WO2016194697A1 - Blower apparatus and vacuum cleaner - Google Patents

Blower apparatus and vacuum cleaner Download PDF

Info

Publication number
WO2016194697A1
WO2016194697A1 PCT/JP2016/065250 JP2016065250W WO2016194697A1 WO 2016194697 A1 WO2016194697 A1 WO 2016194697A1 JP 2016065250 W JP2016065250 W JP 2016065250W WO 2016194697 A1 WO2016194697 A1 WO 2016194697A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
flow path
stationary blade
motor housing
axial direction
Prior art date
Application number
PCT/JP2016/065250
Other languages
French (fr)
Japanese (ja)
Inventor
澤田 知良
真智子 福島
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to JP2017521835A priority Critical patent/JP6702318B2/en
Priority to CN201680031279.7A priority patent/CN107614888B/en
Priority to EP16803132.6A priority patent/EP3306104A4/en
Priority to US15/576,311 priority patent/US20180156233A1/en
Publication of WO2016194697A1 publication Critical patent/WO2016194697A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/62Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
    • F04D29/624Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/626Mounting or removal of fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/52Outlet

Definitions

  • the present invention relates to a blower and a vacuum cleaner.
  • a blower mounted on a vacuum cleaner is known to have a plurality of stationary blades.
  • An example of such a blower is disclosed in Japanese Laid-Open Patent Publication No. 2002-138996.
  • the height of the diffuser vane is located in the vicinity of the air flow path outlet formed between the diffuser vanes provided on the outer peripheral portion of the centrifugal impeller. It is disclosed that an intermediate vane having a height dimension smaller than the direction dimension can be provided.
  • An object of the present invention is to firmly fix a stationary blade configured on one side of a motor housing or a flow path member and the other side of the motor housing or the flow path member in a blower.
  • An air blower includes a motor having a shaft disposed along a central axis extending vertically, an impeller connected to the shaft and rotating integrally with the shaft, An impeller housing disposed on an upper side or a radially outer side of the impeller, a motor housing disposed on a radially outer side of the motor, and a flow path member disposed on a radially outer side of the motor housing via a gap.
  • the stationary blade unit is connected to the radial direction or the axial direction.
  • the present invention it is possible to provide a blower capable of firmly fixing the stationary blade configured on one side of the motor housing or the flow path member and the other side of the motor housing or the flow path member. Moreover, in the vacuum cleaner which has the said air blower, the stationary blade comprised on the one side of a motor housing or a flow-path member, and the other side of a motor housing or a flow-path member can be fixed firmly.
  • FIG. 1 is a cross-sectional view showing the blower of the first embodiment.
  • FIG. 2 is a perspective view showing the blower of the first embodiment.
  • FIG. 3 is a perspective view showing the rotor assembly of the first embodiment.
  • FIG. 4 is a front view showing the bearing holding member of the first embodiment.
  • FIG. 5 is an enlarged cross-sectional view showing a portion of the blower device of the first embodiment.
  • FIG. 6 is a cross-sectional view showing the blower device of the second embodiment, and is a cross-sectional view taken along the line VI-VI in FIG.
  • FIG. 7 is a perspective view showing the blower of the second embodiment.
  • FIG. 8 is a plan view showing the blower of the second embodiment.
  • FIG. 9 is a cross-sectional view illustrating the blower device of the third embodiment.
  • FIG. 10 is a perspective view showing a motor housing of the third embodiment.
  • FIG. 11 is a bottom view showing the flow path member of the third embodiment.
  • FIG. 12 is a side view showing a stationary blade of the fourth embodiment.
  • FIG. 13 is a side view showing a stationary blade of the fifth embodiment.
  • FIG. 14 is a side view showing a stationary blade of the sixth embodiment.
  • FIG. 15 is a perspective view illustrating the vacuum cleaner according to the embodiment.
  • an XYZ coordinate system is appropriately shown as a three-dimensional orthogonal coordinate system.
  • the Z-axis direction is a direction parallel to the axial direction of the central axis J shown in FIG.
  • the Y-axis direction is a direction orthogonal to the Z-axis direction and is the left-right direction in FIG.
  • the X-axis direction is a direction orthogonal to both the Y-axis direction and the Z-axis direction.
  • the direction in which the central axis J extends is the up-down direction.
  • the positive side (+ Z side) in the Z-axis direction is referred to as “upper side (upper axial direction)”
  • the negative side ( ⁇ Z side) in the Z-axis direction is referred to as “lower side (lower axial direction)”.
  • the up-down direction, the upper side, and the lower side are names used for explanation only, and do not limit the actual positional relationship and direction.
  • a direction parallel to the central axis J (Z-axis direction) is simply referred to as an “axial direction”
  • a radial direction around the central axis J is simply referred to as a “radial direction”.
  • the circumferential direction centered on is simply referred to as the “circumferential direction”.
  • the blower device 1 includes a motor 10, a bearing holding member 60, an impeller 70, a flow path member 61, a plurality of stationary blades 67, and an impeller housing 80.
  • a bearing holding member 60 is attached to the upper side (+ Z side) of the motor 10.
  • the flow path member 61 surrounds the radially outer side of the motor 10 in the circumferential direction.
  • the impeller housing 80 is attached to the upper side of the flow path member 61.
  • the impeller 70 is accommodated between the bearing holding member 60 and the impeller housing 80 in the axial direction (Z-axis direction).
  • the impeller 70 is attached to the motor 10 so as to be rotatable around the central axis J.
  • the flow path member 61 and the impeller housing 80 are not shown.
  • the motor 10 includes a housing 20, a rotor 30 having a shaft 31, a stator 40, a lower bearing 52a, an upper bearing 52b, and a connector 90, as shown in FIG.
  • the upper bearing 52b corresponds to a bearing.
  • the blower 1 includes the rotor 30, the stator 40, the housing 20, the bearing, the bearing holding member 60, and the impeller 70.
  • the lower bearing 52a, or both the lower bearing 52a and the upper bearing 52b may correspond to bearings.
  • the housing 20 has a cylindrical shape that opens upward.
  • the housing 20 accommodates the stator 40 therein.
  • the housing 20 accommodates the rotor 30 therein.
  • the housing 20 is, for example, a bottomed cylindrical container.
  • the housing 20 includes a cylindrical peripheral wall 21, a lower lid portion 22 positioned at the lower end of the peripheral wall 21, and a lower bearing holding portion 22 b positioned at the center of the lower lid portion 22.
  • a stator 40 is fixed to the inner surface of the peripheral wall 21 in the housing 20.
  • the lower bearing holding portion 22b has a cylindrical shape that protrudes downward ( ⁇ Z side) from the center portion of the lower lid portion 22.
  • the lower bearing holding portion 22b holds the lower bearing 52a inside.
  • the housing 20 is provided with a through hole 21a.
  • the through hole 21 a is provided across the lower lid portion 22 from the lower side of the peripheral wall 21. That is, the through hole 21a penetrates the peripheral wall 21 in the radial direction and penetrates the lower lid portion 22 in the axial direction (Z-axis direction). Although illustration is omitted, for example, three through holes 21a are provided along the circumferential direction.
  • the upper end portion of the through hole 21a is located above the lower end portion of the stator core 41 described later. Therefore, the lower side of the stator core 41 is exposed to the outside of the housing 20.
  • the radially outer surface of the stator core 41 faces an exhaust passage 87 (described later) provided between the motor 10 and the passage member 61. Therefore, the stator core 41 can be cooled by the air flowing through the exhaust passage 87.
  • the stator core 41 since the outer surface of the stator core 41 is exposed facing the exhaust flow path 87, the stator core 41 does not provide resistance to the air flow in the exhaust flow path 87. Thereby, according to this embodiment, it is possible to cool the stator core 41, without reducing ventilation efficiency.
  • the lower end portion of the through hole 21a is located substantially at the center of the stator core 41 in the axial direction (Z-axis direction). That is, in the present embodiment, the lower half of the stator core 41 is exposed to the exhaust passage 87. Therefore, the stator core 41 can be further cooled.
  • the rotor 30 includes a shaft 31, a rotor magnet 33, a lower magnet fixing member 32a, and an upper magnet fixing member 32b.
  • the rotor magnet 33 has a cylindrical shape that surrounds the shaft 31 radially around the axis ( ⁇ z direction).
  • the lower magnet fixing member 32 a and the upper magnet fixing member 32 b have a cylindrical shape having an outer diameter equivalent to that of the rotor magnet 33.
  • the lower magnet fixing member 32a and the upper magnet fixing member 32b are attached to the shaft 31 with the rotor magnet 33 sandwiched from both sides in the axial direction.
  • the upper magnet fixing member 32b has a small-diameter portion 32c having an outer diameter smaller than that of the lower portion (rotor magnet 33 side) in the upper portion in the axial direction (Z-axis direction).
  • the rotor 30 has a shaft 31 disposed along a central axis J extending vertically (Z-axis direction).
  • the shaft 31 is supported by the lower bearing 52a and the upper bearing 52b so as to be rotatable around the axis ( ⁇ ⁇ z direction). That is, the bearing supports the shaft 31 in a rotatable manner.
  • An impeller 70 is attached to the shaft 31 above the bearing holding member 60. In FIG. 1, for example, the impeller 70 is attached to the upper end (+ Z side) of the shaft 31.
  • the stator 40 is located outside the rotor 30 in the radial direction.
  • the stator 40 surrounds the rotor 30 around the axis ( ⁇ z direction).
  • the stator 40 includes a stator core 41, an insulator 43, and a coil 42.
  • the stator core 41 has a core back part 41a and a plurality (three) of teeth parts 41b.
  • the core back portion 41a has a ring shape around the central axis.
  • the teeth portion 41b extends radially inward from the inner peripheral surface of the core back portion 41a.
  • the teeth 41b are arranged at equal intervals in the circumferential direction.
  • the insulator 43 is attached to the teeth portion 41b.
  • the coil 42 is attached to the tooth portion 41 b via the insulator 43.
  • the coil 42 is configured by winding a conductive wire.
  • the lower bearing 52a is held by the lower bearing holding portion 22b via the elastic member 53a.
  • the upper bearing 52b is held by the holding cylinder portion 62d via the elastic member 53b.
  • the elastic members 53a and 53b have a cylindrical shape that opens on both sides in the axial direction.
  • the elastic members 53a and 53b are made of an elastic body.
  • the material of the elastic members 53a and 53b may be, for example, a thermosetting elastomer (rubber) or a thermoplastic elastomer.
  • the elastic member 53a is located on the radially inner side of the lower bearing holding portion 22b.
  • the elastic member 53a is fitted, for example, on the radially inner side of the lower bearing holding portion 22b.
  • the lower bearing 52a is fitted inside the elastic member 53a in the radial direction.
  • the elastic member 53b is located on the radially inner side of the holding cylinder portion 62d.
  • the elastic member 53b is fitted inside the holding cylinder portion 62d in the radial direction.
  • the upper bearing 52b is fitted inside the elastic member 53b in the radial direction.
  • the bearing holding member 60 is located in the upper opening of the housing 20.
  • the bearing holding member 60 has a cylindrical shape that surrounds and holds the upper bearing 52b in the circumferential direction.
  • the bearing holding member 60 includes a holding member main body portion 62c, and a first convex portion 62a and a second convex portion 62b.
  • the holding member main body 62c has, for example, a covered cylindrical shape with the central axis J as the center.
  • the upper lid portion of the holding member main body portion 62c has a hole through which the shaft 31 passes.
  • the holding member main body 62 c is fitted inside the peripheral wall 21 of the housing 20. Thereby, the bearing holding member 60 is fixed inside the housing 20.
  • the holding member main body 62c has an outer protrusion 63 that protrudes radially outward. That is, the bearing holding member 60 has an outer protrusion 63.
  • the outer protrusion 63 has an annular shape surrounding the central axis J. Therefore, by providing the outer protrusion 63, a step is formed on the outer peripheral surface of the holding member main body 62c so that the outer diameter of the holding member main body 62c increases from the lower side to the upper side. The lower surface of the outer protrusion 63 is in contact with the upper end surface of the housing 20.
  • the lower surface of the outer protruding portion 63 that is, the step surface orthogonal to the axial direction of the step of the holding member main body portion 62 c is in contact with the upper end surface of the housing 20, that is, the upper end portion of the peripheral wall 21.
  • the axial direction position of the holding member main-body part 62c (bearing holding member 60) is positioned.
  • the holding member main body 62 c has a holding cylinder 62 d and an inner protrusion 64. That is, the bearing holding member 60 has a holding cylinder portion 62d and an inner protrusion 64.
  • the holding cylinder portion 62d is located at the center of the holding member main body portion 62c.
  • the holding cylinder portion 62d has a cylindrical shape that opens at both ends in the axial direction with the central axis J as the center.
  • the holding cylinder portion 62d has a cylindrical shape that holds the upper bearing 52b.
  • the inner projecting portion 64 projects radially inward from the inner surface of the holding cylinder portion 62d.
  • the inner protruding portion 64 protrudes from the upper end portion of the holding cylinder portion 62d.
  • the upper surface of the inner projecting portion 64 is located on the same plane as the upper surface of the holding cylinder portion 62d.
  • the inner projecting portion 64 is opposed to at least a part of the upper surface of the upper bearing 52b in the axial direction. Therefore, the upper bearing 52b can be positioned in the axial direction by bringing the upper surface of the upper bearing 52b into direct or indirect contact with the inner protrusion 64. In FIG. 1, the upper surface of the upper bearing 52b indirectly contacts the inner protrusion 64 via the elastic member 53b.
  • the radially inner end of the inner projecting portion 64 is located more radially inward than the radially outer end of the rotor 30.
  • the radial distance from the central axis J to the radially outer end of the rotor 30 is larger than the radial distance from the central axis J to the radially inner end of the inner protrusion 64.
  • the radially outer end of the rotor 30 is, for example, the radially inner end of the rotor magnet 33.
  • the first protrusion 62a protrudes upward from the upper surface of the holding member main body 62c.
  • the first convex portion 62a is an annular shape surrounding the circumferential direction of the central axis J.
  • the central axis J passes through the center of the first convex portion 62a.
  • the second protrusion 62b protrudes upward from the upper surface of the holding member main body 62c. That is, the 1st convex part 62a and the 2nd convex part 62b protrude upwards from the upper surface of the holding member main-body part 62c.
  • the 2nd convex part 62b is located in the radial direction outer side of the 1st convex part 62a.
  • the second convex portion 62b is an annular shape surrounding the central axis J and the first convex portion 62a in the circumferential direction.
  • the central axis J passes through the center of the second convex portion 62b. That is, the first convex portion 62a and the second convex portion 62b are annular shapes surrounding the central axis J.
  • the bearing holding member 60 includes a plurality of holding member pieces 60a arranged along the circumferential direction. Therefore, the rotation balance of the rotor assembly 11 shown in FIG. 4 can be adjusted with high accuracy. As shown in FIG. 4, the rotor assembly 11 is configured by fixing an impeller 70 to a rotor 30 to which an upper bearing 52b is attached. Details will be described below.
  • the adjustment of the rotational balance of the rotor assembly 11 is performed by separately adjusting the balance of the rotor 30 alone and the balance of the impeller 70 separately. Thereafter, the motor 10 including the rotor 30 is assembled, and the impeller 70 is fixed to the shaft 31 of the rotor 30.
  • the balance adjustment of the rotor assembly 11 is performed again in a state where the impeller 70 is fixed to the shaft 31, that is, in the state of the rotor assembly 11.
  • the balance adjustment of the rotor assembly 11 is performed, for example, by notching a part of the parts constituting the rotor assembly 11.
  • the impeller 70 is attached to the shaft 31 after the motor 10 is assembled, the rotor 30 is surrounded by the stator 40 and the housing 20 in a state where the rotor assembly 11 is assembled. Therefore, when the balance adjustment of the rotor assembly 11 is performed, a part of the rotor 30 cannot be cut out, and the balance adjustment must be performed only by cutting out the impeller 70. That is, in the conventional method, the balance adjustment of the rotor assembly 11 can be performed only on one surface. Therefore, depending on how the rotor assembly 11 is out of balance, the rotational balance of the rotor assembly 11 may not be adjusted with high accuracy.
  • the bearing holding member 60 is constituted by a plurality of holding member pieces 60a. Therefore, after assembling the rotor assembly 11 shown in FIG. 4, the rotor assembly 11 is inserted into the stator 40, and then the holding member piece 60a is assembled from the radially outer side of the upper bearing 52b to assemble the motor 10. Can do. Thereby, the balance adjustment of the rotor assembly 11 can be performed before the motor 10 is assembled. Therefore, it is possible to adjust the balance by cutting out both the rotor 30 and the impeller 70. That is, balance adjustment of the rotor assembly 11 can be performed on two or more surfaces. As a result, according to the present embodiment, the rotational balance of the rotor assembly 11 can be adjusted with high accuracy.
  • the rotational balance of the rotor assembly 11 can be adjusted with high accuracy, there is no need to separately adjust the balance between the rotor 30 alone and the impeller 70 alone. Thereby, the frequency
  • the bearing holding member 60 is composed of a plurality of holding member pieces 60a, it is necessary to hold the state in which the holding member pieces 60a are combined.
  • the bearing holding member 60 is fixed inside the housing 20. Therefore, for example, the holding member pieces 60 a can be combined by fitting the bearing holding member 60 to the housing 20. In this case, the state in which the holding member pieces 60a are combined can be held without fixing the holding member pieces 60a with an adhesive or the like. Therefore, the trouble of combining the holding member pieces 60a can be reduced.
  • the bearing holding member 60 is constituted by a plurality of holding member pieces 60a as in the present embodiment, a dimensional error of each holding member piece 60a and an assembling error between the holding member pieces 60a are likely to occur. Therefore, there is a possibility that the dimensional error of the holding cylinder portion 62d of the bearing holding member 60 becomes larger than when the bearing holding member 60 is a single member. Thereby, there is a possibility that the upper bearing 52b cannot be stably held on the holding cylinder portion 62d.
  • the upper bearing 52b is held by the holding cylinder portion 62d via the elastic member 53b. Therefore, even when a dimensional error occurs in the holding cylinder portion 62d, the dimensional error can be absorbed by the elastic member 53b. Therefore, according to the present embodiment, the upper bearing 52b can be stably held even when the bearing holding member 60 is constituted by a plurality of holding member pieces 60a.
  • the bearing holding member 60 is configured by combining, for example, three holding member pieces 60a.
  • the plurality of holding member pieces 60a have the same shape. Therefore, it is easy to manufacture the holding member piece 60a.
  • the mold for manufacturing the holding member piece 60a can be the same. Thereby, the effort and cost which manufacture the holding member piece 60a can be reduced.
  • the planar view shape of the holding member piece 60 a is, for example, a sector shape with a central angle of 120 °.
  • the connector 90 extends downward from the stator 40.
  • the connector 90 protrudes to the lower side of the housing 20 through the through hole 21a.
  • the connector 90 has connection wiring (not shown).
  • the connection wiring is electrically connected to the coil 42.
  • an external power source (not shown) is connected to the connector 90, power is supplied to the coil 42 through the connection wiring.
  • the impeller 70 is fixed to the shaft 31.
  • the impeller 70 can rotate around the central axis J together with the shaft 31.
  • the impeller 70 includes a base member 71, a moving blade 73, and a shroud 72.
  • the base member 71 is a single member, for example. That is, the base member 71 is a separate member from the moving blade 73.
  • the base member 71 is made of metal, for example.
  • the base member 71 has a flat plate shape that expands in the radial direction. That is, the impeller 70 has a flat base member 71 that expands in the radial direction.
  • the base member 71 is opposed to the bearing holding member 60 in the axial direction through a gap. Therefore, the labyrinth structure in the axial direction can be configured by the first convex portion 62a, the second convex portion 62b, and the base member 71. More specifically, a labyrinth structure is formed between the impeller 70 and the bearing holding member 60 in the axial direction (Z-axis direction) by the first convex portion 62a, the second convex portion 62b, and a disc portion 71a described later. Can do. Thereby, it can suppress that air flows into the clearance gap between the impeller 70 and the bearing holding member 60. FIG. Therefore, according to this embodiment, the ventilation efficiency of the air blower 1 can be improved.
  • the base member 71 has a disc part 71a, an outer cylinder part 71b, and an inner cylinder part 71c.
  • the disk portion 71a has a disk shape extending in the radial direction, and the central axis J passes through the center thereof.
  • the outer cylinder part 71b has a cylindrical shape extending upward from the inner edge of the disk part 71a.
  • the outer cylinder part 71b is centered on the central axis J, for example.
  • the upper end portion of the outer cylindrical portion 71b is curved radially inward.
  • the air that has flowed into the impeller 70 through the air inlet 80a described later tends to flow radially outward along the upper surface of the outer cylindrical portion 71b.
  • the ventilation efficiency of the air blower 1 can be improved.
  • the inner cylinder part 71c is located radially inward from the outer cylinder part 71b.
  • the inner cylinder part 71c is a cylindrical cylinder part extending in the axial direction (Z-axis direction).
  • the inner cylinder part 71c is centered on the central axis J, for example.
  • the upper end portion of the inner cylindrical portion 71c is curved outward in the radial direction.
  • the upper end part of the inner cylinder part 71c is smoothly connected to the upper end part of the outer cylinder part 71b.
  • the shape in which the part above the disc part 71a and the outer cylinder part 71b in the inner cylinder part 71c are connected to each other is a U-shape that opens downward in a sectional view.
  • the shaft 31 is press-fitted on the radially inner side of the inner cylindrical portion 71c.
  • the impeller 70 is fixed to the shaft 31.
  • the impeller 70 can be fixed to the shaft 31 without separately providing a fixing member by press-fitting the shaft 31 inside the inner cylindrical portion 71c in the radial direction. . Therefore, the number of parts of the blower 1 can be reduced.
  • the disc part 71a, the outer cylinder part 71b, and the inner cylinder part 71c are comprised with a single member, the number of parts of the air blower 1 can be reduced more. Thereby, the assembly man-hour of the air blower 1 can be reduced.
  • the fixing member that fixes the impeller 70 to the shaft 31 is, for example, a nut.
  • the shaft 31 is press-fitted into the inner cylindrical portion 71c positioned radially inward from the outer cylindrical portion 71b extending upward from the inner edge of the disc portion 71a.
  • the shaft 31 can suppress that stress concentrates on the connection location of the disc part 71a and the outer side cylinder part 71b, and the rigidity of the part to which the disc part 71a, the outer side cylinder part 71b, and the inner side cylinder part 71c are connected is enlarged. it can. Therefore, when stress is applied to the impeller 70, the impeller 70 can be prevented from swinging.
  • the lower end part of the inner cylinder part 71c is located below the disk part 71a.
  • the lower end portion of the inner cylindrical portion 71c overlaps the bearing holding member 60 in the radial direction.
  • the portion where the shaft 31 is press-fitted in the inner cylinder portion 71c is located below the disc portion 71a.
  • the lower end portion of the inner cylindrical portion 71c is in contact with the upper end portion of the inner ring of the upper bearing 52b.
  • the inner cylinder portion 71c functions as a spacer that defines the position of the disc portion 71a in the axial direction (Z-axis direction).
  • the inner cylinder portion 71c extends below the disc portion 71a.
  • the part in which the shaft 31 in the inner cylinder part 71c is press-fit can be made lower than the disk part 71a, and the dimension of the axial direction (Z-axis direction) of the shaft 31 can be reduced.
  • the manufacturing method of the base member 71 is not particularly limited.
  • the base member 71 is a single member made of metal having a disc part 71a, a cylindrical outer cylinder part 71b, and an inner cylinder part 71c. Therefore, for example, the base member 71 can be manufactured by burring a metal plate-like member. Thereby, manufacture of the impeller 70 can be made easy.
  • manufacture of the impeller 70 can be made easy.
  • the moving blade 73 is located on the upper surface of the disc portion 71a.
  • the moving blade 73 is inserted into a groove provided on the upper surface of the disc portion 71a, for example, and is fixed to the upper surface of the disc portion 71a.
  • a plurality of moving blades 73 are provided along the circumferential direction.
  • the shroud 72 is an annular portion facing the upper surface of the disc portion 71a.
  • the inner edge of the shroud 72 has, for example, a circular shape concentric with the disk portion 71a.
  • the shroud 72 is fixed to the disc portion 71 a via the moving blade 73.
  • the shroud 72 has a shroud ring portion 72a and a shroud cylindrical portion 72b.
  • the shroud annular portion 72a has an annular plate shape.
  • the shroud cylindrical portion 72b has a cylindrical shape extending upward from the inner edge of the shroud annular portion 72a.
  • the shroud cylinder 72b has an impeller opening 72c that opens upward.
  • the shroud cylindrical portion 72 b is located on the radially outer side than the outer cylindrical portion 71 b of the base member 71.
  • the inner surface of the shroud cylindrical portion 72b has a curved surface portion 72d.
  • the curved surface portion 72d is located at the upper end portion of the inner surface of the shroud cylindrical portion 72b.
  • the curved surface portion 72d is curved outward in the radial direction from the lower side toward the upper side.
  • An impeller channel 86 is provided between the shroud ring portion 72a and the disc portion 71a in the axial direction (Z-axis direction).
  • the impeller channel 86 is partitioned by a plurality of moving blades 73.
  • the impeller channel 86 communicates with the impeller opening 72c.
  • the impeller channel 86 opens to the outside in the radial direction of the impeller 70.
  • the axial position of the impeller 70 is determined by the inner cylindrical portion 71c that functions as a spacer.
  • the lower surface of the impeller 70 that is, the lower surface of the disk portion 71a is provided at a position close to the upper end of the first convex portion 62a and the upper end of the second convex portion 62b in the bearing holding member 60.
  • the labyrinth structure mentioned above is comprised. Therefore, it is possible to suppress the air discharged radially outward from the impeller flow path 86 of the impeller 70 from flowing from the radially outer side to the radially inner side via the gap between the impeller 70 and the bearing holding member 60.
  • the ventilation efficiency of the air blower 1 can be improved more.
  • the flow path member 61 has a cylindrical shape that surrounds the radially outer side of the motor 10.
  • the inner diameter of the flow path member 61 decreases from the upper end portion toward the lower side, and then increases from the portion where the inner diameter becomes the minimum toward the lower side.
  • the flow path member inner side surface 61c which is the radially inner surface of the flow path member 61, is positioned radially inward from the upper end portion toward the lower side, and then from the location where the radial position is the innermost side. It is located radially outward as it goes down.
  • the inner diameter of the flow path member 61 is, for example, the maximum at the upper end.
  • the radial direction position of the flow path member inner side surface 61c is, for example, located on the outermost side in the upper end portion.
  • an exhaust flow path 87 extending in the axial direction (Z-axis direction) is provided between the radial direction of the flow path member 61 and the motor 10. That is, the exhaust passage 87 is formed by the passage member 61 and the motor 10. The exhaust passage 87 is provided over one circumference in the circumferential direction.
  • the outer surface of the motor 10, that is, the outer peripheral surface of the housing 20, has a cylindrical shape that extends linearly in the axial direction. Change.
  • the radial width of the exhaust flow path 87 decreases from the upper end to the lower side, and then increases from the position where the width is minimized to the lower side. For example, the radial width of the exhaust passage 87 is maximized at the upper end.
  • the width of the exhaust passage 87 the static pressure of the air passing through the exhaust passage 87 can be increased. Thereby, it can suppress that the air which passes the inside of the exhaust flow path 87 flows backward, ie, the air flows from the lower side toward the upper side.
  • the radial position of the exhaust flow path 87 becomes radially inner as the radial width of the exhaust flow path 87 becomes smaller, and becomes radially outer as the radial width of the exhaust flow path 87 becomes larger.
  • the circumferential length of the exhaust flow path 87 becomes smaller, so the flow area of the exhaust flow path 87 becomes smaller.
  • the radial position of the exhaust flow path 87 is radially outward, the circumferential length of the exhaust flow path 87 increases, and thus the flow area of the exhaust flow path 87 increases.
  • the radial position of the exhaust flow path 87 becomes radially inner as the radial width of the exhaust flow path 87 becomes smaller. Therefore, it is easy to sufficiently reduce the channel area by reducing the radial width of the exhaust channel 87.
  • the passage area can be easily increased sufficiently. Thereby, since the change of the flow path area of the exhaust flow path 87 can be increased, the static pressure of the air passing through the exhaust flow path 87 can be easily increased. Therefore, according to this embodiment, it can suppress more that the air which passes the exhaust flow path 87 flows backward.
  • the radial position of the exhaust passage includes the radial position of the radially outer end of the exhaust passage.
  • An exhaust port 88 is provided at the lower end of the exhaust channel 87.
  • the exhaust port 88 is a portion from which air that has flowed into the blower 1 from an air intake port 80a described later is discharged.
  • the axial position of the exhaust port 88 is substantially the same as the axial position of the lower end portion of the motor 10.
  • the flow path member 61 includes an upper flow path member 61b and a lower flow path member 61a.
  • the upper flow path member 61b is connected to the upper side of the lower flow path member 61a.
  • the inner diameter of the upper flow path member 61b decreases from the upper end to the lower side.
  • the inner diameter of the lower flow path member 61a increases from the upper end toward the lower side. That is, the position where the inner diameter is minimum in the flow path member 61 is the same in the axial direction (Z-axis direction) as the connection position P1 where the upper flow path member 61b and the lower flow path member 61a are connected.
  • the position at which the radial width of the exhaust flow path 87 is minimized is the same as the connection position P1 in the axial direction.
  • the blower device 1 includes a plurality of stationary blades 67.
  • the plurality of stationary blades 67 are fixed to the outer surface of the bearing holding member 60.
  • the holding member piece 60a and the stationary blade 67 may be a single member.
  • the plurality of stationary blades 67 are provided between the flow path member 61 and the motor 10 in the radial direction. That is, the stationary blade 67 is provided in the exhaust passage 87.
  • the stationary blade 67 rectifies the air flowing in the exhaust passage 87.
  • the plurality of stationary blades 67 are arranged at equal intervals along the circumferential direction.
  • the stationary blade 67 has a stationary blade lower portion 67a and a stationary blade upper portion 67b.
  • the stationary blade lower portion 67a extends in the axial direction (Z-axis direction).
  • the stationary blade upper portion 67b is connected to the upper end portion of the stationary blade lower portion 67a.
  • Stationary blade top 67b is toward the lower side to the upper, curved clockwise direction in a plan view (- [theta] Z direction).
  • the stationary blade lower portion 67a overlaps, for example, the lower flow path member 61a in the radial direction.
  • the stationary blade upper portion 67b overlaps, for example, the upper flow path member 61b in the radial direction.
  • the stationary blade lower portion 67a and the stationary blade upper portion 67b are, for example, a part of a single member.
  • the stationary blade 67 is manufactured, for example, as a single member with the upper flow path member 61b.
  • the impeller housing 80 is a cylindrical member.
  • the impeller housing 80 is attached to the upper end portion of the flow path member 61.
  • the impeller housing 80 has an intake port 80a that opens upward.
  • the impeller housing 80 includes an impeller housing main body portion 82 and an intake guide portion 81.
  • the impeller housing main body 82 has a cylindrical shape that surrounds the radially outer side of the impeller 70 and opens on both axial sides.
  • the upper end portion of the flow path member 61 is fitted inside the impeller housing main body portion 82 in the radial direction. In the present embodiment, the upper end portion of the flow path member 61 is press-fitted, for example, on the radially inner side of the impeller housing body portion 82.
  • the lower end portion of the impeller housing main body 82 is provided with a step 83 in which the inner diameter of the impeller housing main body 82 increases from the upper side to the lower side.
  • the upper end surface of the flow path member 61 is in contact with a step surface 83 a that is orthogonal to the axial direction of the step 83.
  • the impeller housing body 82 is positioned in the axial direction (Z-axis direction) with respect to the flow path member 61.
  • the inner surface of the impeller housing main body 82 has a curved surface 82a and a facing surface 82b.
  • the curved surface 82a is a curved surface having a circular arc shape in cross section, located radially outward from the upper side to the lower side.
  • the curved surface 82a is continuously connected to the inner surface 61c of the flow path member without a step. Therefore, when the air flowing along the curved surface 82a flows into the exhaust passage 87, a loss is hardly generated. Therefore, according to this embodiment, the ventilation efficiency of the air blower 1 can be improved.
  • the curved surface 82a faces the radially outer opening of the impeller 70 in the radial direction.
  • a connecting flow path 84 that connects the impeller flow path 86 and the exhaust flow path 87 is provided between the curved surface 82a and the impeller 70 in the radial direction.
  • the radial width of the connection channel 84 increases from the upper side to the lower side. That is, the radial width of the connection channel 84 is maximized at the lower end.
  • the lower end portion of the connection channel 84 is a portion connected to the upper end portion of the exhaust channel 87.
  • the radial width of the lower end portion of the connection flow path 84 and the radial width of the upper end portion of the exhaust flow path 87 are the same.
  • the width of the exhaust passage 87 becomes smaller from the upper side to the lower side. Therefore, in the flow path from the connection flow path 84 to the upper side of the exhaust flow path 87, the width of the flow path is the largest at the location where the connection flow path 84 and the exhaust flow path 87 are connected.
  • the step 83 which is a connection portion between the impeller housing 80 and the flow path member 61 is provided at a position where the width is the largest in the flow path from the connection flow path 84 to the upper side of the exhaust flow path 87.
  • the upper end portion P2 of the curved surface 82a is positioned above the radially outer end of the lower surface of the shroud ring portion 72a. Therefore, the air discharged from the impeller flow path 86 to the radially outer side of the impeller 70 does not collide with the upper end portion P2. Thereby, air can be prevented from entering the gap GA2 between the radial outer end of the shroud ring portion 72a and the impeller housing main body portion 82 in the radial direction. Therefore, according to this embodiment, the ventilation efficiency of the air blower 1 can be improved.
  • ⁇ Gap GA2 is smaller than gap GA3 between an opposing surface 82b described later and the outer surface of shroud 72. Thereby, it can suppress that the air which flows through the connection flow path 84 flows in into the clearance gap GA3 via the clearance gap GA2.
  • the upper end portion P2 of the curved surface 82a is located below the radially outer end of the upper surface of the shroud ring portion 72a. Therefore, the air discharged from the impeller flow path 86 to the radially outer side of the impeller 70 tends to flow along the curved surface 82a. Thereby, the loss at the time of air flowing from the impeller channel 86 to the exhaust channel 87 via the connection channel 84 can be reduced. Therefore, according to this embodiment, the ventilation efficiency of the air blower 1 can be improved.
  • the facing surface 82 b is a surface facing the shroud 72 of the impeller 70.
  • the facing surface 82 b has a shape that follows the outer surface of the shroud 72. Therefore, it is easy to reduce the width of the gap GA3 between the facing surface 82b and the outer surface of the shroud 72.
  • the width of the gap GA3 is, for example, substantially uniform.
  • the intake guide portion 81 protrudes radially inward from the inner edge of the upper end portion of the impeller housing body portion 82.
  • the intake guide portion 81 is, for example, an annular shape.
  • the upper opening of the intake guide part 81 is an intake port 80a.
  • the radially inner side surface of the intake guide portion 81 is a curved surface located radially outward as it goes from the lower side to the upper side.
  • the intake guide portion 81 is located above the shroud cylindrical portion 72b.
  • a gap GA1 in the axial direction between the intake guide portion 81 and the shroud cylindrical portion 72b is smaller than the gap GA3. Thereby, it can suppress that the air which flows in into the impeller 70 from the inlet port 80a flows in into the gap GA3 via the gap GA1.
  • the radial position of the radially inner end of the intake guide portion 81 is substantially the same as the radial position of the radially inner end of the shroud cylindrical portion 72b. Therefore, the air that has entered the impeller 70 along the intake guide portion 81 tends to flow along the shroud cylindrical portion 72b. Thereby, the loss of the air suck
  • the inner surface of the shroud cylindrical portion 72b has the curved surface portion 72d positioned at the upper end portion. For this reason, even when the radial position of the impeller 70 is shifted, air tends to flow downward along the curved surface portion 72d. Therefore, air loss can be reduced.
  • the impeller 70 may be a single member.
  • the bearing holding member 60 may be constituted by two holding member pieces 60a, or may be constituted by four or more holding member pieces 60a.
  • each holding member piece 60a may be different from each other.
  • the structure provided with two or more outer side protrusion parts 63 along the circumferential direction may be sufficient.
  • the blower 2 includes a motor 110, a bearing holding member 160, an impeller 70, a flow path member 161, a plurality of stationary blades 167, and an impeller housing 80.
  • the motor 110 includes a housing 120, a rotor 30 having a shaft 31, a stator 140, a lower bearing 52a and an upper bearing 52b, and a connector 90.
  • the housing 120 includes a peripheral wall 121, a lower lid portion 22, and a lower bearing holding portion 22b.
  • the peripheral wall 121 is provided with a plurality of through holes 121a and a plurality of notches 121b. As shown in FIG. 6, the upper end portion of the through hole 121 a is located below the stator core 141 described later.
  • the other configuration of the through hole 121a is the same as the configuration of the through hole 21a of the first embodiment.
  • the notch 121b is a part that is notched from the upper end of the peripheral wall 121 to the lower side. That is, the notch 121b penetrates the peripheral wall 121 in the radial direction and opens upward.
  • six notches 121b are provided at equal intervals along the circumferential direction.
  • the shape of the notch 121b when viewed in the radial direction is, for example, a rectangular shape extending in the axial direction.
  • the stator 140 has a stator core 141.
  • the stator core 141 includes a core back portion 41a, a teeth portion 41b, and a core protruding portion 141c.
  • the core protruding portion 141c protrudes radially outward from the outer peripheral surface of the core back portion 41a.
  • six core protrusions 141c are provided along the circumferential direction.
  • Each core protrusion 141c is fitted in the notch 121b.
  • the radially outer surface of the core protrusion 141 c is located on the same plane as the outer peripheral surface of the housing 120.
  • the radially outer surface of the core protrusion 141 c is exposed to the outside of the housing 120.
  • the outer peripheral surface of the core protruding portion 141c and the outer peripheral surface of the housing 120 are Line up alternately along the circumferential direction.
  • the stator core 141 can be cooled by the air flowing through the exhaust passage 87.
  • the lower end of the core protrusion 141c is in contact with the upper edge of the notch 121b. As a result, the stator core 141 is positioned in the axial direction.
  • the stationary blade 167 has a stationary blade lower portion 167a and a stationary blade upper portion 167b.
  • the stationary blade lower portion 167a and the stationary blade upper portion 167b are separate members, for example.
  • Other configurations of the stationary blade lower portion 167a are the same as the configurations of the stationary blade lower portion 67a of the first embodiment.
  • Other configurations of the stationary blade upper portion 167b are the same as the configurations of the stationary blade upper portion 67b of the first embodiment.
  • the bearing holding member 160 is the same as the bearing holding member 60 of the first embodiment except that the stationary blade upper part 167b is fixed to the outer peripheral surface.
  • the stationary blade upper portion 167 b is fixed to the outer surface of the bearing holding member 160.
  • the holding member piece and the stationary blade upper portion 167b are, for example, a single member.
  • the bearing holding member 160 functions as a diffuser having a stationary blade upper portion 167b as a stationary blade.
  • the number of holding member pieces constituting the bearing holding member 160 is a divisor of the number of the stationary blade upper portions 167b. That is, the number of holding member pieces is a divisor of the number of stationary blades 167. Therefore, the number of the stationary blade upper portions 167b included in each holding member piece can be made the same for each holding member piece. Thereby, when the stationary blade upper part 167b is provided in the bearing holding member 160, the shape of each holding member piece can be made the same. Therefore, each holding member piece can be easily manufactured.
  • the number of the stationary blade upper portions 167b is 15 and the number of the holding member pieces constituting the bearing holding member 160 is 3, the number of the stationary blade upper portions 167b provided in one holding member piece is 5 It is.
  • the flow path member 161 is a single member.
  • a stationary blade lower portion 167 a is fixed to the inner peripheral surface of the flow path member 161.
  • the flow path member 161 and the stationary blade lower portion 167a are, for example, a single member.
  • the other configuration of the flow path member 161 is the same as the configuration of the flow path member 61 of the first embodiment.
  • the other structure of the air blower 2 is the same as that of the air blower 1 of 1st Embodiment.
  • the number of the notches 121b is not particularly limited, and may be 5 or less, or 7 or more. Moreover, in this embodiment, the through-hole which penetrates the surrounding wall 121 to radial direction may be provided instead of the notch 121b.
  • the entire stationary blade 167 composed of the stationary blade lower portion 167a and the stationary blade upper portion 167b may be configured as a single member with the holding member piece constituting the bearing holding member 160.
  • FIG. 9 is a cross-sectional view showing the blower 3 of the third embodiment.
  • the blower 3 includes a motor 210, an impeller 270, an impeller housing 280, a motor housing 260, a flow path member 261, and a plurality of stationary blades 267.
  • the motor housing 260 is a member corresponding to the bearing holding member 60 in the first embodiment. However, the upper bearing 252b may be held by a member other than the motor housing 260.
  • the motor 210 has a shaft 231 disposed along a central axis J that extends vertically.
  • the motor 210 includes a rotor 230, a stator 240, a lower bearing 252a, and an upper bearing 252b.
  • the rotor 230 is disposed radially inward of the stator 240 and connected to the shaft 231.
  • the shaft 231 is rotatably supported around the central axis J with respect to the stator 240 via the lower bearing 252a and the upper bearing 252b.
  • the impeller 270 is connected to the shaft 231 and rotates together with the shaft 231.
  • the impeller housing 280 is disposed on the upper side or the radially outer side of the impeller 270.
  • the impeller housing 280 has an intake port 280a that surrounds the upper side and the radially outer side of the impeller 270 and penetrates in the axial direction at the center.
  • the motor housing 260 is disposed outside the motor 210 in the radial direction.
  • the motor housing 260 is a substantially covered cylindrical member that opens downward.
  • the flow path member 261 is disposed on the radially outer side of the motor housing 260 via a gap. That is, the outer surface in the radial direction of the motor housing 260 and the inner surface in the radial direction of the flow path member 261 are disposed with a gap in the radial direction. Thereby, the gap formed between the motor housing 260 and the flow path member 261 becomes a flow path.
  • the plurality of stationary blades 267 are arranged in the circumferential direction in the gap between the motor housing 260 and the flow path member 261.
  • the plurality of stationary blades 267 are located radially outside the radially outer end of the impeller 270. Further, the upper ends in the axial direction of the plurality of stationary blades 267 are located on the lower side in the axial direction than the lower ends in the axial direction of the impeller 270. At least one of the plurality of stationary blades 267 includes a plurality of divided portions.
  • At least one of the stationary blades 267 includes a first stationary blade portion 268 formed on one side of the motor housing 260 or the flow channel member 261 and a first stationary blade portion 268 formed on the other side of the motor housing 260 or the flow channel member 261.
  • the outer surface of the motor housing 260 has a first stationary blade portion 268, and the inner surface of the flow path member 261 has a second stationary blade portion 269.
  • the first stationary blade portion 268 and the second stationary blade portion 269 are connected in the radial direction or the axial direction. Thereby, the 1st stator blade part 268 and the 2nd stator blade part 269 can be fixed firmly. Further, by fixing the first stationary blade portion 268 formed on the motor housing 260 and the second stationary blade portion 269 formed on the flow path member 261, the radial outer surface of the motor housing 260 and the flow path member 261 are fixed. The coaxiality with the inner surface in the radial direction can be improved. Therefore, since the radial width of the flow path can be made more uniform in the circumferential direction, the blowing efficiency of the blower 3 is improved.
  • FIG. 10 is a perspective view of the motor housing 260 of the third embodiment
  • FIG. 11 is a bottom view of the flow path member 261 of the third embodiment.
  • first stator blade portion 268 and second stator blade portion 269 each have a first connecting portion 268 ⁇ / b> A and a second connecting portion 269 ⁇ / b> A.
  • the first connecting portion 268 ⁇ / b> A is a portion that is formed on the first stationary blade portion 268 and contacts a part of the second stationary blade portion 269.
  • the second connecting portion 269A is a part formed on the second stationary blade portion 269 and in contact with a part of the first stationary blade portion.
  • At least a part of the first connecting part 268A and at least a part of the second connecting part 269A abut in the axial direction.
  • first connecting part 268A and at least a part of the second connecting part 269A are in contact with each other in the circumferential direction.
  • the circumferential positioning of the 1st stator blade part 268 and the 2nd stator blade part 269 can be performed. That is, the first connecting portion 268A and the second connecting portion 269A are in contact with each other in the axial direction and the circumferential direction, and are positioned in the axial direction and the circumferential direction.
  • the first stationary blade portion 268 and the second stationary blade portion 269 can be fixed without being displaced from each other.
  • the first connecting portion 268A has a convex portion 268B extending in the axial direction or the radial direction
  • the second connecting portion 269A has a concave portion 269B recessed in the axial direction or the radial direction.
  • the convex portion 268B extends downward in the axial direction from the surface facing downward in the axial direction at the lower portion of the first stationary blade portion 268.
  • a first connecting portion 268A is configured by the axially lower surface of the lower portion of the first stationary blade portion 268 and the convex portion 268B.
  • the recess 269 ⁇ / b> B is recessed from the radially inner side to the outer side in the second stationary blade part 269.
  • a second connecting portion 269A is configured by the upper surface of the second stationary blade portion 269 and the concave portion 269B.
  • the circumferential width W1 of at least a part of the convex portion 268B is narrower than the circumferential width W2 of the stationary blade 267.
  • the first stationary blade portion 268 is located on the upper side in the axial direction than the second stationary blade portion 269.
  • the first stationary blade portion 268 has a first side surface 268C that faces the rear side in the rotation direction R of the impeller.
  • the second stationary blade portion 269 has a second side surface 269C that faces the rear side in the rotation direction R of the impeller.
  • the first side surface 268C and the second side surface 269C are smoothly connected. That is, when the first stationary blade portion 268 and the second stationary blade portion 269 are connected, the first side surface 268C and the second side surface 269C cause the side surface of the stationary blade 267 facing the rear side in the rotation direction R of the impeller. Composed.
  • the surface of the stationary blade 267 facing the front side in the rotational direction R of the impeller is also the surface facing the front side of the impeller in the rotational direction R of the first stationary blade portion 268 and the forward side of the rotational direction R of the impeller in the second stationary blade portion 269. And a surface that faces. Thereby, the ventilation efficiency of the air blower 3 further improves.
  • the upper portion of the first side surface 268C is curved forward in the rotational direction R from the upper side in the axial direction toward the lower side. More specifically, the upper portion of the first side surface 268C is a smooth curved surface that protrudes forward in the rotational direction R of the impeller and upward in the axial direction.
  • the air discharged radially outward from the impeller 270 smoothly rotates along the curved surface above the first side surface 268C while having a component swirling in the circumferential direction toward the front side in the rotation direction R of the impeller. It is guided downward in the direction and flows downward in the axial direction. Therefore, the blowing efficiency of the blower 3 is improved.
  • the radial gap d1 at the upper end of the axial region A is wider than the radial gap d2 at the lower end of the axial region A. That is, in the axial region A where the stationary blade 267 is disposed, the radial gap of the flow path at the upper end is wider than the radial gap of the flow path at the lower end.
  • the radial gap d2 at the lower end of the axial region A is narrower than the radial gap d3 between the outer surface of the motor housing 260 and the inner surface of the flow path member 261 below the axial region A. That is, the radial gap d3 of the flow path below the axial direction area A is wider than the radial gap of the flow path below the axial direction area A.
  • the air whose static pressure has been increased in the axial region A has a gradually lower resistance in the flow channel as the cross-sectional area of the flow channel expands below the axial region A in the axial direction. Smoothly flows downward in the axial direction. Therefore, the blowing efficiency of the blower 3 is improved.
  • a plurality of stator blades 267 having first stator blade portions 268 and second stator blade portions 269 are arranged unevenly in the circumferential direction. That is, in FIG. 11, the circumferential gaps in the plurality of second stationary blade portions 269 are different from the other circumferential gaps at least at one location. Similarly, the circumferential gaps of the plurality of first stator blade portions 268 are the same as those of the plurality of second stator blade portions 269. Thereby, the motor housing 260 and the flow path member 261 are positioned in the circumferential direction.
  • the first stationary blade portion 268 is disposed above the second stationary blade portion 269.
  • the first stationary blade portion 268 may be disposed below the second stationary blade portion 269.
  • the first stationary blade portion 268 may be formed in the flow path member 261 instead of the motor housing 260.
  • the convex portion 268B may be formed in the second stationary blade portion 269, and the concave portion 269B may be formed in the first stationary blade portion 268.
  • each of the first connecting portion 268A and the second connecting portion 269A includes a plane that is substantially orthogonal to the axial direction and a convex portion 268B that protrudes axially from the plane, or a recess that extends in the axial direction.
  • the first connecting portion 268A and the second connecting portion 269A may have other shapes.
  • the lower surface of the first connecting portion 268A may be an inclined surface that is inclined with respect to the axial direction.
  • the upper end portion of the second connecting portion 269A may be exposed on the upper side in the axial direction. That is, in the third embodiment, since the upper end portion of the second connecting portion 269A is in contact with the first connecting portion 268A in the axial direction, the second connecting portion is viewed when the stationary blade 267 is viewed from the upper side in the axial direction. 269A is not exposed on the upper side in the axial direction, but may be exposed on the upper side in the axial direction. Further, when viewed from the lower side in the axial direction, the lower end portion of the first connecting portion 268A may be exposed on the lower side in the axial direction.
  • FIG. 12 is a side view showing a stationary blade 367 of the fourth embodiment.
  • the flow path member disposed on the radially outer side is omitted.
  • a plurality of stationary blades 367 are arranged in the circumferential direction.
  • At least one of the plurality of stationary blades 367 includes a plurality of divided parts. That is, at least one of the stationary blades 367 includes a first stationary blade portion 368 formed on one side of the motor housing 360 or the flow path member and a second stationary blade formed on the other side of the motor housing 360 or the flow path member. And a wing portion 369.
  • the first stator blade portion 368 and the second stator blade portion 369 have a first connecting portion 368A and a second connecting portion 369A, respectively.
  • the first connecting portion 368A and the second connecting portion 369A each have a first step portion 368E and a second step portion 369E that extend in the axial direction. Either the surface facing the axial direction or the surface facing the circumferential direction of the first step portion 368E and the second step portion 369E abuts.
  • the surface facing the axial direction of the first stepped portion 368E that is, the lower surface is in contact with the surface facing the axial direction of the second stepped portion 369E, that is, the upper surface.
  • the circumferential surface that is, the side surface of the first step portion 368E is in contact with the circumferential surface of the second step portion 369E, that is, the side surface.
  • the 1st stator blade part 368 and the 2nd stator blade part 369 can be positioned in both an axial direction and the circumferential direction.
  • an air blower can be assembled by a cheap and simple operation
  • the first step portion 368A and the second step portion 369A only need to be in contact with either one of the surfaces facing the axial direction or the surface facing the circumferential direction, and both surfaces are in contact. It does not have to be.
  • the first stationary blade portion 368 has a first side surface 368C facing the impeller rotation direction R rear side
  • the second stationary blade portion 369 has a second side surface 369C facing the impeller rotation direction R rear side.
  • the lower end portion 368D of the first side surface is located on the rear side in the rotational direction R of the impeller with respect to the upper end portion 369D of the second side surface in the circumferential direction.
  • the resistance received by the air flowing near the first side surface is lower than in the case where the lower end portion 368D of the first side surface is positioned more forward in the rotational direction R of the impeller than the upper end portion 369D of the second side surface in the circumferential direction. Is reduced.
  • the upper end portion 369D of the second side surface rotates the impeller more than the first side surface 368C. Exiting in the direction R rear side is suppressed.
  • the lower end portion 368D on the first side surface and the upper end portion 369D on the second side surface are arranged in the same position, so that the air blowing efficiency is further improved.
  • FIG. 13 is a side view showing a stationary blade 467 of the fifth embodiment.
  • the flow path member disposed on the radially outer side of the stationary blade 467 is omitted.
  • the air blower of 5th Embodiment is the same as that of 3rd Embodiment except for the stationary blade 467.
  • the stationary blade 467 is formed on one side of the motor housing or the flow path member, and has a recess 468F that is recessed in the axial direction at the lower end in the axial direction. Further, a connecting portion 469F is formed on the other side of the motor housing or the flow path member. In the present embodiment, the stationary blade 467 is formed integrally with the flow path member, and the connecting portion 469F is formed integrally with the motor housing. The connecting portion 469F is engaged with at least a part of the recess 468F. Thereby, the stationary blade 467 and the connecting portion 469F can be firmly fixed by an inexpensive and high-productivity configuration.
  • the stator blade 467 of the fifth embodiment differs from the stator blade 267 of the third embodiment and the stator blade 367 of the fourth embodiment in that the connecting portion 469F does not constitute the side surface of the stator blade 467. That is, in the stationary blade 467, the side surface of the stationary blade 467 is constituted only by the stationary blade 467 formed integrally with one side of the motor housing or the flow path member. Further, the connecting portion 469F constitutes a part of the lower surface of the stationary blade 467 and is not exposed to other surfaces.
  • the stationary blade 467 is disposed on the upper side of the connecting portion 469F, but the stationary blade is disposed on the lower side of the connecting portion, and is a concave portion that is recessed downward on the upper surface of the stationary blade. You may have.
  • FIG. 14 is a side view showing a stationary blade 567 of the sixth embodiment.
  • the flow path member disposed on the radially outer side of the stationary blade 567 is omitted.
  • the air blower of 6th Embodiment is the same as that of 3rd Embodiment except for the stationary blade 567.
  • the stationary blade 567 is formed on one side of the motor housing or the flow path member, and has a recess 568F that is recessed toward the rear side in the rotational direction R of the impeller on the front side in the rotational direction R of the impeller.
  • a connecting portion 569F is formed on the other side of the motor housing or the flow path member. The connecting portion 569F is engaged with at least a part of the recess 568F.
  • the stationary blade 567 is formed integrally with the motor housing, and the connecting portion 569F is formed integrally with the flow path member. As a result, the stationary blade 567 and the connecting portion 569F can be firmly fixed by an inexpensive and highly productive configuration.
  • the connecting portion 569F does not constitute a side surface of the stationary blade 567. Further, the connecting portion 569F constitutes a part of the surface of the stationary blade 567 on the front side in the rotation direction R of the impeller, and is not exposed to other surfaces.
  • the concave portion 568F may be configured on the surface on the rear side in the rotation direction R of the impeller and may be engaged with the connecting portion 569F.
  • the 15 includes a blower according to the present invention. Thereby, the 1st stator blade part and the 2nd stator blade part can be firmly fixed in the air blower mounted in a cleaner.
  • the air blower of said 1st Embodiment to 6th Embodiment may be used for any apparatuses.
  • the blower of the first to sixth embodiments can be used for, for example, a vacuum cleaner and a dryer.
  • Channel member 62a first convex portion, 62b, second convex portion, 62c, holding member main body portion, 62d, holding cylinder portion, 63, outer protruding portion, 64, inner protruding portion, 67, 167, 267, 367, 467,. 567 ... Stator blade, 268, 368 ... First stator blade portion, 268A, 368A ... First connecting portion, 268B ... Convex portion, 268C, 368C ... First side surface, 68D: lower end portion of first side surface, 368E: first step portion, 468F, 568F ... concave portion, 269, 369 ... second stationary blade portion, 269A, 369A ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Electric Suction Cleaners (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Support Of The Bearing (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

A blower apparatus according to an exemplary embodiment of the present invention has: a motor having a shaft arranged along a central axis extending in the vertical direction; an impeller connected to the shaft, and arranged to rotate together with the shaft; an impeller housing arranged on the upper side of or radially outside of the impeller; a motor housing arranged radially outside of the motor; a flow channel member arranged radially outward of the motor housing with a gap therebetween; and a plurality of stationary vanes arranged in the circumferential direction in the gap between the motor housing and the flow channel member. At least one of the stationary vanes has a first stationary vane portion formed in one of the motor housing and the flow channel member, and a second stationary vane portion formed in the other one of the motor housing and the flow channel member, and the first stationary vane portion and the second stationary vane portion are connected to each other in the radial or axial direction.

Description

送風装置および掃除機Blower and vacuum cleaner
 本発明は、送風装置および掃除機に関する。 The present invention relates to a blower and a vacuum cleaner.
 従来、掃除機に搭載される送風装置は、複数の静翼を有する形態が知られている。このような送風装置として、例えば、日本国公開公報特開2002-138996号公報に開示されたものがある。日本国公開公報特開2002-138996号公報に開示された電動送風機においては、遠心羽根車の外周部に設けられた各ディフューザベーン間に形成される空気流路出口近傍に、ディフューザベーンの高さ方向寸法よりも小さな高さ方向寸法を有する中間羽根を設けられることが開示されている。この構成により、遠心羽根車からの空気流れをディフューザで効率よく動圧を静圧として回復させ、ディフューザ側からリターン側にかけての曲り部の損失低減を図り、送風効率を向上させることができる。 Conventionally, a blower mounted on a vacuum cleaner is known to have a plurality of stationary blades. An example of such a blower is disclosed in Japanese Laid-Open Patent Publication No. 2002-138996. In the electric blower disclosed in Japanese Laid-Open Patent Publication No. 2002-138996, the height of the diffuser vane is located in the vicinity of the air flow path outlet formed between the diffuser vanes provided on the outer peripheral portion of the centrifugal impeller. It is disclosed that an intermediate vane having a height dimension smaller than the direction dimension can be provided. With this configuration, the air flow from the centrifugal impeller can be efficiently recovered as a static pressure by the diffuser, the loss of the bent portion from the diffuser side to the return side can be reduced, and the blowing efficiency can be improved.
日本国公開公報:特開平2002-138996号公報Japanese publication: JP-A-2002-138996
 しかしながら、日本国公開公報特開2002-138996号公報に開示された電動送風機においては、中間羽根の高さ方向上端とファンケーシングとが、高さ方向に間隙を介して配置される。したがって、中間羽根とファンケーシングとを固定することができないという課題があった。また、中間羽根の高さ方向上端とファンケーシングとの間隙において乱流が発生し、電動送風機の送風効率が低下する虞がある。 However, in the electric blower disclosed in Japanese Laid-Open Patent Publication No. 2002-138996, the upper end of the intermediate blade in the height direction and the fan casing are arranged with a gap in the height direction. Therefore, there is a problem that the intermediate blade and the fan casing cannot be fixed. Moreover, a turbulent flow may occur in the gap between the upper end of the intermediate blade in the height direction and the fan casing, and the air blowing efficiency of the electric blower may be reduced.
 本発明は、送風装置において、モータハウジング又は流路部材の一方側に構成される静翼と、モータハウジング又は流路部材の他方側と、を強固に固定することを目的としている。 An object of the present invention is to firmly fix a stationary blade configured on one side of a motor housing or a flow path member and the other side of the motor housing or the flow path member in a blower.
 本発明の例示的な一実施形態に係る送風装置は、上下に延びる中心軸に沿って配置されるシャフトを有するモータと、前記シャフトに接続され、前記シャフトと一体となって回転するインペラと、前記インペラの上側または径方向外側に配置されるインペラハウジングと、前記モータの径方向外側に配置されるモータハウジングと、前記モータハウジングよりも径方向外側に隙間を介して配置される流路部材と、前記モータハウジングと前記流路部材との前記隙間において、周方向に配置される複数の静翼と、を有し、前記静翼の少なくとも一つは、前記モータハウジング又は前記流路部材の一方側に形成される第1静翼部と、前記モータハウジング又は前記流路部材の他方側に形成される第2静翼部と、を有し、前記第1静翼部と前記第2静翼部とは、径方向または軸方向に連結されている。 An air blower according to an exemplary embodiment of the present invention includes a motor having a shaft disposed along a central axis extending vertically, an impeller connected to the shaft and rotating integrally with the shaft, An impeller housing disposed on an upper side or a radially outer side of the impeller, a motor housing disposed on a radially outer side of the motor, and a flow path member disposed on a radially outer side of the motor housing via a gap. A plurality of stationary blades arranged in a circumferential direction in the gap between the motor housing and the flow channel member, and at least one of the stationary blades is one of the motor housing or the flow channel member A first stationary blade portion formed on a side of the motor housing or a second stationary blade portion formed on the other side of the flow path member, and the first stationary blade portion and the first stationary blade portion. The stationary blade unit is connected to the radial direction or the axial direction.
 本発明によれば、モータハウジング又は流路部材の一方側に構成される静翼と、モータハウジング又は流路部材の他方側と、を強固に固定できる送風装置を提供できる。また、上記送風装置を有する掃除機において、モータハウジング又は流路部材の一方側に構成される静翼と、モータハウジング又は流路部材の他方側と、を強固に固定できる。 According to the present invention, it is possible to provide a blower capable of firmly fixing the stationary blade configured on one side of the motor housing or the flow path member and the other side of the motor housing or the flow path member. Moreover, in the vacuum cleaner which has the said air blower, the stationary blade comprised on the one side of a motor housing or a flow-path member, and the other side of a motor housing or a flow-path member can be fixed firmly.
図1は、第1実施形態の送風装置を示す断面図である。FIG. 1 is a cross-sectional view showing the blower of the first embodiment. 図2は、第1実施形態の送風装置を示す斜視図である。FIG. 2 is a perspective view showing the blower of the first embodiment. 図3は、第1実施形態のロータアセンブリを示す斜視図である。FIG. 3 is a perspective view showing the rotor assembly of the first embodiment. 図4は、第1実施形態のベアリング保持部材を示す正面図である。FIG. 4 is a front view showing the bearing holding member of the first embodiment. 図5は、第1実施形態の送風装置の部分を示す拡大断面図である。FIG. 5 is an enlarged cross-sectional view showing a portion of the blower device of the first embodiment. 図6は、第2実施形態の送風装置を示す断面図であり、図8におけるVI-VI断面図である。FIG. 6 is a cross-sectional view showing the blower device of the second embodiment, and is a cross-sectional view taken along the line VI-VI in FIG. 図7は、第2実施形態の送風装置を示す斜視図である。FIG. 7 is a perspective view showing the blower of the second embodiment. 図8は、第2実施形態の送風装置を示す平面図である。FIG. 8 is a plan view showing the blower of the second embodiment. 図9は、第3実施形態の送風装置を示す断面図である。FIG. 9 is a cross-sectional view illustrating the blower device of the third embodiment. 図10は、第3実施形態のモータハウジングを示す斜視図である。FIG. 10 is a perspective view showing a motor housing of the third embodiment. 図11は、第3実施形態の流路部材を示す下面図である。FIG. 11 is a bottom view showing the flow path member of the third embodiment. 図12は、第4実施形態の静翼を示す側面図である。FIG. 12 is a side view showing a stationary blade of the fourth embodiment. 図13は、第5実施形態の静翼を示す側面図である。FIG. 13 is a side view showing a stationary blade of the fifth embodiment. 図14は、第6実施形態の静翼を示す側面図である。FIG. 14 is a side view showing a stationary blade of the sixth embodiment. 図15は、実施形態の掃除機を示す斜視図である。FIG. 15 is a perspective view illustrating the vacuum cleaner according to the embodiment.
 以下、図面を参照しながら、本発明の実施形態に係る送風装置について説明する。なお、本発明の範囲は、以下の実施の形態に限定されず、本発明の技術的思想の範囲内で任意に変更可能である。また、以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数等とを異ならせる場合がある。 Hereinafter, an air blower according to an embodiment of the present invention will be described with reference to the drawings. The scope of the present invention is not limited to the following embodiments, and can be arbitrarily changed within the scope of the technical idea of the present invention. Moreover, in the following drawings, in order to make each structure easy to understand, the actual structure may be different from the scale or number of each structure.
 また、図面においては、適宜3次元直交座標系としてXYZ座標系を示す。XYZ座標系において、Z軸方向は、図1に示す中心軸Jの軸方向と平行な方向とする。Y軸方向は、Z軸方向と直交する方向であって図1の左右方向とする。X軸方向は、Y軸方向とZ軸方向との両方と直交する方向とする。 In the drawings, an XYZ coordinate system is appropriately shown as a three-dimensional orthogonal coordinate system. In the XYZ coordinate system, the Z-axis direction is a direction parallel to the axial direction of the central axis J shown in FIG. The Y-axis direction is a direction orthogonal to the Z-axis direction and is the left-right direction in FIG. The X-axis direction is a direction orthogonal to both the Y-axis direction and the Z-axis direction.
 また、以下の説明においては、中心軸Jの延びる方向(Z軸方向)を上下方向とする。Z軸方向の正の側(+Z側)を「上側(軸方向上側)」と呼び、Z軸方向の負の側(-Z側)を「下側(軸方向下側)」と呼ぶ。なお、上下方向、上側および下側とは、単に説明のために用いられる名称であって、実際の位置関係や方向を限定しない。また、特に断りのない限り、中心軸Jに平行な方向(Z軸方向)を単に「軸方向」と呼び、中心軸Jを中心とする径方向を単に「径方向」と呼び、中心軸Jを中心とする周方向を単に「周方向」と呼ぶ。 In the following description, the direction in which the central axis J extends (Z-axis direction) is the up-down direction. The positive side (+ Z side) in the Z-axis direction is referred to as “upper side (upper axial direction)”, and the negative side (−Z side) in the Z-axis direction is referred to as “lower side (lower axial direction)”. In addition, the up-down direction, the upper side, and the lower side are names used for explanation only, and do not limit the actual positional relationship and direction. Unless otherwise specified, a direction parallel to the central axis J (Z-axis direction) is simply referred to as an “axial direction”, and a radial direction around the central axis J is simply referred to as a “radial direction”. The circumferential direction centered on is simply referred to as the “circumferential direction”.
<第1実施形態>
 送風装置1は、図1および図2に示すように、モータ10と、ベアリング保持部材60と、インペラ70と、流路部材61と、複数の静翼67と、インペラハウジング80と、を備える。モータ10の上側(+Z側)には、ベアリング保持部材60が取り付けられる。流路部材61は、モータ10の径方向外側を周方向に囲む。インペラハウジング80は流路部材61の上側に取り付けられる。ベアリング保持部材60とインペラハウジング80との軸方向(Z軸方向)の間にインペラ70が収容される。インペラ70は、中心軸J周りに回転可能にモータ10に取り付けられる。なお、図2においては、流路部材61およびインペラハウジング80の図示を省略している。
<First Embodiment>
As shown in FIGS. 1 and 2, the blower device 1 includes a motor 10, a bearing holding member 60, an impeller 70, a flow path member 61, a plurality of stationary blades 67, and an impeller housing 80. A bearing holding member 60 is attached to the upper side (+ Z side) of the motor 10. The flow path member 61 surrounds the radially outer side of the motor 10 in the circumferential direction. The impeller housing 80 is attached to the upper side of the flow path member 61. The impeller 70 is accommodated between the bearing holding member 60 and the impeller housing 80 in the axial direction (Z-axis direction). The impeller 70 is attached to the motor 10 so as to be rotatable around the central axis J. In FIG. 2, the flow path member 61 and the impeller housing 80 are not shown.
 モータ10は、図1に示すように、ハウジング20と、シャフト31を有するロータ30と、ステータ40と、下側ベアリング52aと、上側ベアリング52bと、コネクタ90と、を備える。本実施形態においては、上側ベアリング52bは、ベアリングに対応する。これにより、送風装置1は、ロータ30と、ステータ40と、ハウジング20と、ベアリングと、ベアリング保持部材60と、インペラ70と、を備える。なお、下側ベアリング52a、あるいは下側ベアリング52aおよび上側ベアリング52bの両方が、ベアリングに対応してもよい。 The motor 10 includes a housing 20, a rotor 30 having a shaft 31, a stator 40, a lower bearing 52a, an upper bearing 52b, and a connector 90, as shown in FIG. In the present embodiment, the upper bearing 52b corresponds to a bearing. Thus, the blower 1 includes the rotor 30, the stator 40, the housing 20, the bearing, the bearing holding member 60, and the impeller 70. Note that the lower bearing 52a, or both the lower bearing 52a and the upper bearing 52b may correspond to bearings.
 ハウジング20は、上側に開口する筒状である。ハウジング20は、内部にステータ40を収容する。ハウジング20は、内部にロータ30を収容する。ハウジング20は、例えば、有底の円筒容器である。ハウジング20は、円筒状の周壁21と、周壁21の下端に位置する下蓋部22と、下蓋部22の中央部に位置する下側ベアリング保持部22bと、を有する。ハウジング20における周壁21の内側面には、ステータ40が固定される。下側ベアリング保持部22bは、下蓋部22の中央部から下側(-Z側)へ突出する筒状である。下側ベアリング保持部22bは、内部に下側ベアリング52aを保持する。 The housing 20 has a cylindrical shape that opens upward. The housing 20 accommodates the stator 40 therein. The housing 20 accommodates the rotor 30 therein. The housing 20 is, for example, a bottomed cylindrical container. The housing 20 includes a cylindrical peripheral wall 21, a lower lid portion 22 positioned at the lower end of the peripheral wall 21, and a lower bearing holding portion 22 b positioned at the center of the lower lid portion 22. A stator 40 is fixed to the inner surface of the peripheral wall 21 in the housing 20. The lower bearing holding portion 22b has a cylindrical shape that protrudes downward (−Z side) from the center portion of the lower lid portion 22. The lower bearing holding portion 22b holds the lower bearing 52a inside.
 図1および図2に示すように、ハウジング20には、貫通孔21aが設けられる。貫通孔21aは、周壁21の下部側から下蓋部22に跨って設けられる。すなわち、貫通孔21aは、周壁21を径方向に貫通するとともに、下蓋部22を軸方向(Z軸方向)に貫通する。図示は省略するが、貫通孔21aは、例えば、周方向に沿って3つ設けられる。 As shown in FIGS. 1 and 2, the housing 20 is provided with a through hole 21a. The through hole 21 a is provided across the lower lid portion 22 from the lower side of the peripheral wall 21. That is, the through hole 21a penetrates the peripheral wall 21 in the radial direction and penetrates the lower lid portion 22 in the axial direction (Z-axis direction). Although illustration is omitted, for example, three through holes 21a are provided along the circumferential direction.
 図1に示すように、貫通孔21aの上端部は、後述するステータコア41の下端部よりも上側に位置する。そのため、ステータコア41の下部側が、ハウジング20の外部に露出する。これにより、ステータコア41の径方向外側の面が、モータ10と流路部材61との間に設けられる後述する排気流路87に面する。したがって、排気流路87を流れる空気によって、ステータコア41を冷却することができる。 As shown in FIG. 1, the upper end portion of the through hole 21a is located above the lower end portion of the stator core 41 described later. Therefore, the lower side of the stator core 41 is exposed to the outside of the housing 20. Thus, the radially outer surface of the stator core 41 faces an exhaust passage 87 (described later) provided between the motor 10 and the passage member 61. Therefore, the stator core 41 can be cooled by the air flowing through the exhaust passage 87.
 また、例えば、ステータコア41を冷却する方法としては、ハウジング20内に空気を流入させる方法も考えられる。しかし、この方法では、ハウジング20内のステータコア41およびコイル42等が空気の流れを妨げる抵抗となって、空気の損失が生じる。そのため、送風装置1の送風効率が低下する問題があった。 For example, as a method of cooling the stator core 41, a method of flowing air into the housing 20 is also conceivable. However, in this method, the stator core 41, the coil 42, and the like in the housing 20 become resistances that hinder the flow of air, and air loss occurs. Therefore, there existed a problem that the ventilation efficiency of the air blower 1 fell.
 これに対して、本実施形態によれば、排気流路87に面してステータコア41の外側面を露出させる構成としたため、ステータコア41が排気流路87内の空気の流れの抵抗とならない。これにより、本実施形態によれば、送風効率を低下させることなく、ステータコア41を冷却することが可能である。 On the other hand, according to the present embodiment, since the outer surface of the stator core 41 is exposed facing the exhaust flow path 87, the stator core 41 does not provide resistance to the air flow in the exhaust flow path 87. Thereby, according to this embodiment, it is possible to cool the stator core 41, without reducing ventilation efficiency.
 貫通孔21aの下端部は、軸方向(Z軸方向)において、ステータコア41のほぼ中心に位置する。すなわち、本実施形態においては、ステータコア41の下部側の半分が、排気流路87に露出する。そのため、ステータコア41をより冷却することができる。 The lower end portion of the through hole 21a is located substantially at the center of the stator core 41 in the axial direction (Z-axis direction). That is, in the present embodiment, the lower half of the stator core 41 is exposed to the exhaust passage 87. Therefore, the stator core 41 can be further cooled.
 ロータ30は、図1に示すように、シャフト31と、ロータマグネット33と、下側磁石固定部材32aと、上側磁石固定部材32bと、を有する。ロータマグネット33は、シャフト31を径方向外側で軸周り(θz方向)に囲む円筒状である。下側磁石固定部材32aおよび上側磁石固定部材32bは、ロータマグネット33と同等の外径を有する円筒状である。下側磁石固定部材32aおよび上側磁石固定部材32bは、ロータマグネット33を軸方向両側から挟み込んでシャフト31に取り付けられている。上側磁石固定部材32bは、軸方向(Z軸方向)の上側部分に、下側(ロータマグネット33側)の部分よりも小さい外径の小径部32cを有する。 As shown in FIG. 1, the rotor 30 includes a shaft 31, a rotor magnet 33, a lower magnet fixing member 32a, and an upper magnet fixing member 32b. The rotor magnet 33 has a cylindrical shape that surrounds the shaft 31 radially around the axis (θz direction). The lower magnet fixing member 32 a and the upper magnet fixing member 32 b have a cylindrical shape having an outer diameter equivalent to that of the rotor magnet 33. The lower magnet fixing member 32a and the upper magnet fixing member 32b are attached to the shaft 31 with the rotor magnet 33 sandwiched from both sides in the axial direction. The upper magnet fixing member 32b has a small-diameter portion 32c having an outer diameter smaller than that of the lower portion (rotor magnet 33 side) in the upper portion in the axial direction (Z-axis direction).
 ロータ30は、上下(Z軸方向)に延びる中心軸Jに沿って配置されるシャフト31を有する。シャフト31は、下側ベアリング52aと上側ベアリング52bとによって軸周り(±θz方向)に回転可能に支持されている。すなわち、ベアリングは、シャフト31を回転可能に支持する。シャフト31には、ベアリング保持部材60よりも上側において、インペラ70が取り付けられる。図1では、例えば、シャフト31の上側(+Z側)の端部にインペラ70が取り付けられる。 The rotor 30 has a shaft 31 disposed along a central axis J extending vertically (Z-axis direction). The shaft 31 is supported by the lower bearing 52a and the upper bearing 52b so as to be rotatable around the axis (± θz direction). That is, the bearing supports the shaft 31 in a rotatable manner. An impeller 70 is attached to the shaft 31 above the bearing holding member 60. In FIG. 1, for example, the impeller 70 is attached to the upper end (+ Z side) of the shaft 31.
 ステータ40は、ロータ30の径方向外側に位置する。ステータ40は、ロータ30を軸周り(θz方向)に囲む。ステータ40は、ステータコア41と、インシュレータ43と、コイル42と、を有する。 The stator 40 is located outside the rotor 30 in the radial direction. The stator 40 surrounds the rotor 30 around the axis (θz direction). The stator 40 includes a stator core 41, an insulator 43, and a coil 42.
 ステータコア41は、コアバック部41aと、複数(3つ)のティース部41bと、を有する。コアバック部41aは中心軸周りのリング状である。ティース部41bは、コアバック部41aの内周面から径方向内側に延びる。ティース部41bは周方向に均等な間隔で配置される。 The stator core 41 has a core back part 41a and a plurality (three) of teeth parts 41b. The core back portion 41a has a ring shape around the central axis. The teeth portion 41b extends radially inward from the inner peripheral surface of the core back portion 41a. The teeth 41b are arranged at equal intervals in the circumferential direction.
 インシュレータ43は、ティース部41bに装着される。コイル42は、インシュレータ43を介してティース部41bに装着される。コイル42は、導電線が巻き回されて構成される。 The insulator 43 is attached to the teeth portion 41b. The coil 42 is attached to the tooth portion 41 b via the insulator 43. The coil 42 is configured by winding a conductive wire.
 下側ベアリング52aは、弾性部材53aを介して下側ベアリング保持部22bに保持される。上側ベアリング52bは、弾性部材53bを介して保持筒部62dに保持される。弾性部材53a,53bが設けられることによって、ロータ30の振動を抑制できる。 The lower bearing 52a is held by the lower bearing holding portion 22b via the elastic member 53a. The upper bearing 52b is held by the holding cylinder portion 62d via the elastic member 53b. By providing the elastic members 53a and 53b, the vibration of the rotor 30 can be suppressed.
 弾性部材53a,53bは、軸方向両側に開口する円筒状である。弾性部材53a,53bは、弾性体製である。本実施形態において弾性部材53a,53bの材質は、例えば、熱硬化性エラストマー(ゴム)であってもよいし、熱可塑性エラストマーであってもよい。 The elastic members 53a and 53b have a cylindrical shape that opens on both sides in the axial direction. The elastic members 53a and 53b are made of an elastic body. In the present embodiment, the material of the elastic members 53a and 53b may be, for example, a thermosetting elastomer (rubber) or a thermoplastic elastomer.
 弾性部材53aは、下側ベアリング保持部22bの径方向内側に位置する。弾性部材53aは、例えば、下側ベアリング保持部22bの径方向内側に嵌め合わされる。下側ベアリング52aは、弾性部材53aの径方向内側に嵌め合わされる。弾性部材53bは、保持筒部62dの径方向内側に位置する。弾性部材53bは、例えば、保持筒部62dの径方向内側に嵌め合わされる。上側ベアリング52bは、弾性部材53bの径方向内側に嵌め合わされる。 The elastic member 53a is located on the radially inner side of the lower bearing holding portion 22b. The elastic member 53a is fitted, for example, on the radially inner side of the lower bearing holding portion 22b. The lower bearing 52a is fitted inside the elastic member 53a in the radial direction. The elastic member 53b is located on the radially inner side of the holding cylinder portion 62d. For example, the elastic member 53b is fitted inside the holding cylinder portion 62d in the radial direction. The upper bearing 52b is fitted inside the elastic member 53b in the radial direction.
 ベアリング保持部材60は、ハウジング20の上側の開口に位置する。ベアリング保持部材60は、上側ベアリング52bを周方向に囲んで保持する筒状である。図3に示すように、ベアリング保持部材60は、保持部材本体部62cと、第1凸部62aおよび第2凸部62bと、を有する。 The bearing holding member 60 is located in the upper opening of the housing 20. The bearing holding member 60 has a cylindrical shape that surrounds and holds the upper bearing 52b in the circumferential direction. As shown in FIG. 3, the bearing holding member 60 includes a holding member main body portion 62c, and a first convex portion 62a and a second convex portion 62b.
 図1および図2に示すように、保持部材本体部62cは、例えば、中心軸Jを中心とする有蓋の円筒状である。保持部材本体部62cの上蓋部は、シャフト31が通る孔を有する。図1に示すように、保持部材本体部62cは、ハウジング20の周壁21の内側に嵌め合わされる。これにより、ベアリング保持部材60は、ハウジング20の内側に固定される。 As shown in FIGS. 1 and 2, the holding member main body 62c has, for example, a covered cylindrical shape with the central axis J as the center. The upper lid portion of the holding member main body portion 62c has a hole through which the shaft 31 passes. As shown in FIG. 1, the holding member main body 62 c is fitted inside the peripheral wall 21 of the housing 20. Thereby, the bearing holding member 60 is fixed inside the housing 20.
 図1および図3に示すように、保持部材本体部62cは、径方向外側に突出する外側突出部63を有する。すなわち、ベアリング保持部材60は、外側突出部63を有する。図1および図3では、外側突出部63は、中心軸Jを囲む円環状である。そのため、外側突出部63が設けられることで、保持部材本体部62cの外周面には、下側から上側に向かって保持部材本体部62cの外径が大きくなる段差が構成される。外側突出部63の下面は、ハウジング20の上端面と接触する。より詳細に述べると、外側突出部63の下面、すなわち保持部材本体部62cの段差の軸方向に直交する段差面は、ハウジング20の上端面、すなわち周壁21の上端部と接触する。これにより、保持部材本体部62c(ベアリング保持部材60)の軸方向位置が位置決めされる。 As shown in FIGS. 1 and 3, the holding member main body 62c has an outer protrusion 63 that protrudes radially outward. That is, the bearing holding member 60 has an outer protrusion 63. In FIGS. 1 and 3, the outer protrusion 63 has an annular shape surrounding the central axis J. Therefore, by providing the outer protrusion 63, a step is formed on the outer peripheral surface of the holding member main body 62c so that the outer diameter of the holding member main body 62c increases from the lower side to the upper side. The lower surface of the outer protrusion 63 is in contact with the upper end surface of the housing 20. More specifically, the lower surface of the outer protruding portion 63, that is, the step surface orthogonal to the axial direction of the step of the holding member main body portion 62 c is in contact with the upper end surface of the housing 20, that is, the upper end portion of the peripheral wall 21. Thereby, the axial direction position of the holding member main-body part 62c (bearing holding member 60) is positioned.
 図1に示すように、保持部材本体部62cは、保持筒部62dと、内側突出部64と、を有する。すなわち、ベアリング保持部材60は、保持筒部62dと、内側突出部64と、を有する。保持筒部62dは、保持部材本体部62cの中央に位置する。保持筒部62dは、中心軸Jを中心とし軸方向両端に開口する円筒状である。保持筒部62dは、上側ベアリング52bを保持する円筒状である。 As shown in FIG. 1, the holding member main body 62 c has a holding cylinder 62 d and an inner protrusion 64. That is, the bearing holding member 60 has a holding cylinder portion 62d and an inner protrusion 64. The holding cylinder portion 62d is located at the center of the holding member main body portion 62c. The holding cylinder portion 62d has a cylindrical shape that opens at both ends in the axial direction with the central axis J as the center. The holding cylinder portion 62d has a cylindrical shape that holds the upper bearing 52b.
 内側突出部64は、保持筒部62dの内側面から径方向内側に突出する。図1では、内側突出部64は、保持筒部62dの上端部から突出する。図1および図3に示すように、内側突出部64の上面は、保持筒部62dの上面と同一平面上に位置する。 The inner projecting portion 64 projects radially inward from the inner surface of the holding cylinder portion 62d. In FIG. 1, the inner protruding portion 64 protrudes from the upper end portion of the holding cylinder portion 62d. As shown in FIGS. 1 and 3, the upper surface of the inner projecting portion 64 is located on the same plane as the upper surface of the holding cylinder portion 62d.
 図1に示すように、内側突出部64は、上側ベアリング52bの上面の少なくとも一部と軸方向に対向する。そのため、内側突出部64に直接的または間接的に上側ベアリング52bの上面を接触させることで、上側ベアリング52bを軸方向に位置決めできる。図1では、上側ベアリング52bの上面は、弾性部材53bを介して間接的に内側突出部64と接触する。 As shown in FIG. 1, the inner projecting portion 64 is opposed to at least a part of the upper surface of the upper bearing 52b in the axial direction. Therefore, the upper bearing 52b can be positioned in the axial direction by bringing the upper surface of the upper bearing 52b into direct or indirect contact with the inner protrusion 64. In FIG. 1, the upper surface of the upper bearing 52b indirectly contacts the inner protrusion 64 via the elastic member 53b.
 内側突出部64の径方向内端は、ロータ30の径方向外端よりも径方向内側に位置する。言い換えると、中心軸Jからロータ30の径方向外端までの径方向の距離は、中心軸Jから内側突出部64の径方向内端までの径方向の距離よりも大きい。これにより、ロータ30の外径を比較的大きくしやすく、モータ10の出力を大きくできる。ロータ30の径方向外端は、例えば、ロータマグネット33の径方向内端である。 The radially inner end of the inner projecting portion 64 is located more radially inward than the radially outer end of the rotor 30. In other words, the radial distance from the central axis J to the radially outer end of the rotor 30 is larger than the radial distance from the central axis J to the radially inner end of the inner protrusion 64. Thereby, the outer diameter of the rotor 30 can be relatively easily increased, and the output of the motor 10 can be increased. The radially outer end of the rotor 30 is, for example, the radially inner end of the rotor magnet 33.
 第1凸部62aは、保持部材本体部62cの上面から上側に突出する。第1凸部62aは、中心軸Jの周方向を囲む円環状である。第1凸部62aの中心には、例えば、中心軸Jが通る。 The first protrusion 62a protrudes upward from the upper surface of the holding member main body 62c. The first convex portion 62a is an annular shape surrounding the circumferential direction of the central axis J. For example, the central axis J passes through the center of the first convex portion 62a.
 第2凸部62bは、保持部材本体部62cの上面から上側に突出する。すなわち、第1凸部62aおよび第2凸部62bは、保持部材本体部62cの上面から上側に突出する。第2凸部62bは、第1凸部62aの径方向外側に位置する。第2凸部62bは、中心軸Jおよび第1凸部62aを周方向に囲む円環状である。第2凸部62bの中心には、例えば、中心軸Jが通る。すなわち、第1凸部62aおよび第2凸部62bは、中心軸Jを囲む環状である。 The second protrusion 62b protrudes upward from the upper surface of the holding member main body 62c. That is, the 1st convex part 62a and the 2nd convex part 62b protrude upwards from the upper surface of the holding member main-body part 62c. The 2nd convex part 62b is located in the radial direction outer side of the 1st convex part 62a. The second convex portion 62b is an annular shape surrounding the central axis J and the first convex portion 62a in the circumferential direction. For example, the central axis J passes through the center of the second convex portion 62b. That is, the first convex portion 62a and the second convex portion 62b are annular shapes surrounding the central axis J.
 本実施形態においてベアリング保持部材60は、周方向に沿って配置された複数の保持部材片60aによって構成される。そのため、図4に示すロータアセンブリ11の回転バランスを高精度に調整できる。図4に示すように、ロータアセンブリ11は、上側ベアリング52bが取り付けられたロータ30にインペラ70が固定されて構成される。以下、詳細に説明する。 In the present embodiment, the bearing holding member 60 includes a plurality of holding member pieces 60a arranged along the circumferential direction. Therefore, the rotation balance of the rotor assembly 11 shown in FIG. 4 can be adjusted with high accuracy. As shown in FIG. 4, the rotor assembly 11 is configured by fixing an impeller 70 to a rotor 30 to which an upper bearing 52b is attached. Details will be described below.
 従来、ロータアセンブリ11の回転バランスの調整は、まずロータ30単体のバランス調整と、インペラ70単体のバランス調整とを別々に行う。その後、ロータ30を含むモータ10を組み立てて、ロータ30のシャフト31にインペラ70を固定する。ここで、インペラ70をシャフト31に固定する際には組み付け誤差が生じるため、再度、シャフト31にインペラ70を固定した状態、すなわちロータアセンブリ11の状態で、ロータアセンブリ11のバランス調整を行う。このようにして、従来は、ロータアセンブリ11の回転バランスを調整するためには、複数回バランス調整を行う必要があり、手間が掛かる問題があった。 Conventionally, the adjustment of the rotational balance of the rotor assembly 11 is performed by separately adjusting the balance of the rotor 30 alone and the balance of the impeller 70 separately. Thereafter, the motor 10 including the rotor 30 is assembled, and the impeller 70 is fixed to the shaft 31 of the rotor 30. Here, since an assembly error occurs when the impeller 70 is fixed to the shaft 31, the balance adjustment of the rotor assembly 11 is performed again in a state where the impeller 70 is fixed to the shaft 31, that is, in the state of the rotor assembly 11. Thus, conventionally, in order to adjust the rotational balance of the rotor assembly 11, it has been necessary to perform balance adjustment a plurality of times, which is troublesome.
 また、ロータアセンブリ11のバランス調整は、例えば、ロータアセンブリ11を構成する部品の一部を切り欠くことによって行われる。ここで、上述した従来の方法では、モータ10を組み立てた後に、シャフト31にインペラ70を取り付けるため、ロータアセンブリ11が組み立てられた状態においてロータ30はステータ40およびハウジング20によって囲まれる。したがって、ロータアセンブリ11のバランス調整を行う際に、ロータ30の一部を切り欠くことができず、インペラ70を切り欠くことのみによってバランス調整を行うしかない。すなわち、従来の方法では、ロータアセンブリ11のバランス調整を1面でしか行えない。そのため、ロータアセンブリ11のバランスのずれ方によっては、ロータアセンブリ11の回転バランスを高精度に調整できない場合があった。 Further, the balance adjustment of the rotor assembly 11 is performed, for example, by notching a part of the parts constituting the rotor assembly 11. Here, in the conventional method described above, since the impeller 70 is attached to the shaft 31 after the motor 10 is assembled, the rotor 30 is surrounded by the stator 40 and the housing 20 in a state where the rotor assembly 11 is assembled. Therefore, when the balance adjustment of the rotor assembly 11 is performed, a part of the rotor 30 cannot be cut out, and the balance adjustment must be performed only by cutting out the impeller 70. That is, in the conventional method, the balance adjustment of the rotor assembly 11 can be performed only on one surface. Therefore, depending on how the rotor assembly 11 is out of balance, the rotational balance of the rotor assembly 11 may not be adjusted with high accuracy.
 これに対して、本実施形態によれば、ベアリング保持部材60が複数の保持部材片60aによって構成される。そのため、図4に示すロータアセンブリ11を組み立ててから、ロータアセンブリ11をステータ40の内側に挿入し、その後、保持部材片60aを上側ベアリング52bの径方向外側から組み付けることで、モータ10を組み立てることができる。これにより、モータ10を組み立てる前に、ロータアセンブリ11のバランス調整を行うことができる。したがって、ロータ30とインペラ70との両方を切り欠いてバランス調整をすることができる。すなわち、ロータアセンブリ11のバランス調整を2面以上で行うことができる。その結果、本実施形態によれば、ロータアセンブリ11の回転バランスを高精度に調整することができる。 On the other hand, according to this embodiment, the bearing holding member 60 is constituted by a plurality of holding member pieces 60a. Therefore, after assembling the rotor assembly 11 shown in FIG. 4, the rotor assembly 11 is inserted into the stator 40, and then the holding member piece 60a is assembled from the radially outer side of the upper bearing 52b to assemble the motor 10. Can do. Thereby, the balance adjustment of the rotor assembly 11 can be performed before the motor 10 is assembled. Therefore, it is possible to adjust the balance by cutting out both the rotor 30 and the impeller 70. That is, balance adjustment of the rotor assembly 11 can be performed on two or more surfaces. As a result, according to the present embodiment, the rotational balance of the rotor assembly 11 can be adjusted with high accuracy.
 また、ロータアセンブリ11の回転バランスを高精度に調整できるのでロータ30単体とインペラ70単体とで、別々にバランス調整をする必要がない。これにより、ロータアセンブリ11のバランス調整を行う回数を1回とできる。したがって、本実施形態によれば、ロータアセンブリ11の回転バランスの調整に掛かる手間を低減できる。 Also, since the rotational balance of the rotor assembly 11 can be adjusted with high accuracy, there is no need to separately adjust the balance between the rotor 30 alone and the impeller 70 alone. Thereby, the frequency | count of performing balance adjustment of the rotor assembly 11 can be made into 1 time. Therefore, according to the present embodiment, it is possible to reduce time and effort required for adjusting the rotation balance of the rotor assembly 11.
 また、ベアリング保持部材60が複数の保持部材片60aによって構成されるため、各保持部材片60a同士が組み合わされた状態を保持する必要がある。ここで、本実施形態においては、ベアリング保持部材60は、ハウジング20の内側に固定される。そのため、例えば、ベアリング保持部材60をハウジング20に嵌め合わせることで、保持部材片60a同士を組み合わせることができる。この場合、保持部材片60a同士を接着剤等で固定することなく、保持部材片60a同士が組み合わされた状態を保持できる。そのため、保持部材片60aを組み合わせる手間を少なくできる。 Further, since the bearing holding member 60 is composed of a plurality of holding member pieces 60a, it is necessary to hold the state in which the holding member pieces 60a are combined. Here, in the present embodiment, the bearing holding member 60 is fixed inside the housing 20. Therefore, for example, the holding member pieces 60 a can be combined by fitting the bearing holding member 60 to the housing 20. In this case, the state in which the holding member pieces 60a are combined can be held without fixing the holding member pieces 60a with an adhesive or the like. Therefore, the trouble of combining the holding member pieces 60a can be reduced.
 また、例えば、本実施形態のようにベアリング保持部材60が複数の保持部材片60aによって構成される場合、各保持部材片60aの寸法誤差、および保持部材片60a同士の組み付け誤差が生じやすい。そのため、ベアリング保持部材60が単一の部材である場合に比べて、ベアリング保持部材60の保持筒部62dの寸法誤差が大きくなる虞がある。これにより、保持筒部62dに上側ベアリング52bを安定して保持できない虞がある。 Further, for example, when the bearing holding member 60 is constituted by a plurality of holding member pieces 60a as in the present embodiment, a dimensional error of each holding member piece 60a and an assembling error between the holding member pieces 60a are likely to occur. Therefore, there is a possibility that the dimensional error of the holding cylinder portion 62d of the bearing holding member 60 becomes larger than when the bearing holding member 60 is a single member. Thereby, there is a possibility that the upper bearing 52b cannot be stably held on the holding cylinder portion 62d.
 これに対して、本実施形態によれば、上側ベアリング52bは、弾性部材53bを介して、保持筒部62dに保持される。そのため、保持筒部62dに寸法誤差が生じた場合であっても、弾性部材53bによって寸法誤差を吸収することができる。したがって、本実施形態によれば、ベアリング保持部材60を複数の保持部材片60aによって構成した場合であっても、上側ベアリング52bを安定して保持することができる。 On the other hand, according to the present embodiment, the upper bearing 52b is held by the holding cylinder portion 62d via the elastic member 53b. Therefore, even when a dimensional error occurs in the holding cylinder portion 62d, the dimensional error can be absorbed by the elastic member 53b. Therefore, according to the present embodiment, the upper bearing 52b can be stably held even when the bearing holding member 60 is constituted by a plurality of holding member pieces 60a.
 図3の例では、ベアリング保持部材60は、例えば、3つの保持部材片60aが組み合わされて構成される。本実施形態において、複数の保持部材片60aは、互いに同形状である。そのため、保持部材片60aの製造が容易である。一例として、保持部材片60aを樹脂製として射出成形で製造する場合には、保持部材片60aを製造する金型を同じとできる。これにより、保持部材片60aを製造する手間およびコストを低減できる。図3の例では、保持部材片60aの平面視形状は、例えば、中心角が120°の扇形である。 In the example of FIG. 3, the bearing holding member 60 is configured by combining, for example, three holding member pieces 60a. In the present embodiment, the plurality of holding member pieces 60a have the same shape. Therefore, it is easy to manufacture the holding member piece 60a. As an example, when the holding member piece 60a is made of resin and manufactured by injection molding, the mold for manufacturing the holding member piece 60a can be the same. Thereby, the effort and cost which manufacture the holding member piece 60a can be reduced. In the example of FIG. 3, the planar view shape of the holding member piece 60 a is, for example, a sector shape with a central angle of 120 °.
 図1に示すように、コネクタ90は、ステータ40から下側に延びる。コネクタ90は、貫通孔21aを介して、ハウジング20の下側に突出する。コネクタ90は、図示しない接続配線を有する。接続配線は、コイル42と電気的に接続される。コネクタ90に図示しない外部電源が接続されることによって、接続配線を介してコイル42に電源が供給される。 As shown in FIG. 1, the connector 90 extends downward from the stator 40. The connector 90 protrudes to the lower side of the housing 20 through the through hole 21a. The connector 90 has connection wiring (not shown). The connection wiring is electrically connected to the coil 42. When an external power source (not shown) is connected to the connector 90, power is supplied to the coil 42 through the connection wiring.
 インペラ70は、シャフト31に固定される。インペラ70は、シャフト31とともに中心軸J周りに回転可能である。インペラ70は、ベース部材71と、動翼73と、シュラウド72と、を有する。本実施形態においてベース部材71は、例えば、単一の部材である。すなわち、ベース部材71は、動翼73とは別部材である。ベース部材71は、例えば、金属製である。 The impeller 70 is fixed to the shaft 31. The impeller 70 can rotate around the central axis J together with the shaft 31. The impeller 70 includes a base member 71, a moving blade 73, and a shroud 72. In this embodiment, the base member 71 is a single member, for example. That is, the base member 71 is a separate member from the moving blade 73. The base member 71 is made of metal, for example.
 ベース部材71は、径方向に拡がる平板状である。すなわち、インペラ70は、径方向に拡がる平板状のベース部材71を有する。ベース部材71は、ベアリング保持部材60と隙間を介して軸方向に対向する。そのため、第1凸部62a、第2凸部62bおよびベース部材71によって、軸方向のラビリンス構造を構成できる。より詳細には、第1凸部62a、第2凸部62bおよび後述する円板部71aによって、インペラ70とベアリング保持部材60との軸方向(Z軸方向)の間にラビリンス構造を構成することができる。これにより、インペラ70とベアリング保持部材60との隙間に空気が流れることを抑制できる。したがって、本実施形態によれば、送風装置1の送風効率を向上できる。 The base member 71 has a flat plate shape that expands in the radial direction. That is, the impeller 70 has a flat base member 71 that expands in the radial direction. The base member 71 is opposed to the bearing holding member 60 in the axial direction through a gap. Therefore, the labyrinth structure in the axial direction can be configured by the first convex portion 62a, the second convex portion 62b, and the base member 71. More specifically, a labyrinth structure is formed between the impeller 70 and the bearing holding member 60 in the axial direction (Z-axis direction) by the first convex portion 62a, the second convex portion 62b, and a disc portion 71a described later. Can do. Thereby, it can suppress that air flows into the clearance gap between the impeller 70 and the bearing holding member 60. FIG. Therefore, according to this embodiment, the ventilation efficiency of the air blower 1 can be improved.
 ベース部材71は、円板部71aと、外側筒部71bと、内側筒部71cと、を有する。円板部71aは、図示は省略するが、径方向に広がる円板状であり、その中心を中心軸Jが通る。外側筒部71bは、円板部71aの内縁から上側に延びる円筒状である。外側筒部71bは、例えば、中心軸Jを中心とする。外側筒部71bの上端部は、径方向内側に湾曲する。 The base member 71 has a disc part 71a, an outer cylinder part 71b, and an inner cylinder part 71c. Although not shown, the disk portion 71a has a disk shape extending in the radial direction, and the central axis J passes through the center thereof. The outer cylinder part 71b has a cylindrical shape extending upward from the inner edge of the disk part 71a. The outer cylinder part 71b is centered on the central axis J, for example. The upper end portion of the outer cylindrical portion 71b is curved radially inward.
 そのため、後述する吸気口80aを介してインペラ70内に流入した空気が、外側筒部71bの上面に沿って、径方向外側に流れやすい。これにより、本実施形態によれば、送風装置1の送風効率を向上できる。 Therefore, the air that has flowed into the impeller 70 through the air inlet 80a described later tends to flow radially outward along the upper surface of the outer cylindrical portion 71b. Thereby, according to this embodiment, the ventilation efficiency of the air blower 1 can be improved.
 内側筒部71cは、外側筒部71bよりも径方向内側に位置する。内側筒部71cは、軸方向(Z軸方向)に延びる円筒状の筒部である。内側筒部71cは、例えば、中心軸Jを中心とする。内側筒部71cの上端部は、径方向外側に湾曲する。 The inner cylinder part 71c is located radially inward from the outer cylinder part 71b. The inner cylinder part 71c is a cylindrical cylinder part extending in the axial direction (Z-axis direction). The inner cylinder part 71c is centered on the central axis J, for example. The upper end portion of the inner cylindrical portion 71c is curved outward in the radial direction.
 内側筒部71cの上端部は、外側筒部71bの上端部と滑らかに接続される。内側筒部71cのうち円板部71aよりも上側の部分と、外側筒部71bと、が接続された形状は、断面視で、下側に開口するU字状である。 The upper end part of the inner cylinder part 71c is smoothly connected to the upper end part of the outer cylinder part 71b. The shape in which the part above the disc part 71a and the outer cylinder part 71b in the inner cylinder part 71c are connected to each other is a U-shape that opens downward in a sectional view.
 内側筒部71cの径方向内側には、シャフト31が圧入される。これにより、インペラ70がシャフト31に固定される。このように、本実施形態のインペラ70によれば、内側筒部71cの径方向内側にシャフト31を圧入することで、固定部材を別途設けることなく、シャフト31にインペラ70を固定することができる。したがって、送風装置1の部品点数を少なくできる。また、円板部71aと外側筒部71bと内側筒部71cとが単一の部材で構成されるため、より送風装置1の部品点数を少なくできる。これにより、送風装置1の組み立て工数を低減できる。なお、インペラ70をシャフト31に固定する固定部材とは、例えば、ナットである。 The shaft 31 is press-fitted on the radially inner side of the inner cylindrical portion 71c. Thereby, the impeller 70 is fixed to the shaft 31. Thus, according to the impeller 70 of the present embodiment, the impeller 70 can be fixed to the shaft 31 without separately providing a fixing member by press-fitting the shaft 31 inside the inner cylindrical portion 71c in the radial direction. . Therefore, the number of parts of the blower 1 can be reduced. Moreover, since the disc part 71a, the outer cylinder part 71b, and the inner cylinder part 71c are comprised with a single member, the number of parts of the air blower 1 can be reduced more. Thereby, the assembly man-hour of the air blower 1 can be reduced. The fixing member that fixes the impeller 70 to the shaft 31 is, for example, a nut.
 また、例えば、円板部71aの内縁から軸方向に延びる筒状部にシャフト31が圧入される場合、円板部71aと筒状部との接続箇所に応力が集中しやすい。そのため、例えば、インペラ70が回転する際に生じるジャイロ効果等によって、インペラ70に応力が加えられた場合に、インペラ70が振れ回る虞がある。 In addition, for example, when the shaft 31 is press-fitted into a cylindrical portion extending in the axial direction from the inner edge of the disc portion 71a, stress is likely to concentrate at the connection portion between the disc portion 71a and the cylindrical portion. Therefore, for example, when stress is applied to the impeller 70 due to a gyro effect or the like generated when the impeller 70 rotates, the impeller 70 may swing around.
 これに対して、本実施形態によれば、円板部71aの内縁から上側に延びる外側筒部71bよりも径方向内側に位置する内側筒部71cにシャフト31が圧入される。これにより、円板部71aと外側筒部71bとの接続箇所に応力が集中することを抑制でき、円板部71aと外側筒部71bと内側筒部71cとが接続される部分の剛性を大きくできる。したがって、インペラ70に応力が加えられた場合に、インペラ70が振れ回ることを抑制できる。 On the other hand, according to the present embodiment, the shaft 31 is press-fitted into the inner cylindrical portion 71c positioned radially inward from the outer cylindrical portion 71b extending upward from the inner edge of the disc portion 71a. Thereby, it can suppress that stress concentrates on the connection location of the disc part 71a and the outer side cylinder part 71b, and the rigidity of the part to which the disc part 71a, the outer side cylinder part 71b, and the inner side cylinder part 71c are connected is enlarged. it can. Therefore, when stress is applied to the impeller 70, the impeller 70 can be prevented from swinging.
 内側筒部71cの下端部は、円板部71aよりも下側に位置する。内側筒部71cの下端部は、ベアリング保持部材60と径方向に重なる。内側筒部71cにおけるシャフト31が圧入される部分は、円板部71aよりも下側に位置する。内側筒部71cの下端部は、上側ベアリング52bの内輪の上端部と接触する。 The lower end part of the inner cylinder part 71c is located below the disk part 71a. The lower end portion of the inner cylindrical portion 71c overlaps the bearing holding member 60 in the radial direction. The portion where the shaft 31 is press-fitted in the inner cylinder portion 71c is located below the disc portion 71a. The lower end portion of the inner cylindrical portion 71c is in contact with the upper end portion of the inner ring of the upper bearing 52b.
 そのため、内側筒部71cは、円板部71aの軸方向(Z軸方向)の位置を規定するスペーサとして機能する。これにより、本実施形態によれば、別途スペーサを設ける必要がなく、送風装置1の部品点数をより少なくでき、かつ、送風装置1の組み立て工数をより少なくできる。 Therefore, the inner cylinder portion 71c functions as a spacer that defines the position of the disc portion 71a in the axial direction (Z-axis direction). Thereby, according to this embodiment, it is not necessary to provide a separate spacer, the number of parts of the blower 1 can be reduced, and the number of assembling steps of the blower 1 can be reduced.
 また、例えば、内側筒部71cを外側筒部71bよりも上側に延ばして、内側筒部71cにおけるシャフト31が圧入される部分を円板部71aよりも上側に位置する構成が考えられる。しかし、この場合においては、シャフト31を上側に突出する寸法を大きくする必要がある。そのため、シャフト31の軸方向(Z軸方向)の寸法が大きくなる問題がある。 Further, for example, a configuration in which the inner cylinder portion 71c is extended above the outer cylinder portion 71b and the portion of the inner cylinder portion 71c into which the shaft 31 is press-fitted is positioned above the disk portion 71a is conceivable. However, in this case, it is necessary to increase the dimension for projecting the shaft 31 upward. Therefore, there is a problem that the dimension of the shaft 31 in the axial direction (Z-axis direction) becomes large.
 これに対して、本実施形態によれば、内側筒部71cが円板部71aよりも下側に延びる。これにより、内側筒部71cにおけるシャフト31が圧入される部分を、円板部71aよりも下側とすることができ、シャフト31の軸方向(Z軸方向)の寸法を小さくできる。 On the other hand, according to the present embodiment, the inner cylinder portion 71c extends below the disc portion 71a. Thereby, the part in which the shaft 31 in the inner cylinder part 71c is press-fit can be made lower than the disk part 71a, and the dimension of the axial direction (Z-axis direction) of the shaft 31 can be reduced.
 ベース部材71の製造方法は、特に限定されない。本実施形態においては、ベース部材71は、円板部71aと、筒状の外側筒部71bおよび内側筒部71cと、を有する金属製の単一部材である。そのため、例えば、金属製の板状部材にバーリング加工を施すことによって、ベース部材71を製造することができる。これにより、インペラ70の製造を容易にできる。また、板状部材からベース部材71を製造する場合には、例えばダイキャストによってベース部材71を製造する場合に比べて、ベース部材71を軽量化しやすい。 The manufacturing method of the base member 71 is not particularly limited. In the present embodiment, the base member 71 is a single member made of metal having a disc part 71a, a cylindrical outer cylinder part 71b, and an inner cylinder part 71c. Therefore, for example, the base member 71 can be manufactured by burring a metal plate-like member. Thereby, manufacture of the impeller 70 can be made easy. Moreover, when manufacturing the base member 71 from a plate-shaped member, compared with the case where the base member 71 is manufactured, for example by die-casting, it is easy to reduce the weight of the base member 71.
 動翼73は、円板部71aの上面に位置する。動翼73は、例えば、円板部71aの上面に設けられた溝に差し込まれて、円板部71aの上面に固定される。動翼73は、周方向に沿って複数設けられる。 The moving blade 73 is located on the upper surface of the disc portion 71a. The moving blade 73 is inserted into a groove provided on the upper surface of the disc portion 71a, for example, and is fixed to the upper surface of the disc portion 71a. A plurality of moving blades 73 are provided along the circumferential direction.
 シュラウド72は、円板部71aの上面と対向する環状の部分である。シュラウド72の内縁は、例えば、円板部71aと同心の円形状である。シュラウド72は、動翼73を介して、円板部71aと固定される。 The shroud 72 is an annular portion facing the upper surface of the disc portion 71a. The inner edge of the shroud 72 has, for example, a circular shape concentric with the disk portion 71a. The shroud 72 is fixed to the disc portion 71 a via the moving blade 73.
 図2に示すように、シュラウド72は、シュラウド円環部72aと、シュラウド円筒部72bと、を有する。シュラウド円環部72aは、円環板状である。シュラウド円筒部72bは、シュラウド円環部72aの内縁から上側に延びる円筒状である。シュラウド円筒部72bは、上側に開口するインペラ開口部72cを有する。シュラウド円筒部72bは、ベース部材71の外側筒部71bよりも径方向外側に位置する。 As shown in FIG. 2, the shroud 72 has a shroud ring portion 72a and a shroud cylindrical portion 72b. The shroud annular portion 72a has an annular plate shape. The shroud cylindrical portion 72b has a cylindrical shape extending upward from the inner edge of the shroud annular portion 72a. The shroud cylinder 72b has an impeller opening 72c that opens upward. The shroud cylindrical portion 72 b is located on the radially outer side than the outer cylindrical portion 71 b of the base member 71.
 図5に示すように、シュラウド円筒部72bの内側面は、曲面部72dを有する。曲面部72dは、シュラウド円筒部72bの内側面の上端部に位置する。曲面部72dは、下側から上側に向かうに従って径方向外側に湾曲する。 As shown in FIG. 5, the inner surface of the shroud cylindrical portion 72b has a curved surface portion 72d. The curved surface portion 72d is located at the upper end portion of the inner surface of the shroud cylindrical portion 72b. The curved surface portion 72d is curved outward in the radial direction from the lower side toward the upper side.
 軸方向(Z軸方向)においてシュラウド円環部72aと円板部71aとの間には、インペラ流路86が設けられる。インペラ流路86は、複数の動翼73によって仕切られる。インペラ流路86は、インペラ開口部72cと連通する。インペラ流路86は、インペラ70の径方向外側に開口する。 An impeller channel 86 is provided between the shroud ring portion 72a and the disc portion 71a in the axial direction (Z-axis direction). The impeller channel 86 is partitioned by a plurality of moving blades 73. The impeller channel 86 communicates with the impeller opening 72c. The impeller channel 86 opens to the outside in the radial direction of the impeller 70.
 インペラ70の軸方向位置は、スペーサとして機能する内側筒部71cによって決められる。インペラ70の下面、すなわち円板部71aの下面は、ベアリング保持部材60における第1凸部62aの上端、および第2凸部62bの上端と、近接した位置に設けられる。これにより、上述したラビリンス構造が構成される。したがって、インペラ70のインペラ流路86から径方向外側に排出された空気が、インペラ70とベアリング保持部材60との隙間を介して、径方向外側から径方向内側に流れることを抑制できる。その結果、本実施形態によれば、送風装置1の送風効率をより向上できる。 The axial position of the impeller 70 is determined by the inner cylindrical portion 71c that functions as a spacer. The lower surface of the impeller 70, that is, the lower surface of the disk portion 71a is provided at a position close to the upper end of the first convex portion 62a and the upper end of the second convex portion 62b in the bearing holding member 60. Thereby, the labyrinth structure mentioned above is comprised. Therefore, it is possible to suppress the air discharged radially outward from the impeller flow path 86 of the impeller 70 from flowing from the radially outer side to the radially inner side via the gap between the impeller 70 and the bearing holding member 60. As a result, according to this embodiment, the ventilation efficiency of the air blower 1 can be improved more.
 図1に示すように、流路部材61は、モータ10の径方向外側を囲む円筒状である。流路部材61の内径は、上端部から下側に向かうに従って小さくなった後、内径が最小となった箇所から下側に向かうに従って大きくなる。言い換えると、流路部材61の径方向内側の面である流路部材内側面61cは、上端部から下側に向かうに従って径方向内側に位置した後、径方向位置が最も内側となった箇所から下側に向かうに従って径方向外側に位置する。 As shown in FIG. 1, the flow path member 61 has a cylindrical shape that surrounds the radially outer side of the motor 10. The inner diameter of the flow path member 61 decreases from the upper end portion toward the lower side, and then increases from the portion where the inner diameter becomes the minimum toward the lower side. In other words, the flow path member inner side surface 61c, which is the radially inner surface of the flow path member 61, is positioned radially inward from the upper end portion toward the lower side, and then from the location where the radial position is the innermost side. It is located radially outward as it goes down.
 流路部材61の内径は、例えば、上端部において最大である。言い換えると、流路部材内側面61cの径方向位置は、例えば、上端部において最も外側に位置する。 The inner diameter of the flow path member 61 is, for example, the maximum at the upper end. In other words, the radial direction position of the flow path member inner side surface 61c is, for example, located on the outermost side in the upper end portion.
 流路部材61とモータ10との径方向の間には、軸方向(Z軸方向)に延びる排気流路87が設けられる。すなわち、流路部材61とモータ10とによって、排気流路87が形成される。排気流路87は、周方向の一周に亘って設けられる。本実施形態においてモータ10の外側面、すなわちハウジング20の外周面は、軸方向に直線的に延びる円筒状であるため、排気流路87の径方向の幅は、流路部材61の内径に応じて変化する。 Between the radial direction of the flow path member 61 and the motor 10, an exhaust flow path 87 extending in the axial direction (Z-axis direction) is provided. That is, the exhaust passage 87 is formed by the passage member 61 and the motor 10. The exhaust passage 87 is provided over one circumference in the circumferential direction. In the present embodiment, the outer surface of the motor 10, that is, the outer peripheral surface of the housing 20, has a cylindrical shape that extends linearly in the axial direction. Change.
 すなわち、排気流路87の径方向の幅は、上端部から下側に向かうに従って小さくなった後、幅が最小となった箇所から下側に向かうに従って大きくなる。排気流路87の径方向の幅は、例えば、上端部において最大となる。このように排気流路87の幅を変化させることで、排気流路87内を通る空気の静圧を大きくできる。これにより、排気流路87内を通る空気が逆流すること、すなわち空気が下側から上側に向かって流れることを抑制できる。 That is, the radial width of the exhaust flow path 87 decreases from the upper end to the lower side, and then increases from the position where the width is minimized to the lower side. For example, the radial width of the exhaust passage 87 is maximized at the upper end. Thus, by changing the width of the exhaust passage 87, the static pressure of the air passing through the exhaust passage 87 can be increased. Thereby, it can suppress that the air which passes the inside of the exhaust flow path 87 flows backward, ie, the air flows from the lower side toward the upper side.
 排気流路87の径方向位置は、排気流路87の径方向の幅が小さくなるほど径方向内側となり、排気流路87の径方向の幅が大きくなるほど径方向外側となる。ここで、排気流路87の径方向位置が径方向内側になるほど、排気流路87の周方向の長さは小さくなるため、排気流路87の流路面積が小さくなる。一方、排気流路87の径方向位置が径方向外側になるほど、排気流路87の周方向の長さは大きくなるため、排気流路87の流路面積が大きくなる。 The radial position of the exhaust flow path 87 becomes radially inner as the radial width of the exhaust flow path 87 becomes smaller, and becomes radially outer as the radial width of the exhaust flow path 87 becomes larger. Here, as the radial position of the exhaust flow path 87 becomes radially inward, the circumferential length of the exhaust flow path 87 becomes smaller, so the flow area of the exhaust flow path 87 becomes smaller. On the other hand, as the radial position of the exhaust flow path 87 is radially outward, the circumferential length of the exhaust flow path 87 increases, and thus the flow area of the exhaust flow path 87 increases.
 したがって、例えば、排気流路87の径方向の幅を小さくしても、排気流路87の径方向位置が径方向外側となる場合には、排気流路87の流路面積を十分に小さくしにくく、排気流路87を通る空気の静圧を大きくしにくい場合がある。 Therefore, for example, even if the radial width of the exhaust passage 87 is reduced, if the radial position of the exhaust passage 87 is radially outward, the flow passage area of the exhaust passage 87 is sufficiently reduced. It is difficult to increase the static pressure of air passing through the exhaust passage 87.
 これに対して、本実施形態によれば、排気流路87の径方向位置は、排気流路87の径方向の幅が小さくなるほど径方向内側となる。そのため、排気流路87の径方向の幅を小さくすることで、流路面積を十分に小さくしやすい。一方、排気流路87の径方向の幅を大きくすることで、流路面積を十分に大きくしやすい。これにより、排気流路87の流路面積の変化を大きくできるため、排気流路87を通る空気の静圧を大きくしやすい。したがって、本実施形態によれば、排気流路87を通る空気が逆流することをより抑制できる。 In contrast, according to the present embodiment, the radial position of the exhaust flow path 87 becomes radially inner as the radial width of the exhaust flow path 87 becomes smaller. Therefore, it is easy to sufficiently reduce the channel area by reducing the radial width of the exhaust channel 87. On the other hand, by increasing the radial width of the exhaust passage 87, the passage area can be easily increased sufficiently. Thereby, since the change of the flow path area of the exhaust flow path 87 can be increased, the static pressure of the air passing through the exhaust flow path 87 can be easily increased. Therefore, according to this embodiment, it can suppress more that the air which passes the exhaust flow path 87 flows backward.
 なお、本明細書において排気流路の径方向位置とは、排気流路における径方向外側の端部の径方向位置を含む。 In the present specification, the radial position of the exhaust passage includes the radial position of the radially outer end of the exhaust passage.
 排気流路87の下端部には、排気口88が設けられる。排気口88は、後述する吸気口80aから送風装置1に流入した空気が排出される部分である。本実施形態において排気口88の軸方向位置は、モータ10の下端部の軸方向位置とほぼ同じである。 An exhaust port 88 is provided at the lower end of the exhaust channel 87. The exhaust port 88 is a portion from which air that has flowed into the blower 1 from an air intake port 80a described later is discharged. In the present embodiment, the axial position of the exhaust port 88 is substantially the same as the axial position of the lower end portion of the motor 10.
 本実施形態において流路部材61は、上側流路部材61bと、下側流路部材61aと、を有する。上側流路部材61bは、下側流路部材61aの上側に連結される。上側流路部材61bの内径は、上端部から下側に向かうに従って小さくなる。下側流路部材61aの内径は、上端部から下側に向かうに従って大きくなる。すなわち、流路部材61において内径が最小となる位置は、上側流路部材61bと下側流路部材61aとが連結される連結位置P1と軸方向(Z軸方向)において同じである。同様に、排気流路87の径方向の幅が最小となる位置は、連結位置P1と軸方向において同じである。 In the present embodiment, the flow path member 61 includes an upper flow path member 61b and a lower flow path member 61a. The upper flow path member 61b is connected to the upper side of the lower flow path member 61a. The inner diameter of the upper flow path member 61b decreases from the upper end to the lower side. The inner diameter of the lower flow path member 61a increases from the upper end toward the lower side. That is, the position where the inner diameter is minimum in the flow path member 61 is the same in the axial direction (Z-axis direction) as the connection position P1 where the upper flow path member 61b and the lower flow path member 61a are connected. Similarly, the position at which the radial width of the exhaust flow path 87 is minimized is the same as the connection position P1 in the axial direction.
 送風装置1は、複数の静翼67を備える。複数の静翼67は、ベアリング保持部材60の外側面に固定される。保持部材片60aと静翼67とは、単一の部材であってもよい。複数の静翼67は、流路部材61とモータ10との径方向の間に設けられる。すなわち、静翼67は、排気流路87内に設けられる。静翼67は、排気流路87内を流れる空気を整流する。図2に示すように、複数の静翼67は、周方向に沿って等間隔に配置される。静翼67は、静翼下部67aと、静翼上部67bと、を有する。静翼下部67aは、軸方向(Z軸方向)に延びる。 The blower device 1 includes a plurality of stationary blades 67. The plurality of stationary blades 67 are fixed to the outer surface of the bearing holding member 60. The holding member piece 60a and the stationary blade 67 may be a single member. The plurality of stationary blades 67 are provided between the flow path member 61 and the motor 10 in the radial direction. That is, the stationary blade 67 is provided in the exhaust passage 87. The stationary blade 67 rectifies the air flowing in the exhaust passage 87. As shown in FIG. 2, the plurality of stationary blades 67 are arranged at equal intervals along the circumferential direction. The stationary blade 67 has a stationary blade lower portion 67a and a stationary blade upper portion 67b. The stationary blade lower portion 67a extends in the axial direction (Z-axis direction).
 静翼上部67bは、静翼下部67aの上端部に接続される。静翼上部67bは、下側から上側に向かうに従って、平面視で時計回り向き(-θ向き)に湾曲する。 The stationary blade upper portion 67b is connected to the upper end portion of the stationary blade lower portion 67a. Stationary blade top 67b is toward the lower side to the upper, curved clockwise direction in a plan view (- [theta] Z direction).
 図1に示すように、静翼下部67aは、例えば、下側流路部材61aと径方向に重なる。静翼上部67bは、例えば、上側流路部材61bと径方向に重なる。本実施形態において静翼下部67aと静翼上部67bとは、例えば、単一の部材の一部である。本実施形態において静翼67は、例えば、上側流路部材61bと単一の部材として製造される。 As shown in FIG. 1, the stationary blade lower portion 67a overlaps, for example, the lower flow path member 61a in the radial direction. The stationary blade upper portion 67b overlaps, for example, the upper flow path member 61b in the radial direction. In the present embodiment, the stationary blade lower portion 67a and the stationary blade upper portion 67b are, for example, a part of a single member. In the present embodiment, the stationary blade 67 is manufactured, for example, as a single member with the upper flow path member 61b.
 インペラハウジング80は、円筒状の部材である。インペラハウジング80は、流路部材61の上端部に取り付けられる。インペラハウジング80は、上側に開口する吸気口80aを有する。 The impeller housing 80 is a cylindrical member. The impeller housing 80 is attached to the upper end portion of the flow path member 61. The impeller housing 80 has an intake port 80a that opens upward.
 インペラハウジング80は、インペラハウジング本体部82と、吸気ガイド部81と、を有する。インペラハウジング本体部82は、インペラ70の径方向外側を囲み軸方向両側に開口する円筒状である。インペラハウジング本体部82の径方向内側には、流路部材61の上端部が嵌め合わされる。本実施形態において流路部材61の上端部は、例えば、インペラハウジング本体部82の径方向内側に圧入される。 The impeller housing 80 includes an impeller housing main body portion 82 and an intake guide portion 81. The impeller housing main body 82 has a cylindrical shape that surrounds the radially outer side of the impeller 70 and opens on both axial sides. The upper end portion of the flow path member 61 is fitted inside the impeller housing main body portion 82 in the radial direction. In the present embodiment, the upper end portion of the flow path member 61 is press-fitted, for example, on the radially inner side of the impeller housing body portion 82.
 図5に示すように、インペラハウジング本体部82の下端部には、インペラハウジング本体部82の内径が上側から下側に向かって大きくなる段差83が設けられる。流路部材61の上端面は、段差83の軸方向と直交する段差面83aと接触する。これにより、インペラハウジング本体部82が流路部材61に対して軸方向(Z軸方向)に位置決めされる。 As shown in FIG. 5, the lower end portion of the impeller housing main body 82 is provided with a step 83 in which the inner diameter of the impeller housing main body 82 increases from the upper side to the lower side. The upper end surface of the flow path member 61 is in contact with a step surface 83 a that is orthogonal to the axial direction of the step 83. Thereby, the impeller housing body 82 is positioned in the axial direction (Z-axis direction) with respect to the flow path member 61.
 インペラハウジング本体部82の内側面は、湾曲面82aと、対向面82bと、を有する。湾曲面82aは、上側から下側に向かって径方向外側に位置する断面視円弧状の曲面である。湾曲面82aは、流路部材内側面61cと段差なく連続して接続される。そのため、湾曲面82aに沿って流れる空気が排気流路87に流入する際に、損失が生じにくい。したがって、本実施形態によれば、送風装置1の送風効率を向上できる。 The inner surface of the impeller housing main body 82 has a curved surface 82a and a facing surface 82b. The curved surface 82a is a curved surface having a circular arc shape in cross section, located radially outward from the upper side to the lower side. The curved surface 82a is continuously connected to the inner surface 61c of the flow path member without a step. Therefore, when the air flowing along the curved surface 82a flows into the exhaust passage 87, a loss is hardly generated. Therefore, according to this embodiment, the ventilation efficiency of the air blower 1 can be improved.
 湾曲面82aは、インペラ70の径方向外側の開口部と径方向に対向する。湾曲面82aとインペラ70との径方向の間には、インペラ流路86と排気流路87とを接続する接続流路84が設けられる。 The curved surface 82a faces the radially outer opening of the impeller 70 in the radial direction. A connecting flow path 84 that connects the impeller flow path 86 and the exhaust flow path 87 is provided between the curved surface 82a and the impeller 70 in the radial direction.
 接続流路84の径方向の幅は、上側から下側に向かうに従って大きくなる。すなわち、接続流路84の径方向の幅は、下端部において最大となる。接続流路84の下端部は、排気流路87の上端部と接続される部分である。接続流路84の下端部の径方向の幅と、排気流路87の上端部の径方向の幅とは、同じである。 The radial width of the connection channel 84 increases from the upper side to the lower side. That is, the radial width of the connection channel 84 is maximized at the lower end. The lower end portion of the connection channel 84 is a portion connected to the upper end portion of the exhaust channel 87. The radial width of the lower end portion of the connection flow path 84 and the radial width of the upper end portion of the exhaust flow path 87 are the same.
 上述したように、排気流路87の上部側では、上側から下側に向かうに従って排気流路87の幅が小さくなる。そのため、接続流路84から排気流路87の上部側までの流路においては、接続流路84と排気流路87とが接続される箇所において、流路の幅が最も大きい。言い換えると、接続流路84から排気流路87の上部側までの流路において最も幅が大きい箇所に、インペラハウジング80と流路部材61との接続部である段差83が設けられる。 As described above, on the upper side of the exhaust passage 87, the width of the exhaust passage 87 becomes smaller from the upper side to the lower side. Therefore, in the flow path from the connection flow path 84 to the upper side of the exhaust flow path 87, the width of the flow path is the largest at the location where the connection flow path 84 and the exhaust flow path 87 are connected. In other words, the step 83 which is a connection portion between the impeller housing 80 and the flow path member 61 is provided at a position where the width is the largest in the flow path from the connection flow path 84 to the upper side of the exhaust flow path 87.
 湾曲面82aの上端部P2は、シュラウド円環部72aの下面の径方向外側の端部よりも上側に位置する。そのため、インペラ流路86からインペラ70の径方向外側に排出される空気が上端部P2に衝突することがない。これにより、シュラウド円環部72aの径方向外側の端部とインペラハウジング本体部82との径方向の間の隙間GA2に空気が入り込むことを抑制できる。したがって、本実施形態によれば、送風装置1の送風効率を向上できる。 The upper end portion P2 of the curved surface 82a is positioned above the radially outer end of the lower surface of the shroud ring portion 72a. Therefore, the air discharged from the impeller flow path 86 to the radially outer side of the impeller 70 does not collide with the upper end portion P2. Thereby, air can be prevented from entering the gap GA2 between the radial outer end of the shroud ring portion 72a and the impeller housing main body portion 82 in the radial direction. Therefore, according to this embodiment, the ventilation efficiency of the air blower 1 can be improved.
 隙間GA2は、後述する対向面82bとシュラウド72の外側面との間の隙間GA3よりも小さい。これにより、接続流路84を流れる空気が隙間GA2を介して隙間GA3へと空気が流入することを抑制できる。 隙間 Gap GA2 is smaller than gap GA3 between an opposing surface 82b described later and the outer surface of shroud 72. Thereby, it can suppress that the air which flows through the connection flow path 84 flows in into the clearance gap GA3 via the clearance gap GA2.
 湾曲面82aの上端部P2は、シュラウド円環部72aの上面の径方向外側の端部よりも下側に位置する。そのため、インペラ流路86からインペラ70の径方向外側に排出される空気が、湾曲面82aに沿って流れやすい。これにより、空気がインペラ流路86から接続流路84を介して排気流路87へと流れる際の損失を低減できる。したがって、本実施形態によれば、送風装置1の送風効率を向上できる。 The upper end portion P2 of the curved surface 82a is located below the radially outer end of the upper surface of the shroud ring portion 72a. Therefore, the air discharged from the impeller flow path 86 to the radially outer side of the impeller 70 tends to flow along the curved surface 82a. Thereby, the loss at the time of air flowing from the impeller channel 86 to the exhaust channel 87 via the connection channel 84 can be reduced. Therefore, according to this embodiment, the ventilation efficiency of the air blower 1 can be improved.
 対向面82bは、インペラ70のシュラウド72と対向する面である。対向面82bは、シュラウド72の外側面に倣う形状である。そのため、対向面82bとシュラウド72の外側面との間の隙間GA3の幅を小さくしやすい。 The facing surface 82 b is a surface facing the shroud 72 of the impeller 70. The facing surface 82 b has a shape that follows the outer surface of the shroud 72. Therefore, it is easy to reduce the width of the gap GA3 between the facing surface 82b and the outer surface of the shroud 72.
 例えば、隙間GA3の幅が大きすぎると、隙間GA3内における圧力が低くなるため、隙間GA3内に空気が流れやすく、損失が大きくなりやすい。これに対して、本実施形態によれば、隙間GA3の幅を小さくしやすいため、隙間GA3内に空気が流れることを抑制でき、空気の損失を低減できる。隙間GA3の幅は、例えば、ほぼ均一である。 For example, if the width of the gap GA3 is too large, the pressure in the gap GA3 becomes low, so that air easily flows in the gap GA3 and loss tends to increase. On the other hand, according to this embodiment, since the width of the gap GA3 can be easily reduced, it is possible to suppress the flow of air into the gap GA3 and to reduce air loss. The width of the gap GA3 is, for example, substantially uniform.
 吸気ガイド部81は、インペラハウジング本体部82の上端部の内縁から径方向内側に突出する。吸気ガイド部81は、例えば、円環状である。吸気ガイド部81の上側の開口は、吸気口80aである。吸気ガイド部81の径方向内側面は、下側から上側に向かうに従って、径方向外側に位置する曲面である。 The intake guide portion 81 protrudes radially inward from the inner edge of the upper end portion of the impeller housing body portion 82. The intake guide portion 81 is, for example, an annular shape. The upper opening of the intake guide part 81 is an intake port 80a. The radially inner side surface of the intake guide portion 81 is a curved surface located radially outward as it goes from the lower side to the upper side.
 吸気ガイド部81は、シュラウド円筒部72bの上側に位置する。吸気ガイド部81とシュラウド円筒部72bとの軸方向の隙間GA1は、隙間GA3よりも小さい。これにより、吸気口80aからインペラ70に流入する空気が隙間GA1を介して隙間GA3へと空気が流入することを抑制できる。 The intake guide portion 81 is located above the shroud cylindrical portion 72b. A gap GA1 in the axial direction between the intake guide portion 81 and the shroud cylindrical portion 72b is smaller than the gap GA3. Thereby, it can suppress that the air which flows in into the impeller 70 from the inlet port 80a flows in into the gap GA3 via the gap GA1.
 吸気ガイド部81の径方向内側の端部の径方向位置は、シュラウド円筒部72bの径方向内側の端部の径方向位置とほぼ同じである。そのため、吸気ガイド部81に沿ってインペラ70の内部に入った空気が、シュラウド円筒部72bに沿って流れやすい。これにより、インペラ70内に吸入する空気の損失を低減できる。 The radial position of the radially inner end of the intake guide portion 81 is substantially the same as the radial position of the radially inner end of the shroud cylindrical portion 72b. Therefore, the air that has entered the impeller 70 along the intake guide portion 81 tends to flow along the shroud cylindrical portion 72b. Thereby, the loss of the air suck | inhaled in the impeller 70 can be reduced.
 また、例えば、回転時の振動等によってインペラ70の径方向位置が内側にずれる場合、吸気口80aから吸気ガイド部81に沿って流れる空気が、シュラウド円筒部72bの上端部に当たって、剥離が生じる虞がある。そのため、空気の損失が大きくなる虞がある。 For example, when the radial position of the impeller 70 is shifted inward due to vibration during rotation, the air flowing along the intake guide portion 81 from the intake port 80a hits the upper end portion of the shroud cylindrical portion 72b, and separation may occur. There is. Therefore, there is a risk that air loss will increase.
 これに対して、本実施形態によれば、上述したようにシュラウド円筒部72bの内側面は、上端部に位置する曲面部72dを有する。そのため、インペラ70の径方向位置がずれた場合であっても、空気が曲面部72dに沿って空気が下側に流れやすい。したがって、空気の損失を低減できる。 In contrast, according to the present embodiment, as described above, the inner surface of the shroud cylindrical portion 72b has the curved surface portion 72d positioned at the upper end portion. For this reason, even when the radial position of the impeller 70 is shifted, air tends to flow downward along the curved surface portion 72d. Therefore, air loss can be reduced.
 図1に示すように、モータ10によってインペラ70が回転されると、吸気口80aから空気がインペラ70に流入する。インペラ70内に流入した空気は、インペラ流路86から径方向外側に排出される。インペラ流路86から排出された空気は、接続流路84および排気流路87を介して、上側から下側に向かって進み、排気口88から下向きに排出される。このようにして、送風装置1は、空気を送る。 As shown in FIG. 1, when the impeller 70 is rotated by the motor 10, air flows into the impeller 70 from the intake port 80a. The air that has flowed into the impeller 70 is discharged radially outward from the impeller flow path 86. The air discharged from the impeller flow path 86 proceeds from the upper side to the lower side through the connection flow path 84 and the exhaust flow path 87, and is discharged downward from the exhaust port 88. In this way, the blower 1 sends air.
 なお、本実施形態においては、以下の構成を採用することもできる。 In the present embodiment, the following configuration can also be adopted.
 本実施形態においては、インペラ70は単一の部材であってもよい。また、本実施形態においてベアリング保持部材60は、2つの保持部材片60aによって構成されてもよいし、4つ以上の保持部材片60aによって構成されてもよい。 In this embodiment, the impeller 70 may be a single member. In the present embodiment, the bearing holding member 60 may be constituted by two holding member pieces 60a, or may be constituted by four or more holding member pieces 60a.
 また、各保持部材片60aの形状は、互いに異なってもよい。また、外側突出部63は、周方向に沿って複数設けられる構成であってもよい。 Further, the shape of each holding member piece 60a may be different from each other. Moreover, the structure provided with two or more outer side protrusion parts 63 along the circumferential direction may be sufficient.
<第2実施形態>
 図7および図8においては、流路部材161、ベアリング保持部材160、インペラ70、およびインペラハウジング80の図示を省略している。なお、第1実施形態と同様の構成については、適宜同一の符号を付す等により説明を省略する場合がある。
Second Embodiment
7 and 8, the flow path member 161, the bearing holding member 160, the impeller 70, and the impeller housing 80 are not shown. In addition, about the structure similar to 1st Embodiment, description may be abbreviate | omitted by attaching | subjecting the same code | symbol suitably.
 図6に示すように、送風装置2は、モータ110と、ベアリング保持部材160と、インペラ70と、流路部材161と、複数の静翼167と、インペラハウジング80と、を備える。 As shown in FIG. 6, the blower 2 includes a motor 110, a bearing holding member 160, an impeller 70, a flow path member 161, a plurality of stationary blades 167, and an impeller housing 80.
 モータ110は、ハウジング120と、シャフト31を有するロータ30と、ステータ140と、下側ベアリング52aおよび上側ベアリング52bと、コネクタ90と、を備える。ハウジング120は、周壁121と、下蓋部22と、下側ベアリング保持部22bと、を有する。 The motor 110 includes a housing 120, a rotor 30 having a shaft 31, a stator 140, a lower bearing 52a and an upper bearing 52b, and a connector 90. The housing 120 includes a peripheral wall 121, a lower lid portion 22, and a lower bearing holding portion 22b.
 図7に示すように、周壁121には、複数の貫通孔121aと、複数の切欠き121bと、が設けられる。図6に示すように、貫通孔121aの上端部は、後述するステータコア141よりも下側に位置する。貫通孔121aのその他の構成は、第1実施形態の貫通孔21aの構成と同様である。 As shown in FIG. 7, the peripheral wall 121 is provided with a plurality of through holes 121a and a plurality of notches 121b. As shown in FIG. 6, the upper end portion of the through hole 121 a is located below the stator core 141 described later. The other configuration of the through hole 121a is the same as the configuration of the through hole 21a of the first embodiment.
 図7に示すように、切欠き121bは、周壁121の上端部から下側に向かって切り欠かれた部分である。すなわち、切欠き121bは、周壁121を径方向に貫通し、上側に開口する。切欠き121bは、例えば、周方向に沿って等間隔に6つ設けられる。径方向に視た際の切欠き121bの形状は、例えば、軸方向に延びる矩形状である。 As shown in FIG. 7, the notch 121b is a part that is notched from the upper end of the peripheral wall 121 to the lower side. That is, the notch 121b penetrates the peripheral wall 121 in the radial direction and opens upward. For example, six notches 121b are provided at equal intervals along the circumferential direction. The shape of the notch 121b when viewed in the radial direction is, for example, a rectangular shape extending in the axial direction.
 図8に示すように、ステータ140は、ステータコア141を有する。ステータコア141は、コアバック部41aと、ティース部41bと、コア突出部141cと、を有する。コア突出部141cは、コアバック部41aの外周面から径方向外側に突出する。コア突出部141cは、例えば、周方向に沿って6つ設けられる。 As shown in FIG. 8, the stator 140 has a stator core 141. The stator core 141 includes a core back portion 41a, a teeth portion 41b, and a core protruding portion 141c. The core protruding portion 141c protrudes radially outward from the outer peripheral surface of the core back portion 41a. For example, six core protrusions 141c are provided along the circumferential direction.
 各コア突出部141cは、それぞれ切欠き121bに嵌め合わされる。コア突出部141cの径方向外側の面は、ハウジング120の外周面と同一面上に位置する。コア突出部141cの径方向外側の面は、ハウジング120の外部に露出する。本実施形態においては、複数の切欠き121bが周方向に沿って等間隔に配置されるため、モータ110の外周面においては、コア突出部141cの外周面と、ハウジング120の外周面とが、周方向に沿って互い違いに並ぶ。 Each core protrusion 141c is fitted in the notch 121b. The radially outer surface of the core protrusion 141 c is located on the same plane as the outer peripheral surface of the housing 120. The radially outer surface of the core protrusion 141 c is exposed to the outside of the housing 120. In the present embodiment, since the plurality of notches 121b are arranged at equal intervals along the circumferential direction, on the outer peripheral surface of the motor 110, the outer peripheral surface of the core protruding portion 141c and the outer peripheral surface of the housing 120 are Line up alternately along the circumferential direction.
 図6に示すように、コア突出部141cの径方向外側の面は、排気流路87に面する。したがって、本実施形態によれば、排気流路87を流れる空気によって、ステータコア141を冷却することができる。 As shown in FIG. 6, the radially outer surface of the core protrusion 141 c faces the exhaust passage 87. Therefore, according to the present embodiment, the stator core 141 can be cooled by the air flowing through the exhaust passage 87.
 コア突出部141cの下端部は、切欠き121bの上側の縁と接触する。これにより、ステータコア141は、軸方向に位置決めされる。 The lower end of the core protrusion 141c is in contact with the upper edge of the notch 121b. As a result, the stator core 141 is positioned in the axial direction.
 静翼167は、静翼下部167aと、静翼上部167bと、を有する。静翼下部167aと静翼上部167bとは、例えば、互いに別部材である。静翼下部167aのその他の構成は、第1実施形態の静翼下部67aの構成と同様である。静翼上部167bのその他の構成は、第1実施形態の静翼上部67bの構成と同様である。 The stationary blade 167 has a stationary blade lower portion 167a and a stationary blade upper portion 167b. The stationary blade lower portion 167a and the stationary blade upper portion 167b are separate members, for example. Other configurations of the stationary blade lower portion 167a are the same as the configurations of the stationary blade lower portion 67a of the first embodiment. Other configurations of the stationary blade upper portion 167b are the same as the configurations of the stationary blade upper portion 67b of the first embodiment.
 ベアリング保持部材160は、外周面に静翼上部167bが固定される点を除いて、第1実施形態のベアリング保持部材60と同様である。静翼上部167bは、ベアリング保持部材160の外側面に固定される。保持部材片と静翼上部167bとは、例えば、単一の部材である。本実施形態においては、ベアリング保持部材160は、静翼として静翼上部167bを有するディフューザとして機能する。 The bearing holding member 160 is the same as the bearing holding member 60 of the first embodiment except that the stationary blade upper part 167b is fixed to the outer peripheral surface. The stationary blade upper portion 167 b is fixed to the outer surface of the bearing holding member 160. The holding member piece and the stationary blade upper portion 167b are, for example, a single member. In the present embodiment, the bearing holding member 160 functions as a diffuser having a stationary blade upper portion 167b as a stationary blade.
 ベアリング保持部材160を構成する保持部材片の数は、静翼上部167bの数の約数である。すなわち、保持部材片の数は、静翼167の数の約数である。そのため、各保持部材片が有する静翼上部167bの数を、保持部材片ごとに同じにできる。これにより、ベアリング保持部材160に静翼上部167bが設けられる場合に、各保持部材片の形状を同じにできる。したがって、各保持部材片の製造を容易にできる。 The number of holding member pieces constituting the bearing holding member 160 is a divisor of the number of the stationary blade upper portions 167b. That is, the number of holding member pieces is a divisor of the number of stationary blades 167. Therefore, the number of the stationary blade upper portions 167b included in each holding member piece can be made the same for each holding member piece. Thereby, when the stationary blade upper part 167b is provided in the bearing holding member 160, the shape of each holding member piece can be made the same. Therefore, each holding member piece can be easily manufactured.
 一例として、静翼上部167bの数が15で、かつ、ベアリング保持部材160を構成する保持部材片の数が3である場合、1つの保持部材片に設けられる静翼上部167bの数は、5である。 As an example, when the number of the stationary blade upper portions 167b is 15 and the number of the holding member pieces constituting the bearing holding member 160 is 3, the number of the stationary blade upper portions 167b provided in one holding member piece is 5 It is.
 本実施形態において流路部材161は、単一の部材である。流路部材161の内周面には、静翼下部167aが固定される。流路部材161と静翼下部167aとは、例えば、単一の部材である。流路部材161のその他の構成は、第1実施形態の流路部材61の構成と同様である。送風装置2のその他の構成は、第1実施形態の送風装置1の構成と同様である。 In the present embodiment, the flow path member 161 is a single member. A stationary blade lower portion 167 a is fixed to the inner peripheral surface of the flow path member 161. The flow path member 161 and the stationary blade lower portion 167a are, for example, a single member. The other configuration of the flow path member 161 is the same as the configuration of the flow path member 61 of the first embodiment. The other structure of the air blower 2 is the same as that of the air blower 1 of 1st Embodiment.
 なお、本実施形態において切欠き121bの数は、特に限定されず、5つ以下であってもよいし、7つ以上であってもよい。また、本実施形態においては、切欠き121bの代わりに、周壁121を径方向に貫通する貫通孔が設けられてもよい。 In the present embodiment, the number of the notches 121b is not particularly limited, and may be 5 or less, or 7 or more. Moreover, in this embodiment, the through-hole which penetrates the surrounding wall 121 to radial direction may be provided instead of the notch 121b.
 また、例えば、静翼下部167aと静翼上部167bとから構成される静翼167全体が、ベアリング保持部材160を構成する保持部材片と単一の部材として構成されてもよい。 Further, for example, the entire stationary blade 167 composed of the stationary blade lower portion 167a and the stationary blade upper portion 167b may be configured as a single member with the holding member piece constituting the bearing holding member 160.
<第3実施形態>
 図9は、第3実施形態の送風装置3を示す断面図である。送風装置3は、モータ210と、インペラ270と、インペラハウジング280と、モータハウジング260と、流路部材261と、複数の静翼267を有する。モータハウジング260は、第1実施形態におけるベアリング保持部材60に対応する部材である。ただし、上側ベアリング252bは、モータハウジング260以外の他の部材によって保持されてもよい。
<Third Embodiment>
FIG. 9 is a cross-sectional view showing the blower 3 of the third embodiment. The blower 3 includes a motor 210, an impeller 270, an impeller housing 280, a motor housing 260, a flow path member 261, and a plurality of stationary blades 267. The motor housing 260 is a member corresponding to the bearing holding member 60 in the first embodiment. However, the upper bearing 252b may be held by a member other than the motor housing 260.
 モータ210は、上下に延びる中心軸Jに沿って配置されるシャフト231を有する。モータ210は、ロータ230と、ステータ240と、下側ベアリング252aと、上側ベアリング252bと、を有する。ロータ230は、ステータ240よりも径方向内側に配置され、シャフト231に接続される。シャフト231は、下側ベアリング252aと上側ベアリング252bとを介して、ステータ240に対して中心軸J周りに回転可能に支持される。 The motor 210 has a shaft 231 disposed along a central axis J that extends vertically. The motor 210 includes a rotor 230, a stator 240, a lower bearing 252a, and an upper bearing 252b. The rotor 230 is disposed radially inward of the stator 240 and connected to the shaft 231. The shaft 231 is rotatably supported around the central axis J with respect to the stator 240 via the lower bearing 252a and the upper bearing 252b.
 インペラ270は、シャフト231に接続され、シャフト231と一体となって回転する。インペラハウジング280は、インペラ270の上側または径方向外側に配置される。送風装置3においては、インペラハウジング280は、インペラの270の上側と径方向外側を囲み、中心に軸方向に貫通する吸気口280aを有する。 The impeller 270 is connected to the shaft 231 and rotates together with the shaft 231. The impeller housing 280 is disposed on the upper side or the radially outer side of the impeller 270. In the air blower 3, the impeller housing 280 has an intake port 280a that surrounds the upper side and the radially outer side of the impeller 270 and penetrates in the axial direction at the center.
 モータハウジング260は、モータ210の径方向外側に配置される。モータハウジング260は、下側に開口する略有蓋円筒状の部材である。流路部材261は、モータハウジング260よりも径方向外側に隙間を介して配置される。すなわち、モータハウジング260の径方向外面と、流路部材261の径方向内面は、径方向に隙間を介して配置される。これにより、モータハウジング260と流路部材261との間に構成される隙間は流路になる。 The motor housing 260 is disposed outside the motor 210 in the radial direction. The motor housing 260 is a substantially covered cylindrical member that opens downward. The flow path member 261 is disposed on the radially outer side of the motor housing 260 via a gap. That is, the outer surface in the radial direction of the motor housing 260 and the inner surface in the radial direction of the flow path member 261 are disposed with a gap in the radial direction. Thereby, the gap formed between the motor housing 260 and the flow path member 261 becomes a flow path.
 複数の静翼267は、モータハウジング260と流路部材261との隙間において、周方向に配置される。複数の静翼267は、インペラ270の径方向外端よりも径方向外側に位置する。また、複数の静翼267の軸方向上端は、インペラ270の軸方向下端よりも軸方向下側に位置する。複数の静翼267のうち少なくとも一つは、分割された複数の部位によって構成される。すなわち、静翼267の少なくとも一つは、モータハウジング260又は流路部材261の一方側に形成される第1静翼部268と、モータハウジング260又は流路部材261の他方側に形成される第2静翼部269と、を有する。本実施形態においては、モータハウジング260の外面が第1静翼部268を有し、流路部材261の内面が第2静翼部269を有する。 The plurality of stationary blades 267 are arranged in the circumferential direction in the gap between the motor housing 260 and the flow path member 261. The plurality of stationary blades 267 are located radially outside the radially outer end of the impeller 270. Further, the upper ends in the axial direction of the plurality of stationary blades 267 are located on the lower side in the axial direction than the lower ends in the axial direction of the impeller 270. At least one of the plurality of stationary blades 267 includes a plurality of divided portions. That is, at least one of the stationary blades 267 includes a first stationary blade portion 268 formed on one side of the motor housing 260 or the flow channel member 261 and a first stationary blade portion 268 formed on the other side of the motor housing 260 or the flow channel member 261. Two stationary blade portions 269. In the present embodiment, the outer surface of the motor housing 260 has a first stationary blade portion 268, and the inner surface of the flow path member 261 has a second stationary blade portion 269.
 第1静翼部268と第2静翼部269とは、径方向または軸方向に連結されている。これにより、第1静翼部268と第2静翼部269とを強固に固定することができる。また、モータハウジング260に形成される第1静翼部268と、流路部材261に形成される第2静翼部269とを固定することによって、モータハウジング260の径方向外面と流路部材261の径方向内面との同軸度を向上することができる。よって、周方向において、流路の径方向幅をより均一にすることができるため、送風装置3の送風効率が向上する。 The first stationary blade portion 268 and the second stationary blade portion 269 are connected in the radial direction or the axial direction. Thereby, the 1st stator blade part 268 and the 2nd stator blade part 269 can be fixed firmly. Further, by fixing the first stationary blade portion 268 formed on the motor housing 260 and the second stationary blade portion 269 formed on the flow path member 261, the radial outer surface of the motor housing 260 and the flow path member 261 are fixed. The coaxiality with the inner surface in the radial direction can be improved. Therefore, since the radial width of the flow path can be made more uniform in the circumferential direction, the blowing efficiency of the blower 3 is improved.
 図10は、第3実施形態のモータハウジング260の斜視図であり、図11は、第3実施形態の流路部材261の下面図である。図9から図11を参照して、第1静翼部268および第2静翼部269は、それぞれ、第1連結部268Aおよび第2連結部269Aを有する。第1連結部268Aは、第1静翼部268に形成され、第2静翼部269の一部と接触する部位である。第2連結部269Aは、第2静翼部269に形成され、第1静翼部の一部と接触する部位である。第1連結部268Aの少なくとも一部と、第2連結部269Aの少なくとも一部とは、軸方向に当接する。これにより、第1静翼部268と第2静翼部269とが連結される際に、第1静翼部268と第2静翼部269との軸方向の位置決めができる。 FIG. 10 is a perspective view of the motor housing 260 of the third embodiment, and FIG. 11 is a bottom view of the flow path member 261 of the third embodiment. Referring to FIGS. 9 to 11, first stator blade portion 268 and second stator blade portion 269 each have a first connecting portion 268 </ b> A and a second connecting portion 269 </ b> A. The first connecting portion 268 </ b> A is a portion that is formed on the first stationary blade portion 268 and contacts a part of the second stationary blade portion 269. The second connecting portion 269A is a part formed on the second stationary blade portion 269 and in contact with a part of the first stationary blade portion. At least a part of the first connecting part 268A and at least a part of the second connecting part 269A abut in the axial direction. Thereby, when the 1st stator blade part 268 and the 2nd stator blade part 269 are connected, the axial positioning of the 1st stator blade part 268 and the 2nd stator blade part 269 can be performed.
 また、第1連結部268Aの少なくとも一部と、第2連結部269Aの少なくとも一部とは、周方向に当接する。これにより、第1静翼部268と第2静翼部269とが連結される際に、第1静翼部268と第2静翼部269との周方向の位置決めができる。すなわち、第1連結部268Aと第2連結部269Aとは、軸方向と周方向のそれぞれに当接しており、軸方向と周方向の位置決めがされている。軸方向および周方向の位置決めによって、第1静翼部268と第2静翼部269とがお互いに位置がずれることなく固定することができる。 Also, at least a part of the first connecting part 268A and at least a part of the second connecting part 269A are in contact with each other in the circumferential direction. Thereby, when the 1st stator blade part 268 and the 2nd stator blade part 269 are connected, the circumferential positioning of the 1st stator blade part 268 and the 2nd stator blade part 269 can be performed. That is, the first connecting portion 268A and the second connecting portion 269A are in contact with each other in the axial direction and the circumferential direction, and are positioned in the axial direction and the circumferential direction. By positioning in the axial direction and the circumferential direction, the first stationary blade portion 268 and the second stationary blade portion 269 can be fixed without being displaced from each other.
 第1連結部268Aは、軸方向または径方向に延びる凸部268Bを有し、第2連結部269Aは、軸方向または径方向に窪む凹部269Bを有する。本実施形態においては、凸部268Bは、第1静翼部268の下部において、軸方向下側に向く面から軸方向下側に延びる。第1静翼部268の下部において軸方向下側に向かう面と、凸部268Bとによって第1連結部268Aが構成される。また、凹部269Bは、第2静翼部269において、径方向内側から外側に向かって窪む。第2静翼部269の上面と、凹部269Bとによって第2連結部269Aが構成される。 The first connecting portion 268A has a convex portion 268B extending in the axial direction or the radial direction, and the second connecting portion 269A has a concave portion 269B recessed in the axial direction or the radial direction. In the present embodiment, the convex portion 268B extends downward in the axial direction from the surface facing downward in the axial direction at the lower portion of the first stationary blade portion 268. A first connecting portion 268A is configured by the axially lower surface of the lower portion of the first stationary blade portion 268 and the convex portion 268B. In addition, the recess 269 </ b> B is recessed from the radially inner side to the outer side in the second stationary blade part 269. A second connecting portion 269A is configured by the upper surface of the second stationary blade portion 269 and the concave portion 269B.
 凸部268Bの少なくとも一部の周方向幅W1は、静翼267の周方向幅W2よりも狭い。送風装置3を組み立てる際には、第1静翼部268を有するモータハウジング260を軸方向下側に向かって動かす。そして、凸部268Bは、凹部269Bに挿入される。これにより、第1静翼部268と第2静翼部269とは、軸方向および周方向に同時に位置が規制され、簡単な構成と組立工程によって第1静翼部268と第2静翼部269とを強固に固定でき、量産性も向上する。 The circumferential width W1 of at least a part of the convex portion 268B is narrower than the circumferential width W2 of the stationary blade 267. When the blower 3 is assembled, the motor housing 260 having the first stationary blade portion 268 is moved downward in the axial direction. And the convex part 268B is inserted in the recessed part 269B. As a result, the positions of the first stator blade part 268 and the second stator blade part 269 are simultaneously restricted in the axial direction and the circumferential direction, and the first stator blade part 268 and the second stator blade part are easily configured and assembled. 269 can be firmly fixed, and mass productivity is improved.
 本実施形態においては、第1静翼部268は、第2静翼部269よりも軸方向上側に位置する。第1静翼部268は、インペラの回転方向R後方側に向く第1側面268Cを有する。また、第2静翼部269は、インペラの回転方向R後方側に向く第2側面269Cを有する。第1側面268Cと第2側面269Cとは、滑らかに接続される。すなわち、第1静翼部268と第2静翼部269とが連結された際に、第1側面268Cと第2側面269Cとによって、静翼267におけるインペラの回転方向R後方側に向く側面が構成される。これにより、流路を流れる空気が第1側面268Cと第2側面269Cとに沿って滑らかに軸方向下側に向かって誘導されるため、送風装置3の送風効率が向上する。なお、静翼267におけるインペラの回転方向R前方側に向く面も、第1静翼部268のインペラの回転方向R前方側に向く面と第2静翼部269のインペラの回転方向R前方側に向く面とによって構成される。これにより、送風装置3の送風効率がさらに向上する。 In the present embodiment, the first stationary blade portion 268 is located on the upper side in the axial direction than the second stationary blade portion 269. The first stationary blade portion 268 has a first side surface 268C that faces the rear side in the rotation direction R of the impeller. The second stationary blade portion 269 has a second side surface 269C that faces the rear side in the rotation direction R of the impeller. The first side surface 268C and the second side surface 269C are smoothly connected. That is, when the first stationary blade portion 268 and the second stationary blade portion 269 are connected, the first side surface 268C and the second side surface 269C cause the side surface of the stationary blade 267 facing the rear side in the rotation direction R of the impeller. Composed. Thereby, since the air which flows through a flow path is smoothly guided toward the axial direction lower side along the 1st side 268C and the 2nd side 269C, the ventilation efficiency of the air blower 3 improves. The surface of the stationary blade 267 facing the front side in the rotational direction R of the impeller is also the surface facing the front side of the impeller in the rotational direction R of the first stationary blade portion 268 and the forward side of the rotational direction R of the impeller in the second stationary blade portion 269. And a surface that faces. Thereby, the ventilation efficiency of the air blower 3 further improves.
 図10に記載されている通り、第1側面268Cの上部は、軸方向上側から下側に向かって回転方向R前方側に湾曲している。より詳細に述べると、第1側面268Cの上部は、インペラの回転方向R前方側かつ軸方向上側に凸となる滑らかな曲面である。これにより、インペラ270から径方向外側に排出された空気は、インペラの回転方向R前方側に向かって周方向に旋回する成分を有したまま、第1側面268C上部の曲面に沿って滑らかに軸方向下側に向かって誘導され、軸方向下側へ向かって流れる。よって、送風装置3の送風効率が向上する。 As shown in FIG. 10, the upper portion of the first side surface 268C is curved forward in the rotational direction R from the upper side in the axial direction toward the lower side. More specifically, the upper portion of the first side surface 268C is a smooth curved surface that protrudes forward in the rotational direction R of the impeller and upward in the axial direction. As a result, the air discharged radially outward from the impeller 270 smoothly rotates along the curved surface above the first side surface 268C while having a component swirling in the circumferential direction toward the front side in the rotation direction R of the impeller. It is guided downward in the direction and flows downward in the axial direction. Therefore, the blowing efficiency of the blower 3 is improved.
 図9を参照して、静翼267が配置される軸方向領域Aの隙間において、軸方向領域Aの上端の径方向隙間d1は、軸方向領域Aの下端の径方向隙間d2よりも広い。つまり、静翼267が配置される軸方向領域Aにおいて、上端における流路の径方向隙間は、下端における流路の径方向隙間よりも広い。これにより、静翼267が配置される領域で流路の断面積が狭くなるため、流路内を流れる空気の静圧が高くなり、軸方向領域Aにおいて乱流が発生することを低減できる。よって流路内を流れる空気の流れが滑らかになり、送風装置3の送風効率が向上する。 Referring to FIG. 9, in the gap in the axial region A where the stationary blade 267 is disposed, the radial gap d1 at the upper end of the axial region A is wider than the radial gap d2 at the lower end of the axial region A. That is, in the axial region A where the stationary blade 267 is disposed, the radial gap of the flow path at the upper end is wider than the radial gap of the flow path at the lower end. Thereby, since the cross-sectional area of the flow path becomes narrow in the region where the stationary blades 267 are arranged, the static pressure of the air flowing in the flow channel becomes high, and generation of turbulent flow in the axial region A can be reduced. Therefore, the flow of air flowing in the flow path becomes smooth, and the blowing efficiency of the blower 3 is improved.
 また、軸方向領域Aの下端の径方向隙間d2は、軸方向領域Aよりも軸方向下方におけるモータハウジング260の外面と流路部材261の内面との径方向隙間d3よりも狭い。すなわち、軸方向領域Aよりも軸方向下方における流路の径方向隙間d3は、軸方向領域Aの下部における流路の径方向隙間よりも広い。これにより、軸方向領域Aにおいて静圧が高められた空気は、軸方向領域Aよりも軸方向下方において流路の断面積が広がるのに伴って徐々に流路内の抵抗が低くなるため、軸方向下側に向かって滑らかに流れる。よって、送風装置3の送風効率が向上する。 The radial gap d2 at the lower end of the axial region A is narrower than the radial gap d3 between the outer surface of the motor housing 260 and the inner surface of the flow path member 261 below the axial region A. That is, the radial gap d3 of the flow path below the axial direction area A is wider than the radial gap of the flow path below the axial direction area A. As a result, the air whose static pressure has been increased in the axial region A has a gradually lower resistance in the flow channel as the cross-sectional area of the flow channel expands below the axial region A in the axial direction. Smoothly flows downward in the axial direction. Therefore, the blowing efficiency of the blower 3 is improved.
 図11を参照して、第1静翼部268と第2静翼部269とを有する静翼267は、周方向において不等配に複数配置される。すなわち、図11において、複数の第2静翼部269における周方向間隙は、少なくとも一箇所で他の周方向間隙と異なる。同様にして複数の第1静翼部268における周方向間隙は、複数の第2静翼部269と同様である。これにより、モータハウジング260と流路部材261とは、周方向に位置決めされる。 Referring to FIG. 11, a plurality of stator blades 267 having first stator blade portions 268 and second stator blade portions 269 are arranged unevenly in the circumferential direction. That is, in FIG. 11, the circumferential gaps in the plurality of second stationary blade portions 269 are different from the other circumferential gaps at least at one location. Similarly, the circumferential gaps of the plurality of first stator blade portions 268 are the same as those of the plurality of second stator blade portions 269. Thereby, the motor housing 260 and the flow path member 261 are positioned in the circumferential direction.
 第3実施形態においては、第1静翼部268は、第2静翼部269よりも上側に配置される。しかし、第1静翼部268は第2静翼部269よりも下側に配置されても良い。また、第1静翼部268はモータハウジング260ではなく、流路部材261に形成されてもよい。また、凸部268Bは第2静翼部269に形成されてもよく、凹部269Bは、第1静翼部268に形成されてもよい。 In the third embodiment, the first stationary blade portion 268 is disposed above the second stationary blade portion 269. However, the first stationary blade portion 268 may be disposed below the second stationary blade portion 269. Further, the first stationary blade portion 268 may be formed in the flow path member 261 instead of the motor housing 260. Further, the convex portion 268B may be formed in the second stationary blade portion 269, and the concave portion 269B may be formed in the first stationary blade portion 268.
 また、第3実施形態においては、第1連結部268Aや第2連結部269Aは、それぞれ、軸方向に略直交する平面と、当該平面から軸方向に突出する凸部268B、あるいは軸方向に窪む凹部269Bとによって構成されているが、第1連結部268Aや第2連結部269Aは、他の形状であってもよい。例えば、第1連結部268Aの下面は、軸方向に対して傾斜する斜面であってもよい。 In the third embodiment, each of the first connecting portion 268A and the second connecting portion 269A includes a plane that is substantially orthogonal to the axial direction and a convex portion 268B that protrudes axially from the plane, or a recess that extends in the axial direction. However, the first connecting portion 268A and the second connecting portion 269A may have other shapes. For example, the lower surface of the first connecting portion 268A may be an inclined surface that is inclined with respect to the axial direction.
 さらに、他の構造として、軸方向上側から静翼267を見た際に、第2連結部269Aの上端部が軸方向上側に露出してもよい。すなわち、第3実施形態においては、第2連結部269Aの上端部は、第1連結部268Aと軸方向に当接しているため、軸方向上側から静翼267を見た際に第2連結部269Aは軸方向上側に露出していないが、軸方向上側に露出してもよい。また、軸方向下側から見た際に、第1連結部268Aの下端部が、軸方向下側に露出してもよい。 Furthermore, as another structure, when the stationary blade 267 is viewed from the upper side in the axial direction, the upper end portion of the second connecting portion 269A may be exposed on the upper side in the axial direction. That is, in the third embodiment, since the upper end portion of the second connecting portion 269A is in contact with the first connecting portion 268A in the axial direction, the second connecting portion is viewed when the stationary blade 267 is viewed from the upper side in the axial direction. 269A is not exposed on the upper side in the axial direction, but may be exposed on the upper side in the axial direction. Further, when viewed from the lower side in the axial direction, the lower end portion of the first connecting portion 268A may be exposed on the lower side in the axial direction.
<第4実施形態>
 図12は、第4実施形態の静翼367を示す側面図である。便宜上、径方向外側に配置される流路部材は省略されている。静翼367は、周方向に複数配置される。複数の静翼367のうち少なくとも一つは、分割された複数の部位によって構成される。すなわち、静翼367の少なくとも一つは、モータハウジング360又は流路部材の一方側に形成される第1静翼部368と、モータハウジング360又は流路部材の他方側に形成される第2静翼部369と、を有する。
<Fourth embodiment>
FIG. 12 is a side view showing a stationary blade 367 of the fourth embodiment. For convenience, the flow path member disposed on the radially outer side is omitted. A plurality of stationary blades 367 are arranged in the circumferential direction. At least one of the plurality of stationary blades 367 includes a plurality of divided parts. That is, at least one of the stationary blades 367 includes a first stationary blade portion 368 formed on one side of the motor housing 360 or the flow path member and a second stationary blade formed on the other side of the motor housing 360 or the flow path member. And a wing portion 369.
 第1静翼部368および第2静翼部369は、それぞれ、第1連結部368Aおよび第2連結部369Aを有する。第1連結部368Aおよび第2連結部369Aは、それぞれ、軸方向に延びる第1段差部368Eと第2段差部369Eとを有する。第1段差部368Eおよび第2段差部369Eの、軸方向に向く面、または周方向に向く面のいずれか一方の面が当接している。第4実施形態においては、第1段差部368Eの軸方向に向く面、すなわち下面は、第2段差部369Eの軸方向に向く面、すなわち上面と当接している。さらに、第1段差部368Eの周方向に向く面、すなわち側面は、第2段差部369Eの周方向に向く面、すなわち側面と当接している。これにより、第1静翼部368と第2静翼部369とを、軸方向と周方向の両方において位置決めできる。また、第3実施形態の構成に比べて、第1連結部368Aと第2連結部369Aの構造を簡略化できるため、安価かつ簡易な作業で送風装置を組み立てられる。なお、第1段差部368Aと第2段差部369Aとは、それぞれの軸方向に向く面または周方向に向く面のいずれか一方の面が当接していればよく、両方の面が当接していなくてもよい。 The first stator blade portion 368 and the second stator blade portion 369 have a first connecting portion 368A and a second connecting portion 369A, respectively. The first connecting portion 368A and the second connecting portion 369A each have a first step portion 368E and a second step portion 369E that extend in the axial direction. Either the surface facing the axial direction or the surface facing the circumferential direction of the first step portion 368E and the second step portion 369E abuts. In the fourth embodiment, the surface facing the axial direction of the first stepped portion 368E, that is, the lower surface is in contact with the surface facing the axial direction of the second stepped portion 369E, that is, the upper surface. Furthermore, the circumferential surface, that is, the side surface of the first step portion 368E is in contact with the circumferential surface of the second step portion 369E, that is, the side surface. Thereby, the 1st stator blade part 368 and the 2nd stator blade part 369 can be positioned in both an axial direction and the circumferential direction. Moreover, since the structure of the 1st connection part 368A and the 2nd connection part 369A can be simplified compared with the structure of 3rd Embodiment, an air blower can be assembled by a cheap and simple operation | work. The first step portion 368A and the second step portion 369A only need to be in contact with either one of the surfaces facing the axial direction or the surface facing the circumferential direction, and both surfaces are in contact. It does not have to be.
 第1静翼部368は、インペラの回転方向R後方側に向く第1側面368Cを有し、第2静翼部369は、インペラの回転方向R後方側に向く第2側面369Cを有する。第1側面の下端部368Dは、周方向において、第2側面の上端部369Dよりもインペラの回転方向R後方側に位置する。これにより、第1側面の下端部368Dが、周方向において、第2側面の上端部369Dよりもインペラの回転方向R前方側に位置する場合に比べて、第1側面付近を流れる空気が受ける抵抗が低減される。また、組立工程において、第2側面の上端部369Dの位置が僅かにインペラの回転方向R後方側にずれた場合においても、第2側面の上端部369Dが、第1側面368Cよりもインペラの回転方向R後方側に出ることが抑制される。なお、インペラの回転方向Rにおいて、第1側面の下端部368Dと第2側面の上端部369Dとは、同じ位置に配置されるとより送風効率が向上するため、望ましい配置となる。 The first stationary blade portion 368 has a first side surface 368C facing the impeller rotation direction R rear side, and the second stationary blade portion 369 has a second side surface 369C facing the impeller rotation direction R rear side. The lower end portion 368D of the first side surface is located on the rear side in the rotational direction R of the impeller with respect to the upper end portion 369D of the second side surface in the circumferential direction. As a result, the resistance received by the air flowing near the first side surface is lower than in the case where the lower end portion 368D of the first side surface is positioned more forward in the rotational direction R of the impeller than the upper end portion 369D of the second side surface in the circumferential direction. Is reduced. Further, in the assembly process, even when the position of the upper end portion 369D of the second side surface is slightly shifted to the rear side in the rotation direction R of the impeller, the upper end portion 369D of the second side surface rotates the impeller more than the first side surface 368C. Exiting in the direction R rear side is suppressed. In the rotation direction R of the impeller, the lower end portion 368D on the first side surface and the upper end portion 369D on the second side surface are arranged in the same position, so that the air blowing efficiency is further improved.
<第5実施形態>
 図13は、第5実施形態の静翼467を示す側面図である。便宜上、図13においては、静翼467よりも径方向外側に配置される流路部材を省略している。第5実施形態の送風装置は、静翼467を除いて、第3実施形態の構成と同様である。
<Fifth Embodiment>
FIG. 13 is a side view showing a stationary blade 467 of the fifth embodiment. For the sake of convenience, in FIG. 13, the flow path member disposed on the radially outer side of the stationary blade 467 is omitted. The air blower of 5th Embodiment is the same as that of 3rd Embodiment except for the stationary blade 467.
 静翼467は、モータハウジング又は流路部材の一方側に形成され、軸方向下端部に軸方向上方に窪む凹部468Fを有する。また、モータハウジング又は流路部材の他方側には連結部469Fが形成される。本実施形態においては、静翼467は、流路部材と一体に形成され、連結部469Fは、モータハウジングと一体に形成される。連結部469Fは、凹部468Fの少なくとも一部と係合されている。これにより、安価かつ量産性が高い構成によって、静翼467と連結部469Fとを強固に固定できる。 The stationary blade 467 is formed on one side of the motor housing or the flow path member, and has a recess 468F that is recessed in the axial direction at the lower end in the axial direction. Further, a connecting portion 469F is formed on the other side of the motor housing or the flow path member. In the present embodiment, the stationary blade 467 is formed integrally with the flow path member, and the connecting portion 469F is formed integrally with the motor housing. The connecting portion 469F is engaged with at least a part of the recess 468F. Thereby, the stationary blade 467 and the connecting portion 469F can be firmly fixed by an inexpensive and high-productivity configuration.
 第5実施形態の静翼467においては、連結部469Fが静翼467の側面を構成しない点において、第3実施形態の静翼267や第4実施形態の静翼367と異なる。すなわち、静翼467においては、静翼467の側面は、モータハウジング又は流路部材の一方側と一体に形成される静翼467のみによって構成される。また、連結部469Fは、静翼467の下面の一部を構成し、その他の面には露出しない。また、本実施形態においては、静翼467は連結部469Fよりも上側に配置されるが、静翼は、連結部よりも下側に配置され、静翼の上面において、下側に窪む凹部を有してもよい。 The stator blade 467 of the fifth embodiment differs from the stator blade 267 of the third embodiment and the stator blade 367 of the fourth embodiment in that the connecting portion 469F does not constitute the side surface of the stator blade 467. That is, in the stationary blade 467, the side surface of the stationary blade 467 is constituted only by the stationary blade 467 formed integrally with one side of the motor housing or the flow path member. Further, the connecting portion 469F constitutes a part of the lower surface of the stationary blade 467 and is not exposed to other surfaces. Further, in the present embodiment, the stationary blade 467 is disposed on the upper side of the connecting portion 469F, but the stationary blade is disposed on the lower side of the connecting portion, and is a concave portion that is recessed downward on the upper surface of the stationary blade. You may have.
<第6実施形態>
 図14は、第6実施形態の静翼567を示す側面図である。便宜上、図14においては、静翼567よりも径方向外側に配置される流路部材を省略している。第6実施形態の送風装置は、静翼567を除いて、第3実施形態の構成と同様である。
<Sixth Embodiment>
FIG. 14 is a side view showing a stationary blade 567 of the sixth embodiment. For the sake of convenience, in FIG. 14, the flow path member disposed on the radially outer side of the stationary blade 567 is omitted. The air blower of 6th Embodiment is the same as that of 3rd Embodiment except for the stationary blade 567.
 静翼567は、モータハウジング又は流路部材の一方側に形成され、インペラの回転方向R前方側に向く面に、インペラの回転方向R後方側に窪む凹部568Fを有する。モータハウジング又は流路部材の他方側には連結部569Fが形成される。連結部569Fは、凹部568Fの少なくとも一部と係合されている。本実施形態においては、静翼567は、モータハウジングと一体に形成され、連結部569Fは、流路部材と一体に形成される。これにより、安価かつ量産性が高い構成によって、静翼567と連結部569Fとを強固に固定できる。 The stationary blade 567 is formed on one side of the motor housing or the flow path member, and has a recess 568F that is recessed toward the rear side in the rotational direction R of the impeller on the front side in the rotational direction R of the impeller. A connecting portion 569F is formed on the other side of the motor housing or the flow path member. The connecting portion 569F is engaged with at least a part of the recess 568F. In the present embodiment, the stationary blade 567 is formed integrally with the motor housing, and the connecting portion 569F is formed integrally with the flow path member. As a result, the stationary blade 567 and the connecting portion 569F can be firmly fixed by an inexpensive and highly productive configuration.
 静翼567においては、第3実施形態の静翼267や第4実施形態の静翼367と異なり、連結部569Fは、静翼567の側面を構成しない。また、連結部569Fは、静翼567におけるインペラの回転方向R前方側の面の一部を構成し、その他の面には露出しない。なお、凹部568Fは、インペラの回転方向R後方側の面に構成され、連結部569Fと係合されても良い。 In the stationary blade 567, unlike the stationary blade 267 of the third embodiment and the stationary blade 367 of the fourth embodiment, the connecting portion 569F does not constitute a side surface of the stationary blade 567. Further, the connecting portion 569F constitutes a part of the surface of the stationary blade 567 on the front side in the rotation direction R of the impeller, and is not exposed to other surfaces. The concave portion 568F may be configured on the surface on the rear side in the rotation direction R of the impeller and may be engaged with the connecting portion 569F.
 図15に示す掃除機100は、本願発明に係る送風装置を備える。これにより、掃除機に搭載される送風装置において、第1静翼部と第2静翼部とを強固に固定することができる。 15 includes a blower according to the present invention. Thereby, the 1st stator blade part and the 2nd stator blade part can be firmly fixed in the air blower mounted in a cleaner.
 なお、上記の第1実施形態から第6実施形態の送風装置は、いかなる機器に用いられてもよい。上記の第1実施形態から第6実施形態の送風装置は、例えば、掃除機、ドライヤーに用いることができる。 In addition, the air blower of said 1st Embodiment to 6th Embodiment may be used for any apparatuses. The blower of the first to sixth embodiments can be used for, for example, a vacuum cleaner and a dryer.
 また、上記の第1実施形態から第6実施形態で説明した各構成は、相互に矛盾しない範囲内において、適宜組み合わせることができる。 Further, the configurations described in the first to sixth embodiments can be appropriately combined within a range that does not contradict each other.
 1,2,3…送風装置、10,110,210…モータ、20,120…ハウジング、30,230…ロータ、31,231…シャフト、40,140,240…ステータ、52a,252a…下側ベアリング(ベアリング)、52b,252b…上側ベアリング(ベアリング)、53b…弾性部材、60,160,260,360…ベアリング保持部材(モータハウジング)、60a…保持部材片、61,161,261…流路部材、62a…第1凸部、62b…第2凸部、62c…保持部材本体部、62d…保持筒部、63…外側突出部、64…内側突出部、67,167,267,367,467,567…静翼、268,368…第1静翼部、268A,368A…第1連結部、268B…凸部、268C,368C…第1側面、368D…第1側面の下端部、368E…第1段差部、468F,568F…凹部、269,369…第2静翼部、269A,369A…第2連結部、269B…凹部、269C,369C…第2側面、369D…第2側面の上端部、369E…第2段差部、469F,569F…連結部、70,270…インペラ、71…ベース部材、80,280…インペラハウジング、80a,280a…吸気口、100…掃除機、167a…静翼下部(静翼)、167b…静翼上部(静翼)、A…軸方向領域、d1,d2,d3…径方向隙間、J…中心軸、R…インペラの回転方向、W1,W2…周方向幅 1, 2, 3 ... Blower, 10, 110, 210 ... Motor, 20, 120 ... Housing, 30, 230 ... Rotor, 31, 231, Shaft, 40, 140, 240 ... Stator, 52a, 252a ... Lower bearing (Bearings), 52b, 252b ... Upper bearing (bearing), 53b ... Elastic member, 60, 160, 260, 360 ... Bearing holding member (motor housing), 60a ... Holding member piece, 61, 161, 261 ... Channel member 62a, first convex portion, 62b, second convex portion, 62c, holding member main body portion, 62d, holding cylinder portion, 63, outer protruding portion, 64, inner protruding portion, 67, 167, 267, 367, 467,. 567 ... Stator blade, 268, 368 ... First stator blade portion, 268A, 368A ... First connecting portion, 268B ... Convex portion, 268C, 368C ... First side surface, 68D: lower end portion of first side surface, 368E: first step portion, 468F, 568F ... concave portion, 269, 369 ... second stationary blade portion, 269A, 369A ... second connecting portion, 269B ... concave portion, 269C, 369C ... first 2 side surfaces, 369D ... upper end portion of second side surface, 369E ... second stepped portion, 469F, 569F ... connecting portion, 70, 270 ... impeller, 71 ... base member, 80, 280 ... impeller housing, 80a, 280a ... intake port , 100 ... Vacuum cleaner, 167a ... Lower blade (static blade), 167b ... Upper blade (static blade), A ... Axial region, d1, d2, d3 ... Radial gap, J ... Central shaft, R ... Impeller Rotation direction, W1, W2 ... circumferential width

Claims (14)

  1.  上下に延びる中心軸に沿って配置されるシャフトを有するモータと、
     前記シャフトに接続され、前記シャフトと一体となって回転するインペラと、
     前記インペラの上側または径方向外側に配置されるインペラハウジングと、
     前記モータの径方向外側に配置されるモータハウジングと、
     前記モータハウジングよりも径方向外側に隙間を介して配置される流路部材と、
     前記モータハウジングと前記流路部材との前記隙間において、周方向に配置される複数の静翼と、
    を有し、
     前記静翼の少なくとも一つは、
      前記モータハウジング又は前記流路部材の一方側に形成される第1静翼部と、
      前記モータハウジング又は前記流路部材の他方側に形成される第2静翼部と、
     を有し、
     前記第1静翼部と前記第2静翼部とは、径方向または軸方向に連結されている、送風装置。
    A motor having a shaft disposed along a central axis extending vertically;
    An impeller connected to the shaft and rotating integrally with the shaft;
    An impeller housing disposed on an upper side or a radially outer side of the impeller;
    A motor housing disposed radially outside the motor;
    A flow path member disposed via a gap radially outside the motor housing;
    A plurality of stationary blades arranged in a circumferential direction in the gap between the motor housing and the flow path member;
    Have
    At least one of the stationary blades is
    A first stator blade portion formed on one side of the motor housing or the flow path member;
    A second stationary blade portion formed on the other side of the motor housing or the flow path member;
    Have
    The first stationary blade portion and the second stationary blade portion are air blowers connected in a radial direction or an axial direction.
  2.  前記第1静翼部および前記第2静翼部は、それぞれ、第1連結部および第2連結部を有し、
     前記第1連結部の少なくとも一部と、前記第2連結部の少なくとも一部とは、軸方向に当接する、請求項1に記載の送風装置。
    The first stator blade part and the second stator blade part have a first connecting part and a second connecting part, respectively.
    The blower according to claim 1, wherein at least a part of the first connecting part and at least a part of the second connecting part abut in the axial direction.
  3.  前記第1静翼部および前記第2静翼部は、それぞれ、第1連結部および第2連結部を有し、
     前記第1連結部の少なくとも一部と、前記第2連結部の少なくとも一部とは、周方向に当接する、請求項1に記載の送風装置。
    The first stator blade part and the second stator blade part have a first connecting part and a second connecting part, respectively.
    The blower according to claim 1, wherein at least a part of the first connecting part and at least a part of the second connecting part are in contact with each other in a circumferential direction.
  4.  前記第1連結部は、軸方向または径方向に延びる凸部を有し、
     前記第2連結部は、軸方向または径方向に窪む凹部を有し、
    前記凸部の少なくとも一部の周方向幅は、前記静翼の周方向幅よりも狭く、
     前記凸部は、前記凹部に挿入されている、請求項2または3のいずれか1項に記載の送風装置。
    The first connecting portion has a convex portion extending in the axial direction or the radial direction,
    The second connecting portion has a concave portion that is recessed in the axial direction or the radial direction,
    The circumferential width of at least a part of the convex portion is narrower than the circumferential width of the stationary blade,
    The blower according to claim 2, wherein the convex portion is inserted into the concave portion.
  5.  前記第1連結部および前記第2連結部は、それぞれ、軸方向に延びる第1段差部と第2段差部とを有し、
     前記第1段差部および前記第2段差部の、軸方向に向く面、または周方向に向く面のいずれか一方の面が当接している、請求項2または3のいずれか1項に記載の送風装置。
    Each of the first connecting portion and the second connecting portion includes a first step portion and a second step portion extending in the axial direction,
    The surface of the said 1st level | step-difference part and the said 2nd level | step-difference part, either one surface of the surface which faces an axial direction, or the circumferential direction contact | abuts. Blower device.
  6.  前記第1静翼部は、前記第2静翼部よりも軸方向上側に位置し、
     前記第1静翼部は、前記インペラの回転方向後方側に向く第1側面を有し、
     前記第2静翼部は、前記インペラの回転方向後方側に向く第2側面を有し、
     前記第1側面と前記第2側面とは、滑らかに接続される、請求項1から5のいずれか1項に記載の送風装置。
    The first stationary blade portion is located on the upper side in the axial direction than the second stationary blade portion,
    The first stationary blade portion has a first side surface facing toward the rear side in the rotation direction of the impeller,
    The second stationary blade portion has a second side surface facing the rear side in the rotational direction of the impeller,
    The blower according to any one of claims 1 to 5, wherein the first side surface and the second side surface are smoothly connected.
  7. 前記第1側面の下端部は、周方向において、第2側面の上端部よりもインペラの回転方向後方側に位置する、請求項1から5のいずれか1項に記載の送風装置。 The blower according to any one of claims 1 to 5, wherein the lower end portion of the first side surface is located on the rear side in the rotation direction of the impeller with respect to the upper end portion of the second side surface in the circumferential direction.
  8.  前記第1静翼部と前記第2静翼部とを有する前記静翼は、周方向において不等配に複数配置される、請求項1から7のいずれか1項に記載の送風装置。
     
    The blower according to any one of claims 1 to 7, wherein a plurality of the stationary blades having the first stationary blade portion and the second stationary blade portion are arranged in an uneven manner in the circumferential direction.
  9.  前記第1側面の上部は、軸方向上側から下側に向かって回転方向前方側に湾曲している、請求項6または7のいずれか1項に記載の送風装置。 The blower according to any one of claims 6 and 7, wherein the upper portion of the first side surface is curved forward in the rotational direction from the upper side in the axial direction toward the lower side.
  10.  前記静翼が配置される軸方向領域の前記隙間において、
    前記軸方向領域の上端の径方向隙間は、前記軸方向領域の下端の径方向隙間よりも広い、請求項1から9のいずれか一項に記載の送風装置。
    In the gap in the axial region where the stationary blade is disposed,
    The blower according to any one of claims 1 to 9, wherein a radial clearance at an upper end of the axial region is wider than a radial clearance at a lower end of the axial region.
  11.  前記軸方向領域の下端の径方向隙間は、
     前記軸方向領域よりも軸方向下方における前記モータハウジングの外面と前記流路部材の内面との径方向隙間よりも狭い、請求項10に記載の送風装置。
    The radial clearance at the lower end of the axial region is
    The blower according to claim 10, wherein the blower is narrower than a radial gap between an outer surface of the motor housing and an inner surface of the flow path member below the axial region.
  12.  上下に延びる中心軸に沿って配置されるシャフトを有するモータと、
     前記シャフトに接続され、前記シャフトと一体となって回転するインペラと、
     前記インペラの上側または径方向外側に配置されるインペラハウジングと、
     前記モータの径方向外側に配置されるモータハウジングと、
     前記モータハウジングよりも径方向外側に隙間を介して配置される流路部材と、
     前記モータハウジングと前記流路部材との前記隙間において、周方向に配置される複数の静翼と、
    を有し、
     前記静翼は、前記モータハウジング又は前記流路部材の一方側に形成され、軸方向下端部に軸方向上方に窪む凹部を有し、
     前記モータハウジング又は前記流路部材の他方側には連結部が形成され、
     前記連結部は、前記凹部の少なくとも一部と係合されている、送風装置。
    A motor having a shaft disposed along a central axis extending vertically;
    An impeller connected to the shaft and rotating integrally with the shaft;
    An impeller housing disposed on an upper side or a radially outer side of the impeller;
    A motor housing disposed radially outside the motor;
    A flow path member disposed via a gap radially outside the motor housing;
    A plurality of stationary blades arranged in a circumferential direction in the gap between the motor housing and the flow path member;
    Have
    The stationary blade is formed on one side of the motor housing or the flow path member, and has a concave portion that is recessed in the axial direction at the lower end in the axial direction.
    A connecting portion is formed on the other side of the motor housing or the flow path member,
    The connecting part is an air blower engaged with at least a part of the recess.
  13.  上下に延びる中心軸に沿って配置されるシャフトを有するモータと、
     前記シャフトに接続され、前記シャフトと一体となって回転するインペラと、
     前記インペラの上側または径方向外側に配置されるインペラハウジングと、
     前記モータの径方向外側に配置されるモータハウジングと、
     前記モータハウジングよりも径方向外側に隙間を介して配置される流路部材と、
     前記モータハウジングと前記流路部材との前記隙間において、周方向に配置される複数の静翼と、
    を有し、
     前記静翼は、前記モータハウジング又は前記流路部材の一方側に形成され、前記インペラの回転方向前方側に向く面に、周方向に窪む凹部を有し、
     前記モータハウジング又は前記流路部材の他方側には連結部が形成され、
     前記連結部は、前記凹部の少なくとも一部と係合されている、送風装置。
    A motor having a shaft disposed along a central axis extending vertically;
    An impeller connected to the shaft and rotating integrally with the shaft;
    An impeller housing disposed on an upper side or a radially outer side of the impeller;
    A motor housing disposed radially outside the motor;
    A flow path member disposed via a gap radially outside the motor housing;
    A plurality of stationary blades arranged in a circumferential direction in the gap between the motor housing and the flow path member;
    Have
    The stationary blade is formed on one side of the motor housing or the flow path member, and has a concave portion recessed in a circumferential direction on a surface facing the front side in the rotation direction of the impeller,
    A connecting portion is formed on the other side of the motor housing or the flow path member,
    The connecting part is an air blower engaged with at least a part of the recess.
  14.  請求項1から13のいずれか一項に記載の送風装置を有する、掃除機。 A vacuum cleaner comprising the blower device according to any one of claims 1 to 13.
PCT/JP2016/065250 2015-05-29 2016-05-24 Blower apparatus and vacuum cleaner WO2016194697A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017521835A JP6702318B2 (en) 2015-05-29 2016-05-24 Blower and vacuum cleaner
CN201680031279.7A CN107614888B (en) 2015-05-29 2016-05-24 Air supply device and dust catcher
EP16803132.6A EP3306104A4 (en) 2015-05-29 2016-05-24 Blower apparatus and vacuum cleaner
US15/576,311 US20180156233A1 (en) 2015-05-29 2016-05-24 Blower and vacuum cleaner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562168135P 2015-05-29 2015-05-29
US62/168135 2015-05-29

Publications (1)

Publication Number Publication Date
WO2016194697A1 true WO2016194697A1 (en) 2016-12-08

Family

ID=57440948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065250 WO2016194697A1 (en) 2015-05-29 2016-05-24 Blower apparatus and vacuum cleaner

Country Status (5)

Country Link
US (1) US20180156233A1 (en)
EP (1) EP3306104A4 (en)
JP (3) JP2016223432A (en)
CN (1) CN107614888B (en)
WO (1) WO2016194697A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018199774A1 (en) * 2017-04-23 2018-11-01 Fisher & Paykel Healthcare Limited Breathing assistance apparatus
EP3410584A1 (en) * 2017-05-31 2018-12-05 Nidec Corporation Motor, blowing device, and vacuum cleaner
EP3415777A1 (en) * 2017-06-13 2018-12-19 ebm-papst Mulfingen GmbH & Co. KG Blower housing part with bearing support and blower
EP3456232A1 (en) * 2017-09-13 2019-03-20 Nidec Corporation Motor, blower, and vacuum cleaner
US10471225B2 (en) 2012-12-18 2019-11-12 Fisher & Paykel Healthcare Limited Impeller and motor assembly
EP3579391A4 (en) * 2017-02-01 2020-11-25 LG Electronics Inc. -1- Fan motor
US11571536B2 (en) 2011-07-13 2023-02-07 Fisher & Paykel Healthcare Limited Impeller and motor assembly

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3015713A1 (en) * 2014-10-30 2016-05-04 Nidec Corporation Blower apparatus
WO2016181821A1 (en) * 2015-05-14 2016-11-17 株式会社デンソー Centrifugal blower
JP6718365B2 (en) * 2016-11-21 2020-07-08 東芝ライフスタイル株式会社 Electric blower and vacuum cleaner
US10641282B2 (en) * 2016-12-28 2020-05-05 Nidec Corporation Fan device and vacuum cleaner including the same
EP3376043B1 (en) 2017-03-16 2020-12-09 LG Electronics Inc. Motor fan
KR101924591B1 (en) * 2017-03-16 2018-12-03 엘지전자 주식회사 Fan motor
JP2018155237A (en) * 2017-03-17 2018-10-04 日本電産株式会社 Blower and vacuum cleaner
JP2019176661A (en) * 2018-03-29 2019-10-10 日本電産株式会社 Rotor assembly, motor, blower, and vacuum cleaner
JP7299757B2 (en) * 2019-05-28 2023-06-28 株式会社ミクニ impeller and centrifugal pump
KR102171454B1 (en) 2019-07-10 2020-10-29 엘지전자 주식회사 Fan Motor and Manufacturing the Same
US11118600B2 (en) * 2019-11-18 2021-09-14 Asia Vital Components Co., Ltd. Anti-press fan structure
JP6960004B2 (en) * 2020-02-18 2021-11-05 シナノケンシ株式会社 Blower
CN113317741B (en) * 2020-02-28 2023-08-18 宁波方太厨具有限公司 Cleaning machine
CN113944655B (en) * 2020-07-17 2023-07-07 广东美的白色家电技术创新中心有限公司 Flow guiding device of dust collector and dust collector
DE102020119881A1 (en) * 2020-07-28 2022-02-03 Ebm-Papst Mulfingen Gmbh & Co. Kg Tube fan designed as a radial fan
EP4189251A1 (en) * 2020-07-31 2023-06-07 Safran Power USA, LLC Rotating machine with cooling fan
CN115224875B (en) * 2021-04-21 2023-07-18 李钢 Dust collector motor and working method thereof
US11882979B2 (en) * 2022-05-27 2024-01-30 Haier Us Appliance Solutions, Inc. Centrifugal pump diffuser housings

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04505199A (en) * 1989-02-14 1992-09-10 エアフロー リサーチ アンド マニュファクチュアリング コーポレーション Centrifugal blower with airfoil vanes in a circular spiral envelope
JP2014533989A (en) * 2011-10-13 2014-12-18 アクティエボラゲット エレクトロラックス Vacuum cleaner
JP2015034514A (en) * 2013-08-09 2015-02-19 日本電産株式会社 Blower and cleaner

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4946348A (en) * 1989-02-14 1990-08-07 Airflow Research & Manufacturing Corporation Centrifugal fan with airfoil vanes in annular volute envelope
DE4113830A1 (en) * 1991-04-27 1992-10-29 Klein Schanzlin & Becker Ag SHARED GUIDE
JP3331878B2 (en) * 1996-08-30 2002-10-07 株式会社日立製作所 Electric vacuum cleaner
KR100424313B1 (en) * 2002-01-03 2004-03-25 엘지전자 주식회사 Centrifugal fan of vacuum cleaner
JP2005201157A (en) * 2004-01-16 2005-07-28 Sanyo Electric Co Ltd Electric blower
CN201433940Y (en) * 2009-04-21 2010-03-31 建准电机工业股份有限公司 Fan frame of axial-flow type thermal fan

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04505199A (en) * 1989-02-14 1992-09-10 エアフロー リサーチ アンド マニュファクチュアリング コーポレーション Centrifugal blower with airfoil vanes in a circular spiral envelope
JP2014533989A (en) * 2011-10-13 2014-12-18 アクティエボラゲット エレクトロラックス Vacuum cleaner
JP2015034514A (en) * 2013-08-09 2015-02-19 日本電産株式会社 Blower and cleaner

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3306104A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11571536B2 (en) 2011-07-13 2023-02-07 Fisher & Paykel Healthcare Limited Impeller and motor assembly
US10471225B2 (en) 2012-12-18 2019-11-12 Fisher & Paykel Healthcare Limited Impeller and motor assembly
US11992613B2 (en) 2012-12-18 2024-05-28 Fisher & Paykel Healthcare Limited Impeller and motor assembly
US11534565B2 (en) 2012-12-18 2022-12-27 Fisher & Paykel Healthcare Limited Impeller and motor assembly
US11025122B2 (en) 2017-02-01 2021-06-01 Lg Electronics Inc. Fan motor
EP3579391A4 (en) * 2017-02-01 2020-11-25 LG Electronics Inc. -1- Fan motor
WO2018199774A1 (en) * 2017-04-23 2018-11-01 Fisher & Paykel Healthcare Limited Breathing assistance apparatus
US11401974B2 (en) 2017-04-23 2022-08-02 Fisher & Paykel Healthcare Limited Breathing assistance apparatus
CN108988557A (en) * 2017-05-31 2018-12-11 日本电产株式会社 Motor, air supply device and dust catcher
EP3410584A1 (en) * 2017-05-31 2018-12-05 Nidec Corporation Motor, blowing device, and vacuum cleaner
EP3754217A1 (en) * 2017-06-13 2020-12-23 ebm-papst Mulfingen GmbH & Co. KG Blower with blower housing parts with bearing support
EP3754216A1 (en) * 2017-06-13 2020-12-23 ebm-papst Mulfingen GmbH & Co. KG Blower housing part with bearing support and blower
EP3415777A1 (en) * 2017-06-13 2018-12-19 ebm-papst Mulfingen GmbH & Co. KG Blower housing part with bearing support and blower
EP3456232A1 (en) * 2017-09-13 2019-03-20 Nidec Corporation Motor, blower, and vacuum cleaner

Also Published As

Publication number Publication date
JP2016223428A (en) 2016-12-28
CN107614888B (en) 2019-08-06
CN107614888A (en) 2018-01-19
US20180156233A1 (en) 2018-06-07
JPWO2016194697A1 (en) 2018-03-22
JP6702318B2 (en) 2020-06-03
EP3306104A1 (en) 2018-04-11
JP2016223432A (en) 2016-12-28
EP3306104A4 (en) 2019-02-13

Similar Documents

Publication Publication Date Title
WO2016194697A1 (en) Blower apparatus and vacuum cleaner
JP5870155B2 (en) Compressor
JP6228728B2 (en) Centrifugal fan
US10184492B2 (en) Axial flow fan
WO2017082224A1 (en) Blowing device and cleaner
KR20160003745A (en) Compressor
US8322998B2 (en) Serial axial fan
WO2020062479A1 (en) Electric blower
JP2016138510A (en) Electric blower and vacuum cleaner installed with electric blower
US20120003109A1 (en) Blower fan
JP2012163021A (en) Blower fan
JP2016023598A (en) Centrifugal fan
JP5493339B2 (en) Motor, fan, motor manufacturing method, and fan manufacturing method
CN110661351B (en) Motor
CN109578300B (en) Centrifugal fan
US11149749B2 (en) Impeller, impeller blade wheel, air-blowing device, and method of manufacturing air-blowing device
JP2016223429A (en) Blower device and vacuum cleaner
JP2009250158A (en) Bower fan
JP7179609B2 (en) axial fan
CN216649375U (en) Motor, air supply device and dust collector
JP6276169B2 (en) Centrifugal fan
JP2018155188A (en) Centrifugal fan
JP2017155607A (en) Centrifugal fan
JP2006299898A (en) Fluid pump
JP2019085985A (en) Blower device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803132

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15576311

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017521835

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016803132

Country of ref document: EP