WO2016197694A1 - 风扇的测试方法及装置 - Google Patents

风扇的测试方法及装置 Download PDF

Info

Publication number
WO2016197694A1
WO2016197694A1 PCT/CN2016/079084 CN2016079084W WO2016197694A1 WO 2016197694 A1 WO2016197694 A1 WO 2016197694A1 CN 2016079084 W CN2016079084 W CN 2016079084W WO 2016197694 A1 WO2016197694 A1 WO 2016197694A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan
slot numbers
fans
test
grouping
Prior art date
Application number
PCT/CN2016/079084
Other languages
English (en)
French (fr)
Inventor
张建东
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016197694A1 publication Critical patent/WO2016197694A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present application relates to the field of communications, for example, to a method and apparatus for testing a fan.
  • the embodiment of the invention provides a method and a device for testing a fan, so as to at least solve the problem that the testing workload of the intelligent fan in the related art is large and cumbersome.
  • a method for testing a fan includes: encoding a slot number corresponding to a plurality of fans to be tested, and adopting a preset rule for the encoded code of the plurality of slot numbers Grouping; establishing the grouping number of the code of the plurality of slot numbers after the grouping and the connection of the physical routing a relationship; determining a test state corresponding to each of the plurality of fans according to the connection relationship.
  • the grouping of the coded plurality of slot numbers by the preset rule may include: grouping the encoded code of the plurality of slot numbers by means of averaging and/or weighting.
  • the manner of numbering the slot numbers may include: a binary coding mode and an octal coding mode.
  • the group number of the code of the plurality of slot numbers after the grouping can be obtained by one of the following methods: a sequence number, a reverse sequence number, and a query number.
  • Testing the plurality of fans according to the connection relationship may include: sending a test instruction to the plurality of fans; and receiving the feedback information of the plurality of fans in response to the test instruction, according to the connection relationship A state of the fan corresponding to the feedback information is determined.
  • a test apparatus for a fan includes: a grouping module configured to encode a slot number corresponding to a plurality of fans to be tested, and to encode a plurality of slot numbers The code is grouped by a preset rule; the establishing module is configured to establish a connection relationship between the code of the plurality of slot numbers after the grouping and the physical routing; the determining module is configured to determine and the plurality according to the connection relationship The corresponding test status of each fan.
  • the grouping module may be further configured to group the codes of the encoded plurality of slot numbers by means of averaging and/or weighting.
  • the manner of numbering the slot numbers may include: a binary coding mode and an octal coding mode.
  • the group number of the code of the plurality of slot numbers after the grouping can be obtained by one of the following methods: a sequence number, a reverse sequence number, and a query number.
  • the determining module may include: a sending unit configured to send a test instruction to the plurality of fans; and a determining unit configured to, upon receiving the feedback information of the plurality of fans in response to the test instruction, according to the The connection relationship determines the state of the fan corresponding to the feedback information.
  • the slot number corresponding to the plurality of fans to be tested is encoded, and the codes of the plurality of slot numbers after the encoding are grouped by a preset rule, and multiple slot numbers after the grouping are established.
  • the connection relationship between the group number of the code and the physical trace, and the test state corresponding to the plurality of fans respectively is determined according to the connection relationship, that is, the fan corresponding to the test state can be uniquely determined by the connection relationship, and the related technology is solved for the smart Fans carry out large and cumbersome testing problems.
  • FIG. 1 is a flow chart of a method of testing a fan according to an embodiment of the present invention
  • FIG. 2 is a block diagram showing the structure of a test apparatus for a fan according to an embodiment of the present invention
  • FIG. 3 is a block diagram 1 of an optional structure of a test apparatus for a fan according to an embodiment of the present invention
  • FIG. 4 is a block diagram showing the structure of a smart fan tooling test system in accordance with an alternative embodiment of the present invention.
  • FIG. 5 is a flow chart of a method for intelligent fan tooling testing according to an embodiment of the present invention.
  • FIG. 6 is a binary coded diagram of 50 slot numbers of a fan module according to an alternative embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an optimized grouping of codes "0" in a binary slot number according to an alternative embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an optimized grouping of a code "1" in a binary slot number according to an alternative embodiment of the present invention.
  • FIG. 9 is a flow chart of a smart fan tooling test in accordance with an alternate embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for testing a fan according to an embodiment of the present invention. As shown in FIG. 1 , the steps of the method include:
  • Step S102 Encoding the slot number corresponding to the plurality of fans to be tested, and grouping the codes of the plurality of slot numbers after the encoding by using a preset rule;
  • Step S104 Establish a connection between the group number of the code of the plurality of slot numbers after the grouping and the physical trace system;
  • Step S106 Determine a test state corresponding to each of the plurality of fans according to the connection relationship.
  • the slot number corresponding to the plurality of fans to be tested is encoded, and the codes of the plurality of slot numbers after the encoding are grouped by a preset rule, and the group is established.
  • the connection relationship between the group number of the code of the slot number and the physical route, and the test state corresponding to the multiple fans respectively is determined according to the connection relationship, that is, the fan corresponding to the test state can be uniquely determined by the connection relationship, and the related In the technology, the problem of testing the smart fan is large and cumbersome.
  • the manner in which the code of the plurality of slot numbers in the step S102 is grouped by the preset rule in the step S102 includes: the code of the plurality of slot numbers after the encoding is averaged and/or weighted. The way to group.
  • the method for numbering the slot numbers in the optional implementation manner of this embodiment includes: a binary coding mode and an octal coding mode.
  • the group number of the code of the plurality of slot numbers after the grouping is obtained by one of the following methods: a sequence number, a reverse sequence number, and a query number.
  • the 50 slot numbers (0 to 49) of the fan module are converted into 7-bit binary codes (0000000 to 0110001).
  • the code is "0".
  • a method for optimizing all the codes to be reduced and reduced is adopted, for example, averaging "0" and "1” in the code into multiple groups, and assigning a group number to each group by numbers, thereby greatly reducing The trace on the back panel.
  • One of the allocation optimization methods is to group all "0"s from top to bottom and left to right in order from the first left of all 50 7-bit binary codes.
  • the leftmost first digit code “0” of the first 8 slot numbers (0000000 ⁇ 0000111) is divided into one group, the group number is 1, and the leftmost first of the next 8 slot numbers (0001000-0001111)
  • the bit code "0” is grouped into groups, and the group number is 2, and all "0"s are sequentially grouped in order from top to bottom and left to right.
  • the first 168 "0"s are divided into 1 group and the group number is 1 to 21, and the last 49 "0”s are divided into 1 group and the group number is 22-28.
  • Optimized grouping method then 217 of all slot numbers
  • the "0" code is “0” divided into 28 groups, and each group of bit code is connected by a wire.
  • the code "1" in all the slot numbers is grouped by the above method, wherein the first 112 "1"s are divided into 1 group and numbered 1 to 14, and the last 21 “1” are 7 The numbers are divided into 1 group and numbered 15 to 17, and then 133 data encoded as "1" are divided into 17 groups. Each set of tag code is connected by a wire.
  • testing the multiple fans according to the connection relationship involved in step S106 may be implemented as follows:
  • Step S11 sending a test instruction to multiple fans
  • Step S12 When receiving feedback information of the plurality of fans in response to the test instruction, determining a state of the fan corresponding to the feedback information according to the connection relationship.
  • the faulty fan reports the fault information, and according to the connection relationship between the slot number of the fan and the physical trace, the fan can be uniquely determined. s position.
  • test device for a fan is also provided in this embodiment, and the device is configured to implement the above-described embodiments and optional embodiments, and details are not described herein.
  • module may implement a combination of software and/or hardware of a predetermined function.
  • devices described in the following embodiments may be implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • the apparatus includes: a grouping module 22 configured to encode a slot number corresponding to a plurality of fans to be tested, and encode the same.
  • the code of the plurality of slot numbers is grouped by a preset rule;
  • the establishing module 24 is coupled to the grouping module 22, and is configured to establish a connection relationship between the code of the plurality of slot numbers after the grouping and the physical routing;
  • the module 26 is coupled to the establishing module 24 and configured to determine a test state corresponding to each of the plurality of fans according to the connection relationship.
  • the grouping module 22 is further configured to group the codes of the encoded plurality of slot numbers by means of averaging and/or weighting.
  • the method for numbering slot numbers includes: binary coding mode and octal coding mode.
  • the group number of the code of the plurality of slot numbers after the grouping is obtained by one of the following methods: a sequence number, a reverse sequence number, and a query number.
  • the determination module 26 includes: a sending unit 32 configured to send test instructions to a plurality of fans; and a determining unit 34,
  • the connection unit is coupled to the transmitting unit 32, and configured to determine a state of the fan corresponding to the feedback information according to the connection relationship when receiving the feedback information of the plurality of fans in response to the test instruction.
  • the optional embodiment provides a smart fan tooling test system, which can simultaneously test multiple smart fans, such as 50 smart fans, and can accurately test the performance of the smart fan and quickly locate the problem product.
  • the system includes: an environment board with a console configured to detect the in-position information of the fan, and debug the fan function performance. And quickly locate the problem fan according to the fan slot number;
  • the fan to be tested includes two parts: the intelligent fan board and the fan, wherein the intelligent fan board part receives the control information, completes the function performance adjustment of the fan speed, and reports the fan status;
  • the fan is equipped with a backplane that provides physical support and connectivity for the entire system, as well as environmental panel-to-fan board monitoring and signal test channels.
  • FIG. 5 is a flowchart of a method for testing a smart fan tooling according to an embodiment of the present invention. As shown in FIG. 5, according to the smart fan tooling test system of the present alternative embodiment, the steps of the method include:
  • Step S502 Allocating a slot of all the fan modules on the backplane to a different code, and optimizing the code in the code by optimizing the grouping method, and then connecting the slot number information to the environment board module through physical routing, so that The environment board module locates the problem fan.
  • Step S504 All the functional performance communication signals such as in-position and reset on the intelligent fan board are routed through the backplane, and are accurately connected to the monitoring module.
  • Step S506 After the system is powered on normally, the test module on the monitoring platform performs the functional performance test one by one through the test software on the monitoring platform.
  • the intelligent fan module that has problems with the function or performance test is ready to locate its position by a unique binary number.
  • the optional embodiment provides a new slot numbering method, which is an optimized grouping method, and uses all the fan board slots on the backplane to use codes (such as binary generation). Code or octal code, etc.) to arrange the slot number, and then classify the code in the slot number by optimization (for example, classify "0" and "1" in the code by average grouping, weighting, etc.
  • each group of codes Use a wire to connect and connect to the environment board, so that the code in all the slot numbers can be connected to the environment board with a small number of wires, thus meeting the accurate numbering of the slots and greatly optimizing the backplane routing and improving the The efficiency of the entire system test greatly reduces the cost of testing.
  • This alternative embodiment illustrates the method of programming the slot number in binary code and optimizing the grouping (ie, one drive seven/eight method):
  • FIG. 6 is a binary coded diagram of 50 slot numbers of a fan module according to an alternative embodiment of the present invention.
  • the 50 slot numbers (0 to 49) of the fan module are first converted into 7-bit binary.
  • Code (0000000 ⁇ 0110001) as can be seen from the code table in the upper part of Fig. 6, in the coding of 50 slot numbers, there are 217 codes with "0" and the number of codes with "1" is 133. If you connect each bit of code to the environment board using a separate line, a total of 350 (217 + 133) traces will be required. This is difficult to achieve on a single tooling backplane and is very costly.
  • the embodiment of the present invention proposes a method for collating and reducing all codes by optimizing a group, such as dividing "0" and "1" in the code into multiple groups equally, and assigning a group number to each group by numbers, thus greatly Reduce the routing on the backplane.
  • FIG. 7 is a schematic diagram of an optimized grouping of coded "0" in a binary slot number according to an alternative embodiment of the present invention, as shown in FIG. 7, starting from the first left of all 50 7-bit binary codes to Down, all "0"s are grouped in order from left to right. For example, the leftmost first bit code "0" in the first 8 slot numbers (0000000 to 0000111) is grouped into one group, the group number is 1, and the leftmost one of the next 8 slot numbers (0001000 to 0001111) One bit code "0" is grouped into groups, and the group number is 2 (, in turn, all "0"s are grouped in order from top to bottom and left to right.
  • FIG. 8 is a schematic diagram of an optimized grouping of codes "1" in a binary slot number according to an alternative embodiment of the present invention.
  • the code "1" in all slot numbers is grouped by the above method. Edit No. The first 112 "1”s are divided into 1 group and numbered 1 to 14, and the last 21 “1”s are divided into 1 group and numbered 15 to 17, and then 133 are coded as " The 1" data is divided into 17 groups. Each set of tag codes is connected by a wire and connected to the environment board module.
  • the fan tooling test workflow is as follows: the environment board module, the power module, and the 50 fan board modules are mounted on the fan tool back. On the board, the console and the environment board module are well connected, and the system is powered on; on the console, the test software inputs the relevant function performance test instructions to the environment board one by one according to the slot number sequence; the environment board processes the test instructions and passes The trace on the back panel of the fan tool is sent to the intelligent fan board module; after receiving the test command, the intelligent fan board module performs corresponding operations.
  • the feedback result information is output; the feedback information is transmitted to the environment board module through the tool backplane, and the environment The board module analyzes the test result according to the feedback information, such as whether the fan is in position, whether the fan speed is correct, whether the fan reset is normal, and the feedback result is fed back to the console; the console outputs the test result corresponding to each fan module through the feedback result. . According to the test result information output by the console, the tester can quickly check the performance of each fan module.
  • fan tooling test method and system compared with the related technology, 50 fan modules can be tested for performance of the flow function, and the test information is quickly fed back to the console, and the test problem is
  • the fan can quickly locate the position, saves the time for installing the test and checking the fan module one by one, greatly improves the efficiency of the tooling test, reduces the test cost, and the operation is relatively simple, which satisfies the requirements of the new generation core switch system. Claim.
  • a software is also provided that is capable of executing the technical solutions described in the above embodiments and alternative embodiments.
  • a storage medium is further provided, wherein the software includes the above-mentioned software, including but not limited to: an optical disk, a floppy disk, a hard disk, an erasable memory, and the like.
  • modules or steps of the above embodiments of the present invention can be implemented by a general computing device, which can be concentrated on a single computing device or distributed among multiple computing devices. On the network, optionally, they can be executed by a computing device The code is implemented such that they can be stored in a storage device by a computing device, and in some cases, the steps shown or described can be performed in an order different than that herein, or separately Each integrated circuit module, or a plurality of modules or steps thereof, are fabricated as a single integrated circuit module.
  • embodiments of the invention are not limited to any specific combination of hardware and software.
  • the present invention provides a method and a device for testing a fan.
  • the method includes: encoding a slot number corresponding to a plurality of fans to be tested, and grouping codes of the plurality of slot numbers after the encoding by a preset rule. And establishing a connection relationship between the group number of the code of the plurality of slot numbers after the grouping and the physical routing; determining a test state corresponding to the plurality of fans according to the connection relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

一种风扇的测试方法及装置。方法包括:对待测的多个风扇对应的槽位号进行编码,并对编码后的多个槽位号的代码通过预设规则进行分组,建立分组后的多个槽位号的代码的分组号与物理走线的连接关系,依据连接关系确定与多个风扇分别对应的测试状态。该装置和方法解决了对智能风扇进行测试时工作量大和繁琐的问题。

Description

风扇的测试方法及装置 技术领域
本申请涉及通信领域,例如涉及一种风扇的测试方法及装置。
背景技术
随着云计算服务的迅猛发展,新一代数据中心应用场景对核心交换机提出了越来越高的要求:更大的交换容量和端口带宽、更高的可靠性、更灵活的扩展性等,这些无疑使整个交换系统功耗越来越高,工作条件也越加严格。为了保证系统的工作环境处于正常状态,这对系统中使用的智能风扇设备无论从数量还是功能上都提出了更高的要求。
在所有的智能风扇设备安装于以太网交换机系统之前,都必须经过相关的工装测试,以保证其使用于数据中心应用场景时保持良好的散热效果,从而确保整个系统工作的稳定性。
相关技术中,在对智能风扇进行测试时,会将其放在模拟正常使用时的环境中,并依据系统设备要求进行相关性能测试。然而,随着整机系统所需风扇数量的大幅增加,若采用逐一安装替换方式测试智能风扇的性能,将导致测试周期过长、操作量较大且成本较高的问题,同时工装测试问题定位的准确性和快速性满足不了产品线的要求,造成整个智能风扇的装配效率较低。
针对相关技术中对智能风扇进行测试工作量大和繁琐的问题,目前尚未提出有效的解决方案。
发明内容
本发明实施例提供了一种风扇的测试方法及装置,以至少解决相关技术中对智能风扇进行测试工作量大和繁琐的问题。
根据本发明实施例的一个方面,提供了一种风扇的测试方法,包括:对待测的多个风扇对应的槽位号进行编码,并对编码后的多个槽位号的代码通过预设规则进行分组;建立分组后的多个槽位号的代码的分组号与物理走线的连接 关系;依据所述连接关系确定与所述多个风扇分别对应的测试状态。
对编码后的多个槽位号的代码通过预设规则进行分组可以包括:对编码后的多个槽位号的代码通过平均分组和/或按权重分组的方式进行分组。
对所述槽位号进行编号的方式可以包括:二进制编码方式、八进制编码方式。
所述分组后的多个槽位号的代码的分组号可以通过以下之一的方式得到:顺序编号、倒序编号、查询编号。
依据所述连接关系对所述多个风扇进行测试可以包括:向所述多个风扇发送测试指令;在接收到所述多个风扇响应于所述测试指令的反馈信息时,依据所述连接关系确定与所述反馈信息对应的风扇的状态。
根据本发明实施例另一个方面,提供了一种风扇的测试装置,包括:分组模块,被配置为对待测的多个风扇对应的槽位号进行编码,并对编码后的多个槽位号的代码通过预设规则进行分组;建立模块,被配置为建立分组后的多个槽位号的代码与物理走线的连接关系;确定模块,被配置为依据所述连接关系确定与所述多个风扇分别对应的测试状态。
所述分组模块,还可以被配置为对编码后的多个槽位号的代码通过平均分组和/或按权重分组的方式进行分组。
对所述槽位号进行编号的方式可以包括:二进制编码方式、八进制编码方式。
所述分组后的多个槽位号的代码的分组号可以通过以下之一的方式得到:顺序编号、倒序编号、查询编号。
所述确定模块可以包括:发送单元,被配置为向所述多个风扇发送测试指令;确定单元,被配置为在接收到所述多个风扇响应于所述测试指令的反馈信息时,依据所述连接关系确定与所述反馈信息对应的风扇的状态。
在本发明实施例中,采用对待测的多个风扇对应的槽位号进行编码,并对编码后的多个槽位号的代码通过预设规则进行分组,建立分组后的多个槽位号的代码的分组号与物理走线的连接关系,依据连接关系确定与多个风扇分别对应的测试状态,即通过该连接关系能够唯一能够同时确定测试状态对应的风扇,解决了相关技术中对智能风扇进行测试工作量大和繁琐的问题。
附图概述
此处所说明的附图用来提供对本发明的理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
在附图中:
图1是根据本发明实施例的风扇的测试方法的流程图;
图2是根据本发明实施例的风扇的测试装置结构框图;
图3是根据本发明实施例的风扇的测试装置可选结构框图一;
图4是根据本发明可选实施例的智能风扇工装测试系统结构框图;
图5是根据本发明实施例的智能风扇工装测试的方法流程图;
图6是根据本发明可选实施例的风扇模块的50个槽位号的二进制编码图;
图7是根据本发明可选实施例的二进制槽位号中编码“0”的优化分组示意图;
图8是根据本发明可选实施例的二进制槽位号中编码“1”的优化分组示意图;
图9是根据本发明可选实施例的智能风扇工装测试流程图。
本发明的实施方式
在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
本实施例提供了一种风扇的测试方法,图1是根据本发明实施例的风扇的测试方法的流程图,如图1所示,该方法的步骤包括:
步骤S102:对待测的多个风扇对应的槽位号进行编码,并对编码后的多个槽位号的代码通过预设规则进行分组;
步骤S104:建立分组后的多个槽位号的代码的分组号与物理走线的连接关 系;
步骤S106:依据连接关系确定与多个风扇分别对应的测试状态。
通过本实施例的步骤S102至步骤S106,采用对待测的多个风扇对应的槽位号进行编码,并对编码后的多个槽位号的代码通过预设规则进行分组,建立分组后的多个槽位号的代码的分组号与物理走线的连接关系,依据连接关系确定与多个风扇分别对应的测试状态,即通过该连接关系能够唯一能够同时确定测试状态对应的风扇,解决了相关技术中对智能风扇进行测试工作量大和繁琐的问题。
对于本实施例中步骤S102中对编码后的多个槽位号的代码通过预设规则进行分组的方式包括:对编码后的多个槽位号的代码通过平均分组和/或按权重分组的方式进行分组。
而在本实施实例的可选实施方式中对槽位号进行编号的方式包括:二进制编码方式、八进制编码方式。而分组后的多个槽位号的代码的分组号通过以下之一的方式得到:顺序编号、倒序编号、查询编号。
下面通过本实施例的一应用场景,对上述编码后的多个槽位号的代码通过预设规则进行分组的方式进行举例说明,该应用场景中涉及到的二进制编码;
在本应用场景中:首先,将风扇模块的50个槽位号(0~49)转换成7位二进制代码(0000000~0110001),在50个槽位号的编码中,代码为“0”的数目有217个,代码为“1”的数目有133个,若将每一位代码使用一根独立的线连到环境板上,总共将需要350根(217+133)走线。这在单块工装背板上是很难实现的,成本也非常高。因而本实施例中采用了优化分组对所有代码进行整理缩减的方法,如将代码中的“0”和“1”平均分成多组,并用数字给每一组分配一个组号,这样就大大减少了背板上的走线。
其中一种分配优化法为:从所有50个7位二进制代码中的左边第一位开始,以从上向下,从左到右的顺序给所有的“0”进行分组。如前8个槽位号(0000000~0000111)中的最左边第一位代码“0”分成一组,组号为1,接下来8个槽位号(0001000~0001111)中的最左边第一位代码“0”分成一组,组号为2,依次以从上向下,从左到右的顺序将所有的“0”进行分组。为了尽量平均分组,其中前168个“0”每8个分为1组且组号为1~21,后49个“0”每7个分为1组且组号为22~28,通过这种优化分组方法,之后将全部槽位号中的217 个“0”代码为“0”分成了28组,每一组位号代码用一根连线连在一起。
同样,将全部槽位号中的代码“1”以上面的方法进行分组编号,其中前112个“1”每8个分为1组并编号为1~14,后21个“1”每7个分为1组并编号为15~17,之后将133个编码为“1”的数据转分成了17组。每一组位号代码用一根连线连。
在本实施例的另一个可选实施方式中,对于步骤S106中涉及到的依据连接关系对多个风扇进行测试方式,可以通过如下方式来实现:
步骤S11:向多个风扇发送测试指令;
步骤S12:在接收到多个风扇响应于测试指令的反馈信息时,依据连接关系确定与反馈信息对应的风扇的状态。
对于该步骤S11和步骤S12可以是,在多个风扇中出现问题时,问题风扇上报故障信息,依据该问题风扇的槽位号分组编号与物理走线的连接关系就能唯一的确定该问题风扇的位置。
在本实施例中还提供了一种风扇的测试装置,该装置被配置为实现上述实施例及可选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置可以以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图2是根据本发明实施例的风扇的测试装置结构框图,如图2所示,该装置包括:分组模块22,被配置为对待测的多个风扇对应的槽位号进行编码,并对编码后的多个槽位号的代码通过预设规则进行分组;建立模块24,与分组模块22耦合连接,被配置为建立分组后的多个槽位号的代码与物理走线的连接关系;确定模块26,与建立模块24耦合连接,被配置为依据连接关系确定与多个风扇分别对应的测试状态。
可选地,该分组模块22,还被配置为对编码后的多个槽位号的代码通过平均分组和/或按权重分组的方式进行分组。
其中,对槽位号进行编号的方式包括:二进制编码方式、八进制编码方式。分组后的多个槽位号的代码的分组号通过以下之一的方式得到:顺序编号、倒序编号、查询编号。
图3是根据本发明实施例的风扇的测试装置可选结构框图一,如图3所示,该确定模块26包括:发送单元32,被配置为向多个风扇发送测试指令;确定单元34,与发送单元32耦合连接,被配置为在接收到多个风扇响应于测试指令的反馈信息时,依据连接关系确定与反馈信息对应的风扇的状态。
下面结合本发明实施例的可选实施例对本发明进行举例说明;
本可选实施例提供了一种智能风扇工装测试的系统,该方法可以同时测试多台智能风扇,如50台智能风扇,并可以准确测试智能风扇的性能,快速定位出问题产品。
图4是根据本发明可选实施例的智能风扇工装测试系统结构框图,如图4所示该系统包括:带有控制台的环境板,被配置为检测风扇的在位信息,调试风扇功能性能,并根据风扇槽位号快速定位问题风扇;待测的风扇,包括智能风扇板及风扇两部分,其中智能风扇板部分接收控制信息,完成调节风扇转速等功能性能操作,并上报风扇状态;电源,为整个系统提供稳定的电源电压;风扇工装背板,该模块为整个系统提供物理支撑和连接,同时还提供环境板对风扇板的监控和信号测试通道。
图5是根据本发明实施例的智能风扇工装测试的方法流程图,如图5所示,基于本可选实施例的智能风扇工装测试系统,该方法的步骤包括:
步骤S502:将背板上所有风扇模块的槽位分配一个不同的编码,并通过优化分组法将编码中的代码进行优化分配,之后通过物理走线将槽位号信息连接到环境板模块,以便环境板模块定位问题风扇。
步骤S504:将智能风扇板上的在位、复位等所有功能性能通信信号通过背板走线,准确与监控模块进行连接。
步骤S506:系统正常上电后,通过监控台上的测试软件,对待测风扇模块进行逐一功能性能测试。
其中,对于功能或性能测试出现问题的智能风扇模块,通过唯一的二进制编号,准备定位出其位置。
下面结合附图对本发明可选实施例进行详细的说明;
为了区别出每个风扇模块的测试信息,本可选实施例提供了一种新型槽位编号方法——优化分组法,将背板上的所有风扇板槽位使用代码(如二进制代 码或八进制代码等)进行编排槽位号,然后通过将槽位号的中的代码进行优化分组(例如将代码中的“0”和“1”以平均分组、按权重分组等规则进行归类分组),并用数字、字母或二者组合给所有组通过顺序(从前向后)、倒序(从后向前)、插序(即从中间开始)等编号方式分配一个组号,每一组代码使用一根线连接并接入环境板,这样即可用少量连线将所有槽位号中的代码连入环境板,因而满足了槽位的精确编号,并大大优化了背板走线,提高了整个系统测试的效率,大大降低了测试成本。
本可选实施例以二进制代码编排槽位号并优化分组的方法(即一驱七/八法)进行说明:
图6是根据本发明可选实施例的风扇模块的50个槽位号的二进制编码图,如图6所示,首先将风扇模块的50个槽位号(0~49)转换成7位二进制代码(0000000~0110001),从图6上半部分的代码表中可以看出,50个槽位号的编码中,代码为“0”的数目有217个,代码为“1”的数目有133个,若将每一位代码使用一根独立的线连到环境板上,总共将需要350根(217+133)走线。这在单块工装背板上是很难实现的,成本也非常高。因而本发明实施例提出了通过优化分组对所有代码进行整理缩减的方法,如将代码中的“0”和“1”平均分成多组,并用数字给每一组分配一个组号,这样就大大减少了背板上的走线。
图7是根据本发明可选实施例的二进制槽位号中编码“0”的优化分组示意图,如图7所示,从所有50个7位二进制代码中的左边第一位开始,以从上向下,从左到右的顺序给所有的“0”进行分组。例如,前8个槽位号(0000000~0000111)中的最左边第一位代码“0”分成一组,组号为1,接下来8个槽位号(0001000~0001111)中的最左边第一位代码“0”分成一组,组号为2(,依次以从上向下,从左到右的顺序将所有的“0”进行分组。为了尽量平均分组,其中前168个“0”每8个分为1组且组号为1~21,后49个“0”每7个分为1组且组号为22~28,通过这种优化分组方法,之后将全部槽位号中的217个“0”代码为“0”分成了28组,每一组位号代码用一根连线连在一起并接入环境板模块。
同样,图8是根据本发明可选实施例的二进制槽位号中编码“1”的优化分组示意图,如图8所示,将全部槽位号中的代码“1”以上面的方法进行分组编 号,其中前112个“1”每8个分为1组并编号为1~14,后21个“1”每7个分为1组并编号为15~17,之后将133个编码为“1”的数据转分成了17组。每一组位号代码用一根连线连在一起并接入环境板模块。
采用这种优化分组方法,只需要45根连线即可将工装背板上所有风扇槽位的槽位号信息接入环境板模块,以对风扇板模块区分定位,大大节省了管脚数。通过上面的方法,给所有的风扇槽位分配了一个唯一的槽位号,进而可以通过整个测试系统完成风扇模块的工装测试。
图9是根据本发明可选实施例的智能风扇工装测试流程图,如图9所示,该风扇工装测试工作流程如下:将环境板模块、电源模块及50只风扇板模块装在风扇工装背板上,控制台与环境板模块连接良好,将系统上电;在控制台上通过测试软件根据槽位编号顺序逐一给环境板输入相关功能性能测试指令;环境板将测试指令进行处理,并通过风扇工装背板上的走线发送给智能风扇板模块;智能风扇板模块收到测试指令后进行相应操作,测试完成后,输出反馈结果信息;反馈信息通过工装背板传输给环境板模块,环境板模块根据反馈信息分析测试结果,如风扇是否在位,风扇调速是否正确,风扇复位是否正常等,并将分析结果反馈给控制台;控制台通过反馈结果输出每个风扇模块对应的测试结果。测试人员根据控制台输出的测试结果信息,即可迅速查看各风扇模块功能性能情况。
采用本发明实施例所述的风扇工装测试方法及系统,与相关技术相比,可以对50个风扇模块进行流程化功能性能测试,并将测试信息快速反馈到控制台,而对测试出的问题风扇可以快速做出定位,节省了工装上逐一安装测试并排查风扇模块的时间,大大提高了工装测试的效率,降低了测试成本,且操作较为简单,很好的满足了新一代核心交换机系统的要求。
在另外一个实施例中,还提供了一种软件,该软件能够执行上述实施例及可选实施方式中描述的技术方案。
在另外一个实施例中,还提供了一种存储介质,该存储介质中存储有上述软件,该存储介质包括但不限于:光盘、软盘、硬盘、可擦写存储器等。
显然,本领域的技术人员应该明白,上述本发明实施例的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序 代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明实施例不限制于任何特定的硬件和软件结合。
上述仅为本发明的可选实施例而已,并不用于限制本发明,对于本领域的技术人员而言,本发明实施例可以有各种更改和变化。凡涉及本发明技术方案所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
本申请提供了一种风扇的测试方法及装置,所述方法包括:对待测的多个风扇对应的槽位号进行编码,并对编码后的多个槽位号的代码通过预设规则进行分组;建立分组后的多个槽位号的代码的分组号与物理走线的连接关系;依据连接关系确定与多个风扇分别对应的测试状态。本申请解决了相关技术中对智能风扇进行测试工作量大和繁琐的问题。

Claims (10)

  1. 一种风扇的测试方法,包括:
    对待测的多个风扇对应的槽位号进行编码,并对编码后的多个槽位号的代码通过预设规则进行分组;
    建立分组后的多个槽位号的代码的分组号与物理走线的连接关系;
    依据所述连接关系确定与所述多个风扇分别对应的测试状态。
  2. 根据权利要求1所述的方法,其中,对编码后的多个槽位号的代码通过预设规则进行分组包括:
    对编码后的多个槽位号的代码通过平均分组和/或按权重分组的方式进行分组。
  3. 根据权利要求2所述的方法,其中,对所述槽位号进行编号的方式包括:二进制编码方式和/或八进制编码方式。
  4. 根据权利要求1所述的方法,其中,所述分组后的多个槽位号的代码的分组号通过以下之一的方式得到:顺序编号、倒序编号、查询编号。
  5. 根据权利要求1所述的方法,其中,依据所述连接关系对所述多个风扇进行测试包括:
    向所述多个风扇发送测试指令;
    在接收到所述多个风扇响应于所述测试指令的反馈信息时,依据所述连接关系确定与所述反馈信息对应的风扇的状态。
  6. 一种风扇的测试装置,包括:
    分组模块,被配置为对待测的多个风扇对应的槽位号进行编码,并对编码后的多个槽位号的代码通过预设规则进行分组;
    建立模块,被配置为建立分组后的多个槽位号的代码与物理走线的连接关 系;
    确定模块,被配置为依据所述连接关系确定与所述多个风扇分别对应的测试状态。
  7. 根据权利要求6所述的装置,其中,
    所述分组模块,还被配置为对编码后的多个槽位号的代码通过平均分组和/或按权重分组的方式进行分组。
  8. 根据权利要求7所述的装置,其中,对所述槽位号进行编号的方式包括:二进制编码方式和/或八进制编码方式。
  9. 根据权利要求6所述的装置,其中,所述分组后的多个槽位号的代码的分组号通过以下之一的方式得到:顺序编号、倒序编号、查询编号。
  10. 根据权利要求6所述的装置,其中,所述确定模块包括:
    发送单元,被配置为向所述多个风扇发送测试指令;
    确定单元,被配置为在接收到所述多个风扇响应于所述测试指令的反馈信息时,依据所述连接关系确定与所述反馈信息对应的风扇的状态。
PCT/CN2016/079084 2015-06-10 2016-04-12 风扇的测试方法及装置 WO2016197694A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510317879.7 2015-06-10
CN201510317879.7A CN106286360A (zh) 2015-06-10 2015-06-10 风扇的测试方法及装置

Publications (1)

Publication Number Publication Date
WO2016197694A1 true WO2016197694A1 (zh) 2016-12-15

Family

ID=57503200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079084 WO2016197694A1 (zh) 2015-06-10 2016-04-12 风扇的测试方法及装置

Country Status (2)

Country Link
CN (1) CN106286360A (zh)
WO (1) WO2016197694A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107588029B (zh) * 2017-09-04 2019-03-05 郑州云海信息技术有限公司 一种自动化多平台风扇测试方法
CN112418378B (zh) * 2020-09-14 2024-06-21 四川谦泰仁投资管理有限公司 一种强关联关系的状态编码系统
CN112253520B (zh) * 2020-11-02 2022-07-19 苏州浪潮智能科技有限公司 一种远程测试服务器pwm风扇稳定性的方法及装置
CN113419443B (zh) * 2021-04-23 2022-08-19 山东英信计算机技术有限公司 一种风扇板的控制方法、系统、设备以及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521976A (ja) * 1991-03-20 1993-01-29 Fujitsu Ltd フアン回転監視方法
JPH11191016A (ja) * 1997-12-26 1999-07-13 Hitachi Ltd マルチプロセッサの縮退切り替え方法
GB2423573A (en) * 2005-01-28 2006-08-30 Hewlett Packard Development Co Airflow distribution or ventilation system for a data centre
CN101567810A (zh) * 2008-11-11 2009-10-28 武汉虹信通信技术有限责任公司 一种热插拔板卡自侦测的实现方法
US20130162438A1 (en) * 2011-12-27 2013-06-27 Hon Hai Precision Industry Co., Ltd. Server system for monitoring status of fans
CN103870379A (zh) * 2012-12-18 2014-06-18 鸿富锦精密工业(深圳)有限公司 风扇异常警示系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521976A (ja) * 1991-03-20 1993-01-29 Fujitsu Ltd フアン回転監視方法
JPH11191016A (ja) * 1997-12-26 1999-07-13 Hitachi Ltd マルチプロセッサの縮退切り替え方法
GB2423573A (en) * 2005-01-28 2006-08-30 Hewlett Packard Development Co Airflow distribution or ventilation system for a data centre
CN101567810A (zh) * 2008-11-11 2009-10-28 武汉虹信通信技术有限责任公司 一种热插拔板卡自侦测的实现方法
US20130162438A1 (en) * 2011-12-27 2013-06-27 Hon Hai Precision Industry Co., Ltd. Server system for monitoring status of fans
CN103870379A (zh) * 2012-12-18 2014-06-18 鸿富锦精密工业(深圳)有限公司 风扇异常警示系统及方法

Also Published As

Publication number Publication date
CN106286360A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
WO2016197694A1 (zh) 风扇的测试方法及装置
CN102571450B (zh) 网络接口模块的端口配置方法、装置及框式通信设备
CN102185738B (zh) 通信设备硬件主机的测试系统及测试方法
US9716612B2 (en) Evaluation of field replaceable unit dependencies and connections
CN104503932B (zh) 多主板服务器主基板管理控制器仲裁方法及系统
CN105721357A (zh) 交换设备、外围部件互连高速系统及其初始化方法
US20140098702A1 (en) Position discovery by detecting irregularities in a network topology
CN103401726A (zh) 网络路径探测方法及装置、系统
CN100375440C (zh) 网络连线的备援系统
CN211628241U (zh) 一种通过软件切换拓扑的pcie总线结构
CN103186440B (zh) 检测子卡在位的方法、装置及系统
CN103164309A (zh) Sol功能测试方法及系统
CN109150645B (zh) 一种交换芯片的测试方法及系统
CN105187255A (zh) 故障分析方法、故障分析装置和服务器
CN106155954A (zh) 一种模块识别和通信端口自动分配的系统及方法
CN104181836B (zh) 信号切换装置
CN105391601A (zh) 一种网管设备的性能测试方法及系统
CN102820802B (zh) 逆变电源系统及其信号传递方法
US20200235815A1 (en) Methods and sysems for reconfigurable network topologies
CN104683130A (zh) 一种配置堆叠端口的方法和设备
CN116032746B (zh) 资源池的信息处理方法及装置、存储介质及电子装置
CN103095739A (zh) 机柜服务器系统及其节点通信方法
CN109257185A (zh) 一种网络设备、业务卡、逻辑装置及通知信息传输方法
CN101582055A (zh) 一种串口接管方法及装置
US8205117B2 (en) Migratory hardware diagnostic testing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16806592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16806592

Country of ref document: EP

Kind code of ref document: A1