WO2016194835A1 - 直流ブラシレスモータ制御装置 - Google Patents

直流ブラシレスモータ制御装置 Download PDF

Info

Publication number
WO2016194835A1
WO2016194835A1 PCT/JP2016/065780 JP2016065780W WO2016194835A1 WO 2016194835 A1 WO2016194835 A1 WO 2016194835A1 JP 2016065780 W JP2016065780 W JP 2016065780W WO 2016194835 A1 WO2016194835 A1 WO 2016194835A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
switching element
phase
magnetic pole
arm
Prior art date
Application number
PCT/JP2016/065780
Other languages
English (en)
French (fr)
Inventor
信夫 中町
八十八 原
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to EP16803270.4A priority Critical patent/EP3306805A4/en
Priority to US15/575,937 priority patent/US20180152080A1/en
Priority to JP2017521913A priority patent/JPWO2016194835A1/ja
Priority to CN201680030668.8A priority patent/CN107636954A/zh
Publication of WO2016194835A1 publication Critical patent/WO2016194835A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/185Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to outer stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/15Controlling commutation time
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/17Circuit arrangements for detecting position and for generating speed information

Definitions

  • the present invention relates to a DC brushless motor control device.
  • Patent Document 1 A method for controlling a motor by PWM has been conventionally known (for example, Patent Document 1).
  • the motor described in Patent Document 1 discloses a method in which only the upper or lower stage of the inverter circuit is controlled by PWM during motor acceleration operation or steady operation, and both the upper and lower stages of the inverter circuit are controlled by PWM during motor deceleration operation. Has been.
  • the present invention has been made in view of the above circumstances, and aims to reduce the switching loss of a DC brushless motor.
  • a DC brushless motor control device is a DC brushless motor control device that supplies current to a winding of a stator of a three-phase DC brushless motor, wherein switching elements are connected in series, and A three-phase bridge inverter unit having an arm connected to a connection point between switching elements and one end of the winding for each phase, and a magnetic pole position detection unit for detecting the magnetic pole position of the rotor of the three-phase DC brushless motor Based on the magnetic pole position to be detected, among the switching elements included in the arm, the energization state of the first switching element on one side of the connection point and the energization state of the second switching element on the other side, A control unit that controls the magnetic pole position detected by the magnetic pole position detection unit.
  • the first switching element and the second switching element are both in the OFF state, and the first switching element is maintained in the ON state and the second switching element is in the OFF state in order from the point of time reached.
  • a second state to be maintained a third state in which both the first switching element and the second switching element are off, and a state in which the first switching element is maintained off and the second switching element is on.
  • the energization state of the switching element is controlled by a plurality of states including the fourth state maintained in the state.
  • the arm of each phase is controlled to the H state only once during one electrical angle cycle. That is, frequent switching is not required and switching loss can be reduced.
  • FIG. 1 is a diagram illustrating an example of the appearance of the suction device according to the present embodiment.
  • FIG. 2 is a diagram illustrating an example of a functional configuration of the suction device according to the present embodiment.
  • FIG. 3 is a diagram illustrating an example of a configuration of a three-phase bridge inverter unit and a three-phase DC brushless motor included in the suction device according to the present embodiment.
  • FIG. 4 is a diagram illustrating an example of the structure of a three-phase DC brushless motor.
  • FIG. 5 is a diagram illustrating an example of a voltage waveform of the three-phase bridge inverter unit.
  • FIG. 6 is a diagram illustrating an example of the relationship between the rotational speed of the rotor controlled by the MCU and the target rotational speed.
  • FIG. 1 is a diagram illustrating an example of the appearance of the suction device according to the present embodiment.
  • FIG. 2 is a diagram illustrating an example of a functional configuration of the suction device according to the present embodiment
  • FIG. 7 is a diagram illustrating an example of a period of movement of the magnetic pole position detected by the magnetic pole position detection unit.
  • FIG. 8 is a diagram illustrating two operation modes of the MCU.
  • FIG. 9 is a waveform diagram showing an example of a waveform of one-pulse control by the DC brushless motor control device.
  • FIG. 10 is a table showing an example of arm control states by the DC brushless motor control device.
  • FIG. 11 is a waveform diagram showing another example of the waveform of the one-pulse control by the DC brushless motor control device.
  • FIG. 12 is a table showing another example of the arm control state by the DC brushless motor control device.
  • FIG. 1 is a diagram illustrating an example of the appearance of the suction device 1 according to the present embodiment.
  • the suction device 1 includes an operation switch 13.
  • FIG. 2 is a diagram illustrating an example of a functional configuration of the suction device 1 according to the present embodiment.
  • the suction device 1 includes an operation switch 13, a direct current brushless motor control device 15, a three-phase direct current brushless motor 20, a rectifier 29, a booster 30, a first DC-DC converter 31, and a second DC-DC converter 32. Is provided.
  • the direct current brushless motor control device 15 includes a control unit 16 and a three-phase bridge inverter unit 40.
  • the control unit 16 includes an MCU (Micro Controller Unit) 17 and a driver 18.
  • the MCU 17 includes an operation detection unit (not shown) that detects an operation on the operation switch 13.
  • the three-phase DC brushless motor 20 includes a magnetic pole position detection unit 25.
  • FIG. 3 is a diagram illustrating an example of the configuration of the three-phase bridge inverter unit 40 and the three-phase DC brushless motor 20 included in the suction device 1 according to the present embodiment.
  • the three-phase bridge inverter unit 40 includes an arm 41, an arm 42, and an arm 43.
  • the arm 41 includes a field effect transistor 411 and a field effect transistor 412.
  • the arm 42 includes a field effect transistor 421 and a field effect transistor 422.
  • the arm 43 includes a field effect transistor 431 and a field effect transistor 432.
  • the three-phase bridge inverter unit 40 is an arm of each phase in which switching elements are connected in series, and a connection point between the switching elements and one end of the windings 21, 22, and 23 are connected.
  • a first phase arm 41, a second phase arm 42, and a third phase arm 43 is an arm of each phase in which switching elements are connected in series, and a connection point between the switching elements and one end of the windings 21, 22, and 23 are connected.
  • the three-phase DC brushless motor 20 includes a winding 21, a winding 22, a winding 23, a rotor 24, a magnetic pole position detector 25-1, a magnetic pole position detector 25-2, and a magnetic pole position detector 25. -3 and a permanent magnet 241.
  • the magnetic pole position detection unit 25 is a general term for the magnetic pole position detection unit 25-1, the magnetic pole position detection unit 25-2, and the magnetic pole position detection unit 25-3.
  • the magnetic pole position detection unit 25-1, the magnetic pole position detection unit 25-2, and the magnetic pole position detection unit 25-3 will be collectively referred to as the magnetic pole position detection unit 25 unless it is necessary to distinguish them.
  • FIG. 4 is a diagram illustrating an example of the structure of the three-phase DC brushless motor 20.
  • FIG. 5 is a diagram illustrating an example of a voltage waveform for controlling the field effect transistor 411, the field effect transistor 421, and the field effect transistor 431 by the three-phase bridge inverter unit 40.
  • Each of the field effect transistor 411, the field effect transistor 421, and the field effect transistor 431 is an example of a first switching element.
  • the field effect transistor 412, the field effect transistor 422, and the field effect transistor 432 are examples of the second switching element.
  • FIG. 5A is an example of a voltage waveform that the three-phase bridge inverter unit 40 controls the first switching element when the rotational speed of the rotor 24 included in the three-phase DC brushless motor 20 is equal to or higher than a predetermined rotational speed.
  • the rotational speed of the rotor 24 is calculated by the MCU 17 based on the magnetic pole position detected by the magnetic pole position detector 25.
  • the three-phase bridge inverter unit 40 sequentially determines the energization state of the first switching element from the time when the magnetic pole position detected by the magnetic pole position detection unit 25 reaches the reference position.
  • the control is performed by a plurality of states including a first state S1, a second state S2, a 3-1 state S3-1, a third state S3, and a fourth state S4.
  • both the first switching element and the second switching element are in the off state.
  • the first switching element is maintained in the on state and the second switching element is maintained in the off state.
  • the 3-1 state S3-1 the first switching element is maintained in the off state and the second switching element is maintained in the on state.
  • both the first switching element and the second switching element are in the off state.
  • the fourth state S4 the first switching element is maintained in the off state and the second switching element is maintained in the on state.
  • the control of the first switching element by the voltage waveform shown in FIG. 5A is referred to as one-pulse control.
  • the DC brushless motor control device 15 can reduce switching loss by one-pulse control.
  • FIG. 5B is an example of a voltage waveform that the three-phase bridge inverter unit 40 controls the first switching element when the rotational speed of the rotor 24 included in the three-phase DC brushless motor 20 is less than a predetermined rotational speed.
  • the predetermined rotational speed is 20000 [r / m] (revolution per minutes).
  • the three-phase bridge inverter unit 40 sequentially determines the energization state of the first switching element from the time when the magnetic pole position detected by the magnetic pole position detection unit 25 reaches the reference position.
  • Control is performed by a plurality of states including a first state S1, a fifth state S5, a third state S3, and a fourth state S4.
  • the fifth state S5 the first switching element is alternately switched between the on state and the off state while the second switching element is maintained in the off state.
  • PWM Pulse Width Modulation
  • FIG. 6 is a diagram illustrating an example of the relationship between the rotational speed of the rotor 24 controlled by the MCU 17 by the three-phase bridge inverter unit 40 and the target rotational speed.
  • the MCU 17 controls the first switching element with the voltage waveform shown in FIG. 5B by the three-phase bridge inverter unit 40 while the calculated rotation speed of the rotor 24 is less than the predetermined rotation speed.
  • the MCU 17 controls the first switching element by the voltage waveform shown in FIG.
  • the DC brushless motor control device 15 can achieve both controllability and efficiency by performing PWM control with good controllability in the low speed range and one-pulse control with high efficiency in the high speed range.
  • the MCU 17 reads information indicating the target rotational speed at a level corresponding to the operation from the storage unit 12 based on the operation received by the operation switch 13. There are five levels of the target rotational speed, for example, level 1 to level 5. Each of these target rotational speed levels is associated with the suction power of the suction device 1 corresponding to each target rotational speed.
  • the MCU 17 causes the three-phase bridge inverter unit 40 to control the first switching element, and matches the read target rotational speed with the calculated rotational speed of the rotor 24.
  • the DC brushless motor control device 15 can control the three-phase DC brushless motor 20 at a rotation speed at a level suitable for the use state of the suction device 1.
  • the DC brushless motor control device 15 controls the three-phase DC brushless motor 20 at a rotation speed at a level suitable for floor conditions such as flooring, tatami mats, and carpets. can do.
  • the MCU 17 changes the duration of the second state in the one-pulse control according to the target rotational speed of the rotor 24 when changing the rotational speed of the rotor 24 according to the target rotational speed level.
  • the direct current brushless motor control device 15 can control the rotor rotational speed in the one-pulse control.
  • the duration time is a time that varies depending on the number of rotations of the rotor 24, and does not mean an absolute time. Further, when changing the duration time of the second state, the MCU 17 controls the first switching element without changing the second switching element.
  • the MCU 17 is a case where the suction device 1 is driven by a secondary battery, and when the remaining power amount of the secondary battery is equal to or less than a predetermined threshold value, the MCU 17 decreases the target rotational speed by a predetermined value.
  • the predetermined threshold value may be a value indicating a specific remaining power amount or a predetermined ratio.
  • the predetermined threshold is a predetermined ratio.
  • the predetermined ratio is, for example, 20%.
  • the MCU 17 is a case where the suction device 1 is driven by a secondary battery, and when the remaining power amount of the secondary battery is equal to or less than a predetermined threshold value, the target rotational speed is held at a predetermined value. Other processing may be performed.
  • the DC brushless motor control device 15 can change the usable time of the suction device 1 or the suction force of the suction device 1 when the remaining power amount of the secondary battery is small.
  • FIG. 7 is a diagram illustrating an example of the period of movement of the magnetic pole position detected by the magnetic pole position detection unit 25.
  • the MCU 17 determines whether or not to acquire a signal indicating the magnetic pole position supplied from the magnetic pole position detection unit 25 as a signal used for the determination of the magnetic pole position based on the period of movement of the magnetic pole position detected by the magnetic pole position detection unit 25. Judgment.
  • the time required for one electrical angle cycle changes according to the change in the rotational speed of the rotor 24. Specifically, the time required for one cycle of the electrical angle is shorter when the rotor 24 rotates at a high speed than when the rotor 24 rotates at a low speed.
  • the change in time required for one electrical angle cycle is also within the predetermined range. That is, as an example, if the rotor 24 rotating at a high speed of about 20000 [r / m] or more is within a minute time such that the rotor 24 rotates several times, the change in time required for one cycle of electrical angle is extremely small. Therefore, the MCU 17 can estimate the width of the time required for one electrical angle cycle after a lapse of a minute time from the calculated timing by calculating the time required for one electrical angle cycle. That is, the MCU 17 can estimate at which timing the signal indicating the magnetic pole position is generated.
  • the MCU 17 determines that the signal indicating the magnetic pole position generated at the timing within the time width required for one period of the estimated electrical angle among the signals indicating the magnetic pole position is not noise. The MCU 17 determines that a signal indicating the magnetic pole position determined not to be noise is acquired as a signal used for determining the magnetic pole position. Further, the MCU 17 determines that a signal indicating the magnetic pole position generated at a timing outside the time required for one period of the estimated electrical angle among the signals indicating the magnetic pole position is noise. The MCU 17 determines that a signal indicating the magnetic pole position determined to be noise is not acquired as a signal used for determination of the magnetic pole position.
  • the MCU 17 can also feedback control the rotational speed of the rotor 24 based on the period of movement of the magnetic pole position detected by the magnetic pole position detector 25 and the target rotational speed of the rotor 24.
  • the MCU 17 operates in one of the two operation modes illustrated in FIG.
  • FIG. 8 is a diagram illustrating two operation modes of the MCU 17.
  • the two operation modes are, for example, a current holding mode and a rotation speed holding mode.
  • the MCU 17 controls the rotation speed of the rotor 24 by feedback of the current value supplied to each of the winding 21, the winding 22, and the winding 23.
  • the current value supplied to the winding 21, the winding 22, and the winding 23 is detected by a current sensor (not shown).
  • the MCU 17 supplies the winding 21, the winding 22, and the winding 23 based on the difference between the current value of the winding 21, the winding 22, and the winding 23 detected by the current sensor and the target current value.
  • the current value to be calculated is calculated.
  • the MCU 17 supplies the current having the calculated current value to the winding 21, the winding 22, and the winding 23.
  • the MCU 17 controls the rotation speed of the rotor 24 by feedback of the rotation speed of the rotor 24.
  • the MCU 17 calculates the rotation speed of the rotor 24 based on the change period of the magnetic pole position detected by the magnetic pole position detection unit 25. Further, the MCU 17 calculates a voltage waveform to be supplied to the winding 21, the winding 22, and the winding 23 based on the difference between the calculated rotation speed of the rotor 24 and the target rotation speed. Further, the MCU 17 supplies the current having the calculated voltage waveform to the winding 21, the winding 22, and the winding 23. The MCU 17 controls the rotation speed when the rotation speed of the rotor 24 indicated by the period of movement of the magnetic pole position detected by the magnetic pole position detection section 25 exceeds the target rotation speed corresponding to the operation detected by the operation detection section. To do. Thereby, the DC brushless motor control device 15 can suppress heat generation due to unintentionally increasing the rotational speed of the rotor 24 from the target rotational speed that is the target upper limit value by feedback.
  • the operation detected by the operation detection unit is an operation of selecting the level of the suction force of the suction device in this example.
  • the storage unit stores information indicating the target rotational speed of the rotor 24 at a plurality of stages corresponding to the stage of the suction force of the suction device 1 indicated by the operation detected by the operation detection unit. It is memorized by being separated.
  • the MCU 17 reads information indicating the target rotational speed at the stage corresponding to the stage of the suction force corresponding to the operation detected by the operation detection unit from the storage unit 12.
  • the MCU 17 matches the rotational speed of the rotor 24 with the read target rotational speed.
  • the DC brushless motor control device 15 can provide the user with the operation of the suction device 1 based on the suction force.
  • the suction device 1 is an example of a suction device.
  • FIG. 9 is a waveform diagram showing an example of a waveform of one-pulse control by the DC brushless motor control device 15 of the present embodiment.
  • FIG. 10 is a table showing an example of the arm control state by the DC brushless motor control device 15 of the present embodiment. 9 and 10 show an example in which the driving duty of the three-phase DC brushless motor 20 by the DC brushless motor control device 15 is about 50%.
  • the control unit 16 Based on the magnetic pole position detected by the magnetic pole position detection unit 25 that detects the magnetic pole position of the rotor 24 of the three-phase DC brushless motor 20, the control unit 16 includes switching elements included in the arms 41, 42, and 43 of each phase.
  • the energization state of the first switching element on one side of the connection point and the energization state of the second switching element on the other side are respectively controlled. That is, the control unit 16 of the DC brushless motor control device 15 switches the arm 41, the arm 42, and the arm 43 of each phase included in the three-phase bridge inverter unit 40 to the H state, the L state, or the Hi-Z state, respectively.
  • the output potential of each phase is controlled.
  • the H state refers to a case where the first switching element of the arm of each phase is in the on state and the second switching element is in the off state.
  • the L state refers to the case where the first switching element of the arm of each phase is off and the second switching element is on.
  • the Hi-Z state refers to the case where both the first switching element and the second switching element of the arm of each phase are in the off state.
  • the U-phase output potential is a potential with respect to a reference potential at a connection portion between the field effect transistor 411 and the field effect transistor 412, that is, a midpoint of the arm 41.
  • the V-phase output potential is a potential with respect to a reference potential at a connection portion between the field effect transistor 421 and the field effect transistor 422, that is, a midpoint of the arm 42.
  • the W-phase output potential is a potential relative to the reference potential at the connection point between the field effect transistor 431 and the field effect transistor 432, that is, the midpoint of the arm 43.
  • the section P101 to the section P112 here corresponds to one electrical angle of the three-phase DC brushless motor 20.
  • the section P201 to the section P212 correspond to one electrical angle of the three-phase DC brushless motor 20.
  • this example demonstrates the case where each area is equally divided on the time axis, each area does not necessarily need to be equally divided on the time axis.
  • the controller 16 controls the arm of each phase as follows in each section from the section P101 to the section P112 in the section where the electrical angle is the first period.
  • the control unit 16 sets the U-phase arm 41 to the Hi-Z state, the V-phase arm 42 to the L state, and the W-phase arm 43 to the H state.
  • the control unit 16 causes the drive current to flow from the W-phase arm 43 to the V-phase arm 42 via the winding 23 and the winding 22.
  • the control unit 16 sets the U-phase arm 41 to the Hi-Z state, the V-phase arm 42 to the L state, and the W-phase arm 43 to the Hi-Z state.
  • the control unit 16 does not supply drive current to any of the windings.
  • the control unit 16 sets the U-phase arm 41 to the H state, the V-phase arm 42 to the L state, and the W-phase arm 43 to the Hi-Z state.
  • the control unit 16 causes the drive current to flow from the U-phase arm 41 to the V-phase arm 42 via the winding 21 and the winding 22.
  • the control unit 16 sets the U-phase arm 41 to the H state, the V-phase arm 42 to the Hi-Z state, and the W-phase arm 43 to the L state.
  • the control unit 16 causes the drive current to flow from the U-phase arm 41 to the W-phase arm 43 via the winding 21 and the winding 23.
  • the control unit 16 sets the U-phase arm 41 to the Hi-Z state, the V-phase arm 42 to the Hi-Z state, and the W-phase arm 43 to the L state. In the section P106 and the section P107, the control unit 16 does not supply drive current to any of the windings. In the section P108, the control unit 16 sets the U-phase arm 41 to the Hi-Z state, the V-phase arm 42 to the H state, and the W-phase arm 43 to the L state. In the section P108, the control unit 16 causes the drive current to flow from the V-phase arm 42 to the W-phase arm 43 via the winding 22 and the winding 23.
  • the control unit 16 sets the U-phase arm 41 to the L state, the V-phase arm 42 to the H state, and the W-phase arm 43 to the Hi-Z state. In the section P109, the control unit 16 causes the drive current to flow from the V-phase arm 42 to the U-phase arm 41 via the winding 22 and the winding 21. In the section P110 and the section P111, the control unit 16 sets the U-phase arm 41 to the L state, the V-phase arm 42 to the Hi-Z state, and the W-phase arm 43 to the Hi-Z state. In the section P110 and the section P111, the control unit 16 does not supply drive current to any of the windings.
  • control unit 16 sets the U-phase arm 41 to the L state, the V-phase arm 42 to the Hi-Z state, and the W-phase arm 43 to the H state. In the section P112, the control unit 16 causes the drive current to flow from the W-phase arm 43 to the U-phase arm 41 via the winding 23 and the winding 21.
  • the control unit 16 controls the arm of each phase in the same way as the section P101 to the section P112 for each section from the section P201 to the section P212 in the section whose electrical angle is the second period.
  • the section P101 to the section P103 shown in FIG. 9 correspond to the first state S1 shown in FIG.
  • the section P104 and the section P105 illustrated in FIG. 9 correspond to the second state S2 illustrated in FIG.
  • the section P106 to the section P108 shown in FIG. 9 correspond to the third state S3 shown in FIG.
  • the section P109 to the section P112 shown in FIG. 9 correspond to the fourth state S4 shown in FIG.
  • the 3-1 state S3-1 shown in FIG. 5 is shorter in time than the other states, and is not shown in FIG.
  • control timing of arm of each phase in one-pulse control Next, the relationship between the magnetic pole position detected by the magnetic pole position detection unit 25 and the control timing of the arm of each phase by the control unit 16 will be described.
  • the control unit 16 changes the arm of the phase to the H state in accordance with the rising timing of the magnetic pole position detection signal output from the magnetic pole position detection unit 25 of each phase.
  • control unit 16 changes the U-phase arm 41 to the H state in accordance with the rising timing of the magnetic pole position detection signal output from the U-phase magnetic pole position detection unit 25-1. That is, the control unit 16 matches the rising timing of the magnetic pole position detection signal output from the U-phase magnetic pole position detection unit 25-1 with the start timing of the section P104 shown in FIG. Control. Further, the control unit 16 changes the V-phase arm 42 to the H state in accordance with the rising timing of the magnetic pole position detection signal output from the V-phase magnetic pole position detection unit 25-2. That is, the control unit 16 matches the rising timing of the magnetic pole position detection signal output from the V-phase magnetic pole position detection unit 25-2 with the start timing of the section P108 shown in FIG. Control.
  • control unit 16 changes the W-phase arm 43 to the H state in synchronization with the rising timing of the magnetic pole position detection signal output from the W-phase magnetic pole position detection unit 25-3. That is, the control unit 16 matches the rising timing of the magnetic pole position detection signal output from the W-phase magnetic pole position detection unit 25-3 with the start timing of the section P112 shown in FIG. Control. That is, the control unit 16 sets the arm in the Hi-Z state, the H state, the Hi-Z state, and the L state based on the time point when the magnetic pole position detected by the magnetic pole position detection unit 25 reaches the reference position. In this order, it is changed.
  • the control unit 16 changes the arm to the Hi-Z state, the H state, the Hi-Z state, and the L state in this order in each cycle of the electrical angle of the three-phase DC brushless motor 20. . That is, the control unit 16 moves the arm in the Hi-Z state, H, in order from the time when the magnetic pole position detected by the magnetic pole position detection unit 25 reaches the reference position every cycle of the electrical angle of the three-phase DC brushless motor 20.
  • the state, the Hi-Z state, and the L state In other words, the control unit 16 sequentially changes the first state and the first state from the time when the magnetic pole position detected by the magnetic pole position detection unit 25 reaches the reference position for each cycle of the electrical angle of the three-phase DC brushless motor 20.
  • the energization state of the arm switching element is controlled by the two states, the third state, and the fourth state.
  • the control unit 16 sets the U-phase arm 41 in the H state in the sections P104 and P105.
  • a period in which the U-phase arm 41 is in the H state is referred to as a period UT on .
  • a period in which the V-phase arm 42 is in the H state is described as a period VT on
  • a period in which the W-phase arm 43 is in the H state is described as a period WT on .
  • arms period in the H state also referred to as the period T on.
  • Control unit 16 by varying the duration of the period T on, controls the rotational speed of the three-phase DC brushless motor 20. Specifically, when increasing the rotation speed of the three-phase DC brushless motor 20, the control unit 16 increases the duration of the period UT on . The control unit 16, when reducing the rotational speed of the three-phase DC brushless motor 20 reduces the duration of the period UT on. Further, the control unit 16 controls the rotation speed of the three-phase DC brushless motor 20 by changing the duration of the period VT on and the duration of the period WT on in the same manner as the duration of the period UT on. To do.
  • control unit 16 to maximize the duration of the period T on, i.e., a specific example of a case where the drive duty of 100% will be described with reference to FIGS.
  • FIG. 11 is a waveform diagram showing another example of the waveform of the one-pulse control by the DC brushless motor control device 15 of the present embodiment.
  • FIG. 12 is a table showing another example of the arm control state by the DC brushless motor control device 15 of the present embodiment.
  • 11 and 12 show an example in which the drive duty of the three-phase DC brushless motor 20 by the DC brushless motor control device 15 is about 100%. Further, each section shown in FIGS. 11 and 12 corresponds to a section having the same reference numeral shown in FIGS. 9 and 10.
  • the controller 16 controls the arm of each phase as follows in each section from the section P101 to the section P112 in the section where the electrical angle is the first period.
  • the control unit 16 to maximize the duration of the period T on, the U-phase, the time at which the arm 41 of the U-phase is maintained in the H state is increased to the maximum, the arm 41 of the U-phase Hi Reduce the time that is maintained in the Z state to a minimum.
  • the control unit 16 increases the time during which the V phase arm 42 is maintained in the H state to the maximum, and the V phase arm 42 is maintained in the Hi-Z state.
  • control unit 16 increases the time during which the W phase arm 43 is maintained in the H state to the maximum, and the W phase arm 43 is in the Hi-Z state.
  • the time maintained at is reduced to a minimum.
  • control state of the arm by the control part 16 in each area is the same as that of the case of FIG.9 and FIG.10. That is, the control unit 16 sequentially starts from the time when the magnetic pole position detected by the magnetic pole position detection unit 25 reaches the reference position, the first first-phase driving state, the second first-phase driving state, and the first The energization state of the switching element is determined by a plurality of states including a second phase driving state, a second second phase driving state, a first third phase driving state, and a second third phase driving state. Control.
  • the first switching element of the first phase arm 41 is on and the second switching element is off
  • the first switching element of the second phase arm 42 is off.
  • the second switching element is in the on state, and the first switching element and the second switching element of the third phase arm 43 are both in the off state.
  • the first switching element of the first-phase arm 41 is on and the second switching element is off, and the first switching element and the second switching element of the second-phase arm 42 are Are both in the off state, the first switching element of the third phase arm 43 is in the off state and the second switching element is in the on state.
  • both the first switching element and the second switching element of the first phase arm 41 are in the off state, the first switching element of the second phase arm 42 is in the on state, and the second The switching element is in the off state, the first switching element of the third phase arm 43 is in the off state, and the second switching element is in the on state.
  • the first switching element of the first-phase arm 41 is off and the second switching element is on, the first switching element of the second-phase arm 42 is on and second The switching element is in the off state, and both the first switching element and the second switching element of the third phase arm 43 are in the off state.
  • the first switching element of the first-phase arm 41 is in the off state and the second switching element is in the on-state, and the first and second switching elements of the second-phase arm 42 are Are both in the off state, the first switching element of the third phase arm 43 is in the on state and the second switching element is in the off state.
  • both the first switching element and the second switching element of the first phase arm 41 are in the off state, the first switching element of the second phase arm 42 is in the off state, and the second The switching element is in the on state, the first switching element of the third phase arm 43 is in the on state and the second switching element is in the off state.
  • the control unit 16 controls the rotation speed of the three-phase DC brushless motor 20 by changing the pulse width in the one-pulse control. That is, the control unit 16, for each phase of the arms, and the duration of the period T on, by making arm varies the ratio of the duration of the interval is a Hi-Z state, the rotation of the three-phase DC brushless motor 20 Control the number. As described above, the control unit 16, in the period T on, by maintaining the arm in the H state, continues to supply drive current to the windings of the three-phase DC brushless motor 20.
  • the period Ton is divided into a first half part and a second half part.
  • the period UT on is divided into a period UT on 1 on the section P104 side and a period UT on 2 on the section P105 side at the time t1 when the section P104 switches to the section P105.
  • the period VT on is divided into a period VT on 1 on the section P108 side and a period VT on 2 on the section P109 side with the time t2 when the section P108 is switched to the section P109 as a boundary.
  • the period WT on is divided into a period WT on 1 on the section P112 side and a period WT on 2 on the section P201 side at the time t3 when the section P112 switches to the section P201.
  • Control unit 16 when varying the pulse width, and the first half of the period T on, increases or decreases in correspondence with the second half. More specifically, the control unit 16, to increase the pulse width, the increment of the first half of the period T on, to match the increase in width of the latter half of the period T on, increasing the pulse width .
  • the control unit 16 when reducing the pulse width, and reduced width of the first half of the period T on, and is matched with the decline of the latter half of the period T on, reducing the pulse width. More specifically, for the U phase, the control unit 16 increases or decreases the pulse width by matching the length of the period UT on 1 with the length of the period UT on 2.
  • the controller 16 increases or decreases the pulse width by matching the length of the period VT on 1 with the length of the period VT on 2.
  • the control unit 16 increases or decreases the pulse width by matching the length of the period WT on 1 with the length of the period WT on 2. That is, the control unit 16 varies the pulse width around the time t1 for the U phase, the time t2 for the V phase, and the time t3 for the W phase.

Abstract

三相直流ブラシレスモータの固定子の巻線に対して電流を供給する直流ブラシレスモータ制御装置であって、磁極位置検出部が検出する磁極位置が基準位置に達した時点から順に、第1スイッチング素子と第2スイッチング素子とがいずれもオフ状態である第1状態と、第1スイッチング素子がオン状態に維持され第2スイッチング素子がオフ状態に維持される第2状態と、第1スイッチング素子と第2スイッチング素子とがいずれもオフ状態である第3状態と、第1スイッチング素子がオフ状態に維持され第2スイッチング素子がオン状態に維持される第4状態と、を含む複数の状態によって、スイッチング素子の通電状態を制御する。

Description

直流ブラシレスモータ制御装置
 本発明は、直流ブラシレスモータ制御装置に関する。
 PWMでモータを制御する方法が従来から知られている(例えば、特許文献1)。特許文献1に記載されたモータは、モータの加速運転時または定常運転時にはインバータ回路の上段もしくは下段のみPWMで制御し、モータの減速運転時にはインバータ回路の上段および下段ともにPWMで制御する方法が開示されている。
日本国公開公報:特開2003-189667号
 しかしながら、そもそもPWMはインバータ回路の上段および下段の切替を頻繁に行う必要が有る。すなわち、アームのH状態およびL状態の切替を頻繁に行う必要が有るため、スイッチングロスが発生してしまう、という問題があった。
 本発明は、上記事情に鑑みてなされたものであり、直流ブラシレスモータのスイッチングロスの低減を目的とする。
 本発明の実施形態における直流ブラシレスモータ制御装置は、三相直流ブラシレスモータの固定子の巻線に対して電流を供給する直流ブラシレスモータ制御装置であって、スイッチング素子どうしが直列接続され、かつ前記スイッチング素子どうしの接続点と前記巻線の一端とが接続されたアームを、各相に備える三相ブリッジインバータ部と、前記三相直流ブラシレスモータのロータの磁極位置を検出する磁極位置検出部が検出する前記磁極位置に基づいて、前記アームが備える前記スイッチング素子のうち、前記接続点の一方側にある第1スイッチング素子の通電状態と、他方側にある第2スイッチング素子の通電状態とを、それぞれ制御する制御部と、を備え、前記制御部は、前記磁極位置検出部が検出する前記磁極位置が基準位置に達した時点から順に、前記第1スイッチング素子と前記第2スイッチング素子とがいずれもオフ状態である第1状態と、前記第1スイッチング素子がオン状態に維持され前記第2スイッチング素子がオフ状態に維持される第2状態と、前記第1スイッチング素子と前記第2スイッチング素子とがいずれもオフ状態である第3状態と、前記第1スイッチング素子がオフ状態に維持され前記第2スイッチング素子がオン状態に維持される第4状態と、を含む複数の状態によって、前記スイッチング素子の通電状態を制御する。
 本実施形態によれば、電気角1周期の間に、各相のアームが1回だけH状態に制御される。すなわち、頻繁な切替が必要なく、スイッチングロスを低減することができる。
図1は、本実施形態に係る吸引装置の外観の一例を示す図である。 図2は、本実施形態に係る吸引装置の機能構成の一例を示す図である。 図3は、本実施形態に係る吸引装置が備える三相ブリッジインバータ部、及び三相直流ブラシレスモータの構成の一例を示す図である。 図4は、三相直流ブラシレスモータの構造の一例を示す図である。 図5は、三相ブリッジインバータ部の電圧波形の一例を示す図である。 図6は、MCUが制御するロータの回転数と、目標回転数との関係の一例を示す図である。 図7は、磁極位置検出部が検出する磁極位置の移動の周期の一例を示す図である。 図8は、MCUの2つの動作モードを例示する図である。 図9は、直流ブラシレスモータ制御装置によるワンパルス制御の波形の一例を示す波形図である。 図10は、直流ブラシレスモータ制御装置によるアームの制御状態の一例を示す表である。 図11は、直流ブラシレスモータ制御装置によるワンパルス制御の波形の他の一例を示す波形図である。 図12は、直流ブラシレスモータ制御装置によるアームの制御状態の他の一例を示す表である。
 以下、図面を参照し、本発明の実施形態に係る吸引装置1について説明する。
 図1は、本実施形態に係る吸引装置1の外観の一例を示す図である。吸引装置1は、操作スイッチ13を備える。
 図2は、本実施形態に係る吸引装置1の機能構成の一例を示す図である。
 吸引装置1は、操作スイッチ13と、直流ブラシレスモータ制御装置15と、三相直流ブラシレスモータ20と、整流部29と、昇圧部30と、第1DC-DCコンバーター31と、第2DC-DCコンバーター32を備える。直流ブラシレスモータ制御装置15は、制御部16と、三相ブリッジインバータ部40を備える。制御部16は、MCU(Micro Controller Unit)17と、ドライバー18を備える。MCU17は、操作スイッチ13に対する操作を検出する図示しない操作検出部を備える。三相直流ブラシレスモータ20は、磁極位置検出部25を備える。
 図3は、本実施形態に係る吸引装置1が備える三相ブリッジインバータ部40、及び三相直流ブラシレスモータ20の構成の一例を示す図である。
 三相ブリッジインバータ部40は、アーム41と、アーム42と、アーム43を備える。アーム41は、電界効果トランジスタ411と、電界効果トランジスタ412を備える。アーム42は、電界効果トランジスタ421と、電界効果トランジスタ422を備える。アーム43は、電界効果トランジスタ431と、電界効果トランジスタ432を備える。より詳細に述べると、三相ブリッジインバータ部40は、スイッチング素子どうしが直列接続され、かつスイッチング素子どうしの接続点と巻線21、22、23の一端とが接続された各相のアームである、第1相アーム41、第2相アーム42及び第3相アーム43を備える。
 三相直流ブラシレスモータ20は、巻線21と、巻線22と、巻線23と、ロータ24と、磁極位置検出部25-1と、磁極位置検出部25-2と、磁極位置検出部25-3と、永久磁石241を備える。なお、前述の磁極位置検出部25は、磁極位置検出部25-1と、磁極位置検出部25-2と、磁極位置検出部25-3との総称である。以下、磁極位置検出部25-1と、磁極位置検出部25-2と、磁極位置検出部25-3とを区別する必要が無い限り、まとめて磁極位置検出部25と称して説明する。
 図4は、三相直流ブラシレスモータ20の構造の一例を示す図である。
 図5は、三相ブリッジインバータ部40による電界効果トランジスタ411と、電界効果トランジスタ421と、電界効果トランジスタ431とを制御する電圧波形の一例を示す図である。なお、電界効果トランジスタ411と、電界効果トランジスタ421と、電界効果トランジスタ431とはそれぞれ、第1スイッチング素子の一例である。また、電界効果トランジスタ412と、電界効果トランジスタ422と、電界効果トランジスタ432とはそれぞれ、第2スイッチング素子の一例である。
 以下、電界効果トランジスタ411と、電界効果トランジスタ421と、電界効果トランジスタ431とを区別する必要が無い限り、まとめて第1スイッチング素子と称して説明する。以下、電界効果トランジスタ412と、電界効果トランジスタ422と、電界効果トランジスタ432とを区別する必要が無い限り、まとめて第2スイッチング素子と称して説明する。
 図5(A)は、三相直流ブラシレスモータ20が備えるロータ24の回転数が所定の回転数以上の場合に三相ブリッジインバータ部40が第1スイッチング素子を制御する電圧波形の一例である。なお、ロータ24の回転数は、磁極位置検出部25が検出する磁極位置に基づいてMCU17により算出される。ロータ24の回転数が所定の回転数以上の場合、三相ブリッジインバータ部40は、第1スイッチング素子の通電状態を、磁極位置検出部25が検出する磁極位置が基準位置に達した時点から順に、第1状態S1と、第2状態S2と、第3-1状態S3-1と、第3状態S3と、第4状態S4とを含む複数の状態によって制御する。
 第1状態S1では、第1スイッチング素子と第2スイッチング素子とがいずれもオフ状態である。第2状態S2では、第1スイッチング素子がオン状態に維持され第2スイッチング素子がオフ状態に維持される。第3-1状態S3-1では、第1スイッチング素子がオフ状態に維持され第2スイッチング素子がオン状態に維持される。第3状態S3では、第1スイッチング素子と第2スイッチング素子とがいずれもオフ状態である。第4状態S4では、第1スイッチング素子がオフ状態に維持され第2スイッチング素子がオン状態に維持される。以下、図5(A)に示した電圧波形による第1スイッチング素子の制御を、ワンパルス制御と称する。直流ブラシレスモータ制御装置15は、ワンパルス制御により、スイッチングロスを低減することができる。
 図5(B)は、三相直流ブラシレスモータ20が備えるロータ24の回転数が所定の回転数未満の場合に三相ブリッジインバータ部40が第1スイッチング素子を制御する電圧波形の一例である。所定の回転数は、この一例において、20000[r/m](revolution per minutes)である。ロータ24の回転数が所定の回転数未満の場合、三相ブリッジインバータ部40は、第1スイッチング素子の通電状態を、磁極位置検出部25が検出する磁極位置が基準位置に達した時点から順に、第1状態S1と、第5状態S5と、第3状態S3と、第4状態S4とを含む複数の状態によって制御する。第5状態S5では、第2スイッチング素子がオフ状態に維持されつつ、第1スイッチング素子がオン状態とオフ状態とを交互に切り替えられる。以下、図5(B)に示した電圧波形による第1スイッチング素子の制御を、PWM(Pulse Width Modulation)制御と称する。
 図6は、MCU17が三相ブリッジインバータ部40により制御するロータ24の回転数と、目標回転数との関係の一例を示す図である。MCU17は、算出したロータ24の回転数が所定の回転数未満の間、三相ブリッジインバータ部40により第1スイッチング素子を、図5(B)に示した電圧波形によって制御させる。一方、MCU17は、算出したロータ24の回転数が所定の回転数以上の場合、三相ブリッジインバータ部40により第1スイッチング素子を、図5(A)に示した電圧波形によって制御させる。これにより、直流ブラシレスモータ制御装置15は、低速域は制御性がよいPWM制御、高速域は効率がよいワンパルス制御を行なうことにより、制御性と効率とを両立させることができる。
 MCU17は、操作スイッチ13により受け付けられた操作に基づいて、記憶部12から当該操作に応じたレベルの目標回転数を示す情報を読み出す。目標回転数のレベルは、例えば、レベル1~レベル5の5段階である。これらの目標回転数のレベルのそれぞれは、各目標回転数に応じた吸引装置1の吸込仕事率と対応付けられている。MCU17は、三相ブリッジインバータ部40に第1スイッチング素子を制御させ、読み出した目標回転数と、算出したロータ24の回転数とを一致させる。これにより、直流ブラシレスモータ制御装置15は、吸引装置1の使用状況に適したレベルの回転数で三相直流ブラシレスモータ20を制御することができる。例えば、吸引装置1が掃除機である場合には、直流ブラシレスモータ制御装置15は、フローリングや畳、絨毯等の床面の状況にそれぞれ適したレベルの回転数で三相直流ブラシレスモータ20を制御することができる。
 MCU17は、ロータ24の回転数を目標回転数のレベルに応じて変化させる際、ワンパルス制御における第2状態の継続時間を、ロータ24の目標回転数に応じて変化させる。これにより、直流ブラシレスモータ制御装置15は、ワンパルス制御において、ロータ回転数を制御することができる。なお、ここでいう継続時間とは、ロータ24の回転数に応じて変化する時間であり、絶対的な時間を意味していない。また、MCU17は、第2状態の継続時間を変化させる際には、第1スイッチング素子を可変させ、第2スイッチング素子を可変させずに制御する。
 なお、MCU17は、吸引装置1が二次電池により駆動している場合であり、且つ二次電池の残存電力量が所定のしきい値以下の場合、目標回転数を所定値分下げる。所定のしきい値は、特定の残存電力量を示す値であってもよく、所定の割合であってもよい。この一例において、所定のしきい値は、所定の割合である。所定の割合は、例えば、20%である。これにより、直流ブラシレスモータ制御装置15は、二次電池の残存電力量が少ない場合に、吸引装置1の使用可能な時間を長くすることができる。また、MCU17は、吸引装置1が二次電池により駆動している場合であり、且つ二次電池の残存電力量が所定のしきい値以下の場合、目標回転数を所定値に保持する等の他の処理を行ってもよい。これにより、直流ブラシレスモータ制御装置15は、二次電池の残存電力量が少ない場合に、吸引装置1の使用可能な時間、又は吸引装置1の吸引力を変更することができる。
 図7は、磁極位置検出部25が検出する磁極位置の移動の周期の一例を示す図である。MCU17は、磁極位置検出部25から供給される磁極位置を示す信号を、磁極位置の判定に用いる信号として取得するか否かを、磁極位置検出部25が検出する磁極位置の移動の周期に基づいて判定する。この図において、電気角1周期に要する時間は、ロータ24の回転数の変化に応じて変化する。具体的には、電気角1周期に要する時間は、ロータ24が高速回転する場合、低速回転する場合に比べて短い。また、ロータ24の回転数の変化速度が所定範囲内であれば、電気角1周期に要する時間の変化も所定範囲内である。つまり、一例として、20000[r/m]程度以上で高速回転しているロータ24が数回転する程度の微小な時間内であれば、電気角1周期に要する時間の変化は、極めて小さい。したがって、MCU17は、電気角1周期に要する時間を算出することにより、算出したタイミングから微小な時間経過後における、電気角1周期に要する時間の幅を推定することができる。つまり、MCU17は、磁極位置を示す信号が、どのタイミングで発生するのかを推定することができる。MCU17は、磁極位置を示す信号のうち、推定した電気角1周期に要する時間の幅内のタイミングで発生した磁極位置を示す信号を、ノイズではないと判定する。MCU17は、ノイズではないと判定した磁極位置を示す信号を、磁極位置の判定に用いる信号として取得すると判定する。また、MCU17は、磁極位置を示す信号のうち、推定した電気角1周期に要する時間の幅外のタイミングで発生した磁極位置を示す信号を、ノイズであると判定する。MCU17は、ノイズであると判定した磁極位置を示す信号を、磁極位置の判定に用いる信号として取得しないと判定する。
 また、MCU17は、磁極位置検出部25が検出する磁極位置の移動の周期と、ロータ24の目標回転数とに基づいて、ロータ24の回転数をフィードバック制御することもできる。例えば、MCU17は、図8に示した2つの動作モードのいずれかの動作モードによって動作する。図8は、MCU17の2つの動作モードを例示する図である。2つの動作モードは、例えば、電流保持モードと回転数保持モードである。MCU17の動作モードが電流保持モードの場合、MCU17は、巻線21、巻線22、巻線23のそれぞれに供給される電流値のフィードバックによりロータ24の回転数を制御する。具体的には、巻線21、巻線22、巻線23に供給される電流値は、電流センサ(不図示)により検出される。この場合、MCU17は、電流センサが検出する巻線21、巻線22、巻線23の電流値と、目標電流値との差分に基づいて、巻線21、巻線22、巻線23に供給する電流値を算出する。また、MCU17は、算出した電流値の電流を巻線21、巻線22、巻線23に供給する。
 また、MCU17の動作モードが回転数保持モードの場合、MCU17は、ロータ24の回転数のフィードバックにより、ロータ24の回転数を制御する。具体的には、MCU17は、磁極位置検出部25により検出された磁極位置の変化周期に基づいて、ロータ24の回転数を算出する。また、MCU17は、算出したロータ24の回転数と、目標回転数との差分に基づいて、巻線21、巻線22、巻線23に供給する電圧波形を算出する。また、MCU17は、算出した電圧波形の電流を巻線21、巻線22、巻線23に供給する。MCU17は、これらの回転数の制御を、磁極位置検出部25が検出する磁極位置の移動の周期が示すロータ24の回転数が、操作検出部が検出する操作に対応する目標回転数を超える場合に行う。これにより、直流ブラシレスモータ制御装置15は、フィードバックにより、ロータ24の回転数が目標上限値である目標回転数から意図せずに上昇してしまうことによる発熱を抑制することができる。
 ここで、操作検出部が検出する操作は、この一例において、吸引装置の吸引力の段階を選択する操作である。記憶部には、図6に示したように、ロータ24の目標回転数を示す情報が、操作検出部が検出する操作が示す吸引装置1の吸引力の段階に対応する複数の段階の回転数に区切られて記憶されている。MCU17は、操作検出部が検出した操作に応じた吸引力の段階に対応する段階の目標回転数を示す情報を記憶部12から読み出す。MCU17は、ロータ24の回転数を、読み出した目標回転数に一致させる。これにより、直流ブラシレスモータ制御装置15は、吸引力に基づく吸引装置1の操作をユーザに提供することができる。なお、吸引装置1は、吸引装置の一例である。
[ワンパルス制御の詳細]
 次に、図9から図12を参照して、本実施形態の直流ブラシレスモータ制御装置15が行うワンパルス制御の詳細について説明する。
 図9は、本実施形態の直流ブラシレスモータ制御装置15によるワンパルス制御の波形の一例を示す波形図である。図10は、本実施形態の直流ブラシレスモータ制御装置15によるアームの制御状態の一例を示す表である。なお、これら図9及び図10は、直流ブラシレスモータ制御装置15による三相直流ブラシレスモータ20の駆動デューティが、約50%である場合の一例を示す。
 制御部16は、三相直流ブラシレスモータ20のロータ24の磁極位置を検出する磁極位置検出部25が検出する磁極位置に基づいて、各相のアーム41、42、43が備えるスイッチング素子のうち、接続点の一方側にある第1スイッチング素子の通電状態と、他方側にある第2スイッチング素子の通電状態とを、それぞれ制御する。すなわち、直流ブラシレスモータ制御装置15の制御部16は、三相ブリッジインバータ部40が備える各相のアーム41と、アーム42と、アーム43とをH状態、L状態又はHi-Z状態にそれぞれ切換えることにより、各相の出力電位を制御する。ここで、H状態とは、各相のアームの第1スイッチング素子がオン状態かつ第2スイッチング素子がオフ状態である場合をいう。また、L状態とは、各相のアームの第1スイッチング素子がオフ状態かつ第2スイッチング素子がオン状態である場合をいう。また、Hi-Z状態とは、各相のアームの第1スイッチング素子及び第2スイッチング素子がいずれもオフ状態である場合をいう。また、ここでU相の出力電位とは、電界効果トランジスタ411と電界効果トランジスタ412との接続部、すなわちアーム41の中点の、基準電位に対する電位である。また、V相の出力電位とは、電界効果トランジスタ421と電界効果トランジスタ422との接続部、すなわちアーム42の中点の、基準電位に対する電位である。また、W相の出力電位とは、電界効果トランジスタ431と電界効果トランジスタ432との接続部、すなわちアーム43の中点の、基準電位に対する電位である。
 制御部16による制御動作のより具体的な一例について、図9及び図10に示す区間ごとに説明する。なお、ここでいう区間P101から区間P112までが、三相直流ブラシレスモータ20の電気角1周期分に相当する。また、区間P201から区間P212までが、三相直流ブラシレスモータ20の電気角1周期分に相当する。なお、この一例では各区間が時間軸上で等分割されている場合について説明するが、各区間は必ずしも時間軸上で等分割されていなくてもよい。
 制御部16は、電気角が1周期目の区間、すなわち区間P101から区間P112までの各区間において、次のようにして各相のアームを制御する。
 区間P101において、制御部16は、U相のアーム41をHi-Z状態に、V相のアーム42をL状態に、W相のアーム43をH状態にする。区間P101において、制御部16は、駆動電流をW相のアーム43から巻線23及び巻線22を介してV相のアーム42に流す。
 区間P102及び区間P103において、制御部16は、U相のアーム41をHi-Z状態に、V相のアーム42をL状態に、W相のアーム43をHi-Z状態にする。区間P102及び区間P103において、制御部16は、駆動電流をいずれの巻線にも供給しない。
 区間P104において、制御部16は、U相のアーム41をH状態に、V相のアーム42をL状態に、W相のアーム43をHi-Z状態にする。区間P104において、制御部16は、駆動電流をU相のアーム41から巻線21及び巻線22を介してV相のアーム42に流す。
 区間P105において、制御部16は、U相のアーム41をH状態に、V相のアーム42をHi-Z状態に、W相のアーム43をL状態にする。区間P105において、制御部16は、駆動電流をU相のアーム41から巻線21及び巻線23を介してW相のアーム43に流す。
 区間P106及び区間P107において、制御部16は、U相のアーム41をHi-Z状態に、V相のアーム42をHi-Z状態に、W相のアーム43をL状態にする。区間P106及び区間P107において、制御部16は、駆動電流をいずれの巻線にも供給しない。
 区間P108において、制御部16は、U相のアーム41をHi-Z状態に、V相のアーム42をH状態に、W相のアーム43をL状態にする。区間P108において、制御部16は、駆動電流をV相のアーム42から巻線22及び巻線23を介してW相のアーム43に流す。
 区間P109において、制御部16は、U相のアーム41をL状態に、V相のアーム42をH状態に、W相のアーム43をHi-Z状態にする。区間P109において、制御部16は、駆動電流をV相のアーム42から巻線22及び巻線21を介してU相のアーム41に流す。
 区間P110及び区間P111において、制御部16は、U相のアーム41をL状態に、V相のアーム42をHi-Z状態に、W相のアーム43をHi-Z状態にする。区間P110及び区間P111において、制御部16は、駆動電流をいずれの巻線にも供給しない。
 区間P112において、制御部16は、U相のアーム41をL状態に、V相のアーム42をHi-Z状態に、W相のアーム43をH状態にする。区間P112において、制御部16は、駆動電流をW相のアーム43から巻線23及び巻線21を介してU相のアーム41に流す。
 制御部16は、電気角が2周期目の区間、すなわち区間P201から区間P212までの各区間についても、区間P101から区間P112までと同様にして、各相のアームを制御する。
 なお、図9に示す区間P101から区間P103までは、図5に示す第1状態S1に対応する。また、図9に示す区間P104及び区間P105は、図5に示す第2状態S2に対応する。また、図9に示す区間P106から区間P108までは、図5に示す第3状態S3に対応する。また、図9に示す区間P109から区間P112は、図5に示す第4状態S4に対応する。
 なお、図5に示す第3-1状態S3-1は、他の状態に比べて短時間であるため図9においては図示を省略している。
[ワンパルス制御における各相のアームの制御タイミング]
 次に、磁極位置検出部25が検出する磁極位置と、制御部16による各相のアームの制御タイミングとの関係について説明する。一例として、制御部16は、各相の磁極位置検出部25から出力される磁極位置検出信号の立ち上がりタイミングに合わせて、当該相のアームをH状態に変化させる。
 具体的には、制御部16は、U相の磁極位置検出部25-1から出力される磁極位置検出信号の立ち上がりタイミングに合わせて、U相のアーム41をH状態に変化させる。つまり、制御部16は、U相の磁極位置検出部25-1から出力される磁極位置検出信号の立ち上がりタイミングと、図9に示す区間P104の開始タイミングとを一致させて、各相のアームを制御する。
 また、制御部16は、V相の磁極位置検出部25-2から出力される磁極位置検出信号の立ち上がりタイミングに合わせて、V相のアーム42をH状態に変化させる。つまり、制御部16は、V相の磁極位置検出部25-2から出力される磁極位置検出信号の立ち上がりタイミングと、図9に示す区間P108の開始タイミングとを一致させて、各相のアームを制御する。
 また、制御部16は、W相の磁極位置検出部25-3から出力される磁極位置検出信号の立ち上がりタイミングに合わせて、W相のアーム43をH状態に変化させる。つまり、制御部16は、W相の磁極位置検出部25-3から出力される磁極位置検出信号の立ち上がりタイミングと、図9に示す区間P112の開始タイミングとを一致させて、各相のアームを制御する。
 つまり、制御部16は、磁極位置検出部25が検出する磁極位置が基準位置に達した時点を基準にして、アームをHi-Z状態と、H状態と、Hi-Z状態と、L状態とに、この記載順に変化させる。
 上述したように、制御部16は、三相直流ブラシレスモータ20の電気角の1周期ごとに、アームをHi-Z状態、H状態、Hi-Z状態、及びL状態に、この記載順に変化させる。すなわち、制御部16は、三相直流ブラシレスモータ20の電気角の1周期ごとに、磁極位置検出部25が検出する磁極位置が基準位置に達した時点から順に、アームをHi-Z状態、H状態、Hi-Z状態、及びL状態に変化させる。換言すれば、制御部16は、三相直流ブラシレスモータ20の電気角の1周期ごとに、磁極位置検出部25が検出する磁極位置が基準位置に達した時点から順に、第1状態と、第2状態と、第3状態と、第4状態とによって、アームのスイッチング素子の通電状態を制御する。
[ワンパルス制御におけるパルス幅可変制御の概要]
 次に、制御部16が、ワンパルス制御によって三相直流ブラシレスモータ20の回転数を可変に制御する場合の一例について、図9を参照して説明する。この図9に示す一例では、制御部16は、区間P104及び区間P105においてU相のアーム41をH状態にする。なお、以下の説明において、U相のアーム41がH状態である期間を、期間UTonと記載する。また、V相のアーム42がH状態である期間を、期間VTonと、W相のアーム43がH状態である期間を、期間WTonと、それぞれ記載する。なお、各相を区別しない場合には、アームがH状態である期間を、期間Tonとも記載する。
 制御部16は、期間Tonの継続時間を変化させることにより、三相直流ブラシレスモータ20の回転数を制御する。具体的には、制御部16は、三相直流ブラシレスモータ20の回転数を上昇させる場合には、期間UTonの継続時間を増加させる。また、制御部16は、三相直流ブラシレスモータ20の回転数を低下させる場合には、期間UTonの継続時間を減少させる。また、制御部16は、期間VTonの継続時間、及び期間WTonの継続時間についても、期間UTonの継続時間と同様にして変化させることにより、三相直流ブラシレスモータ20の回転数を制御する。
[パルス幅が最大(駆動デューティが100%)の場合の例]
 ここで一例として、制御部16が、期間Tonの継続時間を最大にする場合、つまり、駆動デューティを100%にする場合の具体例について、図11及び図12を参照して説明する。
 図11は、本実施形態の直流ブラシレスモータ制御装置15によるワンパルス制御の波形の他の一例を示す波形図である。図12は、本実施形態の直流ブラシレスモータ制御装置15によるアームの制御状態の他の一例を示す表である。なお、これら図11及び図12は、直流ブラシレスモータ制御装置15による三相直流ブラシレスモータ20の駆動デューティが、約100%である場合の一例を示す。また、図11及び図12に示す各区間は、図9及び図10に示す同一符号の区間に対応する。
 制御部16は、電気角が1周期目の区間、すなわち区間P101から区間P112までの各区間において、次のようにして各相のアームを制御する。
 ここで、制御部16は、期間Tonの継続時間を最大にする場合、U相について、U相のアーム41がH状態に維持される時間を最大まで増加させ、U相のアーム41がHi-Z状態に維持される時間を最小まで減少させる。この場合、制御部16は、V相についてもU相と同様に、V相のアーム42がH状態に維持される時間を最大まで増加させ、V相のアーム42がHi-Z状態に維持される時間を最小まで減少させる。この場合、制御部16は、W相についてもU相及びV相と同様に、W相のアーム43がH状態に維持される時間を最大まで増加させ、W相のアーム43がHi-Z状態に維持される時間を最小まで減少させる。
 なお、各区間における制御部16によるアームの制御状態は、上述した図9及び図10の場合と同様である。すなわち、制御部16は、磁極位置検出部25が検出する磁極位置が基準位置に達した時点から順に、第1の第1相駆動状態と、第2の第1相駆動状態と、第1の第2相駆動状態と、第2の第2相駆動状態と、第1の第3相駆動状態と、第2の第3相駆動状態と、を含む複数の状態によって、スイッチング素子の通電状態を制御する。ここで、第1の第1相駆動状態は、第1相アーム41の第1スイッチング素子がオン状態かつ第2スイッチング素子がオフ状態であり、第2相アーム42の第1スイッチング素子がオフ状態かつ第2スイッチング素子がオン状態であり、第3相アーム43の第1スイッチング素子と第2スイッチング素子とがいずれもオフ状態である。第2の第1相駆動状態は、第1相アーム41の第1スイッチング素子がオン状態かつ第2スイッチング素子がオフ状態であり、第2相アーム42の第1スイッチング素子と第2スイッチング素子とがいずれもオフ状態であり、第3相アーム43の第1スイッチング素子がオフ状態かつ第2スイッチング素子がオン状態である。第1の第2相駆動状態は、第1相アーム41の第1スイッチング素子と第2スイッチング素子とがいずれもオフ状態であり、第2相アーム42の第1スイッチング素子がオン状態かつ第2スイッチング素子がオフ状態であり、第3相アーム43の第1スイッチング素子がオフ状態かつ第2スイッチング素子がオン状態である。第2の第2相駆動状態は、第1相アーム41の第1スイッチング素子がオフ状態かつ第2スイッチング素子がオン状態であり、第2相アーム42の第1スイッチング素子がオン状態かつ第2スイッチング素子がオフ状態であり、第3相アーム43の第1スイッチング素子と第2スイッチング素子とがいずれもオフ状態である。
第1の第3相駆動状態は、第1相アーム41の第1スイッチング素子がオフ状態かつ第2スイッチング素子がオン状態であり、第2相アーム42の第1スイッチング素子と第2スイッチング素子とがいずれもオフ状態であり、第3相アーム43の第1スイッチング素子がオン状態かつ第2スイッチング素子がオフ状態である。
第2の第3相駆動状態は、第1相アーム41の第1スイッチング素子と第2スイッチング素子とがいずれもオフ状態であり、第2相アーム42の第1スイッチング素子がオフ状態かつ第2スイッチング素子がオン状態であり、第3相アーム43の第1スイッチング素子がオン状態かつ第2スイッチング素子がオフ状態である。
 以上説明したように、制御部16は、ワンパルス制御において、パルス幅を変化させることにより、三相直流ブラシレスモータ20の回転数を制御する。つまり、制御部16は、各相のアームについて、期間Tonの継続時間と、アームがHi-Z状態である区間の継続時間との割合を可変させることによって、三相直流ブラシレスモータ20の回転数を制御する。
 上述したように、制御部16は、期間Tonにおいて、アームをH状態に維持することにより、三相直流ブラシレスモータ20の巻線に駆動電流を供給し続ける。
 一方、従来技術であるPWM制御の場合には、期間Tonに相当する期間において、所定のPWM周波数に応じた切換速度によって、アームが、H状態と、L状態又はHi-Z状態とに交互に切り替えられる。つまり、従来技術であるPWM制御の場合には、期間Tonに相当する期間において、アームがH状態に維持されない。つまり、本実施形態の制御部16が行うワンパルス制御は、期間Tonにおいて、アームがH状態に維持される点で、従来技術であるPWM制御とは異なる。
[ワンパルス制御におけるパルス幅可変制御の詳細]
 次に、制御部16によるパルス幅可変制御の詳細について説明する。ここで、期間Tonは、前半部分と、後半部分とに分けられる。具体的には、期間UTonは、区間P104から区間P105に切り替わる時刻t1を境にして、区間P104側の期間UTon1と、区間P105側の期間UTon2とに分けられる。期間VTonは、区間P108から区間P109に切り替わる時刻t2を境にして、区間P108側の期間VTon1と、区間P109側の期間VTon2とに分けられる。期間WTonは、区間P112から区間P201に切り替わる時刻t3を境にして、区間P112側の期間WTon1と、区間P201側の期間WTon2とに分けられる。
 制御部16は、パルス幅を可変させる場合に、期間Tonの前半部分と、後半部分とを対応させて増減させる。具体的には、制御部16は、パルス幅を増加させる場合には、期間Tonの前半部分の増加幅と、期間Tonの後半部分の増加幅とを一致させて、パルス幅を増加させる。また、制御部16は、パルス幅を減少させる場合には、期間Tonの前半部分の減少幅と、期間Tonの後半部分の減少幅とを一致させて、パルス幅を減少させる。より具体的には、U相について、制御部16は、期間UTon1の長さと、期間UTon2の長さとを一致させて、パルス幅を増減させる。また、V相について、制御部16は、期間VTon1の長さと、期間VTon2の長さとを一致させて、パルス幅を増減させる。また、W相について、制御部16は、期間WTon1の長さと、期間WTon2の長さとを一致させて、パルス幅を増減させる。つまり、制御部16は、U相については時刻t1を、V相については時刻t2を、W相については時刻t3をそれぞれ中心にして、パルス幅を可変させる。
1…吸引装置、12…記憶部、13…操作スイッチ、15…直流ブラシレスモータ制御装置、16…制御部、17…MCU、18…ドライバー、20…三相直流ブラシレスモータ、21、22、23…巻線、24…ロータ、25、25-1、25-2、25-3…磁極位置検出部、29…整流部、30…昇圧部、31…第1DC-DCコンバーター、32…第2DC-DCコンバーター、40…三相ブリッジインバータ部、241…永久磁石、411、412、421、422、431、432…電界効果トランジスタ

Claims (12)

  1.  三相直流ブラシレスモータの固定子の巻線に対して電流を供給する直流ブラシレスモータ制御装置であって、
     
     スイッチング素子どうしが直列接続され、かつ前記スイッチング素子どうしの接続点と前記巻線の一端とが接続されたアームを、各相に備える三相ブリッジインバータ部と、
     前記三相直流ブラシレスモータのロータの磁極位置を検出する磁極位置検出部が検出する前記磁極位置に基づいて、前記アームが備える前記スイッチング素子のうち、前記接続点の一方側にある第1スイッチング素子の通電状態と、他方側にある第2スイッチング素子の通電状態とを、それぞれ制御する制御部と、
     を備え、
     前記制御部は、
     前記磁極位置検出部が検出する前記磁極位置が基準位置に達した時点から順に、前記第1スイッチング素子と前記第2スイッチング素子とがいずれもオフ状態である第1状態と、前記第1スイッチング素子がオン状態に維持され前記第2スイッチング素子がオフ状態に維持される第2状態と、前記第1スイッチング素子と前記第2スイッチング素子とがいずれもオフ状態である第3状態と、前記第1スイッチング素子がオフ状態に維持され前記第2スイッチング素子がオン状態に維持される第4状態と、を含む複数の状態によって、前記スイッチング素子の通電状態を制御する。
  2.  請求項1に記載の直流ブラシレスモータ制御装置であって、
    前記制御部は、
     前記ロータの回転数が所定の回転数未満である場合には、前記第2状態に代えて、前記第2スイッチング素子がオフ状態に維持されつつ、第1スイッチング素子がオン状態とオフ状態とを交互に切り替えられる第5状態によって、前記スイッチング素子の通電状態を制御する。
  3.  請求項2に記載の直流ブラシレスモータ制御装置であって、
    前記ロータの目標回転数を示す情報が、低回転数から高回転数まで複数の段階に区切られて、前記段階ごとに記憶されている記憶部を備え、
     前記制御部は、
     前記記憶部に前記段階ごとに記憶されている前記目標回転数に応じて、前記ロータの回転数を制御する。
  4.  請求項3に記載の直流ブラシレスモータ制御装置であって、
    前記制御部は、
     前記記憶部に前記段階ごとに記憶されている前記目標回転数のうち、前記所定の回転数未満である低回転数側の前記目標回転数による制御を前記第5状態によって行い、前記所定の回転数以上である高回転数側の前記目標回転数による制御を前記第2状態によって行う。
  5.  請求項1から請求項3のいずれか一項に記載の直流ブラシレスモータ制御装置であって、
    前記制御部は、
     前記ロータの目標回転数に応じて、前記第2状態の継続時間を変化させる。
  6.  請求項1から請求項5のいずれか一項に記載の直流ブラシレスモータ制御装置であって、
    前記制御部は、
     前記磁極位置検出部から供給される前記磁極位置を示す信号を、前記磁極位置の判定に用いる信号として取得するか否かを、前記磁極位置検出部が検出する前記磁極位置の移動の周期に基づいて判定する。
  7.  請求項1から請求項6のいずれか一項に記載の直流ブラシレスモータ制御装置であって、
    前記制御部は、
     前記磁極位置検出部が検出する前記磁極位置の移動の周期と、前記ロータの目標回転数とに基づいて、前記ロータの回転数をフィードバック制御する。
  8.  三相直流ブラシレスモータの固定子の巻線に対して電流を供給する直流ブラシレスモータ制御装置であって、
     
     スイッチング素子どうしが直列接続され、かつ前記スイッチング素子どうしの接続点と前記巻線の一端とが接続されたアームを、各相に備える三相ブリッジインバータ部と、
     前記三相直流ブラシレスモータのロータの磁極位置を検出する磁極位置検出部が検出する前記磁極位置に基づいて、前記アームが備える前記スイッチング素子のうち、前記接続点の一方側にある第1スイッチング素子の通電状態と、他方側にある第2スイッチング素子の通電状態とを、それぞれ制御する制御部と、
     を備え、
     前記制御部は、
     前記三相直流ブラシレスモータの電気角の1周期ごとに、前記磁極位置検出部が検出する前記磁極位置が基準位置に達した時点から順に、前記第1スイッチング素子と前記第2スイッチング素子とがいずれもオフ状態である第1状態と、前記第1スイッチング素子がオン状態に維持され前記第2スイッチング素子がオフ状態に維持される第2状態と、前記第1スイッチング素子と前記第2スイッチング素子とがいずれもオフ状態である第3状態と、前記第1スイッチング素子がオフ状態に維持され前記第2スイッチング素子がオン状態に維持される第4状態と、によって、前記スイッチング素子の通電状態を制御する。
  9.  請求項8に記載の直流ブラシレスモータ制御装置であって、
    前記制御部は、
     前記第2状態の継続時間と、前記第1状態の継続時間及び前記第3状態の継続時間との割合を可変させることによって、前記ロータの回転速度を可変にする。
  10.  請求項8又は請求項9に記載の直流ブラシレスモータ制御装置であって、
    前記制御部は、
     前記第2状態の継続時間を増加させる場合には、前記第1状態の継続時間の減少幅と前記第3状態の継続時間の減少幅とを対応させて、前記第1状態の継続時間及び前記第3状態の継続時間を減少させ、
     前記第2状態の継続時間を減少させる場合には、前記第1状態の継続時間の増加幅と前記第3状態の継続時間の増加幅とを対応させて、前記第1状態の継続時間及び前記第3状態の継続時間を増加させる。
  11.  請求項8から請求項10のいずれか一項に記載の直流ブラシレスモータ制御装置であって、
    前記制御部は、
     前記各相のうちの第1相、第2相及び第3相について、前記第1相が前記第2状態である間に、前記第2相を前記第4状態から前記第1状態に切換え、前記第3相を前記第3状態から前記第4状態に切換える。
  12.  三相直流ブラシレスモータの固定子の巻線に対して電流を供給する直流ブラシレスモータ制御装置であって、
     
     スイッチング素子どうしが直列接続され、かつ前記スイッチング素子どうしの接続点と前記巻線の一端とが接続された各相のアームである、第1相アーム、第2相アーム及び第3相アームを備える三相ブリッジインバータ部と、
     前記三相直流ブラシレスモータのロータの磁極位置を検出する磁極位置検出部が検出する前記磁極位置に基づいて、各相のアームが備える前記スイッチング素子のうち、前記接続点の一方側にある第1スイッチング素子の通電状態と、他方側にある第2スイッチング素子の通電状態とを、それぞれ制御する制御部と、
     を備え、
     前記制御部は、
     前記磁極位置検出部が検出する前記磁極位置が基準位置に達した時点から順に、
     前記第1相アームの前記第1スイッチング素子がオン状態かつ前記第2スイッチング素子がオフ状態であり、前記第2相アームの前記第1スイッチング素子がオフ状態かつ前記第2スイッチング素子がオン状態であり、前記第3相アームの前記第1スイッチング素子と前記第2スイッチング素子とがいずれもオフ状態である第1の第1相駆動状態と、
     前記第1相アームの前記第1スイッチング素子がオン状態かつ前記第2スイッチング素子がオフ状態であり、前記第2相アームの前記第1スイッチング素子と前記第2スイッチング素子とがいずれもオフ状態であり、前記第3相アームの前記第1スイッチング素子がオフ状態かつ前記第2スイッチング素子がオン状態である第2の第1相駆動状態と、
     前記第1相アームの前記第1スイッチング素子と前記第2スイッチング素子とがいずれもオフ状態であり、前記第2相アームの前記第1スイッチング素子がオン状態かつ前記第2スイッチング素子がオフ状態であり、前記第3相アームの前記第1スイッチング素子がオフ状態かつ前記第2スイッチング素子がオン状態である第1の第2相駆動状態と、
     前記第1相アームの前記第1スイッチング素子がオフ状態かつ前記第2スイッチング素子がオン状態であり、前記第2相アームの前記第1スイッチング素子がオン状態かつ前記第2スイッチング素子がオフ状態であり、前記第3相アームの前記第1スイッチング素子と前記第2スイッチング素子とがいずれもオフ状態である第2の第2相駆動状態と、
     前記第1相アームの前記第1スイッチング素子がオフ状態かつ前記第2スイッチング素子がオン状態であり、前記第2相アームの前記第1スイッチング素子と前記第2スイッチング素子とがいずれもオフ状態であり、前記第3相アームの前記第1スイッチング素子がオン状態かつ前記第2スイッチング素子がオフ状態である第1の第3相駆動状態と、
     前記第1相アームの前記第1スイッチング素子と前記第2スイッチング素子とがいずれもオフ状態であり、前記第2相アームの前記第1スイッチング素子がオフ状態かつ前記第2スイッチング素子がオン状態であり、前記第3相アームの前記第1スイッチング素子がオン状態かつ前記第2スイッチング素子がオフ状態である第2の第3相駆動状態と、
     を含む複数の状態によって、前記スイッチング素子の通電状態を制御する。
PCT/JP2016/065780 2015-05-29 2016-05-27 直流ブラシレスモータ制御装置 WO2016194835A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16803270.4A EP3306805A4 (en) 2015-05-29 2016-05-27 CONTROL UNIT FOR BRUSHLESS DC MOTOR
US15/575,937 US20180152080A1 (en) 2015-05-29 2016-05-27 Dc-brushless-motor control device
JP2017521913A JPWO2016194835A1 (ja) 2015-05-29 2016-05-27 直流ブラシレスモータ制御装置
CN201680030668.8A CN107636954A (zh) 2015-05-29 2016-05-27 直流无刷马达控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562168009P 2015-05-29 2015-05-29
US62/168009 2015-05-29

Publications (1)

Publication Number Publication Date
WO2016194835A1 true WO2016194835A1 (ja) 2016-12-08

Family

ID=57441146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065780 WO2016194835A1 (ja) 2015-05-29 2016-05-27 直流ブラシレスモータ制御装置

Country Status (5)

Country Link
US (1) US20180152080A1 (ja)
EP (1) EP3306805A4 (ja)
JP (1) JPWO2016194835A1 (ja)
CN (1) CN107636954A (ja)
WO (1) WO2016194835A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180328A1 (ja) * 2017-03-29 2018-10-04 日立オートモティブシステムズ株式会社 電動機制御装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005333689A (ja) * 2004-05-18 2005-12-02 Matsushita Electric Ind Co Ltd モータ駆動装置
JP2008167525A (ja) * 2006-12-27 2008-07-17 Sharp Corp モータ駆動装置及びそれを備えた電気機器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0479609A3 (en) * 1990-10-05 1993-01-20 Hitachi, Ltd. Vacuum cleaner and control method thereof
JPH09117186A (ja) * 1995-10-13 1997-05-02 Zexel Corp 直流ブラシレスモータ駆動装置
JP4497149B2 (ja) * 2005-12-16 2010-07-07 パナソニック株式会社 インバータ装置
JP4939127B2 (ja) * 2006-06-30 2012-05-23 株式会社豊田中央研究所 交流電動機の駆動制御装置及び駆動制御方法
US8044623B2 (en) * 2007-07-03 2011-10-25 Seiko Epson Corporation Drive control circuit for electric motor
DE102008054487A1 (de) * 2008-01-09 2009-07-16 DENSO CORPORARTION, Kariya-shi Steuersystem für eine mehrphasige elektrische Drehmaschine
JP5494095B2 (ja) * 2010-03-25 2014-05-14 パナソニック株式会社 インバータ装置およびそれをファンモータの駆動装置に用いた電気掃除機
GB201006392D0 (en) * 2010-04-16 2010-06-02 Dyson Technology Ltd Controller for a brushless motor
DE102011081215A1 (de) * 2011-08-18 2013-02-21 Robert Bosch Gmbh Drehstrommaschinen-Ansteuerungsverfahren und -vorrichtung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005333689A (ja) * 2004-05-18 2005-12-02 Matsushita Electric Ind Co Ltd モータ駆動装置
JP2008167525A (ja) * 2006-12-27 2008-07-17 Sharp Corp モータ駆動装置及びそれを備えた電気機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3306805A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180328A1 (ja) * 2017-03-29 2018-10-04 日立オートモティブシステムズ株式会社 電動機制御装置

Also Published As

Publication number Publication date
EP3306805A4 (en) 2019-04-17
EP3306805A1 (en) 2018-04-11
CN107636954A (zh) 2018-01-26
US20180152080A1 (en) 2018-05-31
JPWO2016194835A1 (ja) 2018-03-22

Similar Documents

Publication Publication Date Title
EP2959573B1 (en) Method and system for determining the position of a synchronous motor's rotor
KR101736819B1 (ko) 모터 구동 장치
US9071172B2 (en) Sine modified trapezoidal drive for brushless DC motors
US7235941B2 (en) Phase commutation method of brushless direct current motor
JP2013179833A (ja) 電動圧縮機および家庭用電気機器
JP2012080766A (ja) 電気機械の制御方法
JP2010246380A (ja) 電気機械の制御
US10879818B2 (en) Linear actuator with a brushless DC motor
JP2012090464A (ja) インバータ制御装置と電動圧縮機および電気機器
WO2016194835A1 (ja) 直流ブラシレスモータ制御装置
EP2665178A2 (en) System and method for sensor-less hysteresis current control of permanent magnet synchronous generators without rotor position information
US9287807B2 (en) Apparatus and method of decreasing speed of sensorless brush less direct current (BLDC) motor
US20050135794A1 (en) Method and system for negative torque reduction in a brushless DC motor
Kim et al. DSP-based high-speed sensorless control for a brushless DC motor using a DC link voltage control
JP2011045209A (ja) モータ駆動装置およびモータ駆動方法
JP2009011014A (ja) インバータ制御装置と電動圧縮機および家庭用電気機器
KR102238456B1 (ko) 스위치드 릴럭턴스 모터를 구동하는 구동 회로
JP4289003B2 (ja) ブラシレスdcモータの駆動方法及びその装置
JP5326948B2 (ja) インバータ制御装置と電動圧縮機および電気機器
US11973447B2 (en) Selective phase control of an electric machine
WO2016194836A1 (ja) 直流ブラシレスモータ制御装置
US20220416707A1 (en) Selective phase control of an electric machine
KR102015867B1 (ko) 모터 구동 장치
JP2022047079A (ja) モータ制御装置及びモータ制御方法
KR20200001733A (ko) 모터 구동 장치, 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803270

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15575937

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017521913

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE