WO2016194984A1 - Device for controlling water purification system - Google Patents

Device for controlling water purification system Download PDF

Info

Publication number
WO2016194984A1
WO2016194984A1 PCT/JP2016/066304 JP2016066304W WO2016194984A1 WO 2016194984 A1 WO2016194984 A1 WO 2016194984A1 JP 2016066304 W JP2016066304 W JP 2016066304W WO 2016194984 A1 WO2016194984 A1 WO 2016194984A1
Authority
WO
WIPO (PCT)
Prior art keywords
particulate filter
amount
accumulation amount
differential pressure
ecu
Prior art date
Application number
PCT/JP2016/066304
Other languages
French (fr)
Japanese (ja)
Inventor
紀靖 小橋
角岡 卓
大塚 孝之
橋本 浩成
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016100561A external-priority patent/JP6233450B2/en
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201680025714.5A priority Critical patent/CN107532491B/en
Priority to US15/578,449 priority patent/US10125707B2/en
Priority to DE112016002484.3T priority patent/DE112016002484T5/en
Priority to KR1020177032915A priority patent/KR101947942B1/en
Publication of WO2016194984A1 publication Critical patent/WO2016194984A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles

Definitions

  • the present invention relates to a control device for an exhaust purification system, and more particularly to a control device applied to an exhaust purification system including a particulate filter disposed in an exhaust passage of an internal combustion engine.
  • a PM (Particulate Matter) accumulation amount or an ash accumulation amount of the particulate filter is calculated from an operation history of the internal combustion engine, and the PM accumulation amount is a certain threshold value
  • a technique for executing a filter regeneration process for oxidizing and removing PM trapped in the particulate filter is known (for example, see Patent Document 1).
  • a control device for example, ECU (Electronic Control Unit) for calculating the PM accumulation amount and the ash accumulation amount of the particulate filter
  • the curate filter may be replaced.
  • the control device When the control device is replaced, there is a possibility that the PM deposition amount or the ash deposition amount calculated by the replaced control device may deviate from the actual PM deposition amount or the ash deposition amount.
  • the ash deposition amount and the PM deposition amount held in the replaced control device are reset to zero. Therefore, when the control device is replaced while PM or ash is accumulated on the particulate filter, the PM accumulation amount calculated by the replaced control device and the actual PM accumulation amount of the particulate filter may be different. There is sex.
  • the PM deposition amount and the ash deposition amount calculated by the control device may deviate from the actual PM deposition amount and the ash deposition amount of the particulate filter after replacement.
  • the PM deposition amount calculated based on the ash deposition amount held in the control device may deviate from the actual PM deposition amount of the particulate filter.
  • the filter regeneration process is executed in a state where the actual PM accumulation amount is excessively large. There is a possibility. In such a case, the particulate filter may be overheated during the filter regeneration process.
  • the present invention has been made in view of the above-described circumstances, and the purpose of the present invention is to determine the PM accumulation amount calculated by the control device and the particulate filter due to replacement of the control device and the particulate filter.
  • the present invention provides a technique capable of suppressing the filter regeneration process from being performed in a state where there is a possibility of causing an excessive temperature rise of the particulate filter when the actual PM accumulation amount deviates.
  • the present invention has a predetermined threshold value or more between the estimated PM accumulation amount estimated from the operation history of the internal combustion engine and the PM accumulation amount calculated from the measured value of the differential pressure sensor.
  • the measured value of the differential pressure sensor is a value in a state where only PM is deposited on the particulate filter, and if the measured value is not more than a predetermined upper limit value, the particulates If the first regeneration process, which is a process for oxidizing and removing PM accumulated on the filter, is performed and the measured value is larger than the predetermined upper limit value, the first regeneration process is not performed and the second regeneration process is performed. The playback process was executed.
  • an exhaust purification system control device includes a particulate filter disposed in an exhaust passage of an internal combustion engine, an exhaust pressure upstream of the particulate filter, and an exhaust pressure downstream of the particulate filter. And a differential pressure sensor that measures a differential pressure across the front and rear, which is a difference between the two.
  • the control device based on the operation history of the internal combustion engine, a first calculation means for calculating an ash accumulation amount that is an amount of ash accumulated on the particulate filter, a measured value of the differential pressure sensor, Based on the ash accumulation amount calculated by the first calculation means, second calculation means for calculating a PM accumulation amount, which is the amount of PM accumulated on the particulate filter, and the operation history of the internal combustion engine Based on the estimation means for estimating the estimated PM accumulation amount, which is an estimated value of the PM amount accumulated on the particulate filter, and the PM accumulation amount calculated by the second calculation means and the estimation means
  • the particulate filter is installed
  • the first regeneration process which is a process for oxidizing and removing the PM deposited on the particulate filter by raising the temperature to the first regeneration temperature, is performed, and the measured value of the differential pressure sensor
  • the first regeneration process is not performed, and the particulate filter is heated to a second regeneration temperature that is lower than the predetermined first regeneration temperature and is a temperature at which PM can be oxidized.
  • a control means for executing a second reproduction process is not performed, and the particulate filter is heated to a second regeneration temperature that is lower than the predetermined first regeneration temperature and is a temperature at which PM can be oxidized.
  • the “predetermined threshold value” is the second calculating means when the difference between the PM accumulation amount calculated by the second calculating means and the estimated PM accumulation amount estimated by the estimating means is equal to or greater than the predetermined threshold value.
  • the particulate filter It is a value that may cause an excessive temperature rise.
  • This “predetermined threshold value” is obtained in advance by an adaptation operation using an experiment or the like.
  • the “predetermined upper limit value” is obtained when the first regeneration process is executed when only PM is accumulated in the particulate filter and the differential pressure across the particulate filter is equal to or lower than the predetermined upper limit value.
  • the differential pressure before and after the particulate filter is considered not to overheat.
  • the differential pressure across the particulate filter is less than or equal to a predetermined upper limit value, even if only PM is deposited on the particulate filter, This is the maximum differential pressure before and after one regeneration process can be performed.
  • This “predetermined upper limit value” is obtained experimentally in advance. Note that the differential pressure across the particulate filter changes in accordance with the flow rate of the exhaust gas passing through the particulate filter. Therefore, the predetermined upper limit value may be changed so as to be a value corresponding to the exhaust flow rate at the time when the differential pressure sensor measures the differential pressure across the particulate filter. Further, instead of changing the predetermined upper limit value, the measured value of the differential pressure sensor may be corrected.
  • the calculation is performed by the second calculation means.
  • the PM deposition amount and the PM deposition amount estimated by the estimation means is different from the actual PM deposition amount.
  • the actual PM accumulation amount there is a possibility that the first regeneration process is performed in an excessively small state, or the first regeneration process is performed in an excessively large amount of actual PM deposition.
  • the first regeneration process when the first regeneration process is performed in a state where the actual PM deposition amount is excessively small, the possibility that the particulate filter is excessively heated is low, but in the state where the actual PM deposition amount is excessively large.
  • the first regeneration process when the first regeneration process is performed, there is a high possibility that the temperature of the particulate filter is excessively increased. Therefore, it is necessary to avoid a situation in which the first regeneration process is executed in a state where the actual PM accumulation amount is excessively large.
  • the control device for the exhaust purification system of the present invention Assuming a state in which the amount of PM collected in the filter is the largest, it is determined whether or not the first regeneration process can be performed. Specifically, when the difference between the PM accumulation amount calculated by the second calculation means and the estimated PM accumulation amount estimated by the estimation means is equal to or greater than a predetermined threshold, the control device for the exhaust purification system of the present invention provides: Assume that no ash is deposited on the particulate filter and only PM is deposited. Under such an assumption, the measured value of the differential pressure sensor can be regarded as being correlated with the amount of PM deposited on the particulate filter.
  • the PM deposition amount correlated with the measured value is expressed as “maximum PM deposition”.
  • the amount is defined as “amount”
  • the maximum PM deposition amount is an estimated amount that is larger than the actual PM deposition amount.
  • the actual PM deposition amount when the measured value of the differential pressure sensor is not more than the predetermined upper limit value (when the maximum PM deposition amount is not more than the limit PM deposition amount) is the limit PM deposition. Less than the amount.
  • the limit PM deposition amount (predetermined upper limit value) at that time is the maximum value of the PM deposition amount (differential pressure before and after) that can perform the first regeneration process without excessively raising the temperature of the particulate filter, as described above. Therefore, when the first regeneration process is executed when the actual PM deposition amount is equal to or less than the limit PM deposition amount, the particulate filter is trapped by the particulate filter while suppressing excessive temperature rise of the particulate filter.
  • the PM that is present can be oxidized and removed.
  • the measured value of the differential pressure sensor is larger than the predetermined upper limit value (when the maximum PM deposition amount is larger than the limit PM deposition amount)
  • the actual PM deposition amount may be larger than the limit PM deposition amount. If the first regeneration process is executed in such a state, the particulate filter may overheat.
  • the control device for the exhaust gas purification system of the present invention does not execute the first regeneration process when the measured value of the differential pressure sensor is larger than the predetermined upper limit value, and therefore prevents excessive temperature rise of the particulate filter. Can do.
  • the control means has a difference between the PM accumulation amount calculated by the second calculation means and the estimated PM accumulation amount estimated by the estimation means equal to or greater than a predetermined threshold value.
  • the maximum PM deposition amount may be calculated from the measured value of the differential pressure sensor.
  • the control means executes a first regeneration process if the maximum PM deposition amount is equal to or less than the limit PM deposition amount, and performs the first regeneration process if the maximum PM deposition amount is larger than the limit PM deposition amount. Don't do it. According to such a configuration, an effect similar to the method of comparing the measured value of the differential pressure sensor with the predetermined upper limit value can be obtained.
  • the difference between the PM accumulation amount calculated by the second calculation means and the estimated PM accumulation amount estimated by the estimation means is equal to or larger than a predetermined threshold value, and the measured value of the differential pressure sensor is larger than the predetermined upper limit value.
  • the difference between the PM accumulation amount calculated by the second calculation means and the estimated PM accumulation amount estimated by the estimation means is greater than or equal to a predetermined threshold value, and the measured value of the differential pressure sensor is greater than the predetermined upper limit value. In this case, it is desirable to oxidize and remove PM deposited on the particulate filter by a method different from the first regeneration process described above.
  • the control means has a difference between the PM accumulation amount calculated by the second calculation means and the estimated PM accumulation amount estimated by the estimation means equal to or greater than a predetermined threshold, and a measured value of the differential pressure sensor.
  • the second regeneration process is a process of raising the temperature of the particulate filter to a second regeneration temperature that is lower than the predetermined first regeneration temperature and at which PM can be oxidized. I tried to run.
  • the amount of PM oxidized per unit time in the particulate filter can be reduced compared to when the first regeneration process is executed.
  • the PM deposited on the particulate filter can be oxidized and removed while suppressing the excessive temperature rise.
  • the second regeneration process may be switched to the first regeneration process.
  • the control means is estimated by the estimation means and the PM accumulation amount calculated by the second calculation means when a fuel cut operation request for the internal combustion engine is generated.
  • the fuel cut operation period is shorter than when the first regeneration process is performed. Therefore, the oxidation is performed in the particulate filter during the fuel cut operation period. The amount of PM to be reduced can be reduced. As a result, it is possible to oxidize and remove PM deposited on the particulate filter while suppressing excessive temperature rise of the particulate filter.
  • control means may determine the actual ash deposition amount from the measured value of the differential pressure sensor when the first regeneration process is completed.
  • the control means may correct the ash accumulation amount calculated by the first calculation means based on the actual ash accumulation amount.
  • the particulate filter when the PM deposition amount calculated by the control device deviates from the actual PM deposition amount of the particulate filter due to replacement of the control device or the particulate filter, the particulate filter It is possible to suppress the first regeneration process from being performed in a state where there is a possibility of causing an excessive temperature rise.
  • FIG. 1 It is a figure which shows schematic structure of the internal combustion engine to which this invention is applied, and its exhaust system.
  • the particulate filter is replaced, the relationship between the actual PM accumulation amount ⁇ PM0, the PM accumulation amount ⁇ PM1 obtained from the measured value of the differential pressure sensor, and the PM accumulation amount ⁇ PM2 estimated from the operation history of the internal combustion engine FIG.
  • DELTA prescribed upper limit value
  • FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine to which the present invention is applied and its exhaust system.
  • An internal combustion engine 1 shown in FIG. 1 is a compression ignition type internal combustion engine (diesel engine) having a plurality of cylinders.
  • the internal combustion engine 1 includes a fuel injection valve 2 that injects fuel into a cylinder (not shown).
  • the internal combustion engine 1 is connected to an exhaust pipe 3 having a passage through which gas (exhaust gas) combusted in the cylinder flows.
  • a filter casing 4 is arranged in the middle of the exhaust pipe 3.
  • the filter casing 4 contains a particulate filter in a cylindrical casing.
  • the particulate filter is a filter for collecting PM contained in the exhaust gas.
  • the particulate filter alternately has a passage in which the upstream end is closed by a plug and a passage in which the downstream end is closed by a plug.
  • This is a wall flow type filter arranged.
  • a catalyst having an oxidation function for example, a three-way catalyst, a storage reduction type catalyst (NSR (NO X Storage Reduction) catalyst), or an oxidation catalyst, hereinafter referred to as “oxidation catalyst”. It is supported.
  • the oxidation catalyst may be accommodated in a catalyst casing disposed in the exhaust pipe 3 upstream from the filter casing 4.
  • the filter casing 4 is provided with a differential pressure sensor 5 for measuring a difference (a differential pressure between the front and rear) between the exhaust pressure upstream of the particulate filter and the exhaust pressure downstream of the particulate filter.
  • the differential pressure sensor 5 may be configured to measure the difference between the pressure in the exhaust pipe 3 upstream from the filter casing 4 and the pressure in the exhaust pipe 3 downstream from the filter casing 4.
  • a pressure sensor for measuring the exhaust pressure upstream of the particulate filter and a pressure sensor for measuring the exhaust pressure downstream of the particulate filter are attached to the filter casing 4 or the exhaust pipe 3, and the difference between them is described later in the ECU 8. May calculate the differential pressure across the front and rear.
  • the exhaust pipe 3 downstream of the filter casing 4 is provided with an exhaust temperature sensor 6 for measuring the temperature of the exhaust gas flowing out from the filter casing 4. Further, a fuel addition valve 7 for adding fuel to the exhaust gas flowing in the exhaust pipe 3 is attached to the exhaust pipe 3 upstream of the filter casing 4. When the above-described oxidation catalyst is disposed in the exhaust pipe 3 upstream from the filter casing 4, the fuel addition valve 7 is disposed in the exhaust pipe 3 upstream from the oxidation catalyst.
  • the internal combustion engine 1 configured as described above is provided with an ECU 8 as a control device according to the present invention.
  • the ECU 8 is an electronic control unit that includes a CPU, ROM, RAM, backup RAM, and the like.
  • the ECU 8 is electrically connected to various sensors such as an accelerator position sensor 10 and a crank position sensor 11 in addition to the above-described differential pressure sensor 5 and exhaust temperature sensor 6.
  • the accelerator position sensor 10 is a sensor that measures an operation amount (accelerator opening) of the accelerator pedal 9.
  • the crank position sensor 11 is a sensor that measures the rotational position of the crankshaft.
  • the ECU 8 is electrically connected to various devices such as the fuel injection valve 2 and the fuel addition valve 7, and controls various devices based on the measurement values of the various sensors described above. For example, the ECU 8 calculates a fuel amount (target fuel injection amount) to be injected into the cylinder per cycle using the measured values of the accelerator position sensor 10 and the crank position sensor 11 as parameters, and fuel according to the target fuel injection amount. The injection valve 2 is controlled. Further, the ECU 8 executes a first regeneration process for oxidizing and removing the PM accumulated on the particulate filter when the PM accumulation amount of the particulate filter exceeds a predetermined regeneration threshold.
  • a fuel amount target fuel injection amount
  • the “regeneration threshold” means that if the amount of PM actually deposited on the particulate filter is less than or equal to the predetermined regeneration threshold, the first regeneration process is performed without causing excessive temperature rise of the particulate filter. This is an amount obtained by subtracting a margin from the maximum value of the PM deposition amount that can be executed.
  • the ECU 8 calculates the PM accumulation amount of the particulate filter based on the measured value (front-rear differential pressure) of the differential pressure sensor 5.
  • the pressure loss (front-rear differential pressure) of the particulate filter and the PM accumulation amount that the front-rear differential pressure increases as the PM accumulation amount of the particulate filter increases. Therefore, if the correlation between the differential pressure before and after the particulate filter and the PM accumulation amount is obtained in advance, the PM accumulation amount can be obtained using the measured value of the differential pressure sensor 5 as an argument.
  • the differential pressure across the particulate filter also varies depending on the exhaust flow rate passing through the particulate filter.
  • the exhaust flow rate passing through the particulate filter correlates with the sum of the intake air amount and the fuel injection amount of the internal combustion engine 1. Therefore, by adding the intake air amount measured by a sensor such as an air flow meter and the fuel injection amount, the exhaust gas flow rate passing through the particulate filter can be obtained.
  • the exhaust gas from the internal combustion engine 1 may contain ash, which is a nonflammable substance derived from the components of additives contained in the lubricating oil.
  • the ash in the exhaust gas is collected and deposited on the particulate filter in the same manner as PM. Therefore, the differential pressure across the particulate filter varies depending on the ash deposition amount in addition to the PM deposition amount and the exhaust gas flow rate described above. Therefore, in order to accurately obtain the PM accumulation amount of the particulate filter, the total accumulation amount of PM and ash accumulated on the particulate filter is obtained by using the measured value of the differential pressure sensor 5 and the exhaust gas flow rate as arguments. It is necessary to subtract the ash deposition amount from the total deposition amount.
  • the ash accumulation amount of the particulate filter correlates with the operation history of the internal combustion engine 1 (for example, the cumulative operation time of the internal combustion engine 1, the cumulative travel distance of the vehicle on which the internal combustion engine 1 is mounted, or the integrated value of the fuel injection amount). . Therefore, the ash accumulation amount of the particulate filter can be obtained based on the operation history of the internal combustion engine 1. Further, immediately after the end of the first regeneration process, it can be considered that PM has been removed from the particulate filter. Therefore, the actual ash deposition amount can be obtained using the measured value of the differential pressure sensor 5 and the exhaust gas flow rate immediately after the end of the first regeneration process as parameters.
  • the ash accumulation amount of the particulate filter is reduced by correcting the ash accumulation amount obtained from the operation history of the internal combustion engine 1 based on the actual ash accumulation amount obtained each time the first regeneration process is performed. It can be obtained with high accuracy.
  • the “first calculation means” according to the present invention is realized by the ECU 8 obtaining the ash accumulation amount by the above-described method.
  • the “second calculating means” according to the present invention is realized when the ECU 8 obtains the PM accumulation amount by the method of subtracting the ash accumulation amount from the total accumulation amount.
  • the process for obtaining the PM accumulation amount by the above-described method is repeatedly executed during the operation period of the internal combustion engine 1. Then, when the PM accumulation amount exceeds a predetermined regeneration threshold value, the ECU 8 executes the first regeneration process. Specifically, the ECU 8 adds fuel to the exhaust gas from the fuel addition valve 7 and deposits on the particulate filter using reaction heat generated when the added fuel is oxidized by the oxidation catalyst. The particulate filter is heated to a target temperature (corresponding to the “first regeneration temperature” in the present invention) that is assumed to be efficiently oxidized.
  • the ECU 8 calculates the temperature of the particulate filter from the measured value of the exhaust temperature sensor 6, and is added from the fuel addition valve 7 so that the calculated value converges to the target temperature.
  • the amount of fuel to be controlled may be feedback controlled. When the amount of fuel added from the fuel addition valve 7 is feedback-controlled in this way, the PM deposited on the particulate filter can be efficiently oxidized and removed.
  • the PM accumulation amount of the particulate filter may be estimated based on the operation history of the internal combustion engine 1. For example, the ECU 8 calculates the amount of PM discharged from the internal combustion engine 1 per unit time (PM discharge amount) using the fuel injection amount, the intake air amount, the engine speed, and the like as parameters. Then, the ECU 8 may integrate the PM discharge amount and use the integrated value as the PM accumulation amount (estimated PM accumulation amount) of the particulate filter. Further, from the viewpoint that PM discharged from the internal combustion engine 1 is collected by the particulate filter at a predetermined ratio, a coefficient corresponding to the predetermined ratio (hereinafter referred to as “collection coefficient”) is defined as PM.
  • selection coefficient a coefficient corresponding to the predetermined ratio
  • the accumulated amount of the calculation result may be used as the estimated PM accumulation amount by multiplying the discharge amount.
  • the predetermined ratio may be a fixed value, or may be a variable value that is changed according to the exhaust flow rate (for example, a value that decreases as the exhaust flow rate increases).
  • the ECU 8 calculates the PM accumulation amount based on the operation history of the internal combustion engine 1, thereby realizing the “estimating means” according to the present invention.
  • the filter casing 4 or the ECU 8 may be replaced during the use of the vehicle on which the internal combustion engine 1 is mounted.
  • the PM accumulation amount obtained by the ECU 8 after the replacement is different from the actual PM accumulation amount.
  • the ash accumulation amount and the PM accumulation amount held in the replaced ECU 8 are reset to zero. Therefore, when the ECU 8 is replaced while PM and ash are accumulated on the particulate filter, the PM accumulation amount obtained by the ECU 8 after the replacement may deviate from the actual PM accumulation amount.
  • the measured value (front-rear differential pressure) of the differential pressure sensor 5 and the PM accumulation amount obtained by the ECU 8 after replacement The relationship is shown in FIG. ⁇ PM0 in FIG. 2 indicates the actual PM deposition amount of the particulate filter.
  • ⁇ PM1 in FIG. 2 indicates a PM deposition amount (hereinafter referred to as “first PM deposition amount”) that the ECU 8 after replacement obtains based on the front-rear differential pressure and the ash deposition amount (zero).
  • first PM deposition amount PM deposition amount
  • second PM accumulation amount an estimated PM accumulation amount that the ECU 8 after replacement obtains based on the operation history of the internal combustion engine 1.
  • the solid line in FIG. 2 shows the correlation between the differential pressure before and after and the PM accumulation amount recognized by the ECU 8 after replacement.
  • the alternate long and short dash line in FIG. 2 shows the correlation between the differential pressure before and after and the actual PM deposition amount.
  • the first PM accumulation amount ⁇ PM1 obtained by the replaced ECU 8 is obtained on the assumption that the ash accumulation amount is zero. Therefore, the first PM accumulation amount ⁇ PM1 obtained by the replaced ECU 8 is larger than the actual PM accumulation amount ⁇ PM0 as shown in FIG. Further, the second PM accumulation amount ⁇ PM2 obtained by the replaced ECU 8 becomes zero, which is smaller than the actual PM accumulation amount ⁇ PM0. As described above, when the ECU 8 is replaced, both the first PM accumulation amount ⁇ PM1 and the second PM accumulation amount ⁇ PM2 obtained by the replaced ECU 8 are different from the actual PM accumulation amount ⁇ PM0.
  • a divergence also occurs between the first PM accumulation amount ⁇ PM1 and the second PM accumulation amount ⁇ PM2 obtained by the ECU 8 after replacement.
  • the ECU 8 after replacement determines whether or not the first regeneration process can be performed based on the second PM accumulation amount ⁇ PM2, the actual PM accumulation amount becomes the predetermined regeneration described above.
  • the first reproduction process is executed in a state where the number is larger than the threshold value. As a result, the temperature of the particulate filter may be excessively increased during the execution of the first regeneration process.
  • the amount of ash accumulated in the ECU 8 is different from the amount of ash deposited on the replaced particulate filter.
  • the ash deposition amount of the particulate filter after replacement is smaller than the ash deposition amount of the particulate filter before replacement
  • the PM deposition amount of the particulate filter after replacement is larger than the PM deposition amount of the particulate filter before replacement.
  • the first PM accumulation amount ⁇ PM1 and the second PM accumulation amount obtained by the ECU 8 may be smaller than the actual PM accumulation amount.
  • the ash deposition amount of the particulate filter after replacement is less than the ash deposition amount of the particulate filter before replacement
  • the PM deposition amount of the particulate filter after replacement is more than the PM deposition amount of the particulate filter before replacement.
  • the relationship between the measured value of the differential pressure sensor 5 (front-rear differential pressure) and the PM deposition amount obtained by the ECU 8 after replacement of the particulate filter when the particulate filter is replaced under many conditions 3 shows.
  • the solid line in FIG. 3 shows the correlation between the differential pressure before and after recognized by the ECU 8 and the PM accumulation amount of the particulate filter after replacement.
  • the alternate long and short dash line in FIG. 2 shows the correlation between the differential pressure before and after and the actual PM deposition amount of the particulate filter after replacement.
  • the first PM accumulation amount ⁇ PM1 obtained by the ECU 8 is obtained on the assumption that the ash accumulation amount of the particulate filter after replacement is equal to the ash accumulation amount of the particulate filter before replacement. It is done. Therefore, the first PM accumulation amount ⁇ PM1 obtained by the ECU 8 is smaller than the actual PM accumulation amount ⁇ PM0 of the particulate filter after replacement. Further, the second PM accumulation amount ⁇ PM2 estimated from the operation history of the internal combustion engine 1 is a value assuming a particulate filter before replacement. Therefore, the second PM accumulation amount ⁇ PM2 estimated by the ECU 8 is also smaller than the actual PM accumulation amount ⁇ PM0 of the particulate filter after replacement.
  • a divergence also occurs between the first PM accumulation amount ⁇ PM1 and the second PM accumulation amount ⁇ PM2.
  • the actual PM accumulation amount is There is a possibility that the first reproduction process is executed in a state where the number is larger than the predetermined reproduction threshold. As a result, the temperature of the particulate filter may be excessively increased during the execution of the first regeneration process.
  • FIG. 3 shows an example in which the first PM deposition amount ⁇ PM1 is smaller than the second PM deposition amount ⁇ PM2, the first PM deposition amount ⁇ PM1 may be larger than the second PM deposition amount ⁇ PM2. Even in such a case, if the first PM deposition amount ⁇ PM1 and the second PM deposition amount ⁇ PM2 are less than the actual PM deposition amount ⁇ PM0, the same problem as in the example shown in FIG. 3 occurs.
  • the first PM accumulation amount ⁇ PM1 and the second PM accumulation amount ⁇ PM2 are actually caused by the replacement of the ECU 8 or the particulate filter. If there is a deviation from the PM accumulation amount, it is considered that a deviation also occurs between the first PM accumulation amount ⁇ PM1 and the second PM accumulation amount ⁇ PM2. Therefore, in the present embodiment, when a divergence greater than or equal to a predetermined threshold ⁇ PMthr occurs between the first PM deposition amount ⁇ PM1 and the second PM deposition amount ⁇ PM2, the first PM deposition amount ⁇ PM1 and the second PM deposition amount ⁇ PM2 It is determined that at least one of these may deviate from the actual PM accumulation amount.
  • the ECU 8 One of ⁇ PM1 and ⁇ PM2 is compared with the regeneration threshold value, and the process for determining whether or not to execute the first regeneration process is not performed. That is, in the present embodiment, when a difference of a predetermined threshold ⁇ PMthr or more occurs between the first PM accumulation amount ⁇ PM1 and the second PM accumulation amount ⁇ PM2, the measured value of the differential pressure sensor 5 and the predetermined upper limit value ⁇ Plmt To determine whether or not to execute the first reproduction process.
  • the “predetermined threshold ⁇ PMthre” referred to here is caused by replacement of the ECU 8 or the particulate filter when the difference ⁇ PM between the first PM accumulation amount ⁇ PM1 and the second PM accumulation amount ⁇ PM2 is equal to or greater than the predetermined threshold ⁇ PMthre.
  • at least one of the first PM accumulation amount ⁇ PM1 and the second PM accumulation amount ⁇ PM2 is a value that can be regarded as deviating from the actual PM accumulation amount, and the first regeneration process is executed in that state. And a value that may cause excessive temperature rise of the particulate filter.
  • Such a predetermined threshold is a value obtained in advance by an adaptation operation using an experiment or the like.
  • the “predetermined upper limit value ⁇ Plmt” is an excess of the particulate filter even if only PM is accumulated on the particulate filter if the differential pressure across the particulate filter is equal to or lower than the predetermined upper limit value ⁇ Plmt. This corresponds to the maximum value of the differential pressure before and after the first regeneration process can be performed while suppressing the temperature rise. Specifically, as shown in FIG. 4, the difference between before and after of the particulate filter when the ash accumulation amount of the particulate filter is zero and the PM accumulation amount of the particulate filter is equal to a predetermined limit PM accumulation amount ⁇ PMlmt.
  • the pressure may be set to the predetermined upper limit value ⁇ Plmt.
  • the “limit PM accumulation amount” means that if the PM accumulation amount of the particulate filter is equal to or less than the limit PM accumulation amount ⁇ PMlmt, the first regeneration process can be performed while suppressing excessive temperature rise of the particulate filter. This is the maximum value of the PM deposition amount that can be generated, for example, an amount equal to the above-described regeneration threshold.
  • the predetermined upper limit ⁇ Plmt may be changed depending on the exhaust flow rate passing through the particulate filter.
  • the measured value of the differential pressure sensor 5 may be corrected by the exhaust gas flow rate passing through the particulate filter.
  • the measured value of the differential pressure sensor 5 is equal to or less than the predetermined upper limit value ⁇ Plmt, it is obtained from the measured value of the differential pressure sensor 5 under the assumption that only PM is deposited on the particulate filter.
  • the PM deposition amount is the PM deposition amount (limit PM deposition amount) when only PM is deposited on the particulate filter and the differential pressure across the particulate filter is equal to the predetermined upper limit value ⁇ Plmt. ) It becomes the following.
  • the maximum PM deposition amount is an amount estimated to be equal to or larger than the actual PM deposition amount, the maximum PM deposition amount is equal to or less than the limit PM deposition amount (measured value of the differential pressure sensor 5).
  • the actual PM deposition amount of the particulate filter is equal to or less than the maximum PM deposition amount. Therefore, if the measured value of the differential pressure sensor 5 is equal to or less than the predetermined upper limit value ⁇ Plmt, it can be said that the first regeneration process can be performed without excessively raising the temperature of the particulate filter. Therefore, in the present embodiment, when the difference between the first PM accumulation amount ⁇ PM1 and the second PM accumulation amount ⁇ PM2 is equal to or greater than the predetermined threshold value ⁇ PMthre, the measured value of the differential pressure sensor 5 is equal to or less than the predetermined upper limit value ⁇ Plmt. Then, the first reproduction process is performed.
  • the difference between the first PM accumulation amount ⁇ PM1 and the second PM accumulation amount ⁇ PM2 is equal to or greater than the predetermined threshold ⁇ PMthre, if the measured value of the differential pressure sensor 5 is greater than the predetermined upper limit ⁇ Plmt, the actual There is a possibility that the PM deposition amount is larger than the limit PM deposition amount.
  • the first regeneration process is executed in such a state, there is a possibility that the temperature of the particulate filter will be excessively increased.
  • the measured value of the differential pressure sensor 5 is greater than the predetermined upper limit value ⁇ Plmt. If it is larger, the first regeneration process is not performed.
  • the measured value of the differential pressure sensor 5 is compared with the predetermined upper limit value ⁇ Plmt.
  • the first regeneration process is suppressed from being executed in a state where there is a possibility of excessive temperature rise of the particulate filter.
  • the first regeneration process may be performed by performing the process until the temperature drops below a predetermined upper limit value ⁇ Plmt and then raising the temperature of the particulate filter to the first regeneration temperature.
  • ⁇ Plmt a predetermined upper limit value
  • the first regeneration process or the second regeneration process is performed, so that the particulate filter is deposited.
  • the ECU 8 finishes the first regeneration process or the second regeneration process, and updates the ash accumulation amount held in the ECU 8. That is, the ECU 8 obtains the amount of ash actually deposited on the particulate filter using the measured value of the differential pressure sensor 5 and the exhaust flow rate immediately after the end of the first regeneration process as parameters, and the actual ash accumulation amount Based on this, the ash accumulation amount held in the ECU 8 is corrected.
  • the first PM accumulation amount ⁇ PM1 and the second PM accumulation amount ⁇ PM2 obtained by the ECU 8 after the update are approximated to the actual PM accumulation amount. Therefore, even if it is determined whether or not the first regeneration process can be performed by comparing one of the first PM accumulation amount ⁇ PM1 and the second PM accumulation amount ⁇ PM2 with the regeneration threshold value, the particulate filter excess The first regeneration process can be performed while suppressing the temperature rise.
  • FIG. 6 is a flowchart showing a processing routine executed by the ECU 8 when oxidizing and removing the PM collected by the particulate filter.
  • This processing routine is stored in advance in the ROM of the ECU 8 and is repeatedly executed by the ECU 8 during the operation period of the internal combustion engine 1.
  • the ECU 8 first calculates the first PM deposition amount ⁇ PM1 from the measured value of the differential pressure sensor 5 and the ash deposition amount held in the ECU 8 in the processing of S101. Specifically, as described above, the ECU 8 uses the measured value of the differential pressure sensor 5 and the exhaust flow rate (the sum of the intake air amount and the fuel injection amount) as arguments, and the PM accumulated in the particulate filter. A first PM accumulation amount ⁇ PM1 is calculated by obtaining a total accumulation amount of ash and subtracting the ash accumulation amount from the total accumulation amount.
  • the ash accumulation amount used in this calculation is updated based on the measured value of the differential pressure sensor 5 and the exhaust flow rate immediately after the previous end of the first regeneration process or the second regeneration process, and is a value held in the ECU 8. It is. Further, the ECU 8 calculates the second PM accumulation amount ⁇ PM2 from the operation history of the internal combustion engine 1 in the process of S101. Specifically, as described above, the ECU 8 calculates the second PM accumulation amount ⁇ PM2 by integrating the PM discharge amount calculated using the fuel injection amount, the intake air amount, the engine speed, and the like as parameters. . The ECU 8 may calculate the second PM accumulation amount ⁇ PM2 by a method of multiplying the PM emission amount by the above-described collection coefficient and integrating the calculation results.
  • the ECU 8 determines whether or not the absolute value of the difference between the first PM accumulation amount ⁇ PM1 and the second PM accumulation amount ⁇ PM2 calculated in the process of S101 is equal to or greater than the predetermined threshold value ⁇ PMthre described above. To do. If the determination in S102 is affirmative, at least one of the first PM accumulation amount ⁇ PM1 and the second PM accumulation amount ⁇ PM2 may deviate from the actual PM accumulation amount. In such a case, the ECU 8 proceeds to the process of S103.
  • the ECU 8 reads a measured value (front-rear differential pressure) ⁇ P of the differential pressure sensor 5. Subsequently, the ECU 8 proceeds to the process of S104, and determines whether or not the front-rear differential pressure ⁇ P read in the process of S103 is equal to or less than the predetermined upper limit value ⁇ Plmt described above. When an affirmative determination is made in the process of S104, it can be considered that the amount of PM actually deposited on the particulate filter is equal to or less than the aforementioned limit PM accumulation amount ⁇ PMlmt.
  • the ECU 8 proceeds to the process of S105 and executes the first regeneration process. Specifically, the ECU 8 adds fuel into the exhaust gas from the fuel addition valve 7. The fuel added from the fuel addition valve 7 is oxidized by an oxidation catalyst carried on the particulate filter or an oxidation catalyst arranged upstream of the filter casing 4 to generate reaction heat. As a result, the particulate filter is heated by the reaction heat of the added fuel.
  • the ECU 8 calculates the temperature of the particulate filter from the measured value of the exhaust temperature sensor 6, and feedback-controls the amount of fuel added from the fuel addition valve 7 so that the temperature becomes the first regeneration temperature. .
  • the first regeneration process is performed in this way, PM deposited on the particulate filter is oxidized and removed.
  • the ECU 8 proceeds to the process of S106 after executing the process of S105.
  • the ECU 8 determines whether or not all PM deposited on the particulate filter has been oxidized. Specifically, the ECU 8 determines that all PM accumulated in the particulate filter has been oxidized and removed if the amount of change in the measured value of the differential pressure sensor 5 per unit time is equal to or less than a predetermined determination value. To do. As an alternative method, it may be determined whether or not all PM deposited on the particulate filter has been oxidized and removed using the execution time of the first regeneration process as a parameter.
  • the time required for oxidizing and removing all PM deposited on the particulate filter correlates with the PM deposition amount at the time when the first regeneration process is started. Therefore, if the correlation between the PM deposition amount and the required regeneration time is obtained in advance, the required regeneration time corresponding to the maximum PM deposition amount can be obtained from the correlation. Then, when the execution time of the first regeneration process reaches the required regeneration time, it may be determined that all of the PM deposited on the particulate filter has been oxidized and removed. If a negative determination is made in the process of S106, the ECU 8 returns to the process of S105 and continues to execute the first regeneration process. On the other hand, if an affirmative determination is made in the process of S106, the ECU 8 proceeds to the process of S107.
  • the ECU 8 ends the first regeneration process by stopping the fuel addition from the fuel addition valve 7 into the exhaust. Subsequently, the ECU 8 proceeds to the process of S108 and updates the ash accumulation amount held in the ECU 8. Specifically, the ECU 8 reads the measured value of the differential pressure sensor 5 immediately after the completion of the first regeneration process, and at the time, the exhaust flow rate (sum of the intake air amount and the fuel injection amount) passing through the particulate filter. ) Is calculated. Then, the ECU 8 calculates the total accumulation amount of PM and ash accumulated on the particulate filter as the measured value of the differential pressure sensor 5, the exhaust gas flow rate, and the parameters.
  • the ECU 8 regards the total accumulation amount as the actual ash accumulation amount, and updates the value of the ash accumulation amount held in the ECU 8. In this way, when the ash accumulation amount held in the ECU 8 is updated, the accuracy of the first PM accumulation amount ⁇ PM1 and the second PM accumulation amount ⁇ PM2 obtained by the ECU 8 thereafter can be improved.
  • the ECU 8 proceeds to the process of S109 and executes the second regeneration process. Specifically, the ECU 8 controls the amount of fuel added from the fuel addition valve 7 so that the temperature of the particulate filter is raised to a second regeneration temperature that is lower than the first regeneration temperature. When the second regeneration process is executed in this way, the PM deposited on the particulate filter is oxidized and removed.
  • the PM oxidation rate (PM oxidized per unit time) Amount) is slower than when the first regeneration process is executed.
  • PM deposited on the particulate filter is gradually oxidized. Therefore, it is possible to oxidize and remove PM deposited on the particulate filter while suppressing excessive temperature rise of the particulate filter.
  • the ECU 8 proceeds to the process of S110 after executing the process of S109.
  • the ECU 8 determines whether or not all PM deposited on the particulate filter has been oxidized. Specifically, the ECU 8 determines whether or not all the PM deposited on the particulate filter has been oxidized by using the same method as the process of S106 described above. If a negative determination is made in the process of S110, the ECU 8 returns to the process of S109 and continues to execute the second regeneration process. On the other hand, if an affirmative determination is made in the processing of S110, the ECU 8 proceeds to the processing of S111.
  • the ECU 8 ends the second regeneration process by stopping the fuel addition from the fuel addition valve 7 into the exhaust. Then, the ECU 8 proceeds to the process of S108, and updates the ash accumulation amount held in the ECU 8.
  • the ECU 8 changes from the second regeneration process to the first regeneration process at that time. You may move to.
  • the ECU 8 proceeds to S112, and determines whether or not the first PM accumulation amount ⁇ PM1 obtained in S101 is greater than the predetermined regeneration threshold ⁇ PMreg. Determine.
  • the ECU 8 ends the execution of this process routine.
  • the ECU 8 proceeds to the process of S105 and executes the first regeneration process.
  • the “control means” is realized by the ECU 8 executing the processing routine of FIG. 6. Therefore, when at least one of the first PM accumulation amount ⁇ PM1 and the second PM accumulation amount ⁇ PM2 deviates from the actual PM accumulation amount due to replacement of the ECU 8 or the particulate filter, the particulate filter is excessively elevated.
  • the PM deposited on the particulate filter can be oxidized and removed without heating.
  • the actual ash deposition amount is obtained based on the measured value of the differential pressure sensor 5 when all the PM deposited on the particulate filter is oxidized and removed, whereby the ash deposition amount held in the ECU 8 is obtained. Therefore, it is possible to improve the accuracy of the first PM accumulation amount ⁇ PM1 and the second PM accumulation amount ⁇ PM2 obtained by the ECU 8 thereafter.
  • the present invention can also be applied to a spark ignition type internal combustion engine (gasoline engine). Since the exhaust temperature of a spark ignition internal combustion engine is higher than the exhaust temperature of a compression ignition internal combustion engine, the temperature of the particulate filter rises to the oxidizable temperature of PM during the operation of the spark ignition internal combustion engine. There are many opportunities to do. Therefore, the first regeneration process in the spark ignition type internal combustion engine performs the fuel cut operation when the temperature of the particulate filter is a temperature at which PM can be oxidized and a fuel cut operation request such as during deceleration operation occurs.
  • the particulate filter is exposed to an oxidizing atmosphere, so that PM deposited on the particulate filter is oxidized and removed.
  • the “predetermined period” means that if the execution period of the fuel cut operation is equal to or shorter than the predetermined period, the PM deposited on the particulate filter is oxidized and oxidized without excessively raising the temperature of the particulate filter. This is a period that can be removed, and corresponds to the “first regeneration period” of the present invention.
  • At least one of the first PM accumulation amount ⁇ PM1 and the second PM accumulation amount ⁇ PM2 is caused by replacement of the ECU 8 or the particulate filter.
  • a deviation also occurs between the first PM accumulation amount ⁇ PM1 and the second PM accumulation amount ⁇ PM2.
  • the measured value (front-rear differential pressure) ⁇ P of the differential pressure sensor 5 is equal to or less than the predetermined upper limit value ⁇ Plmt. If so, the first regeneration process is performed by the above-described method, and if the measured value (front-rear differential pressure) ⁇ P of the differential pressure sensor 5 is larger than the predetermined upper limit value ⁇ Plmt, the first regeneration process by the above-described method is performed. If not.
  • the difference between the first PM accumulation amount ⁇ PM1 and the second PM accumulation amount ⁇ PM2 is equal to or greater than a predetermined threshold value ⁇ PMthre, and the measured value (front-rear differential pressure) ⁇ P of the differential pressure sensor 5 is greater than the predetermined upper limit value ⁇ Plmt.
  • the amount of PM oxidized during the fuel cut operation period can be reduced by executing the second regeneration process by performing the fuel cut operation in the second regeneration period shorter than the first regeneration period. That's fine.
  • the second regeneration period may be set to a shorter period as the measured value (front / rear differential pressure) ⁇ P of the differential pressure sensor 5 increases and the temperature of the particulate filter increases.
  • FIG. 7 is a processing routine executed by the ECU 8 triggered by the start of the fuel cut operation of the internal combustion engine 1. This processing routine is assumed to be stored in advance in the ROM of the ECU 8 or the like.
  • the ECU 8 first calculates the temperature of the particulate filter from the measured value of the exhaust temperature sensor 6 in the processing of S201, and determines whether or not the temperature is equal to or higher than a predetermined temperature.
  • the predetermined temperature here is the lowest temperature at which PM deposited on the particulate filter can be oxidized. If a negative determination is made in the processing of S201, the ECU 8 ends the execution of this processing routine. On the other hand, if a positive determination is made in the process of S201, the ECU 8 proceeds to the process of S202.
  • the ECU 8 determines whether or not the permission flag is on.
  • the permission flag indicates that the difference between the first PM deposition amount ⁇ PM1 and the second PM deposition amount ⁇ PM2 is less than a predetermined threshold ⁇ PMthre, and the difference between the first PM deposition amount ⁇ PM1 and the second PM deposition amount ⁇ PM2. Is a flag that is turned on when the value is equal to or greater than a predetermined threshold value ⁇ PMthre and the measured value (front-rear differential pressure) ⁇ P of the differential pressure sensor 5 is equal to or less than a predetermined upper limit value ⁇ Plmt.
  • the difference between the first PM accumulation amount ⁇ PM1 and the second PM accumulation amount ⁇ PM2 is equal to or greater than a predetermined threshold value ⁇ PMthre, and the measured value (front-rear differential pressure) ⁇ P of the differential pressure sensor 5 is greater than a predetermined upper limit value ⁇ Plmt.
  • the permission flag is turned off. The procedure for switching the permission flag on and off will be described later.
  • the ECU 8 proceeds to the process of S203 and determines whether or not the first regeneration period has elapsed since the fuel cut operation was started. When a negative determination is made in the process of S203, the ECU 8 repeatedly executes the process of S203. On the other hand, if an affirmative determination is made in the process of S203, the ECU 8 proceeds to the process of S205 and ends the fuel cut operation.
  • the ECU 8 proceeds to the process of S204, and determines whether or not the second regeneration period has elapsed since the fuel cut operation was started. If a negative determination is made in the process of S204, the ECU 8 repeatedly executes the process of S204. On the other hand, when an affirmative determination is made in the process of S204, the ECU 8 proceeds to the process of S205 and ends the fuel cut operation.
  • FIG. 8 is a flowchart showing a processing routine executed by the ECU 8 when the permission flag is switched on and off.
  • This processing routine is stored in advance in the ROM of the ECU 8 and is repeatedly executed by the ECU 8 during the operation period of the internal combustion engine 1.
  • the same reference numerals are given to the processing similar to the processing routine of FIG. 6 described above.
  • the processing of S301 to S302 is executed instead of the processing of S105 to S112 of the processing routine of FIG.
  • the processing of S112 is executed.
  • S301 is executed. The process is executed.
  • the PM accumulated on the particulate filter is increased without excessively raising the temperature of the particulate filter. It can be oxidized and removed. Further, the actual ash deposition amount is obtained based on the measured value of the differential pressure sensor 5 when all the PM deposited on the particulate filter is oxidized and removed, whereby the ash deposition amount held in the ECU 8 is obtained. Can also be updated.

Abstract

The present invention addresses the problem of suppressing the execution of a filter regeneration process in conditions that could induce an excessive temperature increase in a particulate filter, when there is a discrepancy between the amount of PM sediment determined by an ECU and the actual amount of PM sediment, as a result of an action such as replacing the ECU or the particulate filter. In order to overcome this problem, it is assumed in the present invention that a value measured by a differential pressure sensor is a value for when only PM has accumulated in a particulate filter when the difference between an estimated amount of PM sediment estimated from the operation history for an internal combustion engine and the amount of PM sediment calculated from the value measured by the differential pressure sensor is equal to or greater than a threshold value. If the measured value is equal to or less than a prescribed upper limit value, a first regeneration process is executed, which is a process of oxidizing and removing PM accumulated in the particulate filter, and if the measured value is greater than the prescribed upper limit value, a second regeneration process is executed without executing the first regeneration process.

Description

排気浄化システムの制御装置Control device for exhaust purification system
 本発明は、排気浄化システムの制御装置に関し、特に内燃機関の排気通路に配置されるパティキュレートフィルタを具備する排気浄化システムに適用される制御装置に関する。 The present invention relates to a control device for an exhaust purification system, and more particularly to a control device applied to an exhaust purification system including a particulate filter disposed in an exhaust passage of an internal combustion engine.
 内燃機関の排気通路にパティキュレートフィルタを配置する排気浄化システムにおいて、内燃機関の運転履歴等からパティキュレートフィルタのPM(Particulate Matter)堆積量やアッシュ堆積量を演算し、そのPM堆積量がある閾値に達すると、パティキュレートフィルタに捕集されているPMを酸化及び除去するためのフィルタ再生処理を実行する技術が知られている(例えば、特許文献1を参照)。 In an exhaust purification system in which a particulate filter is disposed in an exhaust passage of an internal combustion engine, a PM (Particulate Matter) accumulation amount or an ash accumulation amount of the particulate filter is calculated from an operation history of the internal combustion engine, and the PM accumulation amount is a certain threshold value A technique for executing a filter regeneration process for oxidizing and removing PM trapped in the particulate filter is known (for example, see Patent Document 1).
特開2008-057443号公報JP 2008-057443 A 米国特許第6405528号明細書US Pat. No. 6,405,528
 ところで、上記した排気浄化システムを搭載した車両の使用途中において、パティキュレートフィルタのPM堆積量やアッシュ堆積量を演算するための制御装置(例えば、ECU(Electronic Control Unit))が交換されたり、パティキュレートフィルタが交換されたりする可能性がある。制御装置が交換されると、交換後の制御装置により演算されるPM堆積量やアッシュ堆積量が、実際のPM堆積量やアッシュ堆積量から乖離する可能性がある。例えば、制御装置が交換された場合は、交換後の制御装置に保持されるアッシュ堆積量及びPM堆積量が零にリセットされた状態となる。そのため、パティキュレートフィルタにPMやアッシュが堆積した状態で制御装置が交換された場合は、交換後の制御装置によって演算されるPM堆積量とパティキュレートフィルタの実際のPM堆積量とが乖離する可能性がある。 By the way, during the use of a vehicle equipped with the exhaust purification system described above, a control device (for example, ECU (Electronic Control Unit)) for calculating the PM accumulation amount and the ash accumulation amount of the particulate filter is replaced, The curate filter may be replaced. When the control device is replaced, there is a possibility that the PM deposition amount or the ash deposition amount calculated by the replaced control device may deviate from the actual PM deposition amount or the ash deposition amount. For example, when the control device is replaced, the ash deposition amount and the PM deposition amount held in the replaced control device are reset to zero. Therefore, when the control device is replaced while PM or ash is accumulated on the particulate filter, the PM accumulation amount calculated by the replaced control device and the actual PM accumulation amount of the particulate filter may be different. There is sex.
 また、パティキュレートフィルタが交換された場合も、制御装置により演算されるPM堆積量やアッシュ堆積量が、交換後のパティキュレートフィルタの実際のPM堆積量やアッシュ堆積量から乖離する可能性がある。例えば、パティキュレートフィルタが交換された場合は、制御装置に保持されているアッシュ堆積量と交換後のパティキュレートフィルタに堆積しているアッシュの量とが相違する可能性がある。その結果、制御装置に保持されているアッシュ堆積量に基づいて演算されるPM堆積量は、パティキュレートフィルタの実際のPM堆積量から乖離する可能性がある。 Further, even when the particulate filter is replaced, the PM deposition amount and the ash deposition amount calculated by the control device may deviate from the actual PM deposition amount and the ash deposition amount of the particulate filter after replacement. . For example, when the particulate filter is replaced, there is a possibility that the amount of ash deposited in the control device and the amount of ash deposited on the particulate filter after replacement are different. As a result, the PM deposition amount calculated based on the ash deposition amount held in the control device may deviate from the actual PM deposition amount of the particulate filter.
 上記したように、制御装置により演算されるPM堆積量やアッシュ堆積量が、実際のPM堆積量やアッシュ堆積量と乖離すると、実際のPM堆積量が過剰に多い状態でフィルタ再生処理が実行される可能性がある。そのような場合は、フィルタ再生処理の実行中にパティキュレートフィルタが過昇温する虞がある。 As described above, when the PM accumulation amount or the ash accumulation amount calculated by the control device deviates from the actual PM accumulation amount or the ash accumulation amount, the filter regeneration process is executed in a state where the actual PM accumulation amount is excessively large. There is a possibility. In such a case, the particulate filter may be overheated during the filter regeneration process.
 本発明は、上記したような実情に鑑みてなされたものであり、その目的は、制御装置やパティキュレートフィルタの交換等に起因して、制御装置により演算されるPM堆積量とパティキュレートフィルタの実際のPM堆積量とが乖離した場合に、パティキュレートフィルタの過昇温を招く可能性がある状態でフィルタ再生処理が実行されることを抑制可能な技術の提供にある。 The present invention has been made in view of the above-described circumstances, and the purpose of the present invention is to determine the PM accumulation amount calculated by the control device and the particulate filter due to replacement of the control device and the particulate filter. The present invention provides a technique capable of suppressing the filter regeneration process from being performed in a state where there is a possibility of causing an excessive temperature rise of the particulate filter when the actual PM accumulation amount deviates.
 本発明は、上記した課題を解決するために、内燃機関の運転履歴から推定される推定PM堆積量と差圧センサの測定値から演算されるPM堆積量とに間に、所定の閾値以上の乖離が生じた場合に、前記差圧センサの測定値がパティキュレートフィルタにPMのみが堆積している状態の値であると仮定し、その測定値が所定の上限値以下であれば、パティキュレートフィルタに堆積しているPMを酸化及び除去する処理である第一再生処理を実行し、且つ前記測定値が前記所定の上限値より大きければ、前記第一再生処理を実行せずに、第二再生処理を実行するようにした。 In order to solve the above-described problem, the present invention has a predetermined threshold value or more between the estimated PM accumulation amount estimated from the operation history of the internal combustion engine and the PM accumulation amount calculated from the measured value of the differential pressure sensor. When the difference occurs, it is assumed that the measured value of the differential pressure sensor is a value in a state where only PM is deposited on the particulate filter, and if the measured value is not more than a predetermined upper limit value, the particulates If the first regeneration process, which is a process for oxidizing and removing PM accumulated on the filter, is performed and the measured value is larger than the predetermined upper limit value, the first regeneration process is not performed and the second regeneration process is performed. The playback process was executed.
 詳細には、本発明に係わる排気浄化システムの制御装置は、内燃機関の排気通路に配置されたパティキュレートフィルタと、前記パティキュレートフィルタより上流の排気圧力と前記パティキュレートフィルタより下流の排気圧力との差である前後差圧を測定する差圧センサと、を備えた排気浄化システムに適用される制御装置である。そして、制御装置は、前記内燃機関の運転履歴に基づいて、前記パティキュレートフィルタに堆積しているアッシュの量であるアッシュ堆積量を演算する第一演算手段と、前記差圧センサの測定値と前記第一演算手段により演算されたアッシュ堆積量とに基づいて、前記パティキュレートフィルタに堆積しているPMの量であるPM堆積量を演算する第二演算手段と、前記内燃機関の運転履歴に基づいて、前記パティキュレートフィルタに堆積しているPM量の推定値である推定PM堆積量を推定する推定手段と、前記第二演算手段により演算されたPM堆積量と前記推定手段により推定された推定PM堆積量との差が所定の閾値以上である場合に、前記差圧センサの測定値が所定の上限値以下であれば、前記パティキュレートフィルタを所定の第一再生温度まで昇温させることにより、前記パティキュレートフィルタに堆積しているPMを酸化及び除去する処理である第一再生処理を実行し、前記差圧センサの測定値が前記所定の上限値より大きければ、前記第一再生処理を実行せずに、前記パティキュレートフィルタを前記所定の第一再生温度より低く、且つPMが酸化可能な温度である第二再生温度まで昇温させる処理である第二再生処理を実行する制御手段と、を備える。 Specifically, an exhaust purification system control device according to the present invention includes a particulate filter disposed in an exhaust passage of an internal combustion engine, an exhaust pressure upstream of the particulate filter, and an exhaust pressure downstream of the particulate filter. And a differential pressure sensor that measures a differential pressure across the front and rear, which is a difference between the two. Then, the control device, based on the operation history of the internal combustion engine, a first calculation means for calculating an ash accumulation amount that is an amount of ash accumulated on the particulate filter, a measured value of the differential pressure sensor, Based on the ash accumulation amount calculated by the first calculation means, second calculation means for calculating a PM accumulation amount, which is the amount of PM accumulated on the particulate filter, and the operation history of the internal combustion engine Based on the estimation means for estimating the estimated PM accumulation amount, which is an estimated value of the PM amount accumulated on the particulate filter, and the PM accumulation amount calculated by the second calculation means and the estimation means When the difference from the estimated PM accumulation amount is equal to or greater than a predetermined threshold, and the measured value of the differential pressure sensor is equal to or smaller than a predetermined upper limit value, the particulate filter is installed The first regeneration process, which is a process for oxidizing and removing the PM deposited on the particulate filter by raising the temperature to the first regeneration temperature, is performed, and the measured value of the differential pressure sensor is the predetermined upper limit. If greater than the value, the first regeneration process is not performed, and the particulate filter is heated to a second regeneration temperature that is lower than the predetermined first regeneration temperature and is a temperature at which PM can be oxidized. And a control means for executing a second reproduction process.
 なお、ここでいう「所定の閾値」は、第二演算手段により演算されたPM堆積量と推定手段により推定された推定PM堆積量との差が該所定の閾値以上になると、第二演算手段により演算されるPM堆積量と推定手段により推定されるPM堆積量との少なくとも一方が実際のPM堆積量から乖離しており、且つその状態で第一再生処理が実行されるとパティキュレートフィルタの過昇温を招く可能性があると考えられる値である。この「所定の閾値」は、予め実験等を利用した適合作業によって求めておくものとする。また、「所定の上限値」は、PMのみがパティキュレートフィルタに堆積しており、且つパティキュレートフィルタの前後差圧が該所定の上限値以下であるときに第一再生処理が実行されると、パティキュレートフィルタが過昇温しないと考えられる前後差圧である。つまり、パティキュレートフィルタの前後差圧が所定の上限値以下であれば、たとえパティキュレートフィルタにPMのみが堆積している状態であっても、パティキュレートフィルタの過昇温を抑制しつつ、第一再生処理を行うことができる最大の前後差圧である。この「所定の上限値」は、予め実験的に求めておくものとする。なお、パティキュレートフィルタの前後差圧は、該パティキュレートフィルタを通過する排気の流量に応じて変化する。そこで、前記所定の上限値は、差圧センサがパティキュレートフィルタの前後差圧を測定した時点の排気流量に対応した値となるように変更されてもよい。また、前記所定の上限値を変更する代わりに、差圧センサの測定値が補正されてもよい。 Here, the “predetermined threshold value” is the second calculating means when the difference between the PM accumulation amount calculated by the second calculating means and the estimated PM accumulation amount estimated by the estimating means is equal to or greater than the predetermined threshold value. When at least one of the PM accumulation amount calculated by the above and the PM accumulation amount estimated by the estimation means deviates from the actual PM accumulation amount, and the first regeneration process is executed in that state, the particulate filter It is a value that may cause an excessive temperature rise. This “predetermined threshold value” is obtained in advance by an adaptation operation using an experiment or the like. Further, the “predetermined upper limit value” is obtained when the first regeneration process is executed when only PM is accumulated in the particulate filter and the differential pressure across the particulate filter is equal to or lower than the predetermined upper limit value. The differential pressure before and after the particulate filter is considered not to overheat. In other words, if the differential pressure across the particulate filter is less than or equal to a predetermined upper limit value, even if only PM is deposited on the particulate filter, This is the maximum differential pressure before and after one regeneration process can be performed. This “predetermined upper limit value” is obtained experimentally in advance. Note that the differential pressure across the particulate filter changes in accordance with the flow rate of the exhaust gas passing through the particulate filter. Therefore, the predetermined upper limit value may be changed so as to be a value corresponding to the exhaust flow rate at the time when the differential pressure sensor measures the differential pressure across the particulate filter. Further, instead of changing the predetermined upper limit value, the measured value of the differential pressure sensor may be corrected.
 制御装置又はパティキュレートフィルタの交換等に起因して、第一演算手段により演算されるアッシュ堆積量と実際のアッシュ堆積量との間に乖離が生じた場合は、第二演算手段により演算されるPM堆積量と推定手段により推定されるPM堆積量との少なくとも一方が実際のPM堆積量と相違している可能性がある。そのような状態において、第二演算手段により演算されるPM堆積量、又は推定手段により推定されるPM堆積量に基づいて、第一再生処理の実行可否が判定されると、実際のPM堆積量が過剰に少ない状態で第一再生処理が行われたり、又は実際のPM堆積量が過剰に多い状態で第一再生処理が実行されたりする可能性がある。ここで、実際のPM堆積量が過剰に少ない状態で第一再生処理が行われた場合にはパティキュレートフィルタを過昇温させる可能性が低いが、実際のPM堆積量が過剰に多い状態で第一再生処理が行われた場合にはパティキュレートフィルタを過昇温させる可能性が高い。よって、実際のPM堆積量が過剰に多い状態で第一再生処理が実行される事態を回避する必要がある。 If there is a divergence between the ash deposition amount calculated by the first calculation means and the actual ash deposition amount due to replacement of the control device or the particulate filter, the calculation is performed by the second calculation means. There is a possibility that at least one of the PM deposition amount and the PM deposition amount estimated by the estimation means is different from the actual PM deposition amount. In such a state, when it is determined whether or not the first regeneration process can be performed based on the PM accumulation amount calculated by the second calculation means or the PM accumulation amount estimated by the estimation means, the actual PM accumulation amount There is a possibility that the first regeneration process is performed in an excessively small state, or the first regeneration process is performed in an excessively large amount of actual PM deposition. Here, when the first regeneration process is performed in a state where the actual PM deposition amount is excessively small, the possibility that the particulate filter is excessively heated is low, but in the state where the actual PM deposition amount is excessively large. When the first regeneration process is performed, there is a high possibility that the temperature of the particulate filter is excessively increased. Therefore, it is necessary to avoid a situation in which the first regeneration process is executed in a state where the actual PM accumulation amount is excessively large.
 これに対し、本発明の排気浄化システムの制御装置は、第二演算手段によって演算されたPM堆積量と推定手段により推定された推定PM堆積量との差が所定の閾値以上になると、パティキュレートフィルタに捕集されているPMの量が最も多い状態を想定して、第一再生処理の実行可否を判定するようにした。詳細には、本発明の排気浄化システムの制御装置は、第二演算手段によって演算されたPM堆積量と推定手段により推定された推定PM堆積量との差が所定の閾値以上となる場合に、パティキュレートフィルタにアッシュが堆積しておらず、且つPMのみが堆積していると仮定する。このような仮定のもとでは、差圧センサの測定値は、パティキュレートフィルタに堆積しているPMの量に相関するとみなすことができる。 On the other hand, when the difference between the PM accumulation amount calculated by the second calculation means and the estimated PM accumulation amount estimated by the estimation means exceeds a predetermined threshold, the control device for the exhaust purification system of the present invention Assuming a state in which the amount of PM collected in the filter is the largest, it is determined whether or not the first regeneration process can be performed. Specifically, when the difference between the PM accumulation amount calculated by the second calculation means and the estimated PM accumulation amount estimated by the estimation means is equal to or greater than a predetermined threshold, the control device for the exhaust purification system of the present invention provides: Assume that no ash is deposited on the particulate filter and only PM is deposited. Under such an assumption, the measured value of the differential pressure sensor can be regarded as being correlated with the amount of PM deposited on the particulate filter.
 ここで、差圧センサの測定値がパティキュレートフィルタにPMのみが堆積している状態における前後差圧を示しているとみなした場合に、その測定値に相関するPM堆積量を「最大PM堆積量」と定義すると、該最大PM堆積量は、実際のPM堆積量以上の多めに見積もられた量になる。そして、パティキュレートフィルタにPMのみが堆積しており、且つパティキュレートフィルタの前後差圧が前記所定の上限値と等しいと仮定した場合に、その所定の上限値に相関するPM堆積量を「限界PM堆積量」と定義すると、差圧センサの測定値が前記所定の上限値以下である場合(最大PM堆積量が限界PM堆積量以下である場合)の実際のPM堆積量は、限界PM堆積量以下になる。その際の限界PM堆積量(所定の上限値)は、前述したように、パティキュレートフィルタを過昇温させることなく第一再生処理を行うことができるPM堆積量(前後差圧)の最大値であるため、実際のPM堆積量が限界PM堆積量以下であるときに第一再生処理が実行されると、パティキュレートフィルタの過昇温を抑制しつつ、該パティキュレートフィルタに捕集されているPMを酸化及び除去することができる。一方、差圧センサの測定値が前記所定の上限値より大きい場合(最大PM堆積量が限界PM堆積量より多い場合)は、実際のPM堆積量が限界PM堆積量より多い可能性があるため、そのような状態で第一再生処理が実行されると、パティキュレートフィルタが過昇温する可能性がある。しかしながら、本発明の排気浄化システムの制御装置は、差圧センサの測定値が前記所定の上限値より大きい場合には第一再生処理を実行しないため、パティキュレートフィルタの過昇温を防止することができる。 Here, when it is considered that the measured value of the differential pressure sensor indicates the differential pressure before and after the PM is deposited on the particulate filter, the PM deposition amount correlated with the measured value is expressed as “maximum PM deposition”. When the amount is defined as “amount”, the maximum PM deposition amount is an estimated amount that is larger than the actual PM deposition amount. When it is assumed that only PM is deposited on the particulate filter and the differential pressure across the particulate filter is equal to the predetermined upper limit value, the PM accumulation amount correlated with the predetermined upper limit value is expressed as “limit”. When “PM deposition amount” is defined, the actual PM deposition amount when the measured value of the differential pressure sensor is not more than the predetermined upper limit value (when the maximum PM deposition amount is not more than the limit PM deposition amount) is the limit PM deposition. Less than the amount. The limit PM deposition amount (predetermined upper limit value) at that time is the maximum value of the PM deposition amount (differential pressure before and after) that can perform the first regeneration process without excessively raising the temperature of the particulate filter, as described above. Therefore, when the first regeneration process is executed when the actual PM deposition amount is equal to or less than the limit PM deposition amount, the particulate filter is trapped by the particulate filter while suppressing excessive temperature rise of the particulate filter. The PM that is present can be oxidized and removed. On the other hand, when the measured value of the differential pressure sensor is larger than the predetermined upper limit value (when the maximum PM deposition amount is larger than the limit PM deposition amount), the actual PM deposition amount may be larger than the limit PM deposition amount. If the first regeneration process is executed in such a state, the particulate filter may overheat. However, the control device for the exhaust gas purification system of the present invention does not execute the first regeneration process when the measured value of the differential pressure sensor is larger than the predetermined upper limit value, and therefore prevents excessive temperature rise of the particulate filter. Can do.
 なお、本発明の排気浄化システムの制御装置において、前記制御手段は、第二演算手段によって演算されたPM堆積量と推定手段により推定された推定PM堆積量との差が所定の閾値以上である場合に、差圧センサの測定値から前記最大PM堆積量を演算してもよい。その場合、前記制御手段は、前記最大PM堆積量が前記限界PM堆積量以下であれば第一再生処理を実行し、前記最大PM堆積量が前記限界PM堆積量より大きければ第一再生処理を実行しなければよい。このような構成によれば、差圧センサの測定値と前記所定の上限値とを比較する方法と同様の効果を得ることができる。 In the control device for the exhaust gas purification system of the present invention, the control means has a difference between the PM accumulation amount calculated by the second calculation means and the estimated PM accumulation amount estimated by the estimation means equal to or greater than a predetermined threshold value. In this case, the maximum PM deposition amount may be calculated from the measured value of the differential pressure sensor. In that case, the control means executes a first regeneration process if the maximum PM deposition amount is equal to or less than the limit PM deposition amount, and performs the first regeneration process if the maximum PM deposition amount is larger than the limit PM deposition amount. Don't do it. According to such a configuration, an effect similar to the method of comparing the measured value of the differential pressure sensor with the predetermined upper limit value can be obtained.
 ところで、第二演算手段によって演算されたPM堆積量と推定手段により推定された推定PM堆積量との差が所定の閾値以上であり、且つ差圧センサの測定値が前記所定の上限値より大きい場合において、第一再生処理が実行されない状態が続くと、パティキュレートフィルタの圧力損失が過剰に大きくなる可能性があるとともに、パティキュレートフィルタの正確なPM堆積量を把握できない状態が続くことになる。そのため、第二演算手段によって演算されたPM堆積量と推定手段により推定された推定PM堆積量との差が所定の閾値以上であり、且つ差圧センサの測定値が前記所定の上限値より大きい場合は、前記した第一再生処理とは異なる方法によって、パティキュレートフィルタに堆積しているPMを酸化及び除去することが望ましい。 Incidentally, the difference between the PM accumulation amount calculated by the second calculation means and the estimated PM accumulation amount estimated by the estimation means is equal to or larger than a predetermined threshold value, and the measured value of the differential pressure sensor is larger than the predetermined upper limit value. In some cases, if the state where the first regeneration process is not performed continues, the pressure loss of the particulate filter may become excessively large, and the state where the accurate PM accumulation amount of the particulate filter cannot be grasped continues. . Therefore, the difference between the PM accumulation amount calculated by the second calculation means and the estimated PM accumulation amount estimated by the estimation means is greater than or equal to a predetermined threshold value, and the measured value of the differential pressure sensor is greater than the predetermined upper limit value. In this case, it is desirable to oxidize and remove PM deposited on the particulate filter by a method different from the first regeneration process described above.
 そこで、前記制御手段は、前記第二演算手段により演算されたPM堆積量と前記推定手段により推定された推定PM堆積量との差が所定の閾値以上であり、且つ前記差圧センサの測定値が所定の上限値より大きい場合は、前記パティキュレートフィルタを前記所定の第一再生温度より低く、且つPMが酸化可能な温度である第二再生温度まで昇温させる処理である第二再生処理を実行するようにした。このような第二再生処理が実行された場合は第一再生処理が実行された場合に比べ、パティキュレートフィルタにおいて単位時間あたりに酸化されるPMの量を少なく抑えることができるため、パティキュレートフィルタの過昇温を抑制しつつ、パティキュレートフィルタに堆積しているPMを酸化及び除去することができる。なお、第二再生処理の実行によって差圧センサの測定値が前記所定の上限値以下に低下した際には、第二再生処理から第一再生処理に切り替えるようにしてもよい。 Therefore, the control means has a difference between the PM accumulation amount calculated by the second calculation means and the estimated PM accumulation amount estimated by the estimation means equal to or greater than a predetermined threshold, and a measured value of the differential pressure sensor. Is greater than a predetermined upper limit value, the second regeneration process is a process of raising the temperature of the particulate filter to a second regeneration temperature that is lower than the predetermined first regeneration temperature and at which PM can be oxidized. I tried to run. When such a second regeneration process is executed, the amount of PM oxidized per unit time in the particulate filter can be reduced compared to when the first regeneration process is executed. The PM deposited on the particulate filter can be oxidized and removed while suppressing the excessive temperature rise. In addition, when the measured value of the differential pressure sensor decreases below the predetermined upper limit value by executing the second regeneration process, the second regeneration process may be switched to the first regeneration process.
 また、前記第一再生処理として、内燃機関のフューエルカット運転要求が発生したときに、フューエルカット運転を所定の第一再生期間実行することにより、前記パティキュレートフィルタに堆積しているPMを酸化及び除去する処理が行われる排気浄化システムにおいては、前記制御手段は、内燃機関のフューエルカット運転要求が発生したときに、前記第二演算手段により演算されたPM堆積量と前記推定手段により推定された推定PM堆積量との差が所定の閾値以上であり、且つ前記差圧センサの測定値が所定の上限値より大きければ、フューエルカット運転を前記第一再生期間より短い第二再生期間実行する方法により前記第二再生処理を実行するようにしてもよい。このような構成によれば、第二再生処理が実行された場合は第一再生処理が実行された場合に比べ、フューエルカット運転期間が短くなるため、フューエルカット運転期間中にパティキュレートフィルタにおいて酸化されるPMの量を少なく抑えることができる。その結果、パティキュレートフィルタの過昇温を抑制しつつ、パティキュレートフィルタに堆積しているPMを酸化及び除去することができる。 Further, as the first regeneration process, when a fuel cut operation request of the internal combustion engine is generated, the fuel cut operation is performed for a predetermined first regeneration period, whereby the PM accumulated on the particulate filter is oxidized and oxidized. In the exhaust purification system in which the removal process is performed, the control means is estimated by the estimation means and the PM accumulation amount calculated by the second calculation means when a fuel cut operation request for the internal combustion engine is generated. A method of performing a fuel cut operation in a second regeneration period shorter than the first regeneration period if the difference from the estimated PM accumulation amount is equal to or greater than a predetermined threshold and the measured value of the differential pressure sensor is greater than a predetermined upper limit value Thus, the second reproduction process may be executed. According to such a configuration, when the second regeneration process is performed, the fuel cut operation period is shorter than when the first regeneration process is performed. Therefore, the oxidation is performed in the particulate filter during the fuel cut operation period. The amount of PM to be reduced can be reduced. As a result, it is possible to oxidize and remove PM deposited on the particulate filter while suppressing excessive temperature rise of the particulate filter.
 また、前記制御手段は、前記第一再生処理を終了した際の差圧センサの測定値から実際のアッシュ堆積量を求めるようにしてもよい。そして、前記制御手段は、実際のアッシュ堆積量に基づいて、第一演算手段によって演算されたアッシュ堆積量を修正してもよい。このようにアッシュ堆積量が更新されると、制御装置又はパティキュレートフィルタの交換に起因する、アッシュ堆積量の演算値と実際のアッシュ堆積量とのずれを解消することができる。その結果、第二演算手段によって演算されるPM堆積量と実際のPM堆積量とのずれを解消することもできる。 Further, the control means may determine the actual ash deposition amount from the measured value of the differential pressure sensor when the first regeneration process is completed. The control means may correct the ash accumulation amount calculated by the first calculation means based on the actual ash accumulation amount. When the ash accumulation amount is updated in this way, it is possible to eliminate the deviation between the calculated value of the ash accumulation amount and the actual ash accumulation amount due to the replacement of the control device or the particulate filter. As a result, it is possible to eliminate the deviation between the PM accumulation amount calculated by the second calculation means and the actual PM accumulation amount.
 本発明によれば、制御装置やパティキュレートフィルタの交換等に起因して、制御装置により演算されるPM堆積量とパティキュレートフィルタの実際のPM堆積量とが乖離した場合に、パティキュレートフィルタの過昇温を招く可能性がある状態で第一再生処理が実行されることを抑制することができる。 According to the present invention, when the PM deposition amount calculated by the control device deviates from the actual PM deposition amount of the particulate filter due to replacement of the control device or the particulate filter, the particulate filter It is possible to suppress the first regeneration process from being performed in a state where there is a possibility of causing an excessive temperature rise.
本発明を適用する内燃機関とその排気系の概略構成を示す図である。It is a figure which shows schematic structure of the internal combustion engine to which this invention is applied, and its exhaust system. ECUが交換された場合において、実際のPM堆積量ΣPM0と、差圧センサの測定値から求められるPM堆積量ΣPM1と、内燃機関の運転履歴から推定されるPM堆積量ΣPM2との関係を示す図である。The figure which shows the relationship between actual PM deposition amount (SIGMA) PM0, PM deposition amount (SIGMA) PM1 calculated | required from the measured value of a differential pressure sensor, and PM deposition amount (SIGMA) PM2 estimated from the operation history of an internal combustion engine when ECU is replaced | exchanged. It is. パティキュレートフィルタが交換された場合において、実際のPM堆積量ΣPM0と、差圧センサの測定値から求められるPM堆積量ΣPM1と、内燃機関の運転履歴から推定されるPM堆積量ΣPM2との関係を示す図である。When the particulate filter is replaced, the relationship between the actual PM accumulation amount ΣPM0, the PM accumulation amount ΣPM1 obtained from the measured value of the differential pressure sensor, and the PM accumulation amount ΣPM2 estimated from the operation history of the internal combustion engine FIG. 所定の上限値ΔPlmtの設定例を示す図である。It is a figure which shows the example of a setting of predetermined | prescribed upper limit value (DELTA) Plmt. 第二再生処理の実行方法を示すタイミングチャートである。It is a timing chart which shows the execution method of the 2nd reproduction processing. パティキュレートフィルタに捕集されているPMを酸化及び除去する際にECUが実行する処理ルーチンを示すフローチャートである。It is a flowchart which shows the process routine which ECU performs when oxidizing and removing PM currently collected by the particulate filter. 他の実施形態において、パティキュレートフィルタに捕集されているPMを酸化及び除去する際にECUが実行する処理ルーチンを示すフローチャートである。In another embodiment, it is a flowchart which shows the process routine which ECU performs when oxidizing and removing PM collected by the particulate filter. 許可フラグのオンとオフとを切り換える際にECUによって実行される処理ルーチンを示すフローチャートである。It is a flowchart which shows the processing routine performed by ECU when switching on and off of a permission flag.
 以下、本発明の具体的な実施形態について図面に基づいて説明する。本実施形態に記載される構成部品の寸法、材質、形状、相対配置等は、特に記載がない限り発明の技術的範囲をそれらのみに限定する趣旨のものではない。 Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. The dimensions, materials, shapes, relative arrangements, and the like of the components described in the present embodiment are not intended to limit the technical scope of the invention to those unless otherwise specified.
 図1は、本発明を適用する内燃機関とその排気系の概略構成を示す図である。図1に示す内燃機関1は、複数の気筒を備えた圧縮着火式の内燃機関(ディーゼルエンジン)である。内燃機関1は、図示しない気筒内へ燃料を噴射する燃料噴射弁2を備えている。また、内燃機関1には、気筒内で燃焼されたガス(排気)が流通するための通路を有する排気管3が接続されている。排気管3の途中には、フィルタケーシング4が配置されている。フィルタケーシング4は、筒状のケーシング内にパティキュレートフィルタを収容している。パティキュレートフィルタは、排気中に含まれるPMを捕集するためのフィルタであり、より具体的には、上流端が栓により閉塞された通路と下流端が栓により閉塞された通路とを交互に配置したウォールフロー型のフィルタである。このパティキュレートフィルタには、酸化機能を有する触媒(例えば、三元触媒、吸蔵還元型触(NSR(NOX Storage Reduction)触媒)、又は酸化触媒であり、以下では「酸化触媒」と称する)が担持されている。なお、酸化触媒は、フィルタケーシング4より上流の排気管3に配置される触媒ケーシング内に収容されてもよい。 FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine to which the present invention is applied and its exhaust system. An internal combustion engine 1 shown in FIG. 1 is a compression ignition type internal combustion engine (diesel engine) having a plurality of cylinders. The internal combustion engine 1 includes a fuel injection valve 2 that injects fuel into a cylinder (not shown). The internal combustion engine 1 is connected to an exhaust pipe 3 having a passage through which gas (exhaust gas) combusted in the cylinder flows. A filter casing 4 is arranged in the middle of the exhaust pipe 3. The filter casing 4 contains a particulate filter in a cylindrical casing. The particulate filter is a filter for collecting PM contained in the exhaust gas. More specifically, the particulate filter alternately has a passage in which the upstream end is closed by a plug and a passage in which the downstream end is closed by a plug. This is a wall flow type filter arranged. In this particulate filter, a catalyst having an oxidation function (for example, a three-way catalyst, a storage reduction type catalyst (NSR (NO X Storage Reduction) catalyst), or an oxidation catalyst, hereinafter referred to as “oxidation catalyst”) is used. It is supported. The oxidation catalyst may be accommodated in a catalyst casing disposed in the exhaust pipe 3 upstream from the filter casing 4.
 前記フィルタケーシング4には、パティキュレートフィルタより上流の排気圧力とパティキュレートフィルタより下流の排気圧力との差(前後差圧)を測定する差圧センサ5が取り付けられている。なお、差圧センサ5は、フィルタケーシング4より上流の排気管3内の圧力とフィルタケーシング4より下流の排気管3内の圧力との差を測定するように構成されてもよい。また、パティキュレートフィルタより上流の排気圧力を測定する圧力センサと、パティキュレートフィルタより下流の排気圧力を測定する圧力センサと、をフィルタケーシング4又は排気管3に取り付け、それらの差を後述するECU8が演算することで、前後差圧を求めてもよい。 The filter casing 4 is provided with a differential pressure sensor 5 for measuring a difference (a differential pressure between the front and rear) between the exhaust pressure upstream of the particulate filter and the exhaust pressure downstream of the particulate filter. The differential pressure sensor 5 may be configured to measure the difference between the pressure in the exhaust pipe 3 upstream from the filter casing 4 and the pressure in the exhaust pipe 3 downstream from the filter casing 4. In addition, a pressure sensor for measuring the exhaust pressure upstream of the particulate filter and a pressure sensor for measuring the exhaust pressure downstream of the particulate filter are attached to the filter casing 4 or the exhaust pipe 3, and the difference between them is described later in the ECU 8. May calculate the differential pressure across the front and rear.
 前記フィルタケーシング4より下流の排気管3には、フィルタケーシング4から流出する排気の温度を測定する排気温度センサ6が取り付けられている。また、フィルタケーシング4より上流の排気管3には、該排気管3内を流れる排気に燃料を添加するための燃料添加弁7が取り付けられている。なお、前述した酸化触媒がフィルタケーシング4より上流の排気管3に配置される場合には、前記燃料添加弁7は、前記酸化触媒より上流の排気管3に配置されるものとする。 The exhaust pipe 3 downstream of the filter casing 4 is provided with an exhaust temperature sensor 6 for measuring the temperature of the exhaust gas flowing out from the filter casing 4. Further, a fuel addition valve 7 for adding fuel to the exhaust gas flowing in the exhaust pipe 3 is attached to the exhaust pipe 3 upstream of the filter casing 4. When the above-described oxidation catalyst is disposed in the exhaust pipe 3 upstream from the filter casing 4, the fuel addition valve 7 is disposed in the exhaust pipe 3 upstream from the oxidation catalyst.
 このように構成された内燃機関1には、本発明に係わる制御装置としてのECU8が併設されている。ECU8は、CPU、ROM、RAM、バックアップRAM等を具備する電子制御ユニットである。ECU8は、前述した差圧センサ5や排気温度センサ6に加え、アクセルポジションセンサ10やクランクポジションセンサ11等の各種センサと電気的に接続されている。アクセルポジションセンサ10は、アクセルペダル9の操作量(アクセル開度)を測定するセンサである。クランクポジションセンサ11は、クランクシャフトの回転位置を測定するセンサである。 The internal combustion engine 1 configured as described above is provided with an ECU 8 as a control device according to the present invention. The ECU 8 is an electronic control unit that includes a CPU, ROM, RAM, backup RAM, and the like. The ECU 8 is electrically connected to various sensors such as an accelerator position sensor 10 and a crank position sensor 11 in addition to the above-described differential pressure sensor 5 and exhaust temperature sensor 6. The accelerator position sensor 10 is a sensor that measures an operation amount (accelerator opening) of the accelerator pedal 9. The crank position sensor 11 is a sensor that measures the rotational position of the crankshaft.
 また、ECU8は、燃料噴射弁2や燃料添加弁7等の各種機器と電気的に接続されており、前述した各種センサの測定値に基づいて各種機器を制御する。例えば、ECU8は、アクセルポジションセンサ10やクランクポジションセンサ11等の測定値をパラメータとして、1サイクルあたりに気筒内へ噴射する燃料量(目標燃料噴射量)を演算し、その目標燃料噴射量に従って燃料噴射弁2を制御する。また、ECU8は、パティキュレートフィルタのPM堆積量が所定の再生閾値を超えたときに、パティキュレートフィルタに堆積しているPMを酸化及び除去するための第一再生処理を実行する。ここでいう「再生閾値」は、パティキュレートフィルタに実際に堆積しているPMの量が該所定の再生閾値以下であれば、パティキュレートフィルタの過昇温を招くことなく、第一再生処理を実行することができるPM堆積量の最大値からマージンを差し引いた量である。 Further, the ECU 8 is electrically connected to various devices such as the fuel injection valve 2 and the fuel addition valve 7, and controls various devices based on the measurement values of the various sensors described above. For example, the ECU 8 calculates a fuel amount (target fuel injection amount) to be injected into the cylinder per cycle using the measured values of the accelerator position sensor 10 and the crank position sensor 11 as parameters, and fuel according to the target fuel injection amount. The injection valve 2 is controlled. Further, the ECU 8 executes a first regeneration process for oxidizing and removing the PM accumulated on the particulate filter when the PM accumulation amount of the particulate filter exceeds a predetermined regeneration threshold. As used herein, the “regeneration threshold” means that if the amount of PM actually deposited on the particulate filter is less than or equal to the predetermined regeneration threshold, the first regeneration process is performed without causing excessive temperature rise of the particulate filter. This is an amount obtained by subtracting a margin from the maximum value of the PM deposition amount that can be executed.
 ここで、第一再生処理の実行手順について説明する。先ず、ECU8は、差圧センサ5の測定値(前後差圧)に基づいて、パティキュレートフィルタのPM堆積量を演算する。パティキュレートフィルタの圧力損失(前後差圧)とPM堆積量との間には、パティキュレートフィルタのPM堆積量が多くなるほど前後差圧が大きくなるという相関がある。よって、パティキュレートフィルタの前後差圧とPM堆積量との相関を予め求めておけば、差圧センサ5の測定値を引数としてPM堆積量を求めることができる。ただし、パティキュレートフィルタの前後差圧は、該パティキュレートフィルタを通過する排気流量によっても変化する。よって、前後差圧と排気流量とPM堆積量との相関を予め求めておき、差圧センサ5の測定値と排気流量とを引数として、PM堆積量を求めることが好適である。パティキュレートフィルタを通過する排気流量は、内燃機関1の吸入空気量と燃料噴射量との総和に相関する。そのため、エアフローメータ等のセンサによって測定される吸入空気量と燃料噴射量とを加算することにより、パティキュレートフィルタを通過する排気流量を求めることができる。 Here, the execution procedure of the first reproduction process will be described. First, the ECU 8 calculates the PM accumulation amount of the particulate filter based on the measured value (front-rear differential pressure) of the differential pressure sensor 5. There is a correlation between the pressure loss (front-rear differential pressure) of the particulate filter and the PM accumulation amount, that the front-rear differential pressure increases as the PM accumulation amount of the particulate filter increases. Therefore, if the correlation between the differential pressure before and after the particulate filter and the PM accumulation amount is obtained in advance, the PM accumulation amount can be obtained using the measured value of the differential pressure sensor 5 as an argument. However, the differential pressure across the particulate filter also varies depending on the exhaust flow rate passing through the particulate filter. Therefore, it is preferable to obtain the correlation between the front-rear differential pressure, the exhaust flow rate, and the PM deposition amount in advance, and to obtain the PM deposition amount using the measured value of the differential pressure sensor 5 and the exhaust flow rate as arguments. The exhaust flow rate passing through the particulate filter correlates with the sum of the intake air amount and the fuel injection amount of the internal combustion engine 1. Therefore, by adding the intake air amount measured by a sensor such as an air flow meter and the fuel injection amount, the exhaust gas flow rate passing through the particulate filter can be obtained.
 なお、内燃機関1の排気には、潤滑オイルに含まれる添加剤の成分等に由来する不燃性物質であるアッシュが含まれる可能性がある。排気中のアッシュは、PMと同様にパティキュレートフィルタに捕集されて堆積する。そのため、パティキュレートフィルタの前後差圧は、前述したPM堆積量及び排気流量に加え、アッシュ堆積量によっても変化する。よって、パティキュレートフィルタのPM堆積量を精度良く求めるためには、差圧センサ5の測定値と排気流量とを引数としてパティキュレートフィルタに堆積しているPMとアッシュとの総堆積量を求め、その総堆積量からアッシュ堆積量を減算する必要がある。 Note that the exhaust gas from the internal combustion engine 1 may contain ash, which is a nonflammable substance derived from the components of additives contained in the lubricating oil. The ash in the exhaust gas is collected and deposited on the particulate filter in the same manner as PM. Therefore, the differential pressure across the particulate filter varies depending on the ash deposition amount in addition to the PM deposition amount and the exhaust gas flow rate described above. Therefore, in order to accurately obtain the PM accumulation amount of the particulate filter, the total accumulation amount of PM and ash accumulated on the particulate filter is obtained by using the measured value of the differential pressure sensor 5 and the exhaust gas flow rate as arguments. It is necessary to subtract the ash deposition amount from the total deposition amount.
 パティキュレートフィルタのアッシュ堆積量は、内燃機関1の運転履歴(例えば、内燃機関1の累積運転時間、内燃機関1を搭載した車両の累積走行距離、又は燃料噴射量の積算値等)に相関する。そのため、内燃機関1の運転履歴に基づいて、パティキュレートフィルタのアッシュ堆積量を求めることができる。また、第一再生処理の終了直後は、パティキュレートフィルタからPMが除去されているとみなすことができる。そのため、第一再生処理の終了直後における差圧センサ5の測定値と排気流量とをパラメータとして、実際のアッシュ堆積量を求めることができる。そして、第一再生処理が実行される度に求められる実際のアッシュ堆積量に基づいて、内燃機関1の運転履歴から求められたアッシュ堆積量を修正することにより、パティキュレートフィルタのアッシュ堆積量を精度良く求めることができる。なお、上記した方法によってECU8がアッシュ堆積量を求めることにより、本発明に係わる「第一演算手段」が実現される。また、ECU8が前述の総堆積量からアッシュ堆積量を減算する方法によってPM堆積量を求めることにより、本発明に係わる「第二演算手段」が実現される。 The ash accumulation amount of the particulate filter correlates with the operation history of the internal combustion engine 1 (for example, the cumulative operation time of the internal combustion engine 1, the cumulative travel distance of the vehicle on which the internal combustion engine 1 is mounted, or the integrated value of the fuel injection amount). . Therefore, the ash accumulation amount of the particulate filter can be obtained based on the operation history of the internal combustion engine 1. Further, immediately after the end of the first regeneration process, it can be considered that PM has been removed from the particulate filter. Therefore, the actual ash deposition amount can be obtained using the measured value of the differential pressure sensor 5 and the exhaust gas flow rate immediately after the end of the first regeneration process as parameters. Then, the ash accumulation amount of the particulate filter is reduced by correcting the ash accumulation amount obtained from the operation history of the internal combustion engine 1 based on the actual ash accumulation amount obtained each time the first regeneration process is performed. It can be obtained with high accuracy. It should be noted that the “first calculation means” according to the present invention is realized by the ECU 8 obtaining the ash accumulation amount by the above-described method. Further, the “second calculating means” according to the present invention is realized when the ECU 8 obtains the PM accumulation amount by the method of subtracting the ash accumulation amount from the total accumulation amount.
 上記した方法によってPM堆積量を求める処理は、内燃機関1の運転期間中に繰り返し実行される。そして、PM堆積量が所定の再生閾値を超えると、ECU8は、第一再生処理を実行する。具体的には、ECU8は、燃料添加弁7から排気中へ燃料を添加させることにより、その添加燃料が前記酸化触媒で酸化される際に発生する反応熱を利用して、パティキュレートフィルタに堆積しているPMが効率的に酸化されると想定される目標温度(本発明における「第一再生温度」に相当)までパティキュレートフィルタを昇温させる。なお、ECU8は、第一再生処理の実行中において、排気温度センサ6の測定値からパティキュレートフィルタの温度を演算し、その演算値が前記目標温度に収束するように燃料添加弁7から添加される燃料量をフィードバック制御してもよい。このように燃料添加弁7から添加される燃料量がフィードバック制御されると、パティキュレートフィルタに堆積しているPMを効率的に酸化及び除去することができる。 The process for obtaining the PM accumulation amount by the above-described method is repeatedly executed during the operation period of the internal combustion engine 1. Then, when the PM accumulation amount exceeds a predetermined regeneration threshold value, the ECU 8 executes the first regeneration process. Specifically, the ECU 8 adds fuel to the exhaust gas from the fuel addition valve 7 and deposits on the particulate filter using reaction heat generated when the added fuel is oxidized by the oxidation catalyst. The particulate filter is heated to a target temperature (corresponding to the “first regeneration temperature” in the present invention) that is assumed to be efficiently oxidized. During execution of the first regeneration process, the ECU 8 calculates the temperature of the particulate filter from the measured value of the exhaust temperature sensor 6, and is added from the fuel addition valve 7 so that the calculated value converges to the target temperature. The amount of fuel to be controlled may be feedback controlled. When the amount of fuel added from the fuel addition valve 7 is feedback-controlled in this way, the PM deposited on the particulate filter can be efficiently oxidized and removed.
 なお、パティキュレートフィルタのPM堆積量は、内燃機関1の運転履歴に基づいて推定されてもよい。例えば、ECU8は、燃料噴射量、吸入空気量、及び機関回転数等をパラメータとして、単位時間あたりに内燃機関1から排出されるPMの量(PM排出量)を演算する。そして、ECU8は、前記PM排出量を積算し、その積算値をパティキュレートフィルタのPM堆積量(推定PM堆積量)としてもよい。また、内燃機関1から排出されたPMが所定の割合でパティキュレートフィルタに捕集されるという観点にたつと、前記所定の割合に相当する係数(以下、「捕集係数」と称する)をPM排出量に乗算し、その計算結果の積算値を推定PM堆積量としてもよい。その場合の所定の割合は、固定値であってもよいが、排気の流速に応じて変更される可変値(例えば、排気の流速が速くなるほど小さくされる値)であってもよい。このように、ECU8が内燃機関1の運転履歴に基づいてPM堆積量を求めることにより、本発明に係わる「推定手段」が実現される。 Note that the PM accumulation amount of the particulate filter may be estimated based on the operation history of the internal combustion engine 1. For example, the ECU 8 calculates the amount of PM discharged from the internal combustion engine 1 per unit time (PM discharge amount) using the fuel injection amount, the intake air amount, the engine speed, and the like as parameters. Then, the ECU 8 may integrate the PM discharge amount and use the integrated value as the PM accumulation amount (estimated PM accumulation amount) of the particulate filter. Further, from the viewpoint that PM discharged from the internal combustion engine 1 is collected by the particulate filter at a predetermined ratio, a coefficient corresponding to the predetermined ratio (hereinafter referred to as “collection coefficient”) is defined as PM. The accumulated amount of the calculation result may be used as the estimated PM accumulation amount by multiplying the discharge amount. In this case, the predetermined ratio may be a fixed value, or may be a variable value that is changed according to the exhaust flow rate (for example, a value that decreases as the exhaust flow rate increases). As described above, the ECU 8 calculates the PM accumulation amount based on the operation history of the internal combustion engine 1, thereby realizing the “estimating means” according to the present invention.
 ところで、内燃機関1を搭載する車両の使用途中において、フィルタケーシング4又はECU8が交換される可能性がある。フィルタケーシング4又はECU8が交換されると、その交換後にECU8によって求められるPM堆積量と実際のPM堆積量とが乖離する可能性がある。例えば、ECU8が交換された場合は、交換後のECU8に保持されるアッシュ堆積量及びPM堆積量が零にリセットされた状態となる。そのため、パティキュレートフィルタにPM及びアッシュが堆積した状態でECU8が交換された場合は、交換後のECU8によって求められるPM堆積量が実際のPM堆積量から乖離する可能性がある。 Incidentally, there is a possibility that the filter casing 4 or the ECU 8 may be replaced during the use of the vehicle on which the internal combustion engine 1 is mounted. When the filter casing 4 or the ECU 8 is replaced, there is a possibility that the PM accumulation amount obtained by the ECU 8 after the replacement is different from the actual PM accumulation amount. For example, when the ECU 8 is replaced, the ash accumulation amount and the PM accumulation amount held in the replaced ECU 8 are reset to zero. Therefore, when the ECU 8 is replaced while PM and ash are accumulated on the particulate filter, the PM accumulation amount obtained by the ECU 8 after the replacement may deviate from the actual PM accumulation amount.
 ここで、パティキュレートフィルタにPM及びアッシュが堆積した状態でECU8が交換された場合における、差圧センサ5の測定値(前後差圧)と、交換後のECU8によって求められるPM堆積量と、の関係を図2に示す。図2中のΣPM0は、パティキュレートフィルタの実際のPM堆積量を示す。図2中のΣPM1は、交換後のECU8が前後差圧とアッシュ堆積量(零)とに基づいて求めるPM堆積量(以下、「第一PM堆積量」と称する)を示す。図2中のΣPM2は、交換後のECU8が内燃機関1の運転履歴に基づいて求める推定PM堆積量(以下、「第二PM堆積量」と称する)を示す。また、図2中の実線は、交換後のECU8によって認識される、前後差圧とPM堆積量との相関を示す。一方、図2中の一点鎖線は、前後差圧と実際のPM堆積量との相関を示す。 Here, when the ECU 8 is replaced in a state where PM and ash are accumulated on the particulate filter, the measured value (front-rear differential pressure) of the differential pressure sensor 5 and the PM accumulation amount obtained by the ECU 8 after replacement The relationship is shown in FIG. ΣPM0 in FIG. 2 indicates the actual PM deposition amount of the particulate filter. ΣPM1 in FIG. 2 indicates a PM deposition amount (hereinafter referred to as “first PM deposition amount”) that the ECU 8 after replacement obtains based on the front-rear differential pressure and the ash deposition amount (zero). ΣPM2 in FIG. 2 indicates an estimated PM accumulation amount (hereinafter referred to as “second PM accumulation amount”) that the ECU 8 after replacement obtains based on the operation history of the internal combustion engine 1. Moreover, the solid line in FIG. 2 shows the correlation between the differential pressure before and after and the PM accumulation amount recognized by the ECU 8 after replacement. On the other hand, the alternate long and short dash line in FIG. 2 shows the correlation between the differential pressure before and after and the actual PM deposition amount.
 ECU8が交換された場合において、交換後のECU8によって求められる第一PM堆積量ΣPM1は、アッシュ堆積量が零であると想定して求められる。そのため、交換後のECU8によって求められる第一PM堆積量ΣPM1は、図2に示すように、実際のPM堆積量ΣPM0より多くなる。また、交換後のECU8によって求められる第二PM堆積量ΣPM2は、実際のPM堆積量ΣPM0より少ない零となる。このように、ECU8が交換された場合は、交換後のECU8によって求められる第一PM堆積量ΣPM1、及び第二PM堆積量ΣPM2の双方が実際のPM堆積量ΣPM0と異なる値になる。さらに、交換後のECU8によって求められる第一PM堆積量ΣPM1と第二PM堆積量ΣPM2との間にも乖離が生じる。ここで、図2に示したような例において、交換後のECU8が第二PM堆積量ΣPM2に基づいて、第一再生処理の実行可否を判定すると、実際のPM堆積量が前述の所定の再生閾値より多い状態で第一再生処理が実行される可能性がある。その結果、第一再生処理の実行中にパティキュレートフィルタが過昇温する虞がある。 When the ECU 8 is replaced, the first PM accumulation amount ΣPM1 obtained by the replaced ECU 8 is obtained on the assumption that the ash accumulation amount is zero. Therefore, the first PM accumulation amount ΣPM1 obtained by the replaced ECU 8 is larger than the actual PM accumulation amount ΣPM0 as shown in FIG. Further, the second PM accumulation amount ΣPM2 obtained by the replaced ECU 8 becomes zero, which is smaller than the actual PM accumulation amount ΣPM0. As described above, when the ECU 8 is replaced, both the first PM accumulation amount ΣPM1 and the second PM accumulation amount ΣPM2 obtained by the replaced ECU 8 are different from the actual PM accumulation amount ΣPM0. Furthermore, a divergence also occurs between the first PM accumulation amount ΣPM1 and the second PM accumulation amount ΣPM2 obtained by the ECU 8 after replacement. Here, in the example shown in FIG. 2, when the ECU 8 after replacement determines whether or not the first regeneration process can be performed based on the second PM accumulation amount ΣPM2, the actual PM accumulation amount becomes the predetermined regeneration described above. There is a possibility that the first reproduction process is executed in a state where the number is larger than the threshold value. As a result, the temperature of the particulate filter may be excessively increased during the execution of the first regeneration process.
 また、フィルタケーシング4が中古のフィルタケーシング4に交換された場合は、ECU8に保持されているアッシュ堆積量と交換後のパティキュレートフィルタに堆積しているアッシュの量とが相違する。例えば、交換後のパティキュレートフィルタのアッシュ堆積量が交換前のパティキュレートフィルタのアッシュ堆積量より少なく、且つ交換後のパティキュレートフィルタのPM堆積量が交換前のパティキュレートフィルタのPM堆積量より多い場合は、ECU8によって求められる第一PM堆積量ΣPM1及び第二PM堆積量が実際のPM堆積量より少なくなる可能性がある。 Further, when the filter casing 4 is replaced with a used filter casing 4, the amount of ash accumulated in the ECU 8 is different from the amount of ash deposited on the replaced particulate filter. For example, the ash deposition amount of the particulate filter after replacement is smaller than the ash deposition amount of the particulate filter before replacement, and the PM deposition amount of the particulate filter after replacement is larger than the PM deposition amount of the particulate filter before replacement. In this case, the first PM accumulation amount ΣPM1 and the second PM accumulation amount obtained by the ECU 8 may be smaller than the actual PM accumulation amount.
 ここで、交換後のパティキュレートフィルタのアッシュ堆積量が交換前のパティキュレートフィルタのアッシュ堆積量より少なく、且つ交換後のパティキュレートフィルタのPM堆積量が交換前のパティキュレートフィルタのPM堆積量より多くなる条件の下で、パティキュレートフィルタが交換された場合における、差圧センサ5の測定値(前後差圧)と、パティキュレートフィルタの交換後にECU8によって求められるPM堆積量と、の関係を図3に示す。図3中の実線は、ECU8によって認識される、前後差圧と交換後のパティキュレートフィルタのPM堆積量との相関を示す。一方、図2中の一点鎖線は、前後差圧と交換後のパティキュレートフィルタの実際のPM堆積量との相関を示す。 Here, the ash deposition amount of the particulate filter after replacement is less than the ash deposition amount of the particulate filter before replacement, and the PM deposition amount of the particulate filter after replacement is more than the PM deposition amount of the particulate filter before replacement. The relationship between the measured value of the differential pressure sensor 5 (front-rear differential pressure) and the PM deposition amount obtained by the ECU 8 after replacement of the particulate filter when the particulate filter is replaced under many conditions 3 shows. The solid line in FIG. 3 shows the correlation between the differential pressure before and after recognized by the ECU 8 and the PM accumulation amount of the particulate filter after replacement. On the other hand, the alternate long and short dash line in FIG. 2 shows the correlation between the differential pressure before and after and the actual PM deposition amount of the particulate filter after replacement.
 パティキュレートフィルタが交換された場合において、ECU8によって求められる第一PM堆積量ΣPM1は、交換後のパティキュレートフィルタのアッシュ堆積量が交換前のパティキュレートフィルタのアッシュ堆積量と等しいと想定して求められる。そのため、ECU8によって求められる第一PM堆積量ΣPM1は、交換後のパティキュレートフィルタの実際のPM堆積量ΣPM0より少なくなる。また、内燃機関1の運転履歴から推定される第二PM堆積量ΣPM2は、交換前のパティキュレートフィルタを想定した値になる。そのため、ECU8によって推定される第二PM堆積量ΣPM2も、交換後のパティキュレートフィルタの実際のPM堆積量ΣPM0より少なくなる。さらに、第一PM堆積量ΣPM1と第二PM堆積量ΣPM2との間にも乖離が生じる。ここで、図3に示したような例において、第一PM堆積量ΣPM1、又は第二PM堆積量ΣPM2に基づいて、第一再生処理の実行可否が判定されると、実際のPM堆積量が前記した所定の再生閾値より多い状態で第一再生処理が実行される可能性がある。その結果、第一再生処理の実行中にパティキュレートフィルタが過昇温する虞がある。なお、図3は、第一PM堆積量ΣPM1が第二PM堆積量ΣPM2より少なくなる例を示しているが、第一PM堆積量ΣPM1が第二PM堆積量ΣPM2より多くなる場合もあり得る。そのような場合においても、第一PM堆積量ΣPM1、及び第二PM堆積量ΣPM2が実際のPM堆積量ΣPM0より少なければ、図3に示す例と同様の問題が発生する。 When the particulate filter is replaced, the first PM accumulation amount ΣPM1 obtained by the ECU 8 is obtained on the assumption that the ash accumulation amount of the particulate filter after replacement is equal to the ash accumulation amount of the particulate filter before replacement. It is done. Therefore, the first PM accumulation amount ΣPM1 obtained by the ECU 8 is smaller than the actual PM accumulation amount ΣPM0 of the particulate filter after replacement. Further, the second PM accumulation amount ΣPM2 estimated from the operation history of the internal combustion engine 1 is a value assuming a particulate filter before replacement. Therefore, the second PM accumulation amount ΣPM2 estimated by the ECU 8 is also smaller than the actual PM accumulation amount ΣPM0 of the particulate filter after replacement. Furthermore, a divergence also occurs between the first PM accumulation amount ΣPM1 and the second PM accumulation amount ΣPM2. Here, in the example shown in FIG. 3, when it is determined whether or not the first regeneration process can be performed based on the first PM accumulation amount ΣPM1 or the second PM accumulation amount ΣPM2, the actual PM accumulation amount is There is a possibility that the first reproduction process is executed in a state where the number is larger than the predetermined reproduction threshold. As a result, the temperature of the particulate filter may be excessively increased during the execution of the first regeneration process. Although FIG. 3 shows an example in which the first PM deposition amount ΣPM1 is smaller than the second PM deposition amount ΣPM2, the first PM deposition amount ΣPM1 may be larger than the second PM deposition amount ΣPM2. Even in such a case, if the first PM deposition amount ΣPM1 and the second PM deposition amount ΣPM2 are less than the actual PM deposition amount ΣPM0, the same problem as in the example shown in FIG. 3 occurs.
 前述の図2、3に示したような傾向を踏まえると、ECU8又はパティキュレートフィルタの交換等に起因して、前記第一PM堆積量ΣPM1と前記第二PM堆積量ΣPM2との少なくとも一方が実際のPM堆積量から乖離した場合には、前記第一PM堆積量ΣPM1と前記第二PM堆積量ΣPM2との間にも乖離が生じると考えられる。そこで、本実施形態では、第一PM堆積量ΣPM1と第二PM堆積量ΣPM2との間に所定の閾値ΔΣPMthre以上の乖離が生じた場合は、第一PM堆積量ΣPM1と第二PM堆積量ΣPM2との少なくとも一方が実際のPM堆積量から乖離している可能性があると判定する。そして、第一PM堆積量ΣPM1と第二PM堆積量ΣPM2との少なくとも一方が実際のPM堆積量から乖離している可能性があると判定された場合に、ECU8は、それら2つのPM堆積量ΣPM1、ΣPM2の何れか一方と前記再生閾値とを比較して、第一再生処理を実行するか否かを判定する処理を行わないようにした。すなわち、本実施形態では、第一PM堆積量ΣPM1と第二PM堆積量ΣPM2との間に所定の閾値ΔΣPMthre以上の乖離が生じた場合は、差圧センサ5の測定値と所定の上限値ΔPlmtとを比較して、第一再生処理を実行するか否かを判定するようにした。 Considering the tendency shown in FIGS. 2 and 3, the first PM accumulation amount ΣPM1 and the second PM accumulation amount ΣPM2 are actually caused by the replacement of the ECU 8 or the particulate filter. If there is a deviation from the PM accumulation amount, it is considered that a deviation also occurs between the first PM accumulation amount ΣPM1 and the second PM accumulation amount ΣPM2. Therefore, in the present embodiment, when a divergence greater than or equal to a predetermined threshold ΔΣPMthr occurs between the first PM deposition amount ΣPM1 and the second PM deposition amount ΣPM2, the first PM deposition amount ΣPM1 and the second PM deposition amount ΣPM2 It is determined that at least one of these may deviate from the actual PM accumulation amount. When it is determined that at least one of the first PM accumulation amount ΣPM1 and the second PM accumulation amount ΣPM2 may deviate from the actual PM accumulation amount, the ECU 8 One of ΣPM1 and ΣPM2 is compared with the regeneration threshold value, and the process for determining whether or not to execute the first regeneration process is not performed. That is, in the present embodiment, when a difference of a predetermined threshold ΔΣPMthr or more occurs between the first PM accumulation amount ΣPM1 and the second PM accumulation amount ΣPM2, the measured value of the differential pressure sensor 5 and the predetermined upper limit value ΔPlmt To determine whether or not to execute the first reproduction process.
 ここでいう「所定の閾値ΔΣPMthre」は、第一PM堆積量ΣPM1と第二PM堆積量ΣPM2との差ΔΣPMが該所定の閾値ΔΣPMthre以上になると、ECU8又はパティキュレートフィルタの交換等に起因して、第一PM堆積量ΣPM1と第二PM堆積量ΣPM2との少なくとも一方が実際のPM堆積量から乖離しているとみなすことができる値であり、且つその状態で第一再生処理が実行されるとパティキュレートフィルタの過昇温を招く可能性があると考えられる値である。このような所定の閾値は、予め実験等を利用した適合作業によって求められた値である。「所定の上限値ΔPlmt」は、パティキュレートフィルタの前後差圧が該所定の上限値ΔPlmt以下であれば、パティキュレートフィルタにPMのみが堆積している状態であっても、パティキュレートフィルタの過昇温を抑制しつつ、第一再生処理を行うことができる前後差圧の最大値に相当する。具体的には、図4に示すように、パティキュレートフィルタのアッシュ堆積量が零であり、且つパティキュレートフィルタのPM堆積量が所定の限界PM堆積量ΣPMlmtと等しい場合におけるパティキュレートフィルタの前後差圧を前記所定の上限値ΔPlmtに設定してもよい。ここでいう「限界PM堆積量」は、パティキュレートフィルタのPM堆積量が該限界PM堆積量ΣPMlmt以下であれば、パティキュレートフィルタの過昇温を抑制しつつ、第一再生処理を行うことができるPM堆積量の最大値であり、例えば、前記した再生閾値と等しい量である。ところで、パティキュレートフィルタの前後差圧は、前述したようにパティキュレートフィルタを通過する排気流量によっても変化するため、パティキュレートフィルタを通過する排気流量によって前記所定の上限値ΔPlmtが変更されてもよく、又はパティキュレートフィルタを通過する排気流量によって差圧センサ5の測定値を補正してもよい。 The “predetermined threshold ΔΣPMthre” referred to here is caused by replacement of the ECU 8 or the particulate filter when the difference ΔΣPM between the first PM accumulation amount ΣPM1 and the second PM accumulation amount ΣPM2 is equal to or greater than the predetermined threshold ΔΣPMthre. Further, at least one of the first PM accumulation amount ΣPM1 and the second PM accumulation amount ΣPM2 is a value that can be regarded as deviating from the actual PM accumulation amount, and the first regeneration process is executed in that state. And a value that may cause excessive temperature rise of the particulate filter. Such a predetermined threshold is a value obtained in advance by an adaptation operation using an experiment or the like. The “predetermined upper limit value ΔPlmt” is an excess of the particulate filter even if only PM is accumulated on the particulate filter if the differential pressure across the particulate filter is equal to or lower than the predetermined upper limit value ΔPlmt. This corresponds to the maximum value of the differential pressure before and after the first regeneration process can be performed while suppressing the temperature rise. Specifically, as shown in FIG. 4, the difference between before and after of the particulate filter when the ash accumulation amount of the particulate filter is zero and the PM accumulation amount of the particulate filter is equal to a predetermined limit PM accumulation amount ΣPMlmt. The pressure may be set to the predetermined upper limit value ΔPlmt. As used herein, the “limit PM accumulation amount” means that if the PM accumulation amount of the particulate filter is equal to or less than the limit PM accumulation amount ΣPMlmt, the first regeneration process can be performed while suppressing excessive temperature rise of the particulate filter. This is the maximum value of the PM deposition amount that can be generated, for example, an amount equal to the above-described regeneration threshold. By the way, since the differential pressure across the particulate filter also changes depending on the exhaust flow rate passing through the particulate filter as described above, the predetermined upper limit ΔPlmt may be changed depending on the exhaust flow rate passing through the particulate filter. Alternatively, the measured value of the differential pressure sensor 5 may be corrected by the exhaust gas flow rate passing through the particulate filter.
 ここで、差圧センサ5の測定値が前記所定の上限値ΔPlmt以下であれば、PMのみがパティキュレートフィルタに堆積しているとの仮定のもとで差圧センサ5の測定値から求められるPM堆積量(最大PM堆積量)は、パティキュレートフィルタにPMのみが堆積しており、且つパティキュレートフィルタの前後差圧が前記所定の上限値ΔPlmtと等しいときのPM堆積量(限界PM堆積量)以下になる。ここで、前記最大PM堆積量は、実際のPM堆積量と同等以上の多めに見積もられた量であるため、該最大PM堆積量が前記限界PM堆積量以下(差圧センサ5の測定値が前記所定の上限値ΔPlmt以下)であれば、パティキュレートフィルタの実際のPM堆積量が前記最大PM堆積量以下となる。そのため、差圧センサ5の測定値が前記所定の上限値ΔPlmt以下であれば、パティキュレートフィルタを過昇温させることなく、第一再生処理を行うことができると言える。そこで、本実施形態では、第一PM堆積量ΣPM1と第二PM堆積量ΣPM2との差が前記所定の閾値ΔΣPMthre以上である場合に、差圧センサ5の測定値が前記所定の上限値ΔPlmt以下であれば、第一再生処理が行われるようにした。 Here, if the measured value of the differential pressure sensor 5 is equal to or less than the predetermined upper limit value ΔPlmt, it is obtained from the measured value of the differential pressure sensor 5 under the assumption that only PM is deposited on the particulate filter. The PM deposition amount (maximum PM deposition amount) is the PM deposition amount (limit PM deposition amount) when only PM is deposited on the particulate filter and the differential pressure across the particulate filter is equal to the predetermined upper limit value ΔPlmt. ) It becomes the following. Here, since the maximum PM deposition amount is an amount estimated to be equal to or larger than the actual PM deposition amount, the maximum PM deposition amount is equal to or less than the limit PM deposition amount (measured value of the differential pressure sensor 5). Is equal to or less than the predetermined upper limit value ΔPlmt), the actual PM deposition amount of the particulate filter is equal to or less than the maximum PM deposition amount. Therefore, if the measured value of the differential pressure sensor 5 is equal to or less than the predetermined upper limit value ΔPlmt, it can be said that the first regeneration process can be performed without excessively raising the temperature of the particulate filter. Therefore, in the present embodiment, when the difference between the first PM accumulation amount ΣPM1 and the second PM accumulation amount ΣPM2 is equal to or greater than the predetermined threshold value ΔΣPMthre, the measured value of the differential pressure sensor 5 is equal to or less than the predetermined upper limit value ΔPlmt. Then, the first reproduction process is performed.
 一方、第一PM堆積量ΣPM1と第二PM堆積量ΣPM2との差が前記所定の閾値ΔΣPMthre以上である場合に、差圧センサ5の測定値が前記所定の上限値ΔPlmtより大きければ、実際のPM堆積量が限界PM堆積量より多い可能性がある。そのような状態で第一再生処理が実行されると、パティキュレートフィルタの過昇温を招く可能性がある。そこで、本実施形態では、第一PM堆積量ΣPM1と第二PM堆積量ΣPM2との差が前記所定の閾値ΔΣPMthre以上である場合に、差圧センサ5の測定値が前記所定の上限値ΔPlmtより大きければ、第一再生処理が行われないようにした。 On the other hand, if the difference between the first PM accumulation amount ΣPM1 and the second PM accumulation amount ΣPM2 is equal to or greater than the predetermined threshold ΔΣPMthre, if the measured value of the differential pressure sensor 5 is greater than the predetermined upper limit ΔPlmt, the actual There is a possibility that the PM deposition amount is larger than the limit PM deposition amount. When the first regeneration process is executed in such a state, there is a possibility that the temperature of the particulate filter will be excessively increased. Therefore, in the present embodiment, when the difference between the first PM accumulation amount ΣPM1 and the second PM accumulation amount ΣPM2 is equal to or greater than the predetermined threshold value ΔΣPMthr, the measured value of the differential pressure sensor 5 is greater than the predetermined upper limit value ΔPlmt. If it is larger, the first regeneration process is not performed.
 上記したように、第一PM堆積量ΣPM1と第二PM堆積量ΣPM2との差が前記所定の閾値ΔΣPMthre以上である場合に、差圧センサ5の測定値と前記所定の上限値ΔPlmtとを比較する方法によって第一再生処理の実行可否が判定されると、パティキュレートフィルタの過昇温を招く可能性がある状態で第一再生処理が実行されることが抑制される。なお、第一PM堆積量ΣPM1と第二PM堆積量ΣPM2との差が前記所定の閾値ΔΣPMthre以上であり、且つ差圧センサ5の測定値が前記所定の上限値ΔPlmtより大きい場合に、第一再生処理が実行されない状態が続くと、パティキュレートフィルタの圧力損失が過剰に大きくなって、内燃機関1の背圧を増加させてしまう可能性がある。そこで、第一PM堆積量ΣPM1と第二PM堆積量ΣPM2との差が前記所定の閾値ΔΣPMthre以上であり、且つ差圧センサ5の測定値が前記所定の上限値ΔPlmtより大きい場合は、第一再生処理の実行時における目標温度より低い温度であって、且つPMの酸化可能な温度(本発明における「第二再生温度」に相当)までパティキュレートフィルタを昇温させることで、単位時間あたりに酸化されるPMの量を少なく抑えつつ、パティキュレートフィルタに堆積しているPMを酸化及び除去する処理(第二再生処理)を実行するようにした。このような第二再生処理は、パティキュレートフィルタに堆積しているPMの全てが酸化及び除去されるまで実行されてもよいが、図5に示すように、差圧センサ5の測定値が前記所定の上限値ΔPlmt以下に低下するまで実行し、その後はパティキュレートフィルタの温度を前記第一再生温度まで上昇させることにより、第一再生処理を実行してもよい。このように第二再生処理と第一再生処理とを組み合わせて実行すると、パティキュレートフィルタの過昇温を抑制しつつ、パティキュレートフィルタに堆積しているPMの量をより速やかに酸化及び除去することができる。 As described above, when the difference between the first PM accumulation amount ΣPM1 and the second PM accumulation amount ΣPM2 is equal to or greater than the predetermined threshold value ΔΣPMthr, the measured value of the differential pressure sensor 5 is compared with the predetermined upper limit value ΔPlmt. When it is determined whether or not the first regeneration process can be performed by the method, the first regeneration process is suppressed from being executed in a state where there is a possibility of excessive temperature rise of the particulate filter. In addition, when the difference between the first PM accumulation amount ΣPM1 and the second PM accumulation amount ΣPM2 is equal to or larger than the predetermined threshold ΔΣPMthre and the measured value of the differential pressure sensor 5 is larger than the predetermined upper limit ΔPlmt, If the state in which the regeneration process is not performed continues, the pressure loss of the particulate filter becomes excessively large, which may increase the back pressure of the internal combustion engine 1. Therefore, when the difference between the first PM accumulation amount ΣPM1 and the second PM accumulation amount ΣPM2 is equal to or greater than the predetermined threshold value ΔΣPMthre and the measured value of the differential pressure sensor 5 is greater than the predetermined upper limit value ΔPlmt, By raising the temperature of the particulate filter to a temperature lower than the target temperature at the time of the regeneration process and capable of oxidizing PM (corresponding to the “second regeneration temperature” in the present invention), per unit time A process (second regeneration process) for oxidizing and removing the PM deposited on the particulate filter is performed while suppressing the amount of PM to be oxidized. Such a second regeneration process may be executed until all of the PM deposited on the particulate filter is oxidized and removed, but as shown in FIG. The first regeneration process may be performed by performing the process until the temperature drops below a predetermined upper limit value ΔPlmt and then raising the temperature of the particulate filter to the first regeneration temperature. As described above, when the second regeneration process and the first regeneration process are executed in combination, the amount of PM deposited on the particulate filter is oxidized and removed more quickly while suppressing excessive temperature rise of the particulate filter. be able to.
 また、第一PM堆積量ΣPM1と第二PM堆積量ΣPM2との差が前記所定の閾値ΔΣPMthre以上である場合に、第一再生処理又は第二再生処理が行われることで、パティキュレートフィルタに堆積しているPMの全てが酸化及び除去されると、ECU8は、第一再生処理又は第二再生処理を終了して、該ECU8に保持されているアッシュ堆積量を更新するものとする。つまり、ECU8は、第一再生処理の終了直後における差圧センサ5の測定値と排気流量とをパラメータとしてパティキュレートフィルタに実際に堆積しているアッシュの量を求め、その実際のアッシュ堆積量に基づいてECU8に保持されているアッシュ堆積量を修正するものとする。このように、ECU8に保持されているアッシュ堆積量が更新されると、その更新後にECU8によって求められる第一PM堆積量ΣPM1や第二PM堆積量ΣPM2が実際のPM堆積量に近似した値になるため、第一PM堆積量ΣPM1と第二PM堆積量ΣPM2との何れか一方と前記再生閾値とを比較することによって、第一再生処理の実行可否が判定されても、パティキュレートフィルタの過昇温を抑制しつつ第一再生処理を行うことが可能になる。 In addition, when the difference between the first PM accumulation amount ΣPM1 and the second PM accumulation amount ΣPM2 is equal to or greater than the predetermined threshold ΔΣPMthre, the first regeneration process or the second regeneration process is performed, so that the particulate filter is deposited. When all of the PM being oxidized is oxidized and removed, the ECU 8 finishes the first regeneration process or the second regeneration process, and updates the ash accumulation amount held in the ECU 8. That is, the ECU 8 obtains the amount of ash actually deposited on the particulate filter using the measured value of the differential pressure sensor 5 and the exhaust flow rate immediately after the end of the first regeneration process as parameters, and the actual ash accumulation amount Based on this, the ash accumulation amount held in the ECU 8 is corrected. Thus, when the ash accumulation amount held in the ECU 8 is updated, the first PM accumulation amount ΣPM1 and the second PM accumulation amount ΣPM2 obtained by the ECU 8 after the update are approximated to the actual PM accumulation amount. Therefore, even if it is determined whether or not the first regeneration process can be performed by comparing one of the first PM accumulation amount ΣPM1 and the second PM accumulation amount ΣPM2 with the regeneration threshold value, the particulate filter excess The first regeneration process can be performed while suppressing the temperature rise.
 以下、本実施例においてパティキュレートフィルタに捕集されているPMを酸化及び除去する手順について図6に沿って説明する。図6は、パティキュレートフィルタに捕集されているPMを酸化及び除去する際にECU8が実行する処理ルーチンを示すフローチャートである。この処理ルーチンは、予めECU8のROMに記憶されており、内燃機関1の運転期間中にECU8によって繰り返し実行される処理ルーチンである。 Hereinafter, the procedure for oxidizing and removing the PM collected in the particulate filter in the present embodiment will be described with reference to FIG. FIG. 6 is a flowchart showing a processing routine executed by the ECU 8 when oxidizing and removing the PM collected by the particulate filter. This processing routine is stored in advance in the ROM of the ECU 8 and is repeatedly executed by the ECU 8 during the operation period of the internal combustion engine 1.
 図6の処理ルーチンでは、ECU8は、先ずS101の処理において、差圧センサ5の測定値とECU8に保持されているアッシュ堆積量とから第一PM堆積量ΣPM1を演算する。具体的には、ECU8は、前述したように、差圧センサ5の測定値と排気流量(吸入空気量と燃料噴射量との総和)とを引数として、パティキュレートフィルタに堆積しているPMとアッシュの総堆積量を求め、その総堆積量からアッシュ堆積量を減算することにより、第一PM堆積量ΣPM1を演算する。この演算に用いられるアッシュ堆積量は、第一再生処理又は第二再生処理の前回の終了直後における差圧センサ5の測定値と排気流量とに基づいて更新されて、ECU8に保持されている値である。また、ECU8は、S101の処理において、内燃機関1の運転履歴から第二PM堆積量ΣPM2を演算する。具体的には、ECU8は、前述したように、燃料噴射量、吸入空気量、及び機関回転数等をパラメータとして演算されるPM排出量を積算することにより、第二PM堆積量ΣPM2を演算する。なお、ECU8は、PM排出量に前述の捕集係数を乗算して、その計算結果を積算する方法により、第二PM堆積量ΣPM2を演算してもよい。 In the processing routine of FIG. 6, the ECU 8 first calculates the first PM deposition amount ΣPM1 from the measured value of the differential pressure sensor 5 and the ash deposition amount held in the ECU 8 in the processing of S101. Specifically, as described above, the ECU 8 uses the measured value of the differential pressure sensor 5 and the exhaust flow rate (the sum of the intake air amount and the fuel injection amount) as arguments, and the PM accumulated in the particulate filter. A first PM accumulation amount ΣPM1 is calculated by obtaining a total accumulation amount of ash and subtracting the ash accumulation amount from the total accumulation amount. The ash accumulation amount used in this calculation is updated based on the measured value of the differential pressure sensor 5 and the exhaust flow rate immediately after the previous end of the first regeneration process or the second regeneration process, and is a value held in the ECU 8. It is. Further, the ECU 8 calculates the second PM accumulation amount ΣPM2 from the operation history of the internal combustion engine 1 in the process of S101. Specifically, as described above, the ECU 8 calculates the second PM accumulation amount ΣPM2 by integrating the PM discharge amount calculated using the fuel injection amount, the intake air amount, the engine speed, and the like as parameters. . The ECU 8 may calculate the second PM accumulation amount ΣPM2 by a method of multiplying the PM emission amount by the above-described collection coefficient and integrating the calculation results.
 S102の処理では、ECU8は、前記S101の処理で演算された第一PM堆積量ΣPM1と第二PM堆積量ΣPM2との差の絶対値が前述した所定の閾値ΔΣPMthre以上であるか否かを判別する。S102の処理で肯定判定された場合は、第一PM堆積量ΣPM1と第二PM堆積量ΣPM2との少なくとも一方が実際のPM堆積量から乖離している可能性がある。そのような場合は、ECU8は、S103の処理へ進む。 In the process of S102, the ECU 8 determines whether or not the absolute value of the difference between the first PM accumulation amount ΣPM1 and the second PM accumulation amount ΣPM2 calculated in the process of S101 is equal to or greater than the predetermined threshold value ΔΣPMthre described above. To do. If the determination in S102 is affirmative, at least one of the first PM accumulation amount ΣPM1 and the second PM accumulation amount ΣPM2 may deviate from the actual PM accumulation amount. In such a case, the ECU 8 proceeds to the process of S103.
 S103の処理では、ECU8は、差圧センサ5の測定値(前後差圧)ΔPを読み込む。続いて、ECU8は、S104の処理へ進み、前記S103の処理で読み込まれた前後差圧ΔPが前述した所定の上限値ΔPlmt以下であるか否かを判別する。S104の処理において肯定判定された場合は、パティキュレートフィルタに実際に堆積しているPMの量が前述の限界PM堆積量ΣPMlmt以下であるとみなすことができる。そのため、前記前後差圧ΔPが前記所定の上限値ΔPlmt以下であれば、パティキュレートフィルタを過昇温させることなく、第一再生処理を実行することができるとみなすことができる。そこで、ECU8は、S105の処理へ進み、第一再生処理を実行する。具体的には、ECU8は、燃料添加弁7から排気中に燃料を添加させる。燃料添加弁7から添加された燃料は、パティキュレートフィルタに担持された酸化触媒、又はフィルタケーシング4より上流に配置された酸化触媒で酸化されて反応熱を発生させる。その結果、添加燃料の反応熱によりパティキュレートフィルタが加熱される。その際、ECU8は、排気温度センサ6の測定値からパティキュレートフィルタの温度を演算して、その温度が前記第一再生温度となるように燃料添加弁7から添加される燃料量をフィードバック制御する。このようにして第一再生処理が実行されると、パティキュレートフィルタに堆積しているPMが酸化及び除去される。 In the process of S103, the ECU 8 reads a measured value (front-rear differential pressure) ΔP of the differential pressure sensor 5. Subsequently, the ECU 8 proceeds to the process of S104, and determines whether or not the front-rear differential pressure ΔP read in the process of S103 is equal to or less than the predetermined upper limit value ΔPlmt described above. When an affirmative determination is made in the process of S104, it can be considered that the amount of PM actually deposited on the particulate filter is equal to or less than the aforementioned limit PM accumulation amount ΣPMlmt. Therefore, when the front-rear differential pressure ΔP is equal to or less than the predetermined upper limit value ΔPlmt, it can be considered that the first regeneration process can be executed without excessively raising the temperature of the particulate filter. Therefore, the ECU 8 proceeds to the process of S105 and executes the first regeneration process. Specifically, the ECU 8 adds fuel into the exhaust gas from the fuel addition valve 7. The fuel added from the fuel addition valve 7 is oxidized by an oxidation catalyst carried on the particulate filter or an oxidation catalyst arranged upstream of the filter casing 4 to generate reaction heat. As a result, the particulate filter is heated by the reaction heat of the added fuel. At that time, the ECU 8 calculates the temperature of the particulate filter from the measured value of the exhaust temperature sensor 6, and feedback-controls the amount of fuel added from the fuel addition valve 7 so that the temperature becomes the first regeneration temperature. . When the first regeneration process is performed in this way, PM deposited on the particulate filter is oxidized and removed.
 ECU8は、S105の処理を実行した後に、S106の処理へ進む。S106の処理では、ECU8は、パティキュレートフィルタに堆積していた全てのPMが酸化されたか否かを判別する。具体的には、ECU8は、単位時間あたりにおける差圧センサ5の測定値の変化量が所定の判定値以下になれば、パティキュレートフィルタに堆積していた全てのPMが酸化及び除去されたと判定する。なお、別法として、第一再生処理の実行時間をパラメータとして、パティキュレートフィルタに堆積していた全てのPMが酸化及び除去されたか否かを判別してもよい。つまり、パティキュレートフィルタに堆積している全てのPMが酸化及び除去されるまでに要する時間(所要再生時間)は、第一再生処理が開始される時点におけるPM堆積量に相関する。そのため、PM堆積量と所要再生時間との相関を予め求めておけば、それらの相関から最大PM堆積量に見合った所要再生時間を求めることができる。そして、第一再生処理の実行時間が前記所要再生時間に達すると、パティキュレートフィルタに堆積しているPMの全てが酸化及び除去されたと判定すればよい。S106の処理において否定判定された場合は、ECU8は、S105の処理へ戻り、第一再生処理を継続して実行する。一方、S106の処理において肯定判定された場合は、ECU8は、S107の処理へ進む。 The ECU 8 proceeds to the process of S106 after executing the process of S105. In the process of S106, the ECU 8 determines whether or not all PM deposited on the particulate filter has been oxidized. Specifically, the ECU 8 determines that all PM accumulated in the particulate filter has been oxidized and removed if the amount of change in the measured value of the differential pressure sensor 5 per unit time is equal to or less than a predetermined determination value. To do. As an alternative method, it may be determined whether or not all PM deposited on the particulate filter has been oxidized and removed using the execution time of the first regeneration process as a parameter. That is, the time required for oxidizing and removing all PM deposited on the particulate filter (required regeneration time) correlates with the PM deposition amount at the time when the first regeneration process is started. Therefore, if the correlation between the PM deposition amount and the required regeneration time is obtained in advance, the required regeneration time corresponding to the maximum PM deposition amount can be obtained from the correlation. Then, when the execution time of the first regeneration process reaches the required regeneration time, it may be determined that all of the PM deposited on the particulate filter has been oxidized and removed. If a negative determination is made in the process of S106, the ECU 8 returns to the process of S105 and continues to execute the first regeneration process. On the other hand, if an affirmative determination is made in the process of S106, the ECU 8 proceeds to the process of S107.
 S107の処理では、ECU8は、燃料添加弁7から排気中への燃料添加を停止させることにより、第一再生処理を終了する。続いて、ECU8は、S108の処理へ進み、ECU8に保持されているアッシュ堆積量を更新する。具体的には、ECU8は、第一再生処理が終了した直後における差圧センサ5の測定値を読み込むとともに、その時点でパティキュレートフィルタを通過する排気流量(吸入空気量と燃料噴射量との総和)を演算する。そして、ECU8は、差圧センサ5の測定値と排気流量とパラメータとして、パティキュレートフィルタに堆積しているPMとアッシュとの総堆積量を演算する。なお、第一再生処理の終了直後は、パティキュレートフィルタのPM堆積量が零であるとみなすことができるため、前記総堆積量が実際のアッシュ堆積量に等しいとみなすことができる。よって、ECU8は、前記総堆積量を実際のアッシュ堆積量とみなして、該ECU8に保持されているアッシュ堆積量の値を更新する。このようにして、ECU8に保持されているアッシュ堆積量が更新されると、それ以降にECU8によって求められる第一PM堆積量ΣPM1及び第二PM堆積量ΣPM2の精度を高めることができる。 In the process of S107, the ECU 8 ends the first regeneration process by stopping the fuel addition from the fuel addition valve 7 into the exhaust. Subsequently, the ECU 8 proceeds to the process of S108 and updates the ash accumulation amount held in the ECU 8. Specifically, the ECU 8 reads the measured value of the differential pressure sensor 5 immediately after the completion of the first regeneration process, and at the time, the exhaust flow rate (sum of the intake air amount and the fuel injection amount) passing through the particulate filter. ) Is calculated. Then, the ECU 8 calculates the total accumulation amount of PM and ash accumulated on the particulate filter as the measured value of the differential pressure sensor 5, the exhaust gas flow rate, and the parameters. Note that immediately after the end of the first regeneration process, the PM accumulation amount of the particulate filter can be considered to be zero, so that the total accumulation amount can be regarded as being equal to the actual ash accumulation amount. Therefore, the ECU 8 regards the total accumulation amount as the actual ash accumulation amount, and updates the value of the ash accumulation amount held in the ECU 8. In this way, when the ash accumulation amount held in the ECU 8 is updated, the accuracy of the first PM accumulation amount ΣPM1 and the second PM accumulation amount ΣPM2 obtained by the ECU 8 thereafter can be improved.
 なお、前記S104の処理において否定判定された場合は、パティキュレートフィルタに実際に堆積しているPMの量が前述の限界PM堆積量ΣPMlmtより多い可能性がある。つまり、前記S104の処理において否定判定された場合は、第一再生処理の実行に起因して、パティキュレートフィルタを過昇温させる可能性がある。そこで、ECU8は、S109の処理へ進み、第二再生処理を実行する。具体的には、ECU8は、パティキュレートフィルタの温度が前記第一再生温度より低い第二再生温度まで昇温するように、燃料添加弁7から添加される燃料量を制御する。このようにして第二再生処理が実行されると、パティキュレートフィルタに堆積しているPMが酸化及び除去されることになるが、その際のPM酸化速度(単位時間あたりに酸化されるPMの量)は第一再生処理が実行される場合より遅くなる。その結果、パティキュレートフィルタに堆積しているPMが徐々に酸化されることになる。よって、パティキュレートフィルタの過昇温を抑制しつつ、該パティキュレートフィルタに堆積しているPMを酸化及び除去することができる。 When a negative determination is made in the process of S104, there is a possibility that the amount of PM actually deposited on the particulate filter is larger than the aforementioned limit PM accumulation amount ΣPMlmt. That is, when a negative determination is made in the process of S104, there is a possibility that the temperature of the particulate filter is excessively increased due to the execution of the first regeneration process. Therefore, the ECU 8 proceeds to the process of S109 and executes the second regeneration process. Specifically, the ECU 8 controls the amount of fuel added from the fuel addition valve 7 so that the temperature of the particulate filter is raised to a second regeneration temperature that is lower than the first regeneration temperature. When the second regeneration process is executed in this way, the PM deposited on the particulate filter is oxidized and removed. At that time, the PM oxidation rate (PM oxidized per unit time) Amount) is slower than when the first regeneration process is executed. As a result, PM deposited on the particulate filter is gradually oxidized. Therefore, it is possible to oxidize and remove PM deposited on the particulate filter while suppressing excessive temperature rise of the particulate filter.
 ECU8は、前記S109の処理を実行した後に、S110の処理へ進む。S110の処理では、ECU8は、パティキュレートフィルタに堆積していた全てのPMが酸化されたか否かを判別する。具体的には、ECU8は、前述のS106の処理と同様の方法を用いることにより、パティキュレートフィルタに堆積していた全てのPMが酸化されたか否かを判別する。S110の処理において否定判定された場合は、ECU8は、S109の処理へ戻り、第二再生処理を継続して実行する。一方、S110の処理において肯定判定された場合は、ECU8は、S111の処理へ進む。 The ECU 8 proceeds to the process of S110 after executing the process of S109. In the process of S110, the ECU 8 determines whether or not all PM deposited on the particulate filter has been oxidized. Specifically, the ECU 8 determines whether or not all the PM deposited on the particulate filter has been oxidized by using the same method as the process of S106 described above. If a negative determination is made in the process of S110, the ECU 8 returns to the process of S109 and continues to execute the second regeneration process. On the other hand, if an affirmative determination is made in the processing of S110, the ECU 8 proceeds to the processing of S111.
 S111の処理では、ECU8は、燃料添加弁7から排気中への燃料添加を停止させることにより、第二再生処理を終了する。そして、ECU8は、S108の処理へ進み、該ECU8に保持されているアッシュ堆積量を更新する。なお、ECU8は、第二再生処理の実行中に差圧センサ5の測定値(前後差圧)ΔPが前記所定の上限値ΔPlmt以下に低下すると、その時点で第二再生処理から第一再生処理へ移行してもよい。 In the process of S111, the ECU 8 ends the second regeneration process by stopping the fuel addition from the fuel addition valve 7 into the exhaust. Then, the ECU 8 proceeds to the process of S108, and updates the ash accumulation amount held in the ECU 8. When the measured value (front-rear differential pressure) ΔP of the differential pressure sensor 5 falls below the predetermined upper limit value ΔPlmt during execution of the second regeneration process, the ECU 8 changes from the second regeneration process to the first regeneration process at that time. You may move to.
 また、前記S102の処理において否定判定された場合は、第一PM堆積量ΣPM1及び第二PM堆積量ΣPM2が実際のPM堆積量から乖離していないとみなすことができるため、ECU8は、通常どおりに再生処理を実行する。すなわち、ECU8は、前記S102処理において否定判定された場合は、S112の処理へ進み、前記S101の処理で求められた第一PM堆積量ΣPM1が前述した所定の再生閾値ΣPMregより大きいか否かを判別する。S112の処理において否定判定された場合は、ECU8は、本処理ルーチンの実行を終了する。一方、S112の処理において肯定判定された場合は、ECU8は、S105の処理へ進み、第一再生処理を実行する。 Further, when a negative determination is made in the process of S102, it can be considered that the first PM accumulation amount ΣPM1 and the second PM accumulation amount ΣPM2 are not deviated from the actual PM accumulation amount. The playback process is executed. That is, if a negative determination is made in S102, the ECU 8 proceeds to S112, and determines whether or not the first PM accumulation amount ΣPM1 obtained in S101 is greater than the predetermined regeneration threshold ΣPMreg. Determine. When a negative determination is made in the process of S112, the ECU 8 ends the execution of this process routine. On the other hand, if an affirmative determination is made in the process of S112, the ECU 8 proceeds to the process of S105 and executes the first regeneration process.
 以上述べたようにECU8が図6の処理ルーチンを実行することにより、本発明に係わる「制御手段」が実現される。よって、ECU8又はパティキュレートフィルタの交換等に起因して、第一PM堆積量ΣPM1と第二PM堆積量ΣPM2との少なくとも一方が実際のPM堆積量から乖離した場合に、パティキュレートフィルタを過昇温させることなく、該パティキュレートフィルタに堆積しているPMを酸化及び除去することができる。さらに、パティキュレートフィルタに堆積している全てのPMが酸化及び除去された際の差圧センサ5の測定値に基づいて実際のアッシュ堆積量を求めることにより、ECU8に保持されているアッシュ堆積量を更新することができるため、それ以降にECU8によって求められる第一PM堆積量ΣPM1及び第二PM堆積量ΣPM2の精度を高めることができる。 As described above, the “control means” according to the present invention is realized by the ECU 8 executing the processing routine of FIG. 6. Therefore, when at least one of the first PM accumulation amount ΣPM1 and the second PM accumulation amount ΣPM2 deviates from the actual PM accumulation amount due to replacement of the ECU 8 or the particulate filter, the particulate filter is excessively elevated. The PM deposited on the particulate filter can be oxidized and removed without heating. Further, the actual ash deposition amount is obtained based on the measured value of the differential pressure sensor 5 when all the PM deposited on the particulate filter is oxidized and removed, whereby the ash deposition amount held in the ECU 8 is obtained. Therefore, it is possible to improve the accuracy of the first PM accumulation amount ΣPM1 and the second PM accumulation amount ΣPM2 obtained by the ECU 8 thereafter.
<他の実施形態>
 前述の実施形態では、本発明を圧縮着火式の内燃機関(ディーゼルエンジン)に適用する例について述べたが、本発明を火花点火式の内燃機関(ガソリンエンジン)に適用することもできる。火花点火式の内燃機関の排気温度は、圧縮着火式の内燃機関の排気温度より高いため、火花点火式の内燃機関の運転期間中に、パティキュレートフィルタの温度がPMの酸化可能な温度まで上昇する機会が多い。よって、火花点火式の内燃機関における第一再生処理は、パティキュレートフィルタの温度がPMの酸化可能な温度であり、且つ減速運転時等のフューエルカット運転要求が発生したときに、フューエルカット運転を所定期間実行(燃料噴射を所定期間停止)する方法によって行われる。このような方法によって第一再生処理が行われると、パティキュレートフィルタが酸化雰囲気に曝されるため、該パティキュレートフィルタに堆積しているPMが酸化及び除去される。なお、ここでいう「所定期間」は、フューエルカット運転の実行期間が該所定期間以下であれば、パティキュレートフィルタを過昇温させることなく、該パティキュレートフィルタに堆積しているPMを酸化及び除去することができる期間であり、本発明の「第一再生期間」に相当する。
<Other embodiments>
In the above-described embodiment, the example in which the present invention is applied to a compression ignition type internal combustion engine (diesel engine) has been described. However, the present invention can also be applied to a spark ignition type internal combustion engine (gasoline engine). Since the exhaust temperature of a spark ignition internal combustion engine is higher than the exhaust temperature of a compression ignition internal combustion engine, the temperature of the particulate filter rises to the oxidizable temperature of PM during the operation of the spark ignition internal combustion engine. There are many opportunities to do. Therefore, the first regeneration process in the spark ignition type internal combustion engine performs the fuel cut operation when the temperature of the particulate filter is a temperature at which PM can be oxidized and a fuel cut operation request such as during deceleration operation occurs. This is performed by a method of executing for a predetermined period (stopping fuel injection for a predetermined period). When the first regeneration process is performed by such a method, the particulate filter is exposed to an oxidizing atmosphere, so that PM deposited on the particulate filter is oxidized and removed. Here, the “predetermined period” means that if the execution period of the fuel cut operation is equal to or shorter than the predetermined period, the PM deposited on the particulate filter is oxidized and oxidized without excessively raising the temperature of the particulate filter. This is a period that can be removed, and corresponds to the “first regeneration period” of the present invention.
 上記した方法で第一再生処理が行われる火花点火式の内燃機関において、ECU8又はパティキュレートフィルタの交換等に起因して、第一PM堆積量ΣPM1と第二PM堆積量ΣPM2との少なくとも一方が実際のPM堆積量から乖離すると、前述した圧縮着火式の内燃機関の場合と同様に、第一PM堆積量ΣPM1と第二PM堆積量ΣPM2との間にも乖離が生じる。そこで、第一PM堆積量ΣPM1と第二PM堆積量ΣPM2との差が所定の閾値ΔΣPMthre以上である場合に、差圧センサ5の測定値(前後差圧)ΔPが前記所定の上限値ΔPlmt以下であれば、上記した方法による第一再生処理を実行し、差圧センサ5の測定値(前後差圧)ΔPが前記所定の上限値ΔPlmtより大きければ、上記した方法による第一再生処理を実行しなければよい。そして、第一PM堆積量ΣPM1と第二PM堆積量ΣPM2との差が所定の閾値ΔΣPMthre以上であり、且つ差圧センサ5の測定値(前後差圧)ΔPが前記所定の上限値ΔPlmtより大きい場合には、前記第一再生期間より短い第二再生期間のフューエルカット運転を実行する方法で第二再生処理を実行することにより、フューエルカット運転期間中に酸化されるPMの量を少なく抑えればよい。なお、第二再生期間は、差圧センサ5の測定値(前後差圧)ΔPが大きくなるほど、且つパティキュレートフィルタの温度が高くなるほど、短い期間に設定されてもよい。このように第二再生期間が定められると、第二再生処理の実行中にパティキュレートフィルタが過昇温することを、より確実に抑制することができる。 In the spark ignition internal combustion engine in which the first regeneration process is performed by the above-described method, at least one of the first PM accumulation amount ΣPM1 and the second PM accumulation amount ΣPM2 is caused by replacement of the ECU 8 or the particulate filter. When deviating from the actual PM accumulation amount, as in the case of the compression ignition type internal combustion engine described above, a deviation also occurs between the first PM accumulation amount ΣPM1 and the second PM accumulation amount ΣPM2. Therefore, when the difference between the first PM accumulation amount ΣPM1 and the second PM accumulation amount ΣPM2 is equal to or greater than a predetermined threshold value ΔΣPMthre, the measured value (front-rear differential pressure) ΔP of the differential pressure sensor 5 is equal to or less than the predetermined upper limit value ΔPlmt. If so, the first regeneration process is performed by the above-described method, and if the measured value (front-rear differential pressure) ΔP of the differential pressure sensor 5 is larger than the predetermined upper limit value ΔPlmt, the first regeneration process by the above-described method is performed. If not. The difference between the first PM accumulation amount ΣPM1 and the second PM accumulation amount ΣPM2 is equal to or greater than a predetermined threshold value ΔΣPMthre, and the measured value (front-rear differential pressure) ΔP of the differential pressure sensor 5 is greater than the predetermined upper limit value ΔPlmt. In this case, the amount of PM oxidized during the fuel cut operation period can be reduced by executing the second regeneration process by performing the fuel cut operation in the second regeneration period shorter than the first regeneration period. That's fine. The second regeneration period may be set to a shorter period as the measured value (front / rear differential pressure) ΔP of the differential pressure sensor 5 increases and the temperature of the particulate filter increases. When the second regeneration period is thus determined, it is possible to more reliably suppress the particulate filter from being excessively heated during execution of the second regeneration process.
 ここで、火花点火式の内燃機関において、パティキュレートフィルタに堆積しているPMを酸化及び除去する手順について図7に基づいて説明する。図7は、内燃機関1のフューエルカット運転が開始されたことをトリガとして、ECU8によって実行される処理ルーチンである。この処理ルーチンは、予めECU8のROM等に記憶されているものとする。 Here, a procedure for oxidizing and removing PM deposited on the particulate filter in the spark ignition type internal combustion engine will be described with reference to FIG. FIG. 7 is a processing routine executed by the ECU 8 triggered by the start of the fuel cut operation of the internal combustion engine 1. This processing routine is assumed to be stored in advance in the ROM of the ECU 8 or the like.
 図7の処理ルーチンでは、ECU8は、先ずS201の処理において、排気温度センサ6の測定値からパティキュレートフィルタの温度を演算し、その温度が所定温度以上であるか否かを判別する。ここでいう所定温度は、パティキュレートフィルタに堆積しているPMが酸化し得る最低の温度である。S201の処理において否定判定された場合は、ECU8は、本処理ルーチンの実行を終了する。一方、S201の処理において肯定判定された場合は、ECU8は、S202の処理へ進む。 In the processing routine of FIG. 7, the ECU 8 first calculates the temperature of the particulate filter from the measured value of the exhaust temperature sensor 6 in the processing of S201, and determines whether or not the temperature is equal to or higher than a predetermined temperature. The predetermined temperature here is the lowest temperature at which PM deposited on the particulate filter can be oxidized. If a negative determination is made in the processing of S201, the ECU 8 ends the execution of this processing routine. On the other hand, if a positive determination is made in the process of S201, the ECU 8 proceeds to the process of S202.
 S202の処理では、ECU8は、許可フラグがオンであるか否かを判別する。ここでいう許可フラグは、第一PM堆積量ΣPM1と第二PM堆積量ΣPM2との差が所定の閾値ΔΣPMthre未満である場合、及び第一PM堆積量ΣPM1と第二PM堆積量ΣPM2との差が所定の閾値ΔΣPMthre以上であって、且つ差圧センサ5の測定値(前後差圧)ΔPが所定の上限値ΔPlmt以下である場合に、オンにされるフラグである。なお、第一PM堆積量ΣPM1と第二PM堆積量ΣPM2との差が所定の閾値ΔΣPMthre以上であって、且つ差圧センサ5の測定値(前後差圧)ΔPが所定の上限値ΔPlmtより大きい場合は、許可フラグがオフにされるものとする。この許可フラグのオンとオフとの切り換え手順については、後述する。 In the process of S202, the ECU 8 determines whether or not the permission flag is on. Here, the permission flag indicates that the difference between the first PM deposition amount ΣPM1 and the second PM deposition amount ΣPM2 is less than a predetermined threshold ΔΣPMthre, and the difference between the first PM deposition amount ΣPM1 and the second PM deposition amount ΣPM2. Is a flag that is turned on when the value is equal to or greater than a predetermined threshold value ΔΣPMthre and the measured value (front-rear differential pressure) ΔP of the differential pressure sensor 5 is equal to or less than a predetermined upper limit value ΔPlmt. Note that the difference between the first PM accumulation amount ΣPM1 and the second PM accumulation amount ΣPM2 is equal to or greater than a predetermined threshold value ΔΣPMthre, and the measured value (front-rear differential pressure) ΔP of the differential pressure sensor 5 is greater than a predetermined upper limit value ΔPlmt. In this case, the permission flag is turned off. The procedure for switching the permission flag on and off will be described later.
 前記S202の処理において肯定判定された場合は、フューエルカット運転が前記第一再生期間にわたって実行されても、パティキュレートフィルタが過昇温しないとみなすことができる。そこで、ECU8は、S203の処理へ進み、フューエルカット運転が開始されてから前記第一再生期間が経過したか否かを判別する。S203の処理において否定判定された場合は、ECU8は、該S203の処理を繰り返し実行する。一方、S203の処理において肯定判定された場合は、ECU8は、S205の処理へ進み、フューエルカット運転を終了させる。 If an affirmative determination is made in the process of S202, it can be considered that the particulate filter does not overheat even if the fuel cut operation is performed over the first regeneration period. Therefore, the ECU 8 proceeds to the process of S203 and determines whether or not the first regeneration period has elapsed since the fuel cut operation was started. When a negative determination is made in the process of S203, the ECU 8 repeatedly executes the process of S203. On the other hand, if an affirmative determination is made in the process of S203, the ECU 8 proceeds to the process of S205 and ends the fuel cut operation.
 また、前記S202の処理において否定判定された場合は、フューエルカット運転が前記第一再生期間にわたって実行されると、パティキュレートフィルタが過昇温する可能性があるとみなすことができる。そこで、ECU8は、S204の処理へ進み、フューエルカット運転が開始されてから前記第二再生期間が経過したか否かを判別する。S204の処理において否定判定された場合は、ECU8は、該S204の処理を繰り返し実行する。一方、S204の処理において肯定判定された場合は、ECU8は、S205の処理へ進み、フューエルカット運転を終了させる。 If a negative determination is made in the process of S202, it can be considered that the particulate filter may overheat if the fuel cut operation is performed over the first regeneration period. Therefore, the ECU 8 proceeds to the process of S204, and determines whether or not the second regeneration period has elapsed since the fuel cut operation was started. If a negative determination is made in the process of S204, the ECU 8 repeatedly executes the process of S204. On the other hand, when an affirmative determination is made in the process of S204, the ECU 8 proceeds to the process of S205 and ends the fuel cut operation.
 なお、上記した図7の処理ルーチンの実行途中において、S205の処理が実行される前に、内燃機関1のフューエルカット運転が終了された場合は、ECU8は、本処理ルーチンの実行を終了するものとする。 If the fuel cut operation of the internal combustion engine 1 is terminated before the process of S205 is performed during the process routine of FIG. 7, the ECU 8 terminates the execution of this process routine. And
 次に、上記した許可フラグのオンとオフとを切り換える手順について、図8に沿って説明する。図8は、上記した許可フラグのオンとオフとを切り換える際にECU8によって実行される処理ルーチンを示すフローチャートである。この処理ルーチンは、予めECU8のROMに記憶されており、内燃機関1の運転期間中にECU8によって繰り返し実行される処理ルーチンである。なお、図8の処理ルーチンにおいて、前述した図6の処理ルーチンと同様の処理には、同一の符合を付している。 Next, the procedure for switching the permission flag on and off will be described with reference to FIG. FIG. 8 is a flowchart showing a processing routine executed by the ECU 8 when the permission flag is switched on and off. This processing routine is stored in advance in the ROM of the ECU 8 and is repeatedly executed by the ECU 8 during the operation period of the internal combustion engine 1. In the processing routine of FIG. 8, the same reference numerals are given to the processing similar to the processing routine of FIG. 6 described above.
 図8の処理ルーチンでは、前述した図6の処理ルーチンのS105乃至S112の処理の代わりに、S301乃至S302の処理が実行される。また、前述した図6の処理ルーチンでは、S102の処理において否定判定された場合に、S112の処理が実行されるが、図8の処理ルーチンでは、S102の処理において否定判定された場合に、S301の処理が実行される。 In the processing routine of FIG. 8, the processing of S301 to S302 is executed instead of the processing of S105 to S112 of the processing routine of FIG. In the processing routine of FIG. 6 described above, when a negative determination is made in the processing of S102, the processing of S112 is executed. In the processing routine of FIG. 8, when a negative determination is made in the processing of S102, S301 is executed. The process is executed.
 詳細には、図8の処理ルーチンにおいて、S102の処理で否定判定された場合、及びS104の処理で肯定判定された場合に、ECU8は、S301の処理へ進み、上記した許可フラグをオンにする。一方、S104の処理において否定判定された場合は、ECU8は、S302の処理へ進み、上記した許可フラグをオフにする。 Specifically, in the processing routine of FIG. 8, when a negative determination is made in the processing of S102 and when a positive determination is made in the processing of S104, the ECU 8 proceeds to the processing of S301 and turns on the above-described permission flag. . On the other hand, if a negative determination is made in the process of S104, the ECU 8 proceeds to the process of S302 and turns off the permission flag described above.
 以上述べた手順によれば、火花点火式の内燃機関において、ECU8又はパティキュレートフィルタが交換された場合に、パティキュレートフィルタを過昇温させることなく、該パティキュレートフィルタに堆積しているPMを酸化及び除去することができる。さらに、パティキュレートフィルタに堆積している全てのPMが酸化及び除去された際の差圧センサ5の測定値に基づいて実際のアッシュ堆積量を求めることにより、ECU8に保持されているアッシュ堆積量を更新することもできる。 According to the procedure described above, in the spark ignition type internal combustion engine, when the ECU 8 or the particulate filter is replaced, the PM accumulated on the particulate filter is increased without excessively raising the temperature of the particulate filter. It can be oxidized and removed. Further, the actual ash deposition amount is obtained based on the measured value of the differential pressure sensor 5 when all the PM deposited on the particulate filter is oxidized and removed, whereby the ash deposition amount held in the ECU 8 is obtained. Can also be updated.
1 内燃機関
2 燃料噴射弁
3 排気管
4 フィルタケーシング
5 差圧センサ
6 排気温度センサ
7 燃料添加弁
8 ECU
1 Internal combustion engine 2 Fuel injection valve 3 Exhaust pipe 4 Filter casing 5 Differential pressure sensor 6 Exhaust temperature sensor 7 Fuel addition valve 8 ECU

Claims (3)

  1.  内燃機関の排気通路に配置されたパティキュレートフィルタと、
     前記パティキュレートフィルタより上流の排気圧力と前記パティキュレートフィルタより下流の排気圧力との差である前後差圧を測定する差圧センサと、
    を備えた排気浄化システムに適用される制御装置であって、
     前記内燃機関の運転履歴に基づいて、前記パティキュレートフィルタに堆積しているアッシュの量であるアッシュ堆積量を演算する第一演算手段と、
     前記差圧センサの測定値と前記第一演算手段により演算されたアッシュ堆積量とに基づいて、前記パティキュレートフィルタに堆積しているPMの量であるPM堆積量を演算する第二演算手段と、
     前記内燃機関の運転履歴に基づいて、前記パティキュレートフィルタに堆積しているPM量の推定値である推定PM堆積量を推定する推定手段と、
     前記第二演算手段により演算されたPM堆積量と前記推定手段により推定された推定PM堆積量との差が所定の閾値以上である場合に、前記差圧センサの測定値が所定の上限値以下であれば、前記パティキュレートフィルタを所定の第一再生温度まで昇温させることにより、前記パティキュレートフィルタに堆積しているPMを酸化及び除去する処理である第一再生処理を実行し、前記差圧センサの測定値が前記所定の上限値より大きければ、前記第一再生処理を実行せずに、前記パティキュレートフィルタを前記所定の第一再生温度より低く、且つPMが酸化可能な温度である第二再生温度まで昇温させる処理である第二再生処理を実行する制御手段と、
    を備える排気浄化システムの制御装置。
    A particulate filter disposed in the exhaust passage of the internal combustion engine;
    A differential pressure sensor for measuring a differential pressure before and after that is a difference between an exhaust pressure upstream of the particulate filter and an exhaust pressure downstream of the particulate filter;
    A control device applied to an exhaust purification system comprising:
    First calculation means for calculating an ash accumulation amount that is an amount of ash accumulated on the particulate filter based on an operation history of the internal combustion engine;
    Second computing means for computing a PM deposition amount, which is the amount of PM deposited on the particulate filter, based on the measured value of the differential pressure sensor and the ash deposition amount computed by the first computing means; ,
    Estimating means for estimating an estimated PM accumulation amount which is an estimated value of the PM amount accumulated on the particulate filter based on an operation history of the internal combustion engine;
    When the difference between the PM accumulation amount calculated by the second calculation means and the estimated PM accumulation amount estimated by the estimation means is equal to or greater than a predetermined threshold value, the measured value of the differential pressure sensor is equal to or less than a predetermined upper limit value. If so, the first regeneration process, which is a process for oxidizing and removing PM deposited on the particulate filter by increasing the temperature of the particulate filter to a predetermined first regeneration temperature, is performed, and the difference If the measured value of the pressure sensor is greater than the predetermined upper limit value, the particulate filter is set to a temperature at which the particulate filter is lower than the predetermined first regeneration temperature and PM can be oxidized without executing the first regeneration process. Control means for executing a second regeneration process which is a process for raising the temperature to the second regeneration temperature;
    An exhaust purification system control apparatus comprising:
  2.  前記第一再生処理は、前記内燃機関のフューエルカット運転要求が発生したときに、フューエルカット運転を所定の第一再生期間実行することにより、前記パティキュレートフィルタに堆積しているPMを酸化及び除去する処理であり、
     前記第二再生処理は、前記第二演算手段により演算されたPM堆積量と前記推定手段により推定された推定PM堆積量との差が前記所定の閾値以上である場合に、前記差圧センサの測定値が前記所定の上限値より大きければ、前記内燃機関のフューエルカット運転要求が発生したときに、フューエルカット運転を前記第一再生期間より短い第二再生期間実行する処理である請求項1に記載の排気浄化システムの制御装置。
    The first regeneration process oxidizes and removes PM deposited on the particulate filter by executing a fuel cut operation for a predetermined first regeneration period when a fuel cut operation request for the internal combustion engine is generated. Process
    In the second regeneration process, when the difference between the PM accumulation amount calculated by the second calculation means and the estimated PM accumulation amount estimated by the estimation means is equal to or greater than the predetermined threshold value, the differential pressure sensor The process according to claim 1, wherein if the measured value is larger than the predetermined upper limit value, the fuel cut operation is executed for a second regeneration period shorter than the first regeneration period when a fuel cut operation request of the internal combustion engine is generated. The control apparatus of the exhaust gas purification system described.
  3.  前記制御手段は、前記第一再生処理を終了した際の前記差圧センサの測定値から前記パティキュレートフィルタに実際に堆積しているアッシュの量を演算し、そのアッシュの量に基づいて前記第一演算手段により演算されたアッシュ堆積量を修正する請求項1又は2に記載の排気浄化システムの制御装置。 The control means calculates the amount of ash actually deposited on the particulate filter from the measured value of the differential pressure sensor when the first regeneration process is finished, and based on the amount of ash, The exhaust purification system control device according to claim 1 or 2, wherein the ash accumulation amount calculated by one calculation means is corrected.
PCT/JP2016/066304 2015-06-02 2016-06-01 Device for controlling water purification system WO2016194984A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680025714.5A CN107532491B (en) 2015-06-02 2016-06-01 The control device of emission control system
US15/578,449 US10125707B2 (en) 2015-06-02 2016-06-01 Control apparatus for exhaust gas purification system
DE112016002484.3T DE112016002484T5 (en) 2015-06-02 2016-06-01 Control unit for an exhaust gas purification system
KR1020177032915A KR101947942B1 (en) 2015-06-02 2016-06-01 Control device of exhaust purification system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015112598 2015-06-02
JP2015-112598 2015-06-02
JP2016100561A JP6233450B2 (en) 2015-06-02 2016-05-19 Control device for exhaust purification system
JP2016-100561 2016-05-19

Publications (1)

Publication Number Publication Date
WO2016194984A1 true WO2016194984A1 (en) 2016-12-08

Family

ID=57440383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066304 WO2016194984A1 (en) 2015-06-02 2016-06-01 Device for controlling water purification system

Country Status (1)

Country Link
WO (1) WO2016194984A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111502851A (en) * 2019-01-07 2020-08-07 丰田自动车株式会社 Exhaust gas purification device for internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146829A (en) * 2005-11-07 2007-06-14 Nissan Motor Co Ltd Exhaust emission control method and exhaust emission control device
JP2008057443A (en) * 2006-08-31 2008-03-13 Denso Corp Exhaust emission control device
JP2014001740A (en) * 2013-09-06 2014-01-09 Mitsubishi Heavy Ind Ltd Exhaust emission control device and method for engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146829A (en) * 2005-11-07 2007-06-14 Nissan Motor Co Ltd Exhaust emission control method and exhaust emission control device
JP2008057443A (en) * 2006-08-31 2008-03-13 Denso Corp Exhaust emission control device
JP2014001740A (en) * 2013-09-06 2014-01-09 Mitsubishi Heavy Ind Ltd Exhaust emission control device and method for engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111502851A (en) * 2019-01-07 2020-08-07 丰田自动车株式会社 Exhaust gas purification device for internal combustion engine

Similar Documents

Publication Publication Date Title
JP6233450B2 (en) Control device for exhaust purification system
JP4403961B2 (en) Exhaust gas purification device for internal combustion engine
US9645068B2 (en) Method and system for particulate filter leakage detection
JP6202049B2 (en) Filter failure diagnosis device for internal combustion engine
CN107208512B (en) Internal combustion engine and method for estimating amount of component of exhaust gas
CN106567765B (en) Method and system for particulate filter leak detection
JP2006291788A (en) Exhaust emission control device for internal combustion engine
JP2004293340A (en) Exhaust gas purifier
JP2009097410A (en) Particulate matter collection amount estimation device, and filter regeneration system in particulate filter
CN101010495A (en) Particulate matter remaining amount estimating method for particulate filter and particulate filter regenerating method
JP6089945B2 (en) Control device for exhaust purification system
JP2008121557A (en) Exhaust emission control device of internal combustion engine
JP6510459B2 (en) DPF manual regeneration control device
JP2015218605A (en) Internal combustion engine exhaust emission control device
WO2016194984A1 (en) Device for controlling water purification system
JP5305244B2 (en) Exhaust gas purification device for internal combustion engine
JP2009270502A (en) Exhaust emission control device of internal combustion engine
JP5724943B2 (en) Exhaust gas purification device for internal combustion engine
JP4192617B2 (en) Exhaust gas purification device for internal combustion engine
WO2014132443A1 (en) Exhaust purification device for spark-ignited internal combustion engine
JP2017150411A (en) Exhaust purification system for internal combustion engine
JP5736759B2 (en) Exhaust gas purification device for internal combustion engine
JP5366015B2 (en) Exhaust gas purification device for internal combustion engine
CN107060970B (en) Method and system for particulate filter leak detection
JP2006009675A (en) Exhaust emission control device of internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803418

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177032915

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15578449

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016002484

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16803418

Country of ref document: EP

Kind code of ref document: A1