WO2016197308A1 - 一种高清摄像系统及高分辨率图像的获取方法 - Google Patents

一种高清摄像系统及高分辨率图像的获取方法 Download PDF

Info

Publication number
WO2016197308A1
WO2016197308A1 PCT/CN2015/081022 CN2015081022W WO2016197308A1 WO 2016197308 A1 WO2016197308 A1 WO 2016197308A1 CN 2015081022 W CN2015081022 W CN 2015081022W WO 2016197308 A1 WO2016197308 A1 WO 2016197308A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
image acquisition
module
matrix module
data
Prior art date
Application number
PCT/CN2015/081022
Other languages
English (en)
French (fr)
Inventor
庄堉
Original Assignee
深圳市晟视科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市晟视科技有限公司 filed Critical 深圳市晟视科技有限公司
Priority to PCT/CN2015/081022 priority Critical patent/WO2016197308A1/zh
Priority to CN201580001009.7A priority patent/CN105940667B/zh
Publication of WO2016197308A1 publication Critical patent/WO2016197308A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/815Camera processing pipelines; Components thereof for controlling the resolution by using a single image

Definitions

  • the invention relates to the field of imaging, and in particular to a high-definition camera system and a method for acquiring high-resolution images.
  • the HD usb camera consists of a high-resolution image capture device and a usb transfer device that drives the usb transfer device through the computer, controls the image capture device, and transmits the data back to the computer.
  • the high resolution of high-definition usb cameras depends on the image acquisition device. The resolution of general image acquisition devices is less than 16 million pixels. If you want to achieve higher resolution, you must use multiple existing cameras to link to the pc terminal. , using software for control and synthesis.
  • the technical difficulty is that if a high-resolution image acquisition device is used, the price will rise in a curve, and the higher the resolution, the higher the price.
  • the technical problem to be solved by the present invention is to provide a high-definition camera system capable of reducing the cost of realizing high-resolution and high-precision products and the high cost of the prior art in achieving high-resolution and high-precision products. How to get the resolution image.
  • the technical solution adopted by the present invention to solve the technical problem is: constructing a high-definition camera system, comprising an image acquisition and transmission unit, an image acquisition matrix module, a transmission control module and a terminal, wherein the image acquisition and transmission unit comprises at least one image acquisition and transmission unit.
  • each of the image acquisition transmission subunits is connected to the image acquisition matrix module, each of the image acquisition transmission subunits includes an image acquisition submatrix module and at least one connected to the image acquisition submatrix module
  • the image acquisition module performs image acquisition, and converts the acquired image data into a digital signal and transmits the image data to a corresponding image acquisition sub-matrix module; the corresponding image acquisition sub-matrix module receives the digital signal, And converting the high-speed differential signal to the image acquisition matrix module;
  • the image acquisition matrix module is connected Receiving high-speed differential signals transmitted by all image acquisition sub-matrix modules, restoring image data corresponding to each image acquisition module, and performing image processing and image arrangement on the restored image data;
  • the transmission control module receiving control of the terminal Transmitting and transmitting the control signal to the image acquisition matrix module, and transmitting image content acquired from the image acquisition matrix module to the terminal; the image acquisition matrix module processing the location according to the content of the control signal High speed differential signal.
  • the high-definition camera system further includes a DDR memory, and the image acquisition matrix module buffers image processing and image-arranged image data into the DDR memory.
  • the image acquisition matrix module is respectively connected to each image acquisition sub-matrix module through a high-speed signal channel.
  • the transmission control module is a USB 3.0 transmission control module.
  • the USB3.0 transmission control module is internally provided with a buffer area, and image data in the DDR memory is moved to the USB3.0 transmission control module through the image acquisition matrix module. In the cache area.
  • the high-definition camera system further includes a power system, and the power system is connected to the image acquisition matrix module for supplying power to the high-definition camera system.
  • the invention also relates to a method for acquiring a high resolution image, comprising the following steps:
  • the terminal sends a control command to the transmission control module
  • the transmission control module parses the control instruction, and sends a control action instruction to the image acquisition matrix module through the control bus;
  • the image acquisition matrix module strobes the image acquisition sub-matrix module specified in the control action instruction according to a control action instruction of the control bus, and transmits corresponding control timing and control parameters to the specified image acquisition Submatrix module
  • the specified image acquisition sub-matrix module transmits the control timing and control parameters to the image acquisition module, the image acquisition module collects an image according to the control information, and converts the collected image data into a digital signal returning station.
  • the specified image acquisition sub-matrix module after the received image acquisition sub-matrix module receives the data signal, and transmits the data signal to the image acquisition matrix module;
  • step E the image acquisition matrix module prepares to receive image data, and determines whether image data is received. If yes, the image acquisition matrix module performs image preprocessing on the image data according to preset parameters, and preprocesses the image. Map If the data is buffered into the DDR memory, step F) is performed; otherwise, the judgment of this step is continued;
  • the image acquisition matrix module monitors image data in the DDR memory, and moves the image data buffered in the DDR memory to the transmission control module for buffering according to the request of the transmission control module;
  • the terminal transmits configuration information of image data to the image acquisition matrix module through the transmission control module, the image acquisition matrix module reads image data from the DDR memory, and the image is The data is arranged in a configured arrangement manner, and the arranged images are transmitted to the terminal through the transmission control module, where they are combined into one image.
  • the step D) further includes:
  • the image acquisition sub-matrix module sends the image acquisition configuration information to the image acquisition module, performs initial configuration and image acquisition timing configuration on the image acquisition module, and after the configuration is completed, triggers the corresponding image acquisition module to perform image collection according to the configured timing, and Sending the collected image data to the image acquisition sub-matrix module;
  • the image collection sub-matrix module sequentially arranges the image data collected by each image acquisition module in the order of collection;
  • Each image acquisition module corresponds to a number, and the number is defined by a physical connection;
  • the image acquisition sub-matrix module adds flag data to the header of the aligned data, and adds check data to the tail; the check data adopts a CRC check mode;
  • the image acquisition sub-matrix module returns all the data after adding the flag data and the verification data to zero-code and converts into high-speed differential signals.
  • the step E) further includes:
  • step E1 determining whether the image acquisition matrix module receives the high-speed differential signal, and if yes, performing step E2); otherwise, proceeding to determine the step;
  • the image acquisition matrix module restores the received high-speed differential signal of each image acquisition sub-matrix module to data corresponding to each image acquisition module;
  • the image acquisition matrix module performs image processing on the restored data according to a pre-configured image processing function, and caches the data in the DDR memory according to the collected sequence.
  • the image processing functions preconfigured in the step E3) include image 2d noise reduction and/or image 3d noise reduction and/or image color decoding and/or image color. Spatial conversion and/or image color correction and/or image white balance and/or image auto exposure and/or image blur and/or image sharpening and/or image osd overlay.
  • the step G) further includes:
  • the terminal transmits configuration information of image data to the image acquisition matrix module through the transmission control module, and the image acquisition matrix module reads image data from the DDR memory;
  • the image acquisition matrix module arranges the image data according to the configured row and column information, and transmits the arranged image to the terminal through the transmission control module;
  • step G8 judging whether the splicing is completed, and if so, ending the image transmission; otherwise, extracting the image data adjacent to the smooth seamless image from the already arranged image data, and returning to step G4).
  • the image acquisition and transmission unit includes at least one image acquisition and transmission sub-unit, due to the use of the image acquisition and transmission unit, the image acquisition matrix module, and the transmission control module.
  • Each image acquisition transmission subunit is connected to an image acquisition matrix module, and each image acquisition transmission subunit includes an image acquisition submatrix module and at least one image acquisition module connected to the image acquisition submatrix module, by combining several A low-cost and low-pixel camera (specifically an image acquisition module) to achieve the functionality of the original high-pixel camera, which can achieve the effect of a high-pixel camera, while also reducing some of the cost, while also increasing the image acquisition module to get a high A resolution that cannot be achieved by a pixel camera.
  • a low-cost and low-pixel camera specifically an image acquisition module
  • FIG. 1 is a schematic structural diagram of a system in an embodiment of a high-definition camera system and a high-resolution image acquisition method according to the present invention
  • Figure 2 is a flow chart of the method in the embodiment
  • 3 is an image acquisition sub-matrix module specified in the embodiment, which transmits control timing and control parameters to an image acquisition module, and the image acquisition module collects an image according to the control information, and converts the collected image data into a digital signal returning station.
  • the specified image acquisition sub-matrix module, the specified image acquisition sub-matrix module receives a specific flow chart of the data acquisition signal module after being processed and transmitted to the image acquisition matrix module;
  • FIG. 4 is a specific flowchart of the image acquisition matrix module in the embodiment for preparing to receive image data and determining whether image data is received;
  • FIG. 5 is a specific flowchart of image arrangement and synthesis in the embodiment.
  • the high-definition camera system includes an image acquisition and transmission unit 1, an image acquisition matrix module 2, a transmission control module 3, and a terminal 5.
  • the image acquisition and transmission unit 1 includes at least one image acquisition and transmission sub-unit, and each image acquisition transmission The subunits are connected to the image acquisition matrix module 2, each image acquisition transmission subunit includes an image acquisition submatrix module and at least one image acquisition module, and the at least one image acquisition module is connected to the image acquisition submatrix module;
  • the acquisition module performs image acquisition, and converts the acquired image data into a digital signal and transmits it to a corresponding image acquisition sub-matrix module;
  • the corresponding image acquisition sub-matrix module receives the digital signal, and converts it into a high-speed differential signal and transmits the image to the image.
  • the acquisition matrix module 2 The acquisition matrix module 2; the image acquisition matrix module 2 receives the high-speed differential signals transmitted by all the image acquisition sub-matrix modules, restores the image data corresponding to each image acquisition module, and performs image processing and image arrangement on the restored image data; Control module 3 and image mining
  • the set matrix module 2 is connected to the terminal 5, and the transmission control module 3 receives the control signal of the terminal 5 and transmits the control signal to the image acquisition matrix module 2, and transmits the image content acquired from the image acquisition matrix module 2 back to the terminal 5;
  • the acquisition matrix module 2 is based on the inside of the control signal Handle high-speed differential signals.
  • the terminal 5 is a PC.
  • the terminal 5 may also be another terminal device having a control function.
  • the control signal required by the image acquisition module comes from the image acquisition sub-matrix module, and the main function of the image acquisition sub-matrix module is to manage and control different image acquisition modules, and receive the image acquisition module.
  • Digital signal then arrange the digital signals of each image acquisition module according to the user-defined order, and add the flag data to the head of the arranged data, and add the data verification data at the end (for example, CRC check), the image acquisition sub-matrix module will return all the data to zero code and convert it into high-speed differential signal, and transmit the high-speed differential signal to the image acquisition matrix module 2.
  • FIG. 1 shows N image acquisition and transmission subunits.
  • the N image acquisition and transmission subunits are respectively referred to as a first image acquisition transmission subunit 11, a second image acquisition transmission subunit 12, ...
  • the Nth image acquisition and transmission subunit 1N In the N image acquisition and transmission subunits, only the structure of the first image acquisition and transmission subunit 11 is drawn, and the first image acquisition and transmission subunit 11 includes an image acquisition.
  • the sub-matrix module 111 and the N image acquisition modules are referred to as the first image acquisition module 121, the second image acquisition module 122, ..., the N-th image collection in the present embodiment for convenience of description.
  • Module 12N of course, in some cases of this embodiment, the number of image acquisition modules in each image acquisition transmission subunit may be increased or decreased according to specific needs.
  • the invention realizes the function of the original high-pixel camera by combining several low-cost and low-pixel image acquisition modules, so that the effect of the high-pixel camera can be achieved, and at the same time, part of the cost is also reduced, and the image acquisition module can be added to obtain the general
  • the resolution that cannot be achieved by high-pixel cameras, and the combination of several low-cost and low-pixel cameras, can also achieve a single camera with a mechanical structure for driving, which is more stable than the existing solution, and the error does not follow the assembly. The change will not change due to mechanical aging, and more importantly, the cost of customizing high-precision mechanical structures is eliminated, so that it can reduce costs when achieving high resolution and high precision.
  • the high-definition camera system further includes a DDR memory 4, and the DDR memory 4 is connected to the image acquisition matrix module 2.
  • the image acquisition matrix module 2 sends the image processed and image-arranged image data to the DDR memory 4 for buffering.
  • the image acquisition matrix module 2 is respectively connected to each image acquisition sub-matrix module through a high-speed signal channel.
  • the transmission control module 3 is a USB 3.0 transmission control module.
  • the USB3.0 transmission control module includes a main control module, and the control buses of all modules of the high-definition camera system are linked to the main control module.
  • the USB3.0 transmission control module is further provided with a buffer area (not shown), and the image data in the DDR memory 4 is moved to the buffer area in the USB3.0 transmission control module through the image acquisition matrix module 2.
  • the image acquisition matrix module 2 receives the high-speed differential signals of all the image acquisition sub-matrix modules, restores each image data corresponding to each image acquisition module, and performs specific image processing and image arrangement on the image data.
  • the image acquisition matrix module 2 has an image processing function built in, and the user can define a certain function in advance according to requirements, and can also perform function configuration and calling on the terminal 5, and the user can also adopt an image acquisition matrix. Module 2 performs final layout setting on the data of each image acquisition module, and stores it in DDR memory 5 after processing.
  • a communication protocol is established between the image acquisition matrix module 2 and the USB3.0 transmission control module, and the control signal of the terminal 5 can be transmitted to the image acquisition matrix module 2 through the USB3.0 transmission control module, and the image acquisition matrix module 2 will be based on the control signal.
  • the content processes the data from the image acquisition sub-matrix module.
  • the image acquisition matrix module 2 also moves the image data of the DDR memory 5 to the buffer area of the USB3.0 transmission control module by establishing a dedicated channel for transmitting data with the USB3.0 transmission control module.
  • the USB3.0 transmission control module is mainly responsible for processing all control signals from the terminal 5, controlling the operation of different modules on the high-definition camera system according to different control signals, coordinating the image sampling and transmission of different image acquisition modules, and finally the terminal 5 The required image content is transmitted to the terminal 5 one by one.
  • the high-definition camera system further includes a power system 6, and the power system 6 is connected to the image acquisition matrix module 2 for supplying power to the high-definition camera system.
  • the number of image acquisition sub-matrix modules connected to the image acquisition matrix module may be one to eight, and the number of image acquisition modules connected to each image acquisition sub-matrix module may be one to eight.
  • the number of image acquisition sub-matrix modules connected to the image acquisition matrix module 2 is four, and the number of image acquisition modules connected to each image acquisition sub-matrix module is six. That is to say, each image acquisition sub-matrix module can be connected to six image acquisition modules, and the image acquisition matrix module 2 can also be connected to four image acquisition sub-matrix modules. In this way, the camera matrix of 24 image acquisition modules is integrated, and the resolution is also greatly improved, which is 24 times that of a single image acquisition module.
  • the high-definition camera system divides all the image acquisition modules into image acquisition sub-matrix and then connects the image acquisition matrix module 2 to have two advantages: First, in each image acquisition sub-matrix module, the sub-matrix can be simultaneously processed. The data from the image acquisition module; second, the transmission channel is copied, the transmission bandwidth is increased, and the ability to process images is greatly improved.
  • the high-definition camera system has ultra-high resolution and is used in industrial inspection environments where large-area and high-precision conditions are required.
  • the high-definition camera system realizes high resolution and large visible area by integrating multiple image acquisition modules, and also has the expansion capability of the acquisition system, and the number of image acquisition modules can be increased or decreased according to actual applications.
  • the adjustment of the resolution or the adjustment of the visible area is more flexible.
  • This embodiment also relates to a method for acquiring a high resolution image, the flow chart of which is shown in FIG. 2.
  • the method for acquiring the high resolution image includes the following steps:
  • Step S01 The terminal sends a control command to the transmission control module: In this step, the terminal sends the control instruction to the transmission control module, and the transmission control module is a USB3.0 transmission control module.
  • Step S02 The transmission control module parses the control instruction, and sends the control action instruction to the image acquisition matrix module through the control bus: it is worth mentioning that, in this embodiment, the main control module in the control module is transmitted through USB3.0 It can analyze all the commands of the HD camera system. At the same time, the main control module can also monitor the system, forward the commands, and control different modules for different commands. The command will be selectively transmitted in different modules. When a module of the HD camera system is selected, the selected module will respond to the action corresponding to the command or be passed to its upper module again.
  • the transmission control module parses the control instruction and sends the control action instruction to the image acquisition matrix module through the control bus. For example, the terminal sends a photographing instruction, parses the photographing instruction in the main control module in the USB3.0 transmission control module, and then tells the image acquisition matrix module through the control bus.
  • Step S03 The image acquisition matrix module strobes the image acquisition sub-matrix module specified in the control action instruction according to the control action instruction of the control bus, and transmits the corresponding control timing and control parameters to the designated image acquisition sub-matrix module: this step The image acquisition matrix module strobes the image acquisition sub-matrix module specified in the control action instruction according to the control action instruction of the control bus, and transmits the corresponding control timing and control parameters (eg, camera parameters) to the specified image.
  • Collect sub-matrix modules are examples of the image acquisition sub-matrix module specified in the control action instruction according to the control action instruction of the control bus, and transmits the corresponding control timing and control parameters (eg, camera parameters) to the specified image.
  • the image acquisition sub-matrix module specified in step S04 transmits control timing and control parameters to the image acquisition module, and the image acquisition module collects an image according to the control information, and converts the collected image data into a digital signal to return the specified image acquisition sub-matrix.
  • the module, the specified image acquisition sub-matrix module receives the data signal and processes it and transmits it to the image acquisition matrix module:
  • Step S05 The image acquisition matrix module prepares to receive the image data, and determines whether the image data is received. In this step, the image acquisition matrix module prepares to receive the image data, and determines whether the image acquisition matrix module receives the image data. If the result of the determination is yes, Then, step S06 is performed; otherwise, the judgment of this step is continued.
  • Step S06 The image acquisition matrix module performs image preprocessing on the image data according to the preset parameters, and buffers the image preprocessed image data into the DDR memory: if the result of the above step S05 is YES, the step is executed. In this step, image data is returned to the image acquisition matrix module, and the image acquisition matrix module performs image preprocessing on the image data according to preset parameters, and buffers the image data preprocessed by the image into the DDR memory. It is worth mentioning that, in the image preprocessing, according to the user-defined image processing function, the image data is processed correspondingly by calling the image processing function built in the image acquisition matrix module. After performing this step, step S07 is performed.
  • Step S07 The image acquisition matrix module monitors image data in the DDR memory, and moves the image data buffered in the DDR memory to the transmission control module for buffering according to the request of the transmission control module: in this step, in this step, The image acquisition matrix module monitors the image data in the DDR memory, and moves the image data buffered in the DDR memory to the transmission control module for buffering according to the request of the transmission control module (USB3.0 transmission control module).
  • the image acquisition sub-matrix module mainly implements the matching of different image acquisition modules in this process, and marks the image data transmitted by the image acquisition module.
  • the image acquisition module performs image acquisition according to the transmitted control action command and control parameters.
  • Step S08 the terminal transmits the configuration information of the image data to the image acquisition matrix module through the transmission control module, and the image acquisition matrix module reads the image data from the DDR memory, and arranges the image data according to the configured arrangement manner, and arranges the image data.
  • the image is transmitted to the terminal through the transmission control module, and is synthesized into an image in the terminal.
  • the terminal is provided with software, and the image data is arranged by software.
  • the terminal transmits the configuration information of the image data to the image acquisition matrix module through the transmission control module, and the image acquisition matrix module reads the image data from the DDR memory, and arranges the image data according to the configured arrangement manner, and The arranged images are transmitted to the terminal through the transmission control module, and are combined into one image in the terminal.
  • the above steps S07 and S08 are performed in parallel, and step S08 may be performed at the same time as step S07.
  • the invention realizes a terminal control multiple image acquisition modules by tree-dividing and deriving the high-definition camera system, and can perform image pre-processing and arrangement indication on all images in the high-definition camera system.
  • the method for synthesizing high-resolution images by a low-pixel camera is realized, and the method of the invention can greatly reduce the production cost and the supporting cost of the surrounding environment, and reduce the complexity of realizing the ultra-high resolution camera.
  • the USB 3.0 transmission control module performs corresponding processing on the HD imaging system according to the information of the received control instruction.
  • the processing can be basically divided into acquiring image data, image preprocessing, blending and combining of image acquisition modules, and transmitting image data.
  • the above step S04 can be further refined, and the refined flowchart is shown in FIG. 3.
  • the above step S04 further includes:
  • Step S41 the image acquisition sub-matrix module sends the image acquisition configuration information to the image acquisition module, performs initial configuration and image acquisition timing configuration on the image acquisition module, and after the configuration is completed, triggers the corresponding image acquisition module to perform image collection according to the configured timing, and The collected image data is sent to the image collection sub-matrix module.
  • the initialization parameters of the image acquisition module may be configured in advance by using the software of the terminal, or the acquisition timing of each image acquisition module may be configured by using the software of the terminal. .
  • the terminal transmits the image acquisition configuration information to the image acquisition matrix module according to the user's requirements through the transmission control module, and the image acquisition matrix module transmits the image acquisition configuration information to the image acquisition sub-matrix module, and the image acquisition sub-matrix module Sending the image acquisition configuration information to the image acquisition module.
  • Initial configuration and image acquisition timing configuration of the image acquisition module After the configuration is completed, the corresponding image acquisition module is triggered to perform image acquisition according to the configured timing, and the collected image data is sent to the image acquisition sub-matrix module.
  • Step S42 After the image acquisition sub-matrix module receives the acquired image data transmitted by the image acquisition module, the image acquisition sub-matrix module sequentially arranges the image data collected by each image acquisition module in the order of collection: in this step, the image collection sub- After the matrix module receives the acquired image data transmitted by the image acquisition module, the image acquisition sub-matrix module sequentially arranges the image data collected by each image acquisition module in the order of collection.
  • each image acquisition module corresponds to a number, which is defined by a physical connection. For example, the number of each image acquisition module connected to the first image acquisition sub-matrix module is: 11, 12, 13..., and the number of each image acquisition module connected to the second image acquisition sub-matrix module is : 21, 22, 23...
  • the order of user-defined image data is 11->12->13->14->21->22->31->44 (here is the number of the image acquisition module), then the image acquisition matrix module will The image data collected by the numbered image acquisition module is selected and sequentially arranged and transmitted in the order of acquisition.
  • Step S43 The image acquisition sub-matrix module adds flag data to the head of the aligned data, and adds verification data at the end: in this step, after the arrangement is completed, the image acquisition sub-matrix module pairs the data after the completion of the arrangement.
  • the header is added with the flag data, and the check data is added at the end thereof, and the check data is in the CRC check mode.
  • Step S44 The image acquisition sub-matrix module returns all the data after adding the flag data and the verification data to the zero-coded code, and converts the data into a high-speed differential signal: in this step, the image acquisition sub-matrix module adds the flag data and the verification data. All subsequent image data is returned to zero code and converted into a high speed differential signal. In this way, the image data collected by the image acquisition module is converted into a high-speed differential signal, so that the image acquisition matrix module can perform subsequent processing.
  • the above steps S05 to S06 can be further refined, and the refined flowchart is as shown in FIG. 4 .
  • the above steps S05 to S06 further include:
  • Step S51 determining whether the image acquisition matrix module receives the high-speed differential signal: in this step, determining whether the image acquisition matrix module receives the high-speed differential signal, and if the result of the determination is yes, executing step S46; otherwise, proceeding to determine the step .
  • Step S52 The image acquisition matrix module restores the received high-speed differential signal of each image acquisition sub-matrix module to data corresponding to each image acquisition module: if the determination result of the above step S45 is YES, the step is performed. In this step, the image acquisition matrix module restores the received high-speed differential signals of each image acquisition sub-matrix module to image data corresponding to each image acquisition module.
  • Step S53 The image acquisition matrix module performs image processing on the restored data according to the pre-configured image processing function, and caches the data in the DDR memory according to the collected sequence: in this step, the image acquisition matrix module restores the restored data.
  • the image processing is performed in accordance with the pre-configured image processing functions, and is cached in the DDR memory in the order of acquisition.
  • the above-described pre-configured image processing functions include image 2d noise reduction and/or image 3d noise reduction and/or image color decoding and/or image color space conversion and/or image color correction and/or image white balance and/or image auto exposure. And/or image blurring and/or image sharpening and/or image osd overlaying and the like.
  • the user can pre-define a certain function of the above functions according to the requirements, and can also configure and invoke the function on the terminal software.
  • the terminal When the software on the terminal is used for configuration, the terminal will configure the software.
  • the image processing function is sent to the image acquisition matrix module.
  • step S08 can be further refined, and the refined flowchart is as shown in FIG. 5.
  • the above step S08 further includes the following steps:
  • Step S81 The terminal transmits the configuration information of the image data to the image acquisition matrix module through the transmission control module, and the image acquisition matrix module reads the image data from the DDR memory: in this step, the terminal transmits the configuration information of the image data by transmission.
  • the control module transmits to the image acquisition matrix module, and the image acquisition matrix module reads the previously cached image data from the DDR memory.
  • the image data is arranged in such a way that the image data is composed, that is, the image data is composed in several rows and columns. In this embodiment, the arrangement of the image data is configured on the terminal software.
  • Step S82 The image acquisition matrix module arranges the image data according to the configured row and column information, and transmits the arranged image to the terminal through the transmission control module: in this step, the image acquisition matrix module arranges the image data according to the configured row and column information.
  • the orchestrated image is transmitted to the terminal through the transmission control module.
  • the first line of the configuration x1:11->12->13->14 (actually arranged is the image data collected by the image acquisition module corresponding to the number); the second line of configuration x2: 21- >22->23->24 and so on.
  • Such an arrangement can shorten the time for image synthesis and reduce the complexity of synthesis.
  • Step S83 takes out two adjacent image data from the already arranged image data: in this step, two image data adjacent to each other are taken out from the already arranged image data. It is worth mentioning that, in this embodiment, when the two adjacent image data are taken out, the data is extracted according to the rows, that is, the adjacent two image data in each row are respectively extracted, and all the rows can be simultaneously performed, so that Improve the speed of stitching.
  • Step S84 uses the matching strategy of the search method to find the SIFT feature points in the adjacent two images, and respectively marks the corresponding positions in the image, and determines the transformation relationship between the adjacent two images by the coordinates of the marked positions:
  • the matching strategy of the search method is used to find all the SIFT feature points in the adjacent two images, and respectively mark the corresponding positions in the image, and then determine the coordinates between the adjacent two images by the coordinates of the marked positions. Transform the relationship.
  • Step S85 establishing a mathematical transformation model of two adjacent images according to the correspondence between the SIFT feature points in the adjacent two images: in this step, according to the correspondence between the SIFT feature points in the adjacent two images , calculate the data model The value of each parameter in the model, thus establishing a mathematical transformation model of two adjacent images.
  • Step S86 Perform coordinate transformation by converting the adjacent two images into the reference image coordinate system according to the mathematical transformation model: in this step, according to the established mathematical transformation model, the adjacent two images are transformed by scaling, rotation, etc. Convert to the coordinate system of the reference image and complete the unified coordinate transformation.
  • Step S87 performing transparent fusion processing on the overlapping regions of the adjacent two images to obtain a smooth and seamless image reconstructed by stitching and reconstructing: in this step, the overlapping regions of the adjacent two images are transparently combined to obtain smoothness of the stitching reconstruction. Sewed image.
  • step S88 it is determined whether the splicing is completed: in this step, it is determined whether the splicing is completed. If the result of the determination is YES, step S89 is performed; otherwise, step S90 is performed.
  • Step S89 ends the image transmission: if the result of the above step S88 is YES, the present step is executed. In this step, the image transmission is ended.
  • Step S90 extracts image data adjacent to the smooth seamless image from the already-arranged image data: if the result of the above-described step S88 is NO, the present step is executed.
  • the image data adjacent to the smooth seamless image is taken out from the already arranged image data, and specifically, the stitched smooth seamless image is taken as an image data, and is taken out from the already arranged image data.
  • the image data adjacent to the smooth seamless image is returned to the same processing in step S84. That is, the image data to be processed later is sequentially subjected to the same processing as that of the above-described steps S84 to S87, until all the image data are spliced.
  • the image is acquired by a plurality of low-pixel cameras (image acquisition modules), and the high-resolution image is realized by the method of synthesizing the high-pixel image by the terminal.
  • this approach has a certain cost advantage, and can also achieve higher resolution image acquisition than existing high-resolution cameras, such products are more suitable for complex environments and cost control in production.
  • a conventional mechanical structure is used to synthesize a high-resolution image of the same size, it will cost more than the present invention, and the mechanical structure will be aged or misaligned, thereby affecting the image synthesis precision.
  • the method for acquiring images by using a plurality of low-pixel cameras and realizing high-resolution images by synthesizing high-pixel images by the terminal can completely replace the existing mechanical architecture.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • Image Processing (AREA)
  • Studio Devices (AREA)

Abstract

一种高清摄像系统及高分辨率图像的获取方法,系统包括图像采集传输单元、图像采集矩阵模块、传输控制模块和终端,图像采集传输单元包括至少一个图像采集传输子单元,每个图像采集传输子单元包括一个图像采集子矩阵模块和至少一个与图像采集子矩阵模块连接的图像采集模块;图像采集模块将图像数据转换成数字信号后传给图像采集子矩阵模块;图像采集子矩阵模块将其转成高速差分信号后传输给图像采集矩阵模块;图像采集矩阵模块进行图像处理和编排;传输控制模块与终端和图像采集矩阵模块连接。实施高清摄像系统及高分辨率图像的获取方法,具有以下有益效果:能降低实现高分辨率高精度产品的成本。

Description

一种高清摄像系统及高分辨率图像的获取方法 技术领域
本发明涉及摄像领域,特别涉及一种高清摄像系统及高分辨率图像的获取方法。
背景技术
高清usb相机是由一个高分辨率的图像采集设备和一个usb传输设备组成,相机通过电脑驱动usb传输设备,控制图像采集设备,并将数据传回电脑。高清usb相机的高分辨取决于图像采集设备,一般的图像采集设备的分辨率在1600万像素以下,如果想要实现更高的分辨率就必须采用多个现有的相机链接到pc终端里面去,用软件进行控制及合成。其技术难点在于如果采用高分辨率的图像采集设备,在价格上会呈现曲线上涨,其分辨越高,价格也就越高。并且当所需的分辨率高于现有的图像采集设备时,就需要组合多个高分辨的图像采集设备,使得这样的产品在生产成本上会非常昂贵,失去市场竞争力。并且pc终端对设备的统一控制也会变得复杂。如果想要实现更大的分辨率也可以通过行驶的机械结构来实现,其技术难点在于机械结构有精度要求,高精度的成本高,低精度的机械结构又满足不了现有的相机产品的要求,而且高精度的机械结构在组装产品时,需要极其繁琐的调试。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述在实现高分辨率高精度产品时成本较高的缺陷,提供一种能降低实现高分辨率高精度产品的成本的高清摄像系统及高分辨率图像的获取方法。
本发明解决其技术问题所采用的技术方案是:构造一种高清摄像系统,包括图像采集传输单元、图像采集矩阵模块、传输控制模块和终端,所述图像采集传输单元包括至少一个图像采集传输子单元,每个所述图像采集传输子单元均与所述图像采集矩阵模块连接,每个所述图像采集传输子单元均包括一个图像采集子矩阵模块和至少一个与所述图像采集子矩阵模块连接的图像采集模块;所述图像采集模块进行图像采集,并将采集的图像数据转换成数字信号后传输给对应的图像采集子矩阵模块;所述对应的图像采集子矩阵模块接收所述数字信号,并将其转换成高速差分信号后传输给所述图像采集矩阵模块;所述图像采集矩阵模块接 收所有图像采集子矩阵模块传送的高速差分信号,还原出对应每个图像采集模块的图像数据,并对还原出的图像数据进行图像处理和图像编排;所述传输控制模块接收所述终端的控制信号并将所述控制信号传给所述图像采集矩阵模块,并将从所述图像采集矩阵模块获取的图像内容传输回所述终端;所述图像采集矩阵模块根据所述控制信号的内容处理所述高速差分信号。
在本发明所述的高清摄像系统中,所述高清摄像系统还包括DDR存储器,所述图像采集矩阵模块将图像处理和图像编排后的图像数据缓存到所述DDR存储器中。
在本发明所述的高清摄像系统中,所述图像采集矩阵模块通过高速信号通道分别与每一个图像采集子矩阵模块连接。
在本发明所述的高清摄像系统中,所述传输控制模块为USB3.0传输控制模块。
在本发明所述的高清摄像系统中,所述USB3.0传输控制模块内部设有缓存区,所述DDR存储器中的图像数据通过所述图像采集矩阵模块搬移到所述USB3.0传输控制模块中的缓存区中。
在本发明所述的高清摄像系统中,所述高清摄像系统还包括电源系统,所述电源系统与所述图像采集矩阵模块连接,用于给所述高清摄像系统进行供电。
本发明还涉及一种高分辨率图像的获取方法,包括如下步骤:
A)终端将控制指令发送到传输控制模块;
B)所述传输控制模块对所述控制指令进行解析,并通过控制总线把控制动作指令发送给图像采集矩阵模块;
C)所述图像采集矩阵模块根据控制总线的控制动作指令,选通所述控制动作指令中指定的图像采集子矩阵模块,并把对应的控制时序和控制参数传递给所述所指定的图像采集子矩阵模块;
D)所述所指定的图像采集子矩阵模块将所述控制时序和控制参数传递给图像采集模块,所述图像采集模块根据控制信息采集图像,并将采集的图像数据转换为数字信号传回所述所指定的图像采集子矩阵模块,所述所指定的图像采集子矩阵模块接收到所述数据信号经过处理后,传输给所述图像采集矩阵模块;
E)所述图像采集矩阵模块准备接收图像数据,判断是否收到图像数据,如是,所述图像采集矩阵模块将所述图像数据按照预先设定的参数进行图像预处理,并将图像预处理后的图 像数据缓存到DDR存储器中,执行步骤F);否则,继续进行本步骤的判断;
F)所述图像采集矩阵模块监控所述DDR存储器中的图像数据,并按照所述传输控制模块的请求,把缓存在DDR存储器中的图像数据搬移到所述传输控制模块进行缓存;
G)所述终端将图像数据的编排方式配置信息通过所述传输控制模块传送到所述图像采集矩阵模块,所述图像采集矩阵模块从所述DDR存储器中读取图像数据,并将所述图像数据按照配置的编排方式进行编排,并将编排后的图像通过所述传输控制模块传送到所述终端,在所述终端中将其合成为一幅图像。
在本发明所述的高分辨率图像的获取方法中,所述步骤D)进一步包括:
D1)图像采集子矩阵模块将图像采集配置信息发送到图像采集模块,对图像采集模块进行初始化配置和图像采集时序配置,配置完成后,根据配置的时序触发相应的图像采集模块进行图像采集,并将采集的图像数据发送到图像采集子矩阵模块;
D2)所述图像采集子矩阵模块接收到所述图像采集模块传输过来的采集的图像数据后,所述图像采集子矩阵模块对每个图像采集模块采集的图像数据按照采集的顺序依次排列;每个图像采集模块都对应有一个编号,所述编号通过物理连接的方式来定义;
D3)所述图像采集子矩阵模块对排列完成后的数据的头部加上标志数据,在其尾部加上校验数据;所述校验数据采用CRC校验方式;
D4)所述图像采集子矩阵模块把加上标志数据和校验数据后的所有数据进行返归零编码,并转换成高速差分信号。
在本发明所述的高分辨率图像的获取方法中,所述步骤E)进一步包括:
E1)判断图像采集矩阵模块是否收到所述高速差分信号,如是,执行步骤E2);否则,继续进行本步骤的判断;
E2)所述图像采集矩阵模块将接收的每个图像采集子矩阵模块的高速差分信号还原成对应每个图像采集模块的数据;
E3)所述图像采集矩阵模块对还原出的数据按照预先配置的图像处理功能进行图像处理,并按照所述采集的顺序缓存到DDR存储器中。
在本发明所述的高分辨率图像的获取方法中,所述步骤E3)中预先配置的图像处理功能包括图像2d降噪和/或图像3d降噪和/或图像彩色解码和/或图像色彩空间转换和/或图像颜色矫正和/或图像白平衡和/或图像自动曝光和/或图像模糊和/或图像锐化和/或图像osd叠加。
在本发明所述的高分辨率图像的获取方法中,所述步骤G)进一步包括:
G1)终端将图像数据的编排方式配置信息通过所述传输控制模块传送到所述图像采集矩阵模块,所述图像采集矩阵模块从所述DDR存储器中读取图像数据;
G2)所述图像采集矩阵模块将所述图像数据按照配置的行列信息进行编排,并将编排后的图像通过所述传输控制模块传送到所述终端;
G3)从已经编排好的图像数据中取出相邻两幅图像数据;
G4)采用搜索法的匹配策略找出相邻两幅图像中的SIFT特征点,并分别标记在图像中的对应位置,通过所标记位置的坐标确定所述相邻两幅图像之间的变换关系;
G5)根据所述相邻两幅图像中的SIFT特征点之间的对应关系,建立所述相邻两幅图像的数学变换模型;
G6)根据所述数学变换模型将所述相邻两幅图形通过缩放、旋转转换到参考图像坐标系中完成坐标变换;
G7)将所述相邻两幅图像的重合区域进行透明融合处理得到拼接重构的平滑无缝图像;
G8)判断拼接是否完成,如是,结束图像传输;否则,从已经编排好的图像数据中取出与所述平滑无缝图像相邻的图像数据,返回步骤G4)。
实施本发明的高清摄像系统及高分辨率图像的获取方法,具有以下有益效果:由于使用图像采集传输单元、图像采集矩阵模块和传输控制模块,图像采集传输单元包括至少一个图像采集传输子单元,每个图像采集传输子单元均与图像采集矩阵模块连接,每个图像采集传输子单元均包括一个图像采集子矩阵模块和至少一个均与图像采集子矩阵模块连接的图像采集模块,通过组合几个低成本和低像素的相机(具体就是图像采集模块)来实现原本高像素相机的功能,这样可以达到高像素相机的效果,同时也降低了部分成本,同时还可以增加图像采集模块来得到一般高像素相机无法达到的分辨率,同时,通过组合几个低成本和低像素的相机(具体就是图像采集模块)来实现单个相机配合行驶的机械结构的方案,其比现有方案更加稳定,误差不会随着组装而改变,也不会因为机械老化而改变,更重要的是省去了定制高精密度的机械结构的费用,所以其能降低实现高分辨率高精度产品的成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明高清摄像系统及高分辨率图像的获取方法一个实施例中系统的结构示意图;
图2为所述实施例中方法的流程图;
图3为所述实施例中所指定的图像采集子矩阵模块将控制时序和控制参数传递给图像采集模块,图像采集模块根据控制信息采集图像,并将采集的图像数据转换为数字信号传回所指定的图像采集子矩阵模块,所指定的图像采集子矩阵模块接收到数据信号经过处理后,传输给图像采集矩阵模块的具体流程图;
图4为所述实施例中图像采集矩阵模块准备接收图像数据,判断是否收到图像数据的具体流程图;
图5为所述实施例中进行图像编排与合成的具体流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明高清摄像系统及高分辨率图像的获取方法实施例中,其高清摄像系统的结构示意图如图1所示。图1中,该高清摄像系统包括图像采集传输单元1、图像采集矩阵模块2、传输控制模块3和终端5,其中,图像采集传输单元1包括至少一个图像采集传输子单元,每个图像采集传输子单元均与图像采集矩阵模块2连接,每一个图像采集传输子单元均包括一个图像采集子矩阵模块和至少一个图像采集模块,上述至少一个图像采集模块均与该图像采集子矩阵模块连接;图像采集模块进行图像采集,并将采集的图像数据转换成数字信号后传输给对应的图像采集子矩阵模块;对应的图像采集子矩阵模块接收数字信号,并将其转换成高速差分信号后传输给图像采集矩阵模块2;图像采集矩阵模块2接收所有图像采集子矩阵模块传送的高速差分信号,还原出对应每个图像采集模块的图像数据,并对还原出的图像数据进行图像处理和图像编排;传输控制模块3分别与图像采集矩阵模块2和终端5连接,传输控制模块3接收终端5的控制信号并将该控制信号传给图像采集矩阵模块2,并将从图像采集矩阵模块2获取的图像内容传输回终端5;图像采集矩阵模块2根据该控制信号的内 容处理高速差分信号。本实施例中,终端5为PC机,当然,在本实施例的一些情况下,终端5也可以为具有控制功能的其他终端设备。
值得一提的是,本实施例中,图像采集模块所需要的控制信号来自图像采集子矩阵模块,图像采集子矩阵模块的主要功能是对不同的图像采集模块进行管理和控制,接收图像采集模块的数字信号,然后根据用户定义的顺序对每个图像采集模块的数字信号进行排列,并对排列完成后的数据的头部加上标志数据,在其尾部加上数据的校验数据(例如采用CRC校验),图像采集子矩阵模块最后会把所有的数据进行返归零编码,并转换成高速差分信号,并将高速差分信号传输给图像采集矩阵模块2。
图1中画出了N个图像采集传输子单元,为了方便描述,分别将这N个图像采集传输子单元分别称为第一图像采集传输子单元11、第二图像采集传输子单元12、…、第N图像采集传输子单元1N,图1中,N个图像采集传输子单元中,只画出了第一图像采集传输子单元11的结构,第一图像采集传输子单元11包括一个图像采集子矩阵模块111和N个图像采集模块,为了方便描述,本实施例中,将这N个图像采集模块分别称为第一图像采集模块121、第二图像采集模块122、…、第N图像采集模块12N,当然,在本实施例的一些情况下,每个图像采集传输子单元中图像采集模块的个数可根据具体需要进行相应的增加或减少。
本发明通过组合几个低成本和低像素的图像采集模块来实现原本高像素相机的功能,这样可以达到高像素相机的效果,同时也降低了部分成本,同时还可以增加图像采集模块来得到一般高像素相机无法达到的分辨率,同时,通过组合几个低成本和低像素的相机还可以实现单个相机配合行驶的机械结构的方案,其比现有方案更加稳定,误差不会随着组装而改变,也不会因为机械老化而改变,更重要的是省去了定制高精密度的机械结构的费用,所以其在实现高分辨率且高精度时能降低成本。
本实施例中,该高清摄像系统还包括DDR存储器4,DDR存储器4与图像采集矩阵模块2连接,图像采集矩阵模块2将图像处理和图像编排后的图像数据发送到DDR存储器4进行缓存。本实施例中,图像采集矩阵模块2通过高速信号通道分别与每一个图像采集子矩阵模块连接。
本实施例中,传输控制模块3为USB3.0传输控制模块。USB3.0传输控制模块包括主控制模组,高清摄像系统的所有模块的控制总线都链接到主控制模组。USB3.0传输控制模块的内部还设有缓存区(图中未示出),DDR存储器4中的图像数据通过图像采集矩阵模块2搬移到USB3.0传输控制模块中的缓存区中。
本实施例中,图像采集矩阵模块2接收所有图像采集子矩阵模块的高速差分信号,还原出每个对应每个图像采集模块的图像数据,并且对该图像数据进行特定的图像处理和图像编排。具体的,本实施例中,图像采集矩阵模块2内置了图像处理功能,用户可以按照需求,预先定义某个功能,也可以在终端5上进行功能的配置和调用,用户还可以通过图像采集矩阵模块2对每个图像采集模块的数据进行最终的排布设定,处理完成后存入DDR储存器5中。图像采集矩阵模块2与USB3.0传输控制模块之间建立有通讯协议,通过USB3.0传输控制模块可以将终端5的控制信号传给图像采集矩阵模块2,图像采集矩阵模块2将根据控制信号的内容处理来自图像采集子矩阵模块的数据。同时图像采集矩阵模块2还会通过与USB3.0传输控制模块建立传输数据的专用通道,把DDR储存器5的图像数据搬移到USB3.0传输控制模块的缓存区中。USB3.0传输控制模块主要负责处理来自终端5的所有控制信号,按照不同的控制信号来控制高清摄像系统上不同的模块的工作,协调不同图像采集模块的图像采样和传输,最后把终端5所需要的图像内容一一传输到终端5。
本实施例中,该高清摄像系统还包括电源系统6,电源系统6与图像采集矩阵模块2连接,用于给高清摄像系统进行供电。
本实施例中,与图像采集矩阵模块连接的图像采集子矩阵模块的个数可以为一至八个,与每一个图像采集子矩阵模块连接的图像采集模块的个数可以为一至八个。例如:与图像采集矩阵模块2连接的图像采集子矩阵模块的个数为四个,与每一个图像采集子矩阵模块连接的图像采集模块的个数为六个。也就是说,每个图像采集子矩阵模块可以连接六个图像采集模块,而图像采集矩阵模块2也可以连接四个图像采集子矩阵模块。这样系统就集成了24个图像采集模块的相机矩阵,分辨率也得到了大幅的提升,是单个图像采集模块的24倍。本高清摄像系统把所有的图像采集模块分成了图像采集子矩阵后再连接的图像采集矩阵模块2有两个好处:第一,在每个图像采集子矩阵模块中都可以同时处理子矩阵中的来自图像采集模块的数据;第二,把传输通道进行了复制,提高了传输带宽,使得处理图像的能力大大提高。
该高清摄像系统具有超高像素,应用于需要检测大面积且高精度条件下的工业检测环境中。该高清摄像系统通过集成多个图像采集模块来实现高分辨率及较大的可视面积,同时还具备了采集系统的扩展能力,根据实际应用可以图像采集模块进行数量的增加或者减少,以实现分辨率的调整或可视面积的调整,其调整方式比较灵活。
本实施例还涉及一种高分辨率图像的获取方法,其流程图如图2所示。图2中,该高分辨率图像的获取方法包括如下步骤:
步骤S01终端将控制指令发送到传输控制模块:本步骤中,终端将控制指令发送到传输控制模块,该传输控制模块为USB3.0传输控制模块。
步骤S02传输控制模块对控制指令进行解析,并通过控制总线把控制动作指令发送给图像采集矩阵模块:值得一提的是,本实施例中,通过USB3.0传输控制模块中的主控制模组可以对系高清摄像统的所有指令进行解析,同时,主控制模组还可以对系统进行监控,转发指令,对不同的指令进行不同模块的控制。指令会在不同模块中有选择的传递,当高清摄像系统的某个模块被选中时,被选中的模块便会响应该指令所对应的动作,或者再次传递到它的上层模块。本步骤中,传输控制模块对控制指令进行解析,并通过控制总线把控制动作指令发送给图像采集矩阵模块。比如,终端发送了拍照指令,在USB3.0传输控制模块中的主控制模组中对该拍照指令进行解析,然后通过控制总线把控制动作告诉图像采集矩阵模块。
步骤S03图像采集矩阵模块根据控制总线的控制动作指令,选通控制动作指令中指定的图像采集子矩阵模块,并把对应的控制时序和控制参数传递给所指定的图像采集子矩阵模块:本步骤中,图像采集矩阵模块根据控制总线的控制动作指令,选通该控制动作指令中指定的图像采集子矩阵模块,并把对应的控制时序和控制参数(例如:拍照参数)传递给所指定的图像采集子矩阵模块。
步骤S04所指定的图像采集子矩阵模块将控制时序和控制参数传递给图像采集模块,图像采集模块根据控制信息采集图像,并将采集的图像数据转换为数字信号传回所指定的图像采集子矩阵模块,所指定的图像采集子矩阵模块接收到数据信号经过处理后,传输给图像采集矩阵模块:
步骤S05图像采集矩阵模块准备接收图像数据,判断是否收到图像数据:本步骤中,图像采集矩阵模块准备接收图像数据,判断该图像采集矩阵模块是否收到图像数据,如果判断的结果为是,则执行步骤S06;否则,继续进行本步骤的判断。
步骤S06图像采集矩阵模块将图像数据按照预先设定的参数进行图像预处理,并将图像预处理后的图像数据缓存到DDR存储器中:如果上述步骤S05的判断结果为是,则执行本步骤。本步骤中,有图像数据回传到图像采集矩阵模块,图像采集矩阵模块将图像数据按照预先设定的参数进行图像预处理,并将图像预处理后的图像数据缓存到DDR存储器中。值得一提的是,在进行图像预处理时,按照用户自定义的图像处理功能,通过调用图像采集矩阵模块内置的图像处理功能对图像数据进行相应处理。执行完本步骤,执行步骤S07。
步骤S07图像采集矩阵模块监控DDR存储器中的图像数据,并按照传输控制模块的请求,把缓存在DDR存储器中的图像数据搬移到传输控制模块进行缓存:本步骤中,本步骤中, 图像采集矩阵模块监控DDR存储器中的图像数据,并按照传输控制模块(USB3.0传输控制模块)的请求,把缓存在DDR存储器中的图像数据搬移到传输控制模块进行缓存。值得一提的是,本实施例中,图像采集子矩阵模块在这个过程中主要实现对不同图像采集模块的调配,并且对图像采集模块传输过来的图像数据进行标示。图像采集模块是按照传输过来的控制动作指令和控制参数进行图像采集。
步骤S08终端将图像数据的编排方式配置信息通过传输控制模块传送到图像采集矩阵模块,图像采集矩阵模块从DDR存储器中读取图像数据,并将图像数据按照配置的编排方式进行编排,并将编排后的图像通过传输控制模块传送到终端,在终端中将其合成为一幅图像:本实施例中,终端设有软件,通过软件配置图像数据的编排方式。本步骤中,终端将图像数据的编排方式配置信息通过传输控制模块传送到图像采集矩阵模块,图像采集矩阵模块从DDR存储器中读取图像数据,并将图像数据按照配置的编排方式进行编排,并将编排后的图像通过传输控制模块传送到终端,在终端中将其合成为一幅图像。关于如何具体编排,后续会进行详细描述。值得一提的是,本实施例中,上述步骤S07与步骤S08是并列独立执行的,在执行步骤S07的同时,也可以执行步骤S08。
本发明通过对高清摄像系统进行树状的分割和衍生,实现了一个终端控制多个图像采集模块,并且可以在本高清摄像系统中对所有图像进行图像预处理和排列标示。实现了低像素相机合成高分辨率的图像的方法,本发明的方法可以大大降低生产成本以及周边环境的配套成本,降低实现超高分辨相机的复杂度。
本实施例中,当终端发送控制指令后,USB3.0传输控制模块按照接收的控制指令的信息,对本高清摄像系统进行相应的处理。该处理基本可以分为采集图像数据、图像预处理、图像采集模块的调配和组合、传输图像数据等。
对于本实施例而言,上述步骤S04还可进一步细化,其细化后的流程图如图3所示,图3中,上述步骤S04进一步包括:
步骤S41图像采集子矩阵模块将图像采集配置信息发送到图像采集模块,对图像采集模块进行初始化配置和图像采集时序配置,配置完成后,根据配置的时序触发相应的图像采集模块进行图像采集,并将采集的图像数据发送到图像采集子矩阵模块:本实施例中,利用终端的软件可以事先对图像采集模块的初始化参数进行配置,也可以利用终端的软件对各个图像采集模块的采集时序进行配置。本步骤中,终端根据用户的需求将图像采集配置信息通过传输控制模块传送给图像采集矩阵模块,图像采集矩阵模块再将该图像采集配置信息传送到图像采集子矩阵模块,图像采集子矩阵模块再将该图像采集配置信息发送到图像采集模块, 对图像采集模块进行初始化配置和图像采集时序配置,配置完成后,根据配置的时序触发相应的图像采集模块进行图像采集,并将采集的图像数据发送到图像采集子矩阵模块。
步骤S42图像采集子矩阵模块接收到图像采集模块传输过来的采集的图像数据后,图像采集子矩阵模块对每个图像采集模块采集的图像数据按照采集的顺序依次排列:本步骤中,图像采集子矩阵模块接收到图像采集模块传输过来的采集的图像数据后,图像采集子矩阵模块对每个图像采集模块采集的图像数据按照采集的顺序依次排列。具体来讲,每个图像采集模块都对应有一个编号,该编号通过物理连接的方式来定义。比如第一个图像采集子矩阵模块所连接的每个图像采集模块的编号分别为:11、12、13……,第二个图像采集子矩阵模块所连接的每个图像采集模块的编号分别为:21、22、23……。比如:用户定义的图像数据的采集顺序是11->12->13->14->21->22->31->44(这里是图像采集模块的编号),那么图像采集矩阵模块就会挑选符合编号的图像采集模块所采集的图像数据,并按照采集的顺序依次排列和传输。
步骤S43图像采集子矩阵模块对排列完成后的数据的头部加上标志数据,在其尾部加上校验数据:本步骤中,排列完成后,图像采集子矩阵模块对排列完成后的数据的头部加上标志数据,在其尾部加上校验数据,该校验数据采用CRC校验方式。
步骤S44图像采集子矩阵模块把加上标志数据和校验数据后的所有数据进行返归零编码,并转换成高速差分信号:本步骤中,图像采集子矩阵模块把加上标志数据和校验数据后的所有图像数据进行返归零编码,并转换成高速差分信号。这样就实现了将图像采集模块采集的图像数据转换成高速差分信号,以便于图像采集矩阵模块做后续的处理。
对于本实施例而言,上述步骤S05至步骤S06还可进一步细化,其细化后的流程图如图4所示。图4中,上述步骤S05至步骤S06进一步包括:
步骤S51判断图像采集矩阵模块是否收到高速差分信号:本步骤中,判断图像采集矩阵模块是否收到高速差分信号,如果判断的结果为是,则执行步骤S46;否则,继续进行本步骤的判断。
步骤S52图像采集矩阵模块将接收的每个图像采集子矩阵模块的高速差分信号还原成对应每个图像采集模块的数据:如果上述步骤S45的判断结果为是,则执行本步骤。本步骤中,图像采集矩阵模块将接收的每个图像采集子矩阵模块的高速差分信号还原成对应每个图像采集模块的图像数据。
步骤S53图像采集矩阵模块对还原出的数据按照预先配置的图像处理功能进行图像处理,并按照采集的顺序缓存到DDR存储器中:本步骤中,图像采集矩阵模块对还原出的数据 按照预先配置的图像处理功能进行图像处理,并按照采集的顺序缓存到DDR存储器中。上述预先配置的图像处理功能包括图像2d降噪和/或图像3d降噪和/或图像彩色解码和/或图像色彩空间转换和/或图像颜色矫正和/或图像白平衡和/或图像自动曝光和/或图像模糊和/或图像锐化和/或图像osd叠加等等。值得一提的是,用户可以按照需求,预先定义上述功能中的某个功能,也可以在终端软件上进行功能的配置和调用,当用终端上的软件进行配置时,终端会将软件配置的图像处理功能发送到图像采集矩阵模块。
对于本实施例而言,上述步骤S08还可进一步细化,其细化后的流程图如图5所示。图5中,上述步骤S08进一步包括如下步骤:
步骤S81终端将图像数据的编排方式配置信息通过传输控制模块传送到图像采集矩阵模块,图像采集矩阵模块从DDR存储器中读取图像数据:本步骤中,终端将图像数据的编排方式配置信息通过传输控制模块传送到图像采集矩阵模块,图像采集矩阵模块从DDR存储器中读取之前缓存的图像数据。值得一提的是,图像数据的编排方式就是将图像数据的组成方式,即把这些图像数据按照几行几列的方式组成。本实施例中,图像数据的编排方式是在终端软件上进行配置的。
步骤S82图像采集矩阵模块将图像数据按照配置的行列信息进行编排,并将编排后的图像通过传输控制模块传送到终端:本步骤中,图像采集矩阵模块将图像数据按照配置的行列信息进行编排,并将编排后的图像通过传输控制模块传送到终端。具体的,比如:配置的第一行x1:11->12->13->14(其实编排的是对应该编号的图像采集模块所采集的图像数据);配置的第二行x2:21->22->23->24等等。这样的编排方式可以缩短后面进行图像合成的时间和降低合成的复杂度。
步骤S83从已经编排好的图像数据中取出相邻两幅图像数据:本步骤中,从已经编排好的图像数据中取出位置相邻的两幅图像数据。值得一提的是,本实施例中,在取出相邻两幅图像数据时,是按照行进行提取的,也就是分别提取每行中相邻两幅图像数据,所有行可以同时进行,这样可以提高拼接的速度。
步骤S84采用搜索法的匹配策略找出相邻两幅图像中的SIFT特征点,并分别标记在图像中的对应位置,通过所标记位置的坐标确定相邻两幅图像之间的变换关系:本步骤中,采用搜索法的匹配策略,找出相邻两幅图像中所有的SIFT特征点,并分别标记在图像中的对应位置,进而通过所标记位置的坐标确定相邻两幅图像之间的变换关系。
步骤S85根据相邻两幅图像中的SIFT特征点之间的对应关系,建立相邻两幅图像的数学变换模型:本步骤中,根据相邻两幅图像中的SIFT特征点之间的对应关系,计算出数据模 型中的各参数值,从而建立相邻两幅图像的数学变换模型。
步骤S86根据数学变换模型将相邻两幅图形通过缩放、旋转转换到参考图像坐标系中完成坐标变换:本步骤中,根据建立的数学变换模型,将相邻两幅图形通过缩放、旋转等变换转换到参考图像的坐标系中,完成统一坐标变换。
步骤S87将相邻两幅图像的重合区域进行透明融合处理得到拼接重构的平滑无缝图像:本步骤中,将相邻两幅图像的重合区域进行透明融合处理,得到拼接重构的平滑无缝的图像。
步骤S88判断拼接是否完成:本步骤中,判断拼接是否完成,如果判断的结果为是,则执行步骤S89;否则,执行步骤S90。
步骤S89结束图像传输:如果上述步骤S88的判断结果为是,则执行本步骤。本步骤中,结束图像传输。
步骤S90从已经编排好的图像数据中取出与平滑无缝图像相邻的图像数据:如果上述步骤S88的判断结果为否,则执行本步骤。本步骤中,从已经编排好的图像数据中取出与平滑无缝图像相邻的图像数据,具体的,将拼接后的平滑无缝图像作为一个图像数据,从已经编排好的图像数据中取出与该平滑无缝图像相邻的图像数据,返回步骤S84进行相同的处理。也就是依次将后面待处理的图像数据逐一进行与上述步骤S84至步骤S87相同的处理,直至所有的图像数据都拼接完成。值得一提的是,当每行都拼接完成后,最后将拼接后的图像按照列进行拼接。当然,还可以同时进行几组图像的合成,然后把所有处理的图像再进行合成,这样就会大大提高处理的速度。
总之,在本实施例中,与现有的高分辨率相机相比,通过多个低像素相机(图像采集模块)进行采集图像,并通过终端合成高像素图像的方法来实现高分辨率图像的采集,这种方式有一定的成本优势,并且还可以实现比现有高分辨相机更高的分辨率的图像采集,这样的产品更加适应生产中复杂环境和成本控制。如果采用传统的机械结构来实现合成同样大小的高分辨率图像,会比本发明耗费更大的成本代价,而且机械架构也会老化或者错位,从而影响图像的合成精度。本发明通过多个低像素相机进行采集图像,并通过终端合成高像素图像的方法来实现高分辨率图像的采集的方式可以完全替代现有的机械架构。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种高清摄像系统,其特征在于,包括图像采集传输单元、图像采集矩阵模块、传输控制模块和终端,所述图像采集传输单元包括至少一个图像采集传输子单元,每个所述图像采集传输子单元均与所述图像采集矩阵模块连接,每个所述图像采集传输子单元均包括一个图像采集子矩阵模块和至少一个与所述图像采集子矩阵模块连接的图像采集模块;所述图像采集模块进行图像采集,并将采集的图像数据转换成数字信号后传输给对应的图像采集子矩阵模块;所述对应的图像采集子矩阵模块接收所述数字信号,并将其转换成高速差分信号后传输给所述图像采集矩阵模块;所述图像采集矩阵模块接收所有图像采集子矩阵模块传送的高速差分信号,还原出对应每个图像采集模块的图像数据,并对还原出的图像数据进行图像处理和图像编排;所述传输控制模块接收所述终端的控制信号并将所述控制信号传给所述图像采集矩阵模块,并将从所述图像采集矩阵模块获取的图像内容传输回所述终端;所述图像采集矩阵模块根据所述控制信号的内容处理所述高速差分信号。
  2. 根据权利要求1所述的高清摄像系统,其特征在于,所述高清摄像系统还包括DDR存储器,所述图像采集矩阵模块将图像处理和图像编排后的图像数据缓存到所述DDR存储器中。
  3. 根据权利要求2所述的高清摄像系统,其特征在于,所述图像采集矩阵模块通过高速信号通道分别与每一个图像采集子矩阵模块连接。
  4. 根据权利要求1至3任意一项所述的高清摄像系统,其特征在于,所述传输控制模块为USB3.0传输控制模块,所述USB3.0传输控制模块内部设有缓存区,所述DDR存储器中的图像数据通过所述图像采集矩阵模块搬移到所述USB3.0传输控制模块中的缓存区中。
  5. 根据权利要求4所述的高清摄像系统,其特征在于,所述高清摄像系统还包括电源系统,所述电源系统与所述图像采集矩阵模块连接,用于给所述高清摄像系统进行供电。
  6. 一种高分辨率图像的获取方法,其特征在于,包括如下步骤:
    A)终端将控制指令发送到传输控制模块;
    B)所述传输控制模块对所述控制指令进行解析,并通过控制总线把控制动作指令发送给图像采集矩阵模块;
    C)所述图像采集矩阵模块根据控制总线的控制动作指令,选通所述控制动作指令中指定的图像采集子矩阵模块,并把对应的控制时序和控制参数传递给所述所指定的图像采集子矩阵模块;
    D)所述所指定的图像采集子矩阵模块将所述控制时序和控制参数传递给图像采集模块,所述图像采集模块根据控制信息采集图像,并将采集的图像数据转换为数字信号传回所述所指定的图像采集子矩阵模块,所述所指定的图像采集子矩阵模块接收到所述数据信号经过处理后,传输给所述图像采集矩阵模块;
    E)所述图像采集矩阵模块准备接收图像数据,判断是否收到图像数据,如是,所述图像采集矩阵模块将所述图像数据按照预先设定的参数进行图像预处理,并将图像预处理后的图像数据缓存到DDR存储器中,执行步骤F);否则,继续进行本步骤的判断;
    F)所述图像采集矩阵模块监控所述DDR存储器中的图像数据,并按照所述传输控制模块的请求,把缓存在DDR存储器中的图像数据搬移到所述传输控制模块进行缓存;
    G)所述终端将图像数据的编排方式配置信息通过所述传输控制模块传送到所述图像采集矩阵模块,所述图像采集矩阵模块从所述DDR存储器中读取图像数据,并将所述图像数据按照配置的编排方式进行编排,并将编排后的图像通过所述传输控制模块传送到所述终端,在所述终端中将其合成为一幅图像。
  7. 根据权利要求6所述的高分辨率图像的获取方法,其特征在于,所述步骤D)进一步包括:
    D1)图像采集子矩阵模块将图像采集配置信息发送到图像采集模块,对图像采集模块进行初始化配置和图像采集时序配置,配置完成后,根据配置的时序触发相应的图像采集模块进行图像采集,并将采集的图像数据发送到图像采集子矩阵模块;
    D2)所述图像采集子矩阵模块接收到所述图像采集模块传输过来的采集的图像数据后,所述图像采集子矩阵模块对每个图像采集模块采集的图像数据按照采集的顺序依次排列;每个图像采集模块都对应有一个编号,所述编号通过物理连接的方式来定义;
    D3)所述图像采集子矩阵模块对排列完成后的数据的头部加上标志数据,在其尾部加上校验数据;所述校验数据采用CRC校验方式;
    D4)所述图像采集子矩阵模块把加上标志数据和校验数据后的所有数据进行返归零编码,并转换成高速差分信号。
  8. 根据权利要求6所述的高分辨率图像的获取方法,其特征在于,所述步骤E)进一步包括:
    E1)判断图像采集矩阵模块是否收到所述高速差分信号,如是,执行步骤E2);否则,继续进行本步骤的判断;
    E2)所述图像采集矩阵模块将接收的每个图像采集子矩阵模块的高速差分信号还原成对 应每个图像采集模块的数据;
    E3)所述图像采集矩阵模块对还原出的数据按照预先配置的图像处理功能进行图像处理,并按照所述采集的顺序缓存到DDR存储器中。
  9. 根据权利要求8所述的高分辨率图像的获取方法,其特征在于,所述步骤E3)中预先配置的图像处理功能包括图像2d降噪和/或图像3d降噪和/或图像彩色解码和/或图像色彩空间转换和/或图像颜色矫正和/或图像白平衡和/或图像自动曝光和/或图像模糊和/或图像锐化和/或图像osd叠加。
  10. 根据权利要求7至9任意一项所述的高分辨率图像的获取方法,其特征在于,所述步骤G)进一步包括:
    G1)终端将图像数据的编排方式配置信息通过所述传输控制模块传送到所述图像采集矩阵模块,所述图像采集矩阵模块从所述DDR存储器中读取图像数据;
    G2)所述图像采集矩阵模块将所述图像数据按照配置的行列信息进行编排,并将编排后的图像通过所述传输控制模块传送到所述终端;
    G3)从已经编排好的图像数据中取出相邻两幅图像数据;
    G4)采用搜索法的匹配策略找出相邻两幅图像中的SIFT特征点,并分别标记在图像中的对应位置,通过所标记位置的坐标确定所述相邻两幅图像之间的变换关系;
    G5)根据所述相邻两幅图像中的SIFT特征点之间的对应关系,建立所述相邻两幅图像的数学变换模型;
    G6)根据所述数学变换模型将所述相邻两幅图形通过缩放、旋转转换到参考图像坐标系中完成坐标变换;
    G7)将所述相邻两幅图像的重合区域进行透明融合处理得到拼接重构的平滑无缝图像;
    G8)判断拼接是否完成,如是,结束图像传输;否则,从已经编排好的图像数据中取出与所述平滑无缝图像相邻的图像数据,返回步骤G4)。
PCT/CN2015/081022 2015-06-09 2015-06-09 一种高清摄像系统及高分辨率图像的获取方法 WO2016197308A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/081022 WO2016197308A1 (zh) 2015-06-09 2015-06-09 一种高清摄像系统及高分辨率图像的获取方法
CN201580001009.7A CN105940667B (zh) 2015-06-09 2015-06-09 一种高清摄像系统及高分辨率图像的获取方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/081022 WO2016197308A1 (zh) 2015-06-09 2015-06-09 一种高清摄像系统及高分辨率图像的获取方法

Publications (1)

Publication Number Publication Date
WO2016197308A1 true WO2016197308A1 (zh) 2016-12-15

Family

ID=57153129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/081022 WO2016197308A1 (zh) 2015-06-09 2015-06-09 一种高清摄像系统及高分辨率图像的获取方法

Country Status (2)

Country Link
CN (1) CN105940667B (zh)
WO (1) WO2016197308A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107796814A (zh) * 2017-10-19 2018-03-13 苏州泽科生物科技有限公司 矩阵式连续图像采集分析系统
CN109146793A (zh) * 2018-06-26 2019-01-04 杭州雄迈集成电路技术有限公司 一种流水线式图像色度格式转换缩放旋转叠加的系统
CN109547749A (zh) * 2018-12-18 2019-03-29 中国科学院西安光学精密机械研究所 一种星载成像设备数据传输与采集系统
CN114630034A (zh) * 2022-03-16 2022-06-14 东南大学 一种基于fpga的桥梁水下基础表观检测系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115379134B (zh) * 2022-10-26 2023-02-03 四川中绳矩阵技术发展有限公司 一种图像采集装置、方法、设备及介质
CN115988151A (zh) * 2022-12-29 2023-04-18 南京图格医疗科技有限公司 一种使用低像素时钟实时处理视频的方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1646220A1 (en) * 2004-10-05 2006-04-12 Magix AG System and method for creating a photo movie
CN101588480A (zh) * 2009-05-27 2009-11-25 北京航空航天大学 一种多智能体视觉伺服协调控制方法
CN101674466A (zh) * 2009-10-15 2010-03-17 上海交通大学 多信息融合的智能视频监控前端系统
CN103236160A (zh) * 2013-04-07 2013-08-07 水木路拓科技(北京)有限公司 基于视频图像处理技术的路网交通状态监测系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103997609A (zh) * 2014-06-12 2014-08-20 四川川大智胜软件股份有限公司 基于cuda的多视频实时全景融合拼接方法
CN204350148U (zh) * 2015-02-09 2015-05-20 上海安威士科技股份有限公司 基于特征点的多尺度实时监控视频拼接装置
CN104580933A (zh) * 2015-02-09 2015-04-29 上海安威士科技股份有限公司 基于特征点的多尺度实时监控视频拼接装置及拼接方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1646220A1 (en) * 2004-10-05 2006-04-12 Magix AG System and method for creating a photo movie
CN101588480A (zh) * 2009-05-27 2009-11-25 北京航空航天大学 一种多智能体视觉伺服协调控制方法
CN101674466A (zh) * 2009-10-15 2010-03-17 上海交通大学 多信息融合的智能视频监控前端系统
CN103236160A (zh) * 2013-04-07 2013-08-07 水木路拓科技(北京)有限公司 基于视频图像处理技术的路网交通状态监测系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107796814A (zh) * 2017-10-19 2018-03-13 苏州泽科生物科技有限公司 矩阵式连续图像采集分析系统
CN109146793A (zh) * 2018-06-26 2019-01-04 杭州雄迈集成电路技术有限公司 一种流水线式图像色度格式转换缩放旋转叠加的系统
CN109146793B (zh) * 2018-06-26 2023-08-08 杭州雄迈集成电路技术股份有限公司 一种流水线式图像色度格式转换缩放旋转叠加的系统
CN109547749A (zh) * 2018-12-18 2019-03-29 中国科学院西安光学精密机械研究所 一种星载成像设备数据传输与采集系统
CN114630034A (zh) * 2022-03-16 2022-06-14 东南大学 一种基于fpga的桥梁水下基础表观检测系统
CN114630034B (zh) * 2022-03-16 2024-02-20 东南大学 一种基于fpga的桥梁水下基础表观检测系统

Also Published As

Publication number Publication date
CN105940667A (zh) 2016-09-14
CN105940667B (zh) 2019-04-12

Similar Documents

Publication Publication Date Title
WO2016197308A1 (zh) 一种高清摄像系统及高分辨率图像的获取方法
JP5172863B2 (ja) バナナ・コーデック
TWI545388B (zh) 產生全景圖像的系統和方法
US10304157B2 (en) Information processing method, information processing device, and program
US8305424B2 (en) System, apparatus and method for panorama image display
JP6205654B2 (ja) 画像処理方法及び画像処理装置
US9646404B2 (en) Information processing method, information processing device, and program that facilitates image processing operations on a mobile device
US10445402B1 (en) Fast and energy-efficient region of interest pooling for object detection with convolutional neural network
JP2012249070A (ja) 撮像装置及び撮像方法
CN108848354B (zh) 一种vr内容摄像系统及其工作方法
JP2011010331A (ja) ディジタルビデオデータを処理するための繰り返し使用可能なフロントエンドを有するモジュラアーキテクチャ
WO2013168381A1 (en) Image processing apparatus and image processing method
CN114765667A (zh) 用于多视图拼接的固定图案校准
CN112367537A (zh) 一种基于zynq的视频采集-拼接-显示系统
WO2023024421A1 (zh) 多路图像拼接方法、系统、可读存储介质、及无人车
CN103813124A (zh) 图像处理装置和图像处理方法
US10785470B2 (en) Image processing apparatus, image processing method, and image processing system
US10701286B2 (en) Image processing device, image processing system, and non-transitory storage medium
CN209895383U (zh) 一种数字图像大数据的高速传输装置
US8693774B2 (en) Image accessing apparatus and image data transmission method thereof
CN113962842B (zh) 一种基于大规模集成电路高层次综合的动态无极消旋系统及方法
CN217363213U (zh) 一种基于海思hi3559a超高清图像处理设备
CN112584075A (zh) 基于图像分辨率的图像传输方法及系统
WO2018045571A1 (zh) 图像编码方法及系统
CN114071038B (zh) 一种图像处理系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15894578

Country of ref document: EP

Kind code of ref document: A1