing units Component.
  • the soft magnetic flux concentrator is U-shaped or H-shaped, and the bar 1 strip of the U-shaped soft magnetic flux concentrator is aligned with the positive Y end of the bar 2 strip or the negative Y end, and is connected to the 0 reluctance a U gap formed between the bar 1 strip and the bar 2 strip, the 0 reluctance bridge of the H-shaped soft magnetic flux concentrator connecting the bar 1 strip and the bar 2 strip midpoint, An H gap is formed between the bar1 strip and the bar 2 strip, and the H gap is divided into a positive H gap and a negative H gap according to the Y-axis direction.
  • the staggered soft magnetic flux concentrator array is composed of a U-shaped soft magnetic flux concentrator or an H-shaped soft magnetic flux concentrator or a U-shaped soft magnetic flux concentrator and an H-shaped soft magnetic flux concentrator, and forms a staggered gap column along the X direction. Any one of the soft magnetic flux concentrators, at least one of the other soft magnetic flux concentrators having a staggered structure formed thereon, and the long axis of the positive X-direction bar 1 and the negative X-bar bar 2 spans all in the Y direction Describe the wrong column gap.
  • the staggered soft magnetic flux concentrator array is composed of U-shaped and H-shaped soft magnetic flux concentrators, or only by the H soft magnetic flux concentrator, and forms the staggered gap array of M rows and N columns, wherein, in the Y direction,
  • the staggered gaps in the first column and the Nth column are the staggered gap between the H-shaped and U-shaped soft magnetic flux concentrators or the staggered structure between the H soft magnetic flux concentrators
  • N is an integer greater than or equal to 3
  • the staggered gaps in the middle second column to the N-1th column correspond to the staggered structure between the H soft magnetic flux concentrators;
  • each of the columns includes M of the staggered gaps, wherein all of the soft magnetic flux concentrators at the uppermost end are positive X-direction bars bar1 and all of the soft magnetic flux concentrators negative X-direction bars bar2 at the lowermost end respectively Merging into a strip of D1 and D2 ends, the long axis of the strips of D1 and D2 spans all of the staggered gaps in the Y direction; M, N are integers greater than or equal to 2.
  • the odd gap set A formed by the numerical labels of the staggered gap and the unallocated column gap is:
  • A [-(n1+0.5), -n1,...,-1.5,-1,0,1,1.5,...,n1,n1+0.5];
  • Odd-error column gap set: A1 [-n1,...,-1,1,...,n1];
  • A2 [-(n1+0.5),...,-1.5,1.5,...,n1+0.5];
  • the even gap set B is:
  • B [-(n2+0.5), -n2,...,-1,-0.5,0,0.5,1,...,n2,(n2+0.5)]; (n2 is an integer greater than or equal to 0)
  • 0 corresponds to the intermediate gap label
  • the positive integer and the positive fraction correspond to the positive X-direction staggered gap and the un-allocated column gap label, respectively
  • the negative fraction respectively correspond to the negative X-way staggered gap and the un-allocated column gap label
  • the string of magnetoresistive sensing units at the staggered gap constitutes the set of push arms
  • the string of magnetoresistive sensing units at the unallocated column gap constitutes the set of arm arms
  • the string of magnetoresistive sensing units at the staggered gap constitutes the set of push arms
  • the string of magnetoresistive sensing units at the unallocated column gap constitutes the set of arm arms
  • n1 (K-1)/2
  • n2 (K-2)/2.
  • nJ elements are arbitrarily selected from the odd or even push arm set A11(J) or B11(J): n1 ⁇ J ⁇ 1 or n2 ⁇ J ⁇ 1, nJ ⁇ 1;
  • Push(J) [a 1J , a 11J , a 2J , a 21J , a 3J , a 31J ,..., a nJ , a n1J ]
  • Pull(J) [a 10J , a 110J , a 20J , a 210J , a 30J , a 310J ,..., a n0J , a n10J ]
  • the push magnetoresistive sensing unit string in the Pull (J) set constitutes the magnetoresistive sensing unit string of the Jth staggered gap column
  • the Pull(J) set constitutes the magnetoresistive sensing unit string of the Jth staggered gap column.
  • Push ⁇ Push(1), Push(2), Push(3),...,Push(M) ⁇
  • the push arm of the push-pull X-axis magnetoresistive sensor is a series connection between the push magnetoresistive sensor cell strings corresponding to the Push (J) set corresponding to each J column, and the arm is the The series connection between the strings of the magnetoresistive resistance sensing cells corresponding to the set of Pull(J) corresponding to the J column.
  • the magnetoresistive sensing unit strings having the same resistance are simultaneously located at a first type of unallocated column gap formed by two H-shaped soft magnetic flux concentrators, the magnetoresistive sensing unit strings are combined into one magnetic resistance.
  • the sensing unit string has a resistance twice that of the one of the two magnetoresistive sensing unit strings.
  • the push-pull bridge sensors can be connected in a half bridge, full bridge or quasi-bridge configuration.
  • the magnetoresistive sensing unit is a GMR spin valve or a TMR sensing unit, the pinning layer direction is parallel to the X-axis direction, and the free layer direction is parallel to the Y-axis direction.
  • the magnetoresistive sensing unit makes the magnetic direction of the magnetic free layer perpendicular to the magnetization direction of the magnetic pinning layer by permanent magnet biasing, double switching action, shape anisotropy or any combination thereof.
  • the number of magnetoresistive sensing units on the push arm and the arm is the same.
  • the calibration coil includes a push calibration straight wire and a pull calibration straight wire, the positional relationship between the push calibration straight wire and the push magnetoresistive sensing cell string and the pull calibration straight wire and the magnetizing resistance pass
  • the positional relationship between the sensing cell strings is the same, the positional relationship is that the straight wire is located directly above or directly below the corresponding magnetoresistive sensing cell string, and the push calibration straight wire and the pull calibration straight wire are connected in series Connected and have opposite current directions.
  • the reset coil is a planar coil, and the reset straight wire is included perpendicular to the push magnetoresistive sensing unit string and the magnetizing resistance sensing unit string, and is located directly above or directly below each magnetoresistive sensing unit string. And the current direction is the same.
  • the calibration coil includes a positive port and a negative port. When both ends pass current, the calibration magnetic field amplitude generated is within a linear working area of the magnetoresistive sensing unit.
  • the calibration current can be set to a current value or a plurality of current values.
  • the reset coil includes two ports, and when the two ports pass current, the generated reset magnetic field is higher than the saturation magnetic field value of the magnetoresistive sensing unit.
  • the reset current can be a pulse current, a direct current.
  • the reset coil and the calibration coil are high conductivity materials including Cu, Au or Ag.
  • the soft magnetic flux concentrator is an alloy soft magnetic material containing one or more of elements such as Fe, Ni or Co.
  • the substrate material is a glass or silicon wafer and the substrate contains an ASIC or the substrate is connected to another ASIC chip.
  • the reset coil and/or calibration coil is located above the substrate and under the magnetoresistive sensing unit, or between the magnetoresistive sensing unit and the soft magnetic flux director or over the soft magnetic flux director.
  • the reset coil and/or the calibration coil and the staggered U or H soft magnetic flux guide and the push-pull magnetoresistive sensing unit bridge are separated by an insulating material, and the insulating material is SiO 2 . , Al 2 O 3 , Si 3 N 4 , polyimide or photoresist.
  • Figure 4 The soft magnetic flux concentrator is not staggered in the gap diagram: a) the first type of unallocated column gap; b) the second type of unallocated column gap;
  • Figure 5 is a single gap column of the soft magnetic flux concentrator array and its label: a) soft magnetic flux concentrator K is odd, b) soft magnetic flux concentrator K is even
  • Figure 7X Magnetic field distribution of the staggered U-shaped soft magnetic flux concentrator array structure in the external magnetic field
  • Figure 11 is a staggered U-shaped soft magnetic flux concentrator in the full bridge structure of the staggered gap and the unallocated column gap connection diagram
  • Fig. 12 Staggered gap and unallocated column gap connection in the full bridge structure of the staggered U-shaped soft magnetic flux concentrator
  • Figure 14X Magnetic field distribution of the array structure of the U and H mixed soft magnetic flux concentrators in the external magnetic field
  • Figure 18 is a staggered U and H mixed soft magnetic flux concentrator in the full bridge structure of the staggered gap and unallocated column gap connection diagram
  • Figure 19 is a block diagram of a U-shaped soft magnetic flux concentrator array full-bridge push-pull X-axis magnetoresistive sensor
  • Figure 20 is a block diagram of a U-H hybrid soft magnetic flux concentrator array full-bridge push-pull X-axis magnetoresistive sensor
  • Figure 21 is a block diagram of a staggered U-shaped push-pull X-axis magnetoresistive sensor with a calibration coil
  • Figure 22 is a structural diagram of a staggered U-shaped push-pull X-axis magnetoresistive sensor including a reset coil
  • Figure 23 contains the staggered U, H hybrid push-pull X-axis magnetoresistive sensor structure diagram of the calibration coil
  • Figure 24 shows the structure of the staggered U, H hybrid push-pull X-axis magnetoresistive sensor with reset coil
  • Figure 25 shows the distribution of magnetic lines of force generated by the calibration coils on the cross-section of the gap column.
  • Figure 26 shows the Hx magnetic field distribution at the series of magnetoresistive sensing elements on the cross-section of the gap column
  • Figure 27 is a diagram showing the distribution of magnetic lines of force generated by resetting the coil perpendicular to the cross section of the magnetoresistive sensing unit string.
  • Figure 28 is a vertical view of the Hx magnetic field distribution at the magnetoresistive sensing element string on the cross section of the magnetoresistive sensing unit string.
  • Figure 29 is a cross-sectional structure of a push-pull X-axis magnetoresistive sensor
  • Figure 30 is a cross-sectional structural view of a push-pull X-axis magnetoresistive sensor including a calibration coil
  • Figure 31 is a cross-sectional view of a push-pull X-axis magnetoresistive sensor including a reset coil
  • Figure 32 is a cross-sectional view of a push-pull X-axis magnetoresistive sensor including a calibration coil and a reset coil
  • FIG. 1 and 2 are structural diagrams of two typical soft magnetic flux concentrators, wherein FIG. 1 is a U-shaped soft magnetic flux concentrator, FIG. 2 is an H-shaped soft magnetic flux concentrator, and the soft magnetic flux concentrator includes bar1 and Bar2 two rectangular strips, and 0 reluctance bridge, where bar1 strip is in the positive X direction, bar2 strip is in the negative X direction, the long axis is the Y direction, the short axis is the X direction, and the 0 magnetoresistive bridge is also The rectangle has a long axis along the X direction and a short axis along the Y direction. The long axis of the 0 reluctance bridge is connected to the strips bar1 and bar2 at both ends.
  • the positive Y-end alignment and/or the negative Y-end alignment of the bar1 strip and the bar2 strip, the positive Y-end or the negative Y-end and the 0-magnetic of the bar1 strip and the bar2 strip The blocking bridge is connected, and a Ug gap is formed between the bar1 strip and the bar2 strip.
  • the midpoint of the bar1 strip and the bar2 strip are connected by a 0-reluctance bridge, and the bar1 is long.
  • a negative Y-direction gap Hg1 and a positive Y-direction gap Hg2 are formed between the strip and the bar 2 strip.
  • FIG. 3 is a schematic diagram showing a staggered structure and a corresponding staggered gap between two soft magnetic flux concentrators
  • FIG. 3 is a staggered structure formed by the F(1) soft magnetic flux concentrator and the F(2) soft magnetic flux concentrator, wherein One of the strips bar2 of the F(1) soft magnetic flux concentrator enters the gap Hg1 of the F(2) soft magnetic flux concentrator, and one of the strips bar1 of the F(2) soft magnetic flux concentrator enters the F(1) soft magnetic flux concentrator.
  • a staggered gap Gx is formed between bar1 and bar2 in the X direction, and a positive Y-gap Gy1 and negative Y are formed along the Y direction.
  • this figure only shows the case of the U and H-shaped soft magnetic flux concentrators, and actually can also include two U-shaped soft magnetic flux concentrators or two H-shaped soft magnetic flux concentrators. .
  • FIG. 4 is a schematic diagram showing the formation of an unallocated column gap between soft magnetic flux concentrators, the uncorrected column gap has two forms, namely, a first type of unallocated column gap and a second type of unallocated column gap, wherein FIG.
  • Figure 4 (b) is the second type of unallocated column gap, entering the F (16) soft magnetic flux concentrator gap Ug, Hg1 or Hg2, only one of the F (17) soft magnetic flux concentrators with staggered structure forming the bar1 length Strip, then the second type of unaltered column gap Gn1x is formed between the bar1 strip of the F(16) soft magnetic flux concentrator and the bar1 strip of the F(17) soft magnetic flux concentrator, and the two bar2 strips are also A second type of unaltered column gap Gn1x is formed along the X direction.
  • the push-pull X-axis magnetoresistive sensor corresponding to the three kinds of staggered soft magnetic flux concentrator arrays of U-shaped soft magnetic flux concentrator, H-shaped soft magnetic flux concentrator and U-H mixed soft magnetic flux concentrator, magnetoresistance sensing
  • the cell strings are located at the staggered gap and the unallocated column gap respectively, and the push-pull X-axis magnetoresistive sensor is formed by the interconnection between the magnetoresistive sensing unit strings, and the most important feature of the push-pull X-axis magnetoresistive sensor is that For X external magnetic field has an enhanced measurement effect, but for Y external magnetic field has a cancellation effect, in order to facilitate the determination of the properties of the plurality of magnetoresistive sensing unit strings in the staggered soft magnetic flux concentrator array, that is, whether it is a push arm or a pull arm, And the connection relationship between each other, it is necessary to label all the staggered gaps and the unallocated column gaps.
  • the staggered gap and the unallocated column gap are alternately arranged, as shown in FIG. 5(a), when the number K of soft magnetic flux concentrators is an odd number, at this time, the staggered gap and the unallocated column gap are defined.
  • the odd gap set formed by the numerical labels is:
  • A [-(n1+0.5), -n1,...,-1.5,-1,0,1,1.5,...,n1,n1+0.5];
  • A2 [-(n1+0.5),...,-1.5,1.5,...,n1+0.5];
  • B2 [-n2-0.5,...,-0.5,0.5,n2+0.5];
  • 0 corresponds to the intermediate gap label
  • the positive integer and the positive fraction respectively correspond to the positive X-direction staggered gap and the un-allocated column gap label
  • the negative integer and the negative fraction respectively correspond to the negative X-direction staggered gap and the un-allocated column gap label
  • the long Y is long axis L1
  • the short axis is Lx1
  • FIG. 7 is a magnetic field line distribution diagram of the staggered U-shaped soft magnetic flux concentrator array 1 under the action of an external magnetic field in the x direction. It can be seen that there is an X-direction magnetic field distribution characteristic between the staggered gap and the un-allocated gap, wherein FIG. 6 The X-direction magnetic field component distribution on the L-line shown is as shown in Fig. 8.
  • the magnetic field at all the gaps is symmetrical with respect to G0, where the negative X-direction adjacent gap is G-0.5/G-1, G-1.5/G- 2 has a reverse magnetic field, and the amplitude is close. Also according to the symmetry, G0.5/G1, G1.5/G2 also have a reverse magnetic field, and the amplitude is close.
  • FIG. 9 is a magnetic line distribution diagram of the staggered U-shaped soft magnetic flux concentrator array 1 under the action of an external magnetic field in the y direction. It can be seen that the X-direction magnetic field distribution characteristic is also present between the staggered gap and the un-allocated gap.
  • the X-direction magnetic field distribution on the L-line shown in Fig. 10 is as shown in Fig. 10.
  • the magnetic field at all the gaps is symmetrical with respect to G0, where the label is a fractional gap, and the magnetic field at the gap of the first type of uncorrected column is close to 0.
  • staggered gap G-1, G-2 has the opposite magnetic field direction, amplitude Close, due to symmetry, G1, G2 also have opposite magnetic field directions, and the amplitude is close.
  • the push-pull X-axis magnetoresistive sensor is characterized by the magnetoresistance of the push-pull magnetoresistive sensor in the X external magnetic field.
  • the connection of the sensing unit strings can produce an enhanced output, and when the Y external magnetic field, the connection of the magnetoresistive sensing unit strings of the push-pull magnetoresistive sensor can produce a canceling effect.
  • the push magnetoresistive sensing unit string When the magnetoresistive sensing unit string is placed, the push magnetoresistive sensing unit string is placed at the staggered gap, and the magnetic flux sensing unit string is placed without gaps, and for the full bridge structure, there are two push arms and The two armes, the corresponding requirements of the magnetoresistive sensing unit string and the magnetizing resistance sensing unit string have symmetric characteristics in the distribution, as shown in Fig. 8, the adjacent two staggered gaps have inverse characteristics, therefore, If the push arm and the arm are respectively used as subtractors, the signal output amplitude will be greatly increased, and in Fig.
  • the magnetoresistive sensing unit for determining the push arm and the arm can be connected in the following manner:
  • the odd push arm sets A11 and A12 are defined as follows:
  • A11 [1,2,3,...,n1)]
  • A12 [-1,-2,-3,...,-n1)]
  • odd push arm sets A11 and A12 correspond to the push magnetoresistive sensing unit strings
  • the odd arm sets A21 and A22 are as follows:
  • A21 [1.5,2.5,3.5,...,n1+0.5]
  • A22 [-1.5,-2.5,-3.5,...,-(n1+0.5)]
  • odd-pull arm sets A21 and A22 correspond to the string of the magnetoresistive resistance sensing units
  • B11 [1,2,3,...,n2]
  • B12 [-1,-2,-3,...,-n2];
  • even push arm sets B11 and B12 correspond to the push magnetoresistive sensing unit strings
  • the even arm sets B21 and B22 are as follows;
  • the pair of armatures B21 and B22 correspond to the string of the magnetoresistive resistance sensing unit
  • connection of the magnetoresistive sensing unit strings of the actual push arm and the arm can be performed as follows.
  • the push arm sets are A11(J), 11(J), and nJ (nJ is an integer greater than or equal to 1) elements a 1J are arbitrarily selected therefrom.
  • the even gap set is [G-2.5, -G2, -G1.5, -G1, -G0.5, G0, G0.5, G1, G1.5, G2, G2.5];
  • the even staggered column gap is [-G2, -G1, G1, G2];
  • the even unallocated column gap is [G-2.5, -G1.5, -G0.5, G0.5, G1.5, G2.5];
  • the even push arm set is [G1, G2] and [-G2, -G1];
  • the set of even arm is [G0.5, G1.5, G2.5] and [G-2.5, -G1.5, -G0.5];
  • FIG. 11 and FIG. 12 The push arm Push and the pull arm Pull of the push-pull X-axis magnetoresistive sensor and their full bridge connection are shown in FIG. 11 and FIG. 12 .
  • the push arm Push is respectively between the elements G1 and G2 of the push arm set.
  • the series connection between the elements G-1, G-2, the arm Pull is respectively between the units G0.5, G1.5 in the arm concentration, and the series connection between G-0.5, G-1.5;
  • the push arm Push remains unchanged, and the pull arms Pull are respectively connected between the elements G1.5 and G2.5 of the arm set and between G-1.5 and G-2.5.
  • connection mode of the full bridge is the connection mode of the full bridge, and actually the structure of the half bridge or the quasi-bridge can be formed.
  • JM J1, J2, ..., JM are integers greater than or equal to 1
  • the push arm Push of the final push-pull X-axis magnetoresistive sensor is the respective J a series connection between the push magnetoresistive sensing cell strings corresponding to the Push(J) set corresponding to the column, wherein the pull arm Pull is the corresponding to the Pull(J) set element corresponding to each J column A series connection between the magnetoresistive sensing unit strings.
  • Figure 13 is a second type of push-pull X-axis magnetoresistive sensor structure according to the present invention, that is, a staggered U, H-shaped hybrid soft magnetic flux concentrator array 2, including the leftmost U-shaped soft in the X direction The magnetic flux concentrator column, the rightmost U-shaped soft magnetic flux concentrator column, and the middle three columns of H-shaped soft magnetic flux concentrators.
  • the leftmost U-shaped soft magnetic flux concentrator column consists of 2 (1), 2 (2), ..., 2 (N) N N-shaped soft magnetic flux concentrators
  • the rightmost U-shaped soft magnetic flux concentrator is composed of 5 (1), 5(2),...,5(N) consisting of a total of N U-shaped soft magnetic flux concentrators
  • the first column of the middle three columns of H-shaped soft magnetic flux concentrators is N+1 H-shaped soft magnetic flux concentration
  • the second column is composed of N H-shaped soft magnetic flux concentrators
  • the third column is composed of N+1 H-shaped soft magnetic flux concentrators.
  • each column two adjacent U-shaped soft magnetic flux concentrators such as 2(1) and 2(2) and the same H-shaped soft magnetic flux concentrator such as 4(1) form a staggered structure, along the Y direction, the leftmost In a U-shaped soft magnetic flux concentrator array, for any U-shaped soft magnetic flux concentrator such as 2(1), it is staggered with two adjacent H-shaped soft magnetic flux concentrators such as 3(1) and 4(1).
  • the staggered U, H-shaped mixed soft magnetic flux concentrator array 2 forms an array of array M*N gaps, as shown in FIG. 13, sharing L1, L2, L3 and L4 gap columns, wherein each column includes staggered gaps and The staggered arrangement of staggered gaps, and each column has the same staggered gap and unallocated column gap order.
  • the intermediate gap is G0, which is the origin.
  • the positive X-direction gap is G1, G1.5, G2, G2.5, G3, G3.5, G4, G4.5, G5.
  • G5.5, G6, G6.5, G7 the negative X direction is G-1, G-1.5, G-2, G-2.5, G-3, G-3.5, G-4, G-4.5, G-5, G-5.5, G-6, G-6.5, G-7.
  • Fig. 14 is a magnetic field line distribution characteristic of the misaligned U and H mixed soft magnetic flux concentrator array 2 under the action of an external magnetic field in the X direction. It can be seen that the magnetic field component has an X distribution characteristic at the staggered gap and the unallocated gap. , the Hx magnetic field component distribution on the L1 gap column is as As shown in Fig. 15, it can be seen that the Hx magnetic field of all the gaps is symmetrical with respect to the intermediate gap G0, and the adjacent two gaps have opposite magnetic field directions, and the amplitude values are also close.
  • Figure 16 shows the magnetic field line distribution characteristics of the misaligned U and H mixed soft magnetic flux concentrator array 2 under the action of the external magnetic field in the Y direction. It can be seen that the magnetic field component has the X distribution characteristic in all staggered gaps, and it is correct. At the column gap, the magnetic field lines are less distributed, and the surface magnetic field strength is smaller than the staggered gap.
  • the Hx magnetic field distribution on the L1 gap column is shown in Fig. 17. It can be seen that the gap magnetic field component Hx is relatively The G0 has an antisymmetric distribution feature, the Hx magnetic field component has a large amplitude at the staggered gap, and has a magnitude close to 0 at the first type of unallocated column gap, and the second type of unallocated column gap. There is a certain amplitude, which is much smaller than the amplitude at the staggered gap.
  • the staggered gap set is [G-6, G-5, G-4, G-3, G-2, G-1, G1, G2, G3, G4, G5, G6];
  • the unallocated column gap set is:
  • the push arm set is [G1, G2, G3, G4, G5, G6] or [G-1, G-2, G-3, G-4, G-5, G-6];
  • the arm set is:
  • connection structure diagram is as shown in FIG. 18, wherein the push arm Push is the push arm assembly units G1, G2, G3, G4, G5, G6, respectively.
  • the series connection is connected in series with G-1, G-2, G-3, G-4, G-5, G-6, and the pull arm Pull is the arm assembly unit G1.5, G2.5, G3.5 respectively.
  • the third type of push-pull X-axis magnetoresistive sensor structure proposed by the present invention is the basis of the second type of push-pull X-axis magnetoresistive sensor structure.
  • the leftmost and rightmost U-shaped soft magnetic flux concentrators are replaced by H soft magnetic flux concentrators.
  • Figure 19 is a structural diagram of a push-pull X-axis magnetoresistive sensor based on a first magnetic circuit structure, i.e., a staggered U-shaped soft magnetic flux concentrator array 1, comprising a substrate 6, and a substrate a staggered U-shaped soft magnetic flux concentrator array 1 above, and a magnetoresistive sensing unit string 7 located in the staggered gap, and a magnetoresistive sensing unit string 8 located in the unallocated gap, the magnetic The resistance sensing unit string comprises a plurality of interconnected magnetoresistive sensing units, the magnetoresistive sensing unit string has an X-direction magnetic field sensitive direction, wherein 9 is a connecting wire between the magnetoresistive sensing unit strings, and 10 is a Vcc electrode 11 is a GND electrode, 12 is a V+ output electrode, 13 is a V-output electrode, and the connection is a push-pull full-bridge connection, and the push arm and the arm have the same magnetoresistive sensing
  • Figure 20 is a second magnetic circuit structure according to the present invention, that is, a staggered U-shaped, H-shaped hybrid soft magnetic flux concentrator array 2
  • a structure diagram of a push-pull X-axis magnetoresistive sensor, comprising a substrate 6, and a staggered U, H-shaped hybrid soft magnetic flux concentrator array 2 on the substrate, and a push magnetoresistance transmission in the staggered gap Sense unit string 81, and the snubber resistance sensing unit strings 72 and 71, 72 in the staggered gap are located at the unallocated column gap formed by the two H soft magnetic flux concentrators, which are two 71 magnetoresistance transmissions.
  • the series of sensing cell strings are connected in series to form a single magnetoresistive sensing cell string having twice the resistance of the 71 magnetoresistive sensing cell string.
  • the sensing unit strings are connected in series to form a string, and then electrically connected into a push-pull full-bridge structure, wherein 91 is a wire connecting the magnetoresistive strings, 101 is a Vcc electrode, 102 is a GND electrode, and 103 is a V+ output signal electrode. , 104 is the V-output signal electrode.
  • 21 is a block diagram of a calibration coil 40 of a push-pull X-axis magnetoresistive sensor based on a staggered U-shaped soft magnetic flux concentrator array, the calibration coil 40 including a push calibration straight wire 42 and a pull calibration straight wire 41, The push calibration straight wire 42 and the pull calibration straight wire 41 are respectively located directly above or directly below the push magnetoresistive sensing cell string and the pull magnetoresistive sensing cell string, and the push calibration straight wire 42 and the pull calibration straight wire 41 are connected in series, And having the opposite current direction, and the width of the push-calibrated straight wire 42 is smaller than the width of the straight-line straight wire 41, because the staggered gap width is smaller than the un-allocated column gap width, and the soft magnetic flux concentrator pair at the staggered gap The enhancement of the magnetic field is greater than that of the uncorrected column gap.
  • the method of reducing the width of the straightened wire is used to enhance the magnetic field at the gap of the uncorrected column, thereby causing the string of the magnetoresistive sensing unit and the string of the magnetizing resistance sensing unit.
  • the calibration magnetic field is the same size and in the opposite direction.
  • FIG. 22 is a block diagram of a reset straight wire 400 of a push-pull X-axis magnetoresistive sensor based on a staggered U-shaped soft magnetic flux concentrator array, the reset straight wire 400 including a reset straight wire 411, the reset The straight wire 411 is perpendicular to the magnetoresistive sensing unit string and directly above or below the magnetoresistive sensing unit in the magnetoresistive sensing unit string, all the reset straight wires are connected in series and have the same reset current Direction, the 411 straight wire connects the adjacent two reset straight wires and is located at the gap between two adjacent magnetoresistive sensing units.
  • FIG. 23 is a structural diagram of a calibration coil 50 of a push-pull X-axis magnetoresistive sensor based on a staggered U, H-shaped soft magnetic flux concentrator array, including a push-aligned straight wire 52 and a pull-aligned straight wire 51, respectively located on the same line All of the push magnetoresistive sensing unit strings and directly above or below all of the magnetizing resistance sensing unit strings of the same row, the push calibration straight wire 52 and the pull calibration straight wire 51 are connected in series with opposite current directions
  • the width of the push-calibrated straight wire 52 is greater than the width of the straight wire to compensate for the difference in magnetic field enhancement from the soft magnetic flux concentrator due to the staggered gap width being smaller than the un-allocated gap width.
  • the push calibration straight wire 52 and the pull calibration straight wire 51 respectively generate calibration magnetic fields of the same magnitude and opposite directions at the magnetoresistive sensing cell string and the magnetizing resistance sensing cell string.
  • Figure 24 is a diagram showing the structure of a reset coil 612 of a push-pull X-axis magnetoresistive sensor based on a staggered U, H-shaped soft magnetic flux concentrator array.
  • the figure includes a reset straight wire 611 located perpendicular to the magnetoresistive sensing cell string, and the reset straight wire 611 is located directly above or directly below the magnetoresistive sensing unit in the magnetoresistive sensing cell string, and all resets straight
  • the wires are connected in series and have the same current direction, and are connected to each other by 611 straight wires, and the 611 straight wires are through the magnetoresistance sensing unit gap or the outside of the edge in the magnetoresistive sensing unit string.
  • Figure 25 is a staggered U-shaped soft magnetic flux concentrator array, and a staggered U, H hybrid soft magnetic flux concentrator array of two types of push-pull X-axis magnetoresistive sensors on a single gap column of the push calibration straight wire and pull
  • the magnetic lines of force form a magnetic field ring centered on the push-aligned straight wire and the calibrated straight wire.
  • Figure 26 is a diagram showing the Hx magnetic field distribution at each magnetoresistive sensing unit string. It can be seen that the staggered gaps G1, G2, G3, G-3, G-2, G-1 where the magnetoresistive sensing unit strings are located are shown.
  • the Hx-direction magnetic field having the uncorrected column gap G-2.5, G-1.5, G1.5, G2.5 opposite to the string of the magnetoresistive resistance sensing unit, and the amplitudes of the two are close to each other, conforming to the push-pull X-axis magnetic field The requirements of the calibration magnetic field of the resistance sensor.
  • Figure 27 is a diagram of a staggered U-shaped soft magnetic flux concentrator array, and a staggered U, H hybrid soft magnetic flux concentrator array of two types of push-pull X-axis magnetoresistive sensors on a single magnetoresistive sensing unit string.
  • Figure 28 shows the Hx magnetic field distribution at the magnetoresistive sensing cell string. It can be seen that the Hx magnetic field has a periodic distribution characteristic at the magnetoresistive sensing cell string. Therefore, when the magnetoresistive sensing unit is located at the reset straight wire When it is directly above or directly below, it has the largest magnetic field, and the connecting wires are located at the gaps of the adjacent two magnetoresistive sensing units.
  • 29 is a cross-sectional structural view of a staggered U-shaped soft magnetic flux concentrator array, or a staggered U, H hybrid soft magnetic flux concentrator array, two types of push-pull X-axis magnetoresistive sensors, wherein 6 is a substrate, 101 is a series of magnetic resistance sensing units located at the gaps of the unaltered columns, 103 and 104 are two unaligned strips, which form an unallocated column gap, and 102 is a magnetoresistive resistor located at the staggered gap.
  • the sensing unit strings, 104 and 105 are two staggered strips, which form a staggered gap between them, 106, 107 and 108 are respectively an insulating layer for electrical insulation and structural support between the conductive layers, 109 electrode.
  • FIG. 30 is a cross-sectional view of a staggered U-shaped soft magnetic flux concentrator array including a calibration coil, or a staggered U, H hybrid soft magnetic flux concentrator array of two types of push-pull X-axis magnetoresistive sensors, wherein the calibration coil
  • the push calibration straight wire 111 and the pull calibration straight wire 110 are respectively located above the magnetoresistive sensing unit string and the magnetizing resistance sensing unit string, and may actually be located between the magnetoresistive sensing unit and the soft magnetic flux concentrator. Or between the substrate and the magnetoresistive sensing unit.
  • 31 is a cross-sectional view of a staggered U-shaped soft magnetic flux concentrator array including a reset coil, or a staggered U, H hybrid soft magnetic flux concentrator array of two types of push-pull X-axis magnetoresistive sensors, wherein the calibration is straight
  • the wire 114 is perpendicular to the magnetoresistive sensing unit string.
  • the calibration coil in the figure is located above the substrate. Below the magnetoresistive sensing unit, it may actually be located between the magnetoresistive sensing unit and the soft magnetic flux concentrator, or Above the soft magnetic flux concentrator.
  • 32 is a cross-sectional view of a staggered U-shaped soft magnetic flux concentrator array including a calibration coil and a reset coil, or a U-H hybrid soft magnetic flux concentrator array of two types of push-pull X-axis magnetoresistive sensors, wherein 110 And 111 are respectively a push-calibrated straight wire and a calibrated straight wire, which are respectively located directly above the string of the magneto-resistance sensing unit string and the magnetizing resistance sensing unit, and 114 is a reset straight wire, which is located above the substrate and magnetically Between the resistance sensing units, in fact, the calibration coil can also be located between the magnetoresistive sensing unit and the soft magnetic flux concentrator, or between the substrate and the magnetoresistive sensing unit, and the reset coil can also be located in the magnetoresistance transmission. Between the sense unit and the soft magnetic flux concentrator, or above the soft magnetic flux concentrator.
  • the magnetoresistive sensing unit is a GMR spin valve or a TMR sensing unit, the pinning layer direction is parallel to the X-axis direction, and the free layer direction is parallel to the Y-axis direction.
  • the magnetoresistive sensing unit makes the magnetic direction of the magnetic free layer perpendicular to the magnetization direction of the magnetic pinning layer by permanent magnet biasing, double switching action, shape anisotropy or any combination thereof.
  • the number of magnetoresistive sensing units on the push arm and the arm is the same
  • the calibration current can be set to a current value or a plurality of current values.
  • the reset coil includes two ports, and when the two ports pass current, the generated reset magnetic field is higher than the saturation magnetic field value of the magnetoresistive sensing unit.
  • the reset current can be a pulse current, a direct current.
  • the reset coil and the calibration coil are high conductivity materials such as Cu, Au, and Ag.
  • the soft magnetic flux concentrator is an alloy soft magnetic material containing one or more of elements such as Fe, Ni or Co.
  • the substrate material is glass, silicon wafer, and the substrate contains an ASIC, or the substrate is connected to another ASIC chip.
  • the reset coil and/or the calibration coil and the staggered U and/or H soft magnetic flux guide and the push-pull magnetoresistive sensing unit bridge are separated by an insulating material, and the insulating material is SiO. 2 , Al 2 O 3 , Si 3 N 4 , polyimide, photoresist.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

一种推挽式X轴磁电阻传感器,包括:衬底(6)、位于衬底(6)之上的错列软磁通量集中器阵列(1,2)和推挽式磁电阻传感单元电桥,还可包括校准线圈(40,50)和/或重置线圈,所述任一软磁通量集中器存在至少一个软磁通量集中器与之形成错列结构,并沿X方向分别交替形成错列、未错列间隙,推/挽磁电阻传感单元串(7,8,81,71,72)分别位于所述错列、未错列间隙处,并电连接成所述推挽式磁电阻传感单元电桥,且所述磁电阻传感单元有x磁场敏感方向,所述校准线圈(40,50)和重置线圈分别包括平行和垂直于所述推、挽磁电阻传感单元串(7,8,81,71,72)的推/挽校准直导线(41,42,51,52,110,111)和重置直导线(400,411,611)。该推挽式X轴磁电阻传感器具有结构简单、远高于参考桥式X磁电阻传感单元磁场敏感度和低功耗优点。

Description

一种推挽式X轴磁电阻传感器 技术领域
本发明涉及磁性传感器领域,特别涉及一种推挽式X轴磁电阻传感器。
背景技术
在两轴和三轴磁性罗盘芯片设计过程中,需要同时用到高灵敏度的X轴和Y轴磁敏传感器,对于磁电阻类型的传感单元,一般具有单一的敏感磁场方向,所形成的磁电阻传感单元电桥结构,要求在X方向磁场作用时,所述电桥随磁场变化产生响应,而当Y方向磁场作用时,所述电桥不产生响应,为了提高磁场灵敏度,通常采用推挽式电桥,其中推臂和腕臂采用分立制造的形式,即将其中的一个相对于另一个相对旋转180度,而后在推臂和腕臂的切片之间采用飞线的形式进行连接。
以上提出的Y轴磁电阻传感器主要存在如下问题:推臂和腕臂无法实现集成制造的工艺,采用分立切片飞线连接的工艺,同样增加了工艺的复杂性,影响传感器的测量精度。
发明内容
为了解决以上存在的问题,本发明提出了一种推挽式X轴磁电阻传感器,采用错列U形、H形或者U、H混合形软磁通量集中器来实现磁路的改变,实现将X外磁场转变成具有X磁场敏感方向的X方向推臂和-X方向挽臂之间具有相反磁电阻变化的增强外磁场作用,而当Y方向外磁场作用时,则推臂X磁场分量包含具有相反磁场变化的磁电阻传感单元,最终平均磁场变化为0,而挽臂则包含具有随磁场变化磁电阻变化非常小的特征,从而实现一种等效的挽臂式磁电阻传感单元电桥,实现X磁场信号的增强输出和对Y磁场的屏蔽作用。
本发明所提出的一种推挽式X轴磁电阻传感器,包括:衬底、位于衬底之上的错列软磁通量集中器阵列和推挽式磁电阻传感单元电桥;
所述错列软磁通量集中器阵列包括至少两个软磁通量集中器,每个所述软磁通量集中器均包含矩形正X向bar1长条、负X向bar2长条以及一个0磁阻桥,所述bar1长条和bar2长条长轴平行于Y轴方向且短轴平行于X轴方向,所述0磁阻桥长轴平行于X轴方向、短轴平行于Y轴方向且长轴两端分别与bar1长条和bar2长条互联,所述软磁通量集中器之间形成错列结构,并在X方向形成错列间隙GapX1和未错列间隙GapX2;
所述推挽式磁电阻传感单元电桥至少包括一个推臂和一个挽臂,所述推臂包括至少一个推磁电阻传感单元串,所述挽臂包括至少一个挽磁电阻传感单元串,所述推、挽磁电阻传感单元串均分别包括多个互联磁电阻传感单元,所述推磁电阻传感单元串位于所述错列间隙GapX1处,所述挽磁电阻传感单元串位于所述未错列间隙GapX2处,且所述磁电阻传感单元的磁场敏感方向为X方向。
所述推挽式X轴磁电阻传感器还包括校准线圈和/或重置线圈;所述校准线圈包括平行于所述推、挽磁电阻传感单元串的推校准直导线和挽校准直导线,当校准电流通过所述校准线圈时,分别在所述推磁电阻传感单元串处和所述挽磁电阻传感单元串处产生沿X和-X方向的幅度相同的校准磁场分量;
所述重置线圈包括垂直于所述磁电阻传感单元串的重置直导线,当重置线圈通重置电流时,在所有磁电阻传感单元处沿Y方向产生幅度相同的重置磁场分量。
所述软磁通量集中器为U形或H形,所述U形软磁通量集中器的所述bar1长条和bar2长条的正Y端对齐或者负Y端对齐,并连接到所述0磁阻桥上,所述bar1长条和bar2长条之间形成U间隙,所述H形软磁通量集中器的所述0磁阻桥连接所述bar1长条和所述bar2长条中点,所述bar1长条和bar2长条之间形成H间隙,所述H间隙根据Y轴方向分为正H间隙和负H间隙。
所述错列软磁通量集中器阵列由U形软磁通量集中器或者H形软磁通量集中器或者U形软磁通量集中器与H形软磁通量集中器组成,且沿X方向形成1个错列间隙列,任一个所述软磁通量集中器,至少存在一个其他所述软磁通量集中器与之形成错列结构,且正X向长条bar1和负X向长条bar2的长轴在Y方向跨越所有所述错列间隙。
所述错列软磁通量集中器阵列由U形和H形软磁通量集中器、或者仅由所述H软磁通量集中器组成,且形成M行N列所述错列间隙阵列,其中,Y方向,第1列和第N列所述错列间隙为所述H形和U形软磁通量集中器之间的所述错列间隙或所述H软磁通量集中器之间的所述错列结构,当N为大于等于3的整数时,中间第2列到第N-1列所述错列间隙均对应所述H软磁通量集中器之间的所述错列结构;
X方向,每列均包括M个所述错列间隙,其中,最上端的所有所述软磁通量集中器正X向长条bar1和最下端的所有所述软磁通量集中器负X向长条bar2分别合并成一个D1和D2端长条,所述D1和D2端长条长轴在Y方向跨越所有所述错列间隙;M、N为大于等于2的整数。
所述错列间隙列中所述软磁通量集中器总数量K为奇数时,所述错列间隙和未错列间隙的数字标号所构成的奇间隙集A为:
A=[-(n1+0.5),-n1,…,-1.5,-1,0,1,1.5,…,n1,n1+0.5];
奇错列间隙集:A1=[-n1,…,-1,1,…,n1];
奇未错列间隙集:
A2=[-(n1+0.5),…,-1.5,1.5,…,n1+0.5];
所述软磁通量集中器数量K为偶数时,偶间隙集B为:
B=[-(n2+0.5),-n2,…,-1,-0.5,0,0.5,1,…,n2,(n2+0.5)];(n2为大于等于0的整数)
偶错列间隙集:B1=[-n2,…,-1,1,…,n2];
偶未错列间隙集:B2=[-n2-0.5,…,-0.5,0.5,n2+0.5];
其中0对应中间间隙标号,正整数和正分数分别对应所述正X向错列间隙和未错列间隙标号,负整数 和负分数分别对应所述负X向错列间隙和未错列间隙标号;
当K为奇数时,奇推臂集:
A11=[1,2,3,…,n1]和A12=[-1,-2,-3,…,-n1]
其中所述错列间隙处的所述磁电阻传感单元串构成所述推臂集;
奇挽臂集:
A21=[1.5,2.5,3.5,…,n1+0.5]和A22=[-1.5,-2.5,-3.5,…,-(n1+0.5)];
其中所述未错列间隙处的所述磁电阻传感单元串构成所述挽臂集;
当K为偶数时,偶推臂集:
B11=[1,2,3,…,n2]和B12=[-1,-2,-3,…,-n2];
其中所述错列间隙处的所述磁电阻传感单元串构成所述推臂集;
而偶挽臂集:
B21=[0.5,1.5,2.5,…,(n2+0.5)]和B22=[-0.5,-1.5,-2.5,…,-(n2+0.5)];
其中所述未错列间隙处的所述磁电阻传感单元串构成所述挽臂集;
所述n1=(K-1)/2,所述n2=(K-2)/2。
所述任一第J个错列间隙列中,所述奇或者偶推臂集A11(J)或B11(J)中任意选择nJ个元素:n1≥J≥1或n2≥J≥1,nJ≥1;
a1J,a2J,a3J,…,anJ,其中相邻两个元素的差值大于2,则存在:
a11J=a1J±1,a21J=a2J±1,a31J=a3J±1,…,an1J=anJ±1
构成Push(J)集:
Push(J)=[a1J,a11J,a2J,a21J,a3J,a31J,…,anJ,an1J]
和[-a1J,-a11J,-a2J,-a22J,-a3J,-a31J,…,-anJ,-an1J],
且存在a10J=a1J±0.5,a110J=a11J±0.5,a20J=a2J±0.5,a210J=a21J±0.5,a30J=a3J±0.5,a310J=a31J±0.5,…,an0J=anJ±0.5,an10J=an1J±0.5
构成Pull(J)集:
Pull(J)=[a10J,a110J,a20J,a210J,a30J,a310J,…,an0J,an10J]
和[-a10J,-a110J,-a20J,-a210J,-a30J,-a310J,…,-an0J,-an10J],
所述Pull(J)集中的所述推磁电阻传感单元串构成所述第J个所述错列间隙列的所述推磁电阻传感单元串,所述Pull(J)集中的所述挽磁电阻传感单元串构成所述第J个所述错列间隙列的所述挽磁电阻传感单元串。
所述错列软磁通量集中器阵列由M个所述错列间隙列组成时,对于第J个错列间隙列,存在一个所述Pull(J)和Push(J),构成Pull集:
Pull={Pull(1),Pull(2),Pull(3),…,Pull(M)},以及Push集:
Push={Push(1),Push(2),Push(3),…,Push(M)},
则推挽式X轴磁电阻传感器的所述推臂为各J列所对应Push(J)集所对应所述推磁电阻传感单元串之间的串联连接,所述挽臂为所述各J列所对应Pull(J)集所对应的所述挽磁电阻传感单元串之间的串联连接。
当两个电阻相同的磁电阻传感单元串同时位于一个由两个H形软磁通量集中器所构成的第一类未错列间隙处时,所述磁电阻传感单元串合并成一个磁电阻传感单元串,其电阻两倍于所述位于所述两个磁电阻传感单元串中的任一个。
所述推挽式桥式传感器可以连接成半桥、全桥或者准桥结构。
所述磁电阻传感单元为GMR自旋阀或者TMR传感单元,钉扎层方向平行于X轴方向,自由层方向为平行于Y轴方向。
有外加磁场时,所述磁电阻传感单元通过永磁偏置、双交换作用、形状各向异性或者他们的任意结合来使磁性自由层磁化方向来与磁性钉扎层磁化方向垂直。
所述推臂和所述挽臂上的磁电阻传感单元的数量相同。
所述校准线圈包括推校准直导线和挽校准直导线,所述推校准直导线和所述推磁电阻传感单元串之间的位置关系与所述挽校准直导线与所述挽磁电阻传感单元串之间的位置关系相同,所述位置关系为所述直导线位于对应磁电阻传感单元串正上方或正下方,且所述推校准直导线和所述挽校准直导线之间串联连接,并具有相反的电流方向。
所述重置线圈为平面线圈,其包含的重置直导线垂直于推磁电阻传感单元串和挽磁电阻传感单元串,且位于每个磁电阻传感单元串的正上方或者正下方,且电流方向一致。
所述校准线圈包含一个正的端口和一个负的端口,两端通过电流时,其所产生的校准磁场幅度范围在所述磁电阻传感单元的线性工作区域内。
所述校准电流可以设定为一个电流值,或者为多个电流值。
所述重置线圈包含两个端口,当两端口通过电流时,其所产生的重置磁场大小为高于所述磁电阻传感单元的饱和磁场值。
所述重置电流可以为脉冲电流,直流电流。
所述重置线圈和校准线圈为高导电率材料,包括Cu,Au或Ag。
所述软磁通量集中器为包含Fe,Ni或Co等元素中的一种或多种的合金软磁材料。
所述衬底材料为玻璃或硅片,且所述衬底上含有ASIC或所述衬底与另外的ASIC芯片相连接。
所述重置线圈和/或校准线圈位于所述衬底之上且磁电阻传感单元之下,或者磁电阻传感单元和软磁通量引导器之间或者软磁通量引导器之上。
所述重置线圈和/或校准线圈和所述错列排列的U或和H软磁通量引导器、推挽式磁电阻传感单元电桥之间采用绝缘材料隔离,所述绝缘材料为SiO2,Al2O3,Si3N4,聚酰亚胺或光刻胶。
附图说明
图1U形软磁通量集中器结构图
图2H形软磁通量集中器结构图
图3软磁通量集中器错列间隙图
图4软磁通量集中器未错列间隙图:a)第一类未错列间隙;b)第二类未错列间隙;
图5错列软磁通量集中器阵列的单个间隙列及其标号:a)软磁通量集中器K为奇数,b)软磁通量集中器K为偶数
图6错列U形软磁通量集中器阵列结构图
图7X外磁场中错列U形软磁通量集中器阵列结构磁力线分布图
图8X外磁场中L间隙列处Hx磁场分量分布图
图9Y外磁场中错列U形软磁通量集中器阵列结构磁力线分布图
图10Y外磁场中L间隙列处Hx磁场分量分布图
图11错列U形软磁通量集中器的全桥结构中的错列间隙和未错列间隙连接图一
图12错列U形软磁通量集中器的全桥结构中的错列间隙和未错列间隙连接图二
图13错列U、H混合形软磁通量集中器阵列结构图
图14X外磁场中错列U、H混合形软磁通量集中器阵列结构磁力线分布图
图15X外磁场中间隙列处Hx磁场分量分布图
图16Y外磁场中错列U、H混合形软磁通量集中器阵列结构磁力线分布图
图17Y外磁场中间隙列处Hx磁场分量分布图
图18错列U、H混形软磁通量集中器的全桥结构中的错列间隙和未错列间隙连接图
图19错列U形软磁通量集中器阵列全桥推挽式X轴磁电阻传感器结构图
图20错列U、H混合形软磁通量集中器阵列全桥推挽式X轴磁电阻传感器结构图
图21包含校准线圈的错列U形推挽式X轴磁电阻传感器结构图
图22包含重置线圈的错列U形推挽式X轴磁电阻传感器结构图
图23包含校准线圈的错列U、H混合形推挽式X轴磁电阻传感器结构图
图24包含重置线圈的错列U、H混合形推挽式X轴磁电阻传感器结构图
图25错列间隙列截面上的校准线圈所产生的磁力线分布图
图26错列间隙列截面上的磁电阻传感单元串处的Hx磁场分布图
图27垂直于磁电阻传感单元串的截面上重置线圈所产生的磁力线分布图
图28垂直于磁电阻传感单元串的截面上磁电阻传感单元串处的Hx磁场分布图
图29推挽式X轴磁电阻传感器截面结构图
图30包含校准线圈的推挽式X轴磁电阻传感器截面结构图
图31包含重置线圈的推挽式X轴磁电阻传感器截面结构图
图32包含校准线圈和重置线圈的推挽式X轴磁电阻传感器截面结构图
具体实施方式
下面将参考附图并结合实施例,来详细说明本发明。
实施例一
图1和图2分别为两种典型的软磁通量集中器结构图,其中,图1为U形软磁通量集中器,图2为H形软磁通量集中器,所述软磁通量集中器都包括bar1和bar2两个矩形长条,以及0磁阻桥,其中bar1长条位于正X向,bar2长条位于负X向,两者长轴为Y方向,短轴为X方向,0磁阻桥也为矩形,其长轴沿X方向,短轴沿Y方向,0磁阻桥长轴两端连接bar1和bar2长条。对于图1所示U形软磁通量集中器,bar1长条和bar2长条的正Y端对齐和/或负Y端对齐,bar1长条和bar2长条的正Y端或负Y端与0磁阻桥进行连接,且bar1长条和bar2长条之间形成Ug间隙,对于图2所述H形软磁通量集中器,bar1长条和bar2长条的中点通过0磁阻桥连接,bar1长条和bar2长条之间形成负Y向间隙Hg1和正Y向间隙Hg2。
图3为两个软磁通量集中器之间形成错列结构以及对应的错列间隙示意图,图3为F(1)软磁通量集中器和F(2)软磁通量集中器形成的错列结构,其中F(1)软磁通量集中器的其中一个长条bar2进入F(2)软磁通量集中器的间隙Hg1,F(2)软磁通量集中器的其中一个长条bar1进入F(1)软磁通量集中器的间隙Ug、Hg1或者Hg2,则称F(1)和F(2)形成错列结构,bar1和bar2之间沿X方向形成错列间隙Gx,沿Y方向形成正Y向间隙Gy1和负Y向间隙Gy2,为了说明方便,本图只给出了U和H形软磁通量集中器的情况,实际上还可以包括两个U形软磁通量集中器、或者两个H形软磁通量集中器的情况。
图4为软磁通量集中器之间形成未错列间隙示意图,所述未错列间隙有两种形式,即第一类未错列间隙和第二类未错列间隙,其中,图4(a)中F(7)软磁通量集中器的bar2长条和F(9)软磁通量集中器的bar1长条同时进入F(8)的Ug、Hg1或者Hg2间隙,且F(7)软磁通量集中器和F(9)软磁通量集中器分别和F(8)软磁通量集中器分别形成错列结构,而F(9)软磁通量集中器的bar1和F(7)软磁通量集中器的bar2之间沿 X方向形成第一类未错列间隙Gnx。
图4(b)为第二类未错列间隙,进入F(16)软磁通量集中器间隙Ug、Hg1或者Hg2的只有一个与之形成错列结构的F(17)软磁通量集中器的bar1长条,则此时F(16)软磁通量集中器的bar1长条和F(17)软磁通量集中器的bar1长条之间形成第二类未错列间隙Gn1x,两个bar2长条之间也沿X方向形成第二类未错列间隙Gn1x。
实施例二
对于由U形软磁通量集中器、H形软磁通量集中器以及U、H形混合软磁通量集中器三种错列软磁通量集中器阵列所对应的推挽式X轴磁电阻传感器,磁电阻传感单元串分别位于错列间隙和未错列间隙处,依靠磁电阻传感单元串之间的互联来构成推挽式X轴磁电阻传感器,而推挽式X轴磁电阻传感器最重要的特征在于对于X外磁场具有增强测量作用,而对于Y外磁场则具有抵消作用,为了方便确定错列软磁通量集中器阵列中多个磁电阻传感单元串的属性,即到底属于推臂还是挽臂,以及相互之间的连接关系,有必要对所有的错列间隙和未错列间隙进行标号。
沿X方向,由于错列间隙和未错列间隙交替排列,如图5(a)所示,当软磁通量集中器数量K为奇数时,此时,定义所述错列间隙和未错列间隙的数字标号所构成的奇间隙集为:
A=[-(n1+0.5),-n1,…,-1.5,-1,0,1,1.5,…,n1,n1+0.5];
定义奇错列间隙:A1=[-n1,…,-1,1,…,n1];n1=(K-1)/2
定义奇未错列间隙:
A2=[-(n1+0.5),…,-1.5,1.5,…,n1+0.5];
当间隙列中软磁通量集中器数量K为偶数时,如图5(b)所示,此时,定义偶间隙集为:B=[-n2-0.5,-n2,…,-1,-0.5,0,0.5,1,…,n2,n2+0.5];
定义偶错列间隙:B1=[-n2,…,-1,1,…,n2];n2=(K-2)/2
定义偶未错列间隙:B2=[-n2-0.5,…,-0.5,0.5,n2+0.5];
其中0对应中间间隙标号,正整数和正分数分别对应所述正X向错列间隙和未错列间隙标号,负整数和负分数分别对应所述负X向错列间隙和未错列间隙标号;
图6为软磁通量集中器K=6的错列U形软磁通量集中器阵列1,包括1(1),1(2),…,1(N)个(N为大于等于3的整数)U形软磁通量集中器,其中,第1(m)个(m为大于1小于等于N的整数)U形软磁通量集中器和第1(m-1)个U形软磁通量集中器之间形成错列结构,且错列间隙均为Gx,正Y向和负Y向间隙同为Gy,且第一类未错列间隙均为Gnx,第二类未错列间隙为Gnx1,N可以为奇数,也可以为偶数,在本例中N=6,位于中间的即第2到第N-1的U形软磁通量集中器具有相同的尺度,其bar1和bar2 长条Y向长轴为Ly1,短轴为Lx1,零磁电阻桥Y向尺度为Lym1,X向尺度为Lxm1,而第1和第N的U形软磁通量集中器的未错列长条即第1个U形软磁通量集中器的bar1和第N个U形软磁通量集中器的bar2长条Y向尺寸为Ly2=Ly1+Gy,其X向尺寸为Lx2,Lx2大于Lx1尺寸。
图7为错列U形软磁通量集中器阵列1在x方向外磁场作用下的磁力线分布图,可以看出,在错列间隙和未错列间隙中间,具有X向磁场分布特征,其中图6所示的L直线上的X向磁场分量分布如图8所示,所有间隙处的磁场相对于G0对称,其中负X方向相邻间隙即G-0.5/G-1,G-1.5/G-2具有反向磁场,且幅度接近,同样按照对称性,G0.5/G1,G1.5/G2也具有反向磁场,幅度接近。
图9为错列U形软磁通量集中器阵列1在y方向外磁场作用下的磁力线分布图,可以看出,在错列间隙和未错列间隙中间,同样具有X向磁场分布特征,其中图6所示L直线上的X向磁场分布如图10所示,同样,所有间隙处的磁场相对于G0对称,其中标号为分数的间隙处,第一类未错列间隙处磁场均接近于0,或第二类未错列间隙处G-2.5和G2.5磁场在X外磁场和Y外磁场处幅度变化较小,错列间隙G-1,G-2具有相反的磁场方向,幅值接近,由于对称性,G1,G2也具有相反的磁场方向,且幅值接近。
以上为X方向间隙列中错列间隙和未错列间隙的Hx磁场分布特征,对于推挽式X轴磁电阻传感器,其特征在于,在X外磁场时,推挽式磁电阻传感器的磁电阻传感单元串的连接能够产生增强的输出,当Y外磁场时,推挽式磁电阻传感器的磁电阻传感单元串的连接能够产生抵消作用。
在放置磁电阻传感单元串时,错列间隙处放置推磁电阻传感单元串,未错列间隙放置挽磁电阻传感单元串,同时,对于全桥结构,由于存在两个推臂和两个挽臂,相应的要求推磁电阻传感单元串和挽磁电阻传感单元串在分布上具有对称的特征,如图8中,相邻两个错列间隙具有反向特征,因此,如果分别作为推臂和挽臂,从而产生减法,将大大提高其信号输出幅度,而在图10中,相邻两个错列间隙具有反向的特征,因此,如果两者放在同一个推臂或挽臂中并进行串联连接,将产生抵消作用,同时考虑到全桥结构的两个推臂和两个挽臂,以及相对于G0的对称的错列间隙和未错列间隙Hx磁场分布,因此,可以采用以下方式进行确定推臂和挽臂的磁电阻传感单元及其连接方式:
当K为奇数时,定义奇推臂集A11、A12如下:
A11=[1,2,3,…,n1)]、A12=[-1,-2,-3,…,-n1)]
其中所述奇推臂集A11、A12对应所述推磁电阻传感单元串;
而奇挽臂集A21、A22如下:
A21=[1.5,2.5,3.5,…,n1+0.5]、A22=[-1.5,-2.5,-3.5,…,-(n1+0.5)];
其中所述奇挽臂集A21、A22对应所述挽磁电阻传感单元串;
当K为偶数时,定义偶推臂集B11、B12如下:
B11=[1,2,3,…,n2]、B12=[-1,-2,-3,…,-n2];
其中所述偶推臂集B11、B12对应所述推磁电阻传感单元串;
而偶挽臂集B21、B22如下;
B21=[0.5,1.5,2.5,…,n2+0.5]、B22=[-0.5,-1.5,-2.5,…,-(n2+0.5)]
其中所述偶挽臂集B21、B22对应所述挽磁电阻传感单元串;
对于实际推臂和挽臂的磁电阻传感单元串的连接,可以采用如下方式进行,
假设X方向存在多个间隙列,对于第J个间隙列,其所述推臂集合为A11(J)、11(J),从中任意选择nJ(nJ为大于等于1的整数)个元素a1J,a2J,a3J,…,anJ,其中相邻两个元素的差值大于2,则存在a11J=a1J±1,a21J=a2J±1,a31J=a3J±1,…,an1J=anJ±1,从而形成所述Push(J)集[a1J,a11J,a2J,a21J,a3J,a31J,…,anJ,an1J]、[-a1J,-a11J,-a2J,-a22J,-a3J,-a31J,…,-anJ,-an1J],且存在a10J=a1J±0.5,a110J=a11J±0.5,a20J=a2J±0.5,a210J=a21J±0.5,a30J=a3J±0.5,a310J=a31J±0.5,…,an0J=anJ±0.5,an10J=an1J±0.5构成所述Pull(J)集[a10J,a110J,a20J,a210J,a30J,a310J,…,an0J,an10J]、[-a10J,-a110J,-a20J,-a210J,-a30J,-a310J,…,-an0J,-an10J],对于仅有单个间隙列的所述错列U形软磁通量集中器阵列类型的推挽式X轴磁电阻传感器,其推臂即为所述Pull(J)集合所对应的所述推磁电阻传感单元串之间的串联连接,其所述挽臂为所述Pull(J)集合中所对应的所述挽磁电阻传感单元串之间的串联连接。
因此,对于图6所示的错列U形软磁通量集中器阵列,其中K=6为偶数,则:
偶间隙集为[G-2.5,-G2,-G1.5,-G1,-G0.5,G0,G0.5,G1,G1.5,G2,G2.5];
偶错列间隙为[-G2,-G1,G1,G2];
偶未错列间隙为[G-2.5,-G1.5,-G0.5,G0.5,G1.5,G2.5];
偶推臂集为[G1,G2]和[-G2,-G1];
偶挽臂集为[G0.5,G1.5,G2.5]和[G-2.5,-G1.5,-G0.5];
则推挽式X轴磁电阻传感器的推臂Push和挽臂Pull及其全桥连接如图11和图12所示,图11中,推臂Push分别为推臂集中的元素G1、G2之间、以及元素G-1、G-2之间的串联连接,挽臂Pull分别为挽臂集中的单元G0.5、G1.5之间,以及G-0.5、G-1.5之间的串联连接;图12中推臂Push保持不变,挽臂Pull分别为挽臂集中的元素G1.5、G2.5之间,以及G-1.5、G-2.5之间的串联连接。
以上为全桥的连接方式,实际上还可以形成半桥、或者准桥的结构。
实施例三
对于由H形软磁通量集中器或者由U和H形软磁通量集中器组成的多间隙列软磁通量集中器错列阵列时,假设沿X方向,共有M间隙列,则对于第J列,存在一个所述奇或偶推臂集合A11(J)或者B11(J),(J为从1到M的整数),则M列中每列选择的元素个数集合为[J1,J2,J3,…,JM](J1,J2,…,JM均为大于等于1的整数),同样对应存在一个Pull列集合{Pull(1),Pull(2),Pull(3),…,Pull(M)},以及 一个Push列集合{Push(1),Push(2),Push(3),…,Push(M)},则最终的推挽式X轴磁电阻传感器的所述推臂Push为所述各J列所对应的Push(J)集合所对应的所述推磁电阻传感单元串之间的串联连接,所述挽臂Pull为各J列所对应的Pull(J)集合元素所对应的所述挽磁电阻传感单元串之间的串联连接。
图13为本发明所提出的第二种类型的推挽式X轴磁电阻传感器结构,即错列U、H形混合软磁通量集中器阵列2,沿X方向上,包括最左边的U形软磁通量集中器列、最右边的U形软磁通量集中器列以及中间的三列H形软磁通量集中器。最左边的U形软磁通量集中器列由2(1),2(2),…,2(N)共N个U形软磁通量集中器组成,最右边的U形软磁通量集中器列由5(1),5(2),…,5(N)共N个U形软磁通量集中器组成,中间的三列H形软磁通量集中器的第一列为N+1个H形软磁通量集中器组成,第二列为N个H形软磁通量集中器组成,第三列为N+1个H形软磁通量集中器组成。每列中,相邻两个U形软磁通量集中器如2(1)和2(2)和同一个H形软磁通量集中器如4(1)形成错列结构,沿Y方向上,最左边的U形软磁通量集中器阵列中,对于任何一个U形软磁通量集中器如2(1),都与相邻两个H形软磁通量集中器如3(1)和4(1)形成错列结构,之后该两个H形软磁通量集中器3(1)和4(1)分别和一个共同相邻的H形软磁通量集中器3(2)形成错列结构,且H形软磁通量集中器3(2)分别和相邻的两个H形软磁通量集中器3(3)和4(2)形成错列结构,交替出现两个H形软磁通量集中器和同一个H形软磁通量集中器在同一个间隙Hg1或者Hg2形成错列结构的情况,最后,在左右端,两个H形软磁通量集中器3(1)、4(1)和一个U形软磁通量集中器2(1),或者3(3)、4(2)分别和5(1)形成错列结构,即对于Y方向,中间部分为多个包含两个H形软磁通量集中器和一个H形软磁通量集中器形成错列结构连接,两端则对应U形软磁通量集中器,此外,位于X方向最上端的所有H形软磁通量集中器,如3(1)和3(3)的U1长条合并成一个端长条U11,同样,位于X方向最下端的所有H形软磁通量集中器的U2长条合并成另一个端长条U22,两个端长条在Y方向跨越所有Y方向的H或者U形软磁通量集中器。
错列U、H形混合软磁通量集中器阵列2形成阵列式M*N的间隙阵列,如图13所示,共有L1,L2,L3和L4个间隙列,其中每列包括错列间隙和未错列间隙的交错排列,且各列具有相同的错列间隙和未错列间隙排列次序。
同样对于每一列所有的间隙,定义中间间隙为G0,以此为原点,正X方向间隙依次为G1,G1.5,G2,G2.5,G3,G3.5,G4,G4.5,G5,G5.5,G6,G6.5,G7,负X方向依次为G-1,G-1.5,G-2,G-2.5,G-3,G-3.5,G-4,G-4.5,G-5,G-5.5,G-6,G-6.5,G-7。
图14为在X方向外磁场作用下,错列U、H形混合软磁通量集中器阵列2的磁力线分布特征,可以看出,在错列间隙和未错列间隙处,磁场分量具有X分布特征,其在L1间隙列上的Hx磁场分量分布如 图15所示,可以看出,所有间隙的Hx磁场相对于中间间隙G0对称,且相邻两个间隙具有相反的磁场方向,幅度值也接近。
图16为在Y方向外磁场作用下,错列U、H形混合软磁通量集中器阵列2的磁力线分布特征,可以看出,在所有错列间隙,磁场分量具有X分布特征,而在未错列间隙处,磁力线分布较少,表面磁场强度较之错列间隙处幅值较小,其在L1间隙列上的Hx磁场分布特征如图17所示,可以看出,其间隙磁场分量Hx相对于G0具有反对称的分布特征,其在错列间隙处Hx磁场分量具有大的幅值,而在第一类未错列间隙处具有接近于0的幅值,在第二类未错列间隙处具有一定的幅值,大远小于错列间隙处的幅值。
所有间隙集为[G-6.5,G-6,…,G-1.5,G-1,G0,G1,G1.5,…,G6,G6.5];
错列间隙集为[G-6,G-5,G-4,G-3,G-2,G-1,G1,G2,G3,G4,G5,G6];
未错列间隙集为:
[G-6.5,G-5.5,G-4.5,G-3.5,G-2.5,G-1.5,G1.5,G2.5,G3.5,G4.5,G5.5,G6.5];
推臂集为[G1,G2,G3,G4,G5,G6]或[G-1,G-2,G-3,G-4,G-5,G-6];
挽臂集为:
[G6.5,G5.5,G4.5,G3.5,G2.5,G1.5]或[G-6.5,G-5.5,G-4.5,G-3.5,G-2.5,G-1.5];
其在构成推挽式X轴磁电阻传感器器的全桥结构时,其连接结构图如图18所示,其中推臂Push分别为推臂集合单元G1,G2,G3,G4,G5,G6的串联连接和G-1,G-2,G-3,G-4,G-5,G-6的串联连接,挽臂Pull分别为挽臂集合单元G1.5,G2.5,G3.5,G4.5,G5.5,G6.5的串联连接,以及G-1.5,G-2.5,G-3.5,G-4.5,G-5.5,G-6.5的串联连接。
本发明所提出的第三种类型的推挽式X轴磁电阻传感器结构,即错列H形软磁通量集中器阵列,即为在第二种类型的推挽式X轴磁电阻传感器结构的基础上,其中的最左边和最右边的U形软磁通量集中器采用H软磁通量集中器来代替。
实施例四
图19为本发明所提出的基于第一种磁路结构,即错列U形软磁通量集中器阵列1所构成的推挽式X轴磁电阻传感器结构图,包括衬底6,以及位于衬底之上的错列U形软磁通量集中器阵列1,以及位于错列间隙中的推磁电阻传感单元串7,以及位于未错列间隙中的挽磁电阻传感单元串8,所述磁电阻传感单元串包括多个互联的磁电阻传感单元,所述磁电阻传感单元串具有X方向磁场敏感方向,其中9为磁电阻传感单元串之间的连接导线,10为Vcc电极,11为GND电极,12为V+输出电极,13为V-输出电极,所述连接为推挽式全桥连接,所述推臂和挽臂具有相同的磁电阻传感单元电阻。
图20为本发明所提出的基于第二种磁路结构,即错列U形、H形混合软磁通量集中器阵列2所构 成的推挽式X轴磁电阻传感器结构图,包括衬底6,以及位于衬底之上的错列U、H形混合软磁通量集中器阵列2,以及位于错列间隙中的推磁电阻传感单元串81,以及为错列间隙中的挽磁电阻传感单元串72和71,72为位于两个H软磁通量集中器所构成的未错列间隙处,其为两个71磁电阻传感单元串的串联连接而成一个单个的磁电阻传感单元串,具有两倍于71磁电阻传感单元串的电阻,在本例中,各间隙列中,沿Y方向的同一行磁电阻传感单元串串联连接成一个串,而后在电连接成推挽式全桥结构,其中91为磁电阻串之间连接的导线,101为Vcc电极,102为GND电极,103为V+输出信号电极,104为V-输出信号电极。
实施例五
图21为基于错列U形软磁通量集中器阵列的推挽式X轴磁电阻传感器的校准线圈40的结构图,所述校准线圈40包括推校准直导线42和挽校准直导线41,所述推校准直导线42和挽校准直导线41分别位于推磁电阻传感单元串和挽磁电阻传感单元串的正上方或者正下方,且推校准直导线42和挽校准直导线41串联连接,并具有相反的电流方向,且推校准直导线42的宽度要小于挽校准直导线41的宽度,这是由于错列间隙宽度要小于未错列间隙宽度,错列间隙处的软磁通量集中器对磁场的增强作用要大于未错列间隙处,因此采用减小推直导线宽度的方法来增强未错列间隙处的磁场,从而使得推磁电阻传感单元串和挽磁电阻传感单元串处的校准磁场大小相同,方向相反。
图22为基于错列U形软磁通量集中器阵列的推挽式X轴磁电阻传感器的重置直导线400的结构图,所述重置直导线400包括重置直导线411,所述重置直导线411垂直于磁电阻传感单元串,且位于磁电阻传感单元串中的磁电阻传感单元的正上方或者正下方,所有重置直导线均串联连接,且具有相同的重置电流方向,411直导线连接相邻两个重置直导线,且位于相邻两个磁电阻传感单元的间隙处。
实施例六
图23为基于错列U、H形软磁通量集中器阵列的推挽式X轴磁电阻传感器的校准线圈50的结构图,其包括推校准直导线52和挽校准直导线51,分别位于同一行的所有推磁电阻传感单元串和同一行的所有挽磁电阻传感单元串的正上方或者正下方,所述推校准直导线52和挽校准直导线51串联连接,且具有相反的电流方向,所述推校准直导线52的宽度要大于挽校准直导线的宽度,以补充由于错列间隙宽度小于未错列间隙宽度所导致的来自于软磁通量集中器的磁场增强作用的差别,所述推校准直导线52和所述挽校准直导线51分别在所述推磁电阻传感单元串和所述挽磁电阻传感单元串处产生大小相同,方向相反的校准磁场。
图24为基于错列U、H形软磁通量集中器阵列的推挽式X轴磁电阻传感器的重置线圈的612的结构 图,包括位于垂直于磁电阻传感单元串的重置直导线611,重置直导线611位于磁电阻传感单元串中的磁电阻传感单元的正上方或者正下方,且所有重置直导线串联连接,且具有相同的电流方向,相互之间通过611直导线连接,611直导线为通过磁电阻传感单元串中的磁电阻传感单元间隙或者边缘外侧。
实施例七
图25为错列U形软磁通量集中器阵列,以及错列U、H混合形软磁通量集中器阵列两种类型的推挽式X轴磁电阻传感器的单个间隙列上的推校准直导线和挽校准直导线所产生的磁力线分布,可以看出,由于推校准直导线和挽校准直导线具有相反的电流方向,因此,磁力线形成以推校准直导线和挽校准直导线为中心的磁力线圆环。
图26为各个磁电阻传感单元串处的Hx磁场分布图,可以看出,推磁电阻传感单元串所在的错列间隙G1,G2,G3,G-3,G-2,G-1具有反向于挽磁电阻传感单元串所在的未错列间隙G-2.5,G-1.5,G1.5,G2.5的Hx方向磁场,且两者幅度接近,符合推挽式X轴磁电阻传感器的校准磁场的要求。
图27为错列U形软磁通量集中器阵列,以及错列U、H混合形软磁通量集中器阵列两种类型的推挽式X轴磁电阻传感器的单个磁电阻传感单元串上的重置线圈所包含的重置直导线以及相邻两重置直导线的连接直线所产生的磁力线分布,可以看出,由于重置直导线和连接直导线具有相反的电流方向,因此,每个直导线对应为磁力线圆环中心,
图28磁电阻传感单元串处的Hx磁场分布图,可以看出,在磁电阻传感单元串处,Hx磁场具有周期性分布的特征,因此,当磁电阻传感单元位于重置直导线的正上方或者正下方时,其具有最大的磁场,此时连接导线位于相邻两个磁电阻传感单元的间隙处。
实施例八
图29为错列U形软磁通量集中器阵列、或者错列U、H混合形软磁通量集中器阵列两种类型的推挽式X轴磁电阻传感器的横截面结构图,其中6为衬底,101为位于未错列间隙处的挽磁电阻传感单元串,103和104为两个未错列长条,两者之间构成未错列间隙,102为位于错列间隙处的推磁电阻传感单元串,104和105为两个错列长条,两者之间构成错列间隙,106、107和108分别为绝缘层用于各导电层之间的电绝缘和结构支撑,109为电极。
图30为包含校准线圈的错列U形软磁通量集中器阵列、或者错列U、H混合形软磁通量集中器阵列两种类型的推挽式X轴磁电阻传感器的横截面图,其中校准线圈中的推校准直导线111和挽校准直导线110分别位于推磁电阻传感单元串和挽磁电阻传感单元串上方,实际上还可以位于磁电阻传感单元和软磁通量集中器之间,或者位于衬底和磁电阻传感单元之间。
图31为包含重置线圈的错列U形软磁通量集中器阵列、或者错列U、H混合形软磁通量集中器阵列两种类型的推挽式X轴磁电阻传感器的截面图,其中校准直导线114垂直于磁电阻传感单元串,图中的校准线圈位于衬底之上,磁电阻传感单元之下,实际上还可以位于磁电阻传感单元和软磁通量集中器之间,或者位于软磁通量集中器之上。
图32为包含校准线圈和重置线圈的错列U形软磁通量集中器阵列、或者U、H混合形软磁通量集中器阵列两种类型的推挽式X轴磁电阻传感器的截面图,其中110和111分别为推校准直导线和挽校准直导线,分别位于推磁电阻传感单元串和挽磁电阻传感单元串的正上方,而114为重置直导线,位于衬底之上和磁电阻传感单元之间,实际上,校准线圈还可以位于磁电阻传感单元和软磁通量集中器之间,或者衬底和磁电阻传感单元之间,而重置线圈还可以位于磁电阻传感单元和软磁通量集中器之间,或者位于软磁通量集中器之上。
所述磁电阻传感单元为GMR自旋阀或者TMR传感单元,所述钉扎层方向平行于X轴方向,所述自由层方向为平行于Y轴方向。
有外加磁场时,所述磁电阻传感单元通过永磁偏置、双交换作用、形状各向异性或者他们的任意结合来使磁性自由层磁化方向来与磁性钉扎层磁化方向垂直。
所述推臂和所述挽臂上的磁电阻传感单元的数量相同
所述校准电流可以设定为一个电流值,或者为多个电流值。
所述重置线圈包含两个端口,当两端口通过电流时,其所产生的重置磁场大小为高于所述磁电阻传感单元的饱和磁场值。
所述重置电流可以为脉冲电流,直流电流。
所述重置线圈和校准线圈为高导电率材料如Cu,Au和Ag。
所述软磁通量集中器为包含Fe,Ni或Co等元素中的一种或多种的合金软磁材料。
所述衬底材料为玻璃,硅片,且所述衬底上含有ASIC、或所述衬底与另外的ASIC芯片相连接。
所述重置线圈和/或校准线圈和所述错列排列的U和/或H软磁通量引导器、推挽式磁电阻传感单元电桥之间采用绝缘材料隔离,所述绝缘材料为SiO2,Al2O3,Si3N4,聚酰亚胺,光刻胶。

Claims (24)

  1. 一种推挽式X轴磁电阻传感器,其特征在于,包括:衬底、位于衬底之上的错列软磁通量集中器阵列和推挽式磁电阻传感单元电桥;
    所述错列软磁通量集中器阵列包括至少两个软磁通量集中器,每个所述软磁通量集中器均包含矩形正X向bar1长条、负X向bar2长条以及一个0磁阻桥,所述bar1长条和bar2长条长轴平行于Y轴方向且短轴平行于X轴方向,所述0磁阻桥长轴平行于X轴方向、短轴平行于Y轴方向且长轴两端分别与bar1长条和bar2长条互联,所述软磁通量集中器之间形成错列结构,并在X方向形成错列间隙GapX1和未错列间隙GapX2;
    所述推挽式磁电阻传感单元电桥至少包括一个推臂和一个挽臂,所述推臂包括至少一个推磁电阻传感单元串,所述挽臂包括至少一个挽磁电阻传感单元串,所述推、挽磁电阻传感单元串均分别包括多个互联磁电阻传感单元,所述推磁电阻传感单元串位于所述错列间隙GapX1处,所述挽磁电阻传感单元串位于所述未错列间隙GapX2处,且所述磁电阻传感单元的磁场敏感方向为X方向。
  2. 根据权利要求1所述的一种推挽式X轴磁电阻传感器,其特征在于,所述推挽式X轴磁电阻传感器还包括校准线圈和/或重置线圈;所述校准线圈包括平行于所述推、挽磁电阻传感单元串的推校准直导线和挽校准直导线,当校准电流通过所述校准线圈时,分别在所述推磁电阻传感单元串处和所述挽磁电阻传感单元串处产生沿X和-X方向的幅度相同的校准磁场分量;
    所述重置线圈包括垂直于所述磁电阻传感单元串的重置直导线,当重置线圈通重置电流时,在所有磁电阻传感单元处沿Y方向产生幅度相同的重置磁场分量。
  3. 根据权利要求1所述的一种推挽式X轴磁电阻传感器,其特征在于,所述软磁通量集中器为U形或H形,所述U形软磁通量集中器的所述bar1长条和bar2长条的正Y端对齐或者负Y端对齐,并连接到所述0磁阻桥上,所述bar1长条和bar2长条之间形成U间隙,所述H形软磁通量集中器的所述0磁阻桥连接所述bar1长条和所述bar2长条中点,所述bar1长条和bar2长条之间形成H间隙,所述H间隙根据Y轴方向分为正H间隙和负H间隙。
  4. 根据权利要求1所述的一种推挽式X轴磁电阻传感器,其特征在于,所述错列软磁通量集中器阵列由U形软磁通量集中器或者H形软磁通量集中器或者U形软磁通量集中器与H形软磁通量集中器组成,且沿X方向形成1个错列间隙列,任一个所述软磁通量集中器,至少存在一个其他所述软磁通量集中器与之形成错列结构,且正X向长条bar1和负X向长条bar2的长轴在Y方向跨越所有所述错列间隙。
  5. 根据权利要求1所述的一种推挽式X轴磁电阻传感器,其特征在于,所述错列软磁通量集中器阵 列由U形和H形软磁通量集中器或者仅由所述H形软磁通量集中器组成,且形成M行N列所述错列间隙阵列,其中,Y方向,第1列和第N列所述错列间隙为所述H形和U形软磁通量集中器之间的错列间隙或所述H软磁通量集中器之间的错列结构,当N为大于等于3的整数时,中间第2列到第N-1列所述错列间隙均对应所述H软磁通量集中器之间的所述错列结构;
    X方向,每列均包括M个所述错列间隙,其中,最上端的所有所述软磁通量集中器正X向长条bar1和最下端的所有所述软磁通量集中器负X向长条bar2分别合并成一个D1和D2端长条,所述D1和D2端长条长轴在Y方向跨越所有所述错列间隙;M、N为大于等于2的整数。
  6. 根据权利要求4或5所述的一种推挽式X轴磁电阻传感器,其特征在于,所述错列间隙列中所述软磁通量集中器总数量K为奇数时,所述错列间隙和未错列间隙的数字标号所构成的奇间隙集A为:
    A=[-(n1+0.5),-n1,…,-1.5,-1,0,1,1.5,…,n1,n1+0.5];
    奇错列间隙集:A1=[-n1,…,-1,1,…,n1];
    奇未错列间隙集:
    A2=[-(n1+0.5),…,-1.5,1.5,…,n1+0.5];
    所述软磁通量集中器数量K为偶数时,偶间隙集B为:
    B=[-(n2+0.5),-n2,…,-1,-0.5,0,0.5,1,…,n2,(n2+0.5)];
    偶错列间隙集:B1=[-n2,…,-1,1,…,n2];
    偶未错列间隙集:B2=[-n2-0.5,…,-0.5,0.5,n2+0.5];
    其中0对应中间间隙标号,正整数和正分数分别对应所述正X向错列间隙和未错列间隙标号,负整数和负分数分别对应所述负X向错列间隙和未错列间隙标号;
    当K为奇数时,奇推臂集:
    A11=[1,2,3,…,n1]和A12=[-1,-2,-3,…,-n1]
    其中所述错列间隙处的所述磁电阻传感单元串构成所述推臂集;
    奇挽臂集:
    A21=[1.5,2.5,3.5,…,n1+0.5]和A22=[-1.5,-2.5,-3.5,…,-(n1+0.5)];
    其中所述未错列间隙处的所述磁电阻传感单元串构成所述挽臂集;
    当K为偶数时,偶推臂集:
    B11=[1,2,3,…,n2]和B12=[-1,-2,-3,…,-n2];
    其中所述错列间隙处的所述磁电阻传感单元串构成所述推臂集;
    而偶挽臂集:
    B21=[0.5,1.5,2.5,…,(n2+0.5)]和B22=[-0.5,-1.5,-2.5,…,-(n2+0.5)];
    其中所述未错列间隙处的所述磁电阻传感单元串构成所述挽臂集;
    所述n1=(K-1)/2,所述n2=(K-2)/2。
  7. 根据权利要求6所述的一种推挽式X轴磁电阻传感器,其特征在于,所述任一第J个错列间隙列中,所述奇或者偶推臂集A11(J)或B11(J)中任意选择nJ个元素:n1≥J≥1或n2≥J≥1,nJ≥1;
    a1J,a2J,a3J,…,anJ,其中相邻两个元素的差值大于2,则存在:
    a11J=a1J±1,a21J=a2J±1,a31J=a3J±1,…,an1J=anJ±1
    构成Push(J)集:
    Push(J)=[a1J,a11J,a2J,a21J,a3J,a31J,…,anJ,an1J]
    和[-a1J,-a11J,-a2J,-a22J,-a3J,-a31J,…,-anJ,-an1J],
    且存在a10J=a1J±0.5,a110J=a11J±0.5,a20J=a2J±0.5,a210J=a21J±0.5,a30J=a3J±0.5,a310J=a31J±0.5,…,an0J=anJ±0.5,an10J=an1J±0.5
    构成Pull(J)集:
    Pull(J)=[a10J,a110J,a20J,a210J,a30J,a310J,…,an0J,an10J]
    和[-a10J,-a110J,-a20J,-a210J,-a30J,-a310J,…,-an0J,-an10J],
    所述Pull(J)集中的所述推磁电阻传感单元串构成所述第J个所述错列间隙列的所述推磁电阻传感单元串,所述Pull(J)集中的所述挽磁电阻传感单元串构成所述第J个所述错列间隙列的所述挽磁电阻传感单元串。
  8. 根据权利要求7所述的一种推挽式X轴磁电阻传感器,其特征在于,所述错列软磁通量集中器阵列由M个所述错列间隙列组成时,对于第J个错列间隙列,存在一个所述Pull(J)和Push(J),构成Pull集:
    Pull={Pull(1),Pull(2),Pull(3),…,Pull(M)},以及Push集:
    Push={Push(1),Push(2),Push(3),…,Push(M)},
    则推挽式X轴磁电阻传感器的所述推臂为各J列所对应Push(J)集所对应所述推磁电阻传感单元串之间的串联连接,所述挽臂为所述各J列所对应Pull(J)集所对应的所述挽磁电阻传感单元串之间的串联连接。
  9. 根据权利要求4或8所述的一种推挽式X轴磁电阻传感器,其特征在于,当两个电阻相同的磁电 阻传感单元串同时位于一个由两个H形软磁通量集中器所构成的第一类未错列间隙处时,所述磁电阻传感单元串合并成一个磁电阻传感单元串,其电阻两倍于所述位于所述两个磁电阻传感单元串中的任一个。
  10. 根据权利要求1所述的一种推挽式X轴磁电阻传感器,其特征在于,所述推挽式桥式传感器可以连接成半桥、全桥或者准桥结构。
  11. 根据权利要求1所述的一种推挽式X轴磁电阻传感器,其特征在于,所述磁电阻传感单元为GMR自旋阀或者TMR传感单元,钉扎层方向平行于X轴方向,自由层方向为平行于Y轴方向。
  12. 根据权利要求1所述的一种推挽式X轴磁电阻传感器,其特征在于,有外加磁场时,所述磁电阻传感单元通过永磁偏置、双交换作用、形状各向异性或者他们的任意结合来使磁性自由层磁化方向来与磁性钉扎层磁化方向垂直。
  13. 根据权利要求1所述的一种推挽式X轴磁电阻传感器,其特征在于,所述推臂和所述挽臂上的磁电阻传感单元的数量相同。
  14. 根据权利要求2所述的一种推挽式X轴磁电阻传感器,其特征在于,所述校准线圈包括推校准直导线和挽校准直导线,所述推校准直导线和所述推磁电阻传感单元串之间的位置关系与所述挽校准直导线与所述挽磁电阻传感单元串之间的位置关系相同,所述位置关系为所述直导线位于对应磁电阻传感单元串正上方或正下方,且所述推校准直导线和所述挽校准直导线之间串联连接,并具有相反的电流方向。
  15. 根据权利要求2所述的一种推挽式X轴磁电阻传感器,其特征在于,所述重置线圈为平面线圈,其包含的重置直导线垂直于推磁电阻传感单元串和挽磁电阻传感单元串,且位于每个磁电阻传感单元串的正上方或者正下方,且电流方向一致。
  16. 根据权利要求2所述的一种推挽式X轴磁电阻传感器,其特征在于,所述校准线圈包含一个正的端口和一个负的端口,两端通过电流时,其所产生的校准磁场幅度范围在所述磁电阻传感单元的线性工作区域内。
  17. 根据权利要求2所述的一种推挽式X轴磁电阻传感器,其特征在于,所述校准电流设定为一个电流值或者多个电流值。
  18. 根据权利要求2所述的一种推挽式X轴磁电阻传感器,其特征在于,所述重置线圈包含两个端口,当两端口通过电流时,其所产生的重置磁场大小高于所述磁电阻传感单元的饱和磁场值。
  19. 根据权利要求2所述的一种推挽式X轴磁电阻传感器,其特征在于,所述重置电流为脉冲电流或直流电流。
  20. 根据权利要求2所述的一种推挽式X轴磁电阻传感器,其特征在于,所述重置线圈和校准线圈为高导电率材料,包括Cu,Au或Ag。
  21. 根据权利要求1所述的一种推挽式X轴磁电阻传感器,其特征在于,所述软磁通量集中器为包含Fe,Ni或Co等元素中的一种或多种的合金软磁材料。
  22. 根据权利要求1所述的一种推挽式X轴磁电阻传感器,其特征在于,所述衬底材料为玻璃或硅片,且所述衬底上含有ASIC或所述衬底与另外的ASIC芯片相连接。
  23. 根据权利要求2所述的一种推挽式X轴磁电阻传感器,其特征在于,所述重置线圈和/或校准线圈位于所述衬底之上且磁电阻传感单元之下,或者磁电阻传感单元和软磁通量引导器之间或者软磁通量引导器之上。
  24. 根据权利要求2所述的一种推挽式X轴磁电阻传感器,其特征在于,所述重置线圈和/或校准线圈和所述错列排列的U或和H软磁通量引导器、推挽式磁电阻传感单元电桥之间采用绝缘材料隔离,所述绝缘材料为SiO2,Al2O3,Si3N4,聚酰亚胺或光刻胶。
PCT/CN2016/084227 2015-06-09 2016-06-01 一种推挽式x轴磁电阻传感器 WO2016197840A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017564329A JP6991862B2 (ja) 2015-06-09 2016-06-01 プッシュ-プルx軸磁気抵抗センサ
US15/578,508 US10330748B2 (en) 2015-06-09 2016-06-01 Push-pull X-axis magnetoresistive sensor
EP16806738.7A EP3309571B1 (en) 2015-06-09 2016-06-01 Push-pull x-axis magnetoresistive sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510312173.1A CN105093139B (zh) 2015-06-09 2015-06-09 一种推挽式x轴磁电阻传感器
CN201510312173.1 2015-06-09

Publications (1)

Publication Number Publication Date
WO2016197840A1 true WO2016197840A1 (zh) 2016-12-15

Family

ID=54574012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/084227 WO2016197840A1 (zh) 2015-06-09 2016-06-01 一种推挽式x轴磁电阻传感器

Country Status (5)

Country Link
US (1) US10330748B2 (zh)
EP (1) EP3309571B1 (zh)
JP (1) JP6991862B2 (zh)
CN (1) CN105093139B (zh)
WO (1) WO2016197840A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10330748B2 (en) 2015-06-09 2019-06-25 MultiDimension Technology Co., Ltd. Push-pull X-axis magnetoresistive sensor
US20220163604A1 (en) * 2020-11-25 2022-05-26 Robert Bosch Gmbh Magnetic Field Sensor With Optimized Coil Configurations for Flux Guide Reset

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107479010B (zh) * 2016-06-07 2019-06-04 江苏多维科技有限公司 一种具有补偿线圈的磁电阻传感器
CN106569001B (zh) * 2016-10-11 2019-12-31 芯海科技(深圳)股份有限公司 一种低功耗电桥阵列信号处理电路
CN107037382B (zh) * 2017-04-05 2023-05-30 江苏多维科技有限公司 一种预调制磁电阻传感器
CN107064829B (zh) * 2017-05-04 2023-02-21 江苏多维科技有限公司 一种单芯片高灵敏度磁电阻线性传感器
CN108413992A (zh) * 2018-01-30 2018-08-17 江苏多维科技有限公司 一种三轴预调制低噪声磁电阻传感器
CN115825826B (zh) * 2022-12-22 2023-09-15 南方电网数字电网研究院有限公司 一种三轴全桥电路变换式线性磁场传感器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103630855A (zh) * 2013-12-24 2014-03-12 江苏多维科技有限公司 一种高灵敏度推挽桥式磁传感器
WO2014059110A1 (en) * 2012-10-12 2014-04-17 Memsic, Inc. Monolithic three-axis magnetic field sensor
CN104272129A (zh) * 2012-05-16 2015-01-07 株式会社村田制作所 电桥电路以及具有其的磁传感器
CN104280700A (zh) * 2014-09-28 2015-01-14 江苏多维科技有限公司 一种单芯片差分自由层推挽式磁场传感器电桥及制备方法
CN104656045A (zh) * 2013-11-17 2015-05-27 爱盛科技股份有限公司 磁场感测模块、测量方法及磁场感测模块的制作方法
CN204758807U (zh) * 2015-06-09 2015-11-11 江苏多维科技有限公司 一种推挽式x轴磁电阻传感器
CN105093139A (zh) * 2015-06-09 2015-11-25 江苏多维科技有限公司 一种推挽式x轴磁电阻传感器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2709600B1 (fr) * 1993-09-02 1995-09-29 Commissariat Energie Atomique Composant et capteur magnétorésistifs à motif géométrique répété.
US7619431B2 (en) * 2003-12-23 2009-11-17 Nxp B.V. High sensitivity magnetic built-in current sensor
DE102009008265B4 (de) * 2009-02-10 2011-02-03 Sensitec Gmbh Anordnung zur Messung mindestens einer Komponente eines Magnetfeldes
WO2012116933A1 (de) * 2011-02-28 2012-09-07 Gottfried Wilhelm Leibniz Universität Hannover Magnetfeld-messanordnung
CN202230192U (zh) * 2011-03-03 2012-05-23 江苏多维科技有限公司 推挽桥式磁电阻传感器
CN102226836A (zh) * 2011-04-06 2011-10-26 江苏多维科技有限公司 单一芯片桥式磁场传感器及其制备方法
CN202013413U (zh) * 2011-04-06 2011-10-19 江苏多维科技有限公司 单一芯片桥式磁场传感器
CN102540112B (zh) * 2011-04-06 2014-04-16 江苏多维科技有限公司 单一芯片推挽桥式磁场传感器
EP2788780A1 (en) * 2011-12-05 2014-10-15 Advanced Microsensors Corporation Magnetic field sensing apparatus and methods
CN202494772U (zh) * 2012-02-20 2012-10-17 江苏多维科技有限公司 用于测量磁场的磁电阻传感器
US9341684B2 (en) * 2013-03-13 2016-05-17 Plures Technologies, Inc. Magnetic field sensing apparatus and methods
US9274180B2 (en) * 2013-07-29 2016-03-01 Innovative Mion Technology Microfabricated magnetic field transducer with flux guide
CN103412269B (zh) * 2013-07-30 2016-01-20 江苏多维科技有限公司 单芯片推挽桥式磁场传感器
CN104569870B (zh) * 2015-01-07 2017-07-21 江苏多维科技有限公司 一种单芯片具有校准/重置线圈的z轴线性磁电阻传感器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104272129A (zh) * 2012-05-16 2015-01-07 株式会社村田制作所 电桥电路以及具有其的磁传感器
WO2014059110A1 (en) * 2012-10-12 2014-04-17 Memsic, Inc. Monolithic three-axis magnetic field sensor
CN104656045A (zh) * 2013-11-17 2015-05-27 爱盛科技股份有限公司 磁场感测模块、测量方法及磁场感测模块的制作方法
CN103630855A (zh) * 2013-12-24 2014-03-12 江苏多维科技有限公司 一种高灵敏度推挽桥式磁传感器
CN104280700A (zh) * 2014-09-28 2015-01-14 江苏多维科技有限公司 一种单芯片差分自由层推挽式磁场传感器电桥及制备方法
CN204758807U (zh) * 2015-06-09 2015-11-11 江苏多维科技有限公司 一种推挽式x轴磁电阻传感器
CN105093139A (zh) * 2015-06-09 2015-11-25 江苏多维科技有限公司 一种推挽式x轴磁电阻传感器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3309571A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10330748B2 (en) 2015-06-09 2019-06-25 MultiDimension Technology Co., Ltd. Push-pull X-axis magnetoresistive sensor
US20220163604A1 (en) * 2020-11-25 2022-05-26 Robert Bosch Gmbh Magnetic Field Sensor With Optimized Coil Configurations for Flux Guide Reset
US11422206B2 (en) * 2020-11-25 2022-08-23 Robert Bosch Gmbh Magnetic field sensor with optimized coil configurations for flux guide reset

Also Published As

Publication number Publication date
EP3309571A1 (en) 2018-04-18
EP3309571A4 (en) 2019-03-13
JP6991862B2 (ja) 2022-01-13
CN105093139B (zh) 2017-11-24
US10330748B2 (en) 2019-06-25
CN105093139A (zh) 2015-11-25
US20180149715A1 (en) 2018-05-31
EP3309571B1 (en) 2023-05-24
JP2018518677A (ja) 2018-07-12

Similar Documents

Publication Publication Date Title
WO2016197840A1 (zh) 一种推挽式x轴磁电阻传感器
JP6525335B2 (ja) シングルチップ・ブリッジ型磁場センサ
US10066940B2 (en) Single-chip differential free layer push-pull magnetic field sensor bridge and preparation method
JP6420665B2 (ja) 磁場を測定する磁気抵抗センサ
US10393828B2 (en) Interdigitated y-axis magnetoresistive sensor
JP6474822B2 (ja) 高感度プッシュプルブリッジ磁気センサ
JP6426178B2 (ja) シングルチップ・プッシュプルブリッジ型磁界センサ
US10024930B2 (en) Single chip referenced bridge magnetic sensor for high-intensity magnetic field
US9857434B2 (en) Push-pull bridge-type magnetic sensor for high-intensity magnetic fields
JP2018505404A (ja) キャリブレーション/初期化コイルを有するシングルチップz軸線形磁気抵抗センサ
US11346901B2 (en) Anisotropic magnetoresistive (AMR) sensor without set and reset device
WO2012097673A1 (zh) 独立封装的桥式磁场传感器
JP2014516406A (ja) 単一チップブリッジ型磁界センサおよびその製造方法
US11237229B2 (en) Magnetic field sensing apparatus
JP2020520088A (ja) 単一チップ高感度磁気抵抗リニア・センサ
JP2015219227A (ja) 磁気センサ
US11169225B2 (en) TMR high-sensitivity single-chip push-pull bridge magnetic field sensor
CN204758807U (zh) 一种推挽式x轴磁电阻传感器
JP4940565B2 (ja) 磁気センサの製造方法
US8957680B2 (en) Magnetic sensor and pattern for magnetic sensor
CN204740335U (zh) 一种交叉指状y轴磁电阻传感器
TWI703336B (zh) 磁場感測裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16806738

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15578508

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017564329

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016806738

Country of ref document: EP