WO2016194705A1 - Solid electrolyte composition, electrode sheet for all-solid-state secondary cell, all-solid-state secondary cell, and method for manufacturing electrode sheet for all-solid-state secondary cell and all-solid-state secondary cell - Google Patents

Solid electrolyte composition, electrode sheet for all-solid-state secondary cell, all-solid-state secondary cell, and method for manufacturing electrode sheet for all-solid-state secondary cell and all-solid-state secondary cell Download PDF

Info

Publication number
WO2016194705A1
WO2016194705A1 PCT/JP2016/065312 JP2016065312W WO2016194705A1 WO 2016194705 A1 WO2016194705 A1 WO 2016194705A1 JP 2016065312 W JP2016065312 W JP 2016065312W WO 2016194705 A1 WO2016194705 A1 WO 2016194705A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
group
solid
electrolyte composition
secondary battery
Prior art date
Application number
PCT/JP2016/065312
Other languages
French (fr)
Japanese (ja)
Inventor
智則 三村
宏顕 望月
雅臣 牧野
目黒 克彦
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2017521840A priority Critical patent/JP6442607B2/en
Publication of WO2016194705A1 publication Critical patent/WO2016194705A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a solid electrolyte composition, an electrode sheet for an all-solid secondary battery, an all-solid secondary battery, an electrode sheet for an all-solid secondary battery, and an all-solid secondary battery manufacturing method.
  • Electrolytic solutions have been used for lithium ion batteries. Attempts have been made to replace the electrolytic solution with a solid electrolyte to obtain an all-solid-state secondary battery in which the constituent materials are all solid.
  • An advantage of the technology using an inorganic solid electrolyte is the reliability of the overall performance of the battery. For example, a flammable material such as a carbonate-based solvent is applied as a medium to an electrolytic solution used in a lithium ion secondary battery. In the secondary battery using such an electrolyte, various safety measures are taken. However, it cannot be said that there is no risk of problems during overcharging, and further measures are desired.
  • An all-solid-state secondary battery that can make the electrolyte incombustible is positioned as a drastic solution.
  • a further advantage of the all-solid-state secondary battery is that it is suitable for increasing the energy density by stacking electrodes. Specifically, a battery having a structure in which an electrode and an electrolyte are directly arranged in series can be obtained. At this time, since the metal package for sealing the battery cell, the copper wire and the bus bar for connecting the battery cell can be omitted, the energy density of the battery is greatly increased. In addition, good compatibility with the positive electrode material capable of increasing the potential is also mentioned as an advantage.
  • the present invention provides a solid electrolyte composition capable of realizing good ionic conductivity without sintering in an all-solid-state secondary battery, an electrode sheet for an all-solid-state secondary battery using the same, and an all-solid-state secondary battery
  • An object is to provide an electrode sheet for an all-solid-state secondary battery and a method for producing the all-solid-state secondary battery.
  • the present inventors diligently studied to solve the above-mentioned problems and completed the present invention. All manufactured using a solid electrolyte composition containing a crystalline oxide-based inorganic solid electrolyte and an amorphous oxide-based inorganic solid electrolyte in a manner that can be performed under mild conditions without sintering.
  • the solid secondary battery is presumed to contain an amorphous oxide-based inorganic solid electrolyte at the interface between solid particles. Therefore, the contact area between the solid particles increases through the amorphous oxide-based inorganic solid electrolyte, and the resistance at the interface is suppressed.
  • the present inventors have found that the all-solid-state secondary battery produced using the solid electrolyte composition of the present invention can achieve good ionic conductivity without being sintered.
  • the present invention has been made based on these findings. That is, the above problem has been solved by the following means.
  • a solid electrolyte composition comprising a crystalline oxide-based inorganic solid electrolyte and an amorphous oxide-based inorganic solid electrolyte, wherein the crystalline oxide-based inorganic solid electrolyte and the amorphous oxide-based inorganic solid
  • a solid electrolyte composition having an electrolyte in a volume ratio of 70 to 99.8: 0.2 to 30.
  • ⁇ 4> The resin according to ⁇ 2> or ⁇ 3>, wherein the resin constituting the binder is selected from the group consisting of a hydrocarbon resin, a fluorine-containing resin, an acrylic resin, polyurethane, polyamide, polyimide, polyether, polyester, and polycarbonate.
  • Solid electrolyte composition ⁇ 5> The solid electrolyte composition according to any one of ⁇ 2> to ⁇ 4>, wherein the functional group [a] is the following functional group [b].
  • M cc is at least one selected from the group consisting of C, S, Al, Si, P, Ga, Ge, In and Sn
  • xc, yc, zc and nc have a composition ratio. 0 ⁇ xc ⁇ 5, 0 ⁇ yc ⁇ 1, 0 ⁇ zc ⁇ 1, and 0 ⁇ nc ⁇ 6.
  • Li 3.5 Zn 0.25 GeO 4 ⁇ LiTi 2 P 3 O 12 Li 1 + xh + yh (Al, Ga) xh (Ti, Ge) 2-xh Si yh P 3-yh O 12 0 ⁇ xh ⁇ 1, 0 ⁇ yh ⁇ 1 ⁇ Li 3 PO 4 ⁇ LiPON ⁇ LiPOD 1 D 1 is Ti, V, Cr, Mn, Fe, Co, Ni, Cu, At least one selected from the group consisting of Zr, Nb, Mo, Ru, Ag, Ta, W, Pt and Au.
  • LiA 1 ON A 1 is at least one selected from the group consisting of Si, B, Ge, Al, C, and Ga.
  • ⁇ 10> The solid electrolyte composition according to any one of ⁇ 1> to ⁇ 9>, including a dispersion medium object.
  • ⁇ 11> The solid electrolyte composition according to any one of ⁇ 1> to ⁇ 10>, including an active material.
  • ⁇ 15> Manufacture of an all-solid-state secondary battery that manufactures an all-solid-state secondary battery including a positive electrode active material layer, a negative electrode active material layer, and an inorganic solid electrolyte layer via the manufacturing method according to ⁇ 13> or ⁇ 14> Method.
  • An all-solid secondary battery comprising a positive electrode active material layer, a negative electrode active material layer, and an inorganic solid electrolyte layer, wherein at least one of the positive electrode active material layer, the negative electrode active material layer, and the inorganic solid electrolyte layer is crystallized.
  • the solid electrolyte composition of the present invention When used as a material for an inorganic solid electrolyte layer or an active material layer in an all-solid-state secondary battery, a layer can be formed without sintering.
  • the solid secondary battery has an excellent effect of realizing good ionic conductivity.
  • the electrode sheet for an all-solid-state secondary battery of the present invention can be suitably manufactured by using the solid electrolyte composition of the present invention, and the all-solid-state secondary battery of the present invention that exhibits the above-mentioned good performance. Can be used.
  • FIG. 1 is a longitudinal sectional view schematically showing an all solid state secondary battery according to a preferred embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view schematically showing the test apparatus used in the examples.
  • the all solid state secondary battery of the present invention includes a positive electrode active material layer, a negative electrode active material layer, and an inorganic solid electrolyte layer.
  • at least one of the positive electrode active material layer, the negative electrode active material layer and the inorganic solid electrolyte layer is a solid electrolyte composition containing a crystalline oxide inorganic solid electrolyte and an amorphous oxide inorganic solid electrolyte.
  • a solid electrolyte composition in which the ratio of the volume of the crystalline oxide inorganic solid electrolyte to the volume of the amorphous oxide inorganic solid electrolyte is 70 to 99.8: 0.2 to 30 Form.
  • the preferable embodiment will be described.
  • Solid electrolyte composition is preferably applied as a molding material for the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer constituting the all solid state secondary battery of the present invention.
  • the inorganic solid electrolyte is an inorganic solid electrolyte, and the solid electrolyte is a solid electrolyte capable of moving ions inside. Since it does not contain organic substances as the main ion conductive material, organic solid electrolytes (polymer electrolytes typified by polyethylene oxide (PEO), etc., organics typified by lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), etc. It is clearly distinguished from the electrolyte salt). In addition, since the inorganic solid electrolyte is solid in a steady state, it is not usually dissociated or released into cations and anions.
  • organic solid electrolytes polymer electrolytes typified by polyethylene oxide (PEO), etc.
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • the inorganic solid electrolyte has ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table.
  • the solid electrolyte composition of the present invention contains (i) a crystalline oxide-based inorganic solid electrolyte and (ii) an amorphous oxide-based inorganic solid electrolyte, and (iii) the volume of the crystalline oxide-based inorganic solid electrolyte. And the volume of the amorphous oxide-based inorganic solid electrolyte are 70 to 99.8: 0.2 to 30.
  • the crystalline oxide inorganic solid electrolyte and the amorphous oxide inorganic solid electrolyte may be collectively referred to as an inorganic solid electrolyte.
  • xb, the yb and zb represents the composition ratio.
  • Li xd (Al, Ga) yd (Ti, Ge) zd Si ad P md O nd ( However, xd, yd, zd, ad , md and nd Represents a composition ratio, 1 ⁇ xd ⁇ 3, 0 ⁇ yd ⁇ 1, 0 ⁇ zd ⁇ 2, 0 ⁇ ad ⁇ 1, 1 ⁇ md ⁇ 7, 3 ⁇ nd ⁇ 13), Li (3- 2xe) M ee xe D ee O synonymous with (formula below (II).
  • Li, P and O are mentioned.
  • Phosphorus compounds containing Li, P and O are also desirable.
  • lithium phosphate Li 3 PO 4
  • LiPON obtained by replacing a part of oxygen of lithium phosphate with nitrogen
  • LiPOD 1 LiPOD 1
  • LiA 1 ON A 1 is at least one selected from Si, B, Ge, Al, C, Ga, etc.
  • a compound represented by any one of the following formulas (I) to (IV) is more preferred, a compound represented by the following formula (I) or (II) is particularly preferred, and a compound represented by the following formula (I):
  • the compounds represented are particularly preferred.
  • the amorphous oxide-based inorganic solid electrolyte is a compound represented by the following formula (I)
  • the interface resistance can be more effectively reduced because it has a flexible structure and high ionic conductivity.
  • the compound represented by the formula (I) will be described.
  • divalent metal atom represented by M ee examples include magnesium, calcium, strontium and barium, magnesium, calcium and barium are preferred, calcium and barium are more preferred, and barium is particularly preferred.
  • D ee preferably contains a chlorine atom, a bromine atom, or an iodine atom, more preferably a chlorine atom, a bromine atom, or a combination of a chlorine atom and a bromine atom, and even more preferably a chlorine atom.
  • the compound represented by the formula (II) include Li 3 ClO, Li 2.99 Ba 0.005 ClO, Li 2.99 Ca 0.005 ClO, and Li 2.99 Mg 0.005 ClO. It is done.
  • the compound represented by the above formula (II) can be prepared by a conventional method. For example, LiF, LiCl, LiBr, LiI, LiOH, Ba (OH) 2 , Mg (OH) 2 , Ca (OH) 2 , Sr (OH) 2 (the above raw materials may be hydrated) as raw materials. It can be synthesized by adding raw materials of any combination together with water into a Teflon (registered trademark) sealed container and heating. Moreover, you may synthesize
  • the compound represented by the formula (III) include Li 4 SiO 4 and Li 2 SiO 3 .
  • the compound represented by the above formula (III) can be prepared by a conventional method. For example, it can be synthesized by mixing Li 2 CO 3 and SiO 2 in a mortar, pelletizing and heat-treating, followed by mechanical milling. Alternatively, it may be synthesized by a solid phase method. Next, the compound represented by formula (IV) will be described.
  • the compound represented by the formula (IV) include Li 2 SO 4 and Li 2 SO 3 .
  • the compound represented by the said formula (IV) can be prepared by a conventional method.
  • a commercially available crystalline Li 2 SO 4 manufactured by Wako Pure Chemical Industries, Ltd.
  • Wako Pure Chemical Industries, Ltd. can be synthesized by making it amorphous by mechanical milling.
  • the ratio between the volume of the crystalline oxide-based inorganic solid electrolyte and the volume of the amorphous oxide-based inorganic solid electrolyte is from the viewpoint of achieving both interface formation and high ionic conductivity. 70 to 99: 1 to 30 is preferable, and 75 to 90:10 to 25 is more preferable.
  • the ratio of the mass of the crystalline oxide-based inorganic solid electrolyte to the mass of the amorphous oxide-based inorganic solid electrolyte (the mass of the crystalline oxide-based inorganic solid electrolyte: amorphous
  • the mass of the conductive oxide-based inorganic solid electrolyte is not particularly limited, but is preferably 70 to 99.5: 0.5 to 30, more preferably 80 to 98: 2 to 20, and particularly preferably 86 to 95: 5 to 14. preferable.
  • the volume average particle diameter of the inorganic solid electrolyte is not particularly limited, but is preferably 0.01 ⁇ m or more, and more preferably 0.1 ⁇ m or more. As an upper limit, it is preferable that it is 100 micrometers or less, and it is more preferable that it is 50 micrometers or less.
  • the measurement of the volume average particle diameter of an inorganic solid electrolyte is performed in the following procedures.
  • An inorganic solid electrolyte is prepared by diluting a 1% by weight dispersion in a 20 ml sample bottle using water (heptane in the case of water labile substances). The diluted dispersion sample is irradiated with 1 kHz ultrasonic waves for 10 minutes and used immediately after that.
  • the content of the solid component in the solid electrolyte composition of the inorganic solid electrolyte is 100% by mass of the solid component when considering reduction of the interface resistance when used in an all-solid secondary battery and maintenance of the reduced interface resistance. Is preferably 5% by mass or more, more preferably 10% by mass or more, and particularly preferably 20% by mass or more. As an upper limit, it is preferable that it is 99.9 mass% or less from the same viewpoint, It is more preferable that it is 99.5 mass% or less, It is especially preferable that it is 99 mass% or less.
  • the solid component refers to a component that does not disappear by volatilization or evaporation when dried at 170 ° C. for 6 hours. Typically, it refers to components other than the dispersion medium described below.
  • the said inorganic solid electrolyte may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the solid electrolyte composition of the present invention preferably contains at least one binder.
  • the electrode layer of the solid secondary battery includes a binder as well as the active material and the inorganic solid electrolyte. Therefore, the contact area between the crystalline oxide inorganic solid electrolyte and the active material is increased via the amorphous oxide inorganic solid electrolyte and the binder, and the resistance at the interface can be suppressed. Furthermore, the binding between the solid particles, between the solid electrolyte layer and the electrode layer, and between the electrode layer and the current collector can be improved.
  • the ratio of the volume of the crystalline oxide-based inorganic solid electrolyte to the volume of the amorphous oxide-based inorganic solid electrolyte and the volume of the binder (volume of the crystalline oxide-based inorganic solid electrolyte: non-
  • the volume of the crystalline oxide inorganic solid electrolyte: the volume of the binder is preferably 70 to 99.8: 0.1 to 29.9: 0.1 to 29.9, and 70 to 95: 4.5 to 29. 5: 0.5 to 15 is more preferable, and 75 to 85:10 to 23: 2 to 5 is particularly preferable. It is preferable to be within the above-mentioned range because ion conductivity, interface forming property, and binding property can be established in a solid electrolyte sheet and an all-solid secondary battery described later.
  • the ratio of the mass of the crystalline oxide-based inorganic solid electrolyte to the mass of the amorphous oxide-based inorganic solid electrolyte and the mass of the binder (the mass of the crystalline oxide-based inorganic solid electrolyte) : Mass of amorphous oxide-based inorganic solid electrolyte: mass of binder) is preferably 70 to 99.5: 0.4 to 29.9: 0.1 to 29.6, and preferably 80 to 98: 1.5. To 19.5: 0.5 to 18.5 is more preferable, and 85 to 95: 4 to 14: 1 to 11 is particularly preferable.
  • the binder that can be used in the present invention preferably has at least one selected from the group consisting of the following functional group group [a].
  • the binder that can be used in the present invention is not particularly limited as long as it is an organic polymer having at least one functional group selected from the functional group group [a].
  • the binder has at least one functional group selected from the functional group group [a], it can form an interaction or bond with the inorganic solid electrolyte, and can realize high binding properties.
  • the functional group equivalent (the molecular weight of the binder having at least one functional group selected from the functional group [a] per functional group selected from the functional group [a]) is not particularly limited, but 50 Is preferably 50,000, more preferably 100 to 10,000, and particularly preferably 200 to 1,000.
  • the functional group group [a] is preferably the following functional group group [b] from the viewpoint of both the stability and the binding property of the binder.
  • the resin constituting the binder that can be used in the present invention is preferably one that is usually used as a binder for a positive electrode or a negative electrode of a battery material, and is not particularly limited.
  • a polymer may be used as a term having the same meaning as a resin.
  • the binder that can be used in the present invention is preferably a resin having the functional group group [a], preferably the functional group group [b] described below.
  • fluorine-containing resin for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP)
  • hydrocarbon resin for example, polyethylene, polypropylene, Styrene butadiene rubber (SBR), hydrogenated styrene butadiene rubber (HSBR), butylene rubber, acrylonitrile butadiene rubber, polybutadiene, polyisoprene
  • acrylic resin vinyl resin
  • styrene resin amide resin
  • imide resin urethane resin
  • urea resin polyester
  • polyester examples thereof include resins, polyether resins, phenol resins, epoxy resins, polycarbonate resins, silicone resins, and combinations thereof.
  • resins selected from the group consisting of hydrocarbon resins, fluororesins, acrylic resins, urethane resins (for example, polyurethane), polyamides, polyimides, polyethers, polyesters, and polycarbonates are preferable, and acrylic resins and polyurethanes are more preferable.
  • the binder used in the present invention has a partial structure represented by the following formula (I).
  • R represents a hydrogen atom or a monovalent organic group.
  • Examples of the polymer having a partial structure represented by the formula (I) include a polymer having an amide bond, a polymer having a urea bond, a polymer having an imide bond, and a polymer having a urethane bond.
  • Examples of the organic group in R include an alkyl group, an alkenyl group, an aryl group, and a heteroaryl group.
  • R is preferably a hydrogen atom.
  • polymer having an amide bond examples include polyamide and polyacrylamide.
  • Polyamide can be obtained by condensation polymerization of a diamine compound and a dicarboxylic acid compound or ring-opening polymerization of a lactam.
  • diamine compound examples include ethylenediamine, 1-methylethyldiamine, 1,3-propylenediamine, tetramethylenediamine, pentamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, undecamethylenediamine.
  • aliphatic diamine compounds such as dodecamethylenediamine, cyclohexanediamine, bis- (4,4′-aminohexyl) methane, and paraxylylenediamine.
  • a diamine having a polypropyleneoxy chain for example, a commercially available product “Jeffamine” series (trade name, manufactured by Huntsman, Mitsui Chemicals Fine) can be used.
  • Examples of “Jeffamine” series include Jeffermin D-230, Jeffermin D-400, Jeffermin D-2000, Jeffermin XTJ-510, Jeffermin XTJ-500, Jeffermin XTJ-501, Jeffermin XTJ-502 , Jeffamine HK-511, Jeffamine EDR-148, Jeffamine XTJ-512, Jeffamine XTJ-542, Jeffamine XTJ-533, Jeffamine XTJ-536, and the like.
  • dicarboxylic acid compound examples include, for example, aliphatic dicarboxylic acids such as malonic acid, succinic acid, glutaric acid, sebacic acid, pimelic acid, suberic acid, azelaic acid, undecanoic acid, undecadioic acid, dodecadioic acid, and dimer acid, 1,4 -Cyclohexanedicarboxylic acid, paraxylylene dicarboxylic acid, metaxylylene dicarboxylic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4'-diphenyldicarboxylic acid.
  • aliphatic dicarboxylic acids such as malonic acid, succinic acid, glutaric acid, sebacic acid, pimelic acid, suberic acid, azelaic acid, undecanoic acid, undecadioic acid, dodecadioic acid, and dimer acid
  • polyacrylamide examples include polyethylene glycol monomethyl ether acrylamide, polypropylene glycol monomethyl ether acrylamide, polyethylene glycol monomethyl ether methacrylamide, polypropylene glycol monomethyl ether methacrylamide, polyester methacrylamide, polycarbonate methacrylamide and the like.
  • Polyurea may be mentioned as a polymer having a urea bond.
  • Polyurea can be synthesized by condensation polymerization of a diisocyanate compound and a diamine compound in the presence of an amine catalyst.
  • Specific examples of the diisocyanate compound are not particularly limited and may be appropriately selected depending on the intended purpose.
  • Examples thereof include 2,4-tolylene diisocyanate, dimer of 2,4-tolylene diisocyanate, 2,6- Tolylene diisocyanate, p-xylylene diisocyanate, m-xylylene diisocyanate, 4,4'-diphenylmethane diisocyanate (MDI), 1,5-naphthylene diisocyanate, 3,3'-dimethylbiphenyl-4,4'-diisocyanate Aromatic diisocyanate compounds such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, dimer acid diisocyanate; isophorone diisocyanate, 4,4′-methylenebis Cyclohexyl isocyanate), methylcyclohexane-2,4 (or 2,6) -diyl diisocyanate, 1,3- (isocyanatomethyl) cyclohexane, and the
  • diamine compound examples include the compound examples described above.
  • a polyimide which has an imide bond
  • a polyimide is obtained by ring-closing after forming a polyamic acid by addition-reacting a tetracarboxylic dianhydride and a diamine compound.
  • tetracarboxylic dianhydrides include 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA) and pyromellitic dianhydride (PMDA), 2,3,3.
  • a-BPDA 4', 4'-biphenyltetracarboxylic dianhydride
  • a-BPDA oxydiphthalic dianhydride
  • bis (3,4- Dicarboxyphenyl) sulfide dianhydride 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, 2,3,3 ′, 4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, 2,2-bis ( 3,4-dicarboki Siphenyl) propane dianhydride, p-phenylenebis (trimellitic acid monoester acid anhydride), p-
  • the tetracarboxylic acid component preferably contains at least one of s-BPDA and PMDA.
  • s-BPDA is preferably 50 mol% or more, more preferably 70 mol% or more in 100 mol% of the tetracarboxylic acid component. Especially preferably, it contains 75 mol% or more.
  • the tetracarboxylic dianhydride preferably has a rigid benzene ring.
  • the diamine compound preferably has a structure having amino groups at both ends of a polyethylene oxide chain, a polypropylene oxide chain, a polycarbonate chain, or a polyester chain.
  • Polyurethane which has a urethane bond
  • a polyurethane is mentioned.
  • Polyurethane is obtained by condensation polymerization of a diisocyanate compound and a diol compound in the presence of a titanium, tin, or bismuth catalyst.
  • the diisocyanate compound include the compound examples described above.
  • diol compound examples include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, dipropylene glycol, and polyethylene glycol (for example, average molecular weight 200, 400, 600, 1000, 1500, 2000, 3000, 7500 Polyethylene glycol), polypropylene glycol (for example, polypropylene glycol with an average molecular weight of 400, 700, 1000, 2000, 3000, or 4000), neopentyl glycol, 1,3-butylene glycol, 1,4-butanediol, 1,3 -Butanediol, 1,6-hexanediol, 2-butene-1,4-diol, 2,2,4-trimethyl-1,3-pentanediol, 1,4-bis- -Hydroxyethoxycyclohexane, cyclohexanedimethanol, tricyclodecane dimethanol, hydrogenated bisphenol A, hydrogenated bis
  • the diol compound is also available as a commercial product, and examples thereof include polyether diol compounds, polyester diol compounds, polycarbonate diol compounds, polyalkylene diol compounds, and silicone diol compounds.
  • the diol compound preferably has at least one of a polyethylene oxide chain, a polypropylene oxide chain, a polycarbonate chain, a polyester chain, a polybutadiene chain, a polyisoprene chain, a polyalkylene chain, and a silicone chain.
  • the diol compound has a carbon-carbon unsaturated bond and a polar group (alcoholic hydroxyl group, phenolic hydroxyl group, sulfanyl group, carboxy group, sulfo group, A sulfonamide group, a phosphoric acid group, a nitrile group, an amino group, a zwitterion-containing group, a metal hydroxide, and a metal alkoxide).
  • a polar group alcoholic hydroxyl group, phenolic hydroxyl group, sulfanyl group, carboxy group, sulfo group, A sulfonamide group, a phosphoric acid group, a nitrile group, an amino
  • diol compound for example, 2,2-bis (hydroxymethyl) propionic acid can be used.
  • diol compound containing a carbon-carbon unsaturated bond commercially available products such as Blemmer GLM (manufactured by NOF Corporation) and JP-A No. 2007-187836 can be preferably used.
  • monoalcohol or monoamine can be used as a polymerization terminator.
  • the polymerization terminator is introduced into the terminal site of the polyurethane main chain.
  • Polyalkylene glycol monoalkyl ether polyethylene glycol monoalkyl ether and polypropylene monoalkyl ether are preferred
  • polycarbonate diol monoalkyl ether polycarbonate diol monoalkyl ether
  • polyester diol monoalkyl ether polyester monoalcohol, etc.
  • a monoalcohol or monoamine having a polar group or carbon-carbon unsaturated bond it is possible to introduce a polar group or carbon-carbon unsaturated bond at the end of the polyurethane main chain.
  • 2-cyano Examples include ethanol, 3-hydroxyglutaronitrile, 2-aminoethanol, 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, N-methacrylenediamine, and the like.
  • Acrylic resin and vinyl resin As acrylic resin and vinyl resin, from the viewpoint of low battery resistance and improved ionic conductivity, repeating units derived from macromonomer (X) having a mass average molecular weight of 1,000 or more as a side chain component Binder particles in which is incorporated are preferred.
  • macromonomer (X) having a mass average molecular weight of 1,000 or more as a side chain component Binder particles in which is incorporated are preferred.
  • the main chain component and the side chain component constituting the acrylic resin and the vinyl resin will be described.
  • the main chain of the polymer forming the acrylic resin and the vinyl resin is not particularly limited, and a normal polymer component can be applied.
  • the monomer constituting the main chain component is preferably a monomer having a polymerizable unsaturated bond, and for example, various vinyl monomers and acrylic monomers can be applied.
  • the acrylic monomer it is preferable to use a monomer selected from (meth) acrylic acid monomers, (meth) acrylic acid ester monomers, and (meth) acrylonitrile.
  • the number of polymerizable groups is not particularly limited, but is preferably 1 to 4. Examples of the monomer constituting the main chain include monomers described in paragraphs 0041 and 0042 of International Publication No. 2015/046314. Among these, it is preferable to contain the following monomers. In the following exemplary compounds, n represents the number of repeating units.
  • the macromonomer (X) has a mass average molecular weight of 1,000 or more, more preferably 2,000 or more, and particularly preferably 3,000 or more.
  • the upper limit is preferably 500,000 or less, more preferably 100,000 or less, and particularly preferably 30,000 or less.
  • the mass average molecular weight of the macromonomer can be measured by the same method as the method for measuring the molecular weight of the binder in the section of Examples described later.
  • the SP value of the macromonomer (X) is preferably 10 or less, and more preferably 9.5 or less. Although there is no particular lower limit, it is practical that it is 5 or more.
  • the SP value is obtained by the Hoy method (HL Hoy Journal of Paining, 1970, Vol. 42, 76-118). The SP value is shown with the unit omitted, but the unit is cal 1/2 cm ⁇ 3/2 . Note that the SP value of the side chain component (X) is not substantially different from the SP value of the raw material monomer forming the side chain, and may be evaluated accordingly.
  • the SP value is an index indicating the characteristic of being dispersed in an organic solvent.
  • the side chain component is set to a specific molecular weight or more, preferably to the SP value or more, the binding property with the solid electrolyte is improved, thereby improving the affinity with the solvent and stably dispersing. This is preferable.
  • the above macromonomer (X) is not particularly limited, and ordinary polymer components can be applied. Macromonomers described in paragraphs 0046 to 0067 of JP-A-2015-088486 are preferred.
  • the macromonomer (X) preferably has a polymerizable unsaturated bond, and can have, for example, various vinyl groups or (meth) acryloyl groups. In the present invention, it is preferable to have a (meth) acryloyl group.
  • the binder used in the present invention is preferably polymer particles, and the lower limit of the average particle diameter of the polymer particles is preferably 0.01 ⁇ m or more, and more preferably 0.05 ⁇ m or more.
  • the upper limit of the average particle diameter of the polymer particles is preferably 50 ⁇ m or less, more preferably 20 ⁇ m or less, and particularly preferably 10 ⁇ m or less. It is preferable from a viewpoint of an output density improvement that an average particle diameter exists in the said preferable range.
  • the “polymer particles” refer to particles that do not dissolve even when added to the dispersion medium described later and are dispersed in the dispersion medium in the form of particles and exhibit an average particle diameter of more than 0.01 ⁇ m.
  • the average particle size of the polymer particles used in the present invention shall be based on the measurement conditions and definitions described below.
  • the polymer particles are diluted and prepared in a 20 ml sample bottle using an arbitrary solvent (dispersion medium used for preparing the solid electrolyte composition, for example, heptane).
  • the diluted dispersion sample is irradiated with 1 kHz ultrasonic waves for 10 minutes and used immediately after that.
  • a laser diffraction / scattering particle size distribution measuring device LA-920 (trade name, manufactured by HORIBA)
  • data was acquired 50 times using a quartz cell for measurement at a temperature of 25 ° C., Let the obtained volume average particle diameter be an average particle diameter.
  • JISZ8828 2013 “Particle Size Analysis—Dynamic Light Scattering Method” is referred to as necessary. Five samples are prepared for each level and measured, and the average value is adopted. In addition, the measurement from the produced all-solid-state secondary battery is performed, for example, after disassembling the battery and peeling off the electrode, then measuring the electrode material according to the method for measuring the average particle diameter of the polymer particles, This can be done by eliminating the measured value of the average particle diameter of the particles other than the polymer particles that have been measured.
  • the structure of the polymer particle is not particularly limited as long as it is an organic polymer particle.
  • the resin constituting the organic polymer particles include the resins described as the resin constituting the binder, and preferred resins are also applied.
  • the shape of the polymer particles is not limited as long as they are solid.
  • the polymer particles may be monodispersed or polydispersed.
  • the polymer particles may be spherical or flat and may be amorphous.
  • the surface of the polymer particles may be smooth or may have an uneven shape.
  • the polymer particles may have a core-shell structure, and the core (inner core) and the shell (outer shell) may be made of the same material or different materials. Moreover, it may be hollow and the hollow ratio is not limited.
  • the polymer particles can be synthesized by a method of polymerizing in the presence of a surfactant, an emulsifier or a dispersant, or a method of depositing in a crystalline form as the molecular weight increases. Moreover, you may use the method of crushing the existing polymer mechanically, and the method of making a polymer liquid fine particle by reprecipitation.
  • polymer particles for example, commercially available products can be used, and specific examples include the following commercially available products (all are trade names, and the numerical values in parentheses indicate the average particle diameter).
  • the polymer particles that can be used in the present invention are not limited to these.
  • Fluorine resin particle microdispers series (manufactured by Techno Chemical Co., Ltd., for example, microdispers-200 (PTFE particles, 200 nm), microdispers-3000 (PTFE particles 3 ⁇ m), microdispers-8000 (PTFE particles) , 8 ⁇ m)), Disperse Easy-300 (PTFE particles, 200 nm, manufactured by Techno Chemical Co., Ltd.), FluonAD series (Asahi Glass Co., Ltd., for example, FluonAD911E, FluonAD915E, FluonAD916E, FluonAD939E), Algoflon series (manufactured by Solvay Co., Ltd., for example, Algoflon F (PTFE particles, 15 to 35 ⁇ m), Algoflon S (PTFE particles, 15 to 35 ⁇ m)), Lubron series (Daikin Co., Ltd., for example, Lubron L-2 (PTFE particles, 3.5 ⁇ m), Lubron L-5 (PTFE particles, 5 ⁇
  • Hydrocarbon resin particle soft beads Saixen (polyolefin emulsion), Sepoljon G (polyolefin emulsion), Sepolex IR100 (polyisoprene latex), Sepolex CSM (chlorosulfonated polyethylene latex), Frocene (polyethylene powder), Frocene UF (polyethylene powder) ), Flowbrene (polypropylene powder), flow beads (polyethylene-acrylic copolymer powder) (all manufactured by Sumitomo Seika Co., Ltd.)
  • Amide resin particle separsion PA copolymerized nylon emulsion, manufactured by Sumitomo Seika Co., Ltd.
  • Trepearl PAI polyamideimide particles, manufactured by Toray Industries, Inc.
  • polyimide powder P84 (R) NT manufactured by Daicel Evonik Co., Ltd.
  • Polyimide powder PIP-3 manufactured by Daicel Evonik Co., Ltd.
  • Polyimide powder PIP-25 manufactured by Daicel Evonik Co., Ltd.
  • Polyimide powder UIP-R Polyimide powder UIP-S (both manufactured by Ube Industries, Ltd.)
  • Art Pearl Series Negami Kogyo Co., Ltd., for example, Art Pearl C, Art Pearl P, Art Pearl JB, Art Pearl U, Art Pearl CE, Art Pearl AK, Art Pearl HI, Art Pearl MM
  • urea resin particles particles of a polymer having a urea bond described in International Publication No. 2015/046313 are preferably used.
  • Polyester resin particle Sepulsion ES (copolymerized polyester emulsion, manufactured by Sumitomo Seika Co., Ltd.)
  • Trepearl PPS polyphenylene sulfide particles, manufactured by Toray Industries, Inc.
  • Trepal PES Polyethersulfone particles, manufactured by Toray Industries, Inc.
  • Phenol resin particle LPS series (manufactured by Lignite Co., Ltd.), Marilyn FM series (manufactured by Gunei Chemical Industry Co., Ltd.), Marilyn HF series (manufactured by Gunei Chemical Industry Co., Ltd.)
  • the polycarbonate resin particle can use the particle
  • the polycarbonate resin can be polymerized by reacting an epoxy compound with carbon dioxide.
  • Silicone resin particle Seahoster KE series (manufactured by Nippon Shokubai Co., Ltd., for example, Seahoster KE-E series, Seahoster KE-W series, Seahoster KE-P series, Seahoster KE-S series), Silicone composite powder series (for example, silicone composite powder KMP-600, silicone composite powder KMP-601, silicone composite powder KMP-602, silicone composite powder KMP-605, silicone composite powder X-52-7030), silicone resin powder series ( For example, silicone resin powder KMP-590, silicone resin powder KMP-701, silicone resin powder X-52-854, silicone resin powder X-52-1621), silicone rubber powder series (for example, silicone rubber powder KMP-597, silicone Rubber powder KMP-598, silicone rubber powder KMP-594, silicone rubber powder X-52-875 ) Made by the company), Charine R-170S (silicone acrylic copolymer, manufactured by Nissin Chemical Industry Co., Ltd.)
  • the upper limit of the glass transition temperature of the binder is preferably 50 ° C. or lower, more preferably 0 ° C. or lower, and most preferably ⁇ 20 ° C. or lower.
  • the lower limit is preferably ⁇ 100 ° C. or higher, more preferably ⁇ 70 ° C. or higher, and most preferably ⁇ 50 ° C. or higher.
  • the glass transition temperature (Tg) is measured by using a differential scanning calorimeter “X-DSC7000” (manufactured by SII Nanotechnology Co., Ltd.) under the following conditions using a dry sample. The measurement is performed twice on the same sample, and the second measurement result is adopted. Measurement chamber atmosphere: Nitrogen (50 mL / min) Temperature increase rate: 5 ° C / min Measurement start temperature: -100 ° C Measurement end temperature: 200 ° C Sample pan: Aluminum pan Mass of measurement sample: 5 mg Calculation of Tg: Tg is calculated by rounding off the decimal point of the intermediate temperature between the lowering start point and the lowering end point of the DSC chart.
  • the water concentration of the polymer (preferably polymer particles) constituting the binder used in the present invention is preferably 100 ppm (mass basis) or less, and Tg is preferably 100 ° C. or less.
  • the polymer which comprises the binder used for this invention may be crystallized and dried, and the polymer solution may be used as it is. It is preferable that the amount of metal catalyst (urethane-forming, polyester-forming catalyst, tin, titanium, bismuth catalyst) is small. It is preferable that the metal concentration in the copolymer be 100 ppm (mass basis) or less by reducing the amount during polymerization or removing the catalyst by crystallization.
  • the solvent used for the polymerization reaction of the polymer is not particularly limited. It is desirable to use a solvent that does not react with the inorganic solid electrolyte or the active material and that does not decompose them.
  • a solvent that does not react with the inorganic solid electrolyte or the active material and that does not decompose them.
  • hydrocarbon solvents toluene, heptane, xylene
  • ester solvents ethyl acetate, propylene glycol monomethyl ether acetate
  • ether solvents tetrahydrofuran, dioxane, 1,2-diethoxyethane
  • ketone solvents acetone
  • Methyl ethyl ketone Methyl ethyl ketone, cyclohexanone
  • nitrile solvents acetonitrile, propionitrile, butyronitrile, isobutyronitrile
  • halogen solvents dichloromethane
  • the polymer constituting the binder used in the present invention preferably has a mass average molecular weight of 10,000 or more, more preferably 20,000 or more, and even more preferably 50,000 or more. As an upper limit, 1,000,000 or less is preferable, 200,000 or less is more preferable, and 100,000 or less is more preferable.
  • the molecular weight of the polymer means a mass average molecular weight unless otherwise specified. The mass average molecular weight of the polymer can be measured by the same method as the method for measuring the molecular weight of the binder in the section of Examples described later.
  • the solid electrolyte composition of the present invention preferably contains a dispersant.
  • a dispersant By adding a dispersant, even when the content of either the electrode active material or the inorganic solid electrolyte is large, the aggregation can be suppressed, and a uniform electrode layer and solid electrolyte layer can be formed. There is an effect.
  • the dispersant is a compound having a molecular weight of 200 or more and less than 3000, and at least one selected from the functional group represented by the functional group (A) is the same as an alkyl group having 8 or more carbon atoms or an aryl group having 10 or more carbon atoms. It is preferably contained in the molecule.
  • Functional group (A) acidic group, group having basic nitrogen atom, (meth) acryl group, (meth) acrylamide group, alkoxysilyl group, epoxy group, oxetanyl group, isocyanato group, cyano group, sulfanyl group and hydroxy Base
  • the molecular weight of the dispersant is preferably 300 or more and less than 2,000, more preferably 500 or more and less than 1,000.
  • the molecular weight of the dispersant is preferably 300 or more and less than 2,000, more preferably 500 or more and less than 1,000.
  • the content of the dispersing agent is preferably 0.01 to 10% by mass, more preferably 0.1 to 5% by mass, and more preferably 1 to 3% by mass with respect to the total solid components of the solid electrolyte composition of the present invention.
  • the solid electrolyte composition of the present invention preferably contains a lithium salt.
  • the lithium salt is preferably a lithium salt usually used in this type of product, and is not particularly limited.
  • the lithium salts described in paragraphs 0082 to 0085 of JP-A-2015-088486 are preferable.
  • the content of the lithium salt is preferably 0 parts by mass or more, more preferably 5 parts by mass or more with respect to 100 parts by mass of the solid electrolyte.
  • As an upper limit 50 mass parts or less are preferable, and 20 mass parts or less are more preferable.
  • a general conductive support agent can be used.
  • graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black, ketjen black and furnace black, amorphous carbon such as needle coke, vapor-grown carbon fiber and carbon nanotubes, which are electron conductive materials
  • Carbon fibers such as graphene, carbonaceous materials such as graphene and fullerene, metal powders such as copper and nickel, and metal fibers may be used, and conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene, and polyphenylene derivatives may be used. It may be used.
  • 1 type may be used among these and 2 or more types may be used.
  • the positive electrode active material that can be used in the solid electrolyte composition of the present invention will be described.
  • the solid electrolyte composition of the present invention contains a positive electrode active material.
  • the positive electrode active material is preferably one that can reversibly insert and release lithium ions.
  • the material is not particularly limited, and may be a transition metal oxide or an element that can be combined with Li such as sulfur. Among them, it is preferable to use a transition metal oxide, and it is more preferable to have one or more elements selected from Co, Ni, Fe, Mn, Cu, and V as a transition metal element.
  • transition metal oxides include (MA) transition metal compounds having a layered rock salt structure, (MB) transition metal oxides having a spinel structure, (MC) lithium-containing transition metal phosphate compounds, (MD) Examples include lithium-containing transition metal halide phosphate compounds, (ME) lithium-containing transition metal silicates, and the like.
  • transition metal compounds having a layered rock salt structure LiCoO 2 (lithium cobaltate [LCO]), LiNi 2 O 2 (lithium nickelate) LiNi 0.85 Co 0.1 Al 0.05 O 2 (nickel cobalt lithium aluminum oxide [NCA]), LiNi 0.33 Co 0.33 Mn 0.33 O 2 (nickel manganese lithium cobalt oxide [NMC]), LiNi 0.5 Mn 0.5 O 2 (manganese nickel) Acid lithium).
  • transition metal oxide having an (MB) spinel structure include LiCoMnO 4, Li 2 FeMn 3 O 8 , Li 2 CuMn 3 O 8 , Li 2 CrMn 3 O 8, and Li 2 NiMn 3 O 8. .
  • Examples of (MC) lithium-containing transition metal phosphates include olivine-type iron phosphate salts such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , LiCoPO 4 and the like. And monoclinic Nasicon type vanadium phosphate salts such as Li 3 V 2 (PO 4 ) 3 (vanadium lithium phosphate).
  • the (MD) lithium-containing transition metal halide phosphorus oxide for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F, Li 2 CoPO 4 F Cobalt fluorophosphates such as
  • Examples of the (ME) lithium-containing transition metal silicate include Li 2 FeSiO 4 , Li 2 MnSiO 4 , Li 2 CoSiO 4, and the like.
  • the volume average particle diameter (sphere conversion average particle diameter) of the positive electrode active material that can be used in the solid electrolyte composition of the present invention is not particularly limited. In addition, 0.1 ⁇ m to 50 ⁇ m is preferable. In order to make the positive electrode active substance have a predetermined particle size, a normal pulverizer or classifier may be used.
  • the positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
  • the volume average particle diameter of the positive electrode active material can be measured using a laser diffraction / scattering particle size distribution analyzer LA-920 (trade name, manufactured by HORIBA).
  • the concentration of the positive electrode active material is not particularly limited, but is preferably 10 to 90% by mass, more preferably 20 to 80% by mass in 100% by mass of the solid component in the solid electrolyte composition for forming the positive electrode active material layer.
  • the positive electrode active materials may be used singly or in combination of two or more.
  • the solid electrolyte composition of the present invention contains a negative electrode active material.
  • the negative electrode active material those capable of reversibly inserting and releasing lithium ions are preferable.
  • the material is not particularly limited, and is a carbonaceous material, a metal oxide such as tin oxide or silicon oxide, a metal composite oxide, a lithium alloy such as a simple substance of lithium or a lithium aluminum alloy, Sn, Si, Al, In, etc. And metals that can form an alloy with lithium.
  • carbonaceous materials or lithium composite oxides are preferably used from the viewpoint of reliability.
  • the metal composite oxide is preferably capable of inserting and extracting lithium.
  • the material is not particularly limited, but preferably contains titanium and / or lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics.
  • the carbonaceous material used as the negative electrode active material is a material substantially made of carbon.
  • Examples thereof include carbonaceous materials obtained by firing various synthetic resins such as artificial pitches such as petroleum pitch, natural graphite, and vapor-grown graphite, and PAN (polyacrylonitrile) -based resins and furfuryl alcohol resins.
  • various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA (polyvinyl alcohol) -based carbon fiber, lignin carbon fiber, glassy carbon fiber, activated carbon fiber, etc. And mesophase microspheres, graphite whiskers, flat graphite and the like.
  • the strongest intensity of crystalline diffraction lines seen from 2 ° to 40 ° to 70 ° is 100 times the diffraction line intensity at the peak of the broad scattering band seen from 2 ° to 20 °. It is preferable that it is 5 times or less, and it is particularly preferable not to have a crystalline diffraction line.
  • amorphous metal oxides and chalcogenides are more preferable, and elements in groups 13 (IIIB) to 15 (VB) of the periodic table are preferable.
  • oxides and chalcogenides composed of one kind of Al, Ga, Si, Sn, Ge, Pb, Sb, Bi or a combination of two or more kinds thereof.
  • preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , Bi 2 O 3 , Bi 2 O 4 , SnSiO 3 , GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 , such as SnSiS 3 may preferably be mentioned. Moreover, these may be a complex oxide with lithium oxide, for example, Li 2 SnO 2 .
  • the volume average particle diameter of the negative electrode active material is preferably 0.1 ⁇ m to 60 ⁇ m.
  • an arbitrary pulverizer or classifier is used.
  • a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill or a sieve is preferably used.
  • wet pulverization in the presence of water or an organic solvent such as methanol can be performed as necessary.
  • classification is preferably performed.
  • the classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as necessary. Classification can be used both dry and wet.
  • the volume average particle diameter of the negative electrode active material particles can be measured by the same method as the above-described method for measuring the volume average particle diameter of the positive electrode active material.
  • the concentration of the negative electrode active material is not particularly limited, but is preferably 10 to 80% by mass, more preferably 20 to 70% by mass in 100% by mass of the solid component in the solid electrolyte composition.
  • the negative electrode active materials may be used alone or in combination of two or more.
  • Examples of the alcohol compound solvent include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, cyclohexanediol, sorbitol, xylitol, Examples include 2-methyl-2,4-pentanediol, 1,3-butanediol, and 1,4-butanediol.
  • ether compound solvents include alkylene glycol alkyl ethers (ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol monomethyl ether, dipropylene. Glycol monomethyl ether, tripropylene glycol monomethyl ether, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether, etc.), dimethyl ether, diethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, and dioxane.
  • alkylene glycol alkyl ethers ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol
  • Examples of the amide compound solvent include N, N-dimethylformamide, 1-methyl-2-pyrrolidone (NMP), 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ⁇ -caprolactam, Examples include formamide, N-methylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide, hexamethylphosphoric triamide, and the like.
  • amino compound solvent examples include triethylamine, diisopropylethylamine, tributylamine and the like.
  • ketone compound solvent examples include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • Examples of the aliphatic compound solvent include hexane, heptane, octane, decane and the like.
  • nitrile compound solvent examples include acetonitrile, propyronitrile, butyronitrile, and the like.
  • non-aqueous dispersion medium examples include the above aromatic compound solvents and aliphatic compound solvents.
  • aliphatic compound solvents aromatic compound solvents and amide compound solvents are preferred
  • heptane toluene and NMP are more preferred
  • heptane is particularly preferred.
  • the dispersion medium preferably has a boiling point of 50 ° C. or higher, more preferably 70 ° C. or higher at normal pressure (1 atm).
  • the upper limit is preferably 250 ° C. or lower, and more preferably 220 ° C. or lower.
  • the said dispersion medium may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the content of the dispersion medium with respect to the total mass of 100 parts by mass of the solid electrolyte composition is preferably 5 to 95 parts by mass, preferably 10 to 90 parts by mass, and more preferably 30 to 70 parts by mass.
  • the all-solid-state secondary battery may be manufactured by a conventional method.
  • the solid electrolyte composition of this invention is apply
  • the solid electrolyte composition of the present invention as a positive electrode material is applied onto a metal foil that is a positive electrode current collector to form a positive electrode active material layer, and a positive electrode sheet for an all-solid secondary battery is produced.
  • the solid electrolyte composition of the present invention as a solid electrolyte layer material is applied to form a solid electrolyte layer.
  • the solid electrolyte composition of the present invention as a negative electrode material is applied to form a negative electrode active material layer.
  • the structure of an all-solid-state secondary battery in which a solid electrolyte layer is sandwiched between a positive electrode active material layer and a negative electrode active material layer by overlapping a negative electrode current collector (metal foil) on the negative electrode active material layer Can be obtained.
  • the electrode layer contains an active material.
  • the electrode layer preferably contains the inorganic solid electrolyte.
  • the electrode layer preferably contains a binder from the viewpoint of improving the binding between the solid particles, between the electrode layer and the solid electrolyte layer, and between the electrode layer and the current collector.
  • the solid electrolyte layer contains an inorganic solid electrolyte. From the viewpoint of improving the binding between the solid particles and between the layers, the solid electrolyte layer preferably contains a binder.
  • coating method of said each composition should just be based on a conventional method.
  • the composition for forming the positive electrode active material layer, the composition for forming the inorganic solid electrolyte layer, and the composition for forming the negative electrode active material layer may be subjected to a drying treatment after being applied.
  • a drying process may be performed.
  • the drying temperature is not particularly limited.
  • the lower limit is preferably 30 ° C or higher, more preferably 60 ° C or higher, and the upper limit is preferably 300 ° C or lower, more preferably 250 ° C or lower.
  • the all solid state secondary battery of the present invention can be applied to various uses.
  • the application mode for example, when installed in an electronic device, a notebook computer, a pen input personal computer, a mobile personal computer, an electronic book player, a mobile phone, a cordless phone, a pager, a handy terminal, a mobile fax machine, a mobile phone Copy, portable printer, headphone stereo, video movie, LCD TV, handy cleaner, portable CD, minidisc, electric shaver, transceiver, electronic notebook, calculator, portable tape recorder, radio, backup power supply, memory card, etc.
  • Other consumer products include automobiles, electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (such as pacemakers, hearing aids, and shoulder grinders). Furthermore, it can be used for various military use and space use. Moreover, it can also combine with a solar cell.
  • An all-solid secondary battery in which at least one of a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer contains a lithium salt.
  • All-solid-state secondary battery in which the solid electrolyte layer is formed by wet-coating a slurry in which a crystalline oxide inorganic solid electrolyte and an amorphous oxide inorganic solid electrolyte are dispersed by a non-aqueous dispersion medium Manufacturing method.
  • a solid electrolyte composition for producing the all-solid secondary battery is formed by wet-coating a slurry in which a crystalline oxide inorganic solid electrolyte and an amorphous oxide inorganic solid electrolyte are dispersed by a non-aqueous dispersion medium Manufacturing method.
  • An electrode sheet for an all-solid-state secondary battery wherein the solid electrolyte composition is applied onto a metal foil and formed into a film.
  • a method for producing an electrode sheet for an all-solid-state secondary battery, in which the solid electrolyte composition is applied onto a metal foil to form a film examples include coating (wet coating, spray coating, spin coating coating, slit coating, stripe coating, bar coating coating dip coating), and wet coating. preferable.
  • both the all-solid secondary battery and the method for producing an electrode sheet for an all-solid secondary battery of the present invention are wet processes. According to the wet process, an all-solid-state secondary battery and an electrode sheet for an all-solid-state secondary battery can be produced without causing impurities as in the case of sintering.
  • An all-solid secondary battery refers to a secondary battery in which the positive electrode, the negative electrode, and the electrolyte are all solid. In other words, it is distinguished from an electrolyte type secondary battery using a carbonate-based solvent as an electrolyte.
  • this invention presupposes an inorganic all-solid-state secondary battery.
  • the all-solid-state secondary battery is classified into an organic (polymer) all-solid-state secondary battery that uses a polymer compound such as polyethylene oxide as an electrolyte, and an inorganic all-solid-state secondary battery that uses the above LLT, LLZ, or the like.
  • the application of the polymer compound to the inorganic all-solid secondary battery is not hindered, and the polymer compound can be applied as a binder for the positive electrode active material, the negative electrode active material, and the inorganic solid electrolyte.
  • the inorganic solid electrolyte is distinguished from an electrolyte (polymer electrolyte) using the above-described polymer compound as an ion conductive medium, and the inorganic compound serves as an ion conductive medium. Specific examples include the LLT and LLZ.
  • the inorganic solid electrolyte itself does not release cations (Li ions) but exhibits an ion transport function.
  • electrolyte a material that is added to the electrolytic solution or the solid electrolyte layer and serves as a source of ions that release cations (Li ions) is sometimes called an electrolyte.
  • electrolyte salt When distinguishing from the electrolyte as the above ion transport material, this is called “electrolyte salt” or “supporting electrolyte”.
  • electrolyte salt An example of the electrolyte salt is LiTFSI.
  • composition means a mixture in which two or more components are uniformly mixed. However, as long as the uniformity is substantially maintained, aggregation or uneven distribution may partially occur within a range in which a desired effect is achieved.
  • ⁇ Preparation of amorphous oxide-based inorganic solid electrolyte> Preparation of amorphous oxide-based inorganic solid electrolyte LBO- Li 2 O (Aldrich Corp. purity> 97%) 3.000g, B 2 O 3 (Aldrich Corp. purity> 99.98%) 2.330g argon atmosphere (dew point -60 ° C. or less) in an agate mortar under The mixture was added and mixed for 5 minutes using an agate pestle. The obtained mixture was placed in an alumina crucible and heated at 500 ° C. for 1 hour in the atmosphere.
  • amorphous oxide-based inorganic solid electrolyte LBO (Li 3 BO 3 ) is set by setting a container on a planetary ball mill P-7 (trade name) manufactured by Fricht and performing mechanical milling at a temperature of 25 ° C. and a rotational speed of 400 rpm for 40 hours.
  • Binder B-1 ⁇ Synthesis of binder> -Synthesis of Binder B-1-
  • macromonomer M-1 was synthesized. Specifically, 190 parts by mass of toluene was added to a 1 L three-necked flask equipped with a reflux condenser and a gas introduction cock, nitrogen gas was introduced at a flow rate of 200 mL / min for 10 minutes, and the temperature was raised to 80 ° C. Components shown in the following composition 1 were mixed in a separate container, and the mixed liquid was added dropwise to toluene over 2 hours, and then stirred at 80 ° C. for 2 hours.
  • V-601 (trade name, manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the mixture was further stirred at 95 ° C. for 2 hours.
  • composition 1 Dodecyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.) 150 parts by mass Methyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.) 59 parts by mass 3-mercaptoisobutyric acid (manufactured by Tokyo Chemical Industry Co., Ltd.) 2 parts by mass V-601 (trade name, Wako Pure Chemical Industries, Ltd.) 1.9 parts by mass
  • binder B-1 was synthesized using the macromonomer M-1. Specifically, in a 1 L three-necked flask equipped with a reflux condenser and a gas introduction cock, 47 parts by mass of the synthesized macromonomer M-1 heptane solution (solid content concentration: 43.4%) and 60 parts by mass of heptane. After adding nitrogen gas at a flow rate of 200 mL / min for 10 minutes, the temperature was raised to 80 ° C. Components shown in the following composition 2 were mixed in a separate container, and the mixed liquid was added dropwise over 2 hours, followed by stirring at 80 ° C. for 2 hours.
  • V-601 (trade name, manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the mixture was further stirred at 95 ° C. for 2 hours. After cooling to room temperature, 300 mL of heptane was added to obtain a dispersion of polymer B-1.
  • Composition 2 Heptane solution of the above synthesized macromonomer M-1 (solid content concentration: 43.4%) 93 parts by mass Butyl acrylate (manufactured by Wako Pure Chemical Industries, Ltd.) 100 parts by mass Methyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.) 20 parts by mass Acrylic acid (trade name: a-101, manufactured by Wako Pure Chemical Industries, Ltd.) 20 parts by mass Part V-601 (trade name, manufactured by Wako Pure Chemical Industries, Ltd.) 1.1 parts by mass
  • Binder B-2- A binder B-2 was synthesized in the same manner as the binder B-1, except that the acrylic acid having the composition 2 was changed to glycidyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.).
  • Binder B-3 In order to synthesize Binder B-3, first, polyurea colloidal particles Aa-1 were synthesized. Specifically, 260 g of a heptane solution containing 25% by mass of terminal diol-modified polydodecyl methacrylate (Ab-1: a diol compound having a long-chain alkyl group having 6 or more carbon atoms) was added to a 1 L three-necked flask, and heptane was added. Diluted with 110 g.
  • Ab-1 a diol compound having a long-chain alkyl group having 6 or more carbon atoms
  • the reaction solution was cooled to room temperature to obtain 506 g of a 15 mass% heptane solution of polyurea colloidal particles Aa-1.
  • the dodecyl group of the terminal diol-modified polydodecyl methacrylate is a structural part solvated with heptane (hydrocarbon solvent), and the polyurea structure is a structural part that is not solvated with heptane.
  • the mass average molecular weight of the polyurea of the polyurea colloidal particles Aa-1 was 9,600.
  • binder B-3 was synthesized using polyurea colloidal particles Aa-1. Specifically, 2.6 g of dicyclohexylmethane diisocyanate (manufactured by Tokyo Chemical Industry Co., Ltd.), 0.42 g of 1,4-butanediol (manufactured by Wako Pure Chemical Industries, Ltd.), 2,2-bis (hydroxymethyl) butane in a 50 mL sample bottle 0.28 g of acid (manufactured by Tokyo Chemical Industry Co., Ltd.) and 2.9 g of Kuraray polyol P-1020 (trade name, manufactured by Kuraray Co., Ltd.) were added.
  • dicyclohexylmethane diisocyanate manufactured by Tokyo Chemical Industry Co., Ltd.
  • 1,4-butanediol manufactured by Wako Pure Chemical Industries, Ltd.
  • 2,2-bis (hydroxymethyl) butane in a 50 mL sample bottle 0.28 g of acid (manufactured by Tokyo Chemical Industry Co.,
  • Solid electrolyte composition S was prepared except that the composition was changed as shown in Table 1 in the preparation of solid electrolyte composition S-1. In the same manner as -1, solid electrolyte compositions S-2 to S-11 and T-1 were prepared.
  • ⁇ Measurement method> Measurement of solid content of binder- 10 g of the prepared binder dispersion was weighed on an aluminum cup, dried on a hot plate at 140 ° C. for 6 hours, and then the mass excluding the mass of the aluminum cup was measured. The ratio of the mass excluding the mass of the aluminum cup to the initially weighed 10 g was defined as the solid content concentration.
  • volume average particle size of binder- A 1% by weight dispersion was diluted and prepared in a 20 ml sample bottle using an arbitrary solvent (dispersion medium used for preparation of the solid electrolyte composition, for example, heptane). The diluted dispersion sample was irradiated with 1 kHz ultrasonic waves for 10 minutes and used for the test immediately after that. Using this dispersion liquid sample, using a laser diffraction / scattering particle size distribution measuring device LA-920 (trade name, manufactured by HORIBA), data was acquired 50 times using a quartz cell for measurement at a temperature of 25 ° C., The volume average particle diameter was measured. Five samples were prepared for each level and measured, and the average value was adopted.
  • a laser diffraction / scattering particle size distribution measuring device LA-920 (trade name, manufactured by HORIBA)
  • Carrier 10 mM LiBr / N-methylpyrrolidone Measurement temperature: 40 ° C
  • Carrier flow rate 1.0 ml / min
  • Detector RI (refractive index) detector
  • Carrier Tetrahydrofuran Measurement temperature: 40 ° C
  • Carrier flow rate 1.0 ml / min
  • Sample concentration 0.1% by mass Detector: RI (refractive index) detector
  • LLT Li 0.33 La 0.55 TiO 3 (average particle size 3.25 ⁇ m, manufactured by Toshima Seisakusho, X> 95)
  • LLZ Li 7 La 3 Zr 2 O 12 (average particle size 5.06 ⁇ m, manufactured by Toyoshima Seisakusho, X> 95)
  • LBO Amorphous oxide-based inorganic solid electrolyte LBO prepared above
  • X ⁇ 10 LBO-LSO Amorphous oxide-based inorganic solid electrolyte LBO-LSO prepared above
  • the peak is separated into a crystal part having a sharp peak with a full width at half maximum of less than 2 ° and an amorphous part having a broad peak with a full width at half maximum of 2 ° or more.
  • the peak area of the crystal part is I c
  • the peak area of the amorphous part is Measured as Ia .
  • Binders B-1 to B-3 Binders B-1 to B-3 synthesized above -B-4: Asahi Kasei Corporation product name: Tuftec M1913 (carboxylic acid-modified hydrogenated styrene butadiene rubber) -B-5: ARKEMA product name: KYNAR301F (polyvinylidene fluoride) -"-"
  • the binder column means that no binder is added. Accordingly, the molecular weight column of the solid electrolyte composition to which no binder is added is also indicated by “ ⁇ ”.
  • -"-" In the particle size column means that the binder is dissolved in the dispersion medium and the particle size is not measured.
  • composition for electrode active material layer Preparation of composition for positive electrode of all solid state secondary battery- 180 zirconia beads having a diameter of 5 mm are put into a 45 mL container (manufactured by Fritsch) made of zirconia, and 6 parts by mass of NMC (LiNi 0.33 Co 0.33 Mn 0.33 O 2 ) as a positive electrode active material, the above solid electrolyte Composition S-1: 10 parts by mass and 9 parts by mass of the dispersion medium used in the solid electrolyte composition S-1 were added, mixed at a temperature of 25 ° C. and a rotation speed of 100 rpm for 10 minutes, and tested No. shown in Table 3 below. .
  • 201 composition for positive electrode of all-solid-state secondary battery was prepared. Test No. Except that the all-solid-state secondary battery positive electrode compositions 202 to 206 and c21 were changed to the components shown in Table 3 below and the dispersion media used in the corresponding solid electrolyte compositions, the above test Nos. It was prepared in the same manner as 201 of the all-solid secondary battery positive electrode composition. In Table 3 below, the all-solid-state secondary battery positive electrode composition is described in the column of the positive electrode active material layer.
  • composition for negative electrode of all solid secondary battery- 180 zirconia beads having a diameter of 5 mm are placed in a 45 mL container (manufactured by Fritsch) made of zirconia, 5 parts by mass of graphite as a negative electrode active material, 10 parts by mass of the above solid electrolyte composition S-1, and 10% by mass of solid electrolyte composition S- 9 parts by weight of the dispersion medium used in No. 1 was added and mixed for 10 minutes at a temperature of 25 ° C. and a rotation speed of 100 rpm. 201 All-solid-state secondary battery negative electrode compositions were prepared.
  • the solid electrolyte composition S-1 was applied onto an aluminum foil having a thickness of 20 ⁇ m by a baker type applicator (trade name SA-201, manufactured by Tester Sangyo Co., Ltd.), heated at 80 ° C. for 1 hour, and further heated at 120 ° C. for 1 hour. Heated for a period of time to dry the dispersion medium. Thereafter, using a heat press, the solid electrolyte layer was heated (120 ° C.) and pressurized (600 MPa, 1 minute) so as to have a predetermined density. 101 solid electrolyte sheet was obtained. The film thickness of the solid electrolyte layer was 50 ⁇ m.
  • an electrode sheet for an all-solid secondary battery (hereinafter referred to as an electrode sheet for an all-solid secondary battery) comprising a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer- Test No. prepared above.
  • 201 composition for a secondary battery positive electrode was applied onto an aluminum foil having a thickness of 20 ⁇ m by the applicator and dried at 120 ° C. for 2 hours. Then, using a heat press machine, it heated (120 degreeC) and pressurized (600 MPa, 1 minute) so that it might become a predetermined density, and formed the positive electrode active material layer.
  • the solid electrolyte composition S-1 was applied onto the positive electrode active material layer with the applicator, heated at 120 ° C. for 2 hours, and dried to form a solid electrolyte layer. Thereafter, the test No. prepared above on the solid electrolyte layer. 201, an all-solid-state secondary battery negative electrode composition was applied, heated at 120 ° C. for 2 hours, and dried to form a negative electrode active material layer. Using a heat press machine, heating (120 ° C.) and pressurization (600 MPa, 1 minute) were performed to obtain a predetermined density, and an electrode sheet for an all-solid-state secondary battery was produced.
  • Test No. Preparation of cells for measuring ion conductivity for 101 to 111, c11
  • the solid electrolyte sheet 12 was cut into a disk shape having a diameter of 14.5 mm and placed in a coin case.
  • An aluminum foil cut into a disk shape having a diameter of 15 mm was brought into contact with the solid electrolyte layer, a spacer and a washer were incorporated, and placed in a stainless steel 2032 type coin case 11. By closing the coin case, the ion conductivity measuring cell 13 shown in FIG. 2 was produced.
  • the electrode sheet 12 for an all-solid-state secondary battery was cut into a disk shape having a diameter of 14.5 mm, and a stainless steel 2032 type coin case 11 incorporating a spacer and a washer was formed.
  • the indium foil cut out to 15 mm ⁇ was placed on the negative electrode active material layer.
  • a stainless foil was further stacked thereon, and then the coin case 11 was closed to produce an ion conductivity measurement cell 13 shown in FIG.
  • Ionic conductivity 1000 ⁇ sample film thickness (cm) / (resistance ( ⁇ ) ⁇ sample area (cm 2 )) (1)
  • a cellophane tape (registered trademark, manufactured by Nichiban Co., Ltd.) having a width of 12 mm and a length of 60 mm was attached to the solid electrolyte layer (length: 50 mm, width: 12 mm) of the solid electrolyte sheet, and peeled off by 50 mm at a speed of 10 mm / min. In that case, it evaluated by the area ratio of the sheet
  • the electrode sheet for an all-solid-state secondary battery was tested in the same manner by attaching a cello tape so that the cellulosic tape was in contact with the negative electrode active material layer.
  • test No. 1 was prepared using a solid electrolyte composition satisfying the provisions of the present invention.
  • the solid electrolyte sheets 101 to 111 are excellent in ionic conductivity.
  • Test No. 1 in which a binder was included in the solid electrolyte composition.
  • the solid electrolyte sheets 101 to 109 and 111 showed not only ionic conductivity but also good binding properties.
  • test No. which does not satisfy the regulations of the present invention.
  • the solid electrolyte sheet of c11 had insufficient ionic conductivity and binding properties.
  • NMC LiNi 0.33 Co 0.33 Mn 0.33 O 2 nickel manganese lithium cobaltate
  • LCO LiCoO 2 lithium cobaltate
  • LTO Li 4 Ti 5 O 12 lithium titanate (trade name “Enamite LT-106”, Ishihara Sangyo Co., Ltd.)
  • test no. The all solid state secondary batteries 201 to 206 are excellent in ionic conductivity. Further, Test No. 1 in which a binder was included in the solid electrolyte composition. The all solid state secondary batteries 201 to 205 exhibited not only ionic conductivity but also good binding properties. On the other hand, test No. which does not satisfy the regulations of the present invention. The all solid state secondary battery of c21 was insufficient in both ionic conductivity and binding properties.

Abstract

A solid electrolyte composition containing a crystalline oxide-based inorganic solid electrolyte and a noncrystalline oxide-based inorganic solid electrolyte, wherein the ratio between the volume of the crystalline oxide-based inorganic solid electrolyte and the volume of the noncrystalline oxide-based inorganic solid electrolyte is 70-99.8:0.2-30.

Description

固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法Solid electrolyte composition, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
 本発明は、固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法に関する。 The present invention relates to a solid electrolyte composition, an electrode sheet for an all-solid secondary battery, an all-solid secondary battery, an electrode sheet for an all-solid secondary battery, and an all-solid secondary battery manufacturing method.
 リチウムイオン電池には、電解液が用いられてきた。その電解液を固体電解質に置き換え、構成材料を全て固体にした全固体二次電池とする試みが進められている。無機の固体電解質を利用する技術の利点として挙げられるのが、電池の性能全体を総合した信頼性である。例えば、リチウムイオン二次電池に用いられる電解液には、その媒体として、カーボネート系溶媒など、可燃性の材料が適用されている。このような電解液を用いる二次電池では、様々な安全対策が採られている。しかし、過充電時などに不具合を来たすおそれがないとは言えず、さらなる対応が望まれる。その抜本的な解決手段として、電解質を不燃性のものにしうる全固体二次電池が位置づけられる。
 全固体二次電池のさらなる利点としては、電極のスタックによる高エネルギー密度化に適していることが挙げられる。具体的には、電極と電解質を直接並べて直列化した構造を持つ電池にすることができる。このとき、電池セルを封止する金属パッケージ、電池セルをつなぐ銅線やバスバーを省略することができるため、電池のエネルギー密度が大幅に高められる。また、高電位化が可能な正極材料との相性の良さなども利点として挙げられる。
Electrolytic solutions have been used for lithium ion batteries. Attempts have been made to replace the electrolytic solution with a solid electrolyte to obtain an all-solid-state secondary battery in which the constituent materials are all solid. An advantage of the technology using an inorganic solid electrolyte is the reliability of the overall performance of the battery. For example, a flammable material such as a carbonate-based solvent is applied as a medium to an electrolytic solution used in a lithium ion secondary battery. In the secondary battery using such an electrolyte, various safety measures are taken. However, it cannot be said that there is no risk of problems during overcharging, and further measures are desired. An all-solid-state secondary battery that can make the electrolyte incombustible is positioned as a drastic solution.
A further advantage of the all-solid-state secondary battery is that it is suitable for increasing the energy density by stacking electrodes. Specifically, a battery having a structure in which an electrode and an electrolyte are directly arranged in series can be obtained. At this time, since the metal package for sealing the battery cell, the copper wire and the bus bar for connecting the battery cell can be omitted, the energy density of the battery is greatly increased. In addition, good compatibility with the positive electrode material capable of increasing the potential is also mentioned as an advantage.
 上記のような各利点から、次世代のリチウムイオン電池として全固体二次電池の開発が進められている(非特許文献1)。また、全固体二次電池に関連する技術の開発も進められている。例えば、特許文献1には、Li、BおよびOを含み、かつ、C、Al、Si、Ga、Ge、InおよびSnのうち少なくとも1種の元素を含む化合物と、結晶質のリチウムイオン伝導性物質とを含む固体電解質が記載されている。 Because of the above advantages, development of an all-solid-state secondary battery as a next-generation lithium ion battery is being promoted (Non-patent Document 1). Development of technologies related to all-solid-state secondary batteries is also underway. For example, Patent Document 1 discloses a compound containing Li, B, and O and containing at least one element of C, Al, Si, Ga, Ge, In, and Sn, and crystalline lithium ion conductivity. A solid electrolyte containing the substance is described.
特開2013-37992号公報JP 2013-37992 A
 上記特許文献1に記載の固体電解質は、リチウムイオン伝導率を向上させるために用いることができる。しかし、上記特許文献1に記載の技術は、固体-固体界面での密着性向上のため、固体電解質と活物質とを焼結させることを前提としている。そのため、全固体二次電池に上記特許文献1に記載の技術を適用しようとすると、焼結により不純物が生じてしまうという問題がある。 The solid electrolyte described in Patent Document 1 can be used to improve lithium ion conductivity. However, the technique described in Patent Document 1 is premised on sintering a solid electrolyte and an active material in order to improve adhesion at a solid-solid interface. Therefore, when the technique described in Patent Document 1 is applied to the all-solid-state secondary battery, there is a problem that impurities are generated by sintering.
 そこで本発明は、全固体二次電池において、焼結によらずに、良好なイオン伝導度を実現できる固体電解質組成物、これを用いた全固体二次電池用電極シートおよび全固体二次電池、ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法の提供を課題とする。 Therefore, the present invention provides a solid electrolyte composition capable of realizing good ionic conductivity without sintering in an all-solid-state secondary battery, an electrode sheet for an all-solid-state secondary battery using the same, and an all-solid-state secondary battery An object is to provide an electrode sheet for an all-solid-state secondary battery and a method for producing the all-solid-state secondary battery.
 本発明者らは上記課題を解決するため鋭意検討し、本発明を完成した。
 結晶性酸化物系無機固体電解質および非晶性酸化物系無機固体電解質を含有する固体電解質組成物を用いて、焼結によらずに温和な条件下で行うことができる手法で製造される全固体二次電池は、固体粒子間の界面に、非晶性酸化物系無機固体電解質が存在すると推定される。そのため、非晶性酸化物系無機固体電解質を介して固体粒子同士の接触面積が大きくなり、界面における抵抗が抑制される。その結果、本発明の固体電解質組成物を用いて製造される全固体二次電池は、焼結によらずに、良好なイオン伝導度を実現できることを本発明者らは見出した。本発明はこれらの知見に基づきなされたものである。
 すなわち、上記の課題は以下の手段により解決された。
The present inventors diligently studied to solve the above-mentioned problems and completed the present invention.
All manufactured using a solid electrolyte composition containing a crystalline oxide-based inorganic solid electrolyte and an amorphous oxide-based inorganic solid electrolyte in a manner that can be performed under mild conditions without sintering. The solid secondary battery is presumed to contain an amorphous oxide-based inorganic solid electrolyte at the interface between solid particles. Therefore, the contact area between the solid particles increases through the amorphous oxide-based inorganic solid electrolyte, and the resistance at the interface is suppressed. As a result, the present inventors have found that the all-solid-state secondary battery produced using the solid electrolyte composition of the present invention can achieve good ionic conductivity without being sintered. The present invention has been made based on these findings.
That is, the above problem has been solved by the following means.
<1>結晶性酸化物系無機固体電解質と非晶性酸化物系無機固体電解質とを含有する固体電解質組成物であって、結晶性酸化物系無機固体電解質と非晶性酸化物系無機固体電解質が体積比で70~99.8:0.2~30である固体電解質組成物。
<2>下記官能基群[a]から選択される少なくとも1種の官能基を有する、少なくとも1種のバインダーを含有する<1>に記載の固体電解質組成物。
官能基群[a]
 カルボキシ基、スルホ基、リン酸基、ホスホン酸基、ヒドロキシ基、スルファニル基、イソシアナト基、オキセタニル基、エポキシ基、ジカルボン酸無水物基、シリル基
<3>結晶性酸化物系無機固体電解質の体積と非晶性酸化物系無機固体電解質の体積とバインダーの体積の比が70~99.8:0.1~29.9:0.1~29.9である<2>に記載の固体電解質組成物。
<4>バインダーを構成する樹脂が、炭化水素樹脂、含フッ素樹脂、アクリル樹脂、ポリウレタン、ポリアミド、ポリイミド、ポリエーテル、ポリエステルおよびポリカーボネートからなる群から選択される<2>または<3>に記載の固体電解質組成物。
<5>官能基群[a]が、下記官能基群[b]である<2>~<4>のいずれか1つに記載の固体電解質組成物。
官能基群[b]
 カルボキシ基、スルホ基、リン酸基、ホスホン酸基、ヒドロキシ基、ジカルボン酸無水物基、シリル基
<6>バインダーを構成する樹脂が、アクリル樹脂またはポリウレタンである<2>~<5>のいずれか1つに記載の固体電解質組成物。
<7>バインダーが、平均粒子径0.01μm~10μmの粒子である<2>~<6>のいずれか1つに記載の固体電解質組成物。
<8>非晶性酸化物系無機固体電解質が下記式(I)で表される化合物を含んでなる<1>~<7>のいずれか1つに記載の固体電解質組成物。
    Lixcyccc zcnc    式(I)
 式(I)において、MccはC、S、Al、Si、P、Ga、Ge、InおよびSnからなる群から選択される少なくとも1種であり、xc、yc、zcおよびncは組成比を表し、0<xc≦5、0<yc≦1、0≦zc≦1、0<nc≦6である。
<9>結晶性酸化物系無機固体電解質が下記式の化合物から選ばれる<1>~<8>のいずれか1つに記載の固体電解質組成物。
・LixaLayaTiO
    xa=0.3~0.7、ya=0.3~0.7
・LixbLaybZrzbbb mbnb
    5≦xb≦10、1≦yb≦4、1≦zb≦4、0≦mb≦2、5≦nb≦20
    Mbbは、Al、Mg、Ca、Sr、V、Nb、Ta、Ti、Ge、
    InおよびSnからなる群から選択される少なくとも1種
・Li3.5Zn0.25GeO
・LiTi12
・Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyh3-yh12
    0≦xh≦1、0≦yh≦1
・LiPO
・LiPON
・LiPOD
    Dは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、
    Zr、Nb、Mo、Ru、Ag、Ta、W、Ptおよび
    Auからなる群から選択される少なくとも1種
・LiAON
     Aは、Si、B、Ge、Al、CおよびGaから
     なる群から選択される少なくとも1種
<10>分散媒体を含む<1>~<9>のいずれか1つに記載の固体電解質組成物。
<11>活物質を含む<1>~<10>のいずれか1つに記載の固体電解質組成物。
<12> <1>~<11>のいずれか1つに記載の固体電解質組成物を金属箔上に適用して、製膜した全固体二次電池用電極シート。
<13> <1>~<11>のいずれか1つに記載の固体電解質組成物を金属箔上に適用して、製膜する全固体二次電池用電極シートの製造方法。
<14>プレス工程を含む<13>に記載の全固体二次電池用電極シートの製造方法。
<15> <13>または<14>に記載の製造方法を介して正極活物質層、負極活物質層および無機固体電解質層を具備する全固体二次電池を製造する全固体二次電池の製造方法。
<16>正極活物質層、負極活物質層および無機固体電解質層を具備する全固体二次電池であって、正極活物質層、負極活物質層および無機固体電解質層の少なくとも1層を、結晶性酸化物系無機固体電解質と非晶性酸化物系無機固体電解質とを含有する固体電解質組成物であって、結晶性酸化物系無機固体電解質の体積と非晶性酸化物系無機固体電解質の体積の比が70~99.8:0.2~30である固体電解質組成物を適用して層とした全固体二次電池。
<1> A solid electrolyte composition comprising a crystalline oxide-based inorganic solid electrolyte and an amorphous oxide-based inorganic solid electrolyte, wherein the crystalline oxide-based inorganic solid electrolyte and the amorphous oxide-based inorganic solid A solid electrolyte composition having an electrolyte in a volume ratio of 70 to 99.8: 0.2 to 30.
<2> The solid electrolyte composition according to <1>, containing at least one binder having at least one functional group selected from the following functional group group [a].
Functional group [a]
Carboxy group, sulfo group, phosphoric acid group, phosphonic acid group, hydroxy group, sulfanyl group, isocyanato group, oxetanyl group, epoxy group, dicarboxylic anhydride group, silyl group <3> Volume of crystalline oxide inorganic solid electrolyte The solid electrolyte according to <2>, wherein the ratio of the volume of the amorphous oxide-based inorganic solid electrolyte to the volume of the binder is 70 to 99.8: 0.1 to 29.9: 0.1 to 29.9 Composition.
<4> The resin according to <2> or <3>, wherein the resin constituting the binder is selected from the group consisting of a hydrocarbon resin, a fluorine-containing resin, an acrylic resin, polyurethane, polyamide, polyimide, polyether, polyester, and polycarbonate. Solid electrolyte composition.
<5> The solid electrolyte composition according to any one of <2> to <4>, wherein the functional group [a] is the following functional group [b].
Functional group [b]
<2> to <5>, wherein the resin constituting the carboxy group, sulfo group, phosphoric acid group, phosphonic acid group, hydroxy group, dicarboxylic anhydride group, silyl group <6> binder is an acrylic resin or polyurethane The solid electrolyte composition as described in any one.
<7> The solid electrolyte composition according to any one of <2> to <6>, wherein the binder is particles having an average particle diameter of 0.01 μm to 10 μm.
<8> The solid electrolyte composition according to any one of <1> to <7>, wherein the amorphous oxide-based inorganic solid electrolyte includes a compound represented by the following formula (I).
Li xc Byc M cc zc Onc formula (I)
In the formula (I), M cc is at least one selected from the group consisting of C, S, Al, Si, P, Ga, Ge, In and Sn, and xc, yc, zc and nc have a composition ratio. 0 <xc ≦ 5, 0 <yc ≦ 1, 0 ≦ zc ≦ 1, and 0 <nc ≦ 6.
<9> The solid electrolyte composition according to any one of <1> to <8>, wherein the crystalline oxide-based inorganic solid electrolyte is selected from compounds of the following formula:
・ Li xa La ya TiO 3
xa = 0.3 to 0.7, ya = 0.3 to 0.7
Li xb La yb Zr zb M bb mb Onb
5 ≦ xb ≦ 10, 1 ≦ yb ≦ 4, 1 ≦ zb ≦ 4, 0 ≦ mb ≦ 2, 5 ≦ nb ≦ 20
M bb is Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge,
At least one selected from the group consisting of In and Sn. Li 3.5 Zn 0.25 GeO 4
・ LiTi 2 P 3 O 12
Li 1 + xh + yh (Al, Ga) xh (Ti, Ge) 2-xh Si yh P 3-yh O 12
0 ≦ xh ≦ 1, 0 ≦ yh ≦ 1
・ Li 3 PO 4
・ LiPON
・ LiPOD 1
D 1 is Ti, V, Cr, Mn, Fe, Co, Ni, Cu,
At least one selected from the group consisting of Zr, Nb, Mo, Ru, Ag, Ta, W, Pt and Au. LiA 1 ON
A 1 is at least one selected from the group consisting of Si, B, Ge, Al, C, and Ga. <10> The solid electrolyte composition according to any one of <1> to <9>, including a dispersion medium object.
<11> The solid electrolyte composition according to any one of <1> to <10>, including an active material.
<12> An electrode sheet for an all-solid-state secondary battery formed by applying the solid electrolyte composition according to any one of <1> to <11> onto a metal foil.
<13> A method for producing an electrode sheet for an all-solid-state secondary battery, wherein the solid electrolyte composition according to any one of <1> to <11> is applied onto a metal foil to form a film.
The manufacturing method of the electrode sheet for all-solid-state secondary batteries as described in <13> including a <14> press process.
<15> Manufacture of an all-solid-state secondary battery that manufactures an all-solid-state secondary battery including a positive electrode active material layer, a negative electrode active material layer, and an inorganic solid electrolyte layer via the manufacturing method according to <13> or <14> Method.
<16> An all-solid secondary battery comprising a positive electrode active material layer, a negative electrode active material layer, and an inorganic solid electrolyte layer, wherein at least one of the positive electrode active material layer, the negative electrode active material layer, and the inorganic solid electrolyte layer is crystallized. A solid electrolyte composition comprising a crystalline oxide-based inorganic solid electrolyte and an amorphous oxide-based inorganic solid electrolyte, wherein the volume of the crystalline oxide-based inorganic solid electrolyte and the volume of the amorphous oxide-based inorganic solid electrolyte An all-solid secondary battery in which a solid electrolyte composition having a volume ratio of 70 to 99.8: 0.2 to 30 is applied to form a layer.
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において、単に「アクリル」と記載するときは、メタアクリルおよびアクリルの両方を含む意味で使用する。
In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
In this specification, when it is simply described as “acryl”, it is used in the meaning including both methacryl and acrylic.
 本発明の固体電解質組成物は、全固体二次電池における無機固体電解質層や活物質層の材料として用いた際に、焼結によらずに層を形成でき、このようにして作製された全固体二次電池は良好なイオン伝導度を実現できるという優れた効果を奏する。
 また、本発明の全固体二次電池用電極シートは、上記本発明の固体電解質組成物を用いて好適に製造することができ、上記良好な性能を発揮する本発明の全固体二次電池に用いることができる。
 さらに、本発明の全固体二次電池用電極シートおよび全固体二次電池の製造方法は、上記全固体二次電池用電極シートおよび全固体二次電池の製造に好適に用いることができる。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
When the solid electrolyte composition of the present invention is used as a material for an inorganic solid electrolyte layer or an active material layer in an all-solid-state secondary battery, a layer can be formed without sintering. The solid secondary battery has an excellent effect of realizing good ionic conductivity.
Moreover, the electrode sheet for an all-solid-state secondary battery of the present invention can be suitably manufactured by using the solid electrolyte composition of the present invention, and the all-solid-state secondary battery of the present invention that exhibits the above-mentioned good performance. Can be used.
Furthermore, the electrode sheet for an all-solid secondary battery and the method for producing the all-solid-state secondary battery of the present invention can be suitably used for producing the electrode sheet for all-solid-state secondary battery and the all-solid-state secondary battery.
The above and other features and advantages of the present invention will become more apparent from the following description, with reference where appropriate to the accompanying drawings.
図1は、本発明の好ましい実施形態に係る全固体二次電池を模式化して示す縦断面図である。FIG. 1 is a longitudinal sectional view schematically showing an all solid state secondary battery according to a preferred embodiment of the present invention. 図2は、実施例で利用した試験装置を模式的に示す縦断面図である。FIG. 2 is a longitudinal sectional view schematically showing the test apparatus used in the examples.
 本発明の全固体二次電池は、正極活物質層、負極活物質層および無機固体電解質層を具備する。本発明においては、正極活物質層、負極活物質層および無機固体電解質層の少なくとも1層を、結晶性酸化物系無機固体電解質および非晶性酸化物系無機固体電解質を含有する固体電解質組成物であって、結晶性酸化物系無機固体電解質の体積と非晶性酸化物系無機固体電解質の体積との比が70~99.8:0.2~30である固体電解質組成物を適用して形成する。
 以下、その好ましい実施形態について説明する。
The all solid state secondary battery of the present invention includes a positive electrode active material layer, a negative electrode active material layer, and an inorganic solid electrolyte layer. In the present invention, at least one of the positive electrode active material layer, the negative electrode active material layer and the inorganic solid electrolyte layer is a solid electrolyte composition containing a crystalline oxide inorganic solid electrolyte and an amorphous oxide inorganic solid electrolyte. And applying a solid electrolyte composition in which the ratio of the volume of the crystalline oxide inorganic solid electrolyte to the volume of the amorphous oxide inorganic solid electrolyte is 70 to 99.8: 0.2 to 30 Form.
Hereinafter, the preferable embodiment will be described.
 図1は、本発明の好ましい実施形態に係る全固体二次電池(リチウムイオン二次電池)を模式化して示す断面図である。本実施形態の全固体二次電池10は、負極側からみて、負極集電体1、負極活物質層2、固体電解質層3、正極活物質層4、正極集電体5を、この順に有する。各層はそれぞれ接触しており、積層した構造をとっている。このような構造を採用することで、充電時には、負極側に電子(e)が供給され、そこにリチウムイオン(Li)が蓄積される。一方、放電時には、負極に蓄積されたリチウムイオン(Li)が正極側に戻され、作動部位6に電子が供給される。図示した例では、作動部位6に電球を採用しており、放電によりこれが点灯するようにされている。 FIG. 1 is a cross-sectional view schematically showing an all solid state secondary battery (lithium ion secondary battery) according to a preferred embodiment of the present invention. The all-solid-state secondary battery 10 of this embodiment has a negative electrode current collector 1, a negative electrode active material layer 2, a solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode current collector 5 in this order as viewed from the negative electrode side. . Each layer is in contact with each other and has a laminated structure. By adopting such a structure, at the time of charging, electrons (e ) are supplied to the negative electrode side, and lithium ions (Li + ) are accumulated therein. On the other hand, at the time of discharge, lithium ions (Li + ) accumulated in the negative electrode are returned to the positive electrode side, and electrons are supplied to the working part 6. In the example shown in the figure, a light bulb is adopted as the operation part 6 and is turned on by discharge.
 本明細書において、正極活物質層と負極活物質層をあわせて電極層と称することがある。また、本発明に用いられる電極活物質は、正極活物質層に含有される正極活物質と、負極活物質層に含有される負極活物質があり、いずれかまたは両方を合わせて示すのに単に活物質と称することがある。 In this specification, the positive electrode active material layer and the negative electrode active material layer may be collectively referred to as an electrode layer. In addition, the electrode active material used in the present invention includes a positive electrode active material contained in the positive electrode active material layer and a negative electrode active material contained in the negative electrode active material layer. Sometimes referred to as an active material.
 正極活物質層4、固体電解質層3、負極活物質層2の厚さは特に限定されない。なお、一般的な電池の寸法を考慮すると、10~1,000μmが好ましく、20μm以上500μm未満がより好ましい。本発明の全固体二次電池においては、正極活物質層4、固体電解質層3および負極活物質層2の少なくとも1層の厚さが、50μm以上500μm未満であることがさらに好ましい。 The thicknesses of the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 are not particularly limited. In consideration of general battery dimensions, the thickness is preferably 10 to 1,000 μm, more preferably 20 μm or more and less than 500 μm. In the all solid state secondary battery of the present invention, it is more preferable that the thickness of at least one of the positive electrode active material layer 4, the solid electrolyte layer 3 and the negative electrode active material layer 2 is 50 μm or more and less than 500 μm.
<<固体電解質組成物>>
 以下、本発明の固体電解質組成物の含有成分を説明する。本発明の固体電解質組成物は、本発明の全固体二次電池を構成する正極活物質層、固体電解質層および負極活物質層の成形材料として好ましく適用される。
<< Solid electrolyte composition >>
Hereinafter, the components contained in the solid electrolyte composition of the present invention will be described. The solid electrolyte composition of the present invention is preferably applied as a molding material for the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer constituting the all solid state secondary battery of the present invention.
(無機固体電解質)
 無機固体電解質とは、無機の固体電解質のことであり、固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質のことである。主たるイオン伝導性材料として有機物を含むものではないことから、有機固体電解質(ポリエチレンオキシド(PEO)などに代表される高分子電解質、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)などに代表される有機電解質塩)とは明確に区別される。また、無機固体電解質は定常状態では固体であるため、通常カチオンおよびアニオンに解離または遊離していない。この点で、電解液やポリマー中でカチオンおよびアニオンが解離または遊離している無機電解質塩(LiPF、LiBF、LiFSI、LiClなど)とも明確に区別される。無機固体電解質は周期律表第1族または第2族に属する金属のイオンの伝導性を有するものであれば特に限定されず電子伝導性を有さないものが一般的である。
(Inorganic solid electrolyte)
The inorganic solid electrolyte is an inorganic solid electrolyte, and the solid electrolyte is a solid electrolyte capable of moving ions inside. Since it does not contain organic substances as the main ion conductive material, organic solid electrolytes (polymer electrolytes typified by polyethylene oxide (PEO), etc., organics typified by lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), etc. It is clearly distinguished from the electrolyte salt). In addition, since the inorganic solid electrolyte is solid in a steady state, it is not usually dissociated or released into cations and anions. In this respect, it is also clearly distinguished from inorganic electrolyte salts (such as LiPF 6 , LiBF 4 , LiFSI, LiCl, etc.) in which cations and anions are dissociated or liberated in the electrolyte or polymer. The inorganic solid electrolyte is not particularly limited as long as it has conductivity of ions of metals belonging to Group 1 or Group 2 of the periodic table, and generally does not have electron conductivity.
 本発明において、無機固体電解質は、周期律表第1族または第2族に属する金属のイオン伝導性を有する。本発明の固体電解質組成物は、(i)結晶性酸化物系無機固体電解質および(ii)非晶性酸化物系無機固体電解質を含有し、(iii)結晶性酸化物系無機固体電解質の体積と非晶性酸化物系無機固体電解質の体積との比が70~99.8:0.2~30である。以下、結晶性酸化物系無機固体電解質と非晶性酸化物系無機固体電解質とを合わせて無機固体電解質と称することもある。 In the present invention, the inorganic solid electrolyte has ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table. The solid electrolyte composition of the present invention contains (i) a crystalline oxide-based inorganic solid electrolyte and (ii) an amorphous oxide-based inorganic solid electrolyte, and (iii) the volume of the crystalline oxide-based inorganic solid electrolyte. And the volume of the amorphous oxide-based inorganic solid electrolyte are 70 to 99.8: 0.2 to 30. Hereinafter, the crystalline oxide inorganic solid electrolyte and the amorphous oxide inorganic solid electrolyte may be collectively referred to as an inorganic solid electrolyte.
(i)結晶性酸化物系無機固体電解質
 「結晶性酸化物系無機固体電解質」とは、X線回折(XRD)測定を行い、結晶部(ピーク)と非晶部(ハロー)に分離し、結晶部の散乱強度Iと非晶部の散乱強度Iから下記式(1)で結晶化度Xを算出し、結晶化度Xが50以上の酸化物系無機固体電解質を意味する。
      X=I/(I+I)×100・・・式(1)
 本発明に用いられる結晶性酸化物系無機固体電解質は、酸素原子(O)を含有し、かつ、周期律表第1族または第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
(I) Crystalline oxide-based inorganic solid electrolyte “Crystalline oxide-based inorganic solid electrolyte” is an X-ray diffraction (XRD) measurement, which is separated into a crystal part (peak) and an amorphous part (halo), from the scattering intensity I a of scattering intensity I c and amorphous part of the crystal unit calculates the crystallinity X by the following formula (1), crystallinity X means 50 or more oxide based inorganic solid electrolytes.
X = I c / (I c + I a) × 100 ··· Equation (1)
The crystalline oxide-based inorganic solid electrolyte used in the present invention contains an oxygen atom (O), has an ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and is an electron. A compound having insulating properties is preferred.
 具体的な化合物例としては、例えばLixaLayaTiO〔xaおよびyaは組成比を表し、xa=0.3~0.7、ya=0.3~0.7である。〕(LLT)、LixbLaybZrzbbb mbnb(MbbはAl、Mg、Ca、Sr、V、Nb、Ta、Ti、Ge、InおよびSnの少なくとも1種以上の元素であり、xbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。なお、xb、ybおよびzbは組成比を表す。)、Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(ただし、xd、yd、zd、ad、mdおよびndは組成比を表し、1≦xd≦3、0≦yd≦1、0≦zd≦2、0≦ad≦1、1≦md≦7、3≦nd≦13である。)、Li(3-2xe)ee xeeeO(後述の式(II)と同義である。)、LiO-SiO、LiBaLaTa12、LiPO(4-3/2w)(wはw<1)、LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO、ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO、NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12、Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyh3-yh12(ただし、0≦xh≦1、0≦yh≦1)、ガーネット型結晶構造を有するLiLaZr12等が挙げられる。またLi、P及びOを含むリン化合物も望ましい。例えばリン酸リチウム(LiPO)、リン酸リチウムの酸素の一部を窒素で置換したLiPON、LiPOD(Dは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt、Au等から選ばれた少なくとも1種)等が挙げられる。また、LiAON(Aは、Si、B、Ge、Al、C、Ga等から選ばれた少なくとも1種)等も好ましく用いることができる。
 これらのうち、LixaLayaTiO、LixbLaybZrzbbb mbnb、Li3.5Zn0.25GeO、LiTi12、Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyh3-yh12、LiPO、LiPON、LiPODおよびLiAONが、イオン伝導度が高いためより好ましい。
 これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。なお、組成が同一でも、調製方法によっては、結晶化度Xが50未満のものも存在するため、上記結晶性酸化物系無機固体電解質のうち下記非晶性酸化物系無機固体電解質として用いることができるものもある。
As specific compound examples, for example, Li xa La ya TiO 3 [xa and ya represent a composition ratio, and xa = 0.3 to 0.7, ya = 0.3 to 0.7. ] (LLT), Li xb La yb Zr zb M bb mb Onb (M bb is at least one element of Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, In, and Sn) , Xb satisfies 5 ≦ xb ≦ 10, yb satisfies 1 ≦ yb ≦ 4, zb satisfies 1 ≦ zb ≦ 4, mb satisfies 0 ≦ mb ≦ 2, and nb satisfies 5 ≦ nb ≦ 20 . Incidentally, xb, the yb and zb represents the composition ratio.), Li xd (Al, Ga) yd (Ti, Ge) zd Si ad P md O nd ( However, xd, yd, zd, ad , md and nd Represents a composition ratio, 1 ≦ xd ≦ 3, 0 ≦ yd ≦ 1, 0 ≦ zd ≦ 2, 0 ≦ ad ≦ 1, 1 ≦ md ≦ 7, 3 ≦ nd ≦ 13), Li (3- 2xe) M ee xe D ee O synonymous with (formula below (II). ), Li 2 O—SiO 2 , Li 6 BaLa 2 Ta 2 O 12 , Li 3 PO (4-3 / 2w) N w (w is w <1), LISICON (Lithium super ionic conductor) type crystal structure Li 3.5 Zn 0.25 GeO 4 , La 0.55 Li 0.35 TiO 3 having a perovskite type crystal structure, LiTi 2 P 3 O 12 having a NASICON (Natium super ionic conductor) type crystal structure, Li 1 + xh + yh Al, Ga) xh (Ti, Ge) 2-xh Si yh P 3-yh O 12 (where 0 ≦ xh ≦ 1, 0 ≦ yh ≦ 1), Li 7 La 3 Zr 2 O having a garnet-type crystal structure 12 etc. are mentioned. Phosphorus compounds containing Li, P and O are also desirable. For example, lithium phosphate (Li 3 PO 4 ), LiPON obtained by replacing a part of oxygen of lithium phosphate with nitrogen, LiPOD 1 (D 1 is Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr) , Nb, Mo, Ru, Ag, Ta, W, Pt, Au, etc.). LiA 1 ON (A 1 is at least one selected from Si, B, Ge, Al, C, Ga, etc.) and the like can also be preferably used.
Among these, Li xa La ya TiO 3 , Li xb La yb Zr zb M bb mb Onb , Li 3.5 Zn 0.25 GeO 4 , LiTi 2 P 3 O 12 , Li 1 + xh + yh (Al, Ga) xh ( Ti, Ge) 2-xh Si yh P 3-yh O 12 , Li 3 PO 4 , LiPON, LiPOD 1 and LiA 1 ON are more preferred because of their high ionic conductivity.
These may be used alone or in combination of two or more. In addition, even if the composition is the same, depending on the preparation method, there is a crystallinity degree X of less than 50. Therefore, among the crystalline oxide inorganic solid electrolytes, the following amorphous oxide inorganic solid electrolytes should be used. Some can do it.
(ii)非晶性酸化物系無機固体電解質
 「非晶性酸化物系無機固体電解質」とは、X線回折(XRD)測定を行い、結晶部(ピーク)と非晶部(ハロー)に分離し、結晶部の散乱強度Iと非晶部の散乱強度Iから上記式(1)で結晶化度Xを算出し、結晶化度Xが50未満の酸化物系無機固体電解質を意味する。
 本発明に用いられる非晶性酸化物系無機固体電解質は特に制限されないが、下記式(I)~(IV)のいずれかで表される化合物、LiPONまたはLiPOを含んでなることが好ましく、下記式(I)~(IV)のいずれかで表される化合物であることがより好ましく、下記式(I)または(II)で表される化合物が特に好ましく、下記式(I)で表される化合物が特に好ましい。非晶性酸化物系無機固体電解質が下記式(I)で表される化合物であると、柔軟な構造であると共にイオン伝導度も高いため、界面抵抗をより効果的に低減することが出来る。
 以下、式(I)で表される化合物について説明する。
(Ii) Amorphous oxide-based inorganic solid electrolyte “Amorphous oxide-based inorganic solid electrolyte” is measured by X-ray diffraction (XRD) and separated into a crystal part (peak) and an amorphous part (halo). and calculates the crystallinity X from the scattering intensity I a of scattering intensity I c and amorphous part of the crystal unit in the above formula (1), crystallinity X means an oxide-based inorganic solid electrolyte of less than 50 .
The amorphous oxide-based inorganic solid electrolyte used in the present invention is not particularly limited, but may contain a compound represented by any one of the following formulas (I) to (IV), LiPON or Li 3 PO 4. A compound represented by any one of the following formulas (I) to (IV) is more preferred, a compound represented by the following formula (I) or (II) is particularly preferred, and a compound represented by the following formula (I): The compounds represented are particularly preferred. When the amorphous oxide-based inorganic solid electrolyte is a compound represented by the following formula (I), the interface resistance can be more effectively reduced because it has a flexible structure and high ionic conductivity.
Hereinafter, the compound represented by the formula (I) will be described.
        Lixcyccc zcnc    式(I) Li xc Byc M cc zc Onc formula (I)
 式(I)において、MccはC、S、Al、Si、P、Ga、Ge、InおよびSnからなる群から選択される少なくとも1種であり、xc、yc、zcおよびncは組成比を表し、0<xc≦5、0<yc≦1、0≦zc≦1、0<nc≦6である。 In the formula (I), M cc is at least one selected from the group consisting of C, S, Al, Si, P, Ga, Ge, In and Sn, and xc, yc, zc and nc have a composition ratio. 0 <xc ≦ 5, 0 <yc ≦ 1, 0 ≦ zc ≦ 1, and 0 <nc ≦ 6.
 上記式(I)で表される化合物および上記式(I)で表される化合物を含んでなる非晶性酸化物系無機固体電解質の具体例としてLiBO、LiBO-LiSO、LiO-B-P、LiBO-LiCOおよびLiBO-LiSiが挙げられ、本発明において好ましく用いられる。 As specific examples of the amorphous oxide based inorganic solid electrolyte comprising the compound represented by the above formula (I) and the compound represented by the above formula (I), Li 3 BO 3 , Li 3 BO 3 -Li 2 SO 4 , Li 2 O—B 2 O 3 —P 2 O 5 , Li 3 BO 3 —Li 2 CO 3, and Li 3 BO 3 —Li 4 Si 4 O 4 may be mentioned and are preferably used in the present invention.
 なお、上記式(I)で表される化合物は常法により調製することができる。例えば、原料としてLiBO、LiSO、LiCO、LiSiO、LiOH、HBO、SiO(上記原料は水和されていてもよい)を用いて、任意の組み合わせの原料をあらかじめジルコニア(またはアルミナもしくはステンレス)製のボールを入れたジルコニア(またはアルミナもしくはステンレス)製のベッセルに投入し、遊星ボールミルを用いて攪拌(メカニカルミリング)することにより合成することができる。なお合成法は上記に限定されず、フラックス法や固相法で合成しても良い。
 次に式(II)で表される化合物について説明する。
In addition, the compound represented by the said formula (I) can be prepared by a conventional method. For example, using Li 3 BO 3 , Li 2 SO 4 , Li 2 CO 3 , Li 4 SiO 4 , LiOH, H 3 BO 3 , SiO 2 (the above raw materials may be hydrated) as a raw material, any It is possible to synthesize by combining the raw materials of the above into a zirconia (or alumina or stainless steel) vessel containing zirconia (or alumina or stainless steel) balls and stirring (mechanical milling) using a planetary ball mill. it can. The synthesis method is not limited to the above, and the synthesis may be performed by a flux method or a solid phase method.
Next, the compound represented by formula (II) will be described.
        Li(3-2xe)ee xeeeO    式(II) Li (3-2xe) M ee xe D ee O formula (II)
 式(II)において、xeは0以上0.1以下の数を表し、Meeは2価の金属原子を表す。Deeはハロゲン原子(例えば、フッ素、塩素、臭素、ヨウ素)または2種以上のハロゲン原子の組み合わせを表す。 In formula (II), xe represents a number of 0 to 0.1, M ee represents a divalent metal atom. D ee represents a halogen atom (for example, fluorine, chlorine, bromine, iodine) or a combination of two or more halogen atoms.
 Meeが表す2価の金属原子の具体例として、マグネシウム、カルシウム、ストロンチウムおよびバリウムが挙げられ、マグネシウム、カルシウムおよびバリウムが好ましく、カルシウムおよびバリウムがより好ましく、バリウムが特に好ましい。Deeは塩素原子、臭素原子またはヨウ素原子を含有することが好ましく、塩素原子もしくは臭素原子または塩素原子と臭素原子の組み合わせがより好ましく、塩素原子がさらに好ましい。 Specific examples of the divalent metal atom represented by M ee include magnesium, calcium, strontium and barium, magnesium, calcium and barium are preferred, calcium and barium are more preferred, and barium is particularly preferred. D ee preferably contains a chlorine atom, a bromine atom, or an iodine atom, more preferably a chlorine atom, a bromine atom, or a combination of a chlorine atom and a bromine atom, and even more preferably a chlorine atom.
 上記式(II)で表される化合物の具体例として、LiClO、Li2.99Ba0.005ClO、Li2.99Ca0.005ClO、Li2.99Mg0.005ClOが挙げられる。
 なお、上記式(II)で表される化合物は常法により調製することができる。例えば、原料としてLiF、LiCl、LiBr、LiI、LiOH、Ba(OH)、Mg(OH)、Ca(OH)、Sr(OH)(上記原料は水和されていてもよい)を用いて、任意の組み合わせの原料を水と共にあらかじめテフロン(登録商標)製の密閉容器に加え加熱することにより合成することができる。また、メカニカルミリング法または固相法により合成してもよい。
 次に式(III)で表される化合物について説明する。
Specific examples of the compound represented by the formula (II) include Li 3 ClO, Li 2.99 Ba 0.005 ClO, Li 2.99 Ca 0.005 ClO, and Li 2.99 Mg 0.005 ClO. It is done.
The compound represented by the above formula (II) can be prepared by a conventional method. For example, LiF, LiCl, LiBr, LiI, LiOH, Ba (OH) 2 , Mg (OH) 2 , Ca (OH) 2 , Sr (OH) 2 (the above raw materials may be hydrated) as raw materials. It can be synthesized by adding raw materials of any combination together with water into a Teflon (registered trademark) sealed container and heating. Moreover, you may synthesize | combine by the mechanical milling method or a solid-phase method.
Next, the compound represented by formula (III) will be described.
        LixfSiyfzf    式(III) Li xf Si yf O zf formula (III)
 式(III)において、xf、yfおよびzfは組成比を表し、1≦xf≦5、0<yf≦3、1≦zf≦10である。 In the formula (III), xf, yf, and zf represent a composition ratio, and 1 ≦ xf ≦ 5, 0 <yf ≦ 3, and 1 ≦ zf ≦ 10.
 上記式(III)で表される化合物の具体例として、LiSiOおよびLiSiOが挙げられる。
 なお、上記式(III)で表される化合物は常法により調製することができる。例えば、LiCOとSiOを乳鉢上で混合し、ペレット化、熱処理を行ったあとメカニカルミリングを行うことにより合成することができる。また、固相法で合成してもよい。
 次に式(IV)で表される化合物について説明する。
Specific examples of the compound represented by the formula (III) include Li 4 SiO 4 and Li 2 SiO 3 .
The compound represented by the above formula (III) can be prepared by a conventional method. For example, it can be synthesized by mixing Li 2 CO 3 and SiO 2 in a mortar, pelletizing and heat-treating, followed by mechanical milling. Alternatively, it may be synthesized by a solid phase method.
Next, the compound represented by formula (IV) will be described.
        Lixgygzg    式(IV) Li xg S yg O zg formula (IV)
 式(IV)において、xg、ygおよびzgは組成比を表し、1≦xg≦3、0<yg≦2、1≦zg≦10である。 In the formula (IV), xg, yg and zg represent a composition ratio, and 1 ≦ xg ≦ 3, 0 <yg ≦ 2, and 1 ≦ zg ≦ 10.
 上記式(IV)で表される化合物の具体例として、LiSOおよびLiSOが挙げられる。
 なお、上記式(IV)で表される化合物は常法により調製することができる。例えば、市販品の結晶性LiSO(和光純薬社製)をメカニカルミリングによって非晶化することにより合成することができる。
Specific examples of the compound represented by the formula (IV) include Li 2 SO 4 and Li 2 SO 3 .
In addition, the compound represented by the said formula (IV) can be prepared by a conventional method. For example, a commercially available crystalline Li 2 SO 4 (manufactured by Wako Pure Chemical Industries, Ltd.) can be synthesized by making it amorphous by mechanical milling.
(iii)体積比
 本発明の固体電解質組成物において、結晶性酸化物系無機固体電解質の体積と非晶性酸化物系無機固体電解質の体積との比(結晶性酸化物系無機固体電解質の体積:非晶性酸化物系無機固体電解質の体積)は70~99.8:0.2~30である。体積比がこの範囲内にあることにより、後述の固体電解質シート、全固体二次電池用電極シートおよび全固体二次電池において、界面形成が良好かつ高イオン伝導性を実現することができる。非晶性酸化物系無機固体電解質の体積が上記の範囲の下限未満であると界面形成性が悪くなり、抵抗が高くなる。上記の範囲の上限を超えるとイオン伝導度が低くなり、やはり抵抗が高くなる。
 本発明の固体電解質組成物において、結晶性酸化物系無機固体電解質の体積と非晶性酸化物系無機固体電解質の体積との比は、界面形成性と高イオン伝導性を両立させるという観点から、70~99:1~30が好ましく、75~90:10~25がより好ましい。
(Iii) Volume ratio In the solid electrolyte composition of the present invention, the ratio of the volume of the crystalline oxide inorganic solid electrolyte to the volume of the amorphous oxide inorganic solid electrolyte (volume of the crystalline oxide inorganic solid electrolyte) : Volume of amorphous oxide-based inorganic solid electrolyte) is 70 to 99.8: 0.2 to 30. When the volume ratio is within this range, in the solid electrolyte sheet, the electrode sheet for an all-solid secondary battery, and the all-solid secondary battery, which will be described later, good interface formation and high ion conductivity can be realized. When the volume of the amorphous oxide-based inorganic solid electrolyte is less than the lower limit of the above range, the interface formation is deteriorated and the resistance is increased. When the upper limit of the above range is exceeded, the ionic conductivity is lowered and the resistance is also increased.
In the solid electrolyte composition of the present invention, the ratio between the volume of the crystalline oxide-based inorganic solid electrolyte and the volume of the amorphous oxide-based inorganic solid electrolyte is from the viewpoint of achieving both interface formation and high ionic conductivity. 70 to 99: 1 to 30 is preferable, and 75 to 90:10 to 25 is more preferable.
 なお、本発明の固体電解質組成物において、結晶性酸化物系無機固体電解質の質量と非晶性酸化物系無機固体電解質の質量との比(結晶性酸化物系無機固体電解質の質量:非晶性酸化物系無機固体電解質の質量)は特に制限されないが、70~99.5:0.5~30が好ましく、80~98:2~20がより好ましく、86~95:5~14が特に好ましい。 In the solid electrolyte composition of the present invention, the ratio of the mass of the crystalline oxide-based inorganic solid electrolyte to the mass of the amorphous oxide-based inorganic solid electrolyte (the mass of the crystalline oxide-based inorganic solid electrolyte: amorphous The mass of the conductive oxide-based inorganic solid electrolyte is not particularly limited, but is preferably 70 to 99.5: 0.5 to 30, more preferably 80 to 98: 2 to 20, and particularly preferably 86 to 95: 5 to 14. preferable.
 無機固体電解質の体積平均粒子径は特に制限されないが、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。上限としては、100μm以下であることが好ましく、50μm以下であることがより好ましい。なお、無機固体電解質の体積平均粒子径の測定は、以下の手順で行う。無機固体電解質を、水(水に不安定な物質の場合はヘプタン)を用いて20mlサンプル瓶中で1質量%の分散液を希釈調製する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、体積平均粒子径を得る。その他の詳細な条件等は必要によりJISZ8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を調製しその平均値を採用する。 The volume average particle diameter of the inorganic solid electrolyte is not particularly limited, but is preferably 0.01 μm or more, and more preferably 0.1 μm or more. As an upper limit, it is preferable that it is 100 micrometers or less, and it is more preferable that it is 50 micrometers or less. In addition, the measurement of the volume average particle diameter of an inorganic solid electrolyte is performed in the following procedures. An inorganic solid electrolyte is prepared by diluting a 1% by weight dispersion in a 20 ml sample bottle using water (heptane in the case of water labile substances). The diluted dispersion sample is irradiated with 1 kHz ultrasonic waves for 10 minutes and used immediately after that. Using this dispersion liquid sample, using a laser diffraction / scattering particle size distribution measuring device LA-920 (trade name, manufactured by HORIBA), data was acquired 50 times using a quartz cell for measurement at a temperature of 25 ° C., Obtain the volume average particle size. For other detailed conditions, the description of JISZ8828: 2013 “Particle Size Analysis—Dynamic Light Scattering Method” is referred to as necessary. Five samples are prepared for each level, and the average value is adopted.
 無機固体電解質の固体電解質組成物中の固形成分における含有量は、全固体二次電池に用いたときの界面抵抗の低減と、低減された界面抵抗の維持を考慮したとき、固形成分100質量%において、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、20質量%以上であることが特に好ましい。上限としては、同様の観点から、99.9質量%以下であることが好ましく、99.5質量%以下であることがより好ましく、99質量%以下であることが特に好ましい。
 なお、本明細書において固形成分とは、170℃で6時間乾燥処理を行ったときに、揮発ないし蒸発して消失しない成分を言う。典型的には、後述の分散媒体以外の成分を指す。
 上記無機固体電解質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
The content of the solid component in the solid electrolyte composition of the inorganic solid electrolyte is 100% by mass of the solid component when considering reduction of the interface resistance when used in an all-solid secondary battery and maintenance of the reduced interface resistance. Is preferably 5% by mass or more, more preferably 10% by mass or more, and particularly preferably 20% by mass or more. As an upper limit, it is preferable that it is 99.9 mass% or less from the same viewpoint, It is more preferable that it is 99.5 mass% or less, It is especially preferable that it is 99 mass% or less.
In the present specification, the solid component refers to a component that does not disappear by volatilization or evaporation when dried at 170 ° C. for 6 hours. Typically, it refers to components other than the dispersion medium described below.
The said inorganic solid electrolyte may be used individually by 1 type, or may be used in combination of 2 or more type.
(バインダー)
 本発明の固体電解質組成物は少なくとも1種のバインダーを含有することが好ましい。
 結晶性酸化物系無機固体電解質、非晶性酸化物系無機固体電解質、活物質およびバインダーを含有する固体電解質組成物を用いて、例えば、湿式塗布のような温和な条件下で製造された全固体二次電池の電極層には、上記活物質および無機固体電解質だけでなくバインダーが存在する。そのため、非晶性酸化物系無機固体電解質およびバインダーを介して結晶性酸化物系無機固体電解質と活物質との接触面積が大きくなり、界面における抵抗を抑制することができる。さらに、固体粒子間、固体電解質層と電極層間および電極層と集電体間の結着性を向上させることができる。
(binder)
The solid electrolyte composition of the present invention preferably contains at least one binder.
A solid oxide composition containing a crystalline oxide-based inorganic solid electrolyte, an amorphous oxide-based inorganic solid electrolyte, an active material, and a binder, The electrode layer of the solid secondary battery includes a binder as well as the active material and the inorganic solid electrolyte. Therefore, the contact area between the crystalline oxide inorganic solid electrolyte and the active material is increased via the amorphous oxide inorganic solid electrolyte and the binder, and the resistance at the interface can be suppressed. Furthermore, the binding between the solid particles, between the solid electrolyte layer and the electrode layer, and between the electrode layer and the current collector can be improved.
 本発明の固体電解質組成物において、結晶性酸化物系無機固体電解質の体積と非晶性酸化物系無機固体電解質の体積とバインダーの体積の比(結晶性酸化物系無機固体電解質の体積:非晶性酸化物系無機固体電解質の体積:バインダーの体積)は、70~99.8:0.1~29.9:0.1~29.9が好ましく、70~95:4.5~29.5:0.5~15がより好ましく、75~85:10~23:2~5が特に好ましい。
 上記範囲内にあることにより、後述の固体電解質シート、および全固体二次電池において、イオン伝導度、界面形成性、結着性が鼎立できるため好ましい。
In the solid electrolyte composition of the present invention, the ratio of the volume of the crystalline oxide-based inorganic solid electrolyte to the volume of the amorphous oxide-based inorganic solid electrolyte and the volume of the binder (volume of the crystalline oxide-based inorganic solid electrolyte: non- The volume of the crystalline oxide inorganic solid electrolyte: the volume of the binder is preferably 70 to 99.8: 0.1 to 29.9: 0.1 to 29.9, and 70 to 95: 4.5 to 29. 5: 0.5 to 15 is more preferable, and 75 to 85:10 to 23: 2 to 5 is particularly preferable.
It is preferable to be within the above-mentioned range because ion conductivity, interface forming property, and binding property can be established in a solid electrolyte sheet and an all-solid secondary battery described later.
 なお、本発明の固体電解質組成物において、結晶性酸化物系無機固体電解質の質量と非晶性酸化物系無機固体電解質の質量とバインダーの質量の比(結晶性酸化物系無機固体電解質の質量:非晶性酸化物系無機固体電解質の質量:バインダーの質量)は、70~99.5:0.4~29.9:0.1~29.6が好ましく、80~98:1.5~19.5:0.5~18.5がより好ましく、85~95:4~14:1~11が特に好ましい。 In the solid electrolyte composition of the present invention, the ratio of the mass of the crystalline oxide-based inorganic solid electrolyte to the mass of the amorphous oxide-based inorganic solid electrolyte and the mass of the binder (the mass of the crystalline oxide-based inorganic solid electrolyte) : Mass of amorphous oxide-based inorganic solid electrolyte: mass of binder) is preferably 70 to 99.5: 0.4 to 29.9: 0.1 to 29.6, and preferably 80 to 98: 1.5. To 19.5: 0.5 to 18.5 is more preferable, and 85 to 95: 4 to 14: 1 to 11 is particularly preferable.
 本発明に用いることができるバインダーは、下記官能基群[a]からなる群から選択される少なくとも1種を有することが好ましい。 The binder that can be used in the present invention preferably has at least one selected from the group consisting of the following functional group group [a].
官能基群[a]
 カルボキシ基、スルホ基、リン酸基、ホスホン酸基、ヒドロキシ基、チオール(スルファニル)基、イソシアナト基、オキセタニル基、エポキシ基、ジカルボン酸無水物基、シリル基
Functional group [a]
Carboxy group, sulfo group, phosphoric acid group, phosphonic acid group, hydroxy group, thiol (sulfanyl) group, isocyanato group, oxetanyl group, epoxy group, dicarboxylic acid anhydride group, silyl group
 本発明に用いることができるバインダーは、上記官能基群[a]から選択される少なくとも1種の官能基を有する有機ポリマーであれば特に限定されない。 The binder that can be used in the present invention is not particularly limited as long as it is an organic polymer having at least one functional group selected from the functional group group [a].
 バインダーが上記官能基群[a]から選択される少なくとも1種の官能基を有することにより、無機固体電解質と相互作用または結合を形成することができ、高い結着性を実現し得る。 When the binder has at least one functional group selected from the functional group group [a], it can form an interaction or bond with the inorganic solid electrolyte, and can realize high binding properties.
 官能基当量(官能基群[a]から選択される官能基1個あたりの、官能基群[a]から選択される少なくとも1種の官能基を有するバインダーの分子量)は特に制限されないが、50~50,000が好ましく、100~10,000がより好ましく、200~1,000が特に好ましい。 The functional group equivalent (the molecular weight of the binder having at least one functional group selected from the functional group [a] per functional group selected from the functional group [a]) is not particularly limited, but 50 Is preferably 50,000, more preferably 100 to 10,000, and particularly preferably 200 to 1,000.
 本発明において、バインダーの安定性と結着性の両立という観点から、上記官能基群[a]が下記官能基群[b]であることが好ましい。 In the present invention, the functional group group [a] is preferably the following functional group group [b] from the viewpoint of both the stability and the binding property of the binder.
官能基群[b]
 カルボキシ基、スルホ基、リン酸基、ホスホン酸基、ヒドロキシ基、ジカルボン酸無水物基、シリル基
Functional group [b]
Carboxy group, sulfo group, phosphoric acid group, phosphonic acid group, hydroxy group, dicarboxylic anhydride group, silyl group
 本発明に用いることができるバインダーを構成する樹脂は、通常、電池材料の正極または負極用結着剤として用いられるものが好ましく、特に制限されない。なお、本明細書において、ポリマーを樹脂と同義の用語として用いることがある。
 本発明に用いることができるバインダーは、上記官能基群[a]好ましくは上記官能基群[b]を有する、以下に例示する樹脂が好ましい。例えば、含フッ素樹脂(例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(PVdF-HFP))、炭化水素樹脂(例えば、ポリエチレン、ポリプロピレン、スチレンブタジエンゴム(SBR)、水素添加スチレンブタジエンゴム(HSBR)、ブチレンゴム、アクリロニトリルブタジエンゴム、ポリブタジエン、ポリイソプレン)、アクリル樹脂、ビニル樹脂、スチレン樹脂、アミド樹脂、イミド樹脂、ウレタン樹脂、ウレア樹脂、ポリエステル樹脂、ポリエーテル樹脂、フェノール樹脂、エポキシ樹脂、ポリカーボネート樹脂、シリコーン樹脂およびこれらの組み合わせが挙げられる。これらの中でも、炭化水素樹脂、フッ素樹脂、アクリル樹脂、ウレタン樹脂(例えば、ポリウレタン)、ポリアミド、ポリイミド、ポリエーテル、ポリエステルおよびポリカーボネートからなる群から選択される樹脂が好ましく、アクリル樹脂およびポリウレタンがより好ましい。
The resin constituting the binder that can be used in the present invention is preferably one that is usually used as a binder for a positive electrode or a negative electrode of a battery material, and is not particularly limited. In this specification, a polymer may be used as a term having the same meaning as a resin.
The binder that can be used in the present invention is preferably a resin having the functional group group [a], preferably the functional group group [b] described below. For example, fluorine-containing resin (for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP)), hydrocarbon resin (for example, polyethylene, polypropylene, Styrene butadiene rubber (SBR), hydrogenated styrene butadiene rubber (HSBR), butylene rubber, acrylonitrile butadiene rubber, polybutadiene, polyisoprene), acrylic resin, vinyl resin, styrene resin, amide resin, imide resin, urethane resin, urea resin, polyester Examples thereof include resins, polyether resins, phenol resins, epoxy resins, polycarbonate resins, silicone resins, and combinations thereof. Among these, resins selected from the group consisting of hydrocarbon resins, fluororesins, acrylic resins, urethane resins (for example, polyurethane), polyamides, polyimides, polyethers, polyesters, and polycarbonates are preferable, and acrylic resins and polyurethanes are more preferable. .
 以下、本発明に用いることができるバインダーを構成する樹脂について詳細に説明する。 Hereinafter, the resin constituting the binder that can be used in the present invention will be described in detail.
 本発明に用いられるバインダーは、下記式(I)で表される部分構造を有することがさらに好ましい。 More preferably, the binder used in the present invention has a partial structure represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(I)中、Rは、水素原子または1価の有機基を表す。 In formula (I), R represents a hydrogen atom or a monovalent organic group.
 式(I)で表される部分構造を有するポリマーとしては、例えば、アミド結合を有するポリマー、ウレア結合を有するポリマー、イミド結合を有するポリマー、ウレタン結合を有するポリマー等が挙げられる。 Examples of the polymer having a partial structure represented by the formula (I) include a polymer having an amide bond, a polymer having a urea bond, a polymer having an imide bond, and a polymer having a urethane bond.
 Rにおける有機基は、アルキル基、アルケニル基、アリール基、ヘテロアリール基が挙げられる。Rはなかでも水素原子が好ましい。 Examples of the organic group in R include an alkyl group, an alkenyl group, an aryl group, and a heteroaryl group. R is preferably a hydrogen atom.
・アミド結合を有するポリマー
 アミド結合を有するポリマーとして、ポリアミド、ポリアクリルアミドなどが挙げられる。
 ポリアミドは、ジアミン化合物とジカルボン酸化合物とを縮合重合するか、ラクタムを開環重合することによって得ることができる。
 ジアミン化合物としては、例えば、エチレンジアミン、1-メチルエチルジアミン、1,3-プロピレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミンなどの脂肪族ジアミン化合物、シクロヘキサンジアミン、ビス-(4,4’-アミノヘキシル)メタン、パラキシリレンジアミンが挙げられる。また、ポリプロピレンオキシ鎖を有するジアミンとして、例えば、上市されている市販品として、「ジェファーミン」シリーズ(商品名、ハンツマン社製、三井化学ファイン社製)を用いることができる。「ジェファーミン」シリーズの例として、ジェファーミンD-230、ジェファーミンD-400、ジェファーミンD-2000、ジェファーミンXTJ-510、ジェファーミンXTJ-500、ジェファーミンXTJ-501、ジェファーミンXTJ-502、ジェファーミンHK-511、ジェファーミンEDR-148、ジェファーミンXTJ-512、ジェファーミンXTJ-542、ジェファーミンXTJ-533、ジェファーミンXTJ-536等が挙げられる。
 ジカルボン酸化合物としては、例えば、マロン酸、コハク酸、グルタル酸、セバシン酸、ピメリン酸、スベリン酸、アゼライン酸、ウンデカン酸、ウンデカジオン酸、ドデカジオン酸、ダイマー酸などの脂肪族ジカルボン酸類、1,4-シクロヘキサンジカルボン酸、パラキシリレンジカルボン酸、メタキシリレンジカルボン酸、フタル酸、2,6-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸が挙げられる。
-Polymer having amide bond Examples of the polymer having an amide bond include polyamide and polyacrylamide.
Polyamide can be obtained by condensation polymerization of a diamine compound and a dicarboxylic acid compound or ring-opening polymerization of a lactam.
Examples of the diamine compound include ethylenediamine, 1-methylethyldiamine, 1,3-propylenediamine, tetramethylenediamine, pentamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, undecamethylenediamine. And aliphatic diamine compounds such as dodecamethylenediamine, cyclohexanediamine, bis- (4,4′-aminohexyl) methane, and paraxylylenediamine. Moreover, as a diamine having a polypropyleneoxy chain, for example, a commercially available product “Jeffamine” series (trade name, manufactured by Huntsman, Mitsui Chemicals Fine) can be used. Examples of “Jeffamine” series include Jeffermin D-230, Jeffermin D-400, Jeffermin D-2000, Jeffermin XTJ-510, Jeffermin XTJ-500, Jeffermin XTJ-501, Jeffermin XTJ-502 , Jeffamine HK-511, Jeffamine EDR-148, Jeffamine XTJ-512, Jeffamine XTJ-542, Jeffamine XTJ-533, Jeffamine XTJ-536, and the like.
Examples of the dicarboxylic acid compound include, for example, aliphatic dicarboxylic acids such as malonic acid, succinic acid, glutaric acid, sebacic acid, pimelic acid, suberic acid, azelaic acid, undecanoic acid, undecadioic acid, dodecadioic acid, and dimer acid, 1,4 -Cyclohexanedicarboxylic acid, paraxylylene dicarboxylic acid, metaxylylene dicarboxylic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4'-diphenyldicarboxylic acid.
 ポリアクリルアミドの具体例としては、ポリエチレングリコールモノメチルエーテルアクリルアミド、ポリプロピレングリコールモノメチルエーテルアクリルアミド、ポリエチレングリコールモノメチルエーテルメタクリルアミド、ポリプロピレングリコールモノメチルエーテルメタクリルアミド、ポリエステルメタクリルアミド、ポリカーボネートメタクリルアミドなどが好適に挙げられる。 Specific examples of polyacrylamide include polyethylene glycol monomethyl ether acrylamide, polypropylene glycol monomethyl ether acrylamide, polyethylene glycol monomethyl ether methacrylamide, polypropylene glycol monomethyl ether methacrylamide, polyester methacrylamide, polycarbonate methacrylamide and the like.
・ウレア結合を有するポリマー
 ウレア結合を有するポリマーとしてはポリウレアが挙げられる。ジイソシアネート化合物とジアミン化合物とをアミン触媒存在下で縮合重合することによってポリウレアを合成することができる。
 ジイソシアネート化合物の具体例としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、2,4-トリレンジイソシアネート、2,4-トリレンジイソシアネートの二量体、2,6-トリレンジレンジイソシアネート、p-キシリレンジイソシアネート、m-キシリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート(MDI)、1,5-ナフチレンジイソシアネート、3,3’-ジメチルビフェニル-4,4’-ジイソシアネート等の芳香族ジイソシアネート化合物;ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、ダイマー酸ジイソシアネート等の脂肪族ジイソシアネート化合物;イソホロンジイソシアネート、4,4’-メチレンビス(シクロヘキシルイソシアネート)、メチルシクロヘキサン-2,4(又は2,6)-ジイルジイソシアネート、1,3-(イソシアネートメチル)シクロヘキサン等の脂環族ジイソシアネート化合物;1,3-ブチレングリコール1モルとトリレンジイソシアネート2モルとの付加体等のジオールとジイソシアネートとの反応物であるジイソシアネート化合物;などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、4,4’-ジフェニルメタンジイソシアネート(MDI)、4,4’-メチレンビス(シクロヘキシルイソシアネート)が好ましい。
 ジアミン化合物の具体例としては、上述の化合物例等が挙げられる。
-Polymer having a urea bond Polyurea may be mentioned as a polymer having a urea bond. Polyurea can be synthesized by condensation polymerization of a diisocyanate compound and a diamine compound in the presence of an amine catalyst.
Specific examples of the diisocyanate compound are not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include 2,4-tolylene diisocyanate, dimer of 2,4-tolylene diisocyanate, 2,6- Tolylene diisocyanate, p-xylylene diisocyanate, m-xylylene diisocyanate, 4,4'-diphenylmethane diisocyanate (MDI), 1,5-naphthylene diisocyanate, 3,3'-dimethylbiphenyl-4,4'-diisocyanate Aromatic diisocyanate compounds such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, dimer acid diisocyanate; isophorone diisocyanate, 4,4′-methylenebis Cyclohexyl isocyanate), methylcyclohexane-2,4 (or 2,6) -diyl diisocyanate, 1,3- (isocyanatomethyl) cyclohexane, and the like; 1 mol of 1,3-butylene glycol and tolylene diisocyanate And a diisocyanate compound that is a reaction product of a diol such as an adduct with 2 mol and a diisocyanate. These may be used individually by 1 type and may use 2 or more types together. Among these, 4,4′-diphenylmethane diisocyanate (MDI) and 4,4′-methylenebis (cyclohexyl isocyanate) are preferable.
Specific examples of the diamine compound include the compound examples described above.
・イミド結合を有するポリマー
 イミド結合を有するポリマーとしては、ポリイミドが挙げられる。ポリイミドは、テトラカルボン酸二無水物とジアミン化合物とを付加反応させてポリアミック酸を形成した後、閉環することで得られる。
 テトラカルボン酸二無水物の具体例としては、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)およびピロメリット酸二無水物(PMDA)、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物(a-BPDA)、オキシジフタル酸二無水物、ジフェニルスルホン-3,4,3’,4’-テトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)スルフィド二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,3,3’,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、p-フェニレンビス(トリメリット酸モノエステル酸無水物)、p-ビフェニレンビス(トリメリット酸モノエステル酸無水物)、m-ターフェニル-3,4,3’,4’-テトラカルボン酸二無水物、p-ターフェニル-3,4,3’,4’-テトラカルボン酸二無水物、1,3-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ビフェニル二無水物、2,2-ビス〔(3,4-ジカルボキシフェノキシ)フェニル〕プロパン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、などを挙げることができる。これらは単独でも、2種以上を混合して用いることもできる。
 テトラカルボン酸成分としては、s-BPDAおよびPMDAの少なくとも一方を含むことが好ましく、例えばテトラカルボン酸成分100モル%中にs-BPDAを好ましくは50モル%以上、より好ましくは70モル%以上、特に好ましくは75モル%以上含む。テトラカルボン酸二無水物は、剛直なベンゼン環を有していることが好ましい。
-Polymer which has an imide bond As a polymer which has an imide bond, a polyimide is mentioned. A polyimide is obtained by ring-closing after forming a polyamic acid by addition-reacting a tetracarboxylic dianhydride and a diamine compound.
Specific examples of tetracarboxylic dianhydrides include 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA) and pyromellitic dianhydride (PMDA), 2,3,3. ', 4'-biphenyltetracarboxylic dianhydride (a-BPDA), oxydiphthalic dianhydride, diphenylsulfone-3,4,3', 4'-tetracarboxylic dianhydride, bis (3,4- Dicarboxyphenyl) sulfide dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, 2,3,3 ′, 4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, 2,2-bis ( 3,4-dicarboki Siphenyl) propane dianhydride, p-phenylenebis (trimellitic acid monoester acid anhydride), p-biphenylenebis (trimellitic acid monoester acid anhydride), m-terphenyl-3,4,3 ′, 4 '-Tetracarboxylic dianhydride, p-terphenyl-3,4,3', 4'-tetracarboxylic dianhydride, 1,3-bis (3,4-dicarboxyphenoxy) benzene dianhydride, 1,4-bis (3,4-dicarboxyphenoxy) benzene dianhydride, 1,4-bis (3,4-dicarboxyphenoxy) biphenyl dianhydride, 2,2-bis [(3,4-di Carboxyphenoxy) phenyl] propane dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 4,4 ′-(2, 2-F Sa fluoro isopropylidene) diphthalic acid dianhydride, and the like. These may be used alone or in combination of two or more.
The tetracarboxylic acid component preferably contains at least one of s-BPDA and PMDA. For example, s-BPDA is preferably 50 mol% or more, more preferably 70 mol% or more in 100 mol% of the tetracarboxylic acid component. Especially preferably, it contains 75 mol% or more. The tetracarboxylic dianhydride preferably has a rigid benzene ring.
 ジアミン化合物の具体例としては、上述の化合物例等が挙げられる。
 ジアミン化合物は、ポリエチレンオキシド鎖、ポリプロピレンオキシド鎖、ポリカーボネート鎖、又はポリエステル鎖の両末端にアミノ基を有する構造が好ましい。
Specific examples of the diamine compound include the compound examples described above.
The diamine compound preferably has a structure having amino groups at both ends of a polyethylene oxide chain, a polypropylene oxide chain, a polycarbonate chain, or a polyester chain.
・ウレタン結合を有するポリマー
 ウレタン結合を有するポリマーとしては、ポリウレタンが挙げられる。ポリウレタンは、ジイソシアネート化合物とジオール化合物とをチタン、スズ、ビスマス触媒存在下で縮合重合することで得られる。
 ジイソシアネート化合物としては、上述の化合物例が挙げられる。
 ジオール化合物の具体例としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリエチレングリコール(例えば、平均分子量200、400、600、1000、1500、2000、3000、7500のポリエチレングリコール)、ポリプロピレングリコール(例えば、平均分子量400、700、1000、2000、3000、または4000のポリプロピレングリコール)、ネオペンチルグリコール、1,3-ブチレングリコール、1,4-ブタンジオール、1,3-ブタンジオール、1,6-ヘキサンジオール、2-ブテン-1,4-ジオール、2,2,4-トリメチル-1,3-ペンタンジオール、1,4-ビス-β-ヒドロキシエトキシシクロヘキサン、シクロヘキサンジメタノール、トリシクロデカンジメタノール、水添ビスフェノールA、水添ビスフェノールF、ビスフェノールAのエチレンオキサイド付加体、ビスフェノールAのプロピレンオキサイド付加体、ビスフェノールFのエチレンオキサイド付加体、ビスフェノールFのプロピレンオキサイド付加体などが挙げられる。
-Polymer which has a urethane bond As a polymer which has a urethane bond, a polyurethane is mentioned. Polyurethane is obtained by condensation polymerization of a diisocyanate compound and a diol compound in the presence of a titanium, tin, or bismuth catalyst.
Examples of the diisocyanate compound include the compound examples described above.
Specific examples of the diol compound include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, dipropylene glycol, and polyethylene glycol (for example, average molecular weight 200, 400, 600, 1000, 1500, 2000, 3000, 7500 Polyethylene glycol), polypropylene glycol (for example, polypropylene glycol with an average molecular weight of 400, 700, 1000, 2000, 3000, or 4000), neopentyl glycol, 1,3-butylene glycol, 1,4-butanediol, 1,3 -Butanediol, 1,6-hexanediol, 2-butene-1,4-diol, 2,2,4-trimethyl-1,3-pentanediol, 1,4-bis- -Hydroxyethoxycyclohexane, cyclohexanedimethanol, tricyclodecane dimethanol, hydrogenated bisphenol A, hydrogenated bisphenol F, ethylene oxide adduct of bisphenol A, propylene oxide adduct of bisphenol A, ethylene oxide adduct of bisphenol F, bisphenol And propylene oxide adduct of F.
 ジオール化合物は市販品としても入手可能であり、例えば、ポリエーテルジオール化合物、ポリエステルジオール化合物、ポリカーボネートジオール化合物、ポリアルキレンジオール化合物、シリコーンジオール化合物が挙げられる。 The diol compound is also available as a commercial product, and examples thereof include polyether diol compounds, polyester diol compounds, polycarbonate diol compounds, polyalkylene diol compounds, and silicone diol compounds.
 ジオール化合物としては、ポリエチレンオキシド鎖、ポリプロピレンオキシド鎖、ポリカーボネート鎖、ポリエステル鎖、ポリブタジエン鎖、ポリイソプレン鎖、ポリアルキレン鎖およびシリコーン鎖の少なくとも1種を有していることが好ましい。また、ジオール化合物は、硫化物系固体電解質や活物質との吸着性向上の観点から、炭素-炭素不飽和結合や極性基(アルコール性水酸基、フェノール性水酸基、スルファニル基、カルボキシ基、スルホ基、スルホンアミド基、リン酸基、ニトリル基、アミノ基、双性イオン含有基、金属ヒドロキシド、金属アルコキシド)を有していることが好ましい。ジオール化合物は、例えば、2,2-ビス(ヒドロキシメチル)プロピオン酸を用いることができる。炭素-炭素不飽和結合を含有するジオール化合物は、市販品としてブレンマーGLM(日油株式会社製)、特開2007-187836号公報に記載の化合物を好適に用いることができる。 The diol compound preferably has at least one of a polyethylene oxide chain, a polypropylene oxide chain, a polycarbonate chain, a polyester chain, a polybutadiene chain, a polyisoprene chain, a polyalkylene chain, and a silicone chain. In addition, the diol compound has a carbon-carbon unsaturated bond and a polar group (alcoholic hydroxyl group, phenolic hydroxyl group, sulfanyl group, carboxy group, sulfo group, A sulfonamide group, a phosphoric acid group, a nitrile group, an amino group, a zwitterion-containing group, a metal hydroxide, and a metal alkoxide). As the diol compound, for example, 2,2-bis (hydroxymethyl) propionic acid can be used. As the diol compound containing a carbon-carbon unsaturated bond, commercially available products such as Blemmer GLM (manufactured by NOF Corporation) and JP-A No. 2007-187836 can be preferably used.
 ポリウレタンの場合、重合停止剤として、モノアルコールやモノアミンを用いることができる。重合停止剤は、ポリウレタン主鎖の末端部位に導入される。ソフトセグメントをポリウレタン末端に導入する手法として、ポリアルキレングリコールモノアルキルエーテル(ポリエチレングリコールモノアルキルエーテル、ポリプロピレンモノアルキルエーテルが好ましい)や、ポリカーボネートジオールモノアルキルエーテル、ポリエステルジオールモノアルキルエーテル、ポリエステルモノアルコールなどを用いることができる。 In the case of polyurethane, monoalcohol or monoamine can be used as a polymerization terminator. The polymerization terminator is introduced into the terminal site of the polyurethane main chain. Polyalkylene glycol monoalkyl ether (polyethylene glycol monoalkyl ether and polypropylene monoalkyl ether are preferred), polycarbonate diol monoalkyl ether, polyester diol monoalkyl ether, polyester monoalcohol, etc. Can be used.
 また、極性基や炭素-炭素不飽和結合を有するモノアルコールやモノアミンを用いることで、ポリウレタン主鎖の末端に極性基や炭素-炭素不飽和結合の導入が可能である。たとえば、ヒドロキシ酢酸、ヒドロキシプロピオン酸、4-ヒドロキシベンジルアルコール、3-メルカプト-1プロパノール、2,3-ジメルカプト-1-プロパノール、3-メルカプト-1-ヘキサノール、3-ヒドロキシプロパンスルホン酸、2-シアノエタノール、3-ヒドロキシグルタロニトリル、2-アミノエタノール、2-ヒドロキシエチルメタクリレート、2-ヒドロキシエチルアクリレート、N-メタクリレンジアミンなどが挙げられる。 Also, by using a monoalcohol or monoamine having a polar group or carbon-carbon unsaturated bond, it is possible to introduce a polar group or carbon-carbon unsaturated bond at the end of the polyurethane main chain. For example, hydroxyacetic acid, hydroxypropionic acid, 4-hydroxybenzyl alcohol, 3-mercapto-1-propanol, 2,3-dimercapto-1-propanol, 3-mercapto-1-hexanol, 3-hydroxypropanesulfonic acid, 2-cyano Examples include ethanol, 3-hydroxyglutaronitrile, 2-aminoethanol, 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, N-methacrylenediamine, and the like.
・アクリル樹脂およびビニル樹脂
 アクリル樹脂およびビニル樹脂としては、電池抵抗が小さく、イオン伝導度が向上する観点から、側鎖成分として質量平均分子量1,000以上のマクロモノマー(X)に由来する繰り返し単位が組み込まれたバインダー粒子であることが好ましい。以下、アクリル樹脂およびビニル樹脂を構成する主鎖成分および側鎖成分について説明する。
・主鎖成分
 アクリル樹脂およびビニル樹脂をなすポリマーの主鎖は特に限定されず、通常のポリマー成分を適用することができる。主鎖成分を構成するモノマーとしては、重合性不飽和結合を有するモノマーであることが好ましく、例えば各種のビニル系モノマーやアクリル系モノマーを適用することができる。アクリル系モノマーとしては、なかでも、(メタ)アクリル酸モノマー、(メタ)アクリル酸エステルモノマー、および(メタ)アクリロニトリルから選ばれるモノマーを用いることが好ましい。重合性基の数は特に限定されないが、1~4個であることが好ましい。
 主鎖をなすモノマー例としては、例えば、国際公開公報第2015/046314号パンフレット段落0041および0042に記載のモノマーが挙げられる。中でも下記モノマーを含有することが好ましい。下記例示化合物において、nは繰り返し単位数を表す。
Acrylic resin and vinyl resin As acrylic resin and vinyl resin, from the viewpoint of low battery resistance and improved ionic conductivity, repeating units derived from macromonomer (X) having a mass average molecular weight of 1,000 or more as a side chain component Binder particles in which is incorporated are preferred. Hereinafter, the main chain component and the side chain component constituting the acrylic resin and the vinyl resin will be described.
-Main chain component The main chain of the polymer forming the acrylic resin and the vinyl resin is not particularly limited, and a normal polymer component can be applied. The monomer constituting the main chain component is preferably a monomer having a polymerizable unsaturated bond, and for example, various vinyl monomers and acrylic monomers can be applied. As the acrylic monomer, it is preferable to use a monomer selected from (meth) acrylic acid monomers, (meth) acrylic acid ester monomers, and (meth) acrylonitrile. The number of polymerizable groups is not particularly limited, but is preferably 1 to 4.
Examples of the monomer constituting the main chain include monomers described in paragraphs 0041 and 0042 of International Publication No. 2015/046314. Among these, it is preferable to contain the following monomers. In the following exemplary compounds, n represents the number of repeating units.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
・側鎖成分
 マクロモノマー(X)は、質量平均分子量が1,000以上であり、2,000以上であることがより好ましく、3,000以上であることが特に好ましい。上限としては、500,000以下であることが好ましく、100,000以下であることがより好ましく、30,000以下であることが特に好ましい。バインダーが上記の範囲の分子量をもつ側鎖を有することで、より良好に有機溶剤中に均一に分散でき固体電解質粒子と混合して塗布できるようになる。
 マクロモノマーの質量平均分子量は、後述の実施例の項におけるバインダーの分子量の測定方法と同様の方法により測定することができる。
-Side chain component The macromonomer (X) has a mass average molecular weight of 1,000 or more, more preferably 2,000 or more, and particularly preferably 3,000 or more. The upper limit is preferably 500,000 or less, more preferably 100,000 or less, and particularly preferably 30,000 or less. When the binder has a side chain having a molecular weight in the above range, it can be more uniformly dispersed in the organic solvent and can be mixed and applied with the solid electrolyte particles.
The mass average molecular weight of the macromonomer can be measured by the same method as the method for measuring the molecular weight of the binder in the section of Examples described later.
 マクロモノマー(X)のSP値は10以下であることが好ましく、9.5以下であることがより好ましい。下限値は特にないが、5以上であることが実際的である。 The SP value of the macromonomer (X) is preferably 10 or less, and more preferably 9.5 or less. Although there is no particular lower limit, it is practical that it is 5 or more.
-SP値の定義-
 本明細書においてSP値は、特に断らない限り、Hoy法によって求める(H.L.Hoy Journal of Painting,1970,Vol.42,76-118)。また、SP値については単位を省略して示しているが、その単位はcal1/2cm-3/2である。なお、側鎖成分(X)のSP値は、上記側鎖をなす原料モノマーのSP値とほぼ変わらず、それにより評価してもよい。
-SP value definition-
In this specification, unless otherwise specified, the SP value is obtained by the Hoy method (HL Hoy Journal of Paining, 1970, Vol. 42, 76-118). The SP value is shown with the unit omitted, but the unit is cal 1/2 cm −3/2 . Note that the SP value of the side chain component (X) is not substantially different from the SP value of the raw material monomer forming the side chain, and may be evaluated accordingly.
 SP値は有機溶剤に分散する特性を示す指標となる。ここで、側鎖成分を特定の分子量以上とし、好ましくは上記SP値以上とすることで、固体電解質との結着性を向上させ、かつ、これにより溶媒との親和性を高め、安定に分散させることができ好ましい。 The SP value is an index indicating the characteristic of being dispersed in an organic solvent. Here, by setting the side chain component to a specific molecular weight or more, preferably to the SP value or more, the binding property with the solid electrolyte is improved, thereby improving the affinity with the solvent and stably dispersing. This is preferable.
 上記のマクロモノマー(X)は特に限定されず、通常のポリマー成分を適用することができ、特開2015-088486号公報の段落0046~0067記載のマクロモノマーが好ましい。マクロモノマー(X)は、重合性不飽和結合を有することが好ましく、例えば各種のビニル基や(メタ)アクリロイル基を有することができる。本発明においては、中でも、(メタ)アクリロイル基を有することが好ましい。 The above macromonomer (X) is not particularly limited, and ordinary polymer components can be applied. Macromonomers described in paragraphs 0046 to 0067 of JP-A-2015-088486 are preferred. The macromonomer (X) preferably has a polymerizable unsaturated bond, and can have, for example, various vinyl groups or (meth) acryloyl groups. In the present invention, it is preferable to have a (meth) acryloyl group.
 本発明に用いられるバインダーはポリマー粒子であることが好ましく、ポリマー粒子の平均粒子径の下限は、0.01μm以上が好ましく、0.05μm以上がより好ましい。一方、ポリマー粒子の平均粒子径の上限は、50μm以下が好ましく、20μm以下がより好ましく、10μm以下が特に好ましい。平均粒子径が上記好ましい範囲内にあることが出力密度向上の観点から好ましい。
 ここで、「ポリマー粒子」とは、後述の分散媒体に添加しても溶解せず粒子状のまま分散媒体に分散し、0.01μm超の平均粒子径を示すものを指す。
The binder used in the present invention is preferably polymer particles, and the lower limit of the average particle diameter of the polymer particles is preferably 0.01 μm or more, and more preferably 0.05 μm or more. On the other hand, the upper limit of the average particle diameter of the polymer particles is preferably 50 μm or less, more preferably 20 μm or less, and particularly preferably 10 μm or less. It is preferable from a viewpoint of an output density improvement that an average particle diameter exists in the said preferable range.
Here, the “polymer particles” refer to particles that do not dissolve even when added to the dispersion medium described later and are dispersed in the dispersion medium in the form of particles and exhibit an average particle diameter of more than 0.01 μm.
 本発明に用いられるポリマー粒子の平均粒子径は、特に断らない限り、以下に記載の測定条件および定義によるものとする。
 ポリマー粒子を任意の溶媒(固体電解質組成物の調製に用いる分散媒体。例えば、ヘプタン)を用いて20mlサンプル瓶中で1質量%の分散液を希釈調製する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、得られた体積平均粒子径を平均粒子径とする。その他の詳細な条件等は必要によりJISZ8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製して測定し、その平均値を採用する。
 なお、作製された全固体二次電池からの測定は、例えば、電池を分解し電極を剥がした後、その電極材料について上記ポリマー粒子の平均粒子径の測定方法に準じてその測定を行い、あらかじめ測定していたポリマー粒子以外の粒子の平均粒子径の測定値を排除することにより行うことができる。
Unless otherwise specified, the average particle size of the polymer particles used in the present invention shall be based on the measurement conditions and definitions described below.
The polymer particles are diluted and prepared in a 20 ml sample bottle using an arbitrary solvent (dispersion medium used for preparing the solid electrolyte composition, for example, heptane). The diluted dispersion sample is irradiated with 1 kHz ultrasonic waves for 10 minutes and used immediately after that. Using this dispersion liquid sample, using a laser diffraction / scattering particle size distribution measuring device LA-920 (trade name, manufactured by HORIBA), data was acquired 50 times using a quartz cell for measurement at a temperature of 25 ° C., Let the obtained volume average particle diameter be an average particle diameter. For other detailed conditions, the description of JISZ8828: 2013 “Particle Size Analysis—Dynamic Light Scattering Method” is referred to as necessary. Five samples are prepared for each level and measured, and the average value is adopted.
In addition, the measurement from the produced all-solid-state secondary battery is performed, for example, after disassembling the battery and peeling off the electrode, then measuring the electrode material according to the method for measuring the average particle diameter of the polymer particles, This can be done by eliminating the measured value of the average particle diameter of the particles other than the polymer particles that have been measured.
 ポリマー粒子は、有機ポリマー粒子であれば構造は特に限定されない。有機ポリマー粒子を構成する樹脂は、上記バインダーを構成する樹脂として記載した樹脂が挙げられ、好ましい樹脂も適用される。 The structure of the polymer particle is not particularly limited as long as it is an organic polymer particle. Examples of the resin constituting the organic polymer particles include the resins described as the resin constituting the binder, and preferred resins are also applied.
 ポリマー粒子は固形を保持していれば、形状は限定されない。ポリマー粒子は単一分散であっても多分散であってもよい。ポリマー粒子は真球状であっても扁平形状であってもよく、さらに無定形であってもよい。ポリマー粒子の表面は平滑であっても凹凸形状を形成していてもよい。ポリマー粒子はコアシェル構造を取ってもよく、コア(内核)とシェル(外殻)が同様の材料で構成されていても、異なる材質で構成されていてもよい。また中空であっても良く、中空率についても限定されない。 The shape of the polymer particles is not limited as long as they are solid. The polymer particles may be monodispersed or polydispersed. The polymer particles may be spherical or flat and may be amorphous. The surface of the polymer particles may be smooth or may have an uneven shape. The polymer particles may have a core-shell structure, and the core (inner core) and the shell (outer shell) may be made of the same material or different materials. Moreover, it may be hollow and the hollow ratio is not limited.
 ポリマー粒子は、界面活性剤、乳化剤または分散剤の存在下で重合する方法、分子量が増大するにしたがって結晶状に析出させる方法、によって合成することができる。
 また既存のポリマーを機械的に破砕する方法や、ポリマー液を再沈殿によって微粒子状にする方法を用いてもよい。
The polymer particles can be synthesized by a method of polymerizing in the presence of a surfactant, an emulsifier or a dispersant, or a method of depositing in a crystalline form as the molecular weight increases.
Moreover, you may use the method of crushing the existing polymer mechanically, and the method of making a polymer liquid fine particle by reprecipitation.
 ポリマー粒子は、例えば、市販品を用いることができ、具体的には、以下に記載の市販品(いずれも商品名で、括弧書きの数値は平均粒子径を表す。)が挙げられる。本発明に用いることの出来るポリマー粒子はこれらに限定されるものではない。 As the polymer particles, for example, commercially available products can be used, and specific examples include the following commercially available products (all are trade names, and the numerical values in parentheses indicate the average particle diameter). The polymer particles that can be used in the present invention are not limited to these.
・フッ素樹脂粒子
マイクロディスパーズシリーズ(テクノケミカル(株)社製、例えば、マイクロディスパーズ-200(PTFE粒子、200nm)、マイクロディスパーズ-3000(PTFE粒子3μm)、マイクロディスパーズ-8000(PTFE粒子、8μm))、ディスパーズイージー-300(PTFE粒子、200nm、テクノケミカル(株)社製)、
FluonADシリーズ(旭硝子(株)社製、例えば、FluonAD911E、FluonAD915E、FluonAD916E、FluonAD939E)、
アルゴフロンシリーズ(ソルベイ(株)社製、例えば、アルゴフロンF(PTFE粒子、15~35μm)、アルゴフロンS(PTFE粒子、15~35μm))、
ルブロンシリーズ(ダイキン(株)社製、例えば、ルブロンL-2(PTFE粒子、3.5μm)、ルブロンL-5(PTFE粒子、5μm)、ルブロンL-5F(PTFE粒子、4.5μm))
Fluorine resin particle microdispers series (manufactured by Techno Chemical Co., Ltd., for example, microdispers-200 (PTFE particles, 200 nm), microdispers-3000 (PTFE particles 3 μm), microdispers-8000 (PTFE particles) , 8 μm)), Disperse Easy-300 (PTFE particles, 200 nm, manufactured by Techno Chemical Co., Ltd.),
FluonAD series (Asahi Glass Co., Ltd., for example, FluonAD911E, FluonAD915E, FluonAD916E, FluonAD939E),
Algoflon series (manufactured by Solvay Co., Ltd., for example, Algoflon F (PTFE particles, 15 to 35 μm), Algoflon S (PTFE particles, 15 to 35 μm)),
Lubron series (Daikin Co., Ltd., for example, Lubron L-2 (PTFE particles, 3.5 μm), Lubron L-5 (PTFE particles, 5 μm), Lubron L-5F (PTFE particles, 4.5 μm))
・炭化水素樹脂粒子
ソフトビーズ、ザイクセン(ポリオレフィンエマルジョン)、セポルジョンG(ポリオレフィンエマルジョン)、セポレックスIR100(ポリイソプレンラテックス)、セポレックスCSM(クロロスルホン化ポリエチレンラテックス)、フローセン(ポリエチレン粉末)、フローセンUF(ポリエチレン粉末)、フローブレン(ポリプロピレン粉末)、フロービーズ(ポリエチレン-アクリル共重合粉末)(いずれも住友精化(株)社製)
・ Hydrocarbon resin particle soft beads, Saixen (polyolefin emulsion), Sepoljon G (polyolefin emulsion), Sepolex IR100 (polyisoprene latex), Sepolex CSM (chlorosulfonated polyethylene latex), Frocene (polyethylene powder), Frocene UF (polyethylene powder) ), Flowbrene (polypropylene powder), flow beads (polyethylene-acrylic copolymer powder) (all manufactured by Sumitomo Seika Co., Ltd.)
・スチレン樹脂粒子
ケミスノーKSR-3A(総研化学(株)社製)、エポスターST(日本触媒(株)社製)
・ Styrene resin particle Chemisnow KSR-3A (manufactured by Soken Chemical Co., Ltd.), Eposter ST (manufactured by Nippon Shokubai Co., Ltd.)
・アミド樹脂粒子
セポルジョンPA(共重合ナイロンエマルジョン、住友精化(株)社製)、トレパールPAI(ポリアミドイミド粒子、東レ(株)社製)
・ Amide resin particle separsion PA (copolymerized nylon emulsion, manufactured by Sumitomo Seika Co., Ltd.), Trepearl PAI (polyamideimide particles, manufactured by Toray Industries, Inc.)
・イミド樹脂粒子
ポリイミドパウダーP84(R)NT(ダイセルエヴォニック(株)社製)、
ポリイミドパウダーPIP-3、ポリイミドパウダーPIP-25、ポリイミドパウダーPIP-60(いずれもセイシン企業(株)社製)、
ポリイミドパウダーUIP-R、ポリイミドパウダーUIP-S(いずれも宇部興産(株)社製)
-Imide resin particle polyimide powder P84 (R) NT (manufactured by Daicel Evonik Co., Ltd.),
Polyimide powder PIP-3, polyimide powder PIP-25, polyimide powder PIP-60 (all manufactured by Seishin Enterprise Co., Ltd.)
Polyimide powder UIP-R, polyimide powder UIP-S (both manufactured by Ube Industries, Ltd.)
・ウレタン樹脂粒子
ダイミックビーズUCN-8070CM(7μm)、ダイミックビーズUCN-8150CM(15μm)(いずれも大日精化(株)社製)、
アートパールシリーズ(根上工業(株)社製、例えば、アートパールC、アートパールP、アートパールJB、アートパールU、アートパールCE、アートパールAK、アートパールHI、アートパールMM、アートパールFF、アートパールTK、アートパールC-TH、アートパールRW、アートパールRX、アートパールRY、アートパールRZ、アートパールRU、アートパールRV、アートパールBP)、
グロスデールSシリーズ、グロスデールMシリーズ、グロスデールVシリーズ、グロスデールTシリーズ(いずれも三井化学(株)社製)、
インフィナジー(BASF社製)
Urethane resin particle dimic beads UCN-8070CM (7 μm), dimic beads UCN-8150CM (15 μm) (both manufactured by Dainichi Seika Co., Ltd.),
Art Pearl Series (Negami Kogyo Co., Ltd., for example, Art Pearl C, Art Pearl P, Art Pearl JB, Art Pearl U, Art Pearl CE, Art Pearl AK, Art Pearl HI, Art Pearl MM, Art Pearl FF, Art Pearl TK, Art Pearl C-TH, Art Pearl RW, Art Pearl RX, Art Pearl RY, Art Pearl RZ, Art Pearl RU, Art Pearl RV, Art Pearl BP),
Grosdale S Series, Grosdale M Series, Grosdale V Series, Grosdale T Series (all manufactured by Mitsui Chemicals)
Infinergy (BASF)
・ウレア樹脂粒子
 ウレア系樹脂粒子は、国際公開第2015/046313号に記載のウレア結合を有するポリマーの粒子が好ましく用いられる。
-Urea resin particles As the urea resin particles, particles of a polymer having a urea bond described in International Publication No. 2015/046313 are preferably used.
・ポリエステル樹脂粒子
セポルジョンES(共重合ポリエステルエマルジョン、住友精化(株)社製)
・ Polyester resin particle Sepulsion ES (copolymerized polyester emulsion, manufactured by Sumitomo Seika Co., Ltd.)
・ポリエーテル樹脂粒子
トレパールPPS(ポリフェニレンスルフィド粒子、東レ(株)社製)、トレパールPES(ポリエーテルスルホン粒子、東レ(株)社製)
・ Polyether resin particles Trepearl PPS (polyphenylene sulfide particles, manufactured by Toray Industries, Inc.), Trepal PES (Polyethersulfone particles, manufactured by Toray Industries, Inc.)
・フェノール樹脂粒子
LPSシリーズ(リグナイト(株)社製)、マリリンFMシリーズ(群栄化学工業(株)社製)、マリリンHFシリーズ(群栄化学工業(株)社製)
・ Phenol resin particle LPS series (manufactured by Lignite Co., Ltd.), Marilyn FM series (manufactured by Gunei Chemical Industry Co., Ltd.), Marilyn HF series (manufactured by Gunei Chemical Industry Co., Ltd.)
・エポキシ樹脂粒子
トレパールEP(エポキシ樹脂粒子、東レ(株)社製)
・ Epoxy resin particles Trepal EP (epoxy resin particles, manufactured by Toray Industries, Inc.)
・ポリカーボネート樹脂粒子
 ポリカーボネート樹脂粒子は、例えば、国際公開2011/004730号パンフレットに記載の方法で合成したポリカーボネート樹脂の粒子を使用できる。具体的には、ポリカーボネート樹脂は、エポキシ化合物に二酸化炭素を反応させることで重合することが可能である。
-Polycarbonate resin particle The polycarbonate resin particle can use the particle | grains of the polycarbonate resin synthesize | combined by the method as described in international publication 2011/004730 pamphlet, for example. Specifically, the polycarbonate resin can be polymerized by reacting an epoxy compound with carbon dioxide.
・シリコーン樹脂粒子
シーホスターKEシリーズ(日本触媒(株)社製、例えば、シーホスターKE-Eシリーズ、シーホスターKE-Wシリーズ、シーホスターKE-Pシリーズ、シーホスターKE-Sシリーズ)、
シリコーン複合パウダーシリーズ(例えば、シリコーン複合パウダーKMP-600、シリコーン複合パウダーKMP-601、シリコーン複合パウダーKMP-602、シリコーン複合パウダーKMP-605、シリコーン複合パウダーX-52-7030)、シリコーンレジンパウダーシリーズ(例えば、シリコーンレジンパウダーKMP-590、シリコーンレジンパウダーKMP-701、シリコーンレジンパウダーX-52-854、シリコーンレジンパウダーX-52-1621)、シリコーンゴムパウダーシリーズ(例えば、シリコーンゴムパウダーKMP-597、シリコーンゴムパウダーKMP-598、シリコーンゴムパウダーKMP-594、シリコーンゴムパウダーX-52-875)(いずれも信越シリコーン(株)社製)、
シャリーヌR-170S(シリコーンアクリル共重合、日信化学工業(株)社製)
Silicone resin particle Seahoster KE series (manufactured by Nippon Shokubai Co., Ltd., for example, Seahoster KE-E series, Seahoster KE-W series, Seahoster KE-P series, Seahoster KE-S series),
Silicone composite powder series (for example, silicone composite powder KMP-600, silicone composite powder KMP-601, silicone composite powder KMP-602, silicone composite powder KMP-605, silicone composite powder X-52-7030), silicone resin powder series ( For example, silicone resin powder KMP-590, silicone resin powder KMP-701, silicone resin powder X-52-854, silicone resin powder X-52-1621), silicone rubber powder series (for example, silicone rubber powder KMP-597, silicone Rubber powder KMP-598, silicone rubber powder KMP-594, silicone rubber powder X-52-875 ) Made by the company),
Charine R-170S (silicone acrylic copolymer, manufactured by Nissin Chemical Industry Co., Ltd.)
 バインダーのガラス転移温度は、上限は50℃以下が好ましく、0℃以下がさらに好ましく、-20℃以下が最も好ましい。下限は-100℃以上が好ましく、-70℃以上がさらに好ましく、-50℃以上が最も好ましい。 The upper limit of the glass transition temperature of the binder is preferably 50 ° C. or lower, more preferably 0 ° C. or lower, and most preferably −20 ° C. or lower. The lower limit is preferably −100 ° C. or higher, more preferably −70 ° C. or higher, and most preferably −50 ° C. or higher.
 ガラス転移温度(Tg)は、乾燥試料を用いて、示差走査熱量計「X-DSC7000」(SII・ナノテクノロジー(株)社製)を用いて下記の条件で測定する。測定は同一の試料で二回実施し、二回目の測定結果を採用する。
    測定室内の雰囲気:窒素(50mL/min)
    昇温速度:5℃/min
    測定開始温度:-100℃
    測定終了温度:200℃
    試料パン:アルミニウム製パン
    測定試料の質量:5mg
    Tgの算定:DSCチャートの下降開始点と下降終了点の中間温度の小数点以下を四捨五入することでTgを算定する。
The glass transition temperature (Tg) is measured by using a differential scanning calorimeter “X-DSC7000” (manufactured by SII Nanotechnology Co., Ltd.) under the following conditions using a dry sample. The measurement is performed twice on the same sample, and the second measurement result is adopted.
Measurement chamber atmosphere: Nitrogen (50 mL / min)
Temperature increase rate: 5 ° C / min
Measurement start temperature: -100 ° C
Measurement end temperature: 200 ° C
Sample pan: Aluminum pan Mass of measurement sample: 5 mg
Calculation of Tg: Tg is calculated by rounding off the decimal point of the intermediate temperature between the lowering start point and the lowering end point of the DSC chart.
 本発明に用いられるバインダーを構成するポリマー(好ましくはポリマー粒子)の水分濃度は、100ppm(質量基準)以下が好ましく、Tgは100℃以下が好ましい。
 また、本発明に用いられるバインダーを構成するポリマーは、晶析させて乾燥させてもよい、ポリマー溶液をそのまま用いてもよい。金属系触媒(ウレタン化、ポリエステル化触媒であるスズ、チタン、ビスマス触媒)は少ない方が好ましい。重合時に少なくするか、晶析で触媒を除くことで、共重合体中の金属濃度を、100ppm(質量基準)以下とすることが好ましい。
The water concentration of the polymer (preferably polymer particles) constituting the binder used in the present invention is preferably 100 ppm (mass basis) or less, and Tg is preferably 100 ° C. or less.
Moreover, the polymer which comprises the binder used for this invention may be crystallized and dried, and the polymer solution may be used as it is. It is preferable that the amount of metal catalyst (urethane-forming, polyester-forming catalyst, tin, titanium, bismuth catalyst) is small. It is preferable that the metal concentration in the copolymer be 100 ppm (mass basis) or less by reducing the amount during polymerization or removing the catalyst by crystallization.
 ポリマーの重合反応に用いる溶媒は、特に限定されない。なお、無機固体電解質や活物質と反応しないこと、さらにそれらを分解しない溶媒を用いることが望ましい。例えば、炭化水素系溶媒(トルエン、ヘプタン、キシレン)やエステル系溶媒(酢酸エチル、プロピレングリコールモノメチルエーテルアセテート)、エーテル系溶媒(テトラヒドロフラン、ジオキサン、1,2-ジエトキシエタン)、ケトン系溶媒(アセトン、メチルエチルケトン、シクロヘキサノン)、ニトリル系溶媒(アセトニトリル、プロピオニトリル、ブチロニトリル、イソブチロニトリル)、ハロゲン系溶媒(ジクロロメタン、クロロホルム)などを用いることができる。 The solvent used for the polymerization reaction of the polymer is not particularly limited. It is desirable to use a solvent that does not react with the inorganic solid electrolyte or the active material and that does not decompose them. For example, hydrocarbon solvents (toluene, heptane, xylene), ester solvents (ethyl acetate, propylene glycol monomethyl ether acetate), ether solvents (tetrahydrofuran, dioxane, 1,2-diethoxyethane), ketone solvents (acetone) , Methyl ethyl ketone, cyclohexanone), nitrile solvents (acetonitrile, propionitrile, butyronitrile, isobutyronitrile), halogen solvents (dichloromethane, chloroform) and the like.
 本発明に用いられるバインダーを構成するポリマーの質量平均分子量は10,000以上が好ましく、20,000以上がより好ましく、50,000以上がさらに好ましい。上限としては、1,000,000以下が好ましく、200,000以下がより好ましく、100,000以下がさらに好ましい。
 本発明において、ポリマーの分子量は、特に断らない限り、質量平均分子量を意味する。
 ポリマーの質量平均分子量は、後述の実施例の項におけるバインダーの分子量の測定方法と同様の方法により測定することができる。
The polymer constituting the binder used in the present invention preferably has a mass average molecular weight of 10,000 or more, more preferably 20,000 or more, and even more preferably 50,000 or more. As an upper limit, 1,000,000 or less is preferable, 200,000 or less is more preferable, and 100,000 or less is more preferable.
In the present invention, the molecular weight of the polymer means a mass average molecular weight unless otherwise specified.
The mass average molecular weight of the polymer can be measured by the same method as the method for measuring the molecular weight of the binder in the section of Examples described later.
(分散剤)
 本発明の固体電解質組成物は、分散剤を含有することも好ましい。分散剤を添加することで電極活物質および無機固体電解質のいずれかの含有量が多い場合においてもその凝集を抑制し、均一な電極層および固体電解質層を形成することができる、出力密度向上に効果を奏する。
(Dispersant)
The solid electrolyte composition of the present invention preferably contains a dispersant. By adding a dispersant, even when the content of either the electrode active material or the inorganic solid electrolyte is large, the aggregation can be suppressed, and a uniform electrode layer and solid electrolyte layer can be formed. There is an effect.
 分散剤は分子量200以上3000未満の化合物で、官能基群(A)で示される官能基群から選択される少なくとも1種と、炭素数8以上のアルキル基または炭素数10以上のアリール基を同一分子内に含有することが好ましい。
官能基群(A):酸性基、塩基性窒素原子を有する基、(メタ)アクリル基、(メタ)アクリルアミド基、アルコキシシリル基、エポキシ基、オキセタニル基、イソシアナト基、シアノ基、スルファニル基及びヒドロキシ基
The dispersant is a compound having a molecular weight of 200 or more and less than 3000, and at least one selected from the functional group represented by the functional group (A) is the same as an alkyl group having 8 or more carbon atoms or an aryl group having 10 or more carbon atoms. It is preferably contained in the molecule.
Functional group (A): acidic group, group having basic nitrogen atom, (meth) acryl group, (meth) acrylamide group, alkoxysilyl group, epoxy group, oxetanyl group, isocyanato group, cyano group, sulfanyl group and hydroxy Base
 分散剤の分子量としては好ましくは300以上2,000未満であり、より好ましくは500以上1,000未満である。上記上限値未満であると、粒子の凝集が生じにくくなり、出力の低下を効果的に抑制することができる。また上記下限値以上であると、固体電解質組成物スラリーを塗布し乾燥する段階で揮発しにくくなる。 The molecular weight of the dispersant is preferably 300 or more and less than 2,000, more preferably 500 or more and less than 1,000. When it is less than the above upper limit value, the aggregation of particles is less likely to occur, and the reduction in output can be effectively suppressed. Moreover, it becomes difficult to volatilize in the step which apply | coats and dries a solid electrolyte composition slurry as it is more than the said lower limit.
 分散剤の含有量は、本発明の固体電解質組成物の全固形成分に対して0.01~10質量%が好ましく、0.1~5質量%が好ましく、1~3質量%がより好ましい。 The content of the dispersing agent is preferably 0.01 to 10% by mass, more preferably 0.1 to 5% by mass, and more preferably 1 to 3% by mass with respect to the total solid components of the solid electrolyte composition of the present invention.
(リチウム塩)
 本発明の固体電解質組成物は、リチウム塩を含有することも好ましい。
 リチウム塩としては、通常この種の製品に用いられるリチウム塩が好ましく、特に制限はなく、例えば、特開2015-088486の段落0082~0085記載のリチウム塩が好ましい。
(Lithium salt)
The solid electrolyte composition of the present invention preferably contains a lithium salt.
The lithium salt is preferably a lithium salt usually used in this type of product, and is not particularly limited. For example, the lithium salts described in paragraphs 0082 to 0085 of JP-A-2015-088486 are preferable.
 リチウム塩の含有量は、固体電解質100質量部に対して0質量部以上が好ましく、5質量部以上がより好ましい。上限としては、50質量部以下が好ましく、20質量部以下がより好ましい。 The content of the lithium salt is preferably 0 parts by mass or more, more preferably 5 parts by mass or more with respect to 100 parts by mass of the solid electrolyte. As an upper limit, 50 mass parts or less are preferable, and 20 mass parts or less are more preferable.
(導電助剤)
 次に、本発明の固体電解質組成物に用いることができる導電助剤について説明する。一般的な導電助剤として知られているものを用いることができる。例えば、電子伝導性材料である、天然黒鉛、人造黒鉛などの黒鉛類、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどのカーボンブラック類、ニードルコークスなどの無定形炭素、気相成長炭素繊維やカーボンナノチューブなどの炭素繊維類、グラフェンやフラーレンなどの炭素質材料であっても良いし、銅、ニッケルなどの金属粉、金属繊維でも良く、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリフェニレン誘導体など導電性高分子を用いても良い。またこれらの内1種を用いても良いし、2種以上を用いても良い。
(Conductive aid)
Next, the conductive additive that can be used in the solid electrolyte composition of the present invention will be described. What is known as a general conductive support agent can be used. For example, graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black, ketjen black and furnace black, amorphous carbon such as needle coke, vapor-grown carbon fiber and carbon nanotubes, which are electron conductive materials Carbon fibers such as graphene, carbonaceous materials such as graphene and fullerene, metal powders such as copper and nickel, and metal fibers may be used, and conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene, and polyphenylene derivatives may be used. It may be used. Moreover, 1 type may be used among these and 2 or more types may be used.
(正極活物質)
 次に、本発明の固体電解質組成物に用いることができる正極活物質について説明する。本発明の固体電解質組成物が正極活物質層の形成材料として用いられる場合、本発明の固体電解質組成物は正極活物質を含有する。
 正極活物質には可逆的にリチウムイオンを挿入および放出できるものが好ましい。その材料は、特に制限はなく、遷移金属酸化物や、硫黄などのLiと複合化できる元素などでもよい。中でも、遷移金属酸化物を用いることが好ましく、遷移金属元素としてCo、Ni、Fe、Mn、Cu、Vから選択される1種以上の元素を有することがより好ましい。遷移金属酸化物の具体例としては、(MA)層状岩塩型構造を有する遷移金属化合物、(MB)スピネル型構造を有する遷移金属酸化物、(MC)リチウム含有遷移金属リン酸化合物、(MD)リチウム含有遷移金属ハロゲン化リン酸化合物、(ME)リチウム含有遷移金属ケイ酸化物等が挙げられる。
(MA)層状岩塩型構造を有する遷移金属化合物の具体例として、LiCoO(コバルト酸リチウム[LCO])、LiNi(ニッケル酸リチウム)LiNi0.85Co0.1Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi0.33Co0.33Mn0.33(ニッケルマンガンコバルト酸リチウム[NMC])、LiNi0.5Mn0.5(マンガンニッケル酸リチウム)が挙げられる。
(MB)スピネル型構造を有する遷移金属酸化物の具体例として、LiCoMnO4、LiFeMn、LiCuMn、LiCrMn8、LiNiMnが挙げられる。
(MC)リチウム含有遷移金属リン酸化物としては、例えば、LiFePO、LiFe(PO等のオリビン型リン酸鉄塩、LiFeP等のピロリン酸鉄類、LiCoPO等のリン酸コバルト類、Li(PO(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
(MD)リチウム含有遷移金属ハロゲン化リン酸化物としては、例えば、LiFePOF等のフッ化リン酸鉄塩、LiMnPOF等のフッ化リン酸マンガン塩、LiCoPOF等のフッ化リン酸コバルト類が挙げられる。
(ME)リチウム含有遷移金属ケイ酸化物としては、例えば、LiFeSiO、LiMnSiO、LiCoSiO等が挙げられる。
(Positive electrode active material)
Next, the positive electrode active material that can be used in the solid electrolyte composition of the present invention will be described. When the solid electrolyte composition of the present invention is used as a material for forming a positive electrode active material layer, the solid electrolyte composition of the present invention contains a positive electrode active material.
The positive electrode active material is preferably one that can reversibly insert and release lithium ions. The material is not particularly limited, and may be a transition metal oxide or an element that can be combined with Li such as sulfur. Among them, it is preferable to use a transition metal oxide, and it is more preferable to have one or more elements selected from Co, Ni, Fe, Mn, Cu, and V as a transition metal element. Specific examples of transition metal oxides include (MA) transition metal compounds having a layered rock salt structure, (MB) transition metal oxides having a spinel structure, (MC) lithium-containing transition metal phosphate compounds, (MD) Examples include lithium-containing transition metal halide phosphate compounds, (ME) lithium-containing transition metal silicates, and the like.
(MA) As specific examples of transition metal compounds having a layered rock salt structure, LiCoO 2 (lithium cobaltate [LCO]), LiNi 2 O 2 (lithium nickelate) LiNi 0.85 Co 0.1 Al 0.05 O 2 (nickel cobalt lithium aluminum oxide [NCA]), LiNi 0.33 Co 0.33 Mn 0.33 O 2 (nickel manganese lithium cobalt oxide [NMC]), LiNi 0.5 Mn 0.5 O 2 (manganese nickel) Acid lithium).
Specific examples of the transition metal oxide having an (MB) spinel structure include LiCoMnO 4, Li 2 FeMn 3 O 8 , Li 2 CuMn 3 O 8 , Li 2 CrMn 3 O 8, and Li 2 NiMn 3 O 8. .
Examples of (MC) lithium-containing transition metal phosphates include olivine-type iron phosphate salts such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , LiCoPO 4 and the like. And monoclinic Nasicon type vanadium phosphate salts such as Li 3 V 2 (PO 4 ) 3 (vanadium lithium phosphate).
The (MD) lithium-containing transition metal halide phosphorus oxide, for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F, Li 2 CoPO 4 F Cobalt fluorophosphates such as
Examples of the (ME) lithium-containing transition metal silicate include Li 2 FeSiO 4 , Li 2 MnSiO 4 , Li 2 CoSiO 4, and the like.
 本発明の固体電解質組成物に使用することができる正極活物質の体積平均粒子径(球換算平均粒子径)は特に限定されない。なお、0.1μm~50μmが好ましい。正極活性物質を所定の粒子径にするには、通常の粉砕機や分級機を用いればよい。焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。正極活物質の体積平均粒子径は、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて測定することができる。 The volume average particle diameter (sphere conversion average particle diameter) of the positive electrode active material that can be used in the solid electrolyte composition of the present invention is not particularly limited. In addition, 0.1 μm to 50 μm is preferable. In order to make the positive electrode active substance have a predetermined particle size, a normal pulverizer or classifier may be used. The positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent. The volume average particle diameter of the positive electrode active material can be measured using a laser diffraction / scattering particle size distribution analyzer LA-920 (trade name, manufactured by HORIBA).
 正極活物質の濃度は特に限定されないが、正極活物質層を形成するための固体電解質組成物中、固形成分100質量%において、10~90質量%が好ましく、20~80質量%がより好ましい。 The concentration of the positive electrode active material is not particularly limited, but is preferably 10 to 90% by mass, more preferably 20 to 80% by mass in 100% by mass of the solid component in the solid electrolyte composition for forming the positive electrode active material layer.
 上記正極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。 The positive electrode active materials may be used singly or in combination of two or more.
(負極活物質)
 次に、本発明の固体電解質組成物に用いることができる負極活物質について説明する。本発明の固体電解質組成物が負極活物質層の形成材料として用いられる場合、本発明の固体電解質組成物は負極活物質を含有する。
 負極活物質としては、可逆的にリチウムイオンを挿入および放出できるものが好ましい。その材料は、特に制限はなく、炭素質材料、酸化錫や酸化ケイ素等の金属酸化物、金属複合酸化物、リチウム単体やリチウムアルミニウム合金等のリチウム合金、及び、SnやSi、AlおよびIn等のリチウムと合金形成可能な金属等が挙げられる。なかでも炭素質材料又はリチウム複合酸化物が信頼性の点から好ましく用いられる。また、金属複合酸化物としては、リチウムを吸蔵、放出可能であることが好ましい。その材料は、特には制限されないが、構成成分としてチタン及び/又はリチウムを含有していることが、高電流密度充放電特性の観点で好ましい。
(Negative electrode active material)
Next, the negative electrode active material that can be used in the solid electrolyte composition of the present invention will be described. When the solid electrolyte composition of the present invention is used as a material for forming a negative electrode active material layer, the solid electrolyte composition of the present invention contains a negative electrode active material.
As the negative electrode active material, those capable of reversibly inserting and releasing lithium ions are preferable. The material is not particularly limited, and is a carbonaceous material, a metal oxide such as tin oxide or silicon oxide, a metal composite oxide, a lithium alloy such as a simple substance of lithium or a lithium aluminum alloy, Sn, Si, Al, In, etc. And metals that can form an alloy with lithium. Of these, carbonaceous materials or lithium composite oxides are preferably used from the viewpoint of reliability. In addition, the metal composite oxide is preferably capable of inserting and extracting lithium. The material is not particularly limited, but preferably contains titanium and / or lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics.
 負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、天然黒鉛、気相成長黒鉛等の人造黒鉛、及びPAN(ポリアクリロニトリル)系の樹脂やフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。さらに、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA(ポリビニルアルコール)系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維、活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカー、平板状の黒鉛等を挙げることもできる。 The carbonaceous material used as the negative electrode active material is a material substantially made of carbon. Examples thereof include carbonaceous materials obtained by firing various synthetic resins such as artificial pitches such as petroleum pitch, natural graphite, and vapor-grown graphite, and PAN (polyacrylonitrile) -based resins and furfuryl alcohol resins. Further, various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA (polyvinyl alcohol) -based carbon fiber, lignin carbon fiber, glassy carbon fiber, activated carbon fiber, etc. And mesophase microspheres, graphite whiskers, flat graphite and the like.
 負極活物質として適用される金属酸化物及び金属複合酸化物としては、特に非晶質酸化物が好ましく、さらに金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイトも好ましく用いられる。ここでいう非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。2θ値で40°以上70°以下に見られる結晶性の回折線の内最も強い強度が、2θ値で20°以上40°以下に見られるブロードな散乱帯の頂点の回折線強度の100倍以下であるのが好ましく、5倍以下であるのがより好ましく、結晶性の回折線を有さないことが特に好ましい。 As the metal oxide and metal composite oxide applied as the negative electrode active material, an amorphous oxide is particularly preferable, and chalcogenite, which is a reaction product of a metal element and an element of Group 16 of the periodic table, is also preferably used. It is done. The term “amorphous” as used herein means an X-ray diffraction method using CuKα rays, which has a broad scattering band having a peak in the region of 20 ° to 40 ° in terms of 2θ, and is a crystalline diffraction line. You may have. The strongest intensity of crystalline diffraction lines seen from 2 ° to 40 ° to 70 ° is 100 times the diffraction line intensity at the peak of the broad scattering band seen from 2 ° to 20 °. It is preferable that it is 5 times or less, and it is particularly preferable not to have a crystalline diffraction line.
 上記非晶質酸化物及びカルコゲナイドからなる化合物群のなかでも、半金属元素の非晶質酸化物、及びカルコゲナイドがより好ましく、周期律表第13(IIIB)族~15(VB)族の元素、Al、Ga、Si、Sn、Ge、Pb、Sb、Biの一種単独あるいはそれらの2種以上の組み合わせからなる酸化物、及びカルコゲナイドが特に好ましい。好ましい非晶質酸化物及びカルコゲナイドの具体例としては、例えば、Ga、SiO、GeO、SnO、SnO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、Sb、Bi、Bi、SnSiO、GeS、SnS、SnS、PbS、PbS、Sb、Sb、SnSiSなどが好ましく挙げられる。また、これらは、酸化リチウムとの複合酸化物、例えば、LiSnOであってもよい。 Among the group of compounds consisting of the above amorphous oxide and chalcogenide, amorphous metal oxides and chalcogenides are more preferable, and elements in groups 13 (IIIB) to 15 (VB) of the periodic table are preferable. Particularly preferred are oxides and chalcogenides composed of one kind of Al, Ga, Si, Sn, Ge, Pb, Sb, Bi or a combination of two or more kinds thereof. Specific examples of preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , Bi 2 O 3 , Bi 2 O 4 , SnSiO 3 , GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 , such as SnSiS 3 may preferably be mentioned. Moreover, these may be a complex oxide with lithium oxide, for example, Li 2 SnO 2 .
 負極活物質の体積平均粒子径は、0.1μm~60μmが好ましい。所定の粒子径にするには、任意の粉砕機や分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミルや篩などが好適に用いられる。粉砕時には水、あるいはメタノール等の有機溶媒を共存させた湿式粉砕も必要に応じて行うことができる。所望の粒子径とするためには分級を行うことが好ましい。分級方法としては特に限定はなく、篩、風力分級機などを必要に応じて用いることができる。分級は乾式、湿式ともに用いることができる。負極活物質粒子の体積平均粒子径は、前述の正極活物質の体積平均粒子径の測定方法と同様の方法により測定することができる。 The volume average particle diameter of the negative electrode active material is preferably 0.1 μm to 60 μm. In order to obtain a predetermined particle size, an arbitrary pulverizer or classifier is used. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill or a sieve is preferably used. When pulverizing, wet pulverization in the presence of water or an organic solvent such as methanol can be performed as necessary. In order to obtain a desired particle diameter, classification is preferably performed. The classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as necessary. Classification can be used both dry and wet. The volume average particle diameter of the negative electrode active material particles can be measured by the same method as the above-described method for measuring the volume average particle diameter of the positive electrode active material.
 負極活物質はチタン原子を含有することも好ましい。より具体的にはLiTi12がリチウムイオンの吸蔵放出時の体積変動が小さいことから急速充放電特性に優れ、電極の劣化が抑制されリチウムイオン二次電池の寿命向上が可能となる点で好ましい。 It is also preferable that the negative electrode active material contains a titanium atom. More specifically, since Li 4 Ti 5 O 12 has a small volume fluctuation at the time of occlusion and release of lithium ions, it has excellent rapid charge / discharge characteristics, suppresses electrode deterioration, and improves the life of lithium ion secondary batteries. This is preferable.
 負極活物質の濃度は特に限定されないが、固体電解質組成物中、固形成分100質量%において、10~80質量%であることが好ましく、20~70質量%であることがより好ましい。 The concentration of the negative electrode active material is not particularly limited, but is preferably 10 to 80% by mass, more preferably 20 to 70% by mass in 100% by mass of the solid component in the solid electrolyte composition.
 上記負極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。 The negative electrode active materials may be used alone or in combination of two or more.
(分散媒体)
 本発明の固体電解質組成物は、上記の各成分を分散させるため、分散媒体を含有することが好ましい。分散媒体の具体例としては下記のものが挙げられる。
(Dispersion medium)
The solid electrolyte composition of the present invention preferably contains a dispersion medium in order to disperse each of the above components. Specific examples of the dispersion medium include the following.
 アルコール化合物溶媒としては、例えば、メチルアルコール、エチルアルコール、1-プロピルアルコール、2-プロピルアルコール、2-ブタノール、エチレングリコール、プロピレングリコール、グリセリン、1,6-ヘキサンジオール、シクロヘキサンジオール、ソルビトール、キシリトール、2-メチル-2,4-ペンタンジオール、1,3-ブタンジオール、1,4-ブタンジオールが挙げられる。 Examples of the alcohol compound solvent include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, cyclohexanediol, sorbitol, xylitol, Examples include 2-methyl-2,4-pentanediol, 1,3-butanediol, and 1,4-butanediol.
 エーテル化合物溶媒としては、アルキレングリコールアルキルエーテル(エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール、ジプロピレングリコール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコール、ポリエチレングリコール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル等)、ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサンが挙げられる。 Examples of ether compound solvents include alkylene glycol alkyl ethers (ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol monomethyl ether, dipropylene. Glycol monomethyl ether, tripropylene glycol monomethyl ether, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether, etc.), dimethyl ether, diethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, and dioxane.
 アミド化合物溶媒としては、例えば、N,N-ジメチルホルムアミド、1-メチル-2-ピロリドン(NMP)、2-ピロリジノン、1,3-ジメチル-2-イミダゾリジノン、2-ピロリジノン、ε-カプロラクタム、ホルムアミド、N-メチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロパンアミド、ヘキサメチルホスホリックトリアミドなどが挙げられる。 Examples of the amide compound solvent include N, N-dimethylformamide, 1-methyl-2-pyrrolidone (NMP), 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ε-caprolactam, Examples include formamide, N-methylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide, hexamethylphosphoric triamide, and the like.
 アミノ化合物溶媒としては、例えば、トリエチルアミン、ジイソプロピルエチルアミン、トリブチルアミンなどが挙げられる。 Examples of the amino compound solvent include triethylamine, diisopropylethylamine, tributylamine and the like.
 ケトン化合物溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンが挙げられる。 Examples of the ketone compound solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
 芳香族化合物溶媒としては、例えば、ベンゼン、トルエン、キシレンなどが挙げられる。 Examples of the aromatic compound solvent include benzene, toluene, xylene and the like.
 脂肪族化合物溶媒としては、例えば、ヘキサン、ヘプタン、オクタン、デカンなどが挙げられる。 Examples of the aliphatic compound solvent include hexane, heptane, octane, decane and the like.
 ニトリル化合物溶媒としては、例えば、アセトニトリル、プロピロニトリル、ブチロニトリルなどが挙げられる。 Examples of the nitrile compound solvent include acetonitrile, propyronitrile, butyronitrile, and the like.
 非水系分散媒体としては、上記芳香族化合物溶媒、脂肪族化合物溶媒等が挙げられる。 Examples of the non-aqueous dispersion medium include the above aromatic compound solvents and aliphatic compound solvents.
 本発明において、これらの中でも脂肪族化合物溶媒、芳香族化合物溶媒およびアミド化合物溶媒が好ましく、ヘプタン、トルエンおよびNMPがより好ましく、ヘプタンが特に好ましい。 In the present invention, among these, aliphatic compound solvents, aromatic compound solvents and amide compound solvents are preferred, heptane, toluene and NMP are more preferred, and heptane is particularly preferred.
 分散媒体は常圧(1気圧)での沸点が50℃以上であることが好ましく、70℃以上であることがより好ましい。上限は250℃以下であることが好ましく、220℃以下であることがさらに好ましい。上記分散媒体は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。 The dispersion medium preferably has a boiling point of 50 ° C. or higher, more preferably 70 ° C. or higher at normal pressure (1 atm). The upper limit is preferably 250 ° C. or lower, and more preferably 220 ° C. or lower. The said dispersion medium may be used individually by 1 type, or may be used in combination of 2 or more type.
 固体電解質組成物の全質量100質量部に対する分散媒体の含有量は、5~95質量部が好ましく、10~90質量部が好ましく、30~70質量部がさらに好ましい。 The content of the dispersion medium with respect to the total mass of 100 parts by mass of the solid electrolyte composition is preferably 5 to 95 parts by mass, preferably 10 to 90 parts by mass, and more preferably 30 to 70 parts by mass.
<全固体二次電池の作製>
 全固体二次電池の作製は常法によればよい。具体的には、本発明の固体電解質組成物を集電体となる金属箔上に塗布し、塗膜を形成した全固体二次電池用電極シートとする方法が挙げられる。
 例えば、正極集電体である金属箔上に正極材料となる本発明の固体電解質組成物を塗布し、正極活物質層を形成し、全固体二次電池用正極シートを作製する。正極活物質層の上に、固体電解質層材料となる本発明の固体電解質組成物を塗布し、固体電解質層を形成する。さらに、固体電解質層の上に、負極材料となる本発明の固体電解質組成物を塗布し、負極活物質層を形成する。負極活物質層の上に、負極側の集電体(金属箔)を重ねることで、正極活物質層と負極活物質層の間に、固体電解質層が挟まれた全固体二次電池の構造を得ることができる。
<Preparation of all-solid secondary battery>
The all-solid-state secondary battery may be manufactured by a conventional method. Specifically, the solid electrolyte composition of this invention is apply | coated on the metal foil used as a collector, and the method of setting it as the electrode sheet for all-solid-state secondary batteries which formed the coating film is mentioned.
For example, the solid electrolyte composition of the present invention as a positive electrode material is applied onto a metal foil that is a positive electrode current collector to form a positive electrode active material layer, and a positive electrode sheet for an all-solid secondary battery is produced. On the positive electrode active material layer, the solid electrolyte composition of the present invention as a solid electrolyte layer material is applied to form a solid electrolyte layer. Furthermore, on the solid electrolyte layer, the solid electrolyte composition of the present invention as a negative electrode material is applied to form a negative electrode active material layer. The structure of an all-solid-state secondary battery in which a solid electrolyte layer is sandwiched between a positive electrode active material layer and a negative electrode active material layer by overlapping a negative electrode current collector (metal foil) on the negative electrode active material layer Can be obtained.
 本発明の全固体二次電池において、電極層は活物質を含有する。イオン伝導性を向上させる観点から、電極層は上記無機固体電解質を含有することが好ましい。また、固体粒子間、電極層-固体電解質層間および電極層-集電体間等の結着性向上の観点から、電極層はバインダーを含有することが好ましい。
 固体電解質層は、無機固体電解質を含有する。固体粒子間および層間の結着性向上の観点から、固体電解質層はバインダーを含有することが好ましい。
In the all solid state secondary battery of the present invention, the electrode layer contains an active material. From the viewpoint of improving ion conductivity, the electrode layer preferably contains the inorganic solid electrolyte. The electrode layer preferably contains a binder from the viewpoint of improving the binding between the solid particles, between the electrode layer and the solid electrolyte layer, and between the electrode layer and the current collector.
The solid electrolyte layer contains an inorganic solid electrolyte. From the viewpoint of improving the binding between the solid particles and between the layers, the solid electrolyte layer preferably contains a binder.
 なお、上記の各組成物の塗布方法は常法によればよい。このとき、正極活物質層を形成するための組成物、無機固体電解質層を形成するための組成物および負極活物質層を形成するための組成物は、それぞれ塗布した後に乾燥処理を施してもよいし、重層塗布した後に乾燥処理をしてもよい。乾燥温度は特に限定されない。なお、下限は30℃以上が好ましく、60℃以上がより好ましく、上限は、300℃以下が好ましく、250℃以下がより好ましい。このような温度範囲で加熱することで、分散媒体を除去し、固体状態にすることができる。 In addition, the application | coating method of said each composition should just be based on a conventional method. At this time, the composition for forming the positive electrode active material layer, the composition for forming the inorganic solid electrolyte layer, and the composition for forming the negative electrode active material layer may be subjected to a drying treatment after being applied. Alternatively, after the multilayer coating, a drying process may be performed. The drying temperature is not particularly limited. The lower limit is preferably 30 ° C or higher, more preferably 60 ° C or higher, and the upper limit is preferably 300 ° C or lower, more preferably 250 ° C or lower. By heating in such a temperature range, a dispersion medium can be removed and it can be set as a solid state.
 本発明の全固体二次電池は種々の用途に適用することができる。適用態様には特に限定はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどが挙げられる。その他民生用として、自動車、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。 The all solid state secondary battery of the present invention can be applied to various uses. Although there is no particular limitation on the application mode, for example, when installed in an electronic device, a notebook computer, a pen input personal computer, a mobile personal computer, an electronic book player, a mobile phone, a cordless phone, a pager, a handy terminal, a mobile fax machine, a mobile phone Copy, portable printer, headphone stereo, video movie, LCD TV, handy cleaner, portable CD, minidisc, electric shaver, transceiver, electronic notebook, calculator, portable tape recorder, radio, backup power supply, memory card, etc. Other consumer products include automobiles, electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (such as pacemakers, hearing aids, and shoulder grinders). Furthermore, it can be used for various military use and space use. Moreover, it can also combine with a solar cell.
 なかでも、高容量かつ高レート放電特性が要求されるアプリケーションに適用することが好ましい。例えば、今後大容量化が予想される蓄電設備等においては高い安全性が必須となりさらに電池性能との両立が要求される。また、電気自動車などは高容量の二次電池を搭載し、家庭で日々充電が行われる用途が想定され、過充電時に対して一層の安全性が求められる。本発明によれば、このような使用形態に好適に対応してその優れた効果を発揮することができる。 Especially, it is preferable to apply to applications that require high capacity and high rate discharge characteristics. For example, in power storage facilities and the like that are expected to increase in capacity in the future, high safety is essential, and further compatibility with battery performance is required. In addition, electric vehicles and the like are equipped with a high-capacity secondary battery and are expected to be charged every day at home, and further safety is required against overcharging. According to the present invention, it is possible to exhibit the excellent effect correspondingly to such a usage pattern.
 本発明の好ましい実施形態によれば、以下のような各応用形態が導かれる。
〔1〕正極活物質層、固体電解質層および負極活物質層の少なくとも1層がリチウム塩を含有する全固体二次電池。
〔2〕固体電解質層が、非水系分散媒体によって結晶性酸化物系無機固体電解質と非晶性酸化物系無機固体電解質とが分散されたスラリーを湿式塗布し製膜される全固体二次電池の製造方法。
〔3〕上記全固体二次電池作製用の固体電解質組成物。
〔4〕上記固体電解質組成物を金属箔上に適用し、製膜してなる全固体二次電池用電極シート。
〔5〕上記固体電解質組成物を金属箔上に適用し、製膜する全固体二次電池用電極シートの製造方法。
 なお、金属箔上に固体電解質組成物を適用する方法には、例えば、塗布(湿式塗布、スプレー塗布、スピンコート塗布、スリット塗布、ストライプ塗布、バーコート塗布ディップコート)が挙げられ、湿式塗布が好ましい。
According to a preferred embodiment of the present invention, the following applications are derived.
[1] An all-solid secondary battery in which at least one of a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer contains a lithium salt.
[2] All-solid-state secondary battery in which the solid electrolyte layer is formed by wet-coating a slurry in which a crystalline oxide inorganic solid electrolyte and an amorphous oxide inorganic solid electrolyte are dispersed by a non-aqueous dispersion medium Manufacturing method.
[3] A solid electrolyte composition for producing the all-solid secondary battery.
[4] An electrode sheet for an all-solid-state secondary battery, wherein the solid electrolyte composition is applied onto a metal foil and formed into a film.
[5] A method for producing an electrode sheet for an all-solid-state secondary battery, in which the solid electrolyte composition is applied onto a metal foil to form a film.
Examples of the method of applying the solid electrolyte composition on the metal foil include coating (wet coating, spray coating, spin coating coating, slit coating, stripe coating, bar coating coating dip coating), and wet coating. preferable.
 上記好ましい実施形態の〔2〕および〔5〕に記載するように、本発明の全固体二次電池および全固体二次電池用電極シートの製造方法は、いずれも湿式プロセスである。湿式プロセスによれば、焼結のように不純物を生じさせることなく、全固体二次電池および全固体二次電池用電極シートを製造することができる。 As described in [2] and [5] of the preferred embodiments, both the all-solid secondary battery and the method for producing an electrode sheet for an all-solid secondary battery of the present invention are wet processes. According to the wet process, an all-solid-state secondary battery and an electrode sheet for an all-solid-state secondary battery can be produced without causing impurities as in the case of sintering.
 全固体二次電池とは、正極、負極、電解質がともに固体で構成された二次電池を言う。換言すれば、電解質としてカーボネート系の溶媒を用いるような電解液型の二次電池とは区別される。このなかで、本発明は無機全固体二次電池を前提とする。全固体二次電池には、電解質としてポリエチレンオキサイド等の高分子化合物を用いる有機(高分子)全固体二次電池と、上記LLTやLLZ等を用いる無機全固体二次電池とに区分される。なお、無機全固体二次電池に高分子化合物を適用することは妨げられず、正極活物質、負極活物質、無機固体電解質のバインダーとして高分子化合物を適用することができる。
 無機固体電解質とは、上述した高分子化合物をイオン伝導媒体とする電解質(高分子電解質)とは区別されるものであり、無機化合物がイオン伝導媒体となるものである。具体例としては、上記LLTやLLZが挙げられる。無機固体電解質は、それ自体が陽イオン(Liイオン)を放出するものではなく、イオンの輸送機能を示すものである。これに対して、電解液ないし固体電解質層に添加して陽イオン(Liイオン)を放出するイオンの供給源となる材料を電解質と呼ぶことがある。上記のイオン輸送材料としての電解質と区別する際には、これを「電解質塩」または「支持電解質」と呼ぶ。電解質塩としては、例えばLiTFSIが挙げられる。
 本発明において「組成物」というときには、2種以上の成分が均一に混合された混合物を意味する。ただし、実質的に均一性が維持されていればよく、所望の効果を奏する範囲で、一部において凝集や偏在が生じていてもよい。
An all-solid secondary battery refers to a secondary battery in which the positive electrode, the negative electrode, and the electrolyte are all solid. In other words, it is distinguished from an electrolyte type secondary battery using a carbonate-based solvent as an electrolyte. In this, this invention presupposes an inorganic all-solid-state secondary battery. The all-solid-state secondary battery is classified into an organic (polymer) all-solid-state secondary battery that uses a polymer compound such as polyethylene oxide as an electrolyte, and an inorganic all-solid-state secondary battery that uses the above LLT, LLZ, or the like. Note that the application of the polymer compound to the inorganic all-solid secondary battery is not hindered, and the polymer compound can be applied as a binder for the positive electrode active material, the negative electrode active material, and the inorganic solid electrolyte.
The inorganic solid electrolyte is distinguished from an electrolyte (polymer electrolyte) using the above-described polymer compound as an ion conductive medium, and the inorganic compound serves as an ion conductive medium. Specific examples include the LLT and LLZ. The inorganic solid electrolyte itself does not release cations (Li ions) but exhibits an ion transport function. On the other hand, a material that is added to the electrolytic solution or the solid electrolyte layer and serves as a source of ions that release cations (Li ions) is sometimes called an electrolyte. When distinguishing from the electrolyte as the above ion transport material, this is called “electrolyte salt” or “supporting electrolyte”. An example of the electrolyte salt is LiTFSI.
In the present invention, the term “composition” means a mixture in which two or more components are uniformly mixed. However, as long as the uniformity is substantially maintained, aggregation or uneven distribution may partially occur within a range in which a desired effect is achieved.
 以下に、実施例に基づき本発明についてさらに詳細に説明する。なお、本発明がこれにより限定して解釈されるものではない。以下の実施例において「部」および「%」というときには、特に断らない限り質量基準である。また、「室温」とは、25℃を意味する。 Hereinafter, the present invention will be described in more detail based on examples. The present invention is not construed as being limited thereby. In the following examples, “parts” and “%” are based on mass unless otherwise specified. “Room temperature” means 25 ° C.
<非晶性酸化物系無機固体電解質の調製>
-非晶性酸化物系無機固体電解質LBOの調製-
 LiO(Aldrich社製 純度>97%)3.000g、B(Aldrich社製 純度>99.98%)2.330gをアルゴン雰囲気(露点―60℃以下)下でメノウ製乳鉢に投入し、メノウ製乳棒を用いて5分間混合した。得られた混合物をアルミナるつぼに入れて大気下で500℃1時間加熱を行った。ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記混合物を加えアルゴン雰囲気下で容器を完全に密閉した。フリッチュ社製遊星ボールミルP-7(商品名)に容器をセットし、温度25℃、回転数400rpmで40時間メカニカルミリングを行うことで非晶性酸化物系無機固体電解質LBO(LiBO)を得た。
<Preparation of amorphous oxide-based inorganic solid electrolyte>
-Preparation of amorphous oxide-based inorganic solid electrolyte LBO-
Li 2 O (Aldrich Corp. purity> 97%) 3.000g, B 2 O 3 (Aldrich Corp. purity> 99.98%) 2.330g argon atmosphere (dew point -60 ° C. or less) in an agate mortar under The mixture was added and mixed for 5 minutes using an agate pestle. The obtained mixture was placed in an alumina crucible and heated at 500 ° C. for 1 hour in the atmosphere. 180 zirconia beads having a diameter of 5 mm were placed in a 45 mL container (manufactured by Fritsch) made of zirconia, the above mixture was added, and the container was completely sealed under an argon atmosphere. An amorphous oxide-based inorganic solid electrolyte LBO (Li 3 BO 3 ) is set by setting a container on a planetary ball mill P-7 (trade name) manufactured by Fricht and performing mechanical milling at a temperature of 25 ° C. and a rotational speed of 400 rpm for 40 hours. Got.
-非晶性酸化物系無機固体電解質LBO-LSOの調製-
 LiSO・HO(Aldrich社製 純度>99.9%)を窒素雰囲気下300℃で2時間加熱することで脱水し、LiSOを得た。アルゴン雰囲気(露点―60℃以下)下、上記乾燥LiSO:0.611g、LiBO(和光純薬工業社製):3.982gを秤量し、メノウ製乳鉢に投入し、メノウ製乳棒を用いて5分間混合した。ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、LiSOとLiBOとの混合物を加えアルゴン雰囲気下で容器を完全に密閉した。フリッチュ社製遊星ボールミルP-7に容器をセットし、温度25℃、回転数400rpmで40時間メカニカルミリングを行うことで非晶性酸化物系無機固体電解質LBO-LSO(LiBO-LiSO)を得た。
-Preparation of amorphous oxide-based inorganic solid electrolyte LBO-LSO-
Li 2 SO 4 .H 2 O (purity> 99.9%, manufactured by Aldrich) was dehydrated by heating at 300 ° C. for 2 hours under a nitrogen atmosphere to obtain Li 2 SO 4 . Under an argon atmosphere (dew point: −60 ° C. or lower), the above-mentioned dry Li 2 SO 4 : 0.611 g, Li 3 BO 3 (manufactured by Wako Pure Chemical Industries, Ltd.): 3.982 g are weighed and put into an agate mortar. Mix for 5 minutes using a pestle. 180 zirconia beads having a diameter of 5 mm were put into a 45 mL container (manufactured by Fritsch) made of zirconia, a mixture of Li 2 SO 4 and Li 3 BO 3 was added, and the container was completely sealed under an argon atmosphere. A container is set in a planetary ball mill P-7 manufactured by Fricht Co. and subjected to mechanical milling for 40 hours at a temperature of 25 ° C. and a rotational speed of 400 rpm, thereby producing an amorphous oxide-based inorganic solid electrolyte LBO-LSO (Li 3 BO 3 -Li 2 SO 4) was obtained.
<バインダーの合成>
-バインダーB-1の合成-
 バインダーB-1を合成するため、まずマクロモノマーM-1を合成した。
 具体的には、還流冷却管、ガス導入コックを付した1L3つ口フラスコにトルエンを190質量部加え、流速200mL/minで窒素ガスを10分間導入し、80℃に昇温した。別容器で下記組成1に示す成分を混合し、この混合した液を2時間かけてトルエンに滴下し、その後80℃で2時間攪拌した。その後V-601(商品名、和光純薬工業社製)を0.2g添加し、さらに95℃で2時間攪拌した。攪拌後95℃に保った反応溶液に2,2,6,6-テトラメチルピペリジン-1-オキシル(東京化成工業社製)を0.025質量部、メタクリル酸グリシジル(和光純薬工業社製)を13質量部、テトラブチルアンモニウムブロミド(東京化成工業社製)を2.5質量部加えて大気下、120℃で3時間攪拌した。反応溶液を室温まで冷却した後、メタノールに加えて沈殿させ、デカンテーションを行い、上澄み液を除去した。沈殿物をメタノールで2回洗浄後、50℃で送風乾燥した。得られた固体を300質量部のヘプタンに溶解させることでマクロモノマーM-1の溶液を得た。固形分濃度は43.4%、SP値は9.1、質量平均分子量は16,000であった。
<Synthesis of binder>
-Synthesis of Binder B-1-
In order to synthesize Binder B-1, first, macromonomer M-1 was synthesized.
Specifically, 190 parts by mass of toluene was added to a 1 L three-necked flask equipped with a reflux condenser and a gas introduction cock, nitrogen gas was introduced at a flow rate of 200 mL / min for 10 minutes, and the temperature was raised to 80 ° C. Components shown in the following composition 1 were mixed in a separate container, and the mixed liquid was added dropwise to toluene over 2 hours, and then stirred at 80 ° C. for 2 hours. Thereafter, 0.2 g of V-601 (trade name, manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the mixture was further stirred at 95 ° C. for 2 hours. 0.025 parts by mass of 2,2,6,6-tetramethylpiperidine-1-oxyl (manufactured by Tokyo Chemical Industry Co., Ltd.) and glycidyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.) 13 parts by mass and 2.5 parts by mass of tetrabutylammonium bromide (manufactured by Tokyo Chemical Industry Co., Ltd.) were added and stirred at 120 ° C. for 3 hours in the atmosphere. After cooling the reaction solution to room temperature, it was added to methanol for precipitation, decanted, and the supernatant was removed. The precipitate was washed twice with methanol and then blown and dried at 50 ° C. The obtained solid was dissolved in 300 parts by mass of heptane to obtain a solution of macromonomer M-1. The solid content concentration was 43.4%, the SP value was 9.1, and the mass average molecular weight was 16,000.
(組成1)
 メタクリル酸ドデシル(和光純薬工業社製)       150質量部
 メタクリル酸メチル(和光純薬工業社製)         59質量部
 3-メルカプトイソ酪酸(東京化成工業社製)        2質量部
 V-601(商品名、和光純薬工業社製)        1.9質量部
(Composition 1)
Dodecyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.) 150 parts by mass Methyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.) 59 parts by mass 3-mercaptoisobutyric acid (manufactured by Tokyo Chemical Industry Co., Ltd.) 2 parts by mass V-601 (trade name, Wako Pure Chemical Industries, Ltd.) 1.9 parts by mass
 次に、上記マクロモノマーM-1を用いてバインダーB-1を合成した。
 具体的には、還流冷却管、ガス導入コックを付した1L3つ口フラスコに、上記合成したマクロモノマーM-1のヘプタン溶液(固形分濃度43.4%)を47質量部、ヘプタンを60質量部加え、流速200mL/minにて窒素ガスを10分間導入した後に80℃に昇温した。別容器で下記組成2に示す成分を混合し、この混合した液を2時間かけて滴下し、その後80℃で2時間攪拌した。その後V-601(商品名、和光純薬工業社製)を0.2g添加し、さらに95℃で2時間攪拌した。室温まで冷却した後、ヘプタン300mLを加えることでポリマーB-1の分散液を得た。
Next, binder B-1 was synthesized using the macromonomer M-1.
Specifically, in a 1 L three-necked flask equipped with a reflux condenser and a gas introduction cock, 47 parts by mass of the synthesized macromonomer M-1 heptane solution (solid content concentration: 43.4%) and 60 parts by mass of heptane. After adding nitrogen gas at a flow rate of 200 mL / min for 10 minutes, the temperature was raised to 80 ° C. Components shown in the following composition 2 were mixed in a separate container, and the mixed liquid was added dropwise over 2 hours, followed by stirring at 80 ° C. for 2 hours. Thereafter, 0.2 g of V-601 (trade name, manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the mixture was further stirred at 95 ° C. for 2 hours. After cooling to room temperature, 300 mL of heptane was added to obtain a dispersion of polymer B-1.
(組成2)
 上記合成したマクロモノマーM-1のヘプタン溶液(固形分濃度43.4%)
                             93質量部
 アクリル酸ブチル(和光純薬工業社製)         100質量部
 メタクリル酸メチル(和光純薬工業社製)         20質量部
 アクリル酸(商品名:a-101、和光純薬工業社製)   20質量部
 V-601(商品名、和光純薬工業社製)        1.1質量部
(Composition 2)
Heptane solution of the above synthesized macromonomer M-1 (solid content concentration: 43.4%)
93 parts by mass Butyl acrylate (manufactured by Wako Pure Chemical Industries, Ltd.) 100 parts by mass Methyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.) 20 parts by mass Acrylic acid (trade name: a-101, manufactured by Wako Pure Chemical Industries, Ltd.) 20 parts by mass Part V-601 (trade name, manufactured by Wako Pure Chemical Industries, Ltd.) 1.1 parts by mass
-バインダーB-2の合成-
 上記組成2のアクリル酸をメタクリル酸グリシジル(和光純薬工業社製)に変えた以外は、上記バインダーB-1と同様にしてバインダーB-2を合成した。
-Synthesis of Binder B-2-
A binder B-2 was synthesized in the same manner as the binder B-1, except that the acrylic acid having the composition 2 was changed to glycidyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.).
-バインダーB-3の合成-
 バインダーB-3を合成するため、まずポリウレアコロイド粒子Aa-1を合成した。
 具体的には、末端ジオール変性ポリメタクリル酸ドデシル(Ab-1:炭素数6以上の長鎖アルキル基を有するジオール化合物)25質量%のヘプタン溶液260gを、1Lの3つ口フラスコに加え、ヘプタン110gで希釈した。これにイソホロンジイソシアネート(和光純薬工業社製)11.1gとネオスタンU-600(商品名、日東化成社製)0.1gとを加え、75℃で5時間加熱撹拌した。その後、イソホロンジアミン(アミン化合物)0.4gのヘプタン125g希釈液を1時間かけて滴下した。ポリマー溶液は、滴下開始後10分で透明から薄い黄色の蛍光色を有する溶液へと変化した。この変化により、ウレアコロイドが形成したことを確認した。反応液を室温に冷却し、ポリウレアコロイド粒子Aa-1の15質量%ヘプタン溶液506gを得た。
 ポリウレアコロイド粒子Aa-1において、末端ジオール変性ポリメタクリル酸ドデシルのドデシル基は、ヘプタン(炭化水素系溶媒)と溶媒和した構造部分であり、ポリウレア構造は、ヘプタンと溶媒和しない構造部分である。
 ポリウレアコロイド粒子Aa-1のポリウレアの質量平均分子量は、9,600であった。
-Synthesis of Binder B-3-
In order to synthesize Binder B-3, first, polyurea colloidal particles Aa-1 were synthesized.
Specifically, 260 g of a heptane solution containing 25% by mass of terminal diol-modified polydodecyl methacrylate (Ab-1: a diol compound having a long-chain alkyl group having 6 or more carbon atoms) was added to a 1 L three-necked flask, and heptane was added. Diluted with 110 g. To this were added 11.1 g of isophorone diisocyanate (manufactured by Wako Pure Chemical Industries, Ltd.) and 0.1 g of Neostan U-600 (trade name, manufactured by Nitto Kasei Co., Ltd.), and the mixture was heated and stirred at 75 ° C. for 5 hours. Thereafter, a diluted solution of 125 g of heptane of 0.4 g of isophoronediamine (amine compound) was dropped over 1 hour. The polymer solution changed from a transparent solution to a pale yellow fluorescent color 10 minutes after the start of dropping. It was confirmed that a urea colloid was formed by this change. The reaction solution was cooled to room temperature to obtain 506 g of a 15 mass% heptane solution of polyurea colloidal particles Aa-1.
In the polyurea colloidal particle Aa-1, the dodecyl group of the terminal diol-modified polydodecyl methacrylate is a structural part solvated with heptane (hydrocarbon solvent), and the polyurea structure is a structural part that is not solvated with heptane.
The mass average molecular weight of the polyurea of the polyurea colloidal particles Aa-1 was 9,600.
 次に、ポリウレアコロイド粒子Aa-1を用いてバインダーB-3を合成した。
 具体的には、50mLサンプル瓶にジシクロヘキシルメタンジイソシアネート(東京化成社製)2.6g、1,4-ブタンジオール(和光純薬工業社製)0.42g、2,2-ビス(ヒドロキシメチル)ブタン酸(東京化成社製)0.28gおよびクラレポリオールP-1020(商品名、クラレ社製)2.9gを加えた。これにポリウレアコロイド粒子Aa-1の15質量%ヘプタン溶液15.7gを加え、50℃で加温しながらホモジナイザーで30分間分散した。この間、混合液は微粒子化し、薄橙色のスラリーとなった。得られたスラリーを、あらかじめ温度80℃に加熱した100mL3つ口フラスコに投入し、ネオスタンU-600(商品名、日東化成社製)0.1gを加えて、温度80℃、回転数400rpmで3時間加熱撹拌した。スラリーは、白色乳濁状となった。これにより、ポリウレタン粒子が形成されたことが推定された。白色乳濁状のスラリーを冷却し、ポリウレタン粒子(バインダーB-3)の40質量%ヘプタン分散液を得た。
Next, binder B-3 was synthesized using polyurea colloidal particles Aa-1.
Specifically, 2.6 g of dicyclohexylmethane diisocyanate (manufactured by Tokyo Chemical Industry Co., Ltd.), 0.42 g of 1,4-butanediol (manufactured by Wako Pure Chemical Industries, Ltd.), 2,2-bis (hydroxymethyl) butane in a 50 mL sample bottle 0.28 g of acid (manufactured by Tokyo Chemical Industry Co., Ltd.) and 2.9 g of Kuraray polyol P-1020 (trade name, manufactured by Kuraray Co., Ltd.) were added. To this was added 15.7 g of a 15 mass% heptane solution of polyurea colloidal particles Aa-1, and the mixture was dispersed with a homogenizer for 30 minutes while heating at 50 ° C. During this time, the mixture became fine particles and became a light orange slurry. The obtained slurry was put into a 100 mL three-necked flask heated to a temperature of 80 ° C. in advance, 0.1 g of Neostan U-600 (trade name, manufactured by Nitto Kasei Co., Ltd.) was added, and the temperature was 80 ° C. and the rotation speed was 400 rpm. Stir for hours. The slurry became a white emulsion. Thereby, it was estimated that the polyurethane particle was formed. The white emulsion slurry was cooled to obtain a 40 mass% heptane dispersion of polyurethane particles (Binder B-3).
(実施例1)
<固体電解質組成物の調製>
(1)固体電解質組成物S-1の調製
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、LLZ(LiLaZr12、平均粒子径5.06μm、豊島製作所製):4.45g、上記調製した非晶性酸化物系無機固体電解質LBO:0.5g、上記合成したバインダーB-1:0.05g(固形分質量)、分散媒体としてヘプタン:17.0gを投入した。その後、この容器をフリッチュ社製遊星ボールミルP-7にセットし、温度25℃、回転数300rpmで1時間混合を続け、固体電解質組成物S-1を調製した。
(Example 1)
<Preparation of solid electrolyte composition>
(1) Preparation of Solid Electrolyte Composition S-1 180 zirconia beads having a diameter of 5 mm were put into a 45 mL container (manufactured by Fritsch) made of zirconia, and LLZ (Li 7 La 3 Zr 2 O 12 , average particle size 5. 06 μm, manufactured by Toshima Seisakusho): 4.45 g, prepared amorphous oxide-based inorganic solid electrolyte LBO: 0.5 g, synthesized binder B-1: 0.05 g (solid content mass), heptane as dispersion medium : 17.0 g was charged. Thereafter, this container was set on a planetary ball mill P-7 manufactured by Fritsch, and mixing was continued at a temperature of 25 ° C. and a rotation speed of 300 rpm for 1 hour to prepare a solid electrolyte composition S-1.
(2)固体電解質組成物S-2~S-11およびT-1の調製
 固体電解質組成物S-1の調製において、組成を表1に示すように変更したこと以外は、固体電解質組成物S-1と同様にして、固体電解質組成物S-2~S-11およびT-1を調製した。
(2) Preparation of solid electrolyte compositions S-2 to S-11 and T-1 Solid electrolyte composition S was prepared except that the composition was changed as shown in Table 1 in the preparation of solid electrolyte composition S-1. In the same manner as -1, solid electrolyte compositions S-2 to S-11 and T-1 were prepared.
<測定方法>
-バインダーの固形分濃度の測定-
 作製したバインダーの分散液をアルミカップ上で10g秤量し、140℃のホットプレート上で6時間乾燥処理を行った後に、アルミカップの質量を除いた質量を測定した。アルミカップの質量を除いた質量が当初秤量した10gに占める割合を固形分濃度とした。
<Measurement method>
-Measurement of solid content of binder-
10 g of the prepared binder dispersion was weighed on an aluminum cup, dried on a hot plate at 140 ° C. for 6 hours, and then the mass excluding the mass of the aluminum cup was measured. The ratio of the mass excluding the mass of the aluminum cup to the initially weighed 10 g was defined as the solid content concentration.
-バインダーの体積平均粒子径の測定-
 バインダーを任意の溶媒(固体電解質組成物の調製に用いた分散媒体。例えば、ヘプタン)を用いて20mlサンプル瓶中で1質量%の分散液を希釈調製した。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用した。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、体積平均粒子径を測定した。1水準につき5つの試料を作製して測定し、その平均値を採用した。
-Measurement of volume average particle size of binder-
A 1% by weight dispersion was diluted and prepared in a 20 ml sample bottle using an arbitrary solvent (dispersion medium used for preparation of the solid electrolyte composition, for example, heptane). The diluted dispersion sample was irradiated with 1 kHz ultrasonic waves for 10 minutes and used for the test immediately after that. Using this dispersion liquid sample, using a laser diffraction / scattering particle size distribution measuring device LA-920 (trade name, manufactured by HORIBA), data was acquired 50 times using a quartz cell for measurement at a temperature of 25 ° C., The volume average particle diameter was measured. Five samples were prepared for each level and measured, and the average value was adopted.
-分子量の測定-
 本発明に用いられるバインダーの分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によって標準ポリスチレン換算の質量平均分子量を採用した。測定装置および測定条件として下記条件2によることを基本とし、試料の溶解性等により条件1とした。ただし、ポリマー種によっては、さらに適宜適切なキャリア(溶離液)およびそれに適合したカラムを選定した。
(条件1)
  カラム:TOSOH TSKgel Super AWM-H(商品名、東ソー社製)を2本つなげた。
  キャリア:10mMLiBr/N-メチルピロリドン
  測定温度:40℃
  キャリア流量:1.0ml/min
  試料濃度:0.1質量%
  検出器:RI(屈折率)検出器
(条件2)
  カラム:TOSOH TSKgel Super HZM-H、
      TOSOH TSKgel Super HZ4000、
      TOSOH TSKgel Super HZ2000(いずれも商品名、東ソー社製)
をつないだカラムを用いた。
  キャリア:テトラヒドロフラン
  測定温度:40℃
  キャリア流量:1.0ml/min
  試料濃度:0.1質量%
  検出器:RI(屈折率)検出器
-Measurement of molecular weight-
As the molecular weight of the binder used in the present invention, a mass average molecular weight in terms of standard polystyrene was adopted by gel permeation chromatography (GPC). The measurement apparatus and measurement conditions were based on the following condition 2 and were set to condition 1 depending on the solubility of the sample. However, depending on the polymer type, an appropriate carrier (eluent) and a column suitable for the carrier were selected as appropriate.
(Condition 1)
Two columns: TOSOH TSKgel Super AWM-H (trade name, manufactured by Tosoh Corporation) were connected.
Carrier: 10 mM LiBr / N-methylpyrrolidone Measurement temperature: 40 ° C
Carrier flow rate: 1.0 ml / min
Sample concentration: 0.1% by mass
Detector: RI (refractive index) detector (Condition 2)
Column: TOSOH TSKgel Super HZM-H,
TOSOH TSKgel Super HZ4000,
TOSOH TSKgel Super HZ2000 (both trade names, manufactured by Tosoh Corporation)
A column connected with was used.
Carrier: Tetrahydrofuran Measurement temperature: 40 ° C
Carrier flow rate: 1.0 ml / min
Sample concentration: 0.1% by mass
Detector: RI (refractive index) detector
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<表の注釈>
・LLT:Li0.33La0.55TiO(平均粒径3.25μm、豊島製作所製、X>95)
・LLZ:LiLaZr12 (平均粒子径5.06μm、豊島製作所製、X>95)
・LBO:上記調製した非晶性酸化物系無機固体電解質LBO、X<10
・LBO-LSO:上記調製した非晶性酸化物系無機固体電解質LBO-LSO、X<10
<Table notes>
LLT: Li 0.33 La 0.55 TiO 3 (average particle size 3.25 μm, manufactured by Toshima Seisakusho, X> 95)
LLZ: Li 7 La 3 Zr 2 O 12 (average particle size 5.06 μm, manufactured by Toyoshima Seisakusho, X> 95)
LBO: Amorphous oxide-based inorganic solid electrolyte LBO prepared above, X <10
LBO-LSO: Amorphous oxide-based inorganic solid electrolyte LBO-LSO prepared above, X <10
 LLT、LLZ、LBOおよびLBO-LSO結晶部の散乱強度Iと非晶部の散乱強度Iを求め、上記式(1)からXを算出した。IとIの測定方法を以下に示す。
 X線回折装置でCuKα線を用いて2θ値5°~70°までステップ数0.1°、ステップ時間1秒、電圧55kV電流280mAで測定を行った。半値全幅2°未満のシャープなピークを有する結晶部と半値全幅2°以上のブロードなピークを有する非晶部にピーク分離を行い、結晶部のピーク面積をI、非晶部のピーク面積をIとして測定した。
LLT, LLZ, it obtains the scattered intensity I a of scattering intensity I c and amorphous portions of the LBO and LBO-LSO crystal portion was calculated X from the formula (1). The method of measuring the I c and I a are shown below.
The measurement was performed using CuKα rays with an X-ray diffractometer from a 2θ value of 5 ° to 70 ° with a step number of 0.1 °, a step time of 1 second, and a voltage of 55 kV and a current of 280 mA. The peak is separated into a crystal part having a sharp peak with a full width at half maximum of less than 2 ° and an amorphous part having a broad peak with a full width at half maximum of 2 ° or more. The peak area of the crystal part is I c , and the peak area of the amorphous part is Measured as Ia .
・B-1~B-3:上記で合成したバインダーB-1~B-3
・B-4:旭化成社製商品名:タフテックM1913(カルボン酸変性水素添加スチレンブタジエンゴム)
・B-5:ARKEMA社製商品名:KYNAR301F(ポリフッ化ビニリデン)
・バインダーの列の「-」は、バインダーが添加されていないことを意味する。これに伴い、バインダーが添加されていない固体電解質組成物の分子量の列も「-」で示した。
・粒径の列の「-」は、バインダーが分散媒体に溶解し、粒径が測定されていないことを意味する。
B-1 to B-3: Binders B-1 to B-3 synthesized above
-B-4: Asahi Kasei Corporation product name: Tuftec M1913 (carboxylic acid-modified hydrogenated styrene butadiene rubber)
-B-5: ARKEMA product name: KYNAR301F (polyvinylidene fluoride)
-"-" In the binder column means that no binder is added. Accordingly, the molecular weight column of the solid electrolyte composition to which no binder is added is also indicated by “−”.
-"-" In the particle size column means that the binder is dissolved in the dispersion medium and the particle size is not measured.
<電極活物質層用組成物の調製>
-全固体二次電池正極用組成物の調製-
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、正極活物質としてNMC(LiNi0.33Co0.33Mn0.33)6質量部、上記固体電解質組成物S-1:10質量部、固体電解質組成物S-1に用いられている分散媒体9質量部を加え、温度25℃、回転数100rpmで10分間混合し、下記表3に示す試験No.201の全固体二次電池正極用組成物を調製した。
 試験No.202~206およびc21の全固体二次電池正極用組成物を、下記表3に示す成分に変え、対応する固体電解質組成物に用いられている分散媒体に変えた以外は、上記試験No.201の全固体二次電池正極用組成物と同様にして調製した。
 なお、下記表3において、全固体二次電池正極用組成物は正極活物質層の列に記載してある。
<Preparation of composition for electrode active material layer>
-Preparation of composition for positive electrode of all solid state secondary battery-
180 zirconia beads having a diameter of 5 mm are put into a 45 mL container (manufactured by Fritsch) made of zirconia, and 6 parts by mass of NMC (LiNi 0.33 Co 0.33 Mn 0.33 O 2 ) as a positive electrode active material, the above solid electrolyte Composition S-1: 10 parts by mass and 9 parts by mass of the dispersion medium used in the solid electrolyte composition S-1 were added, mixed at a temperature of 25 ° C. and a rotation speed of 100 rpm for 10 minutes, and tested No. shown in Table 3 below. . 201 composition for positive electrode of all-solid-state secondary battery was prepared.
Test No. Except that the all-solid-state secondary battery positive electrode compositions 202 to 206 and c21 were changed to the components shown in Table 3 below and the dispersion media used in the corresponding solid electrolyte compositions, the above test Nos. It was prepared in the same manner as 201 of the all-solid secondary battery positive electrode composition.
In Table 3 below, the all-solid-state secondary battery positive electrode composition is described in the column of the positive electrode active material layer.
-全固体二次電池負極用組成物の調製-
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、負極活物質として黒鉛5質量部、上記固体電解質組成物S-1:10質量部、固体電解質組成物S-1に用いられている分散媒体9質量部を加え、温度25℃、回転数100rpmで10分間混合し、下記表3に示す試験No.201の全固体二次電池負極用組成物を調製した。
 下記表3に示す成分に変え、対応する固体電解質組成物に用いられている分散媒体に変えた以外は、上記試験No.201の全固体二次電池負極用組成物と同様にして試験No.202~206およびc21の全固体二次電池負極用組成物を調製した。
 なお、下記表3において、全固体二次電池負極用組成物は負極活物質層の列に記載してある。
-Preparation of composition for negative electrode of all solid secondary battery-
180 zirconia beads having a diameter of 5 mm are placed in a 45 mL container (manufactured by Fritsch) made of zirconia, 5 parts by mass of graphite as a negative electrode active material, 10 parts by mass of the above solid electrolyte composition S-1, and 10% by mass of solid electrolyte composition S- 9 parts by weight of the dispersion medium used in No. 1 was added and mixed for 10 minutes at a temperature of 25 ° C. and a rotation speed of 100 rpm. 201 All-solid-state secondary battery negative electrode compositions were prepared.
Except for changing to the components shown in Table 3 below and the dispersion medium used in the corresponding solid electrolyte composition, the above test No. 3 was used. In the same manner as in the all-solid-state secondary battery negative electrode composition of No. 202-206 and c21 all-solid-state secondary battery negative electrode compositions were prepared.
In Table 3 below, all-solid-state secondary battery negative electrode compositions are listed in the row of negative electrode active material layers.
<シートの作成>
-固体電解質シートの作製-
 上記固体電解質組成物S-1を厚み20μmのアルミ箔上に、ベーカー式アプリケーター(商品名SA-201、テスター産業社製)により塗布し、80℃で1時間加熱した後、さらに120℃で1時間加熱し、分散媒体を乾燥させた。その後、ヒートプレス機を用いて、固体電解質層が所定の密度になるように加熱(120℃)および加圧(600MPa、1分)し、試験No.101の固体電解質シートを得た。固体電解質層の膜厚は50μmであった。
 固体電解質組成物S-1を下記表2に示す固体電解質組成物に変更した以外は、試験No.101の固体電解質シートと同様にして、試験No.102~111およびc11の固体電解質シートを作製した。
<Creating a sheet>
-Production of solid electrolyte sheet-
The solid electrolyte composition S-1 was applied onto an aluminum foil having a thickness of 20 μm by a baker type applicator (trade name SA-201, manufactured by Tester Sangyo Co., Ltd.), heated at 80 ° C. for 1 hour, and further heated at 120 ° C. for 1 hour. Heated for a period of time to dry the dispersion medium. Thereafter, using a heat press, the solid electrolyte layer was heated (120 ° C.) and pressurized (600 MPa, 1 minute) so as to have a predetermined density. 101 solid electrolyte sheet was obtained. The film thickness of the solid electrolyte layer was 50 μm.
Except that the solid electrolyte composition S-1 was changed to the solid electrolyte composition shown in Table 2 below, test no. In the same manner as the solid electrolyte sheet of No. 101, Test No. Solid electrolyte sheets of 102 to 111 and c11 were prepared.
-正極活物質層、固体電解質層および負極活物質層を具備する全固体二次電池用電極シート(以下、全固体二次電池用電極シートと称する。)の作製-
 上記で調製した試験No.201の二次電池正極用組成物を厚み20μmのアルミ箔上に、上記アプリケーターにより塗布し、120℃で2時間乾燥させた。その後、ヒートプレス機を用いて、所定の密度になるように加熱(120℃)および加圧(600MPa、1分)し、正極活物質層を形成した。
 次に、上記正極活物質層上に、上記固体電解質組成物S-1を、上記アプリケーターにより塗布し、120℃で2時間加熱し、乾燥させ、固体電解質層を形成した。
 その後、上記固体電解質層上に上記で調製した試験No.201の全固体二次電池負極用組成物を塗布し、120℃で2時間加熱し、乾燥させ、負極活物質層を形成した。ヒートプレス機を用いて、所定の密度になるように加熱(120℃)および加圧(600MPa、1分)し、全固体二次電池用電極シートを作製した。
-Preparation of an electrode sheet for an all-solid secondary battery (hereinafter referred to as an electrode sheet for an all-solid secondary battery) comprising a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer-
Test No. prepared above. 201 composition for a secondary battery positive electrode was applied onto an aluminum foil having a thickness of 20 μm by the applicator and dried at 120 ° C. for 2 hours. Then, using a heat press machine, it heated (120 degreeC) and pressurized (600 MPa, 1 minute) so that it might become a predetermined density, and formed the positive electrode active material layer.
Next, the solid electrolyte composition S-1 was applied onto the positive electrode active material layer with the applicator, heated at 120 ° C. for 2 hours, and dried to form a solid electrolyte layer.
Thereafter, the test No. prepared above on the solid electrolyte layer. 201, an all-solid-state secondary battery negative electrode composition was applied, heated at 120 ° C. for 2 hours, and dried to form a negative electrode active material layer. Using a heat press machine, heating (120 ° C.) and pressurization (600 MPa, 1 minute) were performed to obtain a predetermined density, and an electrode sheet for an all-solid-state secondary battery was produced.
<電池性能試験>
 上記作製した固体電解質シートおよび全固体二次電池用電極シートについて、結着性およびイオン伝導度の試験を行った。結果を下記表2および3に示す。
<Battery performance test>
About the produced said solid electrolyte sheet and the electrode sheet for all-solid-state secondary batteries, the test of binding property and ion conductivity was done. The results are shown in Tables 2 and 3 below.
-イオン伝導度測定用試料の作製-
(1)試験No.101~111、c11用イオン伝導度測定用セルの作製
 固体電解質シート12を直径14.5mmの円板状に切り出しコインケースに入れた。直径15mmの円板状に切り出したアルミ箔を固体電解質層と接触させ、スペーサーとワッシャーを組み込んで、ステンレス製の2032型コインケース11に入れた。コインケースをしめることで図2に示すイオン伝導度測定用セル13を作製した。
(2)試験No.201~206、c21用イオン伝導度測定用セルの作製
 全固体二次電池用電極シート12を直径14.5mmの円板状に切り出し、スペーサーとワッシャーを組み込んだステンレス製の2032型コインケース11に入れ、負極活物質層の上に15mmφに切り出したインジウム箔を重ねた。その上にさらにステンレス箔を重ねた後、コインケース11をしめることで図2に示すイオン伝導度測定用セル13を作製した。
-Preparation of sample for ion conductivity measurement-
(1) Test No. Preparation of cells for measuring ion conductivity for 101 to 111, c11 The solid electrolyte sheet 12 was cut into a disk shape having a diameter of 14.5 mm and placed in a coin case. An aluminum foil cut into a disk shape having a diameter of 15 mm was brought into contact with the solid electrolyte layer, a spacer and a washer were incorporated, and placed in a stainless steel 2032 type coin case 11. By closing the coin case, the ion conductivity measuring cell 13 shown in FIG. 2 was produced.
(2) Test No. 201-206, Production of c21 Ion Conductivity Measurement Cell The electrode sheet 12 for an all-solid-state secondary battery was cut into a disk shape having a diameter of 14.5 mm, and a stainless steel 2032 type coin case 11 incorporating a spacer and a washer was formed. The indium foil cut out to 15 mmφ was placed on the negative electrode active material layer. A stainless foil was further stacked thereon, and then the coin case 11 was closed to produce an ion conductivity measurement cell 13 shown in FIG.
-イオン伝導度の測定-
 上記イオン伝導度測定用セルを用いて、イオン伝導度を測定した。具体的には、30℃の恒温槽中、SOLARTRON社製 1255B FREQUENCY RESPONSE ANALYZER(商品名)を用いて電圧振幅5mV、周波数1MHz~1Hzまで交流インピーダンス測定した。これにより試料の膜厚方向の抵抗を求め、下記式(1)により計算して求めた。
 イオン伝導度(mS/cm)=
  1000×試料膜厚(cm)/(抵抗(Ω)×試料面積(cm))・・・式(1)
-Measurement of ionic conductivity-
Ionic conductivity was measured using the cell for measuring ion conductivity. Specifically, AC impedance was measured in a constant temperature bath at 30 ° C. using a 1255B FREQUENCY RESPONSE ANALYZER (trade name) manufactured by SOLARTRON to a voltage amplitude of 5 mV and a frequency of 1 MHz to 1 Hz. Thus, the resistance in the film thickness direction of the sample was obtained and calculated by the following formula (1).
Ionic conductivity (mS / cm) =
1000 × sample film thickness (cm) / (resistance (Ω) × sample area (cm 2 )) (1)
-結着性試験-
 上記固体電解質シートの固体電解質層(縦50mm、横12mm)に幅12mm、長さ60mmのセロテープ(登録商標、ニチバン社製)を貼り、10mm/minの速度で50mm引き剥がした。その際の、引き剥がしたセロテープの面積に対する剥離したシート部分の面積比率で評価した。測定は10回行い、最大値および最小値を除いた、8回の測定値の平均を採用した。試験用のサンプルは各水準について5つのものを用いてその平均値を採用した。
 全固体二次電池用電極シートは負極活物質層にセロテープが接するようにセロテープを貼り、同様に試験を行った。
-Binding test-
A cellophane tape (registered trademark, manufactured by Nichiban Co., Ltd.) having a width of 12 mm and a length of 60 mm was attached to the solid electrolyte layer (length: 50 mm, width: 12 mm) of the solid electrolyte sheet, and peeled off by 50 mm at a speed of 10 mm / min. In that case, it evaluated by the area ratio of the sheet | seat part which peeled with respect to the area of the peeled-off cellotape. The measurement was performed 10 times, and an average of 8 measurement values excluding the maximum value and the minimum value was adopted. The average value was adopted using five samples for each test.
The electrode sheet for an all-solid-state secondary battery was tested in the same manner by attaching a cello tape so that the cellulosic tape was in contact with the negative electrode active material layer.
 5: 0以上5%未満
 4: 5%以上15%未満
 3: 15%以上30%未満
 2: 30%以上60%未満
 1: 60%以上
5: 0 to less than 5% 4: 5% to less than 15% 3: 15% to less than 30% 2: 30% to less than 60% 1: 60% or more
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2から明らかなように、本発明の規定を満たす固体電解質組成物を用いて作製した、試験No.101~111の固体電解質シートはイオン伝導度に優れる。また、固体電解質組成物にバインダーを含有させた試験No.101~109および111の固体電解質シートは、イオン伝導度だけでなく良好な結着性も示した。
 これに対し、本発明の規定を満たさない試験No.c11の固体電解質シートは、イオン伝導度および結着性が両方とも不十分であった。
As apparent from Table 2, the test No. 1 was prepared using a solid electrolyte composition satisfying the provisions of the present invention. The solid electrolyte sheets 101 to 111 are excellent in ionic conductivity. Further, Test No. 1 in which a binder was included in the solid electrolyte composition. The solid electrolyte sheets 101 to 109 and 111 showed not only ionic conductivity but also good binding properties.
On the other hand, test No. which does not satisfy the regulations of the present invention. The solid electrolyte sheet of c11 had insufficient ionic conductivity and binding properties.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
<表の注>
NMC:LiNi0.33Co0.33Mn0.33 ニッケルマンガンコバルト酸リチウム
LCO:LiCoO コバルト酸リチウム
LTO:LiTi12 チタン酸リチウム(商品名「エナマイトLT-106」、石原産業(株)社製)
<Notes on the table>
NMC: LiNi 0.33 Co 0.33 Mn 0.33 O 2 nickel manganese lithium cobaltate LCO: LiCoO 2 lithium cobaltate LTO: Li 4 Ti 5 O 12 lithium titanate (trade name “Enamite LT-106”, Ishihara Sangyo Co., Ltd.)
 表3から明らかなように、本発明の規定を満たす、試験No.201~206の全固体二次電池はイオン伝導度に優れる。また、固体電解質組成物にバインダーを含有させた試験No.201~205の全固体二次電池は、イオン伝導度だけでなく良好な結着性も示した。
 これに対し、本発明の規定を満たさない試験No.c21の全固体二次電池は、イオン伝導度および結着性が両方とも不十分であった。
As is apparent from Table 3, test no. The all solid state secondary batteries 201 to 206 are excellent in ionic conductivity. Further, Test No. 1 in which a binder was included in the solid electrolyte composition. The all solid state secondary batteries 201 to 205 exhibited not only ionic conductivity but also good binding properties.
On the other hand, test No. which does not satisfy the regulations of the present invention. The all solid state secondary battery of c21 was insufficient in both ionic conductivity and binding properties.
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.
 本願は、2015年5月29日に日本国で特許出願された特願2015-110579に基づく優先権を主張するものであり、これはいずれもここに参照してその内容を本明細書の記載の一部として取り込む。 This application claims the priority based on Japanese Patent Application No. 2015-110579 for which it applied for a patent in Japan on May 29, 2015, and these are all referred to here for the content of this specification. As part of.
1 負極集電体
2 負極活物質層
3 固体電解質層
4 正極活物質層
5 正極集電体
6 作動部位
10 全固体二次電池
11 コインケース
12 固体電解質シートまたは全固体二次電池用電極シート
13 イオン伝導度測定用セル
DESCRIPTION OF SYMBOLS 1 Negative electrode current collector 2 Negative electrode active material layer 3 Solid electrolyte layer 4 Positive electrode active material layer 5 Positive electrode current collector 6 Working part 10 All solid secondary battery 11 Coin case 12 Solid electrolyte sheet or electrode sheet 13 for all solid secondary battery Ion conductivity measurement cell

Claims (16)

  1.  結晶性酸化物系無機固体電解質と非晶性酸化物系無機固体電解質とを含有する固体電解質組成物であって、該結晶性酸化物系無機固体電解質と該非晶性酸化物系無機固体電解質が体積比で70~99.8:0.2~30である固体電解質組成物。 A solid electrolyte composition comprising a crystalline oxide inorganic solid electrolyte and an amorphous oxide inorganic solid electrolyte, wherein the crystalline oxide inorganic solid electrolyte and the amorphous oxide inorganic solid electrolyte A solid electrolyte composition having a volume ratio of 70 to 99.8: 0.2 to 30.
  2.  下記官能基群[a]から選択される少なくとも1種の官能基を有する、少なくとも1種のバインダーを含有する請求項1に記載の固体電解質組成物。
    官能基群[a]
     カルボキシ基、スルホ基、リン酸基、ホスホン酸基、ヒドロキシ基、スルファニル基、イソシアナト基、オキセタニル基、エポキシ基、ジカルボン酸無水物基、シリル基
    The solid electrolyte composition according to claim 1, comprising at least one binder having at least one functional group selected from the following functional group group [a].
    Functional group [a]
    Carboxy group, sulfo group, phosphoric acid group, phosphonic acid group, hydroxy group, sulfanyl group, isocyanato group, oxetanyl group, epoxy group, dicarboxylic anhydride group, silyl group
  3.  前記結晶性酸化物系無機固体電解質の体積と前記非晶性酸化物系無機固体電解質の体積と前記バインダーの体積の比が70~99.8:0.1~29.9:0.1~29.9である請求項2に記載の固体電解質組成物。 The ratio of the volume of the crystalline oxide inorganic solid electrolyte to the volume of the amorphous oxide inorganic solid electrolyte to the volume of the binder is 70 to 99.8: 0.1 to 29.9: 0.1 to The solid electrolyte composition according to claim 2, which is 29.9.
  4.  前記バインダーを構成する樹脂が、炭化水素樹脂、含フッ素樹脂、アクリル樹脂、ポリウレタン、ポリアミド、ポリイミド、ポリエーテル、ポリエステルおよびポリカーボネートからなる群から選択される請求項2または3に記載の固体電解質組成物。 The solid electrolyte composition according to claim 2 or 3, wherein the resin constituting the binder is selected from the group consisting of a hydrocarbon resin, a fluorine-containing resin, an acrylic resin, polyurethane, polyamide, polyimide, polyether, polyester, and polycarbonate. .
  5.  前記官能基群[a]が、下記官能基群[b]である請求項2~4のいずれか1項に記載の固体電解質組成物。
    官能基群[b]
     カルボキシ基、スルホ基、リン酸基、ホスホン酸基、ヒドロキシ基、ジカルボン酸無水物基、シリル基
    The solid electrolyte composition according to any one of claims 2 to 4, wherein the functional group [a] is the following functional group [b].
    Functional group [b]
    Carboxy group, sulfo group, phosphoric acid group, phosphonic acid group, hydroxy group, dicarboxylic anhydride group, silyl group
  6.  前記バインダーを構成する樹脂が、アクリル樹脂またはポリウレタンである請求項2~5のいずれか1項に記載の固体電解質組成物。 The solid electrolyte composition according to any one of claims 2 to 5, wherein the resin constituting the binder is an acrylic resin or polyurethane.
  7.  前記バインダーが、平均粒子径0.01μm~10μmの粒子である請求項2~6のいずれか1項に記載の固体電解質組成物。 The solid electrolyte composition according to any one of claims 2 to 6, wherein the binder is particles having an average particle size of 0.01 to 10 µm.
  8.  前記非晶性酸化物系無機固体電解質が下記式(I)で表される化合物を含んでなる請求項1~7のいずれか1項に記載の固体電解質組成物。
        Lixcyccc zcnc    式(I)
     式(I)において、MccはC、S、Al、Si、P、Ga、Ge、InおよびSnからなる群から選択される少なくとも1種であり、xc、yc、zcおよびncは組成比を表し、0<xc≦5、0<yc≦1、0≦zc≦1、0<nc≦6である。
    The solid electrolyte composition according to any one of claims 1 to 7, wherein the amorphous oxide-based inorganic solid electrolyte comprises a compound represented by the following formula (I).
    Li xc Byc M cc zc Onc formula (I)
    In the formula (I), M cc is at least one selected from the group consisting of C, S, Al, Si, P, Ga, Ge, In and Sn, and xc, yc, zc and nc have a composition ratio. 0 <xc ≦ 5, 0 <yc ≦ 1, 0 ≦ zc ≦ 1, and 0 <nc ≦ 6.
  9.  前記結晶性酸化物系無機固体電解質が下記式の化合物から選ばれる請求項1~8のいずれか1項に記載の固体電解質組成物。
    ・LixaLayaTiO
        xa=0.3~0.7、ya=0.3~0.7
    ・LixbLaybZrzbbb mbnb
        5≦xb≦10、1≦yb≦4、1≦zb≦4、0≦mb≦2、5≦nb≦20
        Mbbは、Al、Mg、Ca、Sr、V、Nb、Ta、Ti、Ge、InおよびSnからなる群から選択される少なくとも1種
    ・Li3.5Zn0.25GeO
    ・LiTi12
    ・Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyh3-yh12
        0≦xh≦1、0≦yh≦1
    ・LiPO
    ・LiPON
    ・LiPOD
        Dは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、
        Zr、Nb、Mo、Ru、Ag、Ta、W、Ptおよび
        Auからなる群から選択される少なくとも1種
    ・LiAON
         Aは、Si、B、Ge、Al、CおよびGaから
         なる群から選択される少なくとも1種
    The solid electrolyte composition according to any one of claims 1 to 8, wherein the crystalline oxide inorganic solid electrolyte is selected from compounds of the following formulae.
    ・ Li xa La ya TiO 3
    xa = 0.3 to 0.7, ya = 0.3 to 0.7
    Li xb La yb Zr zb M bb mb Onb
    5 ≦ xb ≦ 10, 1 ≦ yb ≦ 4, 1 ≦ zb ≦ 4, 0 ≦ mb ≦ 2, 5 ≦ nb ≦ 20
    M bb is at least one selected from the group consisting of Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, In, and Sn. Li 3.5 Zn 0.25 GeO 4
    ・ LiTi 2 P 3 O 12
    Li 1 + xh + yh (Al, Ga) xh (Ti, Ge) 2-xh Si yh P 3-yh O 12
    0 ≦ xh ≦ 1, 0 ≦ yh ≦ 1
    ・ Li 3 PO 4
    ・ LiPON
    ・ LiPOD 1
    D 1 is Ti, V, Cr, Mn, Fe, Co, Ni, Cu,
    At least one selected from the group consisting of Zr, Nb, Mo, Ru, Ag, Ta, W, Pt and Au. LiA 1 ON
    A 1 is at least one selected from the group consisting of Si, B, Ge, Al, C, and Ga.
  10.  分散媒体を含む請求項1~9のいずれか1項に記載の固体電解質組成物。 The solid electrolyte composition according to any one of claims 1 to 9, comprising a dispersion medium.
  11.  活物質を含む請求項1~10のいずれか1項に記載の固体電解質組成物。 The solid electrolyte composition according to any one of claims 1 to 10, comprising an active material.
  12.  請求項1~11のいずれか1項に記載の固体電解質組成物を金属箔上に適用して、製膜した全固体二次電池用電極シート。 An electrode sheet for an all-solid-state secondary battery formed by applying the solid electrolyte composition according to any one of claims 1 to 11 onto a metal foil.
  13.  請求項1~11のいずれか1項に記載の固体電解質組成物を金属箔上に適用して、製膜する全固体二次電池用電極シートの製造方法。 A method for producing an electrode sheet for an all-solid-state secondary battery, wherein the solid electrolyte composition according to any one of claims 1 to 11 is applied onto a metal foil to form a film.
  14.  プレス工程を含む請求項13に記載の全固体二次電池用電極シートの製造方法。 The manufacturing method of the electrode sheet for all-solid-state secondary batteries of Claim 13 including a press process.
  15.  請求項13または14に記載の製造方法を介して正極活物質層、負極活物質層および無機固体電解質層を具備する全固体二次電池を製造する全固体二次電池の製造方法。 A method for producing an all-solid secondary battery, comprising producing an all-solid secondary battery comprising a positive electrode active material layer, a negative electrode active material layer, and an inorganic solid electrolyte layer through the production method according to claim 13 or 14.
  16.  正極活物質層、負極活物質層および無機固体電解質層を具備する全固体二次電池であって、該正極活物質層、該負極活物質層および該無機固体電解質層の少なくとも1層を、結晶性酸化物系無機固体電解質と非晶性酸化物系無機固体電解質とを含有する固体電解質組成物であって、該結晶性酸化物系無機固体電解質の体積と該非晶性酸化物系無機固体電解質の体積の比が70~99.8:0.2~30である固体電解質組成物を適用して層とした全固体二次電池。 An all-solid secondary battery comprising a positive electrode active material layer, a negative electrode active material layer, and an inorganic solid electrolyte layer, wherein at least one of the positive electrode active material layer, the negative electrode active material layer, and the inorganic solid electrolyte layer is crystallized. A solid electrolyte composition containing a crystalline oxide-based inorganic solid electrolyte and an amorphous oxide-based inorganic solid electrolyte, wherein the volume of the crystalline oxide-based inorganic solid electrolyte and the amorphous oxide-based inorganic solid electrolyte An all-solid-state secondary battery formed by applying a solid electrolyte composition having a volume ratio of 70 to 99.8: 0.2 to 30 as a layer.
PCT/JP2016/065312 2015-05-29 2016-05-24 Solid electrolyte composition, electrode sheet for all-solid-state secondary cell, all-solid-state secondary cell, and method for manufacturing electrode sheet for all-solid-state secondary cell and all-solid-state secondary cell WO2016194705A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017521840A JP6442607B2 (en) 2015-05-29 2016-05-24 Solid electrolyte composition, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-110579 2015-05-29
JP2015110579 2015-05-29

Publications (1)

Publication Number Publication Date
WO2016194705A1 true WO2016194705A1 (en) 2016-12-08

Family

ID=57440946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065312 WO2016194705A1 (en) 2015-05-29 2016-05-24 Solid electrolyte composition, electrode sheet for all-solid-state secondary cell, all-solid-state secondary cell, and method for manufacturing electrode sheet for all-solid-state secondary cell and all-solid-state secondary cell

Country Status (2)

Country Link
JP (1) JP6442607B2 (en)
WO (1) WO2016194705A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020194822A1 (en) * 2019-03-26 2020-10-01 国立大学法人名古屋工業大学 Solid electrolyte and method for producing solid electrolyte
JPWO2020194823A1 (en) * 2019-03-26 2020-10-01
CN112771626A (en) * 2018-12-26 2021-05-07 松下知识产权经营株式会社 Solid electrolyte composition and method for producing solid electrolyte member
JPWO2020080262A1 (en) * 2018-10-15 2021-09-02 富士フイルム株式会社 Methods for manufacturing electrode compositions, electrode sheets for all-solid secondary batteries and all-solid secondary batteries, and electrode compositions, electrode sheets for all-solid secondary batteries and all-solid secondary batteries.
WO2022138896A1 (en) * 2020-12-25 2022-06-30 旭化成株式会社 All solid state battery binder using conjugated diene-based polymer, positive electrode layer, negative electrode layer, and electrolyte layer using said binder, and all solid state battery including said binder and said layers
CN114830379A (en) * 2019-12-18 2022-07-29 大金工业株式会社 Slurry for solid secondary battery, method for forming layer for solid secondary battery, and solid secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH103818A (en) * 1996-06-14 1998-01-06 Matsushita Electric Ind Co Ltd Lithium ion conductive solid electrolyte molded body
JP2001210374A (en) * 2000-01-25 2001-08-03 Kyocera Corp Solid electrolyte battery
JP2011187253A (en) * 2010-03-08 2011-09-22 National Institute Of Advanced Industrial Science & Technology All-solid lithium secondary battery
JP2012209256A (en) * 2011-03-15 2012-10-25 Ohara Inc All-solid secondary battery
JP2014116098A (en) * 2012-12-06 2014-06-26 Samsung R&D Institute Japan Co Ltd Solid-state battery
JP2015069842A (en) * 2013-09-30 2015-04-13 Fdk株式会社 Method for manufacturing all-solid battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH103818A (en) * 1996-06-14 1998-01-06 Matsushita Electric Ind Co Ltd Lithium ion conductive solid electrolyte molded body
JP2001210374A (en) * 2000-01-25 2001-08-03 Kyocera Corp Solid electrolyte battery
JP2011187253A (en) * 2010-03-08 2011-09-22 National Institute Of Advanced Industrial Science & Technology All-solid lithium secondary battery
JP2012209256A (en) * 2011-03-15 2012-10-25 Ohara Inc All-solid secondary battery
JP2014116098A (en) * 2012-12-06 2014-06-26 Samsung R&D Institute Japan Co Ltd Solid-state battery
JP2015069842A (en) * 2013-09-30 2015-04-13 Fdk株式会社 Method for manufacturing all-solid battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020080262A1 (en) * 2018-10-15 2021-09-02 富士フイルム株式会社 Methods for manufacturing electrode compositions, electrode sheets for all-solid secondary batteries and all-solid secondary batteries, and electrode compositions, electrode sheets for all-solid secondary batteries and all-solid secondary batteries.
JP7245847B2 (en) 2018-10-15 2023-03-24 富士フイルム株式会社 Electrode composition, electrode sheet for all-solid secondary battery, all-solid secondary battery, and method for producing electrode composition, electrode sheet for all-solid secondary battery, and all-solid secondary battery
CN112771626A (en) * 2018-12-26 2021-05-07 松下知识产权经营株式会社 Solid electrolyte composition and method for producing solid electrolyte member
WO2020194822A1 (en) * 2019-03-26 2020-10-01 国立大学法人名古屋工業大学 Solid electrolyte and method for producing solid electrolyte
JPWO2020194823A1 (en) * 2019-03-26 2020-10-01
JPWO2020194822A1 (en) * 2019-03-26 2020-10-01
WO2020194823A1 (en) * 2019-03-26 2020-10-01 日本碍子株式会社 All-solid-state secondary battery
JP7203200B2 (en) 2019-03-26 2023-01-12 日本碍子株式会社 All-solid secondary battery
JP7212327B2 (en) 2019-03-26 2023-01-25 国立大学法人 名古屋工業大学 Solid electrolyte and method for producing solid electrolyte
CN114830379A (en) * 2019-12-18 2022-07-29 大金工业株式会社 Slurry for solid secondary battery, method for forming layer for solid secondary battery, and solid secondary battery
WO2022138896A1 (en) * 2020-12-25 2022-06-30 旭化成株式会社 All solid state battery binder using conjugated diene-based polymer, positive electrode layer, negative electrode layer, and electrolyte layer using said binder, and all solid state battery including said binder and said layers

Also Published As

Publication number Publication date
JP6442607B2 (en) 2018-12-19
JPWO2016194705A1 (en) 2018-03-29

Similar Documents

Publication Publication Date Title
US11870031B2 (en) Solid electrolyte composition, sheet for all-solid state secondary battery, electrode sheet for all-solid state secondary battery and method for manufacturing same, all-solid state secondary battery and method for manufacturing same
CN109526241B (en) Solid electrolyte composition, sheet and battery, and related manufacturing method and polymer
JP6607694B2 (en) All-solid secondary battery, composition for electrode active material layer, electrode sheet for all-solid secondary battery, electrode sheet for all-solid secondary battery, and method for producing all-solid secondary battery
CN108370061B (en) Solid electrolyte composition, binder particle, all-solid-state secondary battery, sheet, electrode sheet, and method for producing same
JP6442607B2 (en) Solid electrolyte composition, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
JP6110823B2 (en) Solid electrolyte composition, binder for all-solid secondary battery, battery electrode sheet and all-solid-state secondary battery using the same
WO2017141735A1 (en) Solid electrolytic composition, electrode sheet for full-solid secondary batteries, full-solid secondary battery, and method for manufacturing electrode sheet for full-solid secondary batteries and full-solid secondary battery
JP6283614B2 (en) Electrode binder composition derived from polyurethane for electrochemical cells and electrode thereof
JP6591655B2 (en) Secondary battery electrode active material, solid electrolyte composition, all-solid secondary battery electrode sheet and all-solid secondary battery, and secondary battery electrode active material, all-solid secondary battery electrode sheet and all-solid-state secondary battery Secondary battery manufacturing method
JP6429412B2 (en) All-solid secondary battery, solid electrolyte composition and battery electrode sheet used therefor, battery electrode sheet and method for producing all-solid secondary battery
WO2016129426A1 (en) All-solid secondary cell, solid electrolyte composition used in same, cell electrode sheet in which said composition is used, and method for manufacturing cell electrode sheet and all-solid secondary cell
TW201342698A (en) Positive-electrode mixture, positive electrode, and non-aqueous electrolyte secondary battery using same
WO2020022205A1 (en) Solid electrolyte composition, solid electrolyte-containing sheet, all-solid secondary battery electrode sheet, all-solid secondary battery, methods for producing solid electrolyte-containing sheet and all-solid secondary battery, and method for producing particulate binder
WO2020138122A1 (en) Solid electrolyte composition, solid-electrolyte-containing sheet, all-solid-state secondary cell, and method for manufacturing solid-electrolyte-containing sheet and all-solid-state secondary cell
CN111201639B (en) Method for manufacturing electrode for battery
WO2020067108A1 (en) Composition for negative electrodes of all-solid-state secondary batteries, negative electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing negative electrode sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery
JP7008080B2 (en) Method for manufacturing solid electrolyte composition, solid electrolyte-containing sheet and all-solid-state secondary battery, and solid electrolyte-containing sheet and all-solid-state secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803140

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017521840

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16803140

Country of ref document: EP

Kind code of ref document: A1