WO2016194754A1 - Air compression device - Google Patents

Air compression device Download PDF

Info

Publication number
WO2016194754A1
WO2016194754A1 PCT/JP2016/065547 JP2016065547W WO2016194754A1 WO 2016194754 A1 WO2016194754 A1 WO 2016194754A1 JP 2016065547 W JP2016065547 W JP 2016065547W WO 2016194754 A1 WO2016194754 A1 WO 2016194754A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
wall
air
port
pipe
Prior art date
Application number
PCT/JP2016/065547
Other languages
French (fr)
Japanese (ja)
Inventor
将 黒光
洋司 高嶋
裕 中川
高橋 亮
辰雄 宮内
充良 浜崎
源平 田中
徹 水船
Original Assignee
ナブテスコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナブテスコ株式会社 filed Critical ナブテスコ株式会社
Priority to SG11201709368XA priority Critical patent/SG11201709368XA/en
Priority to JP2017521870A priority patent/JP6761412B2/en
Priority to CN201680031518.9A priority patent/CN107614874B/en
Priority to EP16803189.6A priority patent/EP3306089B1/en
Publication of WO2016194754A1 publication Critical patent/WO2016194754A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/121Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/123Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00

Definitions

  • the present invention relates to an air compression device that generates compressed air.
  • Compressed air generating device is used for various purposes.
  • Compressed air generated by an air compressor mounted on a vehicle may be supplied to a brake device that applies a braking force to the vehicle.
  • Patent Document 1 proposes an air compression device including a plurality of compressors. If the air compressor includes a plurality of compressors, a large amount of compressed air is generated in a short time. In addition, compressed air can continue to be generated by other compressors even after some of the plurality of compressors fail.
  • the air compressor has a plurality of compressors, it is necessary to form a pipeline for guiding air to each of the plurality of compressors. Therefore, if the designer intends to incorporate a plurality of compressors into the air compressor, the designer needs to give large dimension values to the air compressor. This may make it difficult to mount the air compressor on other devices (eg, vehicles).
  • An object of the present invention is to provide a small air compression device including a plurality of compressors.
  • An air compressor includes a first compressor including a first port wall in which a first intake port is formed, a second compressor including a second port wall in which a second intake port is formed, An intake pipe for guiding air to the first intake port and the second intake port.
  • the first port wall and the second port wall are disposed to face each other.
  • the intake pipe line is disposed between the first port wall and the second port wall.
  • the above-described technology makes it possible to give a small dimension value to an air compression apparatus including a plurality of compressors.
  • FIG. 3B is another perspective view of the air compression device shown in FIG. 3A. It is a schematic plan view showing the internal structure of the air compression apparatus shown in FIG. 3A.
  • FIG. 3B is a schematic cross-sectional view showing the structure of the proximal end portion of the intake pipe of the air compression device shown in FIG. 3A.
  • FIG. 6 is a schematic enlarged cross-sectional view of the intake pipe shown in FIG. 5.
  • 3B is a schematic enlarged perspective view of a delivery pipe of the air compression device shown in FIG. 3A.
  • FIG. 3B is a schematic cross-sectional view of a duct portion of the air compression device shown in FIG. 3A.
  • FIG. 3B is a schematic perspective view of the air compression device shown in FIG. 3A.
  • FIG. It is a schematic perspective view of the cold flow adjustment box of the air compressor shown in FIG. 3A (fourth embodiment).
  • FIG. 10B is a schematic rear view of the cold flow adjustment box shown in FIG. 10A.
  • FIG. 3B is a partial assembly view of the air compression device shown in FIG. 3A (fifth embodiment). It is a schematic perspective view of the 1st transmission part of the air compression apparatus shown by FIG. It is a partial assembly figure of the air compressor shown in Drawing 3A (6th embodiment).
  • FIG. 14 is a schematic perspective view of a lower support plate of the air compression device shown in FIG. 13.
  • FIG. 1 is a conceptual diagram of an air compressor 100 according to the first embodiment. With reference to FIG. 1, an air compressor 100 is described.
  • the air compressor 100 includes a first compressor 210, a second compressor 220, and an intake pipe 300.
  • the intake pipe 300 is connected to the first compressor 210 and the second compressor 220.
  • the first compressor 210 and / or the second compressor 220 When the first compressor 210 and / or the second compressor 220 are operated, the first compressor 210 and / or the second compressor 220 creates a negative pressure environment in the intake pipe 300.
  • each of the first compressor 210 and the second compressor 220 can suck air through the intake pipe 300.
  • Each of the first compressor 210 and the second compressor 220 compresses the sucked air and generates compressed air.
  • the compressed air is supplied from each of the first compressor 210 and the second compressor 220 to other devices that use the compressed air.
  • the supply of compressed air from each of the first compressor 210 and the second compressor 220 to other devices may depend on various known piping techniques. The principle of this embodiment is not limited to a specific technique for supplying compressed air to other devices.
  • the compressed air may then be supplied to a brake device (not shown) for generating a braking force on the railway vehicle.
  • the compressed air may be supplied to other devices that utilize the compressed air (eg, pneumatic equipment (not shown) used to open and close the vehicle door).
  • pneumatic equipment not shown
  • the principle of this embodiment is not limited to a specific application of compressed air.
  • the first compressor 210 includes a first housing 211 and a compression mechanism 212.
  • the compression mechanism 212 is accommodated in the first housing 211.
  • the compression mechanism 212 may have a structure that a general scroll compressor has.
  • the compression mechanism 212 may have a structure that a general rotary compressor has.
  • the compression mechanism 212 may have a structure that a general swing compressor has.
  • the compression mechanism 212 may have the structure of a typical reciprocating compressor.
  • the principle of the present embodiment is not limited to a specific structure of the compression mechanism 212.
  • the first casing 211 includes a first port wall 213 that faces the second compressor 220.
  • a first intake port 214 is formed in the first port wall 213.
  • the intake pipe 300 is connected to the first intake port 214. Therefore, the first compressor 210 can take in air from the first intake port 214 and generate compressed air.
  • the second compressor 220 includes a second housing 221 and a compression mechanism 222.
  • the compression mechanism 222 is accommodated in the second housing 221.
  • the compression mechanism 222 may have a structure that a general scroll compressor has.
  • the compression mechanism 222 may have a structure that a general rotary compressor has.
  • the compression mechanism 222 may have a structure that a general swing compressor has.
  • the compression mechanism 222 may have the structure of a typical reciprocating compressor.
  • the principle of the present embodiment is not limited to a specific structure of the compression mechanism 222.
  • the second casing 221 includes a second port wall 223 that faces the first port wall 213 of the first compressor 210.
  • a second intake port 224 is formed in the second port wall 223.
  • the intake pipe 300 is connected to the second intake port 224. Therefore, the second compressor 220 can take in air from the second intake port 224 and generate compressed air.
  • the intake pipe 300 includes a main pipe 310, a first branch pipe 311, and a second branch pipe 312. Each of the first branch pipe 311 and the second branch pipe 312 branches from the main pipe 310.
  • the first branch pipe 311 is connected to the first intake port 214 of the first compressor 210.
  • the second branch pipe 312 is connected to the second intake port 224 of the second compressor 220.
  • the intake pipe 300 becomes a negative pressure environment as described above. As a result, air flows from the main pipe 310 toward the first branch pipe 311. The first branch pipe 311 guides air to the first intake port 214.
  • the intake pipe 300 is in a negative pressure environment as described above. As a result, air flows from the main pipe 310 toward the second branch pipe 312. The second branch pipe 312 guides air to the second intake port 224.
  • the first compressor 210 and the second compressor 220 may share a piping space for taking in air. it can. Therefore, the designer can provide the air compressor 100 with a narrow space as a piping space for taking in air.
  • the intake pipe 300 is a branch pipe.
  • the intake pipe may be formed using a pipe that exclusively guides air supplied to the first compressor 210 and a pipe that exclusively guides air supplied to the second compressor 220. In this case, these pipes are both disposed between the first port wall 213 and the second port wall 223.
  • the principle of this embodiment is not limited to a specific structure of the intake pipe.
  • a base end portion (not shown) of the main pipe 310 of the intake pipe 300 communicates with a space outside a housing (not shown) that forms a housing space in which the first compressor 210 and the second compressor 220 are housed. May be.
  • the air outside the housing can directly flow into the main pipe 310.
  • the proximal end portion of the main pipe 310 may be accommodated in the housing. In this case, the air in the housing flows into the main pipe 310.
  • the principle of the present embodiment is not limited to a specific arrangement position of the proximal end portion of the main pipe 310.
  • the intake pipe 300 may include a filter device that removes dust from the intake air.
  • the purified air is supplied to the first compressor 210 and the second compressor 220.
  • other suitable cleaning techniques may be used to clean the air supplied to the first compressor 210 and the second compressor 220.
  • the principle of this embodiment is not limited to a specific cleaning technique.
  • the space in which the delivery line for guiding the compressed air is formed may also be shared by a plurality of compressors similarly to the intake line.
  • an air compression apparatus including a plurality of compressors connected to delivery pipes formed in a common space will be described.
  • FIG. 2 is a conceptual diagram of the air compressor 100A of the second embodiment.
  • the air compressor 100A will be described with reference to FIG. Elements having the same functions as those in the first embodiment are denoted by the same reference numerals. The description of the first embodiment is applied to elements having the same reference numerals.
  • the air compressor 100A includes an intake pipe 300.
  • the description of the first embodiment is applied to the intake pipe 300.
  • the air compressor 100A further includes a first compressor 210A, a second compressor 220A, a housing 400, and a delivery pipe line 500.
  • the casing 400 forms an accommodation space 410 in which the first compressor 210A and the second compressor 220A are accommodated. Similar to the first embodiment, each of the first compressor 210 ⁇ / b> A and the second compressor 220 ⁇ / b> A receives air through the intake pipe 300. Each of the first compressor 210A and the second compressor 220A compresses the air received from the intake pipe 300 and generates compressed air. The compressed air is discharged out of the housing 400 through the delivery pipe line 500. In the present embodiment, the first compressed air is exemplified by the compressed air generated by the first compressor 210A. The second compressed air is exemplified by the compressed air generated by the second compressor 220A.
  • the delivery pipe line 500 may be connected to a cooling facility for cooling the compressed air. As a result, the compressed air is properly cooled. Thereafter, the compressed air may be dehumidified. As a result, dry compressed air is generated.
  • the compressed air that has passed through the delivery line 500 may be subjected to various other processes. The principle of the present embodiment is not limited to a specific process performed on the compressed air after passing through the delivery pipe line 500.
  • the first compressor 210A includes a compression mechanism 212.
  • the description of the first embodiment is applied to the compression mechanism 212.
  • the first compressor 210A further includes a first casing 211A.
  • the compression mechanism 212 is accommodated in the first casing 211A.
  • the first casing 211A includes a first port wall 213A facing the second compressor 220A. Similar to the first embodiment, a first intake port 214 is formed in the first port wall 213A. The description of the first embodiment is applied to the first intake port 214.
  • a first delivery port 215 is further formed on the first port wall 213A.
  • the compressed air generated by the compression mechanism 212 is sent to the delivery pipe line 500 through the first delivery port 215.
  • the second compressor 220A includes a compression mechanism 222.
  • the description of the first embodiment is applied to the compression mechanism 222.
  • the second compressor 220A further includes a second housing 221A.
  • the compression mechanism 222 is accommodated in the second housing 221A.
  • the second casing 221A includes a second port wall 223A facing the first port wall 213A of the first compressor 210A. Similar to the first embodiment, a second intake port 224 is formed in the second port wall 223A. The description of the first embodiment is applied to the second intake port 224.
  • a second delivery port 225 is further formed on the second port wall 223A.
  • the compressed air generated by the compression mechanism 222 is sent to the delivery pipe line 500 through the second delivery port 225.
  • the delivery pipe line 500 includes a first delivery pipe 510, a second delivery pipe 520, a joining part 530, and a joining pipe 540.
  • the first delivery pipe 510 is connected to the merging portion 530 and the first delivery port 215 of the first compressor 210A.
  • the compressed air generated by the first compressor 210 ⁇ / b> A flows from the first delivery port 215 to the junction 530 through the first delivery pipe 510.
  • the second delivery pipe 520 is connected to the merging portion 530 and the second delivery port 225 of the second compressor 220A.
  • the compressed air generated by the second compressor 220 ⁇ / b> A flows from the second delivery port 225 to the junction 530 through the second delivery pipe 520. Since the first delivery pipe 510 and the second delivery pipe 520 are connected to the first delivery port 215 and the second delivery port 225, respectively, they are disposed between the first port wall 213A and the second port wall 223A.
  • Compressed air generated by the first compressor 210A merges with the compressed air generated by the second compressor 220A at the merge unit 530.
  • the merge pipe 540 forms a delivery path from the merge section 530 to the outside of the housing 400.
  • the compressed air flows from the junction 530 to the outside of the housing 400 through the junction pipe 540.
  • the delivery pipe line 500 includes a merging portion 530.
  • the delivery line includes a pipe that guides the compressed air generated by the first compressor 210 ⁇ / b> A to the outside of the casing 400, and a pipe that guides the compressed air generated by the second compressor 220 ⁇ / b> A to the outside of the casing 400. , May be used.
  • a joining element for joining the compressed air generated by the first compressor 210A to the compressed air generated by the second compressor 220A is not required.
  • the principle of this embodiment is not limited to a specific structure of the delivery line.
  • ⁇ Third Embodiment> The designer can design various air compressors based on the design principle described in relation to the second embodiment.
  • an exemplary air compressor is described.
  • terms representing directions such as “up”, “down”, “left”, “right”, “front” and “back” are used. These terms are used for clarity of explanation.
  • the principle of the air compression device is not limited by these terms.
  • FIGS. 2 to 3B are schematic perspective views of the air compression device 100B of the third embodiment.
  • the air compressor 100B will be described with reference to FIGS. 2 to 3B.
  • the air compressor 100B includes a housing 400B, a cooling device 610, a dehumidifying device 620 (see FIG. 3B), a control device 630, a right connection unit 650, and a left connection unit 660.
  • the housing 400B corresponds to the housing 400 described with reference to FIG.
  • the housing 400B includes a top plate 420 (see FIG. 3A), a bottom plate 430 (see FIG. 3B), and an outer peripheral wall 440.
  • the top plate 420 and the bottom plate 430 are substantially rectangular.
  • the top plate 420 is connected to the lower surface of the vehicle (not shown) by the right connection portion 650 and the left connection portion 660.
  • the bottom plate 430 lies below the top plate 420.
  • the outer peripheral wall 440 is erected between the top plate 420 and the bottom plate 430.
  • the outer peripheral wall 440 includes a front mounting wall 450 (see FIG. 3A), a rear mounting wall 460 (see FIG. 3B), a first wall 470 (see FIG. 3A), and a second wall 480 (see FIG. 3B). ) And an intake wall 479 (see FIG. 3A).
  • the front mounting wall 450 forms a surface substantially parallel to a virtual extension surface of the side surface of the vehicle extending along the traveling direction of the vehicle.
  • the intake wall 479 is disposed below the front mounting wall 450.
  • the intake wall 479 allows the passage of air. Air outside the casing 400B flows into the casing 400B through the intake wall 479.
  • the rear mounting wall 460 is erected on the opposite side to the front mounting wall 450.
  • the first wall 470 is erected between the right edge of the front mounting wall 450 and the right edge of the rear mounting wall 460.
  • the second wall 480 is erected between the left edge of the front mounting wall 450 and the left edge of the rear mounting wall 460.
  • the front mounting wall 450 includes a holding plate 451 and a substantially cylindrical filter cover 452.
  • the filter cover 452 is fixed to the holding plate 451.
  • the filter cover 452 protrudes forward from the holding plate 451.
  • a filter device which will be described later, is provided behind the filter cover 452 to remove dust from the intake air.
  • the filter cover 452 includes a substantially cylindrical outer shell 453 and a lever lock 454.
  • An operator who checks and repairs the air compressor 100B can manually operate the lever lock 454 without using a tool such as a driver or a wrench.
  • the operator can operate the lever lock 454 to fix the outer shell 453 to the holding plate 451.
  • the operator can operate the lever lock 454 to separate the outer shell 453 from the holding plate 451.
  • the operator can access a filter member (not shown) housed in the housing 400B. Therefore, the operator can easily replace the filter member.
  • the lever lock 454 may be a commercially available general lock part. Instead of the lever lock 454, another suitable fixing mechanism may be used for the filter cover 452.
  • the rear mounting wall 460 includes a holding plate 461 and a duct portion 462.
  • the duct portion 462 protrudes rearward from the holding plate 461.
  • cooling air flows in the housing 400B.
  • the duct portion 462 forms an opening region that is long in the horizontal direction as an outlet for the cooling air used in the housing 400B.
  • the cooling air used for cooling the inside of the housing 400B is sent out from the duct portion 462.
  • the cooling device 610 includes a cooling pipe 611 that extends in a meandering manner and a protective cover 612 that surrounds an extension region of the cooling pipe 611.
  • the compressed air generated in the housing 400B flows into the cooling pipe 611. Since the cooling pipe 611 is disposed outside the casing 400B in which a heat source (for example, a compressor (not shown)) is accommodated, the compressed air in the cooling pipe 611 is efficiently cooled.
  • a heat source for example, a compressor (not shown)
  • a part of the cooling pipe 611 faces the duct portion 462. Therefore, the compressed air in the cooling pipe 611 is also cooled by the cooling air blown out from the housing 400B.
  • the dehumidifying device 620 is disposed below the cooling device 610. Since the air compressor 100B does not have any devices present below the dehumidifier 620, even if leakage occurs due to a failure of the dehumidifier 620, other devices incorporated in the air compressor 100B are unlikely to be damaged.
  • the control device 630 is disposed below the cooling device 610.
  • the control device 630 is disposed next to the dehumidifying device 620.
  • the control device 630 controls a compressor (not shown) and other devices arranged in the housing 400B.
  • the top plate 420 includes a front edge 421 (see FIG. 3A), a rear edge 422, a right edge 423 (see FIG. 3A), and a left edge 424 (see FIG. 3B).
  • the front edge 421 extends along a corner formed by the top plate 420 and the front mounting wall 450.
  • the rear edge 422 extends along a corner formed by the top plate 420 and the rear mounting wall 460.
  • the right edge 423 extends along a corner formed by the top plate 420 and the first wall 470.
  • the left edge 424 extends along a corner formed by the top plate 420 and the second wall 480.
  • the right connection portion 650 includes a right frame member 651 and two vibration isolation rings 652, 653.
  • the right frame member 651 has a substantially C-shaped cross section.
  • the right frame member 651 extends along the right edge 423 of the top plate 420.
  • the anti-vibration ring 652 is disposed on a corner portion formed by the right edge 423 and the front edge 421.
  • the anti-vibration ring 653 is disposed on a corner portion formed by the right edge 423 and the rear edge 422.
  • the anti-vibration rings 652 and 653 are sandwiched between the right frame member 651 and the top plate 420.
  • the anti-vibration rings 652 and 653 reduce vibration transmitted from the housing 400B to the vehicle (not shown).
  • the left connection portion 660 includes a left frame member 661 and two vibration isolation rings 662 and 663.
  • the left frame member 661 has a substantially C-shaped cross section.
  • the left frame member 661 extends along the left edge 424 of the top plate 420.
  • the anti-vibration ring 662 is disposed on the corner formed by the left edge 424 and the front edge 421.
  • the anti-vibration ring 663 is disposed on the corner formed by the left edge 424 and the rear edge 422.
  • the anti-vibration rings 662 and 663 are sandwiched between the left frame member 661 and the top plate 420.
  • the anti-vibration rings 662 and 663 reduce vibration transmitted from the housing 400B to the vehicle (not shown).
  • FIG. 4 is a schematic plan view showing the internal structure of the air compressor 100B.
  • the top plate 420 is removed from the air compressor 100B shown in FIG.
  • the air compressor 100B is further described with reference to FIGS.
  • the air compressor 100B includes a first compressor 210B, a second compressor 220B, an intake pipe 300B, and a delivery pipe 500B.
  • the first compressor 210B corresponds to the first compressor 210A described with reference to FIG.
  • the second compressor 220B corresponds to the second compressor 220A described with reference to FIG.
  • the intake conduit 300B corresponds to the intake conduit 300 described with reference to FIG.
  • the delivery line 500B corresponds to the delivery line 500 described with reference to FIG.
  • FIG. 5 is a schematic cross-sectional view showing the structure of the proximal end portion of the intake pipe 300B.
  • the intake pipe 300B will be described with reference to FIGS. 2, 3A, 4 and 5.
  • FIG. 5 is a schematic cross-sectional view showing the structure of the proximal end portion of the intake pipe 300B.
  • the intake pipe 300B will be described with reference to FIGS. 2, 3A, 4 and 5.
  • FIG. 5 is a schematic cross-sectional view showing the structure of the proximal end portion of the intake pipe 300B.
  • the intake pipe 300B will be described with reference to FIGS. 2, 3A, 4 and 5.
  • FIG. 5 is a schematic cross-sectional view showing the structure of the proximal end portion of the intake pipe 300B.
  • the intake pipe 300B will be described with reference to FIGS. 2, 3A, 4 and 5.
  • FIG. 5 is a schematic cross-sectional view showing the structure of the proximal end portion of the intake pipe 300B.
  • the intake pipe 300 ⁇ / b> B includes an intake duct 310 ⁇ / b> B, a filter device 320, and a trim seal 331.
  • the intake duct 310B corresponds to the main pipe 310 shown in FIG.
  • the filter device 320 is disposed between the filter cover 452 and the intake duct 310B.
  • the trim seal 331 is a rubber ring member that hermetically connects the filter device 320 to the intake duct 310B.
  • the intake duct 310B is a hollow box member having a substantially rectangular parallelepiped shape.
  • a negative pressure environment is generated in the intake duct 310B.
  • the air outside the housing 400B passes through the filter device 320 through the filter cover 452.
  • the filter device 320 removes dust floating in the inflowing air.
  • the air cleaned by the filter device 320 flows into the intake duct 310B.
  • the first compressor 210B includes a first port wall 213B.
  • the second compressor 220B includes a second port wall 223B.
  • the first port wall 213B corresponds to the first port wall 213A described with reference to FIG.
  • the second port wall 223B corresponds to the second port wall 223A described with reference to FIG.
  • the first port wall 213B faces the second port wall 223B.
  • the intake duct 310B extends from the filter device 320 toward the rear mounting wall 460 in the space between the first port wall 213B and the second port wall 223B. Therefore, the air compressor 100B can supply air from the outside of the housing 400B to the first compressor 210B and the second compressor 220B using a narrow space.
  • FIG. 6 is a schematic enlarged cross-sectional view of the intake pipe line 300B around the intake duct 310B.
  • the intake pipe 300B will be further described with reference to FIGS.
  • the intake pipe line 300B includes two connecting pipes 311B and 312B and two trim seals 332 and 333.
  • the connecting pipe 311B corresponds to the first branch pipe 311 shown in FIG.
  • the connecting pipe 312B corresponds to the second branch pipe 312 shown in FIG.
  • the trim seal 332 is used for connection between the connecting pipe 311B and the intake duct 310B.
  • the trim seal 333 is used for connection between the connecting pipe 312B and the intake duct 310B.
  • the intake duct 310B includes a base wall (front wall) 341, a tip wall (rear wall) 342, a right wall 343, a left wall 344, a top wall 345 (see FIG. 4), and a bottom wall 346. ,including.
  • a trim seal 331 is attached to the proximal end wall 341.
  • a part of the filter device 320 is inserted through the trim seal 331 into the intake duct 310B.
  • the distal end wall 342 is erected on the opposite side of the proximal end wall 341.
  • the tip wall 342 forms the downstream end of the intake duct 310B.
  • the right wall 343 faces the first port wall 213B of the first compressor 210B.
  • the right wall 343 extends along the first port wall 213B between the proximal wall 341 and the distal wall 342.
  • the left wall 344 faces the second port wall 223B of the second compressor 220B.
  • the left wall 344 extends along the second port wall 223B between the proximal end wall 341 and the distal end wall 342.
  • the top wall 345 closes a rectangular region surrounded by the upper edges of the base end wall 341, the tip end wall 342, the right wall 343, and the left wall 344.
  • the bottom wall 346 closes a rectangular region surrounded by the lower edges of the proximal end wall 341, the distal end wall 342, the right wall 343, and the left wall 344.
  • the first port wall 213B of the first compressor 210B includes a cylindrical first intake port 214B that protrudes toward the right wall 343 of the intake duct 310B.
  • the first intake port 214B corresponds to the first intake port 214 shown in FIG.
  • the trim seal 332 is attached to the right wall 343 of the intake duct 310B.
  • the trim seal 332 is a rubber ring member.
  • the trim seal 332 is substantially coaxial with the first intake port 214B of the first compressor 210B.
  • the connecting pipe 311B includes a first end 313 and a second end 314.
  • the first end 313 is inserted into the trim seal 332.
  • a part of the first end 313 may protrude into the intake duct 310B.
  • the trim seal 332 hermetically seals between the first end 313 of the connection pipe 311B and the right wall 343 of the intake duct 310B.
  • the second end 314 of the connecting pipe 311B is inserted into the first intake port 214B of the first compressor 210B.
  • a suitable sealing member such as a sealing tape, is utilized for the connection between the second end 314 of the connecting pipe 311B and the first intake port 214B of the first compressor 210B.
  • the second port wall 223B of the second compressor 220B includes a cylindrical second intake port 224B that protrudes toward the left wall 344 of the intake duct 310B.
  • the second intake port 224B corresponds to the second intake port 224 shown in FIG.
  • the trim seal 333 is attached to the left wall 344 of the intake duct 310B.
  • the trim seal 333 is a rubber ring member.
  • the trim seal 333 is substantially coaxial with the second intake port 224B of the second compressor 220B.
  • the connecting pipe 312 ⁇ / b> B includes a first end 315 and a second end 316.
  • the first end 315 is inserted into the trim seal 333. A part of the first end 315 may protrude into the intake duct 310B.
  • the trim seal 333 hermetically seals between the first end 315 of the connecting pipe 312B and the left wall 344 of the intake duct 310B.
  • the second end 316 of the connecting pipe 312B is inserted into the second intake port 224B of the second compressor 220B.
  • a suitable sealing member such as a sealing tape, is utilized for the connection between the second end 316 of the connecting pipe 312B and the second intake port 224B of the second compressor 220B.
  • the delivery pipe line 500B includes a first delivery pipe 510B, a second delivery pipe 520B, a joining portion 530B, and a joining pipe 540B.
  • the first compressor 210B receives air through the connecting pipe 311B (see FIG. 6).
  • the first compressor 210B compresses the air supplied through the connecting pipe 311B and generates compressed air.
  • the second compressor 220B receives air through the connecting pipe 312B (see FIG. 6).
  • the second compressor 220B compresses the air supplied through the connecting pipe 312B and generates compressed air.
  • the first delivery pipe 510B is connected to the first port wall 213B of the first compressor 210B above the intake duct 310B.
  • the second delivery pipe 520B is connected to the second port wall 223B of the second compressor 220B above the intake duct 310B. Therefore, as shown in FIG. 4, the first delivery pipe 510B and the second delivery pipe 520B partially overlap the intake duct 310B.
  • the connection between the first delivery pipe 510B and the first port wall 213B of the first compressor 210B corresponds to the first delivery port 215 described with reference to FIG.
  • the connection between the second delivery pipe 520B and the second port wall 223B of the second compressor 220B corresponds to the second delivery port 225 described with reference to FIG.
  • the first delivery pipe 510B corresponds to the first delivery pipe 510 described with reference to FIG.
  • the second delivery pipe 520B corresponds to the second delivery pipe 520 described with reference to FIG.
  • FIG. 7 is a schematic enlarged perspective view of the delivery pipe line 500B around the merging portion 530B.
  • the delivery conduit 500B will be described with reference to FIGS.
  • the merge portion 530B is disposed near the front mounting wall 450 of the casing 400B.
  • the first delivery pipe 510B and the second delivery pipe 520B are bent toward the front mounting wall 450 and are connected to the merge portion 530.
  • the compressed air generated by the first compressor 210B flows into the junction 530B through the first delivery pipe 510B.
  • the compressed air generated by the second compressor 220B flows into the junction 530B through the second delivery pipe 520B.
  • the compressed air generated by the first compressor 210B merges with the compressed air generated by the second compressor 220B at the merge unit 530B.
  • the junction 530B corresponds to the junction 530 described with reference to FIG.
  • the merge portion 530B includes a manifold 531, a right check valve 532 (see FIG. 7), a left check valve 533 (see FIG. 7), and two first fixing members 534 and 535.
  • the manifold 531 is a substantially rectangular parallelepiped.
  • the manifold 531 includes an upper surface 551, a lower surface 552 (see FIG. 7), and a rear surface 553.
  • the right check valve 532 and the left check valve 533 are attached to the lower surface 552 of the manifold 531.
  • the first fixing members 534 and 535 are attached to the upper surface 551.
  • Merge pipe 540B extends from rear surface 553.
  • the first delivery pipe 510 ⁇ / b> B is connected to the right check valve 532.
  • the compressed air flowing along the first delivery pipe 510 ⁇ / b> B flows into the manifold 531 through the right check valve 532.
  • the right check valve 532 blocks the flow of compressed air that returns from the manifold 531 to the first delivery pipe 510B.
  • the second delivery pipe 520B is connected to the left check valve 533.
  • the compressed air flowing along the second delivery pipe 520 ⁇ / b> B flows into the manifold 531 through the left check valve 533.
  • the left check valve 533 blocks the flow of compressed air returning from the manifold 531 to the second delivery pipe 520B.
  • a merged inner pipe (not shown) for joining two flows of compressed air is formed inside the manifold 531.
  • the compressed air merged by the merged inner pipe is discharged from the manifold 531 through the merged pipe 540B.
  • the first fixing member 534 includes a first attachment portion 561 and a second attachment portion 562.
  • the first attachment portion 561 is connected to the first port wall 213B of the first compressor 210B.
  • the second attachment portion 562 is connected to the upper surface 551 of the manifold 531.
  • the first mounting portion 561 is formed in a substantially L shape.
  • the first attachment portion 561 includes a vertical plate portion 563 and a horizontal plate portion 564.
  • a first adjustment structure 565 is formed in the vertical plate portion 563 as a long hole that is long in the vertical direction.
  • the manufacturer who assembles the air compression apparatus 100B can insert an appropriate fixing tool such as a screw into the first adjustment structure 565 and connect the first attachment portion 561 to the first port wall 213B of the first compressor 210B.
  • the manufacturer can change the height position of the manifold 531 by moving the first fixing member 534 in the vertical direction along the extending direction of the first adjustment structure 565.
  • the horizontal plate portion 564 extends from the upper end of the vertical plate portion 563 toward the front mounting wall 450.
  • the second attachment portion 562 is bent from the horizontal plate portion 564 and extends along the upper surface 551 of the manifold 531.
  • a first adjustment structure 566 is formed in the horizontal plate portion 564 as a long hole that is long in the horizontal direction (left and right).
  • a manufacturer who assembles the air compression device 100 ⁇ / b> B can insert an appropriate fixing tool such as a screw into the first adjustment structure 566 and connect the second attachment portion 562 to the manifold 531.
  • the manufacturer can change the horizontal position of the manifold 531 by moving the first fixing member 534 in the horizontal direction along the extending direction of the first adjustment structure 566.
  • the first fixing member 535 includes a first attachment portion 571 and a second attachment portion 572.
  • the first attachment portion 571 is connected to the second port wall 223B of the second compressor 220B.
  • the second attachment portion 572 is connected to the upper surface 551 of the manifold 531.
  • the first mounting portion 571 is formed in a substantially L shape.
  • the first attachment portion 571 includes a vertical plate portion 573 and a horizontal plate portion 574.
  • a long hole (not shown) that is long in the vertical direction is formed.
  • a manufacturer who assembles the air compression device 100B can insert an appropriate fixing tool such as a screw into the elongated hole, and connect the first attachment portion 571 to the second port wall 223B of the second compressor 220B.
  • the manufacturer can change the height position of the manifold 531 by moving the first fixing member 535 in the vertical direction along the extending direction of the long hole.
  • the horizontal plate portion 574 extends from the upper end of the vertical plate portion 573 toward the front mounting wall 450.
  • the second attachment portion 572 is bent from the horizontal plate portion 574 and extends along the upper surface 551 of the manifold 531.
  • a first adjustment structure 576 is formed in the horizontal plate portion 574 as a long hole that is long in the horizontal direction (left and right).
  • a manufacturer who assembles the air compression device 100 ⁇ / b> B can insert an appropriate fixing tool such as a screw into the first adjustment structure 576 and connect the second attachment portion 572 to the manifold 531.
  • the manufacturer can change the horizontal position of the manifold 531 by moving the first fixing member 535 in the horizontal direction along the extending direction of the first adjustment structure 576.
  • the manifold 531 is fixed by the first fixing members 534 and 535.
  • the manifold 531 may be fixed by one of the first fixing members 534 and 535.
  • the first adjustment structures 565, 566, and 576 are long holes that are long in the vertical direction and / or long holes that are long in the horizontal direction.
  • the first adjustment structure may be a notch that is long in the vertical, horizontal and / or other directions.
  • the principle of this embodiment is not limited to a specific shape of the opening area for position adjustment of the manifold 531.
  • the first adjustment structure may be a plurality of through holes that differ in position.
  • the manufacturer may set an appropriate position of the manifold 531 by selecting an appropriate one from the plurality of through holes. Therefore, the principle of the present embodiment is not limited to a specific structure of the first adjustment structure.
  • the first delivery pipe 510B includes a proximal pipe 511 (see FIG. 4), a first elbow pipe 512 (see FIG. 4), a horizontal pipe 513, a second elbow pipe 514 (see FIG. 7), A vertical tube 515 (see FIG. 7), a first nut 516 (see FIG. 7), and a second nut 517 (see FIG. 7) are included.
  • the proximal end pipe 511 is connected to the first port wall 213B of the first compressor 210B.
  • the connection between the proximal tube 511 and the first port wall 213B corresponds to the first delivery port 215 described with reference to FIG.
  • the proximal end pipe 511 extends from the first port wall 213B toward the second port wall 223B of the second compressor 220B.
  • the first elbow pipe 512 is attached to the distal end portion of the proximal end pipe 511.
  • the first elbow pipe 512 changes the flow direction of the compressed air generated by the first compressor 210B from the direction toward the second port wall 223B of the second compressor 220B to the direction toward the front mounting wall 450.
  • the first nut 516 is rotatably attached to the second elbow pipe 514.
  • the upstream end of the horizontal pipe 513 is screwed into the first elbow pipe 512.
  • the downstream end of the horizontal pipe 513 is screwed into the first nut 516. Therefore, the manufacturer can rotate the first nut 516 and appropriately adjust the distance between the first elbow pipe 512 and the second elbow pipe 514.
  • the second nut 517 is rotatably attached to the right check valve 532.
  • the lower end of the vertical pipe 515 is screwed into the second elbow pipe 514.
  • the upper end of the vertical pipe 515 is screwed into the second nut 517. Therefore, the manufacturer can rotate the second nut 517 and appropriately adjust the distance between the right check valve 532 and the second elbow pipe 514.
  • the bent tube is exemplified by a set of a first elbow tube 512, a horizontal tube 513, a second elbow tube 514, and a vertical tube 515.
  • the second adjustment structure is exemplified by a set of a horizontal pipe 513 and a first nut 516 and a set of a vertical pipe 515 and a second nut 517.
  • the set of the horizontal pipe 513 and the first nut 516 contributes to the adjustment of the length of the guide section in the horizontal direction of the compressed air.
  • the set of the vertical pipe 515 and the second nut 517 contributes to the adjustment of the length of the guide section in the vertical direction of the compressed air.
  • the second adjustment structure may be capable of adjusting the length of the compressed air guide section only in one of the horizontal direction and the vertical direction.
  • the second adjustment structure may be a bellows tube or another tube structure having a stretchable structure.
  • the principle of this embodiment is not limited to a specific structure of the second adjustment structure.
  • the second delivery tube 520B has a mirror image relationship with the first delivery tube 510B. Therefore, the above description regarding the structure of the first delivery pipe 510B is incorporated into the second delivery pipe 520B.
  • the first port wall 213B of the first compressor 210B includes a substantially rectangular parallelepiped fixed base 216 that protrudes toward the second compressor 220B.
  • the air compressor 100B includes a second fixing member 580.
  • the second fixing member 580 is disposed on the fixing base 216.
  • the second fixing member 580 includes a proximal end portion 581 and a distal end portion 582.
  • the base end portion 581 has a flat plate shape.
  • the base end portion 581 is fixed to the fixing base 216 using an appropriate fixing tool such as a screw.
  • the distal end portion 582 has a substantially C shape.
  • the front end 582 extends toward the second compressor 220B while being curved upward from the base end 581 on the fixed base 216.
  • the horizontal pipe 513 of the first delivery pipe 510B is sandwiched between the distal end portion 582 and the fixed base 216.
  • the technique for fixing the first delivery pipe 510B by the second fastening member 580 and the fixed base 216 may be applied to the fixation of the second delivery pipe 520.
  • the second fixing member may have other structures or other shapes that can connect the horizontal pipe 513 to the first port wall 213B of the first compressor 210B. The principle of this embodiment is not limited to a specific shape or a specific structure of the second
  • FIG. 8 is a schematic cross-sectional view of the duct portion 462.
  • FIG. 9 is a schematic perspective view of the air compressor 100B.
  • the cooling device 610 described with reference to FIG. 3B has been removed from the air compression device 100B shown in FIG. With reference to FIGS. 3B, 4, 8, and 9, the delivery line 500B is further described.
  • the merge pipe 540 ⁇ / b> B extends from the manifold 531 (see FIG. 4) toward the rear mounting wall 460 and passes through the duct portion 462.
  • Duct portion 462 includes an inner duct portion 463 and an outer duct portion 464.
  • the inner duct portion 463 protrudes inward from the holding plate 461 of the rear mounting wall 460.
  • the outer duct portion 464 protrudes outward from the rear mounting wall 460.
  • the outer duct portion 464 has a substantially rectangular frame structure that is long in the horizontal direction.
  • the outer duct portion 464 includes an upper wall 465, a lower wall 466, a right wall 467, and a left wall 468.
  • the upper wall 465 extends substantially horizontally along the rear edge 422 of the top plate 420.
  • the lower wall 466 extends substantially horizontally below the upper wall 465.
  • the right wall 467 is erected between the right ends of the upper wall 465 and the lower wall 466.
  • the left wall 468 is erected between the left ends of the upper wall 465 and the lower wall 466.
  • the merge pipe 540B bends toward the left wall 468 in the outer duct portion 464.
  • the merge pipe 540B bends to the left in the outer duct portion 464.
  • the merge pipe 540B passes through the left wall 468 and appears outside the outer duct portion 464.
  • Merge pipe 540 ⁇ / b> B is connected to cooling pipe 611 of cooling device 610 outside outer duct portion 464.
  • the air compression device 100B includes two fan devices 710 and 720 and two cold flow adjustment boxes 730 and 740.
  • the front mounting wall 450 of the housing 400B includes a right fan cover 455 and a left fan cover 456.
  • the fan device 710 is attached to the right fan cover 455.
  • the fan device 720 is attached to the left fan cover 456.
  • the right fan cover 455 and the left fan cover 456 protrude forward from the holding plate 451 of the front mounting wall 450.
  • the right fan cover 455 and the left fan cover 456 can be detached from the holding plate 451.
  • the fan device 710 and the cold flow adjustment box 730 are taken out from the housing 400B.
  • the left fan cover 456 is removed from the holding plate 451, the fan device 720 and the cold flow adjustment box 740 are removed from the housing 400B.
  • the fan device 710 may be an axial fan device having fan blades.
  • the fan device 710 rotates the fan blades and generates cooling air toward the rear mounting wall 460. Since the first compressor 210B is disposed between the fan device 710 and the rear mounting wall 460, the first compressor 210B is appropriately cooled by the cooling air sent from the fan device 710.
  • the fan device 720 may be an axial fan device having fan blades.
  • the fan device 720 rotates the fan blades and generates cooling air toward the rear mounting wall 460. Since the second compressor 220B is disposed between the fan device 720 and the rear mounting wall 460, the second compressor 220B is appropriately cooled by the cooling air sent out from the fan device 720.
  • the cold flow adjustment box 730 is disposed between the fan device 710 and the first compressor 210B.
  • the cold flow adjustment box 730 appropriately adjusts the shape of the flow area of the cooling air from the fan device 710 toward the first compressor 210B.
  • the cold flow adjustment box 740 is disposed between the fan device 720 and the second compressor 220B.
  • the cold flow adjustment box 740 appropriately adjusts the flow area shape of the cooling air from the fan device 720 to the second compressor 220B.
  • a mountain-shaped concave region is formed between the right fan cover 455 and the left fan cover 456.
  • the filter cover 452 described in relation to the third embodiment is disposed in the mountain-shaped concave region.
  • FIG. 10A is a schematic perspective view of the cold flow adjustment box 730.
  • FIG. 10B is a schematic rear view of the cold flow adjustment box 730.
  • the cold flow adjustment box 730 will be described with reference to FIGS. 4 and 8 to 10B.
  • the cold flow adjustment box 740 described with reference to FIG. 4 is structurally identical to the cold flow adjustment box 730. Therefore, the following description regarding the structure of the cold flow adjustment box 730 is incorporated in the cold flow adjustment box 740.
  • the cold flow adjustment box 730 includes a first adjustment plate 731, a second adjustment plate 732, and an outer peripheral plate 733.
  • the first adjustment plate 731 faces the fan device 710.
  • the first adjustment plate 731 includes an outer edge 734 and an inner edge 735.
  • the outer edge 734 forms a substantially rectangular outer contour of the first adjustment plate 731.
  • the inner edge 735 forms a substantially circular opening region.
  • the diameter of the opening area formed by the inner edge 735 is substantially equal to the rotational diameter of the fan blades of the fan device 710.
  • the diameter of the opening region is set slightly larger than the rotation diameter of the fan blades. Therefore, the cooling air generated by the fan device 710 can efficiently flow into the cold flow adjustment box 730.
  • the second adjustment plate 732 is erected between the first adjustment plate 731 and the first compressor 210B.
  • the second adjustment plate 732 includes an outer edge 736 and an inner edge 737. Similar to the outer edge 734 of the first adjustment plate 731, the outer edge 736 of the second adjustment plate 732 forms a substantially rectangular outline of the second adjustment plate 732.
  • the first compressor 210B has a substantially rectangular cross-sectional profile on a vertical virtual plane including the rotation axis of the first compressor 210B.
  • the inner edge 737 of the second adjustment plate 732 forms a substantially rectangular opening region formed so as to match the shape and size of the cross section of the first compressor 210B.
  • the outer peripheral plate 733 is connected to the outer edges 734 and 736 of the first adjustment plate 731 and the second adjustment plate 732. Therefore, the cooling air flowing into the substantially circular opening region formed by the inner edge 735 of the first adjustment plate 731 flows out of the substantially rectangular opening region formed by the inner edge 737 of the second adjustment plate 732, and It will hit the compressor 210B efficiently. Therefore, the first compressor 210B is efficiently cooled.
  • the cooling air generated by the fan devices 710 and 720 is sent out toward the rear mounting wall 460. Therefore, the cooling air takes heat from the first compressor 210B and the second compressor 220B and then flows toward the rear mounting wall 460. The cooling air then flows in the housing 400B until it is discharged from the duct portion 462, so that the cooling air forms a long flow path in the space between the first compressor 210B and the second compressor 220B.
  • the compressed air in 500B can also be cooled effectively.
  • the cooling air is intensively discharged out of the housing 400 ⁇ / b> B through the duct portion 462. Since the merge pipe 540B of the delivery pipe line 500B passes through the duct portion 462, the compressed air in the merge pipe 540B is also cooled in the duct portion 462 by the cooling air after cooling the first compressor 210B and the second compressor 220B. To be cooled.
  • the compressed air flows into the cooling pipe 611 of the cooling device 610.
  • the cooling pipe 611 forms a flow path of compressed air that goes downward while meandering. That is, the compressed air immediately after flowing into the cooling device 610 flows along the upper flow path. The compressed air then flows along the lower flow path.
  • the upper flow path formed by the cooling pipe 611 faces the duct portion 462. Therefore, the compressed air in the upper flow path is cooled by the cooling air blown out from the duct portion 462.
  • the air compression device 100B includes four external fan devices 750.
  • the four outer fan devices 750 are connected in the horizontal direction below the lower wall 466 of the outer duct portion 464.
  • the lower flow path formed by the cooling pipe 611 faces the outer fan device 750. Accordingly, the outer fan device 750 can send cooling air toward the cooling pipe 611 that forms the lower flow path. As a result, the compressed air flowing along the lower flow path is effectively cooled by the outer fan device 750.
  • the cold flow adjustment boxes 730 and 740 are used together with an axial fan device.
  • the basin shape adjustment principle by the cold flow adjustment boxes 730 and 740 may be applied to cooling air generated by other fan devices such as a centrifugal fan device. Even when the cooling air flows from the second adjustment plate 732 to the first adjustment plate 731, the adjustment principle described above can provide efficient cooling of the compressor.
  • FIG. 11 is a partial assembly view of the air compressor 100B.
  • the air compressor 100B will be described with reference to FIG.
  • the air compressor 100B includes a first drive unit 810 and a second drive unit 820.
  • the first driving unit 810 and the second driving unit 820 may be general motors.
  • the first driving unit 810 generates a driving force for driving the first compressor 210B.
  • the second driving unit 820 generates a driving force for driving the second compressor 220B.
  • the first driving force is exemplified by the driving force generated by the first driving unit 810.
  • the second driving force is exemplified by the driving force generated by the second driving unit 820.
  • the first drive unit 810 is disposed below the first compressor 210B.
  • the second drive unit 820 is disposed below the second compressor 220B. Since the set of the first drive unit 810 and the second drive unit 820 does not intersect the horizontal plane crossing the set of the first compressor 210B and the second compressor 220B, the designer can reduce the horizontal sectional area of the housing 400B to a small value. Can be set to
  • the air compressor 100B further includes a first transmission unit 910 and a second transmission unit 920.
  • the first transmission unit 910 is formed next to the first wall 470.
  • the second transmission part 920 is formed next to the second wall 480.
  • the first transmission unit 910 transmits the driving force generated by the first driving unit 810 to the first compressor 210B.
  • the second transmission unit 920 transmits the driving force generated by the second driving unit 820 to the second compressor 220B.
  • the first compressor 210B includes a right shaft portion 230 that protrudes in the opposite direction to the second compressor 220B.
  • the right shaft portion 230 includes a cylindrical housing 231 and a rotating shaft 232 (see FIG. 12).
  • the rotating shaft 232 extends in the direction opposite to the space used for the piping for suction and delivery.
  • the rotating shaft 232 rotates within the cylindrical housing 231.
  • the first transmission unit 910 is connected to the rotating shaft 232 supported by the cylindrical housing 231.
  • the second compressor 220B includes a left shaft portion 240 that protrudes in the opposite direction to the first compressor 210B.
  • the left shaft portion 240 includes a cylindrical housing 241 and a rotating shaft (not shown). The rotating shaft rotates within the cylindrical housing 241.
  • the second transmission unit 920 is connected to a rotating shaft supported by the cylindrical housing 241.
  • FIG. 12 is a schematic perspective view of the first transmission unit 910.
  • the first transmission unit 910 will be described with reference to FIG.
  • the second transmission unit 920 described with reference to FIG. 11 may be structurally identical to the first transmission unit 910. Therefore, the following description regarding the structure and operation of the first transmission unit 910 is incorporated in the second transmission unit 920.
  • the first transmission unit 910 includes an upper pulley 911, a lower pulley 912, a tension pulley 913, and an endless belt 914.
  • the upper pulley 911 is attached to the rotation shaft 232 of the right shaft portion 230 of the first compressor 210B.
  • a lower pulley 912 disposed below the upper pulley 911 is attached to the first drive unit 810.
  • the endless belt 914 surrounds the upper pulley 911, the lower pulley 912, and the tension pulley 913.
  • the tension pulley 913 pushes the endless belt 914 toward the rear mounting wall 460 between the upper pulley 911 and the lower pulley 912, and applies appropriate tension to the endless belt 914.
  • the endless belt 914 goes around the upper pulley 911, the lower pulley 912, and the tension pulley 913.
  • the upper pulley 911 rotates.
  • the rotating shaft 232 is rotated by the rotation of the upper pulley 911.
  • the rotation of the rotation shaft 232 causes the compression operation of the first compressor 210B. As a result, compressed air is generated.
  • the housing structure described in connection with the third embodiment facilitates repair work such as filter replacement.
  • the housing may have a structure that facilitates repair and inspection of the driving force transmission mechanism described in relation to the fifth embodiment.
  • a design technique for facilitating repair and inspection of the driving force transmission mechanism will be described.
  • FIG. 13 is a partial assembly view of the air compressor 100B.
  • the air compressor 100B will be described with reference to FIGS. 3A, 3B, 11 and 13.
  • the housing 400 ⁇ / b> B includes a support frame 490 and a support plate 481.
  • the support frame 490 includes a first support column 491, a second support column 492, a third support column 493, a fourth support column 494, a front beam 495, and a rear beam 496.
  • the first support column 491 extends downward from a corner (see FIG. 3A) formed by the front edge 421 and the right edge 423 of the top plate 420.
  • the second support column 492 extends downward from a corner (see FIG. 3A) formed by the rear edge 422 and the right edge 423 of the top plate 420.
  • the third support column 493 extends downward from a corner formed by the front edge 421 (see FIG. 3A) and the left edge 424 (see FIG.
  • the fourth support column 494 extends downward from a corner (see FIG. 3B) formed by the rear edge 422 and the left edge 424 of the top plate 420.
  • the front beam 495 extends substantially horizontally between the first column 491 and the third column 493.
  • the rear beam 496 extends substantially horizontally between the second column 492 and the fourth column 494.
  • the support plate 481 is supported by the front beam 495 and the rear beam 496. As a result, the support plate 481 lies between the top plate 420 (see FIG. 3A) and the bottom plate 430 (see FIG. 3B).
  • the first wall 470 is fixed to the first support column 491 and the second support column 492 with screws. Accordingly, the first wall 470 is easily separated from the support frame 490.
  • the first transmission unit 910 is formed between the first wall 470 and the first compressor 210 ⁇ / b> B disposed closer to the first wall 470 than the second wall 480. The operator can easily access the first transmission unit 910 after removing the first wall 470. Thereby, the worker can easily repair and check the first transmission unit 910.
  • the second wall 480 is fixed to the third support column 493 and the fourth support column 494 with screws. Accordingly, the second wall 480 is easily separated from the support frame 490.
  • the second transmission part 920 is formed between the second wall 480 and the second compressor 220B disposed closer to the second wall 480 than the first wall 470. The worker can easily access the second transmission unit 920 after removing the second wall 480. Thereby, the worker can easily repair and check the second transmission unit 920.
  • the drive unit may be supported by a support member different from the support member that supports the compressor.
  • the drive and compressor may be attached to a common support member. In this case, the error regarding the relative position between the drive unit and the compressor is reduced.
  • a technique for reducing an error related to the relative position between the drive unit and the compressor will be described.
  • the support plate 481 includes a right support plate 482, a left support plate 483, and a lower support plate 484.
  • the right support plate 482 and the left support plate 483 are placed on the lower support plate 484. Thereafter, the right support plate 482 and the left support plate 483 are placed on the front beam 495 or the rear beam 496.
  • FIG. 14 is a schematic perspective view of the lower support plate 484.
  • the support plate 481 is further described with reference to FIGS. 11, 13, and 14.
  • the lower support plate 484 includes a lower plate 485, a frame rib 486, a lattice rib 487, and four ears 488.
  • the lower plate 485 lies below the right support plate 482 and the left support plate 483.
  • the frame rib 486 protrudes upward from the rectangular outer peripheral edge of the lower plate 485.
  • the lattice rib 487 is erected in a rectangular space surrounded by the frame rib 486.
  • the right support plate 482 and the left support plate 483 are welded to the upper edges of the lattice rib 487 and the frame rib 486.
  • Each of the four ears 488 protrudes from the frame rib 486 toward the front beam 495 or the rear beam 496. Since each of the four ears 488 is fixed to the front beam 495 or the rear beam 496, the lower support plate 484 is appropriately held by the support frame 490.
  • a plurality of through holes are formed in the right support plate 482, the left support plate 483, and the lower support plate 484 on the lower plate 485. These through holes are formed after the right support plate 482 and the left support plate 483 are welded to the lower support plate 484. Therefore, the relative relationship of the formation positions of these through holes is substantially equal to the positional relationship formed by the design drawing.
  • the through hole formed in the right support plate 482 is used for mounting the first compressor 210B.
  • the through hole formed in the left support plate 483 is used for mounting the second compressor 220B.
  • the through holes formed in the lower plate 485 of the lower support plate 484 are used for mounting the first drive unit 810 and the second drive unit 820.
  • the upper surface is exemplified by the upper surfaces of the right support plate 482 and the left support plate 483.
  • the lower surface is exemplified by the lower surface of the lower plate 485 of the lower support plate 484.
  • the exemplary air compression device described in connection with the various embodiments described above primarily includes the following features.
  • An air compression apparatus includes a first compressor including a first port wall in which a first intake port is formed, and a second compressor including a second port wall in which a second intake port is formed. And an intake pipe for guiding air to the first intake port and the second intake port.
  • the first port wall and the second port wall are disposed to face each other.
  • the intake pipe line is disposed between the first port wall and the second port wall.
  • the intake pipe is disposed between the first port wall and the second port wall, the first compressor and the second compressor can share a pipe space for intake. .
  • the designer can give the air compressor a small dimensional value.
  • the air compression device includes a first delivery air formed on the first port wall, the first compressed air generated by the first compressor compressing the air that has flowed in through the first intake port.
  • the second compressed air received from the port and generated by the second compressor compressing the air flowing in through the second intake port is received from the second delivery port formed in the second port wall. And a delivery line.
  • the delivery pipe line receives the first compressed air and the second compressed air from the first delivery port formed on the first port wall and the second delivery port formed on the second port wall, respectively.
  • the delivery path is formed between the first port wall and the second port wall. Since the first compressor and the second compressor can share the space between the first port wall and the second port wall for delivery, the designer can give the air compressor a small dimensional value. it can.
  • the delivery pipe line includes a manifold in which the first compressed air and the second compressed air merge, and a first fixing that fixes the manifold to at least one of the first compressor and the second compressor. And a member.
  • the first fixing member may include a first adjustment structure that makes it possible to adjust a relative position of the manifold with respect to the first compressor and the second compressor.
  • the first fixing member includes the first adjustment structure that allows the relative position of the manifold to be adjusted with respect to the first compressor and the second compressor. Therefore, the first fixing member is caused by an assembly error between the first compressor and the second compressor. Therefore, an excessive load on the delivery route is less likely to occur.
  • the air compressor may further include a second fixing member that fixes the delivery pipe line to the first port wall at a position different from the first intake port.
  • the second fixing member fixes the delivery pipe line to the first port wall at a position different from the first intake port, an excessively large load is hardly applied to the delivery pipe line.
  • the delivery pipe line is bent from the proximal pipe and the proximal pipe extending from the first delivery port toward the second port wall, and guides the first compressed air to the manifold.
  • a bent tube may include a second adjustment structure that adjusts a length of a guide section that extends from the proximal tube toward the manifold.
  • the bent pipe includes the second adjustment structure that adjusts the length of the guide section that extends from the proximal end pipe toward the manifold, and therefore, the delivery due to the assembly error between the first compressor and the second compressor. Excessive load on the path is less likely to occur.
  • the air compression device includes a first driving unit that generates a first driving force for driving the first compressor, a first transmission unit that transmits the first driving force to the first compressor, You may further provide the 2nd drive part which produces
  • the housing may include an outer peripheral wall including a first wall standing next to the first transmission unit and a second wall standing next to the second transmission unit.
  • the first transmission unit is disposed next to the first wall, and the second transmission unit is erected next to the second wall.
  • the second transmission part can be easily repaired and / or inspected.
  • the housing includes a top plate connected to a vehicle, a bottom plate lying below the top plate, an outer peripheral wall erected between the top plate and the bottom plate, and the top plate.
  • a support plate lying between the bottom plate and supporting the first compressor and the second compressor may be included.
  • the support plate may include an upper surface to which the first compressor and the second compressor are attached, and a lower surface to which the first drive unit and the second drive unit are attached.
  • the first compressor and the second compressor are attached to the upper surface of the support plate, while the first drive unit and the second drive unit are attached to the lower surface of the support plate.
  • the parts can be arranged side by side in the vertical direction, and the designer can set the horizontal dimension of the air compressor to a small value.
  • the compressor and the drive unit can be unitized via the support plate, the transmission unit that transmits the driving force from the drive unit to the compressor can be easily assembled.
  • the air compression device includes a fan device including fan blades rotating to generate cooling air for cooling the first compressor, and a cold flow disposed between the fan device and the first compressor. And an adjustment box.
  • the cold flow adjustment box may include a first adjustment plate facing the fan device and a second adjustment plate facing the first compressor. A circular opening may be formed in the first adjustment plate. A rectangular opening may be formed in the second adjustment plate.
  • the first adjustment plate is formed with a circular opening, while the second adjustment plate is formed with a rectangular opening. Can be received. Since the flow area shape of the cooling air is appropriately adjusted by the cooling flow adjustment box, the designer can give a small dimension value to the distance between the fan device and the first compressor.
  • the intake pipe line includes an intake duct extending along the first port wall, a first end connected to the intake duct, and a second end connected to the first intake port.
  • a pipe and a trim seal that seals between the intake duct and the first end may be included.
  • the intake pipe line is unlikely to receive an excessively large load due to the assembly error of the first compressor and / or the intake duct.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Provided is an air compression device comprising: a first compressor including a first port wall having a first suction port formed therein; a second compressor including a second port wall having a second suction port formed therein; and an intake duct that guides air to the first suction port and the second suction port. The first port wall and the second port wall are arranged facing each other. The intake duct is arranged between the first port wall and the second port wall.

Description

空気圧縮装置Air compressor
 本発明は、圧縮空気を生成する空気圧縮装置に関する。 The present invention relates to an air compression device that generates compressed air.
 圧縮空気を生成する空気圧縮装置は、様々な用途に利用される。車両(たとえば、鉄道車両)に搭載された空気圧縮装置によって生成された圧縮空気は、車両に制動力を作用させるブレーキ装置に供給されることもある。 Compressed air generating device is used for various purposes. Compressed air generated by an air compressor mounted on a vehicle (for example, a railway vehicle) may be supplied to a brake device that applies a braking force to the vehicle.
 特許文献1は、複数のコンプレッサを備える空気圧縮装置を提案する。空気圧縮装置が、複数のコンプレッサを備えるならば、短時間に多くの圧縮空気が生成される。加えて、圧縮空気は、複数のコンプレッサのうち一部に不具合が生じた後も、他のコンプレッサによって生成され続けることもできる。 Patent Document 1 proposes an air compression device including a plurality of compressors. If the air compressor includes a plurality of compressors, a large amount of compressed air is generated in a short time. In addition, compressed air can continue to be generated by other compressors even after some of the plurality of compressors fail.
 空気圧縮装置が、複数のコンプレッサを有するならば、複数のコンプレッサそれぞれに対して、空気を案内するための管路が形成される必要がある。したがって、設計者が、複数のコンプレッサを空気圧縮装置に組み込もうとするならば、設計者は、空気圧縮装置に大きな寸法値を与える必要がある。このことは、他の装置(たとえば、車両)への空気圧縮装置の搭載を困難にすることもある。 If the air compressor has a plurality of compressors, it is necessary to form a pipeline for guiding air to each of the plurality of compressors. Therefore, if the designer intends to incorporate a plurality of compressors into the air compressor, the designer needs to give large dimension values to the air compressor. This may make it difficult to mount the air compressor on other devices (eg, vehicles).
実用新案登録第3150077号公報Utility Model Registration No. 3150077
 本発明は、複数のコンプレッサを備える小型の空気圧縮装置を提供することを目的とする。 An object of the present invention is to provide a small air compression device including a plurality of compressors.
 本発明の一局面に係る空気圧縮装置は、第1吸気ポートが形成された第1ポート壁を含む第1コンプレッサと、第2吸気ポートが形成された第2ポート壁を含む第2コンプレッサと、空気を前記第1吸気ポート及び前記第2吸気ポートへ案内する吸気管路と、を備える。前記第1ポート壁及び前記第2ポート壁は、互いに対向して設置される。前記吸気管路は、前記第1ポート壁と前記第2ポート壁との間に配置される。 An air compressor according to an aspect of the present invention includes a first compressor including a first port wall in which a first intake port is formed, a second compressor including a second port wall in which a second intake port is formed, An intake pipe for guiding air to the first intake port and the second intake port. The first port wall and the second port wall are disposed to face each other. The intake pipe line is disposed between the first port wall and the second port wall.
 上述の技術は、複数のコンプレッサを備える空気圧縮装置に対して、小さな寸法値を与えることを可能にする。 The above-described technology makes it possible to give a small dimension value to an air compression apparatus including a plurality of compressors.
 本発明の目的、特徴及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objects, features and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
第1実施形態の空気圧縮装置の概念図である。It is a conceptual diagram of the air compressor of 1st Embodiment. 第2実施形態の空気圧縮装置の概念図である。It is a conceptual diagram of the air compressor of 2nd Embodiment. 第3実施形態の空気圧縮装置の概略的な斜視図である。It is a schematic perspective view of the air compression apparatus of 3rd Embodiment. 図3Aに示される空気圧縮装置の他のもう1つの斜視図である。FIG. 3B is another perspective view of the air compression device shown in FIG. 3A. 図3Aに示される空気圧縮装置の内部構造を表す概略的な平面図である。It is a schematic plan view showing the internal structure of the air compression apparatus shown in FIG. 3A. 図3Aに示される空気圧縮装置の吸気管の基端部の構造を表す概略的な断面図である。FIG. 3B is a schematic cross-sectional view showing the structure of the proximal end portion of the intake pipe of the air compression device shown in FIG. 3A. 図5に示される吸気管の概略的な拡大横断面図である。FIG. 6 is a schematic enlarged cross-sectional view of the intake pipe shown in FIG. 5. 図3Aに示される空気圧縮装置の送出管の概略的な拡大斜視図である。3B is a schematic enlarged perspective view of a delivery pipe of the air compression device shown in FIG. 3A. FIG. 図3Aに示される空気圧縮装置のダクト部の概略的な断面図である。3B is a schematic cross-sectional view of a duct portion of the air compression device shown in FIG. 3A. FIG. 図3Aに示される空気圧縮装置の概略的な斜視図である。3B is a schematic perspective view of the air compression device shown in FIG. 3A. FIG. 図3Aに示される空気圧縮装置の冷流調整箱の概略的な斜視図である(第4実施形態)。It is a schematic perspective view of the cold flow adjustment box of the air compressor shown in FIG. 3A (fourth embodiment). 図10Aに示される冷流調整箱の概略的な背面図である。FIG. 10B is a schematic rear view of the cold flow adjustment box shown in FIG. 10A. 図3Aに示される空気圧縮装置の部分組立図である(第5実施形態)。FIG. 3B is a partial assembly view of the air compression device shown in FIG. 3A (fifth embodiment). 図11に示される空気圧縮装置の第1伝達部の概略的な斜視図である。It is a schematic perspective view of the 1st transmission part of the air compression apparatus shown by FIG. 図3Aに示される空気圧縮装置の部分組立図である(第6実施形態)。It is a partial assembly figure of the air compressor shown in Drawing 3A (6th embodiment). 図13に示される空気圧縮装置の下支持板の概略的な斜視図である。FIG. 14 is a schematic perspective view of a lower support plate of the air compression device shown in FIG. 13.
 <第1実施形態>
 圧縮空気が、複数のコンプレッサによって生成されるならば、これらのコンプレッサへ空気を供給するための管路を配置するための広い空間が必要とされる。本発明者等は、狭い空間内に管路を収容するための設計技術を案出した。第1実施形態において、狭い空間内で複数のコンプレッサへの空気の供給を可能にする技術が説明される。
<First Embodiment>
If the compressed air is produced by a plurality of compressors, a large space is required to arrange the lines for supplying air to these compressors. The present inventors have devised a design technique for accommodating a pipe line in a narrow space. In the first embodiment, a technique that enables supply of air to a plurality of compressors in a narrow space will be described.
 図1は、第1実施形態の空気圧縮装置100の概念図である。図1を参照して、空気圧縮装置100が説明される。 FIG. 1 is a conceptual diagram of an air compressor 100 according to the first embodiment. With reference to FIG. 1, an air compressor 100 is described.
 空気圧縮装置100は、第1コンプレッサ210と、第2コンプレッサ220と、吸気管路300と、を備える。吸気管路300は、第1コンプレッサ210及び第2コンプレッサ220に接続される。第1コンプレッサ210及び/又は第2コンプレッサ220が作動すると、第1コンプレッサ210及び/又は第2コンプレッサ220は、吸気管路300内に負圧環境を作り出す。この結果、第1コンプレッサ210及び第2コンプレッサ220それぞれは、吸気管路300を通じて、空気を吸い込むことができる。第1コンプレッサ210及び第2コンプレッサ220それぞれは、吸い込まれた空気を圧縮し、圧縮空気を生成する。圧縮空気は、第1コンプレッサ210及び第2コンプレッサ220それぞれから、圧縮空気を使用する他の装置へ供給される。第1コンプレッサ210及び第2コンプレッサ220それぞれから他の装置への圧縮空気の供給は、既知の様々な配管技術に依存してもよい。本実施形態の原理は、圧縮空気を他の装置へ供給するための特定の技術に限定されない。 The air compressor 100 includes a first compressor 210, a second compressor 220, and an intake pipe 300. The intake pipe 300 is connected to the first compressor 210 and the second compressor 220. When the first compressor 210 and / or the second compressor 220 are operated, the first compressor 210 and / or the second compressor 220 creates a negative pressure environment in the intake pipe 300. As a result, each of the first compressor 210 and the second compressor 220 can suck air through the intake pipe 300. Each of the first compressor 210 and the second compressor 220 compresses the sucked air and generates compressed air. The compressed air is supplied from each of the first compressor 210 and the second compressor 220 to other devices that use the compressed air. The supply of compressed air from each of the first compressor 210 and the second compressor 220 to other devices may depend on various known piping techniques. The principle of this embodiment is not limited to a specific technique for supplying compressed air to other devices.
 例えば、圧縮空気は、その後、鉄道車両に制動力を生じさせるためのブレーキ装置(図示せず)に供給されてもよい。代替的に、圧縮空気は、圧縮空気を利用する他の装置(たとえば、車両の扉の開閉に用いられる空圧機器(図示せず))へ供給されてもよい。本実施形態の原理は、圧縮空気の特定の利用用途に限定されない。 For example, the compressed air may then be supplied to a brake device (not shown) for generating a braking force on the railway vehicle. Alternatively, the compressed air may be supplied to other devices that utilize the compressed air (eg, pneumatic equipment (not shown) used to open and close the vehicle door). The principle of this embodiment is not limited to a specific application of compressed air.
 第1コンプレッサ210は、第1筐体211と、圧縮機構212と、を含む。圧縮機構212は、第1筐体211内に収容される。圧縮機構212は、一般的なスクロール圧縮機が有する構造を有してもよい。代替的に、圧縮機構212は、一般的なロータリ圧縮機が有する構造を有してもよい。更に代替的に、圧縮機構212は、一般的なスイング圧縮機が有する構造を有してもよい。更に代替的に、圧縮機構212は、一般的な往復動式圧縮機が有する構造を有してもよい。本実施形態の原理は、圧縮機構212の特定の構造に限定されない。 The first compressor 210 includes a first housing 211 and a compression mechanism 212. The compression mechanism 212 is accommodated in the first housing 211. The compression mechanism 212 may have a structure that a general scroll compressor has. Alternatively, the compression mechanism 212 may have a structure that a general rotary compressor has. Further alternatively, the compression mechanism 212 may have a structure that a general swing compressor has. Further alternatively, the compression mechanism 212 may have the structure of a typical reciprocating compressor. The principle of the present embodiment is not limited to a specific structure of the compression mechanism 212.
 第1筐体211は、第2コンプレッサ220に対向する第1ポート壁213を含む。第1ポート壁213には、第1吸気ポート214が形成される。吸気管路300は、第1吸気ポート214に接続される。したがって、第1コンプレッサ210は、第1吸気ポート214から空気を吸気し、圧縮空気を生成することができる。 The first casing 211 includes a first port wall 213 that faces the second compressor 220. A first intake port 214 is formed in the first port wall 213. The intake pipe 300 is connected to the first intake port 214. Therefore, the first compressor 210 can take in air from the first intake port 214 and generate compressed air.
 第2コンプレッサ220は、第2筐体221と、圧縮機構222と、を含む。圧縮機構222は、第2筐体221内に収容される。圧縮機構222は、一般的なスクロール圧縮機が有する構造を有してもよい。代替的に、圧縮機構222は、一般的なロータリ圧縮機が有する構造を有してもよい。更に代替的に、圧縮機構222は、一般的なスイング圧縮機が有する構造を有してもよい。更に代替的に、圧縮機構222は、一般的な往復動式圧縮機が有する構造を有してもよい。本実施形態の原理は、圧縮機構222の特定の構造に限定されない。 The second compressor 220 includes a second housing 221 and a compression mechanism 222. The compression mechanism 222 is accommodated in the second housing 221. The compression mechanism 222 may have a structure that a general scroll compressor has. Alternatively, the compression mechanism 222 may have a structure that a general rotary compressor has. Further alternatively, the compression mechanism 222 may have a structure that a general swing compressor has. Further alternatively, the compression mechanism 222 may have the structure of a typical reciprocating compressor. The principle of the present embodiment is not limited to a specific structure of the compression mechanism 222.
 第2筐体221は、第1コンプレッサ210の第1ポート壁213に対向する第2ポート壁223を含む。第2ポート壁223には、第2吸気ポート224が形成される。吸気管路300は、第2吸気ポート224に接続される。したがって、第2コンプレッサ220は、第2吸気ポート224から空気を吸気し、圧縮空気を生成することができる。 The second casing 221 includes a second port wall 223 that faces the first port wall 213 of the first compressor 210. A second intake port 224 is formed in the second port wall 223. The intake pipe 300 is connected to the second intake port 224. Therefore, the second compressor 220 can take in air from the second intake port 224 and generate compressed air.
 吸気管路300は、主管310と、第1枝管311と、第2枝管312と、を含む。第1枝管311及び第2枝管312それぞれは、主管310から分岐する。第1枝管311は、第1コンプレッサ210の第1吸気ポート214に接続される。第2枝管312は、第2コンプレッサ220の第2吸気ポート224に接続される。 The intake pipe 300 includes a main pipe 310, a first branch pipe 311, and a second branch pipe 312. Each of the first branch pipe 311 and the second branch pipe 312 branches from the main pipe 310. The first branch pipe 311 is connected to the first intake port 214 of the first compressor 210. The second branch pipe 312 is connected to the second intake port 224 of the second compressor 220.
 第1コンプレッサ210が作動すると、上述の如く、吸気管路300は負圧環境になる。この結果、空気は、主管310から第1枝管311に向けて流れる。第1枝管311は、空気を、第1吸気ポート214へ案内する。第2コンプレッサ220が作動すると、上述の如く、吸気管路300は負圧環境になる。この結果、空気は、主管310から第2枝管312に向けて流れる。第2枝管312は、空気を、第2吸気ポート224へ案内する。 When the first compressor 210 is operated, the intake pipe 300 becomes a negative pressure environment as described above. As a result, air flows from the main pipe 310 toward the first branch pipe 311. The first branch pipe 311 guides air to the first intake port 214. When the second compressor 220 is operated, the intake pipe 300 is in a negative pressure environment as described above. As a result, air flows from the main pipe 310 toward the second branch pipe 312. The second branch pipe 312 guides air to the second intake port 224.
 吸気管路300は、第1ポート壁213及び第2ポート壁223の間で延設されるので、第1コンプレッサ210及び第2コンプレッサ220は、空気を吸気するための配管空間を共有することができる。したがって、設計者は、狭い空間を、空気を吸気するための配管空間として、空気圧縮装置100に与えることができる。 Since the intake pipe 300 extends between the first port wall 213 and the second port wall 223, the first compressor 210 and the second compressor 220 may share a piping space for taking in air. it can. Therefore, the designer can provide the air compressor 100 with a narrow space as a piping space for taking in air.
 本実施形態において、吸気管路300は、分岐管である。代替的に、吸気管路は、第1コンプレッサ210へ供給される空気を専ら案内する管と、第2コンプレッサ220へ供給される空気を専ら案内する管と、を用いて形成されてもよい。この場合、これらの管はともに、第1ポート壁213及び第2ポート壁223の間に配置される。本実施形態の原理は、吸気管路の特定の構造に限定されない。 In this embodiment, the intake pipe 300 is a branch pipe. Alternatively, the intake pipe may be formed using a pipe that exclusively guides air supplied to the first compressor 210 and a pipe that exclusively guides air supplied to the second compressor 220. In this case, these pipes are both disposed between the first port wall 213 and the second port wall 223. The principle of this embodiment is not limited to a specific structure of the intake pipe.
 吸気管路300の主管310の基端部(図示せず)は、第1コンプレッサ210及び第2コンプレッサ220が収容される収容空間を形成する筐体(図示せず)の外の空間に連通してもよい。この場合、筐体外の空気は、主管310に直接的に流入することができる。代替的に、主管310の基端部は、筐体内に収容されてもよい。この場合、筐体内の空気が、主管310に流入する。本実施形態の原理は、主管310の基端部の特定の配置位置に限定されない。 A base end portion (not shown) of the main pipe 310 of the intake pipe 300 communicates with a space outside a housing (not shown) that forms a housing space in which the first compressor 210 and the second compressor 220 are housed. May be. In this case, the air outside the housing can directly flow into the main pipe 310. Alternatively, the proximal end portion of the main pipe 310 may be accommodated in the housing. In this case, the air in the housing flows into the main pipe 310. The principle of the present embodiment is not limited to a specific arrangement position of the proximal end portion of the main pipe 310.
 吸気管路300は、吸気された空気から塵埃を除去するフィルタ装置を内蔵してもよい。この場合、清浄化された空気が、第1コンプレッサ210及び第2コンプレッサ220に供給される。代替的に、他の適切な清浄化技術が、第1コンプレッサ210及び第2コンプレッサ220に供給される空気の清浄化に利用されてもよい。本実施形態の原理は、特定の清浄化技術に限定されない。 The intake pipe 300 may include a filter device that removes dust from the intake air. In this case, the purified air is supplied to the first compressor 210 and the second compressor 220. Alternatively, other suitable cleaning techniques may be used to clean the air supplied to the first compressor 210 and the second compressor 220. The principle of this embodiment is not limited to a specific cleaning technique.
 <第2実施形態>
 圧縮空気を案内する送出管路が形成される空間も、吸気管路と同様に、複数のコンプレッサによって共有されてもよい。第2実施形態において、共通の空間に形成された送出管路に接続される複数のコンプレッサを備える空気圧縮装置が説明される。
Second Embodiment
The space in which the delivery line for guiding the compressed air is formed may also be shared by a plurality of compressors similarly to the intake line. In the second embodiment, an air compression apparatus including a plurality of compressors connected to delivery pipes formed in a common space will be described.
 図2は、第2実施形態の空気圧縮装置100Aの概念図である。図2を参照して、空気圧縮装置100Aが説明される。第1実施形態と同一の機能を有する要素に対して、同一の符号が付されている。第1実施形態の説明は、同一の符号が付された要素に対して援用される。 FIG. 2 is a conceptual diagram of the air compressor 100A of the second embodiment. The air compressor 100A will be described with reference to FIG. Elements having the same functions as those in the first embodiment are denoted by the same reference numerals. The description of the first embodiment is applied to elements having the same reference numerals.
 第1実施形態と同様に、空気圧縮装置100Aは、吸気管路300を備える。第1実施形態の説明は、吸気管路300に援用される。 As in the first embodiment, the air compressor 100A includes an intake pipe 300. The description of the first embodiment is applied to the intake pipe 300.
 空気圧縮装置100Aは、第1コンプレッサ210Aと、第2コンプレッサ220Aと、筐体400と、送出管路500と、を更に備える。筐体400は、第1コンプレッサ210A及び第2コンプレッサ220Aが収容される収容空間410を形成する。第1実施形態と同様に、第1コンプレッサ210A及び第2コンプレッサ220Aそれぞれは、吸気管路300を通じて、空気を受け取る。第1コンプレッサ210A及び第2コンプレッサ220Aそれぞれは、吸気管路300から受け取った空気を圧縮し、圧縮空気を生成する。圧縮空気は、送出管路500を通じて、筐体400の外へ排出される。本実施形態において、第1圧縮空気は、第1コンプレッサ210Aが生成する圧縮空気によって例示される。第2圧縮空気は、第2コンプレッサ220Aが生成する圧縮空気によって例示される。 The air compressor 100A further includes a first compressor 210A, a second compressor 220A, a housing 400, and a delivery pipe line 500. The casing 400 forms an accommodation space 410 in which the first compressor 210A and the second compressor 220A are accommodated. Similar to the first embodiment, each of the first compressor 210 </ b> A and the second compressor 220 </ b> A receives air through the intake pipe 300. Each of the first compressor 210A and the second compressor 220A compresses the air received from the intake pipe 300 and generates compressed air. The compressed air is discharged out of the housing 400 through the delivery pipe line 500. In the present embodiment, the first compressed air is exemplified by the compressed air generated by the first compressor 210A. The second compressed air is exemplified by the compressed air generated by the second compressor 220A.
 送出管路500は、圧縮空気を冷却するための冷却設備に接続されてもよい。この結果、圧縮空気は、適切に冷却される。その後、圧縮空気は、除湿されてもよい。この結果、乾燥した圧縮空気が生成される。送出管路500を通過した圧縮空気は、他の様々な処理を受けてもよい。本実施形態の原理は、送出管路500を通過した後の圧縮空気に対して行われる特定の処理に限定されない。 The delivery pipe line 500 may be connected to a cooling facility for cooling the compressed air. As a result, the compressed air is properly cooled. Thereafter, the compressed air may be dehumidified. As a result, dry compressed air is generated. The compressed air that has passed through the delivery line 500 may be subjected to various other processes. The principle of the present embodiment is not limited to a specific process performed on the compressed air after passing through the delivery pipe line 500.
 第1実施形態と同様に、第1コンプレッサ210Aは、圧縮機構212を含む。第1実施形態の説明は、圧縮機構212に援用される。 As in the first embodiment, the first compressor 210A includes a compression mechanism 212. The description of the first embodiment is applied to the compression mechanism 212.
 第1コンプレッサ210Aは、第1筐体211Aを更に含む。圧縮機構212は、第1筐体211A内に収容される。 The first compressor 210A further includes a first casing 211A. The compression mechanism 212 is accommodated in the first casing 211A.
 第1筐体211Aは、第2コンプレッサ220Aに対向する第1ポート壁213Aを含む。第1実施形態と同様に、第1ポート壁213Aには、第1吸気ポート214が形成される。第1実施形態の説明は、第1吸気ポート214に援用される。 The first casing 211A includes a first port wall 213A facing the second compressor 220A. Similar to the first embodiment, a first intake port 214 is formed in the first port wall 213A. The description of the first embodiment is applied to the first intake port 214.
 第1ポート壁213Aには、第1送出ポート215が更に形成される。圧縮機構212によって生成された圧縮空気は、第1送出ポート215を通じて、送出管路500へ送り込まれる。 A first delivery port 215 is further formed on the first port wall 213A. The compressed air generated by the compression mechanism 212 is sent to the delivery pipe line 500 through the first delivery port 215.
 第1実施形態と同様に、第2コンプレッサ220Aは、圧縮機構222を含む。第1実施形態の説明は、圧縮機構222に援用される。 As in the first embodiment, the second compressor 220A includes a compression mechanism 222. The description of the first embodiment is applied to the compression mechanism 222.
 第2コンプレッサ220Aは、第2筐体221Aを更に含む。圧縮機構222は、第2筐体221A内に収容される。 The second compressor 220A further includes a second housing 221A. The compression mechanism 222 is accommodated in the second housing 221A.
 第2筐体221Aは、第1コンプレッサ210Aの第1ポート壁213Aに対向する第2ポート壁223Aを含む。第1実施形態と同様に、第2ポート壁223Aには、第2吸気ポート224が形成される。第1実施形態の説明は、第2吸気ポート224に援用される。 The second casing 221A includes a second port wall 223A facing the first port wall 213A of the first compressor 210A. Similar to the first embodiment, a second intake port 224 is formed in the second port wall 223A. The description of the first embodiment is applied to the second intake port 224.
 第2ポート壁223Aには、第2送出ポート225が更に形成される。圧縮機構222によって生成された圧縮空気は、第2送出ポート225を通じて、送出管路500へ送り込まれる。 A second delivery port 225 is further formed on the second port wall 223A. The compressed air generated by the compression mechanism 222 is sent to the delivery pipe line 500 through the second delivery port 225.
 送出管路500は、第1送出管510と、第2送出管520と、合流部530と、合流管540と、を含む。第1送出管510は、合流部530と、第1コンプレッサ210Aの第1送出ポート215と、に接続される。第1コンプレッサ210Aによって生成された圧縮空気は、第1送出管510を通じて、第1送出ポート215から合流部530へ流れる。第2送出管520は、合流部530と、第2コンプレッサ220Aの第2送出ポート225と、に接続される。第2コンプレッサ220Aによって生成された圧縮空気は、第2送出管520を通じて、第2送出ポート225から合流部530へ流れる。第1送出管510及び第2送出管520は、第1送出ポート215及び第2送出ポート225にそれぞれ接続されるので、第1ポート壁213A及び第2ポート壁223Aの間に配置される。 The delivery pipe line 500 includes a first delivery pipe 510, a second delivery pipe 520, a joining part 530, and a joining pipe 540. The first delivery pipe 510 is connected to the merging portion 530 and the first delivery port 215 of the first compressor 210A. The compressed air generated by the first compressor 210 </ b> A flows from the first delivery port 215 to the junction 530 through the first delivery pipe 510. The second delivery pipe 520 is connected to the merging portion 530 and the second delivery port 225 of the second compressor 220A. The compressed air generated by the second compressor 220 </ b> A flows from the second delivery port 225 to the junction 530 through the second delivery pipe 520. Since the first delivery pipe 510 and the second delivery pipe 520 are connected to the first delivery port 215 and the second delivery port 225, respectively, they are disposed between the first port wall 213A and the second port wall 223A.
 第1コンプレッサ210Aが生成した圧縮空気は、合流部530において、第2コンプレッサ220Aが生成した圧縮空気と合流する。合流管540は、合流部530から筐体400の外への送出経路を形成する。圧縮空気は、合流管540を通じて、合流部530から筐体400の外へ流れる。 Compressed air generated by the first compressor 210A merges with the compressed air generated by the second compressor 220A at the merge unit 530. The merge pipe 540 forms a delivery path from the merge section 530 to the outside of the housing 400. The compressed air flows from the junction 530 to the outside of the housing 400 through the junction pipe 540.
 本実施形態において、送出管路500は、合流部530を含む。代替的に、送出管路は、第1コンプレッサ210Aが生成した圧縮空気を筐体400の外へ案内する管と、第2コンプレッサ220Aが生成した圧縮空気を筐体400の外へ案内する管と、を用いて形成されてもよい。この場合、第1コンプレッサ210Aによって生成された圧縮空気を、第2コンプレッサ220Aによって生成された圧縮空気に合流させるための合流要素は必要とされない。本実施形態の原理は、送出管路の特定の構造に限定されない。 In the present embodiment, the delivery pipe line 500 includes a merging portion 530. Alternatively, the delivery line includes a pipe that guides the compressed air generated by the first compressor 210 </ b> A to the outside of the casing 400, and a pipe that guides the compressed air generated by the second compressor 220 </ b> A to the outside of the casing 400. , May be used. In this case, a joining element for joining the compressed air generated by the first compressor 210A to the compressed air generated by the second compressor 220A is not required. The principle of this embodiment is not limited to a specific structure of the delivery line.
 <第3実施形態>
 設計者は、第2実施形態に関連して説明された設計原理に基づいて、様々な空気圧縮装置を設計することができる。第3実施形態において、例示的な空気圧縮装置が説明される。以下の説明において、「上」、「下」、「左」、「右」、「前」及び「後」といった方向を表す用語が用いられる。これらの用語は、説明の明瞭化のために用いられる。空気圧縮装置の原理は、これらの用語によっては何ら限定されない。
<Third Embodiment>
The designer can design various air compressors based on the design principle described in relation to the second embodiment. In a third embodiment, an exemplary air compressor is described. In the following description, terms representing directions such as “up”, “down”, “left”, “right”, “front” and “back” are used. These terms are used for clarity of explanation. The principle of the air compression device is not limited by these terms.
 図3A及び図3Bは、第3実施形態の空気圧縮装置100Bの概略的な斜視図である。図2乃至図3Bを参照して、空気圧縮装置100Bが説明される。 3A and 3B are schematic perspective views of the air compression device 100B of the third embodiment. The air compressor 100B will be described with reference to FIGS. 2 to 3B.
 空気圧縮装置100Bは、筐体400Bと、冷却装置610と、除湿装置620(図3Bを参照)と、制御装置630と、右接続部650と、左接続部660と、を備える。筐体400Bは、図2を参照して説明された筐体400に対応する。 The air compressor 100B includes a housing 400B, a cooling device 610, a dehumidifying device 620 (see FIG. 3B), a control device 630, a right connection unit 650, and a left connection unit 660. The housing 400B corresponds to the housing 400 described with reference to FIG.
 筐体400Bは、天板420(図3Aを参照)と、底板430(図3Bを参照)と、外周壁440と、を含む。天板420及び底板430は、略矩形である。天板420は、右接続部650と左接続部660とによって、車両(図示せず)の下面に接続される。底板430は、天板420の下方で横たわる。外周壁440は、天板420と底板430との間に立設される。 The housing 400B includes a top plate 420 (see FIG. 3A), a bottom plate 430 (see FIG. 3B), and an outer peripheral wall 440. The top plate 420 and the bottom plate 430 are substantially rectangular. The top plate 420 is connected to the lower surface of the vehicle (not shown) by the right connection portion 650 and the left connection portion 660. The bottom plate 430 lies below the top plate 420. The outer peripheral wall 440 is erected between the top plate 420 and the bottom plate 430.
 外周壁440は、前取付壁450(図3Aを参照)と、後取付壁460(図3Bを参照)と、第1壁470(図3Aを参照)と、第2壁480(図3Bを参照)と、吸気壁479(図3Aを参照)と、を含む。前取付壁450は、車両の進行方向に沿って延びる車両側面の仮想的な延長面に略平行な面を形成する。吸気壁479は、前取付壁450の下方に配置される。吸気壁479は、空気の通過を許容する。筐体400Bの外部の空気は、吸気壁479を通じて、筐体400B内に流入する。後取付壁460は、前取付壁450とは反対側に立設される。第1壁470は、前取付壁450の右縁と後取付壁460の右縁との間に立設される。第2壁480は、前取付壁450の左縁と後取付壁460の左縁との間に立設される。 The outer peripheral wall 440 includes a front mounting wall 450 (see FIG. 3A), a rear mounting wall 460 (see FIG. 3B), a first wall 470 (see FIG. 3A), and a second wall 480 (see FIG. 3B). ) And an intake wall 479 (see FIG. 3A). The front mounting wall 450 forms a surface substantially parallel to a virtual extension surface of the side surface of the vehicle extending along the traveling direction of the vehicle. The intake wall 479 is disposed below the front mounting wall 450. The intake wall 479 allows the passage of air. Air outside the casing 400B flows into the casing 400B through the intake wall 479. The rear mounting wall 460 is erected on the opposite side to the front mounting wall 450. The first wall 470 is erected between the right edge of the front mounting wall 450 and the right edge of the rear mounting wall 460. The second wall 480 is erected between the left edge of the front mounting wall 450 and the left edge of the rear mounting wall 460.
 図3Aに示される如く、前取付壁450は、保持板451と、略円筒状のフィルタカバー452と、を含む。フィルタカバー452は、保持板451に固定される。フィルタカバー452は、保持板451から前方に突出する。フィルタカバー452の奥には吸気された空気から塵埃を除去する後述のフィルタ装置が設けられている。 3A, the front mounting wall 450 includes a holding plate 451 and a substantially cylindrical filter cover 452. The filter cover 452 is fixed to the holding plate 451. The filter cover 452 protrudes forward from the holding plate 451. A filter device, which will be described later, is provided behind the filter cover 452 to remove dust from the intake air.
 フィルタカバー452は、略円筒状の外殻体453と、レバー錠454と、を含む。空気圧縮装置100Bを点検及び修繕する作業者は、ドライバやレンチといった工具を用いることなく、レバー錠454を手動式に操作することができる。作業者は、レバー錠454を操作し、外殻体453を保持板451に固定することができる。加えて、作業者は、レバー錠454を操作し、外殻体453を保持板451から分離することもできる。外殻体453が、保持板451から取り外されると、作業者は、筐体400B内に収容されたフィルタ部材(図示せず)にアクセスすることができる。したがって、作業者は、フィルタ部材を容易に交換することができる。レバー錠454は、市販される一般的な錠部品であってもよい。レバー錠454に代えて、他の適切な固定機構が、フィルタカバー452に利用されてもよい。 The filter cover 452 includes a substantially cylindrical outer shell 453 and a lever lock 454. An operator who checks and repairs the air compressor 100B can manually operate the lever lock 454 without using a tool such as a driver or a wrench. The operator can operate the lever lock 454 to fix the outer shell 453 to the holding plate 451. In addition, the operator can operate the lever lock 454 to separate the outer shell 453 from the holding plate 451. When the outer shell 453 is removed from the holding plate 451, the operator can access a filter member (not shown) housed in the housing 400B. Therefore, the operator can easily replace the filter member. The lever lock 454 may be a commercially available general lock part. Instead of the lever lock 454, another suitable fixing mechanism may be used for the filter cover 452.
 図3Bに示される如く、後取付壁460は、保持板461と、ダクト部462と、を含む。ダクト部462は、保持板461から後方に突出する。筐体400B内の様々な装置の冷却のために、筐体400B内では、冷却空気が流動される。ダクト部462は、筐体400B内で使用された冷却空気の出口として水平方向に長い開口領域を形成する。筐体400B内の冷却に用いられた冷却空気は、ダクト部462から送出される。 3B, the rear mounting wall 460 includes a holding plate 461 and a duct portion 462. The duct portion 462 protrudes rearward from the holding plate 461. In order to cool various devices in the housing 400B, cooling air flows in the housing 400B. The duct portion 462 forms an opening region that is long in the horizontal direction as an outlet for the cooling air used in the housing 400B. The cooling air used for cooling the inside of the housing 400B is sent out from the duct portion 462.
 冷却装置610は、蛇行して延びる冷却管611と、冷却管611の延設領域を取り囲む保護カバー612と、を含む。筐体400B内で生成された圧縮空気は、冷却管611に流入する。冷却管611は、熱源(たとえば、コンプレッサ(図示せず))が収容される筐体400Bの外に配置されるので、冷却管611内の圧縮空気は、効率的に冷却される。 The cooling device 610 includes a cooling pipe 611 that extends in a meandering manner and a protective cover 612 that surrounds an extension region of the cooling pipe 611. The compressed air generated in the housing 400B flows into the cooling pipe 611. Since the cooling pipe 611 is disposed outside the casing 400B in which a heat source (for example, a compressor (not shown)) is accommodated, the compressed air in the cooling pipe 611 is efficiently cooled.
 冷却管611の一部は、ダクト部462に対向する。したがって、冷却管611内の圧縮空気は、筐体400Bから吹き出される冷却空気によっても、冷却される。 A part of the cooling pipe 611 faces the duct portion 462. Therefore, the compressed air in the cooling pipe 611 is also cooled by the cooling air blown out from the housing 400B.
 除湿装置620は、冷却装置610の下方に配置される。空気圧縮装置100Bは、除湿装置620の下方に存在する機器を有さないので、除湿装置620の故障によって漏液が生じても、空気圧縮装置100Bに組み込まれる他の機器の損傷は生じにくい。 The dehumidifying device 620 is disposed below the cooling device 610. Since the air compressor 100B does not have any devices present below the dehumidifier 620, even if leakage occurs due to a failure of the dehumidifier 620, other devices incorporated in the air compressor 100B are unlikely to be damaged.
 除湿装置620と同様に、制御装置630は、冷却装置610の下方に配置される。制御装置630は、除湿装置620の隣に配置される。制御装置630は、筐体400B内に配置されたコンプレッサ(図示せず)や他の機器を制御する。 As with the dehumidifying device 620, the control device 630 is disposed below the cooling device 610. The control device 630 is disposed next to the dehumidifying device 620. The control device 630 controls a compressor (not shown) and other devices arranged in the housing 400B.
 天板420は、前縁421(図3Aを参照)と、後縁422と、右縁423(図3Aを参照)と、左縁424(図3Bを参照)と、を含む。前縁421は、天板420と前取付壁450とによって形成される角隅部に沿って延びる。後縁422は、天板420と後取付壁460とによって形成される角隅部に沿って延びる。右縁423は、天板420と第1壁470とによって形成される角隅部に沿って延びる。左縁424は、天板420と第2壁480とによって形成される角隅部に沿って延びる。 The top plate 420 includes a front edge 421 (see FIG. 3A), a rear edge 422, a right edge 423 (see FIG. 3A), and a left edge 424 (see FIG. 3B). The front edge 421 extends along a corner formed by the top plate 420 and the front mounting wall 450. The rear edge 422 extends along a corner formed by the top plate 420 and the rear mounting wall 460. The right edge 423 extends along a corner formed by the top plate 420 and the first wall 470. The left edge 424 extends along a corner formed by the top plate 420 and the second wall 480.
 図3Aに示される如く、右接続部650は、右フレーム部材651と、2つの防振リング652,653と、を含む。右フレーム部材651は、略C型の断面を有する。右フレーム部材651は、天板420の右縁423に沿って延びる。防振リング652は、右縁423と前縁421とによって形成される角隅部上に配置される。防振リング653は、右縁423と後縁422とによって形成される角隅部上に配置される。防振リング652,653は、右フレーム部材651と天板420とによって挟まれる。防振リング652,653は、筐体400Bから車両(図示せず)へ伝達される振動を低減する。 As shown in FIG. 3A, the right connection portion 650 includes a right frame member 651 and two vibration isolation rings 652, 653. The right frame member 651 has a substantially C-shaped cross section. The right frame member 651 extends along the right edge 423 of the top plate 420. The anti-vibration ring 652 is disposed on a corner portion formed by the right edge 423 and the front edge 421. The anti-vibration ring 653 is disposed on a corner portion formed by the right edge 423 and the rear edge 422. The anti-vibration rings 652 and 653 are sandwiched between the right frame member 651 and the top plate 420. The anti-vibration rings 652 and 653 reduce vibration transmitted from the housing 400B to the vehicle (not shown).
 左接続部660は、左フレーム部材661と、2つの防振リング662,663と、を含む。左フレーム部材661は、略C型の断面を有する。左フレーム部材661は、天板420の左縁424に沿って延びる。防振リング662は、左縁424と前縁421とによって形成される角隅部上に配置される。防振リング663は、左縁424と後縁422とによって形成される角隅部上に配置される。防振リング662,663は、左フレーム部材661と天板420とによって挟まれる。防振リング662,663は、筐体400Bから車両(図示せず)へ伝達される振動を低減する。 The left connection portion 660 includes a left frame member 661 and two vibration isolation rings 662 and 663. The left frame member 661 has a substantially C-shaped cross section. The left frame member 661 extends along the left edge 424 of the top plate 420. The anti-vibration ring 662 is disposed on the corner formed by the left edge 424 and the front edge 421. The anti-vibration ring 663 is disposed on the corner formed by the left edge 424 and the rear edge 422. The anti-vibration rings 662 and 663 are sandwiched between the left frame member 661 and the top plate 420. The anti-vibration rings 662 and 663 reduce vibration transmitted from the housing 400B to the vehicle (not shown).
 図4は、空気圧縮装置100Bの内部構造を表す概略的な平面図である。図4に示される空気圧縮装置100Bからは天板420は取り外されている。図2乃至図4を参照して、空気圧縮装置100Bが更に説明される。 FIG. 4 is a schematic plan view showing the internal structure of the air compressor 100B. The top plate 420 is removed from the air compressor 100B shown in FIG. The air compressor 100B is further described with reference to FIGS.
 空気圧縮装置100Bは、第1コンプレッサ210Bと、第2コンプレッサ220Bと、吸気管路300Bと、送出管路500Bと、を備える。第1コンプレッサ210Bは、図2を参照して説明された第1コンプレッサ210Aに対応する。第2コンプレッサ220Bは、図2を参照して説明された第2コンプレッサ220Aに対応する。吸気管路300Bは、図2を参照して説明された吸気管路300に対応する。送出管路500Bは、図2を参照して説明された送出管路500に対応する。 The air compressor 100B includes a first compressor 210B, a second compressor 220B, an intake pipe 300B, and a delivery pipe 500B. The first compressor 210B corresponds to the first compressor 210A described with reference to FIG. The second compressor 220B corresponds to the second compressor 220A described with reference to FIG. The intake conduit 300B corresponds to the intake conduit 300 described with reference to FIG. The delivery line 500B corresponds to the delivery line 500 described with reference to FIG.
 図5は、吸気管路300Bの基端部の構造を表す概略的な断面図である。図2、図3A、図4及び図5を参照して、吸気管路300Bが説明される。 FIG. 5 is a schematic cross-sectional view showing the structure of the proximal end portion of the intake pipe 300B. The intake pipe 300B will be described with reference to FIGS. 2, 3A, 4 and 5. FIG.
 図5に示される如く、吸気管路300Bは、吸気ダクト310Bと、フィルタ装置320と、トリムシール331と、を含む。吸気ダクト310Bは、図2に示される主管310に対応する。フィルタ装置320は、フィルタカバー452と吸気ダクト310Bとの間に配置される。トリムシール331は、フィルタ装置320を、吸気ダクト310Bに気密に接続するゴム製のリング部材である。 As shown in FIG. 5, the intake pipe 300 </ b> B includes an intake duct 310 </ b> B, a filter device 320, and a trim seal 331. The intake duct 310B corresponds to the main pipe 310 shown in FIG. The filter device 320 is disposed between the filter cover 452 and the intake duct 310B. The trim seal 331 is a rubber ring member that hermetically connects the filter device 320 to the intake duct 310B.
 吸気ダクト310Bは、略直方体形状をなす中空の箱部材である。第1コンプレッサ210B及び/又は第2コンプレッサ220Bが作動すると、吸気ダクト310B内で負圧環境が生ずる。この結果、筐体400Bの外の空気は、フィルタカバー452を通じて、フィルタ装置320を通過する。フィルタ装置320は、流入した空気内で浮遊する塵埃を除去する。フィルタ装置320によって清浄化された空気は、吸気ダクト310B内へ流入する。 The intake duct 310B is a hollow box member having a substantially rectangular parallelepiped shape. When the first compressor 210B and / or the second compressor 220B is operated, a negative pressure environment is generated in the intake duct 310B. As a result, the air outside the housing 400B passes through the filter device 320 through the filter cover 452. The filter device 320 removes dust floating in the inflowing air. The air cleaned by the filter device 320 flows into the intake duct 310B.
 図4に示される如く、第1コンプレッサ210Bは、第1ポート壁213Bを含む。第2コンプレッサ220Bは、第2ポート壁223Bを含む。第1ポート壁213Bは、図2を参照して説明された第1ポート壁213Aに対応する。第2ポート壁223Bは、図2を参照して説明された第2ポート壁223Aに対応する。第1ポート壁213Bは、第2ポート壁223Bに対向する。 As shown in FIG. 4, the first compressor 210B includes a first port wall 213B. The second compressor 220B includes a second port wall 223B. The first port wall 213B corresponds to the first port wall 213A described with reference to FIG. The second port wall 223B corresponds to the second port wall 223A described with reference to FIG. The first port wall 213B faces the second port wall 223B.
 吸気ダクト310Bは、第1ポート壁213B及び第2ポート壁223Bの間の空間内において、フィルタ装置320から後取付壁460に向けて延びる。したがって、空気圧縮装置100Bは、狭い空間を利用して、筐体400Bの外から空気を第1コンプレッサ210B及び第2コンプレッサ220Bに供給することができる。 The intake duct 310B extends from the filter device 320 toward the rear mounting wall 460 in the space between the first port wall 213B and the second port wall 223B. Therefore, the air compressor 100B can supply air from the outside of the housing 400B to the first compressor 210B and the second compressor 220B using a narrow space.
 図6は、吸気ダクト310Bの周囲の吸気管路300Bの概略的な拡大横断面図である。図2、図4及び図6を参照して、吸気管路300Bが更に説明される。 FIG. 6 is a schematic enlarged cross-sectional view of the intake pipe line 300B around the intake duct 310B. The intake pipe 300B will be further described with reference to FIGS.
 吸気管路300Bは、2つの連結管311B,312Bと、2つのトリムシール332,333と、を含む。連結管311Bは、図2に示される第1枝管311に対応する。連結管312Bは、図2に示される第2枝管312に対応する。トリムシール332は、連結管311Bと吸気ダクト310Bとの間の接続に用いられる。トリムシール333は、連結管312Bと吸気ダクト310Bとの間の接続に用いられる。 The intake pipe line 300B includes two connecting pipes 311B and 312B and two trim seals 332 and 333. The connecting pipe 311B corresponds to the first branch pipe 311 shown in FIG. The connecting pipe 312B corresponds to the second branch pipe 312 shown in FIG. The trim seal 332 is used for connection between the connecting pipe 311B and the intake duct 310B. The trim seal 333 is used for connection between the connecting pipe 312B and the intake duct 310B.
 吸気ダクト310Bは、基端壁(前端壁)341と、先端壁(後端壁)342と、右壁343と、左壁344と、天壁345(図4を参照)と、底壁346と、を含む。基端壁341には、トリムシール331が取り付けられる。フィルタ装置320の一部は、トリムシール331を通じて、吸気ダクト310Bへ挿入される。先端壁342は、基端壁341の反対側に立設される。先端壁342は、吸気ダクト310Bの下流端を形成する。右壁343は、第1コンプレッサ210Bの第1ポート壁213Bに対向する。右壁343は、基端壁341と先端壁342との間で、第1ポート壁213Bに沿って延びる。左壁344は、第2コンプレッサ220Bの第2ポート壁223Bに対向する。左壁344は、基端壁341と先端壁342との間で、第2ポート壁223Bに沿って延びる。天壁345は、基端壁341、先端壁342、右壁343及び左壁344の上縁によって囲まれる矩形領域を閉じる。底壁346は、基端壁341、先端壁342、右壁343及び左壁344の下縁によって囲まれる矩形領域を閉じる。 The intake duct 310B includes a base wall (front wall) 341, a tip wall (rear wall) 342, a right wall 343, a left wall 344, a top wall 345 (see FIG. 4), and a bottom wall 346. ,including. A trim seal 331 is attached to the proximal end wall 341. A part of the filter device 320 is inserted through the trim seal 331 into the intake duct 310B. The distal end wall 342 is erected on the opposite side of the proximal end wall 341. The tip wall 342 forms the downstream end of the intake duct 310B. The right wall 343 faces the first port wall 213B of the first compressor 210B. The right wall 343 extends along the first port wall 213B between the proximal wall 341 and the distal wall 342. The left wall 344 faces the second port wall 223B of the second compressor 220B. The left wall 344 extends along the second port wall 223B between the proximal end wall 341 and the distal end wall 342. The top wall 345 closes a rectangular region surrounded by the upper edges of the base end wall 341, the tip end wall 342, the right wall 343, and the left wall 344. The bottom wall 346 closes a rectangular region surrounded by the lower edges of the proximal end wall 341, the distal end wall 342, the right wall 343, and the left wall 344.
 第1コンプレッサ210Bの第1ポート壁213Bは、吸気ダクト310Bの右壁343に向けて突出する筒状の第1吸気ポート214Bを含む。第1吸気ポート214Bは、図2に示される第1吸気ポート214に対応する。 The first port wall 213B of the first compressor 210B includes a cylindrical first intake port 214B that protrudes toward the right wall 343 of the intake duct 310B. The first intake port 214B corresponds to the first intake port 214 shown in FIG.
 トリムシール332は、吸気ダクト310Bの右壁343に取り付けられる。トリムシール332は、ゴム製のリング部材である。トリムシール332は、第1コンプレッサ210Bの第1吸気ポート214Bと略同軸である。 The trim seal 332 is attached to the right wall 343 of the intake duct 310B. The trim seal 332 is a rubber ring member. The trim seal 332 is substantially coaxial with the first intake port 214B of the first compressor 210B.
 連結管311Bは、第1端313と、第2端314と、を含む。第1端313は、トリムシール332に挿入される。第1端313の一部は、吸気ダクト310Bの内部に突出してもよい。トリムシール332は、連結管311Bの第1端313と吸気ダクト310Bの右壁343との間を気密にシールする。連結管311Bの第2端314は、第1コンプレッサ210Bの第1吸気ポート214Bに挿入される。シールテープといった適切なシール部材が、連結管311Bの第2端314と第1コンプレッサ210Bの第1吸気ポート214Bとの間の接続に利用される。 The connecting pipe 311B includes a first end 313 and a second end 314. The first end 313 is inserted into the trim seal 332. A part of the first end 313 may protrude into the intake duct 310B. The trim seal 332 hermetically seals between the first end 313 of the connection pipe 311B and the right wall 343 of the intake duct 310B. The second end 314 of the connecting pipe 311B is inserted into the first intake port 214B of the first compressor 210B. A suitable sealing member, such as a sealing tape, is utilized for the connection between the second end 314 of the connecting pipe 311B and the first intake port 214B of the first compressor 210B.
 第2コンプレッサ220Bの第2ポート壁223Bは、吸気ダクト310Bの左壁344に向けて突出する筒状の第2吸気ポート224Bを含む。第2吸気ポート224Bは、図2に示される第2吸気ポート224に対応する。 The second port wall 223B of the second compressor 220B includes a cylindrical second intake port 224B that protrudes toward the left wall 344 of the intake duct 310B. The second intake port 224B corresponds to the second intake port 224 shown in FIG.
 トリムシール333は、吸気ダクト310Bの左壁344に取り付けられる。トリムシール333は、ゴム製のリング部材である。トリムシール333は、第2コンプレッサ220Bの第2吸気ポート224Bと略同軸である。 The trim seal 333 is attached to the left wall 344 of the intake duct 310B. The trim seal 333 is a rubber ring member. The trim seal 333 is substantially coaxial with the second intake port 224B of the second compressor 220B.
 連結管312Bは、第1端315と、第2端316と、を含む。第1端315は、トリムシール333に挿入される。第1端315の一部は、吸気ダクト310Bの内部に突出してもよい。トリムシール333は、連結管312Bの第1端315と吸気ダクト310Bの左壁344との間を気密にシールする。連結管312Bの第2端316は、第2コンプレッサ220Bの第2吸気ポート224Bに挿入される。シールテープといった適切なシール部材が、連結管312Bの第2端316と第2コンプレッサ220Bの第2吸気ポート224Bとの間の接続に利用される。 The connecting pipe 312 </ b> B includes a first end 315 and a second end 316. The first end 315 is inserted into the trim seal 333. A part of the first end 315 may protrude into the intake duct 310B. The trim seal 333 hermetically seals between the first end 315 of the connecting pipe 312B and the left wall 344 of the intake duct 310B. The second end 316 of the connecting pipe 312B is inserted into the second intake port 224B of the second compressor 220B. A suitable sealing member, such as a sealing tape, is utilized for the connection between the second end 316 of the connecting pipe 312B and the second intake port 224B of the second compressor 220B.
 図4に示される如く、送出管路500Bは、第1送出管510Bと、第2送出管520Bと、合流部530Bと、合流管540Bと、を含む。第1コンプレッサ210Bは、連結管311B(図6を参照)を通じて、空気を受け取る。第1コンプレッサ210Bは、連結管311Bを通じて供給された空気を圧縮し、圧縮空気を生成する。第2コンプレッサ220Bは、連結管312B(図6を参照)を通じて、空気を受け取る。第2コンプレッサ220Bは、連結管312Bを通じて供給された空気を圧縮し、圧縮空気を生成する。 As shown in FIG. 4, the delivery pipe line 500B includes a first delivery pipe 510B, a second delivery pipe 520B, a joining portion 530B, and a joining pipe 540B. The first compressor 210B receives air through the connecting pipe 311B (see FIG. 6). The first compressor 210B compresses the air supplied through the connecting pipe 311B and generates compressed air. The second compressor 220B receives air through the connecting pipe 312B (see FIG. 6). The second compressor 220B compresses the air supplied through the connecting pipe 312B and generates compressed air.
 第1送出管510Bは、吸気ダクト310Bの上方で、第1コンプレッサ210Bの第1ポート壁213Bに接続される。第2送出管520Bは、吸気ダクト310Bの上方で、第2コンプレッサ220Bの第2ポート壁223Bに接続される。したがって、図4に示される如く、第1送出管510B及び第2送出管520Bは、吸気ダクト310B上に部分的に重なる。第1送出管510Bと第1コンプレッサ210Bの第1ポート壁213Bとの間の接続部は、図2を参照して説明された第1送出ポート215に対応する。第2送出管520Bと第2コンプレッサ220Bの第2ポート壁223Bとの間の接続部は、図2を参照して説明された第2送出ポート225に対応する。第1送出管510Bは、図2を参照して説明された第1送出管510に対応する。第2送出管520Bは、図2を参照して説明された第2送出管520に対応する。 The first delivery pipe 510B is connected to the first port wall 213B of the first compressor 210B above the intake duct 310B. The second delivery pipe 520B is connected to the second port wall 223B of the second compressor 220B above the intake duct 310B. Therefore, as shown in FIG. 4, the first delivery pipe 510B and the second delivery pipe 520B partially overlap the intake duct 310B. The connection between the first delivery pipe 510B and the first port wall 213B of the first compressor 210B corresponds to the first delivery port 215 described with reference to FIG. The connection between the second delivery pipe 520B and the second port wall 223B of the second compressor 220B corresponds to the second delivery port 225 described with reference to FIG. The first delivery pipe 510B corresponds to the first delivery pipe 510 described with reference to FIG. The second delivery pipe 520B corresponds to the second delivery pipe 520 described with reference to FIG.
 図7は、合流部530Bの周囲の送出管路500Bの概略的な拡大斜視図である。図2、図4及び図7を参照して、送出管路500Bが説明される。 FIG. 7 is a schematic enlarged perspective view of the delivery pipe line 500B around the merging portion 530B. The delivery conduit 500B will be described with reference to FIGS.
 図4に示される如く、合流部530Bは、筐体400Bの前取付壁450の近くに配置される。第1送出管510B及び第2送出管520Bは、前取付壁450に向けて屈曲し、合流部530に接続される。第1コンプレッサ210Bによって生成された圧縮空気は、第1送出管510Bを通じて、合流部530Bへ流入する。第2コンプレッサ220Bによって生成された圧縮空気は、第2送出管520Bを通じて、合流部530Bへ流入する。第1コンプレッサ210Bによって生成された圧縮空気は、合流部530Bにおいて、第2コンプレッサ220Bによって生成された圧縮空気に合流する。合流部530Bは、図2を参照して説明された合流部530に対応する。 As shown in FIG. 4, the merge portion 530B is disposed near the front mounting wall 450 of the casing 400B. The first delivery pipe 510B and the second delivery pipe 520B are bent toward the front mounting wall 450 and are connected to the merge portion 530. The compressed air generated by the first compressor 210B flows into the junction 530B through the first delivery pipe 510B. The compressed air generated by the second compressor 220B flows into the junction 530B through the second delivery pipe 520B. The compressed air generated by the first compressor 210B merges with the compressed air generated by the second compressor 220B at the merge unit 530B. The junction 530B corresponds to the junction 530 described with reference to FIG.
 合流部530Bは、マニフォールド531と、右逆止弁532(図7を参照)と、左逆止弁533(図7を参照)と、2つの第1固定部材534,535と、を含む。マニフォールド531は、略直方体である。マニフォールド531は、上面551と、下面552(図7を参照)と、後面553と、を含む。右逆止弁532及び左逆止弁533は、マニフォールド531の下面552に取り付けられる。第1固定部材534,535は、上面551に取り付けられる。合流管540Bは、後面553から延出する。 The merge portion 530B includes a manifold 531, a right check valve 532 (see FIG. 7), a left check valve 533 (see FIG. 7), and two first fixing members 534 and 535. The manifold 531 is a substantially rectangular parallelepiped. The manifold 531 includes an upper surface 551, a lower surface 552 (see FIG. 7), and a rear surface 553. The right check valve 532 and the left check valve 533 are attached to the lower surface 552 of the manifold 531. The first fixing members 534 and 535 are attached to the upper surface 551. Merge pipe 540B extends from rear surface 553.
 図7に示されるように、第1送出管510Bは、右逆止弁532に接続される。第1送出管510Bに沿って流れる圧縮空気は、右逆止弁532を通じて、マニフォールド531へ流入する。右逆止弁532は、マニフォールド531から第1送出管510Bへ戻る圧縮空気の流れを阻止する。第2送出管520Bは、左逆止弁533に接続される。第2送出管520Bに沿って流れる圧縮空気は、左逆止弁533を通じて、マニフォールド531へ流入する。左逆止弁533は、マニフォールド531から第2送出管520Bへ戻る圧縮空気の流れを阻止する。 As shown in FIG. 7, the first delivery pipe 510 </ b> B is connected to the right check valve 532. The compressed air flowing along the first delivery pipe 510 </ b> B flows into the manifold 531 through the right check valve 532. The right check valve 532 blocks the flow of compressed air that returns from the manifold 531 to the first delivery pipe 510B. The second delivery pipe 520B is connected to the left check valve 533. The compressed air flowing along the second delivery pipe 520 </ b> B flows into the manifold 531 through the left check valve 533. The left check valve 533 blocks the flow of compressed air returning from the manifold 531 to the second delivery pipe 520B.
 マニフォールド531の内部には、圧縮空気の2つの流れを合流させる合流内管(図示せず)が形成される。合流内管によって合流された圧縮空気は、合流管540Bを通じて、マニフォールド531から排出される。 Inside the manifold 531, a merged inner pipe (not shown) for joining two flows of compressed air is formed. The compressed air merged by the merged inner pipe is discharged from the manifold 531 through the merged pipe 540B.
 図7に示される如く、第1固定部材534は、第1取付部561と、第2取付部562と、を含む。第1取付部561は、第1コンプレッサ210Bの第1ポート壁213Bに接続される。第2取付部562は、マニフォールド531の上面551に接続される。 As shown in FIG. 7, the first fixing member 534 includes a first attachment portion 561 and a second attachment portion 562. The first attachment portion 561 is connected to the first port wall 213B of the first compressor 210B. The second attachment portion 562 is connected to the upper surface 551 of the manifold 531.
 第1取付部561は、略L字形状に形成される。第1取付部561は、垂直板部563と、水平板部564と、を含む。垂直板部563には、垂直方向に長い長穴として第1調整構造565が形成される。空気圧縮装置100Bを組み立てる製造者は、第1調整構造565にネジといった適切な固定具を挿入し、第1取付部561を、第1コンプレッサ210Bの第1ポート壁213Bに接続することができる。製造者は、第1調整構造565の延設方向に沿って、第1固定部材534を垂直方向に移動させ、マニフォールド531の高さ位置を変更することができる。第1コンプレッサ210B及び第2コンプレッサ220Bに対するマニフォールド531の相対位置は、高さ方向に調整されるので、第1コンプレッサ210B及び第2コンプレッサ220Bの取付誤差があっても、第1送出管510B及び合流管540Bには過度に高い負荷は加わらない。 The first mounting portion 561 is formed in a substantially L shape. The first attachment portion 561 includes a vertical plate portion 563 and a horizontal plate portion 564. A first adjustment structure 565 is formed in the vertical plate portion 563 as a long hole that is long in the vertical direction. The manufacturer who assembles the air compression apparatus 100B can insert an appropriate fixing tool such as a screw into the first adjustment structure 565 and connect the first attachment portion 561 to the first port wall 213B of the first compressor 210B. The manufacturer can change the height position of the manifold 531 by moving the first fixing member 534 in the vertical direction along the extending direction of the first adjustment structure 565. Since the relative position of the manifold 531 with respect to the first compressor 210B and the second compressor 220B is adjusted in the height direction, even if there is an installation error of the first compressor 210B and the second compressor 220B, The tube 540B is not overloaded.
 水平板部564は、垂直板部563の上端から前取付壁450に向けて延びる。第2取付部562は、水平板部564から折り曲げられ、マニフォールド531の上面551に沿う。水平板部564には、水平方向(左右)に長い長穴として第1調整構造566が形成される。空気圧縮装置100Bを組み立てる製造者は、第1調整構造566にネジといった適切な固定具を挿入し、第2取付部562を、マニフォールド531に接続することができる。製造者は、第1調整構造566の延設方向に沿って、第1固定部材534を水平方向に移動させ、マニフォールド531の水平位置を変更することができる。第1コンプレッサ210B及び第2コンプレッサ220Bに対するマニフォールド531の相対位置は、水平方向に調整されるので、第1コンプレッサ210B及び第2コンプレッサ220Bの取付誤差があっても、第1送出管510B及び合流管540Bには過度に高い負荷は加わらない。 The horizontal plate portion 564 extends from the upper end of the vertical plate portion 563 toward the front mounting wall 450. The second attachment portion 562 is bent from the horizontal plate portion 564 and extends along the upper surface 551 of the manifold 531. A first adjustment structure 566 is formed in the horizontal plate portion 564 as a long hole that is long in the horizontal direction (left and right). A manufacturer who assembles the air compression device 100 </ b> B can insert an appropriate fixing tool such as a screw into the first adjustment structure 566 and connect the second attachment portion 562 to the manifold 531. The manufacturer can change the horizontal position of the manifold 531 by moving the first fixing member 534 in the horizontal direction along the extending direction of the first adjustment structure 566. Since the relative position of the manifold 531 with respect to the first compressor 210B and the second compressor 220B is adjusted in the horizontal direction, even if there is an attachment error of the first compressor 210B and the second compressor 220B, the first delivery pipe 510B and the junction pipe. An excessively high load is not applied to 540B.
 図7に示される如く、第1固定部材535は、第1取付部571と、第2取付部572と、を含む。第1取付部571は、第2コンプレッサ220Bの第2ポート壁223Bに接続される。第2取付部572は、マニフォールド531の上面551に接続される。 As shown in FIG. 7, the first fixing member 535 includes a first attachment portion 571 and a second attachment portion 572. The first attachment portion 571 is connected to the second port wall 223B of the second compressor 220B. The second attachment portion 572 is connected to the upper surface 551 of the manifold 531.
 第1取付部571は、略L字形状に形成される。第1取付部571は、垂直板部573と、水平板部574と、を含む。垂直板部573には、垂直方向に長い長穴(図示せず)が形成される。空気圧縮装置100Bを組み立てる製造者は、長穴にネジといった適切な固定具を挿入し、第1取付部571を、第2コンプレッサ220Bの第2ポート壁223Bに接続することができる。製造者は、長穴の延設方向に沿って、第1固定部材535を垂直方向に移動させ、マニフォールド531の高さ位置を変更することができる。第1コンプレッサ210B及び第2コンプレッサ220Bに対するマニフォールド531の相対位置は、高さ方向に調整されるので、第1コンプレッサ210B及び第2コンプレッサ220Bの取付誤差があっても、第2送出管520B及び合流管540Bには過度に高い負荷は加わらない。 The first mounting portion 571 is formed in a substantially L shape. The first attachment portion 571 includes a vertical plate portion 573 and a horizontal plate portion 574. In the vertical plate portion 573, a long hole (not shown) that is long in the vertical direction is formed. A manufacturer who assembles the air compression device 100B can insert an appropriate fixing tool such as a screw into the elongated hole, and connect the first attachment portion 571 to the second port wall 223B of the second compressor 220B. The manufacturer can change the height position of the manifold 531 by moving the first fixing member 535 in the vertical direction along the extending direction of the long hole. Since the relative position of the manifold 531 with respect to the first compressor 210B and the second compressor 220B is adjusted in the height direction, even if there is an attachment error of the first compressor 210B and the second compressor 220B, The tube 540B is not overloaded.
 水平板部574は、垂直板部573の上端から前取付壁450に向けて延びる。第2取付部572は、水平板部574から折り曲げられ、マニフォールド531の上面551に沿う。水平板部574には、水平方向(左右)に長い長穴として第1調整構造576が形成される。空気圧縮装置100Bを組み立てる製造者は、第1調整構造576にネジといった適切な固定具を挿入し、第2取付部572を、マニフォールド531に接続することができる。製造者は、第1調整構造576の延設方向に沿って、第1固定部材535を水平方向に移動させ、マニフォールド531の水平位置を変更することができる。第1コンプレッサ210B及び第2コンプレッサ220Bに対するマニフォールド531の相対位置は、水平方向に調整されるので、第1コンプレッサ210B及び第2コンプレッサ220Bの取付誤差があっても、第2送出管520B及び合流管540Bには過度に高い負荷は加わらない。 The horizontal plate portion 574 extends from the upper end of the vertical plate portion 573 toward the front mounting wall 450. The second attachment portion 572 is bent from the horizontal plate portion 574 and extends along the upper surface 551 of the manifold 531. A first adjustment structure 576 is formed in the horizontal plate portion 574 as a long hole that is long in the horizontal direction (left and right). A manufacturer who assembles the air compression device 100 </ b> B can insert an appropriate fixing tool such as a screw into the first adjustment structure 576 and connect the second attachment portion 572 to the manifold 531. The manufacturer can change the horizontal position of the manifold 531 by moving the first fixing member 535 in the horizontal direction along the extending direction of the first adjustment structure 576. Since the relative position of the manifold 531 with respect to the first compressor 210B and the second compressor 220B is adjusted in the horizontal direction, even if there is an attachment error of the first compressor 210B and the second compressor 220B, the second delivery pipe 520B and the junction pipe. An excessively high load is not applied to 540B.
 本実施形態において、マニフォールド531は、第1固定部材534,535によって固定される。代替的に、マニフォールド531は、第1固定部材534,535のうち一方によって固定されてもよい。 In the present embodiment, the manifold 531 is fixed by the first fixing members 534 and 535. Alternatively, the manifold 531 may be fixed by one of the first fixing members 534 and 535.
 本実施形態において、第1調整構造565,566,576は、垂直方向に長い長穴及び/又は水平方向に長い長穴である。代替的に、第1調整構造は、垂直方向、水平方向及び/又は他の方向に長い切欠であってもよい。本実施形態の原理は、マニフォールド531の位置調整のための開口領域の特定の形状に限定されない。 In the present embodiment, the first adjustment structures 565, 566, and 576 are long holes that are long in the vertical direction and / or long holes that are long in the horizontal direction. Alternatively, the first adjustment structure may be a notch that is long in the vertical, horizontal and / or other directions. The principle of this embodiment is not limited to a specific shape of the opening area for position adjustment of the manifold 531.
 第1調整構造は、位置において異なる複数の貫通穴であってもよい。製造者は、複数の貫通穴から適切なものを選択して、マニフォールド531の適切な位置を設定してもよい。したがって、本実施形態の原理は、第1調整構造の特定の構造に限定されない。 The first adjustment structure may be a plurality of through holes that differ in position. The manufacturer may set an appropriate position of the manifold 531 by selecting an appropriate one from the plurality of through holes. Therefore, the principle of the present embodiment is not limited to a specific structure of the first adjustment structure.
 第1送出管510Bは、基端管511(図4を参照)と、第1エルボ管512(図4を参照)と、水平管513と、第2エルボ管514(図7を参照)と、垂直管515(図7を参照)と、第1ナット516(図7を参照)と、第2ナット517(図7を参照)と、を含む。基端管511は、第1コンプレッサ210Bの第1ポート壁213Bに接続される。基端管511と第1ポート壁213Bとの間の接続部は、図2を参照して説明された第1送出ポート215に対応する。基端管511は、第1ポート壁213Bから第2コンプレッサ220Bの第2ポート壁223Bに向けて延出する。第1エルボ管512は、基端管511の先端部に取り付けられる。第1エルボ管512は、第1コンプレッサ210Bによって生成された圧縮空気の流れ方向を、第2コンプレッサ220Bの第2ポート壁223Bに向かう方向から前取付壁450に向かう方向に変える。 The first delivery pipe 510B includes a proximal pipe 511 (see FIG. 4), a first elbow pipe 512 (see FIG. 4), a horizontal pipe 513, a second elbow pipe 514 (see FIG. 7), A vertical tube 515 (see FIG. 7), a first nut 516 (see FIG. 7), and a second nut 517 (see FIG. 7) are included. The proximal end pipe 511 is connected to the first port wall 213B of the first compressor 210B. The connection between the proximal tube 511 and the first port wall 213B corresponds to the first delivery port 215 described with reference to FIG. The proximal end pipe 511 extends from the first port wall 213B toward the second port wall 223B of the second compressor 220B. The first elbow pipe 512 is attached to the distal end portion of the proximal end pipe 511. The first elbow pipe 512 changes the flow direction of the compressed air generated by the first compressor 210B from the direction toward the second port wall 223B of the second compressor 220B to the direction toward the front mounting wall 450.
 第1ナット516は、第2エルボ管514に回転可能に取り付けられる。水平管513の上流端は、第1エルボ管512に螺合される。水平管513の下流端は、第1ナット516に螺合される。したがって、製造者は、第1ナット516を回転し、第1エルボ管512と第2エルボ管514との間の距離を適切に調整することができる。 The first nut 516 is rotatably attached to the second elbow pipe 514. The upstream end of the horizontal pipe 513 is screwed into the first elbow pipe 512. The downstream end of the horizontal pipe 513 is screwed into the first nut 516. Therefore, the manufacturer can rotate the first nut 516 and appropriately adjust the distance between the first elbow pipe 512 and the second elbow pipe 514.
 第2ナット517は、右逆止弁532に回転可能に取り付けられる。垂直管515の下端は、第2エルボ管514に螺合される。垂直管515の上端は、第2ナット517に螺合される。したがって、製造者は、第2ナット517を回転し、右逆止弁532と第2エルボ管514との間の距離を適切に調整することができる。本実施形態において、屈曲管は、第1エルボ管512、水平管513、第2エルボ管514及び垂直管515の組によって例示される。 The second nut 517 is rotatably attached to the right check valve 532. The lower end of the vertical pipe 515 is screwed into the second elbow pipe 514. The upper end of the vertical pipe 515 is screwed into the second nut 517. Therefore, the manufacturer can rotate the second nut 517 and appropriately adjust the distance between the right check valve 532 and the second elbow pipe 514. In the present embodiment, the bent tube is exemplified by a set of a first elbow tube 512, a horizontal tube 513, a second elbow tube 514, and a vertical tube 515.
 本実施形態において、第2調整構造は、水平管513と第1ナット516との組及び垂直管515と第2ナット517との組によって例示される。水平管513と第1ナット516との組は、圧縮空気の水平方向の案内区間の長さの調整に寄与する。垂直管515と第2ナット517との組は、圧縮空気の垂直方向の案内区間の長さの調整に寄与する。代替的に、第2調整構造は、水平方向及び垂直方向のうち一方の方向のみにおいて圧縮空気の案内区間の長さを調整可能であってもよい。 In the present embodiment, the second adjustment structure is exemplified by a set of a horizontal pipe 513 and a first nut 516 and a set of a vertical pipe 515 and a second nut 517. The set of the horizontal pipe 513 and the first nut 516 contributes to the adjustment of the length of the guide section in the horizontal direction of the compressed air. The set of the vertical pipe 515 and the second nut 517 contributes to the adjustment of the length of the guide section in the vertical direction of the compressed air. Alternatively, the second adjustment structure may be capable of adjusting the length of the compressed air guide section only in one of the horizontal direction and the vertical direction.
 第2調整構造は、ベローズ管や伸縮可能な構造を有する他の管構造体であってもよい。本実施形態の原理は、第2調整構造の特定の構造に限定されない。 The second adjustment structure may be a bellows tube or another tube structure having a stretchable structure. The principle of this embodiment is not limited to a specific structure of the second adjustment structure.
 第2送出管520Bは、第1送出管510Bと鏡像関係を有する。したがって、第1送出管510Bの構造に関する上述の説明は、第2送出管520Bに援用される。 The second delivery tube 520B has a mirror image relationship with the first delivery tube 510B. Therefore, the above description regarding the structure of the first delivery pipe 510B is incorporated into the second delivery pipe 520B.
 図7に示される如く、第1コンプレッサ210Bの第1ポート壁213Bは、第2コンプレッサ220Bに向けて突出する略直方体形状の固定台座216を含む。空気圧縮装置100Bは、第2固定部材580を含む。第2固定部材580は、固定台座216上に配置される。 7, the first port wall 213B of the first compressor 210B includes a substantially rectangular parallelepiped fixed base 216 that protrudes toward the second compressor 220B. The air compressor 100B includes a second fixing member 580. The second fixing member 580 is disposed on the fixing base 216.
 第2固定部材580は、基端部581と先端部582とを含む。基端部581は、平板状である。基端部581は、ネジといった適切な固定具を用いて固定台座216に固定される。先端部582は、略C字形状をなす。先端部582は、固定台座216上で、基端部581から上方へ湾曲しながら第2コンプレッサ220Bに向けて延びる。第1送出管510Bの水平管513は、先端部582と固定台座216とによって挟まれる。第2固定部材580と固定台座216とによる第1送出管510Bの固定技術は、第2送出管520の固定に適用されてもよい。第2固定部材は、水平管513を第1コンプレッサ210Bの第1ポート壁213Bに接続することができる他の構造や他の形状を有してもよい。本実施形態の原理は、第2固定部材の特定の形状や特定の構造に限定されない。 The second fixing member 580 includes a proximal end portion 581 and a distal end portion 582. The base end portion 581 has a flat plate shape. The base end portion 581 is fixed to the fixing base 216 using an appropriate fixing tool such as a screw. The distal end portion 582 has a substantially C shape. The front end 582 extends toward the second compressor 220B while being curved upward from the base end 581 on the fixed base 216. The horizontal pipe 513 of the first delivery pipe 510B is sandwiched between the distal end portion 582 and the fixed base 216. The technique for fixing the first delivery pipe 510B by the second fastening member 580 and the fixed base 216 may be applied to the fixation of the second delivery pipe 520. The second fixing member may have other structures or other shapes that can connect the horizontal pipe 513 to the first port wall 213B of the first compressor 210B. The principle of this embodiment is not limited to a specific shape or a specific structure of the second fixing member.
 図8は、ダクト部462の概略的な断面図である。図9は、空気圧縮装置100Bの概略的な斜視図である。図3Bを参照して説明された冷却装置610は、図9に示される空気圧縮装置100Bから除去されている。図3B、図4、図8及び図9を参照して、送出管路500Bが更に説明される。 FIG. 8 is a schematic cross-sectional view of the duct portion 462. FIG. 9 is a schematic perspective view of the air compressor 100B. The cooling device 610 described with reference to FIG. 3B has been removed from the air compression device 100B shown in FIG. With reference to FIGS. 3B, 4, 8, and 9, the delivery line 500B is further described.
 図8に示される如く、合流管540Bは、マニフォールド531(図4を参照)から後取付壁460に向けて延び、ダクト部462を通過する。ダクト部462は、内ダクト部463と、外ダクト部464と、を含む。内ダクト部463は、後取付壁460の保持板461から内方へ突出する。外ダクト部464は、後取付壁460から外方へ突出する。 As shown in FIG. 8, the merge pipe 540 </ b> B extends from the manifold 531 (see FIG. 4) toward the rear mounting wall 460 and passes through the duct portion 462. Duct portion 462 includes an inner duct portion 463 and an outer duct portion 464. The inner duct portion 463 protrudes inward from the holding plate 461 of the rear mounting wall 460. The outer duct portion 464 protrudes outward from the rear mounting wall 460.
 図9に示される如く、外ダクト部464は、水平方向に長い略矩形の枠構造を有する。外ダクト部464は、上壁465と、下壁466と、右壁467と、左壁468と、を含む。上壁465は、天板420の後縁422に沿って、略水平に延びる。下壁466は、上壁465の下方で略水平に延びる。右壁467は、上壁465及び下壁466の右端間に立設される。左壁468は、上壁465及び下壁466の左端間に立設される。合流管540Bは、外ダクト部464内で左壁468に向けて屈曲する。 As shown in FIG. 9, the outer duct portion 464 has a substantially rectangular frame structure that is long in the horizontal direction. The outer duct portion 464 includes an upper wall 465, a lower wall 466, a right wall 467, and a left wall 468. The upper wall 465 extends substantially horizontally along the rear edge 422 of the top plate 420. The lower wall 466 extends substantially horizontally below the upper wall 465. The right wall 467 is erected between the right ends of the upper wall 465 and the lower wall 466. The left wall 468 is erected between the left ends of the upper wall 465 and the lower wall 466. The merge pipe 540B bends toward the left wall 468 in the outer duct portion 464.
 図3Bに示される如く、合流管540Bは、外ダクト部464内で左方に折れ曲がる。合流管540Bは、左壁468を貫通し、外ダクト部464の外に現れる。合流管540Bは、外ダクト部464の外で、冷却装置610の冷却管611に接続される。 As shown in FIG. 3B, the merge pipe 540B bends to the left in the outer duct portion 464. The merge pipe 540B passes through the left wall 468 and appears outside the outer duct portion 464. Merge pipe 540 </ b> B is connected to cooling pipe 611 of cooling device 610 outside outer duct portion 464.
 <第4実施形態>
 コンプレッサは、空気を圧縮するので、コンプレッサ及び圧縮空気の発熱量は、非常に大きい。したがって、筐体からの排熱処理及び圧縮空気の冷却処理は、非常に重要である。第4実施形態において、例示的な熱処理技術が説明される。
<Fourth embodiment>
Since a compressor compresses air, the calorific value of a compressor and compressed air is very large. Therefore, the exhaust heat treatment from the casing and the cooling treatment of the compressed air are very important. In the fourth embodiment, an exemplary heat treatment technique is described.
 図4に示される如く、空気圧縮装置100Bは、2つのファン装置710,720と、2つの冷流調整箱730,740と、を備える。筐体400Bの前取付壁450は、右ファンカバー455と、左ファンカバー456と、を含む。ファン装置710は、右ファンカバー455に取り付けられる。ファン装置720は、左ファンカバー456に取り付けられる。右ファンカバー455及び左ファンカバー456は、前取付壁450の保持板451から前方に突出する。右ファンカバー455及び左ファンカバー456は、保持板451から取り外し可能である。右ファンカバー455が保持板451から取り外されると、ファン装置710及び冷流調整箱730は、筐体400Bから取り出される。左ファンカバー456が保持板451から取り外されると、ファン装置720及び冷流調整箱740は、筐体400Bから取り出される。 4, the air compression device 100B includes two fan devices 710 and 720 and two cold flow adjustment boxes 730 and 740. The front mounting wall 450 of the housing 400B includes a right fan cover 455 and a left fan cover 456. The fan device 710 is attached to the right fan cover 455. The fan device 720 is attached to the left fan cover 456. The right fan cover 455 and the left fan cover 456 protrude forward from the holding plate 451 of the front mounting wall 450. The right fan cover 455 and the left fan cover 456 can be detached from the holding plate 451. When the right fan cover 455 is removed from the holding plate 451, the fan device 710 and the cold flow adjustment box 730 are taken out from the housing 400B. When the left fan cover 456 is removed from the holding plate 451, the fan device 720 and the cold flow adjustment box 740 are removed from the housing 400B.
 ファン装置710は、ファン羽を有する軸流ファン装置であってもよい。ファン装置710は、ファン羽を回転させ、後取付壁460に向かう冷却空気を生成する。第1コンプレッサ210Bは、ファン装置710と後取付壁460との間に配置されるので、ファン装置710から送り出された冷却空気によって適切に冷却される。 The fan device 710 may be an axial fan device having fan blades. The fan device 710 rotates the fan blades and generates cooling air toward the rear mounting wall 460. Since the first compressor 210B is disposed between the fan device 710 and the rear mounting wall 460, the first compressor 210B is appropriately cooled by the cooling air sent from the fan device 710.
 ファン装置720は、ファン羽を有する軸流ファン装置であってもよい。ファン装置720は、ファン羽を回転させ、後取付壁460に向かう冷却空気を生成する。第2コンプレッサ220Bは、ファン装置720と後取付壁460との間に配置されるので、ファン装置720から送り出された冷却空気によって適切に冷却される。 The fan device 720 may be an axial fan device having fan blades. The fan device 720 rotates the fan blades and generates cooling air toward the rear mounting wall 460. Since the second compressor 220B is disposed between the fan device 720 and the rear mounting wall 460, the second compressor 220B is appropriately cooled by the cooling air sent out from the fan device 720.
 冷流調整箱730は、ファン装置710と第1コンプレッサ210Bとの間に配置される。冷流調整箱730は、ファン装置710から第1コンプレッサ210Bへ向かう冷却空気の流域形状を適切に調整する。 The cold flow adjustment box 730 is disposed between the fan device 710 and the first compressor 210B. The cold flow adjustment box 730 appropriately adjusts the shape of the flow area of the cooling air from the fan device 710 toward the first compressor 210B.
 冷流調整箱740は、ファン装置720と第2コンプレッサ220Bとの間に配置される。冷流調整箱740は、ファン装置720から第2コンプレッサ220Bへ向かう冷却空気の流域形状を適切に調整する。 The cold flow adjustment box 740 is disposed between the fan device 720 and the second compressor 220B. The cold flow adjustment box 740 appropriately adjusts the flow area shape of the cooling air from the fan device 720 to the second compressor 220B.
 図3Aに示される如く、右ファンカバー455と左ファンカバー456との間には、山型の凹領域が形成される。第3実施形態に関連して説明されたフィルタカバー452は、山型の凹領域内に配置される。 As shown in FIG. 3A, a mountain-shaped concave region is formed between the right fan cover 455 and the left fan cover 456. The filter cover 452 described in relation to the third embodiment is disposed in the mountain-shaped concave region.
 図10Aは、冷流調整箱730の概略的な斜視図である。図10Bは、冷流調整箱730の概略的な背面図である。図4、図8乃至図10Bを用いて、冷流調整箱730が説明される。図4を参照して説明された冷流調整箱740は、冷流調整箱730と構造的に同一である。したがって、冷流調整箱730の構造に関する以下の説明は、冷流調整箱740に援用される。 FIG. 10A is a schematic perspective view of the cold flow adjustment box 730. FIG. 10B is a schematic rear view of the cold flow adjustment box 730. The cold flow adjustment box 730 will be described with reference to FIGS. 4 and 8 to 10B. The cold flow adjustment box 740 described with reference to FIG. 4 is structurally identical to the cold flow adjustment box 730. Therefore, the following description regarding the structure of the cold flow adjustment box 730 is incorporated in the cold flow adjustment box 740.
 冷流調整箱730は、第1調整板731と、第2調整板732と、外周板733と、を含む。第1調整板731は、ファン装置710に対向する。第1調整板731は、外縁734と、内縁735と、を含む。外縁734は、第1調整板731の略矩形状の外形輪郭を形成する。内縁735は、略円形の開口領域を形成する。内縁735によって形成される開口領域の直径は、ファン装置710のファン羽の回転直径に略等しい。あるいは、開口領域の直径は、ファン羽の回転直径より若干大きく設定される。したがって、ファン装置710が生成した冷却空気は、冷流調整箱730に効率的に流入することができる。 The cold flow adjustment box 730 includes a first adjustment plate 731, a second adjustment plate 732, and an outer peripheral plate 733. The first adjustment plate 731 faces the fan device 710. The first adjustment plate 731 includes an outer edge 734 and an inner edge 735. The outer edge 734 forms a substantially rectangular outer contour of the first adjustment plate 731. The inner edge 735 forms a substantially circular opening region. The diameter of the opening area formed by the inner edge 735 is substantially equal to the rotational diameter of the fan blades of the fan device 710. Alternatively, the diameter of the opening region is set slightly larger than the rotation diameter of the fan blades. Therefore, the cooling air generated by the fan device 710 can efficiently flow into the cold flow adjustment box 730.
 第2調整板732は、第1調整板731と第1コンプレッサ210Bとの間に立設される。第2調整板732は、外縁736と、内縁737と、を含む。第1調整板731の外縁734と同様に、第2調整板732の外縁736は、第2調整板732の略矩形状の外形輪郭を形成する。多くの一般的なコンプレッサと同様に、第1コンプレッサ210Bは、第1コンプレッサ210Bの回転軸を含む垂直な仮想平面上において、略矩形状の断面輪郭を有する。第2調整板732の内縁737は、第1コンプレッサ210Bの断面の形状及び大きさに適合するように形成された略矩形状の開口領域を形成する。外周板733は、第1調整板731及び第2調整板732の外縁734,736に接続される。したがって、第1調整板731の内縁735によって形成された略円形の開口領域に流入した冷却空気は、第2調整板732の内縁737によって形成された略矩形状の開口領域から流出し、第1コンプレッサ210Bに効率的に当たることになる。したがって、第1コンプレッサ210Bは、効率的に冷却される。 The second adjustment plate 732 is erected between the first adjustment plate 731 and the first compressor 210B. The second adjustment plate 732 includes an outer edge 736 and an inner edge 737. Similar to the outer edge 734 of the first adjustment plate 731, the outer edge 736 of the second adjustment plate 732 forms a substantially rectangular outline of the second adjustment plate 732. Like many common compressors, the first compressor 210B has a substantially rectangular cross-sectional profile on a vertical virtual plane including the rotation axis of the first compressor 210B. The inner edge 737 of the second adjustment plate 732 forms a substantially rectangular opening region formed so as to match the shape and size of the cross section of the first compressor 210B. The outer peripheral plate 733 is connected to the outer edges 734 and 736 of the first adjustment plate 731 and the second adjustment plate 732. Therefore, the cooling air flowing into the substantially circular opening region formed by the inner edge 735 of the first adjustment plate 731 flows out of the substantially rectangular opening region formed by the inner edge 737 of the second adjustment plate 732, and It will hit the compressor 210B efficiently. Therefore, the first compressor 210B is efficiently cooled.
 上述の如く、ファン装置710,720によって生成された冷却空気は、後取付壁460に向けて送り出される。したがって、冷却空気は、第1コンプレッサ210B及び第2コンプレッサ220Bから熱を奪った後、後取付壁460に向って流れる。冷却空気は、その後ダクト部462から放出されるまで、筐体400B内で流動するので、冷却空気は、第1コンプレッサ210B及び第2コンプレッサ220Bの間の空間において長い流動経路を形成する送出管路500B内の圧縮空気も効果的に冷却することができる。 As described above, the cooling air generated by the fan devices 710 and 720 is sent out toward the rear mounting wall 460. Therefore, the cooling air takes heat from the first compressor 210B and the second compressor 220B and then flows toward the rear mounting wall 460. The cooling air then flows in the housing 400B until it is discharged from the duct portion 462, so that the cooling air forms a long flow path in the space between the first compressor 210B and the second compressor 220B. The compressed air in 500B can also be cooled effectively.
 図8を参照して説明された如く、後取付壁460は、ダクト部462を含むので、冷却空気は、ダクト部462を通じて筐体400Bの外へ、集中的に排出される。送出管路500Bの合流管540Bは、ダクト部462を通過するので、合流管540B内の圧縮空気は、ダクト部462内でも、第1コンプレッサ210B及び第2コンプレッサ220Bを冷却した後の冷却空気によって冷却される。 As described with reference to FIG. 8, since the rear mounting wall 460 includes the duct portion 462, the cooling air is intensively discharged out of the housing 400 </ b> B through the duct portion 462. Since the merge pipe 540B of the delivery pipe line 500B passes through the duct portion 462, the compressed air in the merge pipe 540B is also cooled in the duct portion 462 by the cooling air after cooling the first compressor 210B and the second compressor 220B. To be cooled.
 第3実施形態に関連して説明された如く、圧縮空気は、冷却装置610の冷却管611に流入する。冷却管611は、蛇行しながら下方に向かう圧縮空気の流動経路を形成する。すなわち、冷却装置610に流入した直後の圧縮空気は、上側の流動経路に沿って流れる。その後、圧縮空気は、下側の流動経路に沿って流れる。 As described in relation to the third embodiment, the compressed air flows into the cooling pipe 611 of the cooling device 610. The cooling pipe 611 forms a flow path of compressed air that goes downward while meandering. That is, the compressed air immediately after flowing into the cooling device 610 flows along the upper flow path. The compressed air then flows along the lower flow path.
 図8に示される如く、冷却管611によって形成された上側の流動経路は、ダクト部462に対向する。したがって、上側の流動経路内の圧縮空気は、ダクト部462から吹き出された冷却空気によって冷却される。 As shown in FIG. 8, the upper flow path formed by the cooling pipe 611 faces the duct portion 462. Therefore, the compressed air in the upper flow path is cooled by the cooling air blown out from the duct portion 462.
 図9に示される如く、空気圧縮装置100Bは、4つの外ファン装置750を備える。4つの外ファン装置750は、外ダクト部464の下壁466の下方で水平方向に連設される。 As shown in FIG. 9, the air compression device 100B includes four external fan devices 750. The four outer fan devices 750 are connected in the horizontal direction below the lower wall 466 of the outer duct portion 464.
 図8に示される如く、冷却管611によって形成された下側の流動経路は、外ファン装置750に対向する。したがって、外ファン装置750は、下側の流動経路を形成する冷却管611に向けて冷却空気を送り出すことができる。この結果、下側の流動経路に沿って流れる圧縮空気は、外ファン装置750によって効果的に冷却される。 As shown in FIG. 8, the lower flow path formed by the cooling pipe 611 faces the outer fan device 750. Accordingly, the outer fan device 750 can send cooling air toward the cooling pipe 611 that forms the lower flow path. As a result, the compressed air flowing along the lower flow path is effectively cooled by the outer fan device 750.
 本実施形態において、冷流調整箱730,740は、軸流ファン装置とともに用いられる。代替的に、冷流調整箱730,740による流域形状の調整原理は、遠心ファン装置といった他のファン装置によって生成された冷却空気に対して適用されてもよい。冷却空気が、第2調整板732から第1調整板731へ流れるときにおいても、上述の調整原理は、コンプレッサの効率的な冷却をもたらすことができる。 In this embodiment, the cold flow adjustment boxes 730 and 740 are used together with an axial fan device. Alternatively, the basin shape adjustment principle by the cold flow adjustment boxes 730 and 740 may be applied to cooling air generated by other fan devices such as a centrifugal fan device. Even when the cooling air flows from the second adjustment plate 732 to the first adjustment plate 731, the adjustment principle described above can provide efficient cooling of the compressor.
 <第5実施形態>
 車両の下面には、様々な装置が取り付けられる。したがって、空気圧縮装置の取り付けのための取付面の面積は狭いこともある。第5実施形態において、水平方向における空気圧縮装置の占有面積を低減するための設計技術が説明される。
<Fifth Embodiment>
Various devices are attached to the lower surface of the vehicle. Therefore, the area of the mounting surface for mounting the air compressor may be narrow. In the fifth embodiment, a design technique for reducing the area occupied by the air compressor in the horizontal direction will be described.
 図11は、空気圧縮装置100Bの部分組立図である。図11を参照して、空気圧縮装置100Bが説明される。 FIG. 11 is a partial assembly view of the air compressor 100B. The air compressor 100B will be described with reference to FIG.
 空気圧縮装置100Bは、第1駆動部810と、第2駆動部820と、を備える。第1駆動部810及び第2駆動部820は、一般的なモータであってもよい。第1駆動部810は、第1コンプレッサ210Bを駆動するための駆動力を生成する。第2駆動部820は、第2コンプレッサ220Bを駆動するための駆動力を生成する。本実施形態において、第1駆動力は、第1駆動部810が生成する駆動力によって例示される。第2駆動力は、第2駆動部820が生成する駆動力によって例示される。 The air compressor 100B includes a first drive unit 810 and a second drive unit 820. The first driving unit 810 and the second driving unit 820 may be general motors. The first driving unit 810 generates a driving force for driving the first compressor 210B. The second driving unit 820 generates a driving force for driving the second compressor 220B. In the present embodiment, the first driving force is exemplified by the driving force generated by the first driving unit 810. The second driving force is exemplified by the driving force generated by the second driving unit 820.
 第1駆動部810は、第1コンプレッサ210Bの下方に配置される。第2駆動部820は、第2コンプレッサ220Bの下方に配置される。第1駆動部810及び第2駆動部820の組は、第1コンプレッサ210B及び第2コンプレッサ220Bの組を横切る水平面とは交差しないので、設計者は、筐体400Bの水平断面の面積を小さな値に設定することができる。 The first drive unit 810 is disposed below the first compressor 210B. The second drive unit 820 is disposed below the second compressor 220B. Since the set of the first drive unit 810 and the second drive unit 820 does not intersect the horizontal plane crossing the set of the first compressor 210B and the second compressor 220B, the designer can reduce the horizontal sectional area of the housing 400B to a small value. Can be set to
 空気圧縮装置100Bは、第1伝達部910と、第2伝達部920と、を更に備える。第1伝達部910は、第1壁470の隣に形成される。第2伝達部920は、第2壁480の隣に形成される。第1伝達部910は、第1駆動部810によって生成された駆動力を第1コンプレッサ210Bへ伝達する。第2伝達部920は、第2駆動部820によって生成された駆動力を第2コンプレッサ220Bへ伝達する。 The air compressor 100B further includes a first transmission unit 910 and a second transmission unit 920. The first transmission unit 910 is formed next to the first wall 470. The second transmission part 920 is formed next to the second wall 480. The first transmission unit 910 transmits the driving force generated by the first driving unit 810 to the first compressor 210B. The second transmission unit 920 transmits the driving force generated by the second driving unit 820 to the second compressor 220B.
 第1コンプレッサ210Bは、第2コンプレッサ220Bとは反対方向に突出する右シャフト部230を含む。右シャフト部230は、筒状筐体231と、回転シャフト232(図12を参照)と、を含む。回転シャフト232は、吸送出のための配管に用いられた空間とは逆向きに延出する。回転シャフト232は、筒状筐体231内で回転する。第1伝達部910は、筒状筐体231によって支持された回転シャフト232に接続される。 The first compressor 210B includes a right shaft portion 230 that protrudes in the opposite direction to the second compressor 220B. The right shaft portion 230 includes a cylindrical housing 231 and a rotating shaft 232 (see FIG. 12). The rotating shaft 232 extends in the direction opposite to the space used for the piping for suction and delivery. The rotating shaft 232 rotates within the cylindrical housing 231. The first transmission unit 910 is connected to the rotating shaft 232 supported by the cylindrical housing 231.
 第2コンプレッサ220Bは、第1コンプレッサ210Bとは反対方向に突出する左シャフト部240を含む。左シャフト部240は、筒状筐体241と、回転シャフト(図示せず)と、を含む。回転シャフトは、筒状筐体241内で回転する。第2伝達部920は、筒状筐体241によって支持された回転シャフトに接続される。 The second compressor 220B includes a left shaft portion 240 that protrudes in the opposite direction to the first compressor 210B. The left shaft portion 240 includes a cylindrical housing 241 and a rotating shaft (not shown). The rotating shaft rotates within the cylindrical housing 241. The second transmission unit 920 is connected to a rotating shaft supported by the cylindrical housing 241.
 図12は、第1伝達部910の概略的な斜視図である。図12を参照して、第1伝達部910が説明される。図11を参照して説明された第2伝達部920は、第1伝達部910と構造的に同一であってもよい。したがって、第1伝達部910の構造及び動作に関する以下の説明は、第2伝達部920に援用される。 FIG. 12 is a schematic perspective view of the first transmission unit 910. The first transmission unit 910 will be described with reference to FIG. The second transmission unit 920 described with reference to FIG. 11 may be structurally identical to the first transmission unit 910. Therefore, the following description regarding the structure and operation of the first transmission unit 910 is incorporated in the second transmission unit 920.
 第1伝達部910は、上プーリ911と、下プーリ912と、テンションプーリ913と、無端ベルト914と、を含む。上プーリ911は、第1コンプレッサ210Bの右シャフト部230の回転シャフト232に取り付けられる。上プーリ911の下方に配置される下プーリ912は、第1駆動部810に取り付けられる。無端ベルト914は、上プーリ911、下プーリ912及びテンションプーリ913を取り巻く。テンションプーリ913は、上プーリ911と下プーリ912との間で、無端ベルト914を後取付壁460に向けて押し出し、無端ベルト914に適切な張力を与える。 The first transmission unit 910 includes an upper pulley 911, a lower pulley 912, a tension pulley 913, and an endless belt 914. The upper pulley 911 is attached to the rotation shaft 232 of the right shaft portion 230 of the first compressor 210B. A lower pulley 912 disposed below the upper pulley 911 is attached to the first drive unit 810. The endless belt 914 surrounds the upper pulley 911, the lower pulley 912, and the tension pulley 913. The tension pulley 913 pushes the endless belt 914 toward the rear mounting wall 460 between the upper pulley 911 and the lower pulley 912, and applies appropriate tension to the endless belt 914.
 第1駆動部810が回転すると、無端ベルト914は、上プーリ911、下プーリ912及びテンションプーリ913の周りを周回する。この結果、上プーリ911が回転する。回転シャフト232は、上プーリ911の回転によって回転される。回転シャフト232の回転は、第1コンプレッサ210Bの圧縮動作を生じさせる。この結果、圧縮空気は、生成される。 When the first drive unit 810 rotates, the endless belt 914 goes around the upper pulley 911, the lower pulley 912, and the tension pulley 913. As a result, the upper pulley 911 rotates. The rotating shaft 232 is rotated by the rotation of the upper pulley 911. The rotation of the rotation shaft 232 causes the compression operation of the first compressor 210B. As a result, compressed air is generated.
 <第6実施形態>
 第3実施形態に関連して説明された筐体の構造は、フィルタ交換といった修繕作業を容易化する。筐体は、第5実施形態に関連して説明された駆動力伝達機構の修繕や点検を容易化する構造を有してもよい。第6実施形態において、駆動力伝達機構の修繕や点検を容易化するための設計技術が説明される。
<Sixth Embodiment>
The housing structure described in connection with the third embodiment facilitates repair work such as filter replacement. The housing may have a structure that facilitates repair and inspection of the driving force transmission mechanism described in relation to the fifth embodiment. In the sixth embodiment, a design technique for facilitating repair and inspection of the driving force transmission mechanism will be described.
 図13は、空気圧縮装置100Bの部分組立図である。図3A、図3B、図11及び図13を参照して、空気圧縮装置100Bが説明される。 FIG. 13 is a partial assembly view of the air compressor 100B. The air compressor 100B will be described with reference to FIGS. 3A, 3B, 11 and 13.
 筐体400Bは、支持フレーム490と、支持板481と、を含む。支持フレーム490は、第1支柱491と、第2支柱492と、第3支柱493と、第4支柱494と、前桁495と、後桁496と、を含む。第1支柱491は、天板420の前縁421及び右縁423によって形成される角隅部(図3Aを参照)から下方に延びる。第2支柱492は、天板420の後縁422及び右縁423によって形成される角隅部(図3Aを参照)から下方に延びる。第3支柱493は、天板420の前縁421(図3Aを参照)及び左縁424(図3Bを参照)によって形成される角隅部から下方に延びる。第4支柱494は、天板420の後縁422及び左縁424によって形成される角隅部(図3Bを参照)から下方に延びる。前桁495は、第1支柱491と第3支柱493との間で略水平に延びる。後桁496は、第2支柱492と第4支柱494との間で略水平に延びる。支持板481は、前桁495と後桁496とによって支持される。この結果、支持板481は、天板420(図3Aを参照)と底板430(図3Bを参照)との間で横たわる。 The housing 400 </ b> B includes a support frame 490 and a support plate 481. The support frame 490 includes a first support column 491, a second support column 492, a third support column 493, a fourth support column 494, a front beam 495, and a rear beam 496. The first support column 491 extends downward from a corner (see FIG. 3A) formed by the front edge 421 and the right edge 423 of the top plate 420. The second support column 492 extends downward from a corner (see FIG. 3A) formed by the rear edge 422 and the right edge 423 of the top plate 420. The third support column 493 extends downward from a corner formed by the front edge 421 (see FIG. 3A) and the left edge 424 (see FIG. 3B) of the top plate 420. The fourth support column 494 extends downward from a corner (see FIG. 3B) formed by the rear edge 422 and the left edge 424 of the top plate 420. The front beam 495 extends substantially horizontally between the first column 491 and the third column 493. The rear beam 496 extends substantially horizontally between the second column 492 and the fourth column 494. The support plate 481 is supported by the front beam 495 and the rear beam 496. As a result, the support plate 481 lies between the top plate 420 (see FIG. 3A) and the bottom plate 430 (see FIG. 3B).
 図3A及び図13に示される如く、第1壁470は、第1支柱491と第2支柱492とに、ネジによって固定される。したがって、第1壁470は、支持フレーム490から容易に分離される。図11に示される如く、第1伝達部910は、第1壁470と、第2壁480よりも第1壁470の近くに配置された第1コンプレッサ210Bと、の間で形成されるので、作業者は、第1壁470を取り除いた後、第1伝達部910に容易にアクセスすることができる。これにより、作業者は、第1伝達部910の修繕や点検を容易に行うことができる。 As shown in FIGS. 3A and 13, the first wall 470 is fixed to the first support column 491 and the second support column 492 with screws. Accordingly, the first wall 470 is easily separated from the support frame 490. As shown in FIG. 11, the first transmission unit 910 is formed between the first wall 470 and the first compressor 210 </ b> B disposed closer to the first wall 470 than the second wall 480. The operator can easily access the first transmission unit 910 after removing the first wall 470. Thereby, the worker can easily repair and check the first transmission unit 910.
 図3B及び図13に示される如く、第2壁480は、第3支柱493と第4支柱494とに、ネジによって固定される。したがって、第2壁480は、支持フレーム490から容易に分離される。図11に示される如く、第2伝達部920は、第2壁480と、第1壁470よりも第2壁480の近くに配置された第2コンプレッサ220Bと、の間で形成されるので、作業者は、第2壁480を取り除いた後、第2伝達部920に容易にアクセスすることができる。これにより、作業者は、第2伝達部920の修繕や点検を容易に行うことができる。 3B and 13, the second wall 480 is fixed to the third support column 493 and the fourth support column 494 with screws. Accordingly, the second wall 480 is easily separated from the support frame 490. As shown in FIG. 11, the second transmission part 920 is formed between the second wall 480 and the second compressor 220B disposed closer to the second wall 480 than the first wall 470. The worker can easily access the second transmission unit 920 after removing the second wall 480. Thereby, the worker can easily repair and check the second transmission unit 920.
 <第7実施形態>
 駆動部は、コンプレッサを支持する支持部材とは別異の支持部材によって支持されてもよい。代替的に、駆動部及びコンプレッサは、共通の支持部材に取り付けられてもよい。この場合、駆動部とコンプレッサとの間の相対位置に関する誤差は低減される。第7実施形態において、駆動部とコンプレッサとの間の相対位置に関する誤差を低減するための技術が説明される。
<Seventh embodiment>
The drive unit may be supported by a support member different from the support member that supports the compressor. Alternatively, the drive and compressor may be attached to a common support member. In this case, the error regarding the relative position between the drive unit and the compressor is reduced. In the seventh embodiment, a technique for reducing an error related to the relative position between the drive unit and the compressor will be described.
 図13に示される如く、支持板481は、右支持板482と、左支持板483と、下支持板484と、を備える。右支持板482及び左支持板483は、下支持板484上に載置される。その後、右支持板482及び左支持板483は、前桁495又は後桁496に載置される。 As shown in FIG. 13, the support plate 481 includes a right support plate 482, a left support plate 483, and a lower support plate 484. The right support plate 482 and the left support plate 483 are placed on the lower support plate 484. Thereafter, the right support plate 482 and the left support plate 483 are placed on the front beam 495 or the rear beam 496.
 図14は、下支持板484の概略的な斜視図である。図11、図13及び図14を参照して、支持板481が更に説明される。 FIG. 14 is a schematic perspective view of the lower support plate 484. The support plate 481 is further described with reference to FIGS. 11, 13, and 14.
 下支持板484は、下板485と、枠リブ486と、格子リブ487と、4つの耳部488と、を含む。下板485は、右支持板482及び左支持板483の下方で横たわる。枠リブ486は、下板485の矩形状の外周縁から上方に突出する。格子リブ487は、枠リブ486によって囲まれた矩形状の空間内に立設される。右支持板482及び左支持板483は、格子リブ487及び枠リブ486の上縁に溶接される。4つの耳部488それぞれは、枠リブ486から前桁495又は後桁496に向けて突出する。4つの耳部488それぞれは、前桁495又は後桁496に固定されるので、下支持板484は、支持フレーム490によって適切に保持される。 The lower support plate 484 includes a lower plate 485, a frame rib 486, a lattice rib 487, and four ears 488. The lower plate 485 lies below the right support plate 482 and the left support plate 483. The frame rib 486 protrudes upward from the rectangular outer peripheral edge of the lower plate 485. The lattice rib 487 is erected in a rectangular space surrounded by the frame rib 486. The right support plate 482 and the left support plate 483 are welded to the upper edges of the lattice rib 487 and the frame rib 486. Each of the four ears 488 protrudes from the frame rib 486 toward the front beam 495 or the rear beam 496. Since each of the four ears 488 is fixed to the front beam 495 or the rear beam 496, the lower support plate 484 is appropriately held by the support frame 490.
 図13及び図14に示される如く、右支持板482、左支持板483及び下支持板484の下板485には、複数の貫通穴が形成される。これらの貫通穴は、右支持板482及び左支持板483が下支持板484に溶接された後に穿設される。したがって、これらの貫通穴の形成位置の相対関係は、設計図面によって形成される位置関係に略等しくなる。右支持板482に形成された貫通穴は、第1コンプレッサ210Bの取付に利用される。左支持板483に形成された貫通穴は、第2コンプレッサ220Bの取付に利用される。下支持板484の下板485に形成された貫通穴は、第1駆動部810及び第2駆動部820の取付に用いられる。本実施形態において、上面は、右支持板482及び左支持板483の上面によって例示される。下面は、下支持板484の下板485の下面によって例示される。 13 and 14, a plurality of through holes are formed in the right support plate 482, the left support plate 483, and the lower support plate 484 on the lower plate 485. These through holes are formed after the right support plate 482 and the left support plate 483 are welded to the lower support plate 484. Therefore, the relative relationship of the formation positions of these through holes is substantially equal to the positional relationship formed by the design drawing. The through hole formed in the right support plate 482 is used for mounting the first compressor 210B. The through hole formed in the left support plate 483 is used for mounting the second compressor 220B. The through holes formed in the lower plate 485 of the lower support plate 484 are used for mounting the first drive unit 810 and the second drive unit 820. In the present embodiment, the upper surface is exemplified by the upper surfaces of the right support plate 482 and the left support plate 483. The lower surface is exemplified by the lower surface of the lower plate 485 of the lower support plate 484.
 上述の様々な実施形態に関連して説明された例示的な空気圧縮装置は、以下の特徴を主に備える。 The exemplary air compression device described in connection with the various embodiments described above primarily includes the following features.
 上述の実施形態の一局面に係る空気圧縮装置は、第1吸気ポートが形成された第1ポート壁を含む第1コンプレッサと、第2吸気ポートが形成された第2ポート壁を含む第2コンプレッサと、空気を前記第1吸気ポート及び前記第2吸気ポートへ案内する吸気管路と、を備える。前記第1ポート壁及び前記第2ポート壁は、互いに対向して設置される。前記吸気管路は、前記第1ポート壁と前記第2ポート壁との間に配置される。 An air compression apparatus according to an aspect of the above-described embodiment includes a first compressor including a first port wall in which a first intake port is formed, and a second compressor including a second port wall in which a second intake port is formed. And an intake pipe for guiding air to the first intake port and the second intake port. The first port wall and the second port wall are disposed to face each other. The intake pipe line is disposed between the first port wall and the second port wall.
 上記構成によれば、吸気管路は、第1ポート壁と第2ポート壁との間に配置されるので、第1コンプレッサ及び第2コンプレッサは、吸気のための配管空間を共有することができる。したがって、設計者は、空気圧縮装置に小さな寸法値を与えることができる。 According to the above configuration, since the intake pipe is disposed between the first port wall and the second port wall, the first compressor and the second compressor can share a pipe space for intake. . Thus, the designer can give the air compressor a small dimensional value.
 上記構成に関して、空気圧縮装置は、前記第1コンプレッサが前記第1吸気ポートを通じて流入した前記空気を圧縮することによって生成された第1圧縮空気を、前記第1ポート壁に形成された第1送出ポートから受け、且つ、前記第2コンプレッサが前記第2吸気ポートを通じて流入した前記空気を圧縮することによって生成された第2圧縮空気を、前記第2ポート壁に形成された第2送出ポートから受ける送出管路と、を更に備えてもよい。 With regard to the above-described configuration, the air compression device includes a first delivery air formed on the first port wall, the first compressed air generated by the first compressor compressing the air that has flowed in through the first intake port. The second compressed air received from the port and generated by the second compressor compressing the air flowing in through the second intake port is received from the second delivery port formed in the second port wall. And a delivery line.
 上記構成によれば、送出管路は、第1ポート壁に形成された第1送出ポート及び第2ポート壁に形成された第2送出ポートから第1圧縮空気及び第2圧縮空気をそれぞれ受けるので、送出経路は、第1ポート壁と第2ポート壁との間に形成される。第1コンプレッサ及び第2コンプレッサは、第1ポート壁と第2ポート壁との間の空間を送出のために共有することができるので、設計者は、空気圧縮装置に小さな寸法値を与えることができる。 According to the above configuration, the delivery pipe line receives the first compressed air and the second compressed air from the first delivery port formed on the first port wall and the second delivery port formed on the second port wall, respectively. The delivery path is formed between the first port wall and the second port wall. Since the first compressor and the second compressor can share the space between the first port wall and the second port wall for delivery, the designer can give the air compressor a small dimensional value. it can.
 上記構成に関して、前記送出管路は、前記第1圧縮空気及び前記第2圧縮空気が合流するマニフォールドと、前記マニフォールドを、前記第1コンプレッサ及び前記第2コンプレッサのうち少なくとも一方に固定する第1固定部材と、を含んでもよい。前記第1固定部材は、前記第1コンプレッサ及び前記第2コンプレッサに対する前記マニフォールドの相対位置を調整可能にする第1調整構造を含んでもよい。 With regard to the above configuration, the delivery pipe line includes a manifold in which the first compressed air and the second compressed air merge, and a first fixing that fixes the manifold to at least one of the first compressor and the second compressor. And a member. The first fixing member may include a first adjustment structure that makes it possible to adjust a relative position of the manifold with respect to the first compressor and the second compressor.
 上記構成によれば、第1固定部材は、第1コンプレッサ及び第2コンプレッサに対するマニフォールドの相対位置を調整可能にする第1調整構造を含むので、第1コンプレッサ及び第2コンプレッサの組付誤差に起因する送出経路への過度の負荷は生じにくくなる。 According to the above configuration, the first fixing member includes the first adjustment structure that allows the relative position of the manifold to be adjusted with respect to the first compressor and the second compressor. Therefore, the first fixing member is caused by an assembly error between the first compressor and the second compressor. Therefore, an excessive load on the delivery route is less likely to occur.
 上記構成に関して、空気圧縮装置は、前記第1吸気ポートとは異なる位置において前記送出管路を前記第1ポート壁に固定する第2固定部材を更に備えてもよい。 With regard to the above configuration, the air compressor may further include a second fixing member that fixes the delivery pipe line to the first port wall at a position different from the first intake port.
 上記構成によれば、第2固定部材は、送出管路を、第1吸気ポートとは異なる位置において第1ポート壁に固定するので、送出管路に過度に大きな負荷は加わりにくくなる。 According to the above configuration, since the second fixing member fixes the delivery pipe line to the first port wall at a position different from the first intake port, an excessively large load is hardly applied to the delivery pipe line.
 上記構成に関して、前記送出管路は、前記第1送出ポートから前記第2ポート壁に向けて延出する基端管と、前記基端管から屈曲し、前記第1圧縮空気を前記マニフォールドへ案内する屈曲管と、を含んでもよい。前記屈曲管は、前記基端管から前記マニフォールドに向けて延びる案内区間の長さを調整する第2調整構造を含んでもよい。 With regard to the above-described configuration, the delivery pipe line is bent from the proximal pipe and the proximal pipe extending from the first delivery port toward the second port wall, and guides the first compressed air to the manifold. And a bent tube. The bent tube may include a second adjustment structure that adjusts a length of a guide section that extends from the proximal tube toward the manifold.
 上記構成によれば、屈曲管は、基端管からマニフォールドに向けて延びる案内区間の長さを調整する第2調整構造を含むので、第1コンプレッサ及び第2コンプレッサの組付誤差に起因する送出経路への過度の負荷は生じにくくなる。 According to the above configuration, the bent pipe includes the second adjustment structure that adjusts the length of the guide section that extends from the proximal end pipe toward the manifold, and therefore, the delivery due to the assembly error between the first compressor and the second compressor. Excessive load on the path is less likely to occur.
 上記構成に関して、空気圧縮装置は、前記第1コンプレッサを駆動するための第1駆動力を生成する第1駆動部と、前記第1駆動力を前記第1コンプレッサへ伝達する第1伝達部と、前記第2コンプレッサを駆動するための第2駆動力を生成する第2駆動部と、前記第2駆動力を前記第1コンプレッサへ伝達する第2伝達部と、を更に備えてもよい。前記筐体は、前記第1伝達部の隣に立設された第1壁と、前記第2伝達部の隣に立設された第2壁と、を含む外周壁を含んでもよい。 With regard to the above configuration, the air compression device includes a first driving unit that generates a first driving force for driving the first compressor, a first transmission unit that transmits the first driving force to the first compressor, You may further provide the 2nd drive part which produces | generates the 2nd driving force for driving the said 2nd compressor, and the 2nd transmission part which transmits the said 2nd driving force to the said 1st compressor. The housing may include an outer peripheral wall including a first wall standing next to the first transmission unit and a second wall standing next to the second transmission unit.
 上記構成によれば、第1伝達部は、第1壁の隣に配置され、且つ、第2伝達部は、第2壁の隣に立設されるので、作業者は、第1伝達部及び第2伝達部を容易に修繕及び/又は点検することができる。 According to the above configuration, the first transmission unit is disposed next to the first wall, and the second transmission unit is erected next to the second wall. The second transmission part can be easily repaired and / or inspected.
 上記構成に関して、前記筐体は、車両に接続される天板と、前記天板の下方で横たわる底板と、前記天板と前記底板との間に立設された外周壁と、前記天板と前記底板との間に横たわり、前記第1コンプレッサと前記第2コンプレッサとを支持する支持板と、を含んでもよい。前記支持板は、前記第1コンプレッサ及び前記第2コンプレッサが取り付けられる上面と、前記第1駆動部及び前記第2駆動部が取り付けられる下面と、を含んでもよい。 With regard to the above configuration, the housing includes a top plate connected to a vehicle, a bottom plate lying below the top plate, an outer peripheral wall erected between the top plate and the bottom plate, and the top plate. A support plate lying between the bottom plate and supporting the first compressor and the second compressor may be included. The support plate may include an upper surface to which the first compressor and the second compressor are attached, and a lower surface to which the first drive unit and the second drive unit are attached.
 上記構成によれば、第1コンプレッサ及び第2コンプレッサは、支持板の上面に取り付けられる一方で、第1駆動部及び第2駆動部は、支持板の下面に取り付けられるので、各コンプレッサと各駆動部とを上下方向に並べて配置し、設計者は、空気圧縮装置の水平方向の寸法を小さな値に設定することができる。さらに、支持板を介してコンプレッサと駆動部とをユニット化できるので、駆動部からコンプレッサへ駆動力を伝達する伝達部を容易に組み付けることができる。 According to the above configuration, the first compressor and the second compressor are attached to the upper surface of the support plate, while the first drive unit and the second drive unit are attached to the lower surface of the support plate. The parts can be arranged side by side in the vertical direction, and the designer can set the horizontal dimension of the air compressor to a small value. Furthermore, since the compressor and the drive unit can be unitized via the support plate, the transmission unit that transmits the driving force from the drive unit to the compressor can be easily assembled.
 上記構成に関して、空気圧縮装置は、前記第1コンプレッサを冷却する冷却空気を生成するように回転するファン羽を含むファン装置と、前記ファン装置と前記第1コンプレッサとの間に配置された冷流調整箱と、を更に備えてもよい。前記冷流調整箱は、前記ファン装置に相対する第1調整板と、前記第1コンプレッサに相対する第2調整板と、を含んでもよい。前記第1調整板には、円形の開口部が形成されてもよい。前記第2調整板には、矩形の開口部が形成されてもよい。 With regard to the above configuration, the air compression device includes a fan device including fan blades rotating to generate cooling air for cooling the first compressor, and a cold flow disposed between the fan device and the first compressor. And an adjustment box. The cold flow adjustment box may include a first adjustment plate facing the fan device and a second adjustment plate facing the first compressor. A circular opening may be formed in the first adjustment plate. A rectangular opening may be formed in the second adjustment plate.
 上記構成によれば、第1調整板には、円形の開口部が形成される一方で、第2調整板には、矩形の開口部が形成されるので、第1コンプレッサは、冷却空気を全体的に受けることができる。冷却空気の流域形状は、冷流調整箱によって適切に調整されるので、設計者は、ファン装置と第1コンプレッサとの間の距離に対して、小さな寸法値を与えることができる。 According to the above configuration, the first adjustment plate is formed with a circular opening, while the second adjustment plate is formed with a rectangular opening. Can be received. Since the flow area shape of the cooling air is appropriately adjusted by the cooling flow adjustment box, the designer can give a small dimension value to the distance between the fan device and the first compressor.
 上記構成に関して、前記吸気管路は、前記第1ポート壁に沿って延びる吸気ダクトと、前記吸気ダクトに連結される第1端と前記第1吸気ポートに連結される第2端とを含む連結管と、前記吸気ダクトと前記第1端との間をシールするトリムシールと、を含んでもよい。 With regard to the above configuration, the intake pipe line includes an intake duct extending along the first port wall, a first end connected to the intake duct, and a second end connected to the first intake port. A pipe and a trim seal that seals between the intake duct and the first end may be included.
 上記構成によれば、連結管の第1端は、吸気ダクトに、トリムシールを介して接続されるので、第1コンプレッサと吸気ダクトとの間の相対的な位置の誤差は、トリムシールによって吸収される。したがって、吸気管路は、第1コンプレッサ及び/又は吸気ダクトの組付誤差に起因する過度に大きな負荷を受けにくくなる。 According to the above configuration, since the first end of the connecting pipe is connected to the intake duct via the trim seal, the relative positional error between the first compressor and the intake duct is absorbed by the trim seal. Is done. Therefore, the intake pipe line is unlikely to receive an excessively large load due to the assembly error of the first compressor and / or the intake duct.
 上述の実施形態の原理は、圧縮空気を必要とする様々な技術分野に好適に利用される。 The principle of the above-described embodiment is suitably used in various technical fields that require compressed air.

Claims (9)

  1.  第1吸気ポートが形成された第1ポート壁を含む第1コンプレッサと、
     第2吸気ポートが形成された第2ポート壁を含む第2コンプレッサと、
     空気を前記第1吸気ポート及び前記第2吸気ポートへ案内する吸気管路と、を備え、
     前記第1ポート壁及び前記第2ポート壁は、互いに対向して設置され、
     前記吸気管路は、前記第1ポート壁と前記第2ポート壁との間に配置される
     空気圧縮装置。
    A first compressor including a first port wall formed with a first intake port;
    A second compressor including a second port wall formed with a second intake port;
    An intake pipe for guiding air to the first intake port and the second intake port;
    The first port wall and the second port wall are disposed opposite to each other;
    The air intake device is disposed between the first port wall and the second port wall.
  2.  前記第1コンプレッサが前記第1吸気ポートを通じて流入した前記空気を圧縮することによって生成された第1圧縮空気を、前記第1ポート壁に形成された第1送出ポートから受け、且つ、前記第2コンプレッサが前記第2吸気ポートを通じて流入した前記空気を圧縮することによって生成された第2圧縮空気を、前記第2ポート壁に形成された第2送出ポートから受ける送出管路と、を更に備える
     請求項1に記載の空気圧縮装置。
    The first compressor receives first compressed air generated by compressing the air flowing in through the first intake port from a first delivery port formed in the first port wall, and the second compressor A delivery line for receiving, from a second delivery port formed on the second port wall, second compressed air generated by compressing the air that has flowed in through the second intake port by a compressor; Item 2. The air compression device according to Item 1.
  3.  前記送出管路は、前記第1圧縮空気及び前記第2圧縮空気が合流するマニフォールドと、前記マニフォールドを、前記第1コンプレッサ及び前記第2コンプレッサのうち少なくとも一方に固定する第1固定部材と、を含み、
     前記第1固定部材は、前記第1コンプレッサ及び前記第2コンプレッサに対する前記マニフォールドの相対位置を調整可能にする第1調整構造を含む
     請求項2に記載の空気圧縮装置。
    The delivery pipe includes a manifold where the first compressed air and the second compressed air merge, and a first fixing member that fixes the manifold to at least one of the first compressor and the second compressor. Including
    The air compression device according to claim 2, wherein the first fixing member includes a first adjustment structure that enables adjustment of a relative position of the manifold with respect to the first compressor and the second compressor.
  4.  前記第1吸気ポートとは異なる位置において前記送出管路を前記第1ポート壁に固定する第2固定部材を更に備える
     請求項3に記載の空気圧縮装置。
    The air compressor according to claim 3, further comprising a second fixing member that fixes the delivery pipe line to the first port wall at a position different from the first intake port.
  5.  前記送出管路は、前記第1送出ポートから前記第2ポート壁に向けて延出する基端管と、前記基端管から屈曲し、前記第1圧縮空気を前記マニフォールドへ案内する屈曲管と、を含み、
     前記屈曲管は、前記基端管から前記マニフォールドに向けて延びる案内区間の長さを調整する第2調整構造を含む
     請求項3又は4に記載の空気圧縮装置。
    The delivery pipe includes a proximal pipe that extends from the first delivery port toward the second port wall, a bent pipe that is bent from the proximal pipe and guides the first compressed air to the manifold. Including,
    The air compression device according to claim 3 or 4, wherein the bent tube includes a second adjustment structure that adjusts a length of a guide section that extends from the proximal tube toward the manifold.
  6.  前記第1コンプレッサを駆動するための第1駆動力を生成する第1駆動部と、
     前記第1駆動力を前記第1コンプレッサへ伝達する第1伝達部と、
     前記第2コンプレッサを駆動するための第2駆動力を生成する第2駆動部と、
     前記第2駆動力を前記第1コンプレッサへ伝達する第2伝達部と、
     前記第1コンプレッサ、前記第2コンプレッサ、前記第1駆動部、前記第1伝達部、前記第2駆動部及び前記第2伝達部が収容される収容空間を形成する筐体と、を更に備え、
     前記筐体は、前記第1伝達部の隣に立設された第1壁と、前記第2伝達部の隣に立設された第2壁と、を含む外周壁を含む
     請求項2乃至5のいずれか1項に記載の空気圧縮装置。
    A first driving unit that generates a first driving force for driving the first compressor;
    A first transmission portion for transmitting the first driving force to the first compressor;
    A second driving unit for generating a second driving force for driving the second compressor;
    A second transmission portion for transmitting the second driving force to the first compressor;
    A housing that forms a housing space in which the first compressor, the second compressor, the first driving unit, the first transmission unit, the second driving unit, and the second transmission unit are housed;
    The said housing | casing contains the outer peripheral wall containing the 1st wall erected next to the said 1st transmission part, and the 2nd wall erected next to the said 2nd transmission part. The air compressor according to any one of the above.
  7.  前記筐体は、車両に接続される天板と、前記天板の下方で横たわる底板と、前記天板と前記底板との間に立設された外周壁と、前記天板と前記底板との間で横たわり、前記第1コンプレッサと前記第2コンプレッサとを支持する支持板と、を含み、
     前記支持板は、前記第1コンプレッサ及び前記第2コンプレッサが取り付けられる上面と、前記第1駆動部及び前記第2駆動部が取り付けられる下面と、を含む
     請求項6に記載の空気圧縮装置。
    The housing includes a top plate connected to a vehicle, a bottom plate lying below the top plate, an outer peripheral wall erected between the top plate and the bottom plate, and the top plate and the bottom plate. A support plate lying between and supporting the first compressor and the second compressor,
    The air compressor according to claim 6, wherein the support plate includes an upper surface to which the first compressor and the second compressor are attached, and a lower surface to which the first drive unit and the second drive unit are attached.
  8.  前記第1コンプレッサを冷却する冷却空気を生成するように回転するファン羽を含むファン装置と、
     前記ファン装置と前記第1コンプレッサとの間に配置された冷流調整箱と、を更に備え、
     前記冷流調整箱は、前記ファン装置に相対する第1調整板と、前記第1コンプレッサに相対する第2調整板と、を含み、
     前記第1調整板には、円形の開口部が形成され、
     前記第2調整板には、矩形の開口部が形成される
     請求項6又は7に記載の空気圧縮装置。
    A fan device including fan blades rotating to generate cooling air for cooling the first compressor;
    A cold flow adjustment box disposed between the fan device and the first compressor, and
    The cold flow adjustment box includes a first adjustment plate facing the fan device, and a second adjustment plate facing the first compressor,
    A circular opening is formed in the first adjustment plate,
    The air compression device according to claim 6 or 7, wherein a rectangular opening is formed in the second adjustment plate.
  9.  前記吸気管路は、前記第1ポート壁に沿って延びる吸気ダクトと、前記吸気ダクトに連結される第1端と前記第1吸気ポートに連結される第2端とを含む連結管と、前記吸気ダクトと前記第1端との間をシールするトリムシールと、を含む
     請求項1乃至8のいずれか1項に記載の空気圧縮装置。
    The intake pipe includes an intake duct extending along the first port wall, a connection pipe including a first end connected to the intake duct and a second end connected to the first intake port; The air compression device according to claim 1, further comprising: a trim seal that seals between an intake duct and the first end.
PCT/JP2016/065547 2015-05-29 2016-05-26 Air compression device WO2016194754A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SG11201709368XA SG11201709368XA (en) 2015-05-29 2016-05-26 Air compression device
JP2017521870A JP6761412B2 (en) 2015-05-29 2016-05-26 Air compressor
CN201680031518.9A CN107614874B (en) 2015-05-29 2016-05-26 Air compressor
EP16803189.6A EP3306089B1 (en) 2015-05-29 2016-05-26 Air compression device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-110704 2015-05-29
JP2015110704 2015-05-29

Publications (1)

Publication Number Publication Date
WO2016194754A1 true WO2016194754A1 (en) 2016-12-08

Family

ID=57440512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065547 WO2016194754A1 (en) 2015-05-29 2016-05-26 Air compression device

Country Status (6)

Country Link
EP (1) EP3306089B1 (en)
JP (1) JP6761412B2 (en)
CN (1) CN107614874B (en)
SG (1) SG11201709368XA (en)
TW (1) TWI612260B (en)
WO (1) WO2016194754A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022066057A (en) * 2020-10-16 2022-04-28 トヨタ自動車株式会社 Vehicular compressor mounting structure
WO2023215485A1 (en) * 2022-05-04 2023-11-09 Haptx, Inc. Haptic glove system and manufacture of haptic glove systems
CN117905672A (en) * 2024-03-19 2024-04-19 泉州市中力机电有限公司 Antiseep screw air compressor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022100812A1 (en) * 2022-01-14 2023-07-20 Illinois Tool Works Inc. COMPRESSOR ASSEMBLY FOR DEMAND INFLATION AND/OR REPAIR OF INFLATABLE ARTICLES OR PRODUCTS

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55120881U (en) * 1979-02-20 1980-08-27
US20030095871A1 (en) * 2001-10-29 2003-05-22 Thomas Hebert Multiple compressor common circuit structure design
JP2008111417A (en) * 2006-10-31 2008-05-15 Hitachi Ltd Air compression device
JP2010281288A (en) * 2009-06-05 2010-12-16 Honda Motor Co Ltd Hydrogen manufacturing device
JP2014092083A (en) * 2012-11-05 2014-05-19 Shinano Kenshi Co Ltd Compressor and vacuum machine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4418548A (en) * 1982-03-29 1983-12-06 Trane Cac, Inc. Variable capacity multiple compressor refrigeration system
CN200949512Y (en) * 2006-08-24 2007-09-19 张和平 Covering low noise air compressor ventilating heat radiation system
US8408024B2 (en) * 2008-05-23 2013-04-02 Panasonic Corporation Fluid machine and refrigeration cycle apparatus
SE534535C2 (en) * 2008-12-29 2011-09-27 Alfa Laval Corp Ab Pump device with two pump units, use and method for controlling one
CN201810513U (en) * 2010-04-09 2011-04-27 黄道兴 Double-cylinder double-inlet and double-outlet electromagnetic air compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55120881U (en) * 1979-02-20 1980-08-27
US20030095871A1 (en) * 2001-10-29 2003-05-22 Thomas Hebert Multiple compressor common circuit structure design
JP2008111417A (en) * 2006-10-31 2008-05-15 Hitachi Ltd Air compression device
JP2010281288A (en) * 2009-06-05 2010-12-16 Honda Motor Co Ltd Hydrogen manufacturing device
JP2014092083A (en) * 2012-11-05 2014-05-19 Shinano Kenshi Co Ltd Compressor and vacuum machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022066057A (en) * 2020-10-16 2022-04-28 トヨタ自動車株式会社 Vehicular compressor mounting structure
JP7380513B2 (en) 2020-10-16 2023-11-15 トヨタ自動車株式会社 Vehicle compressor mounting structure
WO2023215485A1 (en) * 2022-05-04 2023-11-09 Haptx, Inc. Haptic glove system and manufacture of haptic glove systems
CN117905672A (en) * 2024-03-19 2024-04-19 泉州市中力机电有限公司 Antiseep screw air compressor
CN117905672B (en) * 2024-03-19 2024-05-10 泉州市中力机电有限公司 Antiseep screw air compressor

Also Published As

Publication number Publication date
EP3306089B1 (en) 2020-10-14
CN107614874A (en) 2018-01-19
SG11201709368XA (en) 2017-12-28
TWI612260B (en) 2018-01-21
JPWO2016194754A1 (en) 2018-03-15
CN107614874B (en) 2020-09-29
TW201704695A (en) 2017-02-01
EP3306089A4 (en) 2019-01-02
EP3306089A1 (en) 2018-04-11
JP6761412B2 (en) 2020-09-23

Similar Documents

Publication Publication Date Title
WO2016194754A1 (en) Air compression device
US20160376930A1 (en) Muffler and muffling device including the same
JP6041983B2 (en) Air conditioner for vehicles
JP2006242545A (en) Indoor unit and air conditioner
JP2010047049A (en) Prime mover section structure of combine harvester
CN106705210A (en) New split type double-purification fan
JP5433611B2 (en) Package type compressor
JP5455482B2 (en) Opening and closing structure of cooling device
WO2017134720A1 (en) Air-conditioner
WO2000042325A1 (en) Method of manufacturing ventilating device and the ventilating device
CN107022969A (en) A kind of dust exhaust apparatus
JP6924138B2 (en) Air compressor
JP2010036775A (en) Blower-mounted vehicle, and fixed type suction device
JP2003262354A (en) Indoor unit of air conditioner
JPWO2020053952A1 (en) Indoor unit of air conditioner
JP2008134007A (en) Filter device and its installation method
CN206768702U (en) A kind of dust exhaust apparatus
JP2004251284A (en) Air compressor
TWI621775B (en) Air compression device
JP2016044862A (en) Floor installation type air conditioner
WO2023238183A1 (en) Dehumidifier
JP2018197637A (en) Indoor unit for air conditioner
RU72017U1 (en) GAS-TURBINE ENGINE STATOR BLOWING DEVICE
WO2017163646A1 (en) Package-type compressor
JP5028312B2 (en) External air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803189

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017521870

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11201709368X

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE