WO2016194968A1 - Metal layer formation method - Google Patents

Metal layer formation method Download PDF

Info

Publication number
WO2016194968A1
WO2016194968A1 PCT/JP2016/066246 JP2016066246W WO2016194968A1 WO 2016194968 A1 WO2016194968 A1 WO 2016194968A1 JP 2016066246 W JP2016066246 W JP 2016066246W WO 2016194968 A1 WO2016194968 A1 WO 2016194968A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
plating
metal layer
forming
region
Prior art date
Application number
PCT/JP2016/066246
Other languages
French (fr)
Japanese (ja)
Inventor
国司 多通夫
吉田 育史
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2016194968A1 publication Critical patent/WO2016194968A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern

Definitions

  • the present invention relates to a method for forming a metal layer, particularly a wiring.
  • Ceramic materials and metal materials are widely used as constituent materials for electronic components, and metal materials are used particularly for electrodes, terminals, circuit wiring, and the like.
  • Patent Document 1 a technique of forming a wiring with nano ink using an inkjet technique is known (Patent Document 1).
  • metal nanoparticles protected with an appropriate stabilizer are mixed with a solvent to form a nano ink, which is drawn on a substrate by an ink jet technique, and subjected to heat treatment to fuse and bond the nanoparticles.
  • This technology is classified as a direct metallization method that “accumulates a necessary amount of nanoparticles only at a necessary site”, and is expected to be developed as a low-cost and highly efficient process.
  • an object of the present invention is to provide a method capable of solving the above-mentioned problems relating to cost, processing time, resistance value, and each metal while taking advantage of the direct metallization method using the ink jet technology. To do.
  • the present inventors are characterized by “accumulating a necessary amount of nanoparticles only at a necessary site”, which is a feature of the direct metallization method using the ink jet technology. Going one step further, the idea was to stop the accumulation of nanoparticles from thinning (discontinuous), and then form a continuous film (or continuous layer) collectively by plating or the like. That is, in the present invention, as shown in FIG. 3A, the nanoparticles 102 are not accumulated on the wiring formation region 100 without gaps, but as shown in FIG. Nanoparticles 102 are thinned out on 100 (discontinuously formed), and a metal layer is formed thereon to connect the nanoparticles 102 to each other.
  • the nanoparticle 102 in FIG. 3 does not mean one nanoparticle, but may be an aggregate of a certain number of nanoparticles.
  • a method of forming a metal layer on a substrate On the substrate, a metal region formed from metal fine particles is formed discontinuously, A method is then provided that includes forming a metal layer on the discontinuous metal regions to connect them.
  • an electronic component manufacturing method including forming a metal layer by the above method.
  • the processing time can be shortened, and further, the amount of ink required can be reduced. Since such an ink is an expensive special ink, the cost can be greatly reduced by reducing the required amount.
  • the metal region formed by the ink containing metal fine particles is covered by the metal layer formed thereon, migration and oxidation can be suppressed, and the ink containing silver and copper fine particles can be used without any problem. It becomes possible to do.
  • the conductivity of the metal region formed by the ink is not a big problem, and the degree of freedom in the composition of the ink is improved.
  • FIGS. 1A to 1C are diagrams for schematically explaining the metal layer forming method of the present invention.
  • FIG. 2A shows the arrangement of dot-like metal areas when there are four adjacent metal areas
  • FIG. 2B shows the arrangement of dot-like metal areas when there are six adjacent metal areas.
  • FIG. 3A is an image diagram of metal fine particles arranged in the conventional method
  • FIG. 3B is an image diagram of metal fine particles arranged in the present invention.
  • the method of the present invention comprises two steps, namely: Step 1: a step of discontinuously forming a metal region formed from metal fine particles on a substrate; Step 2: forming a metal layer on the discontinuous metal regions so as to connect them; including.
  • Step 1 Step of discontinuously forming a metal region formed of metal fine particles on a substrate
  • the substrate 2 is prepared (FIG. 1A).
  • substrate is not specifically limited, Substrates, such as a ceramic, resin, glass, can be used according to a use. In one embodiment, the substrate is preferably ceramic.
  • a metal region 6 is formed on the substrate using metal fine particles.
  • the metal region 6 is formed discontinuously in a portion corresponding to the wiring 4 (FIG. 1B). By forming the metal region 6 discontinuously, the amount of necessary metal fine particles can be reduced.
  • the method for forming the metal region is not particularly limited, and examples thereof include inkjet printing and screen printing. However, fine drawing is possible, and pre-processing such as masking is not required, and inkjet processing has a short processing time. Is preferred.
  • a technique for drawing a wiring or the like on a substrate by ink-jet printing is known, and is described in Patent Document 1, for example.
  • Commercially available inkjet printers can be used for inkjet printing. For example, Konica Minolta EB100, XY100 (manufactured by Konica Minolta IJ Co., Ltd.), Dimatics Material Printer DMP-3000, Dimatics Examples thereof include a material printer DMP-2831 (manufactured by Fuji Film Co., Ltd.).
  • the conductive ink used for ink jet printing contains metal fine particles and a solvent, and other components such as a stabilizer as required.
  • a metal region is formed by the metal fine particles contained therein.
  • the metal constituting the metal fine particles is not particularly limited, but preferably gold, silver, copper, a combination thereof, or an alloy thereof can be used.
  • the average particle diameter of the metal fine particles is preferably 1 nm to 0.5 ⁇ m, more preferably 5 nm to 100 nm, still more preferably 5 nm to 50 nm, for example, 5 nm to 30 nm.
  • the concentration of the metal fine particles in the conductive ink is not particularly limited, and may be, for example, 1 wt% or more and 50 wt% or less, preferably 5 wt% or more and 30 wt% or less with respect to the entire conductive ink.
  • the conductive ink commercially available ink can be used, and examples thereof include AGK101 / AGK102 manufactured by Kishu Giken Co., Ltd., NBSIJ-MU01 manufactured by Mitsubishi Paper Industries, Ltd., and nano ink manufactured by Colloidal Ink.
  • a post-treatment such as heat treatment may be performed.
  • the size of the metal region 6 is not particularly limited, and for example, the equivalent area circle diameter is 0.5 ⁇ m or more, preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more.
  • the area equivalent circle diameter is not particularly limited, but is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and even more preferably 30 ⁇ m or less from the viewpoint of reducing the amount of conductive ink to be used.
  • the area equivalent circle diameter can be measured using an SEM (scanning electron microscope).
  • the area ratio of the metal region to the region for forming the metal layer is not particularly limited, but is, for example, 10% to 90%, preferably 30% to 80%, and more preferably 40% to 60%. From the viewpoint of increasing the bonding strength between the metal region and the metal layer, it is preferably as large as possible. Further, from the viewpoint of reducing the amount of conductive ink to be used, it is preferably as small as possible.
  • the discontinuous metal region 6 may be formed at an arbitrary position and shape in a portion corresponding to the wiring 4, and may be formed in a dot shape, a broken line shape, or a barcode shape, for example.
  • the metal regions 6 are arranged in a dot shape. It is preferable that the metal area
  • the distance between adjacent metal regions is not particularly limited, but is preferably 5 ⁇ m to 1 mm, more preferably 10 ⁇ m to 300 ⁇ m, and even more preferably 20 ⁇ m to 100 ⁇ m. Hereinafter, it is more preferably 20 ⁇ m or more and 50 ⁇ m or less, for example, 30 ⁇ m or 20 ⁇ m.
  • Step 2 Forming a metal layer on the discontinuous metal region so as to connect them
  • a metal layer is formed on the metal region 6 formed in step 1, and the metal region 6 is connected to form the wiring 4 (FIG. 1C).
  • the method for forming the metal layer is not particularly limited, but is preferably formed by plating.
  • the plating process is advantageous in that it is easy to operate and does not apply a load to the substrate.
  • step 1 since the metal region 6 is formed in the portion corresponding to the wiring 4, a plating reaction (which may be either electrolytic plating or electroless plating) occurs through this metal region, and the metal layer ( Wiring) is formed.
  • a plating reaction which may be either electrolytic plating or electroless plating
  • the metal layer (wiring) is formed.
  • the metal region 6 is formed discontinuously (for example, in a dot shape), but is connected by a metal layer formed by plating. Specifically, the plating layer is first formed on the metal region, but the plating deposits formed on the adjacent metal regions cross the metal region in the lateral direction (that is, the direction along the substrate surface). Can also grow and come into contact with each other to form a single metal layer.
  • the lateral growth of the plating deposit can be achieved by adjusting the composition of the plating solution, the time of the plating treatment, and the like.
  • the plating treatment may be either an electrolytic plating treatment or an electroless plating treatment. Since the metal region is conductive, the electroplating process is possible, and if the metal forming the metal region has catalytic activity, the electroless plating process is possible. When the metal forming the metal region does not have catalytic activity, electroless plating can be performed by applying a palladium catalyst or the like having catalytic activity to the metal region.
  • metal which comprises a metal layer For example, Ni, Cu, Ag, Sn, Au etc. are mentioned.
  • the plating process may be performed in multiple stages.
  • the metal layer is composed of a plurality of layers.
  • the plurality of layers may be made of the same metal or different metals.
  • strike plating (base plating) treatment can be performed, and then main plating treatment can be performed. Moreover, you may perform this plating process in multiple times.
  • the metal layer may be formed by performing strike plating, thereby connecting discontinuous metal regions, and then growing the plating in the thickness direction by main plating.
  • the strike plating and the main plating may be copper plating.
  • the strike plating bath for strike plating preferably comprises 10-30 g / L copper pyrophosphate, 80-250 g / L pyrophosphate and 5-20 g / L potassium oxalate, with a pH of 7.5-10. .0.
  • the bath temperature may be 15 to 50 ° C.
  • the current density may be 0.05 to 0.30 A / dm 2 .
  • the metal layer can be grown to a desired thickness by the main plating. This plating can be performed by a method well known to those skilled in the art, for example, using a commercially available copper plating solution.
  • the strike plating and the main plating may be nickel plating.
  • the strike plating bath for strike plating preferably comprises 300 to 450 g / L nickel sulfate, 35 to 55 g / L boric acid and 0.5 to 2 g / L nickel chloride with a pH of 3.5 to 5 .0.
  • the bath temperature may be 40 to 75 ° C.
  • the current density may be 0.05 to 0.30 A / dm 2 .
  • This plating can be performed by a method well known to those skilled in the art, for example, using a commercially available nickel plating solution.
  • Sn or Au or the like preferably Sn, may be plated on the nickel layer formed by the main plating. By forming such a further plating layer, solder processing or the like when connecting to another electronic component becomes easier.
  • copper plating or nickel plating may be formed on the metal region by electroless plating.
  • This electroless plating treatment is usually autocatalytic plating, and when the metal forming the metal region does not have catalytic activity, it is preferable to apply an appropriate catalyst (for example, Pd catalyst) to the place to be plated.
  • the electroless copper plating treatment can be performed by appropriately selecting conditions using a commercially available electroless copper plating solution or electroless nickel plating solution. For example, when electroless copper plating is performed, it can be performed at a pH of 11 to 13 and a bath temperature of 30 to 50 ° C. using a commercially available electroless copper plating solution (for example, OPC Copper T manufactured by Okuno Pharmaceutical Co., Ltd.).
  • electroless nickel plating When electroless nickel plating is performed, a commercially available electroless nickel plating solution (for example, IPC Nicolon GM manufactured by Okuno Pharmaceutical Co., Ltd.) is used at pH 3.5 to 5.0 and bath temperature 60 to 90 ° C. It can be carried out. Furthermore, after performing copper plating or nickel plating (preferably nickel plating), gold or tin (preferably gold plating) may be further plated. This gold or tin plating layer may be formed by electroless plating, for example, by autocatalytic plating or displacement plating.
  • electroless nickel plating solution for example, IPC Nicolon GM manufactured by Okuno Pharmaceutical Co., Ltd.
  • gold or tin preferably gold plating
  • This gold or tin plating layer may be formed by electroless plating, for example, by autocatalytic plating or displacement plating.
  • the metal layer forming method of the present invention is used in the manufacture of electronic components, particularly in the manufacture of electrodes, wirings or terminals of electronic components.
  • the present invention also provides a method for manufacturing an electronic component including forming a metal layer by the above-described method of the present invention.
  • the method of the present invention enables a plating process on a ceramic, it can be suitably used in the production of electronic components, particularly for the formation of wirings, electrodes, terminals and the like.

Abstract

The present invention relates to a method for forming a metal layer on a substrate, said method including non-continuously forming, on the substrate, metal areas formed from metal microparticles, and subsequently forming the metal layer on the non-continuous metal areas so as to connect said areas.

Description

金属層の形成方法Method for forming metal layer
 本発明は、金属層、特に配線を形成する方法に関する。 The present invention relates to a method for forming a metal layer, particularly a wiring.
 電子部品の構成材料として、セラミック材料や金属材料が広く用いられており、金属材料は、特に電極、端子または回路配線等に用いられている。 Ceramic materials and metal materials are widely used as constituent materials for electronic components, and metal materials are used particularly for electrodes, terminals, circuit wiring, and the like.
 配線形成の技術の1つとして、インクジェット技術を利用し、ナノインクで配線を形成する技術が知られている(特許文献1)。この技術は、適切な安定化剤で保護された金属ナノ粒子を溶剤と混ぜ合わせてナノインクとし、インクジェット技術で基板上に描画し、熱処理を施してナノ粒子を融着、接合させるものである。この技術は、「必要な部位にのみ必要な量のナノ粒子を集積させる」ダイレクトメタラリゼーション法に分類され、低コストかつ高効率なプロセスとして発展が大いに期待されている。 As a wiring formation technique, a technique of forming a wiring with nano ink using an inkjet technique is known (Patent Document 1). In this technique, metal nanoparticles protected with an appropriate stabilizer are mixed with a solvent to form a nano ink, which is drawn on a substrate by an ink jet technique, and subjected to heat treatment to fuse and bond the nanoparticles. This technology is classified as a direct metallization method that “accumulates a necessary amount of nanoparticles only at a necessary site”, and is expected to be developed as a low-cost and highly efficient process.
特開2006-257403号公報JP 2006-257403 A
 上記インクジェット技術を利用したダイレクトメタラリゼーション法において、通常、金属材料として、Au、AgまたはCuが用いられる。しかしながら、Auは高価であり、Agはマイグレーションを起こしやすく、Cuは酸化を受けやすいという問題があり、上記の方法は実用化にまでは至っていない。加えて、特に連続した配線を形成する場合には、大量のナノ粒子が必要となりコストが大きくなるという問題もあり、また、処理時間が長くなる。さらに、電子部品の導電部、特に配線は抵抗が低いことが求められるが、ナノインクに含まれる金属ナノ粒子以外の成分は抵抗値に影響を及ぼすので、ナノインクの組成についての制約が大きくなる。 In the direct metallization method using the inkjet technology, Au, Ag, or Cu is usually used as the metal material. However, Au is expensive, Ag is prone to migration, and Cu is susceptible to oxidation, and the above method has not yet been put into practical use. In addition, particularly in the case of forming a continuous wiring, there is a problem that a large amount of nanoparticles are required and the cost is increased, and the processing time is increased. Furthermore, although it is calculated | required that the electrical conductive part of an electronic component, especially wiring are low resistance, since components other than the metal nanoparticle contained in nano ink influence resistance value, the restrictions about the composition of nano ink become large.
 従って、本発明は、上記インクジェット技術を利用したダイレクトメタラリゼーション法の利点を生かしつつ、上記したコスト、処理時間、抵抗値、各金属についての問題点を解消できる方法を提供することを目的とする。 Accordingly, an object of the present invention is to provide a method capable of solving the above-mentioned problems relating to cost, processing time, resistance value, and each metal while taking advantage of the direct metallization method using the ink jet technology. To do.
 本発明者らは、上記の問題を解決すべく鋭意検討した結果、インクジェット技術を利用したダイレクトメタラリゼーション法の特徴である「必要な部位にのみ必要な量のナノ粒子を集積させること」から一歩進めて、ナノ粒子の集積を、間引き形成(不連続)に止め、次いで、めっき処理等により一括的に連続膜(または連続層)を形成するという考えに至った。即ち、本発明においては、図3(a)に示されるように、配線形成領域100上にナノ粒子102を隙間無く集積させるのではなく、図3(b)に示されるように、配線形成領域100上にナノ粒子102を間引き形成し(不連続に形成し)、その上に各ナノ粒子102を連結するように金属層を形成する。これにより、必要な金属ナノ粒子の量を低減することができ、さらに金属ナノ粒子がその上の金属層により覆われるのでマイグレーションおよび酸化が抑制される。尚、図3におけるナノ粒子102は、1つのナノ粒子を意味するものではなく、ある程度の数のナノ粒子の集合体であってもよい。 As a result of diligent investigations to solve the above problems, the present inventors are characterized by “accumulating a necessary amount of nanoparticles only at a necessary site”, which is a feature of the direct metallization method using the ink jet technology. Going one step further, the idea was to stop the accumulation of nanoparticles from thinning (discontinuous), and then form a continuous film (or continuous layer) collectively by plating or the like. That is, in the present invention, as shown in FIG. 3A, the nanoparticles 102 are not accumulated on the wiring formation region 100 without gaps, but as shown in FIG. Nanoparticles 102 are thinned out on 100 (discontinuously formed), and a metal layer is formed thereon to connect the nanoparticles 102 to each other. As a result, the amount of the necessary metal nanoparticles can be reduced, and the metal nanoparticles are covered with the metal layer thereon, so that migration and oxidation are suppressed. Note that the nanoparticle 102 in FIG. 3 does not mean one nanoparticle, but may be an aggregate of a certain number of nanoparticles.
 本発明の第1の要旨によれば、基板上に金属層を形成する方法であって、
 基板上に、金属微粒子から形成される金属領域を、非連続的に形成し、
 次いで、非連続の金属領域上に、これらを連結するように金属層を形成することを含む方法が提供される。
According to a first aspect of the present invention, there is provided a method of forming a metal layer on a substrate,
On the substrate, a metal region formed from metal fine particles is formed discontinuously,
A method is then provided that includes forming a metal layer on the discontinuous metal regions to connect them.
 本発明の第2の要旨によれば、上記の方法により金属層を形成することを含む電子部品の製造方法が提供される。 According to the second aspect of the present invention, there is provided an electronic component manufacturing method including forming a metal layer by the above method.
 本発明の方法によれば、金属微粒子を含むインクによる描画が、連続体から非連続体となるので、処理時間を短縮することができ、さらに、必要なインクの量を低減することができる。このようなインクは高価な特殊インクであるので、必要量を低減することにより、コストを大幅に減らすことができる。 According to the method of the present invention, since drawing with ink containing metal fine particles changes from a continuous body to a non-continuous body, the processing time can be shortened, and further, the amount of ink required can be reduced. Since such an ink is an expensive special ink, the cost can be greatly reduced by reducing the required amount.
 さらに、金属微粒子を含むインクにより形成された金属領域が、その上に形成される金属層により覆われるので、マイグレーションおよび酸化を抑制することができ、銀および銅の微粒子を含むインクを問題なく使用することが可能になる。 Furthermore, since the metal region formed by the ink containing metal fine particles is covered by the metal layer formed thereon, migration and oxidation can be suppressed, and the ink containing silver and copper fine particles can be used without any problem. It becomes possible to do.
 さらに、金属層により高い導電性が確保されるので、インクにより形成された金属領域の導電性は大きな問題とならず、インクの組成の自由度が向上する。 Furthermore, since high conductivity is ensured by the metal layer, the conductivity of the metal region formed by the ink is not a big problem, and the degree of freedom in the composition of the ink is improved.
図1(a)~(c)は、本発明の金属層の形成方法を、模式的に説明するための図である。FIGS. 1A to 1C are diagrams for schematically explaining the metal layer forming method of the present invention. 図2(a)は、隣接する金属領域が4つの場合のドット状の金属領域の配置を示し、図2(b)は、隣接する金属領域が6つの場合のドット状の金属領域の配置を示す。FIG. 2A shows the arrangement of dot-like metal areas when there are four adjacent metal areas, and FIG. 2B shows the arrangement of dot-like metal areas when there are six adjacent metal areas. Show. 図3(a)は、従来の方法において配置される金属微粒子のイメージ図であり、図3(b)は、本発明において配置される金属微粒子のイメージ図である。FIG. 3A is an image diagram of metal fine particles arranged in the conventional method, and FIG. 3B is an image diagram of metal fine particles arranged in the present invention.
 以下、本発明の方法について、基板2上に配線4を形成する方法を例として、図面を参照しながら説明する。 Hereinafter, the method of the present invention will be described with reference to the drawings, taking as an example the method of forming the wiring 4 on the substrate 2.
 本発明の方法は、2段階の工程、即ち:
 工程1:基板上に、金属微粒子から形成される金属領域を、非連続的に形成する工程;
 工程2:非連続の金属領域上に、これらを連結するように金属層を形成する工程;
を含む。
The method of the present invention comprises two steps, namely:
Step 1: a step of discontinuously forming a metal region formed from metal fine particles on a substrate;
Step 2: forming a metal layer on the discontinuous metal regions so as to connect them;
including.
 工程1:基板上に、金属微粒子から形成される金属領域を、非連続的に形成する工程 Step 1: Step of discontinuously forming a metal region formed of metal fine particles on a substrate
 まず、基板2を準備する(図1(a))。基板は、特に限定されず、用途に応じてセラミック、樹脂、ガラス等の基板を用いることができる。一の態様において、基板はセラミックであることが好ましい。 First, the substrate 2 is prepared (FIG. 1A). A board | substrate is not specifically limited, Substrates, such as a ceramic, resin, glass, can be used according to a use. In one embodiment, the substrate is preferably ceramic.
 次いで、基板上に、金属微粒子を用いて金属領域6を形成する。金属領域6は、配線4に対応する部分に、不連続に形成される(図1(b))。金属領域6を不連続に形成することにより、必要な金属微粒子の量を少なくすることができる。 Next, a metal region 6 is formed on the substrate using metal fine particles. The metal region 6 is formed discontinuously in a portion corresponding to the wiring 4 (FIG. 1B). By forming the metal region 6 discontinuously, the amount of necessary metal fine particles can be reduced.
 金属領域の形成方法は、特に限定されず、インクジェット印刷、スクリーン印刷等が挙げられるが、微細な描画が可能であり、マスクを施す処理等の前処理を必要とせず、処理時間も短いインクジェット印刷が好ましい。インクジェット印刷により基板上に配線等を描画する技術は公知であり、例えば特許文献1に記載されている。インクジェット印刷に用いるプリンターは、市販されているインクジェットプリンターを用いることができ、例えば、コニカミノルタEB100、XY100(コニカミノルタIJ株式会社製)や、ダイマティックス・マテリアルプリンターDMP-3000、ダイマティックス・マテリアルプリンターDMP-2831(富士フィルム株式会社製)等が挙げられる。 The method for forming the metal region is not particularly limited, and examples thereof include inkjet printing and screen printing. However, fine drawing is possible, and pre-processing such as masking is not required, and inkjet processing has a short processing time. Is preferred. A technique for drawing a wiring or the like on a substrate by ink-jet printing is known, and is described in Patent Document 1, for example. Commercially available inkjet printers can be used for inkjet printing. For example, Konica Minolta EB100, XY100 (manufactured by Konica Minolta IJ Co., Ltd.), Dimatics Material Printer DMP-3000, Dimatics Examples thereof include a material printer DMP-2831 (manufactured by Fuji Film Co., Ltd.).
 インクジェット印刷に用いられる導電性インクは、金属微粒子および溶剤、ならびに所望により他の成分、例えば安定化剤を含む。導電性インクを基板上に印刷することによって、そこに含まれる金属微粒子により金属領域が形成される。 The conductive ink used for ink jet printing contains metal fine particles and a solvent, and other components such as a stabilizer as required. By printing the conductive ink on the substrate, a metal region is formed by the metal fine particles contained therein.
 金属微粒子を構成する金属は、特に限定されないが、好ましくは金、銀または銅、あるいはこれらの組み合わせまたはこれらの合金を用いることができる。 The metal constituting the metal fine particles is not particularly limited, but preferably gold, silver, copper, a combination thereof, or an alloy thereof can be used.
 金属微粒子の平均粒径は、好ましくは1nm以上0.5μm以下、より好ましくは5nm以上100nm以下、さらに好ましくは5nm以上50nm以下、例えば5nm以上30nm以下であり得る。 The average particle diameter of the metal fine particles is preferably 1 nm to 0.5 μm, more preferably 5 nm to 100 nm, still more preferably 5 nm to 50 nm, for example, 5 nm to 30 nm.
 導電性インク中の金属微粒子の濃度は、特に限定されないが、例えば、導電性インク全体に対して、1wt%以上50wt%以下、好ましくは5wt%以上30wt%以下であり得る。 The concentration of the metal fine particles in the conductive ink is not particularly limited, and may be, for example, 1 wt% or more and 50 wt% or less, preferably 5 wt% or more and 30 wt% or less with respect to the entire conductive ink.
 導電性インクは、市販されているものを用いることができ、例えば、紀州技研工業株式会社製AGK101/AGK102、三菱製紙株式会社製NBSIJ-MU01、株式会社コロイダル・インク製ナノインク等が挙げられる。 As the conductive ink, commercially available ink can be used, and examples thereof include AGK101 / AGK102 manufactured by Kishu Giken Co., Ltd., NBSIJ-MU01 manufactured by Mitsubishi Paper Industries, Ltd., and nano ink manufactured by Colloidal Ink.
 好ましい態様において、導電性インクを基板上に印刷した後、熱処理などの後処理を施してもよい。 In a preferred embodiment, after the conductive ink is printed on the substrate, a post-treatment such as heat treatment may be performed.
 金属領域6の大きさは特に限定されず、例えば、面積円相当径が、0.5μm以上、好ましくは1μm以上、より好ましくは5μm以上であることが好ましい。面積円相当径を0.5μm以上とすることにより、後のめっき処理に付す場合、より高い接合強度を有する金属層を得ることができる。上記面積円相当径の上限は、特に限定されないが、使用する導電性インクの量を低減する観点から、好ましくは100μm以下、より好ましくは50μm以下、さらに好ましくは30μm以下であることが好ましい。面積円相当径は、SEM(走査型電子顕微鏡)を用いて測定することができる。 The size of the metal region 6 is not particularly limited, and for example, the equivalent area circle diameter is 0.5 μm or more, preferably 1 μm or more, more preferably 5 μm or more. By setting the area equivalent circle diameter to 0.5 μm or more, a metal layer having higher bonding strength can be obtained when subjected to subsequent plating treatment. The upper limit of the area equivalent circle diameter is not particularly limited, but is preferably 100 μm or less, more preferably 50 μm or less, and even more preferably 30 μm or less from the viewpoint of reducing the amount of conductive ink to be used. The area equivalent circle diameter can be measured using an SEM (scanning electron microscope).
 金属層を形成する領域に対する金属領域の面積比は、特に限定されないが、例えば10%以上90%以下、好ましくは30%以上80%以下、より好ましくは40%以上60%以下である。金属領域と金属層との接合強度を強くする観点からはできるだけ大きいことが好ましい。また、用いる導電性インクの量を低減する観点からは、できるだけ小さいことが好ましい。 The area ratio of the metal region to the region for forming the metal layer is not particularly limited, but is, for example, 10% to 90%, preferably 30% to 80%, and more preferably 40% to 60%. From the viewpoint of increasing the bonding strength between the metal region and the metal layer, it is preferably as large as possible. Further, from the viewpoint of reducing the amount of conductive ink to be used, it is preferably as small as possible.
 不連続な金属領域6は、配線4に対応する部分において任意の位置および形状に形成してもよく、例えばドット状、破線状またはバーコード状に形成されていてもよい。 The discontinuous metal region 6 may be formed at an arbitrary position and shape in a portion corresponding to the wiring 4, and may be formed in a dot shape, a broken line shape, or a barcode shape, for example.
 好ましい態様において、金属領域6は、ドット状に配置されている。ドット状に配置された金属領域は、均一に存在することが好ましい。図2に示されるように、隣接する、即ち最も近い距離にある金属領域6の数は、特に限定されないが、例えば4つ(図2(a))または6つ(図2(b))が好ましく、6つがより好ましい。このようにドット状に均一に配置することにより、後の金属層の形成工程において、金属領域6間の連結が容易になり、また、形成された金属層の密着性を向上させることができる。 In a preferred embodiment, the metal regions 6 are arranged in a dot shape. It is preferable that the metal area | region arrange | positioned at dot shape exists uniformly. As shown in FIG. 2, the number of adjacent metal regions 6 at the closest distance is not particularly limited. For example, 4 (FIG. 2A) or 6 (FIG. 2B) Preferably, 6 is more preferable. By arranging the dots uniformly in this manner, the metal regions 6 can be easily connected and the adhesion of the formed metal layer can be improved in the subsequent metal layer forming step.
 金属領域が不連続に形成される場合、隣接する金属領域間の距離は、特に限定されないが、好ましくは5μm以上1mm以下であり、より好ましくは10μm以上300μm以下であり、さらに好ましくは20μm以上100μm以下、さらにより好ましくは20μm以上50μm以下、例えば30μmまたは20μmである。隣接する金属領域間の距離を小さくすることにより、後のめっきによる金属層(めっき層)の形成が容易になり、また、金属層の接合強度をより高めることができる。また、隣接する金属領域間の距離をより大きくすることにより、必要な伝導性インクの量を少なくすることができる。 When the metal regions are formed discontinuously, the distance between adjacent metal regions is not particularly limited, but is preferably 5 μm to 1 mm, more preferably 10 μm to 300 μm, and even more preferably 20 μm to 100 μm. Hereinafter, it is more preferably 20 μm or more and 50 μm or less, for example, 30 μm or 20 μm. By reducing the distance between adjacent metal regions, it is easy to form a metal layer (plating layer) by subsequent plating, and the bonding strength of the metal layer can be further increased. Further, by increasing the distance between adjacent metal regions, the amount of necessary conductive ink can be reduced.
 工程2:非連続の金属領域上に、これらを連結するように金属層を形成する工程 Step 2: Forming a metal layer on the discontinuous metal region so as to connect them
 次に、工程1で形成した金属領域6上に金属層を形成し、金属領域6を連結して、配線4を形成する(図1(c))。 Next, a metal layer is formed on the metal region 6 formed in step 1, and the metal region 6 is connected to form the wiring 4 (FIG. 1C).
 金属層の形成方法は、特に限定されないが、好ましくはめっき処理により形成される。めっき処理は、操作が容易であり、基板に負荷を与えない点で有利である。 The method for forming the metal layer is not particularly limited, but is preferably formed by plating. The plating process is advantageous in that it is easy to operate and does not apply a load to the substrate.
 工程1において、配線4に対応する部分に金属領域6が形成されているので、この金属領域を介してめっき反応(電解めっきまたは無電解めっきのいずれであってもよい)が生じ、金属層(配線)が形成される。このようにめっき処理により金属層(配線)を形成することにより、基板と金属層との密着性をより高めることができる。 In step 1, since the metal region 6 is formed in the portion corresponding to the wiring 4, a plating reaction (which may be either electrolytic plating or electroless plating) occurs through this metal region, and the metal layer ( Wiring) is formed. Thus, by forming a metal layer (wiring) by plating, the adhesion between the substrate and the metal layer can be further enhanced.
 上記金属領域6は不連続(例えば、ドット状)に形成されているが、めっき処理により形成される金属層により連結される。具体的には、最初に金属領域上においてめっき層が形成されるが、隣接する金属領域上に形成しためっき析出物同士は、金属領域を越えて横方向(即ち、基板表面に沿った方向)にも成長し、互いに接触して一体となり、一の金属層を形成することができる。めっき析出物の横方向への成長は、めっき液の組成、めっき処理の時間等を調整することにより達成することができる。 The metal region 6 is formed discontinuously (for example, in a dot shape), but is connected by a metal layer formed by plating. Specifically, the plating layer is first formed on the metal region, but the plating deposits formed on the adjacent metal regions cross the metal region in the lateral direction (that is, the direction along the substrate surface). Can also grow and come into contact with each other to form a single metal layer. The lateral growth of the plating deposit can be achieved by adjusting the composition of the plating solution, the time of the plating treatment, and the like.
 めっき処理は、電解めっき処理または無電解めっき処理のいずれであってもよい。金属領域が導電性であることから電解めっき処理が可能であり、金属領域を形成する金属が触媒活性を有していれば無電解めっき処理が可能である。金属領域を形成する金属が触媒活性を有していない場合、触媒活性を有するパラジウム触媒等を金属領域に付与することにより、無電解めっきが可能になる。 The plating treatment may be either an electrolytic plating treatment or an electroless plating treatment. Since the metal region is conductive, the electroplating process is possible, and if the metal forming the metal region has catalytic activity, the electroless plating process is possible. When the metal forming the metal region does not have catalytic activity, electroless plating can be performed by applying a palladium catalyst or the like having catalytic activity to the metal region.
 金属層を構成する金属としては、特に限定されないが、例えばNi、Cu、Ag、Sn、Au等が挙げられる。 Although it does not specifically limit as a metal which comprises a metal layer, For example, Ni, Cu, Ag, Sn, Au etc. are mentioned.
 一の態様において、めっき処理は、多段階で行ってもよい。 In one embodiment, the plating process may be performed in multiple stages.
 上記のように多段階のめっき処理を行う場合、金属層は、複数の層から構成される。これら複数の層は、同じ金属から構成されていても、異なる金属から構成されていてもよい。 When performing multi-stage plating as described above, the metal layer is composed of a plurality of layers. The plurality of layers may be made of the same metal or different metals.
 例えば、まず、ストライクめっき(下地めっき)処理を行い、次いで、本めっき処理を行うことができる。また、本めっき処理を複数回行ってもよい。 For example, first, strike plating (base plating) treatment can be performed, and then main plating treatment can be performed. Moreover, you may perform this plating process in multiple times.
 例えば、ストライクめっきを施し、これにより不連続な金属領域間を連結させ、次いで、本めっきにより厚み方向にめっきを成長させることにより、金属層を形成してもよい。 For example, the metal layer may be formed by performing strike plating, thereby connecting discontinuous metal regions, and then growing the plating in the thickness direction by main plating.
 一の態様において、上記ストライクめっきおよび本めっきは、銅によるめっきであり得る。ストライクめっき用のストライクめっき浴は、好ましくは、10~30g/Lのピロリン酸銅、80~250g/Lのピロリン酸および5~20g/Lのシュウ酸カリウムを含み、pHは7.5~10.0であり得る。ストライクめっき条件として、好ましくは、浴温は15~50℃であり、電流密度は0.05~0.30A/dmであり得る。このようなストライクめっき浴および条件を用いることにより、横方向へのめっき成長を促し、不連続な金属領域間の連結をより良好に行うことができる。次いで、本めっきにより金属層を所望の厚みまで成長させることができる。本めっきは、当業者によく知られた方法により行うことができ、例えば市販の銅めっき液を用いて行うことができる。 In one embodiment, the strike plating and the main plating may be copper plating. The strike plating bath for strike plating preferably comprises 10-30 g / L copper pyrophosphate, 80-250 g / L pyrophosphate and 5-20 g / L potassium oxalate, with a pH of 7.5-10. .0. As the strike plating conditions, preferably, the bath temperature may be 15 to 50 ° C., and the current density may be 0.05 to 0.30 A / dm 2 . By using such a strike plating bath and conditions, lateral plating growth can be promoted, and the connection between discontinuous metal regions can be performed better. Next, the metal layer can be grown to a desired thickness by the main plating. This plating can be performed by a method well known to those skilled in the art, for example, using a commercially available copper plating solution.
 別の態様において、上記ストライクめっきおよび本めっきは、ニッケルによるめっきであり得る。ストライクめっき用のストライクめっき浴は、好ましくは、300~450g/Lの硫酸ニッケル、35~55g/Lのホウ酸および0.5~2g/Lの塩化ニッケルを含み、pHは3.5~5.0であり得る。ストライクめっき条件として、好ましくは、浴温は40~75℃であり、電流密度は0.05~0.30A/dmであり得る。このようなストライクめっき浴および条件を用いることにより、不連続な金属領域間の連結をより良好に行うことができる。次いで、本めっきにより金属層を所望の厚みまで成長させることができる。本めっきは、当業者によく知られた方法により行うことができ、例えば市販のニッケルめっき液を用いて行うことができる。さらに、本めっきにより形成されたニッケル層上に、SnまたはAu等、好ましくはSnをめっきしてもよい。このようなさらなるめっき層を形成することにより、他の電子部品に接続する際のはんだ処理等がより容易になる。 In another aspect, the strike plating and the main plating may be nickel plating. The strike plating bath for strike plating preferably comprises 300 to 450 g / L nickel sulfate, 35 to 55 g / L boric acid and 0.5 to 2 g / L nickel chloride with a pH of 3.5 to 5 .0. As the strike plating conditions, preferably, the bath temperature may be 40 to 75 ° C., and the current density may be 0.05 to 0.30 A / dm 2 . By using such a strike plating bath and conditions, the connection between the discontinuous metal regions can be performed better. Next, the metal layer can be grown to a desired thickness by the main plating. This plating can be performed by a method well known to those skilled in the art, for example, using a commercially available nickel plating solution. Furthermore, Sn or Au or the like, preferably Sn, may be plated on the nickel layer formed by the main plating. By forming such a further plating layer, solder processing or the like when connecting to another electronic component becomes easier.
 別の態様において、無電解めっき処理により、金属領域上に銅めっきまたはニッケルめっきを形成してもよい。この無電解めっき処理は、通常自己触媒めっきであり、金属領域を形成する金属が触媒活性を有しない場合、めっきを施す箇所に適当な触媒(例えば、Pd触媒)を付与することが好ましい。無電解銅めっき処理は、市販の無電解銅めっき液または無電解ニッケルめっき液を用いて、適宜条件を選択して行うことができる。例えば、無電解銅めっきを行う場合、市販の無電解銅めっき液(例えば、奥野製薬工業株式会社製OPCカッパーT)を用いて、pH11~13、浴温30~50℃で行うことができる。また、無電解ニッケルめっきを行う場合、市販の無電解ニッケルめっき液(例えば、奥野製薬工業株式会社製IPC二コロンGM)を用いて、pH3.5~5.0、浴温60~90℃で行うことができる。さらに、銅めっきまたはニッケルめっき(好ましくはニッケルめっき)を行った後、さらに金またはスズ(好ましくは金めっき)をめっきしてもよい。この金またはスズめっき層は、無電解めっきで形成してもよく、例えば自己触媒めっきまたは置換めっきにより形成することができる。 In another embodiment, copper plating or nickel plating may be formed on the metal region by electroless plating. This electroless plating treatment is usually autocatalytic plating, and when the metal forming the metal region does not have catalytic activity, it is preferable to apply an appropriate catalyst (for example, Pd catalyst) to the place to be plated. The electroless copper plating treatment can be performed by appropriately selecting conditions using a commercially available electroless copper plating solution or electroless nickel plating solution. For example, when electroless copper plating is performed, it can be performed at a pH of 11 to 13 and a bath temperature of 30 to 50 ° C. using a commercially available electroless copper plating solution (for example, OPC Copper T manufactured by Okuno Pharmaceutical Co., Ltd.). When electroless nickel plating is performed, a commercially available electroless nickel plating solution (for example, IPC Nicolon GM manufactured by Okuno Pharmaceutical Co., Ltd.) is used at pH 3.5 to 5.0 and bath temperature 60 to 90 ° C. It can be carried out. Furthermore, after performing copper plating or nickel plating (preferably nickel plating), gold or tin (preferably gold plating) may be further plated. This gold or tin plating layer may be formed by electroless plating, for example, by autocatalytic plating or displacement plating.
 一の態様において、本発明の金属層の形成方法は、電子部品の製造、特に電子部品の電極、配線または端子の製造において用いられる。 In one aspect, the metal layer forming method of the present invention is used in the manufacture of electronic components, particularly in the manufacture of electrodes, wirings or terminals of electronic components.
 従って、本発明は、上記した本発明の方法により金属層を形成することを含む、電子部品の製造方法をも提供する。 Therefore, the present invention also provides a method for manufacturing an electronic component including forming a metal layer by the above-described method of the present invention.
 以上本発明の方法を説明したが、本発明の方法は、上記の実施態様に限定されるものではなく、種々の改変が可能である。 Although the method of the present invention has been described above, the method of the present invention is not limited to the above embodiment, and various modifications can be made.
 厚さ2mmのセラミック板上に、インクジェット装置を利用して、図2(b)に示すようなドット状に、Agナノインクを吐出量42plで印刷した。ドット間距離は30μmとした。次いで、250℃で焼成工程を行って配線を形成した。これを、Cuめっき浴(ピロリン酸銅20g/L、ピロリン酸180g/L、シュウ酸カリウム10g/L)に浸漬させ、電流密度0.15A/dm2にて120分間通電した。これにより、Cuで金属層を形成した。 On the ceramic plate having a thickness of 2 mm, Ag nano-ink was printed in a dot shape as shown in FIG. 2B with an ejection amount of 42 pl using an inkjet device. The distance between dots was 30 μm. Subsequently, the baking process was performed at 250 degreeC and the wiring was formed. This was immersed in a Cu plating bath (copper pyrophosphate 20 g / L, pyrophosphate 180 g / L, potassium oxalate 10 g / L) and energized for 120 minutes at a current density of 0.15 A / dm 2 . This formed the metal layer with Cu.
 本発明の方法は、セラミック上へのめっき処理を可能にするので、電子部品の製造において、特に配線、電極、端子等の形成に好適に用いることができる。 Since the method of the present invention enables a plating process on a ceramic, it can be suitably used in the production of electronic components, particularly for the formation of wirings, electrodes, terminals and the like.
  2…基板
  4…配線
  6…金属領域
  100…配線形成領域
  102…ナノ粒子
2 ... Substrate 4 ... Wiring 6 ... Metal region 100 ... Wiring forming region 102 ... Nanoparticle

Claims (9)

  1.  基板上に金属層を形成する方法であって、
     基板上に、金属微粒子から形成される金属領域を、非連続的に形成し、
     次いで、非連続の金属領域上に、これらを連結するように金属層を形成することを含む方法。
    A method of forming a metal layer on a substrate,
    On the substrate, a metal region formed from metal fine particles is formed discontinuously,
    Then forming a metal layer on the discontinuous metal regions to connect them together.
  2.  金属微粒子を構成する金属が、金、銀または銅、あるいはこれらの組み合わせであることを特徴とする、請求項1に記載の方法。 2. The method according to claim 1, wherein the metal constituting the metal fine particles is gold, silver, copper, or a combination thereof.
  3.  金属微粒子から形成される金属領域が、金属微粒子を含む導電性インクを用いたインクジェット印刷法により形成されていることを特徴とする、請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the metal region formed from the metal fine particles is formed by an ink jet printing method using a conductive ink containing the metal fine particles.
  4.  隣接する金属領域間の距離が30μm以下であることを特徴とする、請求項1~3のいずれかに記載の方法。 The method according to any one of claims 1 to 3, wherein a distance between adjacent metal regions is 30 µm or less.
  5.  金属領域をドット状に形成することを特徴とする、請求項1~4のいずれかに記載の方法。 The method according to any one of claims 1 to 4, wherein the metal region is formed in a dot shape.
  6.  金属領域上への金属層の形成が、めっき処理により行われることを特徴とする、請求項1~5のいずれかに記載の方法。 6. The method according to claim 1, wherein the metal layer is formed on the metal region by plating.
  7.  金属層が、Ni、Cu、Ag、SnまたはAuであることを特徴とする、請求項1~6のいずれかに記載の方法。 7. The method according to claim 1, wherein the metal layer is Ni, Cu, Ag, Sn, or Au.
  8.  金属層が、電極、配線または端子であることを特徴とする、請求項1~7のいずれかに記載の方法。 The method according to any one of claims 1 to 7, wherein the metal layer is an electrode, a wiring, or a terminal.
  9.  請求項1~8のいずれかに記載の方法により、金属層を形成することを含む電子部品の製造方法。 A method for manufacturing an electronic component, comprising forming a metal layer by the method according to any one of claims 1 to 8.
PCT/JP2016/066246 2015-06-02 2016-06-01 Metal layer formation method WO2016194968A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015112548 2015-06-02
JP2015-112548 2015-06-02

Publications (1)

Publication Number Publication Date
WO2016194968A1 true WO2016194968A1 (en) 2016-12-08

Family

ID=57442036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066246 WO2016194968A1 (en) 2015-06-02 2016-06-01 Metal layer formation method

Country Status (1)

Country Link
WO (1) WO2016194968A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07245467A (en) * 1994-03-07 1995-09-19 Ibiden Co Ltd Manufacture of printed wiring board
JPH11284315A (en) * 1998-03-30 1999-10-15 Fujifilm Olin Co Ltd Formation of metallic image and electric wiring board
JPH11330666A (en) * 1998-05-14 1999-11-30 Seiko Epson Corp Substrate for forming specified pattern and production thereof
JP2003317057A (en) * 2002-04-18 2003-11-07 Seiko Epson Corp Apparatus and method for forming metal pattern, method for manufacturing device, and the device
JP2005142420A (en) * 2003-11-07 2005-06-02 Konica Minolta Holdings Inc Forming method of conductive pattern

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07245467A (en) * 1994-03-07 1995-09-19 Ibiden Co Ltd Manufacture of printed wiring board
JPH11284315A (en) * 1998-03-30 1999-10-15 Fujifilm Olin Co Ltd Formation of metallic image and electric wiring board
JPH11330666A (en) * 1998-05-14 1999-11-30 Seiko Epson Corp Substrate for forming specified pattern and production thereof
JP2003317057A (en) * 2002-04-18 2003-11-07 Seiko Epson Corp Apparatus and method for forming metal pattern, method for manufacturing device, and the device
JP2005142420A (en) * 2003-11-07 2005-06-02 Konica Minolta Holdings Inc Forming method of conductive pattern

Similar Documents

Publication Publication Date Title
US9560773B2 (en) Electrical barrier layers
JP6268769B2 (en) Method for forming conductive thin wire and wire and substrate used therefor
JP4741616B2 (en) Method for forming photoresist laminated substrate
US20150382445A1 (en) Double-sided flexible printed circuit board including plating layer and method of manufacturing the same
JP6406598B2 (en) Printed wiring board and manufacturing method thereof
CN102543437A (en) Laminate type electronic component and manufacturing method therefor
US20140076618A1 (en) Method of forming gold thin film and printed circuit board
JP6617049B2 (en) Conductive paste and semiconductor device
JP4801189B2 (en) Printed circuit board and manufacturing method thereof
KR101004063B1 (en) method for nickel-gold plating and printed circuit board
KR20220018842A (en) Forming Method of Cu to Cu Flip Chip Interconnection and Cu to Cu Flip Chip Interconnection Thereby
KR20140117891A (en) Double side flexible printed circuit board having plating layer and method for manufacturing the same
CN102918937B (en) Printed circuit board (PCB) and the manufacture method of this printed circuit board (PCB)
US9510446B2 (en) Printed circuit board and manufacture method thereof
JP6305472B2 (en) Metal connection structure and manufacturing method thereof
WO2016194968A1 (en) Metal layer formation method
KR101520412B1 (en) Flexible printed circuit board by laser processing and printing process, and method for manufacturing the same
JP5947401B2 (en) Copper metallized wiring ceramic substrate and manufacturing method thereof
JP2013093359A (en) Semiconductor chip mounting substrate and manufacturing method therefor
JPWO2004056162A1 (en) Electronic component for flip chip mounting and manufacturing method thereof, circuit board and manufacturing method thereof, mounting body manufacturing method
JP5680342B2 (en) Plating film, printed wiring board and module substrate
CN101636043A (en) Method for manufacturing electric conduction line
CN111696956A (en) Porous Cu on Cu surface for semiconductor packages
JP4442353B2 (en) Wiring board manufacturing method
KR20090034656A (en) Substrate and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16803402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP