WO2016194614A1 - Polishing composition, polishing method, and production method - Google Patents

Polishing composition, polishing method, and production method Download PDF

Info

Publication number
WO2016194614A1
WO2016194614A1 PCT/JP2016/064773 JP2016064773W WO2016194614A1 WO 2016194614 A1 WO2016194614 A1 WO 2016194614A1 JP 2016064773 W JP2016064773 W JP 2016064773W WO 2016194614 A1 WO2016194614 A1 WO 2016194614A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
acid
abrasive grains
polishing composition
polished
Prior art date
Application number
PCT/JP2016/064773
Other languages
French (fr)
Japanese (ja)
Inventor
舞子 浅井
伊藤 友一
Original Assignee
株式会社フジミインコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジミインコーポレーテッド filed Critical 株式会社フジミインコーポレーテッド
Priority to JP2017521790A priority Critical patent/JPWO2016194614A1/en
Publication of WO2016194614A1 publication Critical patent/WO2016194614A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives

Definitions

  • the present invention relates to a polishing composition used for polishing a polishing object containing a metal or metalloid oxide or a composite material thereof.
  • Ceramic products containing metal or metalloid oxides or composite materials thereof are widely used as various electronic devices, functional ceramics, hard materials and the like.
  • a polishing composition containing diamond abrasive grains as disclosed in Patent Documents 1 and 2 is used. It is used to use.
  • the polishing composition containing diamond abrasive grains is expensive and has a problem that it easily causes scratches and makes it difficult to obtain a high-quality mirror surface.
  • Patent Documents 3 and 4 it is proposed to use a polishing composition using colloidal silica as abrasive grains.
  • a polishing composition using colloidal silica as abrasive grains it is proposed to use a polishing composition using colloidal silica as abrasive grains.
  • a sufficient polishing rate could not be obtained.
  • the object of the present invention is high in suppressing the occurrence of defects such as scratches in the polishing of ceramics including oxide crystals used for electronic devices and the like that require high-quality smooth surfaces and high-quality texture by mirror finish.
  • the object is to provide a polishing composition capable of realizing a polishing rate at low cost.
  • the polishing composition according to one embodiment of the present invention is a polishing composition containing water and abrasive grains, and the abrasive grains are 71-83 in the whole abrasive grains with an average grain size of 10 nm to 45 nm.
  • the total amount of grains may occupy 90% by mass or more of the total amount of abrasive grains.
  • the polishing composition according to another embodiment of the present invention is an abrasive having an average particle diameter of 80 to 170 nm with respect to the particle diameter A of the abrasive grain having the largest number among the abrasive grains having an average particle diameter of 10 to 45 nm.
  • the ratio B / A of the particle diameter B of the abrasive grains having the largest number may be 2.5 or more.
  • the abrasive may be silica.
  • the polishing composition according to another embodiment of the present invention may have a pH of 5.0 to 10.0.
  • the polishing composition according to another embodiment of the present invention may be used for polishing the surface of an object to be polished containing one or more metal or metalloid oxides or composite materials thereof.
  • the polishing composition according to another embodiment of the present invention is an object to be polished containing one or more oxides of one or more metals or metalloids selected from Groups 3, 4, and 13, or a composite material thereof. It may be used to polish the surface of an object.
  • One embodiment of the present invention is a polishing method for polishing the surface of an object to be polished using the polishing composition of the above embodiment.
  • One embodiment of the present invention is a polishing method for polishing a surface of an object to be polished containing a metal or metalloid oxide or a composite material thereof using the polishing composition of the above embodiment.
  • Another embodiment of the present invention is a method for manufacturing a component including one or more metal or metalloid oxides or composite materials thereof using the polishing method of the above embodiment.
  • polishing composition of the present invention a high polishing rate can be realized in polishing an object to be polished.
  • the object to be polished is not particularly limited, and may include a plurality of metals, alloys, ceramics (oxides, carbides, nitrides, etc.).
  • the object to be polished may be, for example, a metal or metalloid oxide or a composite material thereof.
  • it may be an oxide of one or more metals or metalloids selected from Groups 3, 4 and 13 of the periodic table, or a composite material thereof, and further may be Group 4.
  • the metal oxide is a metal or metalloid oxide or a composite oxide thereof, for example, one or more metal or metalloid oxides selected from elements of Groups 3, 4, and 13 of the periodic table Or these complex oxides are mentioned.
  • silicon oxide silicon oxide
  • aluminum oxide alumina
  • titanium oxide titanium oxide
  • zirconium oxide zirconia
  • gallium oxide yttrium oxide (yttria)
  • germanium oxide and composite oxides thereof. It is done.
  • silicon oxide, aluminum oxide (corundum, etc.), zirconium oxide, and yttrium oxide are particularly preferable.
  • the metal oxide contained in the object to be polished may be a mixture of a plurality of metals or metalloid oxides, a mixture of a plurality of complex oxides, or a metal or metalloid. It may be a mixture of an oxide and a complex oxide. Further, the metal oxide contained in the object to be polished may be a composite material of a metal or metalloid oxide or composite oxide and other types of materials (for example, metal, carbon, ceramic). Furthermore, the metal oxide contained in the object to be polished may be in the form of single crystal, polycrystal, sintered body (ceramic), or the like. When the metal oxide is in such a form, the entire polishing object can be made of a metal oxide.
  • the metal oxide contained in the object to be polished may be in the form of an anodized film formed by anodizing a pure metal or alloy. That is, the metal oxide contained in the object to be polished may be an oxide formed on the surface of the metal and oxidized by the metal itself, such as an anodized film of pure metal or alloy.
  • the polishing object can be made of a part of the metal oxide and the other part of another material.
  • the object to be polished includes a part including the surface thereof made of a metal oxide, and the other part made of a pure metal or an alloy.
  • the anodized film include a film made of aluminum oxide, titanium oxide, magnesium oxide, or zirconium oxide.
  • a film is formed on the surface of a base material of a material different from the metal oxide (for example, metal, carbon, ceramic) by film processing such as thermal spraying (for example, plasma spraying, flame spraying), chemical vapor deposition (CVD), etc. By doing so, the polishing object may be configured.
  • Examples of the coating formed by thermal spraying include a metal oxide coating made of aluminum oxide, zirconium oxide, or yttrium oxide.
  • Examples of the film formed by chemical vapor deposition include a ceramic film made of silicon oxide, aluminum oxide, or silicon nitride.
  • the abrasive grains in the polishing composition of one embodiment of the present invention include abrasive grains having an average particle diameter in the range of 10 to 45 nm and abrasive grains having an average particle diameter in the range of 80 to 170 nm.
  • abrasive grains having an average particle diameter of 10 to 45 nm are referred to as small-diameter abrasive grains
  • abrasive grains having an average particle diameter of 80 to 170 nm are referred to as large-diameter abrasive grains.
  • the particle diameter, particle size distribution, major axis and minor axis of the abrasive grains are measured from the scanning electron microscope image of the abrasive grains using image analysis software or the like.
  • the particle diameter of the abrasive grains can be obtained as a diameter of a circle having the same area as the area of the particles in the scanning electron microscope image.
  • the average particle diameter of the abrasive grains is an average value of the particle diameters of a plurality of particles in the visual field range of the scanning electron microscope.
  • the particle size distribution of the abrasive grains was converted from the particle diameters of a plurality of particles within the field of view of the scanning microscope to a volume, and the ratio was calculated.
  • the values of the major axis and the minor axis of each particle can be obtained as the length of the long side and the short side of the minimum circumscribed rectangle in the scanning electron microscope image of the particle, respectively.
  • the aspect ratio of the abrasive grains is a value obtained by dividing the value of the major axis of each particle by the value of the minor axis, and is an average value of the aspect ratios of a plurality of particles within the field of view of the scanning electron microscope.
  • the ratio of the total amount of the small particle size abrasive grains and the large particle size abrasive grains in the entire abrasive grains contained in the polishing composition is 90% by mass or more, and more preferably 95% by mass or more.
  • the proportion of the small-diameter abrasive grains in the whole abrasive grains contained in the polishing composition is preferably 75% by mass or more, and more preferably 78% by mass or more.
  • the ratio of the small particle size abrasive grain occupied to the whole abrasive grain contained in polishing composition is 83 mass% or less.
  • the ratio of the large-diameter abrasive grains in the entire abrasive grains contained in the polishing composition is 17% by mass or more. Moreover, it is preferable that the ratio of the large particle size abrasive grain to the whole abrasive grain contained in polishing composition is 29 mass% or less, More preferably, it is preferable that it is 23% mass or less.
  • the ratio of the large-diameter abrasive grains is within the above range, a higher polishing rate can be obtained without increasing the polishing load by increasing the local pressure applied to the surface of the object to be polished.
  • the ratio B / A of the particle diameter B of the largest number of abrasive grains to the grain diameter A of the largest number of abrasive grains in the small grain size abrasive grains is 2.5 or more. More preferably, it is preferably 3.0 or more, more preferably 3.5 or more. When the ratio of B to A is within the above range, a higher polishing rate can be obtained without increasing the polishing load by increasing the local pressure applied to the surface of the object to be polished.
  • the particle size having the largest number of distributions is determined by the particle size distribution of the particles measured by a particle size distribution measuring apparatus using a dynamic light scattering method. This can be done by specifying.
  • the upper limit of content of the abrasive grain in polishing composition is not specifically limited, It is preferable that it is 50 mass% or less, More preferably, it is 45 mass% or less. The smaller the abrasive content, the better the dispersion stability of the polishing composition, and the easier the handling of the polishing composition. According to the present invention, a high polishing rate can be realized with a small abrasive content. Therefore, the polishing process can be performed at a low cost.
  • the type of abrasive grain is not particularly limited as long as it is an abrasive grain generally used in a polishing composition, as long as the grain size and content of the abrasive grain satisfy the conditions specified in the present invention.
  • silica, alumina, zirconia, zircon sand, ceria, titania, silicon carbide, titanium boride, diamond and the like may be used.
  • colloidal silica, fumed silica, sol-gel silica, fumed alumina, colloidal alumina, alumina sol, fumed zirconia, alumina sol, fumed zirconia, colloidal zirconia, and zirconia sol are preferable.
  • These abrasive grains may be used alone or in combination of two or more.
  • fumed silica and colloidal silica may be used from the viewpoint that the surface of the object to be polished can be more efficiently smoothed.
  • pH of polishing composition is 5.0 or more, More preferably, it is 6.0 or more, More preferably, it is 6.5 or more. Moreover, it is preferable that pH of polishing composition is 10.0 or less, More preferably, it is preferable that it is 9.5 or less, More preferably, it is 9.0 or less.
  • pH of polishing composition is 10.0 or less, More preferably, it is preferable that it is 9.5 or less, More preferably, it is 9.0 or less.
  • the polishing rate is improved.
  • the polishing composition can be handled safely.
  • the polishing rate tends to increase. The reason why the polishing rate becomes high at the above pH is presumed to be related to the zeta potential of the ceramic to be polished.
  • the pH of the polishing composition of the present invention may be adjusted with a pH adjuster.
  • the pH adjuster adjusts the pH of the polishing composition, thereby controlling the polishing rate of the ceramic, the dispersibility of the abrasive grains, and the like.
  • the pH adjuster can be used alone or in combination of two or more.
  • known acids, bases, or salts thereof can be used as the pH adjuster.
  • Specific examples of acids that can be used as pH adjusters include, for example, inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid, boric acid, carbonic acid, hypophosphorous acid, phosphorous acid, and phosphoric acid, formic acid, and acetic acid.
  • an inorganic acid When an inorganic acid is used as a pH adjuster, sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid and the like are particularly preferable from the viewpoint of improving the polishing rate.
  • an organic acid When an organic acid is used as a pH adjuster, glycolic acid, succinic acid, maleic acid Citric acid, tartaric acid, malic acid, gluconic acid, itaconic acid and the like are preferable.
  • Bases that can be used as pH adjusters include amines such as aliphatic amines and aromatic amines, organic bases such as quaternary ammonium hydroxide, alkali metal hydroxides such as potassium hydroxide, and hydroxides of alkaline earth metals. And ammonia and the like. Among these, potassium hydroxide or ammonia is preferable from the viewpoint of availability. Further, a salt such as an ammonium salt or an alkali metal salt of the acid may be used as a pH adjuster in place of the acid or in combination with the acid.
  • a buffering action of pH can be expected. In a small amount, not only pH but also conductivity can be adjusted.
  • the addition amount of the pH adjusting agent is not particularly limited, and may be appropriately adjusted so that the polishing composition has a desired pH.
  • Another aspect of the present invention is a polishing method for polishing a metal or metalloid oxide using a polishing composition.
  • another embodiment is a method for manufacturing a component that includes a metal or metalloid oxide or one or more of these composite materials using the polishing method of the above embodiment.
  • an object to be polished made of a metal or semi-metal oxide crystal or the like can be polished at a high polishing rate.
  • the mechanism of this polishing function can be considered as follows. That is, when silica having a particle size of 80 to 170 nm or less and silica having a particle size of 10 to 45 nm have an appropriate particle size distribution and are contained in an appropriate content in the polishing composition, Is believed to synergistically enhance its mechanical polishing action, resulting in a significantly superior polishing rate.
  • the main silica in the entire silica contained in the polishing composition is preferably a large particle size silica having a particle size of 80 to 170 nm, which has a large mechanical polishing action.
  • the solid-phase reaction between the abrasive grain surface and the object to be polished made of oxide crystals also contributes to the improvement of the polishing rate. Therefore, it is considered that by including silica having a sufficient surface area in the polishing composition, the sustainability of the polishing performance is improved and the polishing performance can be maintained.
  • the present invention provides a remarkably excellent polishing rate by containing a proper amount of large particle size silica having a particle size of 80 to 170 nm and small particle size silica having a particle size of 10 to 45 nm in the polishing composition. Is.
  • the polishing composition of the present invention contains water as a dispersant or a solvent for dispersing or dissolving each component. From the viewpoint of suppressing the inhibition of the action of other components, water containing as little impurities as possible is preferable. Specifically, after removing impurity ions with an ion exchange resin, pure water from which foreign matters are removed through a filter is used. Water, ultrapure water, or distilled water is preferred.
  • an additive having an action of further increasing the polishing rate such as a complexing agent, an etching agent, and an oxidizing agent.
  • the polishing composition may further contain an additive such as a dispersant for improving the dispersibility of the abrasive grains and a dispersion aid for facilitating the redispersion of the aggregate, if necessary.
  • the polishing composition may further contain a known additive such as an antiseptic, an antifungal agent, and an antirust agent as necessary.
  • a known additive such as an antiseptic, an antifungal agent, and an antirust agent as necessary.
  • these additives are known in many patent literatures and the like as those that can be usually added in polishing compositions, and the types and addition amounts thereof are not particularly limited.
  • the addition amount in the case of adding these additives is preferably less than 1% by mass, more preferably less than 0.5% by mass, and 0.1% by mass with respect to the polishing composition. More preferably, it is less than.
  • These additives may be used individually by 1 type, and may use 2 or more types together.
  • complexing agents include inorganic acids, organic acids, amino acids, nitrile compounds, and chelating agents.
  • the inorganic acid include sulfuric acid, nitric acid, boric acid, carbonic acid and the like.
  • organic acids include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, 2-methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid, 2-ethylbutyric acid, 4-methylpentanoic acid, n- Heptanoic acid, 2-methylhexanoic acid, n-octanoic acid, 2-ethylhexanoic acid, benzoic acid, glycolic acid, salicylic acid, glyceric acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, malein Examples include acid, phthalic acid, malic acid, tartaric acid, citric acid,
  • Organic sulfuric acids such as methanesulfonic acid, ethanesulfonic acid and isethionic acid can also be used.
  • a salt such as an alkali metal salt of an inorganic acid or an organic acid may be used instead of the inorganic acid or the organic acid or in combination with the inorganic acid or the organic acid.
  • glycine, alanine, malic acid, tartaric acid, citric acid, glycolic acid, isethionic acid or salts thereof are preferred.
  • chelating agents include carboxylic acid chelating agents such as gluconic acid, amine chelating agents such as ethylenediamine, diethylenetriamine, and trimethyltetraamine, ethylenediaminetetraacetic acid, nitrilotriacetic acid, hydroxyethylethylenediaminetriacetic acid, triethylenetetramine hexaacetic acid.
  • Polyaminopolycarboxylic chelating agents such as diethylenetriaminepentaacetic acid, 2-aminoethylphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetrakis (methylenephosphonic acid), diethylenetriaminepenta ( Methylenephosphonic acid), ethane-1,1-diphosphonic acid, ethane-1,1,2-triphosphonic acid, methanehydroxyphosphonic acid, 1-phosphonobutane-2,3,4- Organic phosphonic acid chelating agents such as polycarboxylic acid, phenol derivatives, 1,3-diketones and the like.
  • etching agent examples include inorganic acids such as nitric acid, sulfuric acid, hydrochloric acid, phosphoric acid and hydrofluoric acid, organic acids such as acetic acid, citric acid, tartaric acid and methanesulfonic acid, inorganic alkalis such as potassium hydroxide and sodium hydroxide, Organic alkalis such as ammonia, amine, quaternary ammonium hydroxide and the like can be mentioned.
  • oxidizing agent examples include hydrogen peroxide, peracetic acid, percarbonate, urea peroxide, perchlorate, persulfate, nitric acid, potassium permanganate and the like.
  • water-soluble polymers, copolymers, salts and derivatives thereof include polycarboxylic acids such as polyacrylates, polysulfonic acids such as polyphosphonic acid and polystyrene sulfonic acid, polysaccharides such as chitansan gum and sodium alginate, hydroxyethyl cellulose And cellulose derivatives such as carboxymethyl cellulose, polyethylene glycol, polyvinyl alcohol, polyvinyl pyrrolidone, sorbitan monooleate, and oxyalkylene polymers having a single kind or plural kinds of oxyalkylene units.
  • polycarboxylic acids such as polyacrylates
  • polysulfonic acids such as polyphosphonic acid and polystyrene sulfonic acid
  • polysaccharides such as chitansan gum and sodium alginate
  • hydroxyethyl cellulose And cellulose derivatives such as carboxymethyl cellulose, polyethylene glycol, polyvinyl alcohol, polyvinyl pyrrolidon
  • dispersion aid examples include condensed phosphates such as pyrophosphate and hexametaphosphate.
  • preservatives include sodium hypochlorite and the like.
  • antifungal agents include oxazolines such as oxazolidine-2,5-dione.
  • anticorrosive examples include surfactants, alcohols, polymers, resins, amines, pyridines, tetraphenylphosphonium salts, benzotriazoles, triazoles, tetrazoles, benzoic acid and the like.
  • surfactant examples include nonionic surfactants, anionic surfactants, cationic surfactants, and amphoteric surfactants.
  • Nonionic surfactants include ether types, ether ester types, ester types, and nitrogen-containing types
  • anionic surfactants include carboxylates, sulfonates, sulfate esters, and phosphate esters.
  • Examples of the cationic surfactant include aliphatic amine salts, aliphatic quaternary ammonium salts, benzalkonium chloride salts, benzethonium chloride, pyridinium salts, and imidazolinium salts
  • amphoteric surfactants include carboxy surfactants. Examples include betaine type, aminocarboxylate, imidazolinium betaine, lecithin, and alkylamine oxide.
  • the method for producing the polishing composition of the present embodiment is not particularly limited, and silica containing a large particle size silica having a predetermined content, average particle size, particle size distribution and aspect ratio and small particle size silica (abrasive) Granules) and various additives as desired can be produced by stirring and mixing in a liquid solvent such as water.
  • a liquid solvent such as water
  • it can manufacture by stirring and mixing the silica containing a large particle size silica and the small particle size silica, and various additives, such as a pH adjuster.
  • the temperature at the time of mixing is not specifically limited, 10 degreeC or more and 40 degrees C or less are preferable, you may heat in order to improve a melt
  • the polishing composition may be a one-part type or a multi-part type having two or more parts.
  • two or more compositions are prepared in advance, and these compositions are mixed in the polishing apparatus to form a polishing composition. May be.
  • the polishing composition may be prepared by diluting a stock solution of the polishing composition with water.
  • the order of mixing and dilution of both compositions is arbitrary. For example, one composition may be diluted with water and then mixed with the other composition, both compositions may be mixed and diluted with water at the same time, or both compositions may be mixed. May be diluted with water after mixing.
  • the polishing composition can be used in an apparatus and conditions usually used for polishing an object to be polished comprising oxide crystals.
  • a polishing apparatus a single-side polishing apparatus or a double-side polishing apparatus is generally used.
  • the single-side polishing apparatus holds the object to be polished using a holder called a carrier, and while supplying the polishing composition, presses the surface plate to which the polishing pad is attached against one surface of the object to be polished and rotates the surface plate. Thus, one surface of the object to be polished is polished.
  • the double-side polishing apparatus holds the object to be polished using a carrier and supplies the polishing composition from above while pressing the surface plate to which the polishing pad is applied against both surfaces of the object to be polished.
  • Both surfaces of the object to be polished are polished by rotating.
  • the object to be polished is polished by a physical action due to friction between the polishing pad and the polishing composition and the object to be polished and a chemical action that the polishing composition brings to the object to be polished.
  • the polishing conditions include the polishing load.
  • the polishing load applied to the workpiece is not particularly limited, but is preferably 50 to 1,000 g / cm 2 , more preferably 100 to 800 g / cm 2 , and still more preferably 150 to 600 g / cm 2 . .
  • the polishing load is within the above range, a sufficiently high polishing rate can be exhibited, and damage to the object to be polished and occurrence of surface defects can be reduced.
  • the polishing conditions include linear velocity.
  • the number of revolutions of the polishing pad, the number of revolutions of the carrier, the size of the object to be polished, the number of objects to be polished, etc. affect the linear velocity.
  • the linear velocity is high, the frequency with which the abrasive grains come into contact with the object to be polished is high, so that the frictional force acting between the object to be polished and the abrasive grains increases, and the mechanical polishing action on the object to be polished increases.
  • the heat generated by friction may enhance the chemical polishing action by the polishing composition.
  • the linear velocity is not particularly limited, but is preferably 10 to 300 m / min, and more preferably 30 to 200 m / min.
  • the polishing pad is not limited by physical properties such as material, thickness, or hardness.
  • an arbitrary polishing pad such as a polyurethane type having various hardness and thickness, a nonwoven fabric type, a suede type, a type including abrasive grains, or a type including no abrasive grains can be used.
  • the polishing composition described above can be used once for polishing and then recovered and used for polishing again.
  • a method of reusing a polishing composition a method of once collecting a used polishing composition discharged from a polishing apparatus in a tank and circulating it from the tank to the polishing apparatus again is used. It is done.
  • polishing composition By circulating the polishing composition, it is possible to reduce the amount of the polishing composition discharged as a waste liquid and reduce the amount of the polishing composition used. This is useful in that the environmental load can be reduced and the manufacturing cost of the object to be polished can be suppressed.
  • the polishing composition When the polishing composition is recycled, components such as silica in the polishing composition are consumed and lost by polishing. For this reason, you may replenish the polishing composition in circulation use for the decrease of components, such as a silica.
  • the components to be replenished may be added individually to the polishing composition, or may be added to the polishing composition as a mixture containing two or more components at an arbitrary concentration. In this case, the polishing composition is adjusted to a state suitable for reuse, and the polishing performance is suitably maintained.
  • the polishing conditions include the supply rate of the polishing composition.
  • the supply rate of the polishing composition depends on the type of object to be polished, the type of polishing apparatus, and other polishing conditions, but the polishing composition is uniformly supplied to the entire object to be polished and the polishing pad. It is preferable that the speed is sufficient.
  • the composition shown in Table 1 was mixed with silica having a particle size and content, water as a liquid medium, and a pH adjuster as an additive, and the abrasive grains were dispersed in water. The thing was manufactured. Nitric acid and potassium hydroxide were used as pH adjusting agents, and the pH was adjusted to those shown in Table 1.
  • a rectangular plate-shaped member made of white zirconia ceramic (size: 60 mm length, 80 mm width) was polished under the following polishing conditions. And the mass of the rectangular plate-shaped member before grinding
  • Polishing device Single-side polishing device (surface plate diameter: 380 mm)
  • Abrasive cloth Abrasive cloth made of polyurethane
  • Abrasive load 225 gf / cm 2
  • Surface plate rotation speed 90 min -1
  • Polishing speed linear speed
  • Polishing time 15 minutes
  • Supply speed of polishing composition 26 mL / min
  • the content of silica contained in each polishing composition, and the ratio of silica having an average particle size of 10 to 45 nm, 46 to 70 nm, and 80 to 170 nm therein are as shown in Table 1.
  • the content of silica having an average particle size of 46 to 79 nm is also shown.
  • the largest number of silica particles having an average particle diameter of 10 to 45 nm is 33 nm, and the largest among silica particles having an average particle diameter of 80 to 170 nm.
  • the particle size of the large number is 130 nm.
  • the particle diameter of the largest number of silica particles having an average particle diameter of 10 to 45 nm is 27 nm
  • the particle diameter of the largest particle number of silica having an average particle diameter of 80 to 170 nm is 130 nm.
  • the average particle size of silica was measured using image analysis software. The measurement was performed on a total of 1000 or more silicas selected from images of a scanning electron microscope. Table 1 shows the contents when the average particle diameter is within the range of the large particle diameter or the small particle diameter.
  • the value of B / A was calculated by specifying the most numerous particle diameter in the abrasive grains in each average particle diameter range by the particle size distribution of the particles measured by a particle size distribution measuring apparatus by a dynamic light scattering method. .
  • the weight of the substrate was measured before and after polishing. The polishing rate calculated from the difference in substrate weight before and after polishing is shown in the column “Polishing rate” in Table 1.
  • Comparative Example 1 when zirconia was polished using the polishing composition of the example, a higher polishing rate was obtained compared to the comparative example.
  • Comparative Example 2 the small particle size silica is not included.
  • Comparative Example 2 the content of the small particle size silica is less than 40% by mass, and the content of the large particle size silica exceeds 29% by mass.
  • the content of the small particle size silica exceeds 83% and the content of the large particle size silica is less than 17% by mass.
  • Comparative Example 4 does not include the large particle size silica, and Comparative Example 5 includes the large particle size silica.
  • Comparative Example 6 the small particle size silica is not included, and the content of the large particle size silica exceeds 29 mass%.
  • Comparative Example 7 the content of the small particle size silica is less than 40%, which is large. The particle size of silica exceeds 29% by mass.

Abstract

This invention enables a high polishing speed in the polishing of ceramics that are used in electronic devices and include an oxide crystal, or the like, by suppressing the occurrence of defects such as scratches. A polishing composition that includes water and abrasive grains, and is characterized in that the abrasive grains include 71–83 mass%, relative to the total amount of the abrasive grains, of an abrasive grain having an average particle size of 10–45 nm, and 17–29 mass%, relative to the total amount of the abrasive grains, of an abrasive grain having an average particle size of 80–170 nm. The combined amount of the abrasive grain having an average particle size of 10–45 nm and the abrasive grain having an average particle size of 80–170 nm accounts for more than 90 mass% of the total amount of the abrasive grains.

Description

研磨用組成物、研磨方法、及び製造方法Polishing composition, polishing method, and production method
 本発明は、金属又は半金属の酸化物又はこれらの複合材料を含む研磨対象物の研磨に使用される研磨用組成物に関する。 The present invention relates to a polishing composition used for polishing a polishing object containing a metal or metalloid oxide or a composite material thereof.
 金属又は半金属の酸化物又はこれらの複合材料を含むセラミック製品は、各種電子デバイス、機能性セラミックス、硬質材料などとして広く用いられている。
 従来、このような硬脆材料からなるセラミック製品の表面を研磨し、鏡面仕上げや平滑化を行うには、特許文献1及び2に開示されるようにダイヤモンド砥粒を含有する研磨用組成物を使用することが使用されている。しかしながら、ダイヤモンド砥粒を含有する研磨用組成物は高価である上、スクラッチが生じやすく高品位な鏡面が得られにくいという問題があった。
 また、特許文献3及び4では、コロイダルシリカを砥粒として使用した研磨用組成物を使用することが提案されている。しかしながら、コロイダルシリカを砥粒として使用した研磨用組成物では、十分な研磨速度が得られなかった。
Ceramic products containing metal or metalloid oxides or composite materials thereof are widely used as various electronic devices, functional ceramics, hard materials and the like.
Conventionally, in order to polish the surface of a ceramic product made of such a hard and brittle material and perform mirror finishing or smoothing, a polishing composition containing diamond abrasive grains as disclosed in Patent Documents 1 and 2 is used. It is used to use. However, the polishing composition containing diamond abrasive grains is expensive and has a problem that it easily causes scratches and makes it difficult to obtain a high-quality mirror surface.
In Patent Documents 3 and 4, it is proposed to use a polishing composition using colloidal silica as abrasive grains. However, with a polishing composition using colloidal silica as abrasive grains, a sufficient polishing rate could not be obtained.
特開平7-179848号公報Japanese Patent Laid-Open No. 7-179848 特開2008-290183号公報JP 2008-290183 A 特開2008-44078号公報JP 2008-44078 A 特表2003-529662号公報Special Table 2003-52962
 本発明の目的は、精度の高い平滑面や鏡面仕上げによる高い質感が要求される電子デバイスなどに使用される酸化物結晶等を含むセラミックの研磨において、スクラッチ等の欠陥の発生を抑制して高い研磨速度を実現できる研磨用組成物を安価に提供することにある。 The object of the present invention is high in suppressing the occurrence of defects such as scratches in the polishing of ceramics including oxide crystals used for electronic devices and the like that require high-quality smooth surfaces and high-quality texture by mirror finish. The object is to provide a polishing composition capable of realizing a polishing rate at low cost.
 本発明の一実施形態の研磨用組成物は、水および砥粒を含有する研磨用組成物であって、砥粒は、平均粒子径が10nm~45nmの砥粒を砥粒全体中71~83質量%かつ、平均粒子径が80~170nmの砥粒を砥粒全体量中17~29質量%含有し、前記平均粒子径が10nm~45nmの砥粒と前記平均粒子径が80~170nmの砥粒の合計量が砥粒全体量中の90質量%以上占めてもよい。 The polishing composition according to one embodiment of the present invention is a polishing composition containing water and abrasive grains, and the abrasive grains are 71-83 in the whole abrasive grains with an average grain size of 10 nm to 45 nm. Abrasive grains containing 17 to 29 mass% of abrasive grains having an average particle diameter of 80 to 170 nm and an average grain diameter of 10 to 45 nm and abrasive grains having an average grain diameter of 80 to 170 nm. The total amount of grains may occupy 90% by mass or more of the total amount of abrasive grains.
 本発明の他の実施形態の研磨用組成物は、前記平均粒子径が10~45nmの砥粒中、最も個数が多い砥粒の粒子径Aに対する、前記平均粒子径が80~170nmの砥粒中、最も個数が多い砥粒の粒子径Bの比B/Aが2.5以上であってもよい。
 本発明の他の実施形態の研磨用組成物は、前記砥粒がシリカであってもよい。
 本発明の他の実施形態の研磨用組成物は、pHが5.0~10.0であってもよい。
The polishing composition according to another embodiment of the present invention is an abrasive having an average particle diameter of 80 to 170 nm with respect to the particle diameter A of the abrasive grain having the largest number among the abrasive grains having an average particle diameter of 10 to 45 nm. Among them, the ratio B / A of the particle diameter B of the abrasive grains having the largest number may be 2.5 or more.
In the polishing composition according to another embodiment of the present invention, the abrasive may be silica.
The polishing composition according to another embodiment of the present invention may have a pH of 5.0 to 10.0.
 本発明の他の実施形態の研磨用組成物は、金属又は半金属の酸化物又はこれらの複合材料を1種以上含む研磨対象物の表面を研磨することに使用されてもよい。
 本発明の他の実施形態の研磨用組成物は、第3、4および13族から選ばれる1種又は2種以上の金属又は半金属の酸化物又はこれらの複合材料を1種以上含む研磨対象物の表面を研磨することに使用されてもよい。
The polishing composition according to another embodiment of the present invention may be used for polishing the surface of an object to be polished containing one or more metal or metalloid oxides or composite materials thereof.
The polishing composition according to another embodiment of the present invention is an object to be polished containing one or more oxides of one or more metals or metalloids selected from Groups 3, 4, and 13, or a composite material thereof. It may be used to polish the surface of an object.
 本発明の一実施形態は、上記実施形態の研磨用組成物を用いて研磨対象物の表面を研磨する研磨方法である。
 本発明の一実施形態は、上記実施形態の研磨用組成物を用いて、金属又は半金属の酸化物またはこれらの複合材料を含む研磨対象物の表面を研磨する研磨方法である。
 本発明の他の実施形態は、上記実施形態の研磨方法を用いる金属又は半金属の酸化物またはこれらの複合材料1種以上を含む部品の製造方法である。
One embodiment of the present invention is a polishing method for polishing the surface of an object to be polished using the polishing composition of the above embodiment.
One embodiment of the present invention is a polishing method for polishing a surface of an object to be polished containing a metal or metalloid oxide or a composite material thereof using the polishing composition of the above embodiment.
Another embodiment of the present invention is a method for manufacturing a component including one or more metal or metalloid oxides or composite materials thereof using the polishing method of the above embodiment.
  本発明の研磨用組成物によれば、被研磨物を研磨するにあたり高い研磨速度を実現することができる。 According to the polishing composition of the present invention, a high polishing rate can be realized in polishing an object to be polished.
 以下、本発明の一実施形態を説明する。
 本発明の一実施形態において、研磨対象物は特に限定されず、金属、合金、セラミックス(酸化物、炭化物、窒化物など)の他、これらを複数含むものであってもよい。研磨対象物は、例えば、金属又は半金属の酸化物またはこれらの複合材料であってもよい。特に、周期律表の第3、4および13族から選ばれる1種以上の金属又は半金属の酸化物またはこれらの複合材料であってもよく、更に第4族がであってもよい。金属酸化物は、金属若しくは半金属の酸化物又はこれらの複合酸化物であり、例えば、周期律表の第3、4、13族の元素から選ばれる1種以上の金属若しくは半金属の酸化物又はこれらの複合酸化物が挙げられる。具体的には、酸化ケイ素(シリカ)、酸化アルミニウム(アルミナ)、酸化チタン(チタニア)、酸化ジルコニウム(ジルコニア)、酸化ガリウム、酸化イットリウム(イットリア)、酸化ゲルマニウムの他、これらの複合酸化物があげられる。これらの金属酸化物の中では、特に酸化ケイ素、酸化アルミニウム(コランダムなど)、酸化ジルコニウム、酸化イットリウムが好適である。
Hereinafter, an embodiment of the present invention will be described.
In one embodiment of the present invention, the object to be polished is not particularly limited, and may include a plurality of metals, alloys, ceramics (oxides, carbides, nitrides, etc.). The object to be polished may be, for example, a metal or metalloid oxide or a composite material thereof. In particular, it may be an oxide of one or more metals or metalloids selected from Groups 3, 4 and 13 of the periodic table, or a composite material thereof, and further may be Group 4. The metal oxide is a metal or metalloid oxide or a composite oxide thereof, for example, one or more metal or metalloid oxides selected from elements of Groups 3, 4, and 13 of the periodic table Or these complex oxides are mentioned. Specific examples include silicon oxide (silica), aluminum oxide (alumina), titanium oxide (titania), zirconium oxide (zirconia), gallium oxide, yttrium oxide (yttria), germanium oxide, and composite oxides thereof. It is done. Among these metal oxides, silicon oxide, aluminum oxide (corundum, etc.), zirconium oxide, and yttrium oxide are particularly preferable.
 なお、研磨対象物が含有する金属酸化物は、複数の金属又は半金属の酸化物の混合物であってもよいし、複数の複合酸化物の混合物であってもよいし、金属又は半金属の酸化物と複合酸化物との混合物であってもよい。また、研磨対象物が含有する金属酸化物は、金属若しくは半金属の酸化物又は複合酸化物と、それ以外の種類の材料(例えば金属、炭素、セラミック)との複合材料であってもよい。
 さらに、研磨対象物が含有する金属酸化物は、単結晶、多結晶、焼結体(セラミック)等の形態であってもよい。金属酸化物がこのような形態である場合は、研磨対象物を、その全体が金属酸化物からなるものとすることができる。あるいは、研磨対象物が含有する金属酸化物は、純金属や合金を陽極酸化皮膜処理することによって形成される陽極酸化皮膜の形態であってもよい。すなわち、研磨対象物が含有する金属酸化物は、純金属や合金の陽極酸化皮膜のように、金属の表面に形成された、その金属自体が酸化した酸化物であってもよい。
The metal oxide contained in the object to be polished may be a mixture of a plurality of metals or metalloid oxides, a mixture of a plurality of complex oxides, or a metal or metalloid. It may be a mixture of an oxide and a complex oxide. Further, the metal oxide contained in the object to be polished may be a composite material of a metal or metalloid oxide or composite oxide and other types of materials (for example, metal, carbon, ceramic).
Furthermore, the metal oxide contained in the object to be polished may be in the form of single crystal, polycrystal, sintered body (ceramic), or the like. When the metal oxide is in such a form, the entire polishing object can be made of a metal oxide. Alternatively, the metal oxide contained in the object to be polished may be in the form of an anodized film formed by anodizing a pure metal or alloy. That is, the metal oxide contained in the object to be polished may be an oxide formed on the surface of the metal and oxidized by the metal itself, such as an anodized film of pure metal or alloy.
 金属酸化物がこのような形態である場合は、研磨対象物を、その一部分が金属酸化物からなり、その他の部分が他の材質からなるものとすることができる。金属酸化物が陽極酸化皮膜である場合は、研磨対象物は、その表面を含む一部分が金属酸化物からなり、その他の部分が純金属又は合金からなるものである。
 陽極酸化皮膜の例としては、酸化アルミニウム、酸化チタン、酸化マグネシウム、又は酸化ジルコニウムで構成される皮膜があげられる。
 また、金属酸化物とは異なる種類の材質(例えば金属、炭素、セラミック)の基材の表面に、溶射(例えばプラズマ溶射、フレーム溶射)、化学的蒸着(CVD)等の皮膜処理によって皮膜を形成することにより、研磨対象物を構成してもよい。
  溶射で形成される皮膜の例としては、酸化アルミニウム、酸化ジルコニウム、又は酸化イットリウムで構成される金属酸化物皮膜があげられる。
 化学的蒸着で形成される皮膜の例としては、酸化ケイ素、酸化アルミニウム、又は窒化ケイ素で構成されるセラミック皮膜があげられる。
When the metal oxide is in such a form, the polishing object can be made of a part of the metal oxide and the other part of another material. In the case where the metal oxide is an anodic oxide film, the object to be polished includes a part including the surface thereof made of a metal oxide, and the other part made of a pure metal or an alloy.
Examples of the anodized film include a film made of aluminum oxide, titanium oxide, magnesium oxide, or zirconium oxide.
In addition, a film is formed on the surface of a base material of a material different from the metal oxide (for example, metal, carbon, ceramic) by film processing such as thermal spraying (for example, plasma spraying, flame spraying), chemical vapor deposition (CVD), etc. By doing so, the polishing object may be configured.
Examples of the coating formed by thermal spraying include a metal oxide coating made of aluminum oxide, zirconium oxide, or yttrium oxide.
Examples of the film formed by chemical vapor deposition include a ceramic film made of silicon oxide, aluminum oxide, or silicon nitride.
 (砥粒)
 本発明の一実施態様の研磨用組成物中の砥粒は、平均粒子径が10~45nmの範囲内の砥粒かつ、平均粒子径が80~170nmの範囲内の砥粒を含む。本明細書においては、便宜上、平均粒子径10~45nmの範囲内の砥粒を小粒径砥粒とよび、平均粒子径80~170nmの範囲内の砥粒を大粒径砥粒とよぶ。砥粒の粒子径、粒度分布、長径および短径は、砥粒の走査型電子顕微鏡画像から、画像解析ソフトウエア等を使用して測定される。砥粒の粒子径は、走査型電子顕微鏡画像における当該粒子の面積を計測し、それと同じ面積の円の直径として求めることができる。砥粒の平均粒子径は、走査型電子顕微鏡の視野範囲内にある複数の粒子の粒子径の平均値である。砥粒の粒度分布は走査型顕微鏡の視野範囲内にある複数の粒子の粒子径から体積に換算し、その割合を計算した。各粒子の長径と短径の値は、それぞれ、当該粒子の走査型電子顕微鏡画像における最小外接矩形の長辺および短辺の長さとして求めることができる。砥粒のアスペクト比は各粒子の長径の値を短径の値で除した値であり、走査型電子顕微鏡の視野範囲内における複数の粒子のアスペクト比の平均値である。
(Abrasive grains)
The abrasive grains in the polishing composition of one embodiment of the present invention include abrasive grains having an average particle diameter in the range of 10 to 45 nm and abrasive grains having an average particle diameter in the range of 80 to 170 nm. In the present specification, for the sake of convenience, abrasive grains having an average particle diameter of 10 to 45 nm are referred to as small-diameter abrasive grains, and abrasive grains having an average particle diameter of 80 to 170 nm are referred to as large-diameter abrasive grains. The particle diameter, particle size distribution, major axis and minor axis of the abrasive grains are measured from the scanning electron microscope image of the abrasive grains using image analysis software or the like. The particle diameter of the abrasive grains can be obtained as a diameter of a circle having the same area as the area of the particles in the scanning electron microscope image. The average particle diameter of the abrasive grains is an average value of the particle diameters of a plurality of particles in the visual field range of the scanning electron microscope. The particle size distribution of the abrasive grains was converted from the particle diameters of a plurality of particles within the field of view of the scanning microscope to a volume, and the ratio was calculated. The values of the major axis and the minor axis of each particle can be obtained as the length of the long side and the short side of the minimum circumscribed rectangle in the scanning electron microscope image of the particle, respectively. The aspect ratio of the abrasive grains is a value obtained by dividing the value of the major axis of each particle by the value of the minor axis, and is an average value of the aspect ratios of a plurality of particles within the field of view of the scanning electron microscope.
 研磨用組成物に含有される砥粒全体に占める小粒径砥粒と大粒径砥粒の合計量の割合は90質量%以上であることが好ましく、さらに好ましくは95質量%以上である。
 研磨用組成物に含有される砥粒全体に占める小粒径砥粒の割合は75質量%以上であることが好ましく、さらに好ましくは78質量%以上である。また、研磨用組成物に含有される砥粒全体に占める小粒径砥粒の割合は、83質量%以下であることが好ましい。小粒径砥粒の割合が上記の範囲内にある場合、被研磨物表面に接触する砥粒の作用点が増加することで、砥粒総量を増やすことなく、より高い研磨速度を得ることが出来る。
It is preferable that the ratio of the total amount of the small particle size abrasive grains and the large particle size abrasive grains in the entire abrasive grains contained in the polishing composition is 90% by mass or more, and more preferably 95% by mass or more.
The proportion of the small-diameter abrasive grains in the whole abrasive grains contained in the polishing composition is preferably 75% by mass or more, and more preferably 78% by mass or more. Moreover, it is preferable that the ratio of the small particle size abrasive grain occupied to the whole abrasive grain contained in polishing composition is 83 mass% or less. When the proportion of the small-diameter abrasive grains is within the above range, it is possible to obtain a higher polishing rate without increasing the total amount of abrasive grains by increasing the point of action of the abrasive grains contacting the surface of the object to be polished. I can do it.
 研磨用組成物に含有される砥粒全体に占める大粒径砥粒の割合は17質量%以上であることが好ましい。また、研磨用組成物に含有される砥粒全体に占める大粒径砥粒の割合は、29質量%以下であることが好ましく、更に好ましくは23%質量以下であることが好ましい。大粒径砥粒の割合が上記の範囲内にある場合、被研磨物表面にかかる局所圧力が増加することで、研磨荷重を増やすことなく、より高い研磨速度を得ることが出来る。 It is preferable that the ratio of the large-diameter abrasive grains in the entire abrasive grains contained in the polishing composition is 17% by mass or more. Moreover, it is preferable that the ratio of the large particle size abrasive grain to the whole abrasive grain contained in polishing composition is 29 mass% or less, More preferably, it is preferable that it is 23% mass or less. When the ratio of the large-diameter abrasive grains is within the above range, a higher polishing rate can be obtained without increasing the polishing load by increasing the local pressure applied to the surface of the object to be polished.
 小粒径砥粒中、最も個数が多い砥粒の粒子径Aに対する、大粒径砥粒中、最も個数が多い砥粒の粒子径Bの比B/Aが2.5以上であることが好ましく、更に好ましくは3.0以上であることが好ましく、更に好ましくは3.5以上であることが好ましい。Aに対するBの比が上記の範囲内にある場合、被研磨対象物表面にかかる局所圧力が増加することで、研磨荷重を増やすことなく、より高い研磨速度を得ることが出来る。 The ratio B / A of the particle diameter B of the largest number of abrasive grains to the grain diameter A of the largest number of abrasive grains in the small grain size abrasive grains is 2.5 or more. More preferably, it is preferably 3.0 or more, more preferably 3.5 or more. When the ratio of B to A is within the above range, a higher polishing rate can be obtained without increasing the polishing load by increasing the local pressure applied to the surface of the object to be polished.
 各平均粒子径範囲の砥粒における最も個数の多い粒子径を求めるためには、例えば、動的光散乱法による粒度分布測定装置によって測定される粒子の粒度分布によって、最も分布数の多い粒子径を特定することなどによって行うことができる。
 研磨用組成物中の砥粒の含有量の上限は特に限定されないが、50質量%以下であることが好ましく、さらに好ましくは45質量%以下である。砥粒の含有量が少ないほど研磨用組成物の分散安定性が向上するため、研磨用組成物の取り扱いが容易になる。尚、本発明によれば、少ない砥粒含有量において高い研磨速度を実現できる。そのため、研磨工程を安価に実施することが可能となる。
In order to obtain the largest number of particles in the abrasive grains in each average particle size range, for example, the particle size having the largest number of distributions is determined by the particle size distribution of the particles measured by a particle size distribution measuring apparatus using a dynamic light scattering method. This can be done by specifying.
Although the upper limit of content of the abrasive grain in polishing composition is not specifically limited, It is preferable that it is 50 mass% or less, More preferably, it is 45 mass% or less. The smaller the abrasive content, the better the dispersion stability of the polishing composition, and the easier the handling of the polishing composition. According to the present invention, a high polishing rate can be realized with a small abrasive content. Therefore, the polishing process can be performed at a low cost.
 砥粒の種類は一般に研磨用組成物に使用される砥粒であれば特に限定されることはなく、砥粒の粒径およびその含有量が本発明で特定する条件を満たすものであればよい。例えば、シリカ、アルミナ、ジルコニア、ジルコンサンド、セリア、チタニア、炭化ケイ素、ホウ化チタン、ダイヤモンド等であってもよい。
 このうち、例えば、コロイダルシリカ、フュームドシリカ、ゾルゲル法シリカ、フュームドアルミナ、コロイダルアルミナ、アルミナゾル、フュームドジルコニア、アルミナゾル、フュームドジルコニア、コロイダルジルコニア、ジルコニアゾルが好ましい。これらの砥粒は、1種を単独で用いてもよいし、2種以上を併用してもよい。また、これらの中でも、研磨対象物の表面をより効率的に平滑化できるという観点から、フュームドシリカ、コロイダルシリカを使用してもよい。
The type of abrasive grain is not particularly limited as long as it is an abrasive grain generally used in a polishing composition, as long as the grain size and content of the abrasive grain satisfy the conditions specified in the present invention. . For example, silica, alumina, zirconia, zircon sand, ceria, titania, silicon carbide, titanium boride, diamond and the like may be used.
Among these, for example, colloidal silica, fumed silica, sol-gel silica, fumed alumina, colloidal alumina, alumina sol, fumed zirconia, alumina sol, fumed zirconia, colloidal zirconia, and zirconia sol are preferable. These abrasive grains may be used alone or in combination of two or more. Among these, fumed silica and colloidal silica may be used from the viewpoint that the surface of the object to be polished can be more efficiently smoothed.
(pHおよびpH調整剤)
 研磨用組成物のpHは5.0以上であることが好ましく、より好ましくは6.0以上、更に好ましくは6.5以上である。また、研磨用組成物のpHは10.0以下であることが好ましく、より好ましくは9.5以下であることが好ましく、更に好ましくは9.0以下である。pHが上記の範囲内にある場合、研磨速度が向上する。加えて、研磨用組成物を安全に取り扱うことができる。pHが上記範囲内にある場合、研磨レートが高くなる傾向にある。上記のpHで研磨レートが高くなる理由については、研磨対象物であるセラミックのゼータ電位が関係していると推察される。
(PH and pH adjuster)
It is preferable that pH of polishing composition is 5.0 or more, More preferably, it is 6.0 or more, More preferably, it is 6.5 or more. Moreover, it is preferable that pH of polishing composition is 10.0 or less, More preferably, it is preferable that it is 9.5 or less, More preferably, it is 9.0 or less. When the pH is within the above range, the polishing rate is improved. In addition, the polishing composition can be handled safely. When the pH is within the above range, the polishing rate tends to increase. The reason why the polishing rate becomes high at the above pH is presumed to be related to the zeta potential of the ceramic to be polished.
 本発明の研磨用組成物のpHの調整は、pH調整剤によって行ってもよい。pH調整剤は、研磨用組成物のpHを調整し、これにより、セラミックの研磨速度や砥粒の分散性等を制御することができる。該pH調整剤は、単独でもまたは2種以上混合しても用いることができる。
 pH調整剤としては、公知の酸、塩基、またはそれらの塩を使用することができる。pH調整剤として使用できる酸の具体例としては、例えば、塩酸、硫酸、硝酸、フッ酸、ホウ酸、炭酸、次亜リン酸、亜リン酸、およびリン酸等の無機酸や、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、2-メチル酪酸、n-ヘキサン酸、3,3-ジメチル酪酸、2-エチル酪酸、4-メチルペンタン酸、n-ヘプタン酸、2-メチルヘキサン酸、n-オクタン酸、2-エチルヘキサン酸、安息香酸、グリコール酸、サリチル酸、グリセリン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フタル酸、リンゴ酸、酒石酸、クエン酸、乳酸、ジグリコール酸、2-フランカルボン酸、2,5-フランジカルボン酸、3-フランカルボン酸、2-テトラヒドロフランカルボン酸、メトキシ酢酸、メトキシフェニル酢酸、およびフェノキシ酢酸等の有機酸が挙げられる。pH調整剤として無機酸を使用した場合、特に硫酸、硝酸、塩酸、リン酸などが研磨速度向上の観点から特に好ましく、pH調整剤として有機酸を使用した場合、グリコール酸、コハク酸、マレイン酸、クエン酸、酒石酸、リンゴ酸、グルコン酸、およびイタコン酸などが好ましい。
The pH of the polishing composition of the present invention may be adjusted with a pH adjuster. The pH adjuster adjusts the pH of the polishing composition, thereby controlling the polishing rate of the ceramic, the dispersibility of the abrasive grains, and the like. The pH adjuster can be used alone or in combination of two or more.
As the pH adjuster, known acids, bases, or salts thereof can be used. Specific examples of acids that can be used as pH adjusters include, for example, inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid, boric acid, carbonic acid, hypophosphorous acid, phosphorous acid, and phosphoric acid, formic acid, and acetic acid. , Propionic acid, butyric acid, valeric acid, 2-methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid, 2-ethylbutyric acid, 4-methylpentanoic acid, n-heptanoic acid, 2-methylhexanoic acid, n- Octanoic acid, 2-ethylhexanoic acid, benzoic acid, glycolic acid, salicylic acid, glyceric acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, maleic acid, phthalic acid, malic acid, tartaric acid, citric acid Acid, lactic acid, diglycolic acid, 2-furancarboxylic acid, 2,5-furandicarboxylic acid, 3-furancarboxylic acid, 2-tetrahydrofurancarboxylic acid, methoxyacetic acid, methoxy Eniru acetate, and phenoxy organic acids such as acetic acid. When an inorganic acid is used as a pH adjuster, sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid and the like are particularly preferable from the viewpoint of improving the polishing rate. When an organic acid is used as a pH adjuster, glycolic acid, succinic acid, maleic acid Citric acid, tartaric acid, malic acid, gluconic acid, itaconic acid and the like are preferable.
 pH調整剤として使用できる塩基としては、脂肪族アミン、芳香族アミン等のアミン、水酸化第四アンモニウムなどの有機塩基、水酸化カリウム等のアルカリ金属の水酸化物、アルカリ土類金属の水酸化物、およびアンモニア等が挙げられる。
 これらの中でも、入手容易性から水酸化カリウムまたはアンモニアが好ましい。
 また、前記の酸の代わりに、または前記の酸と組み合わせて、前記酸のアンモニウム塩やアルカリ金属塩等の塩をpH調整剤として用いてもよい。特に、弱酸と強塩基、強酸と弱塩基、または弱酸と弱塩基の組み合わせとした場合には、pHの緩衝作用を期待することができ、さらに強酸と強塩基との組み合わせとした場合には、少量で、pHだけでなく電導度の調整が可能である。
Bases that can be used as pH adjusters include amines such as aliphatic amines and aromatic amines, organic bases such as quaternary ammonium hydroxide, alkali metal hydroxides such as potassium hydroxide, and hydroxides of alkaline earth metals. And ammonia and the like.
Among these, potassium hydroxide or ammonia is preferable from the viewpoint of availability.
Further, a salt such as an ammonium salt or an alkali metal salt of the acid may be used as a pH adjuster in place of the acid or in combination with the acid. In particular, in the case of a combination of a weak acid and a strong base, a strong acid and a weak base, or a combination of a weak acid and a weak base, a buffering action of pH can be expected. In a small amount, not only pH but also conductivity can be adjusted.
 pH調整剤の添加量は、特に制限されず、研磨用組成物が所望のpHとなるように適宜調整すればよい。
 本発明の別の態様は、研磨用組成物を用いて金属又は半金属の酸化物を研磨する研磨方法である。また、他の実施形態は、上記実施形態の研磨方法を用いて金属又は半金属の酸化物をまたはこれらの複合材料1種以上を含む部品の製造方法である。
The addition amount of the pH adjusting agent is not particularly limited, and may be appropriately adjusted so that the polishing composition has a desired pH.
Another aspect of the present invention is a polishing method for polishing a metal or metalloid oxide using a polishing composition. In addition, another embodiment is a method for manufacturing a component that includes a metal or metalloid oxide or one or more of these composite materials using the polishing method of the above embodiment.
 本発明の実施形態の研磨組成物を使用して、金属又は半金属の酸化物結晶等からなる被研磨物を高い研磨速度で研磨することができる。理論に拘束される趣旨ではないが、この研磨機能のメカニズムは、次のように考えることができる。即ち、80~170nm以下の粒子径を有するシリカと10~45nmの粒子径を有するシリカとが適切な粒度分布を有し、かつ研磨用組成物中に適切な含有量で含有されると、両者がその機械的研磨作用を相乗的に増強し、顕著に優れた研磨速度をもたらすと考えられる。この場合、研磨用組成物に含有されるシリカ全体の内の主たるシリカは、機械的研磨作用の大きい80~170nmの粒子径を有する大粒子径シリカであることが好ましい。一方、砥粒表面と酸化物結晶からなる被研磨物との間の固相反応も研磨速度の向上に寄与していると考えられる。そのため、十分な表面積を持つシリカを研磨用組成物に含有させることにより、研磨性能の持続力が向上し研磨性能を維持できると考えられる。本発明は、研磨用組成物に80~170nmの粒子径を有する大粒子径シリカと10~45nmの粒子径を有する小粒子径シリカとを適量含有させることにより、顕著に優れた研磨速度をもたらすものである。 Using the polishing composition according to the embodiment of the present invention, an object to be polished made of a metal or semi-metal oxide crystal or the like can be polished at a high polishing rate. Although not intended to be bound by theory, the mechanism of this polishing function can be considered as follows. That is, when silica having a particle size of 80 to 170 nm or less and silica having a particle size of 10 to 45 nm have an appropriate particle size distribution and are contained in an appropriate content in the polishing composition, Is believed to synergistically enhance its mechanical polishing action, resulting in a significantly superior polishing rate. In this case, the main silica in the entire silica contained in the polishing composition is preferably a large particle size silica having a particle size of 80 to 170 nm, which has a large mechanical polishing action. On the other hand, it is considered that the solid-phase reaction between the abrasive grain surface and the object to be polished made of oxide crystals also contributes to the improvement of the polishing rate. Therefore, it is considered that by including silica having a sufficient surface area in the polishing composition, the sustainability of the polishing performance is improved and the polishing performance can be maintained. The present invention provides a remarkably excellent polishing rate by containing a proper amount of large particle size silica having a particle size of 80 to 170 nm and small particle size silica having a particle size of 10 to 45 nm in the polishing composition. Is.
(水)
 本発明の研磨用組成物は、各成分を分散または溶解するための分散剤または溶媒としての水を含む。他の成分の作用を阻害することを抑制するという観点から、不純物をできる限り含有しない水が好ましく、具体的には、イオン交換樹脂にて不純物イオンを除去した後、フィルタを通して異物を除去した純水や超純水、または蒸留水が好ましい。
(water)
The polishing composition of the present invention contains water as a dispersant or a solvent for dispersing or dissolving each component. From the viewpoint of suppressing the inhibition of the action of other components, water containing as little impurities as possible is preferable. Specifically, after removing impurity ions with an ion exchange resin, pure water from which foreign matters are removed through a filter is used. Water, ultrapure water, or distilled water is preferred.
(他の成分)
 本実施形態の研磨用組成物には、その性能を向上させるために、必要に応じて、錯化剤、エッチング剤、酸化剤等の研磨速度をさらに高める作用を有する添加剤を必要に応じて含有してもよい。また、研磨対象物の表面や砥粒の表面に作用する水溶性重合体(共重合体やその塩、誘導体でもよい)を含有してもよい。さらに、研磨用組成物は、砥粒の分散性を向上させる分散剤や凝集体の再分散を容易にする分散助剤のような添加剤を必要に応じてさらに含有してもよい。
(Other ingredients)
In order to improve the performance of the polishing composition of the present embodiment, if necessary, an additive having an action of further increasing the polishing rate, such as a complexing agent, an etching agent, and an oxidizing agent. You may contain. Moreover, you may contain the water-soluble polymer (The copolymer, its salt, and derivative | guide_body may be sufficient) which acts on the surface of a grinding | polishing target object or the surface of an abrasive grain. Furthermore, the polishing composition may further contain an additive such as a dispersant for improving the dispersibility of the abrasive grains and a dispersion aid for facilitating the redispersion of the aggregate, if necessary.
 また、研磨用組成物は、防腐剤、防黴剤、防錆剤のような公知の添加剤を必要に応じてさらに含有してもよい。
 これらの添加剤は、研磨用組成物において通常添加できるものとして、多くの特許文献等において公知であり、その種類及び添加量は特に限定されるものではない。ただし、これらの添加剤を添加する場合の添加量は、研磨用組成物に対して1質量%未満であることが好ましく、0.5質量%未満であることがより好ましく、0.1質量%未満であることがさらに好ましい。これらの添加剤は、1種を単独で用いてもよいし、2種以上を併用してもよい。
In addition, the polishing composition may further contain a known additive such as an antiseptic, an antifungal agent, and an antirust agent as necessary.
These additives are known in many patent literatures and the like as those that can be usually added in polishing compositions, and the types and addition amounts thereof are not particularly limited. However, the addition amount in the case of adding these additives is preferably less than 1% by mass, more preferably less than 0.5% by mass, and 0.1% by mass with respect to the polishing composition. More preferably, it is less than. These additives may be used individually by 1 type, and may use 2 or more types together.
 錯化剤の例としては、無機酸、有機酸、アミノ酸、ニトリル化合物およびキレート剤などが挙げられる。無機酸の具体例としては、硫酸、硝酸、ホウ酸、炭酸などが挙げられる。有機酸の具体例としては、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、2-メチル酪酸、n-ヘキサン酸、3,3-ジメチル酪酸、2-エチル酪酸、4-メチルペンタン酸、n-ヘプタン酸、2-メチルヘキサン酸、n-オクタン酸、2-エチルヘキサン酸、安息香酸、グリコール酸、サリチル酸、グリセリン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フタル酸、リンゴ酸、酒石酸、クエン酸、乳酸などが挙げられる。メタンスルホン酸、エタンスルホン酸およびイセチオン酸などの有機硫酸も使用可能である。無機酸または有機酸の代わりにあるいは無機酸または有機酸と組み合わせて、無機酸または有機酸のアルカリ金属塩などの塩を用いてもよい。中でもグリシン、アラニン、リンゴ酸、酒石酸、クエン酸、グリコール酸、イセチオン酸またはそれらの塩が好ましい。 Examples of complexing agents include inorganic acids, organic acids, amino acids, nitrile compounds, and chelating agents. Specific examples of the inorganic acid include sulfuric acid, nitric acid, boric acid, carbonic acid and the like. Specific examples of organic acids include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, 2-methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid, 2-ethylbutyric acid, 4-methylpentanoic acid, n- Heptanoic acid, 2-methylhexanoic acid, n-octanoic acid, 2-ethylhexanoic acid, benzoic acid, glycolic acid, salicylic acid, glyceric acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, malein Examples include acid, phthalic acid, malic acid, tartaric acid, citric acid, and lactic acid. Organic sulfuric acids such as methanesulfonic acid, ethanesulfonic acid and isethionic acid can also be used. A salt such as an alkali metal salt of an inorganic acid or an organic acid may be used instead of the inorganic acid or the organic acid or in combination with the inorganic acid or the organic acid. Of these, glycine, alanine, malic acid, tartaric acid, citric acid, glycolic acid, isethionic acid or salts thereof are preferred.
 キレート剤の例としては、グルコン酸等のカルボン酸系キレート剤、エチレンジアミン、ジエチレントリアミン、トリメチルテトラアミンなどのアミン系キレート剤、エチレンジアミン四酢酸、ニトリロ三酢酸、ヒドロキシエチルエチレンジアミン三酢酸、トリエチレンテトラミン六酢酸、ジエチレントリアミン五酢酸などのポリアミノポリカルボン系キレート剤、2-アミノエチルホスホン酸、1-ヒドロキシエチリデン-1,1-ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラキス(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、エタン-1,1-ジホスホン酸、エタン-1,1,2-トリホスホン酸、メタンヒドロキシホスホン酸、1-ホスホノブタン-2,3,4-トリカルボン酸などの有機ホスホン酸系キレート剤、フェノール誘導体、1,3-ジケトン等が挙げられる。 Examples of chelating agents include carboxylic acid chelating agents such as gluconic acid, amine chelating agents such as ethylenediamine, diethylenetriamine, and trimethyltetraamine, ethylenediaminetetraacetic acid, nitrilotriacetic acid, hydroxyethylethylenediaminetriacetic acid, triethylenetetramine hexaacetic acid. , Polyaminopolycarboxylic chelating agents such as diethylenetriaminepentaacetic acid, 2-aminoethylphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetrakis (methylenephosphonic acid), diethylenetriaminepenta ( Methylenephosphonic acid), ethane-1,1-diphosphonic acid, ethane-1,1,2-triphosphonic acid, methanehydroxyphosphonic acid, 1-phosphonobutane-2,3,4- Organic phosphonic acid chelating agents such as polycarboxylic acid, phenol derivatives, 1,3-diketones and the like.
 エッチング剤の例としては、硝酸、硫酸、塩酸、リン酸、フッ酸などの無機酸、酢酸、クエン酸、酒石酸やメタンスルホン酸などの有機酸、水酸化カリウム、水酸化ナトリウムなどの無機アルカリ、アンモニア、アミン、第四級アンモニウム水酸化物などの有機アルカリ等が挙げられる。
 酸化剤の例としては、過酸化水素、過酢酸、過炭酸塩、過酸化尿素、過塩素酸塩、過硫酸塩、硝酸、過マンガン酸カリウム等が挙げられる。
Examples of the etching agent include inorganic acids such as nitric acid, sulfuric acid, hydrochloric acid, phosphoric acid and hydrofluoric acid, organic acids such as acetic acid, citric acid, tartaric acid and methanesulfonic acid, inorganic alkalis such as potassium hydroxide and sodium hydroxide, Organic alkalis such as ammonia, amine, quaternary ammonium hydroxide and the like can be mentioned.
Examples of the oxidizing agent include hydrogen peroxide, peracetic acid, percarbonate, urea peroxide, perchlorate, persulfate, nitric acid, potassium permanganate and the like.
 水溶性重合体、共重合体やその塩、誘導体の例としては、ポリアクリル酸塩などのポリカルボン酸、ポリホスホン酸、ポリスチレンスルホン酸などのポリスルホン酸、キタンサンガム、アルギン酸ナトリウムなどの多糖類、ヒドロキシエチルセルロース、カルボキシメチルセルロースなどのセルロース誘導体、ポリエチレングリコール、ポリビニルアルコール、ポリビニルピロリドン、ソルビタンモノオレエート、単一種または複数種のオキシアルキレン単位を有するオキシアルキレン系重合体等が挙げられる。 Examples of water-soluble polymers, copolymers, salts and derivatives thereof include polycarboxylic acids such as polyacrylates, polysulfonic acids such as polyphosphonic acid and polystyrene sulfonic acid, polysaccharides such as chitansan gum and sodium alginate, hydroxyethyl cellulose And cellulose derivatives such as carboxymethyl cellulose, polyethylene glycol, polyvinyl alcohol, polyvinyl pyrrolidone, sorbitan monooleate, and oxyalkylene polymers having a single kind or plural kinds of oxyalkylene units.
 分散助剤の例としては、ピロリン酸塩やヘキサメタリン酸塩などの縮合リン酸塩等が挙げられる。防腐剤の例としては、次亜塩素酸ナトリウム等が挙げられる。防黴剤の例としてはオキサゾリジン-2,5-ジオンなどのオキサゾリン等が挙げられる。
 防食剤の例としては、界面活性剤、アルコール類、高分子、樹脂、アミン類、ピリジン類、テトラフェニルホスホニウム塩、ベンゾトリアゾール類、トリアゾール類、テトラゾール類、安息香酸等が挙げられる。
Examples of the dispersion aid include condensed phosphates such as pyrophosphate and hexametaphosphate. Examples of preservatives include sodium hypochlorite and the like. Examples of antifungal agents include oxazolines such as oxazolidine-2,5-dione.
Examples of the anticorrosive include surfactants, alcohols, polymers, resins, amines, pyridines, tetraphenylphosphonium salts, benzotriazoles, triazoles, tetrazoles, benzoic acid and the like.
 界面活性剤としては、ノニオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤が挙げられる。ノニオン性界面活性剤としては、エーテル型、エーテルエステル型、エステル型、含窒素型が挙げられ、アニオン性界面活性剤としては、カルボン酸塩、スルホン酸塩、硫酸エステル塩、リン酸エステル塩が挙げられる。また、カチオン性界面活性剤としては、脂肪族アミン塩、脂肪族四級アンモニウム塩、塩化ベンザルコニウム塩、塩化ベンゼトニウム、ピリジニウム塩、イミダゾリニウム塩が挙げられ、両性界面活性剤としては、カルボキシベタイン型、アミノカルボン酸塩、イミダゾリニウムベタイン、レシチン、アルキルアミンオキサイドが挙げられる。 Examples of the surfactant include nonionic surfactants, anionic surfactants, cationic surfactants, and amphoteric surfactants. Nonionic surfactants include ether types, ether ester types, ester types, and nitrogen-containing types, and anionic surfactants include carboxylates, sulfonates, sulfate esters, and phosphate esters. Can be mentioned. Examples of the cationic surfactant include aliphatic amine salts, aliphatic quaternary ammonium salts, benzalkonium chloride salts, benzethonium chloride, pyridinium salts, and imidazolinium salts, and amphoteric surfactants include carboxy surfactants. Examples include betaine type, aminocarboxylate, imidazolinium betaine, lecithin, and alkylamine oxide.
(研磨用組成物の製造方法)
 本実施形態の研磨用組成物の製造方法は特に限定されるものではなく、所定の含有量、平均粒径、粒度分布およびアスペクト比を有する大粒径シリカと小粒径シリカを含むシリカ(砥粒)と、所望による各種添加剤とを、水等の液体溶媒中で撹拌、混合することによって製造することができる。例えば、大粒径シリカと小粒径シリカを含むシリカと、pH調整剤等の各種添加剤とを、水中で撹拌、混合することによって製造することができる。混合時の温度は特に限定されるものではないが、10℃以上40℃以下が好ましく、溶解速度を向上させるために加熱してもよい、また、混合時間も特に限定されない。
(Method for producing polishing composition)
The method for producing the polishing composition of the present embodiment is not particularly limited, and silica containing a large particle size silica having a predetermined content, average particle size, particle size distribution and aspect ratio and small particle size silica (abrasive) Granules) and various additives as desired can be produced by stirring and mixing in a liquid solvent such as water. For example, it can manufacture by stirring and mixing the silica containing a large particle size silica and the small particle size silica, and various additives, such as a pH adjuster. Although the temperature at the time of mixing is not specifically limited, 10 degreeC or more and 40 degrees C or less are preferable, you may heat in order to improve a melt | dissolution rate, and mixing time is not specifically limited, either.
 研磨用組成物は一剤型であってもよいし、二剤型以上の多剤型であってもよい。また、研磨剤の供給経路を複数有する研磨装置を用いる場合、二つ以上の組成物を予め調製しておき、研磨装置内でそれらの組成物が混合されて研磨用組成物を形成するようにしてもよい。
 研磨用組成物は、研磨用組成物の原液を水で希釈することにより調製されてもよい。研磨用組成物が二剤型である場合には、両方の組成物の混合と希釈の順序は任意である。例えば、一方の組成物を水で希釈した後、他方の組成物と混合してもよいし、両方の組成物の混合と水での希釈を同時に行ってもよいし、あるいは、両方の組成物を混合した後に水で希釈してもよい。
The polishing composition may be a one-part type or a multi-part type having two or more parts. In addition, when using a polishing apparatus having a plurality of abrasive supply paths, two or more compositions are prepared in advance, and these compositions are mixed in the polishing apparatus to form a polishing composition. May be.
The polishing composition may be prepared by diluting a stock solution of the polishing composition with water. When the polishing composition is a two-pack type, the order of mixing and dilution of both compositions is arbitrary. For example, one composition may be diluted with water and then mixed with the other composition, both compositions may be mixed and diluted with water at the same time, or both compositions may be mixed. May be diluted with water after mixing.
(研磨装置及び研磨方法)
 前記研磨用組成物は、酸化物結晶からなる被研磨物の研磨で通常に用いられる装置および条件で使用することができる。研磨装置として、片面研磨装置や両面研磨装置が一般的に使用されている。片面研磨装置は、キャリアと呼ばれる保持具を用いて被研磨物を保持し、研磨用組成物を供給しながら、研磨パッドを貼付した定盤を被研磨物の片面に押しつけ、定盤を回転させることにより被研磨物の片面を研磨する。両面研磨装置は、キャリアを用いて被研磨物を保持し、上方より研磨用組成物を供給しながら、研磨パッドが貼付された定盤を被研磨物の両面に押しつけ、それらを相反する方向に回転させることにより被研磨物の両面を研磨する。このとき、研磨パッド及び研磨用組成物と被研磨物との間の摩擦による物理的作用と、研磨用組成物が被研磨物にもたらす化学的作用によって被研磨物は研磨される。
(Polishing apparatus and polishing method)
The polishing composition can be used in an apparatus and conditions usually used for polishing an object to be polished comprising oxide crystals. As a polishing apparatus, a single-side polishing apparatus or a double-side polishing apparatus is generally used. The single-side polishing apparatus holds the object to be polished using a holder called a carrier, and while supplying the polishing composition, presses the surface plate to which the polishing pad is attached against one surface of the object to be polished and rotates the surface plate. Thus, one surface of the object to be polished is polished. The double-side polishing apparatus holds the object to be polished using a carrier and supplies the polishing composition from above while pressing the surface plate to which the polishing pad is applied against both surfaces of the object to be polished. Both surfaces of the object to be polished are polished by rotating. At this time, the object to be polished is polished by a physical action due to friction between the polishing pad and the polishing composition and the object to be polished and a chemical action that the polishing composition brings to the object to be polished.
 研磨条件には研磨荷重が含まれる。一般に研磨荷重が大きいほど砥粒と被研磨物との間の摩擦力が高くなる。その結果、機械的加工特性が向上し、研磨速度が上昇する。被研磨物に適用される研磨荷重は特に限定されないが、50~1,000g/cmであることが好ましく、より好ましくは100~800g/cm、さらに好ましくは150~600g/cmである。研磨荷重が上記の範囲内にある場合、十分に高い研磨速度が発揮されることに加え、被研磨物の破損や表面欠陥の発生を低減することができる。 The polishing conditions include the polishing load. In general, the greater the polishing load, the higher the frictional force between the abrasive grains and the object to be polished. As a result, mechanical processing characteristics are improved and the polishing rate is increased. The polishing load applied to the workpiece is not particularly limited, but is preferably 50 to 1,000 g / cm 2 , more preferably 100 to 800 g / cm 2 , and still more preferably 150 to 600 g / cm 2 . . When the polishing load is within the above range, a sufficiently high polishing rate can be exhibited, and damage to the object to be polished and occurrence of surface defects can be reduced.
 また、研磨条件には線速度が含まれる。一般に研磨パッドの回転数、キャリアの回転数、被研磨物の大きさ、被研磨物の数等が線速度に影響する。線速度が大きい場合は、被研磨物に砥粒が接触する頻度が高いため、被研磨物と砥粒との間に働く摩擦力が大きくなり、被研磨物に対する機械的研磨作用が大きくなる。また、摩擦によって発生する熱が、研磨用組成物による化学的研磨作用を高めることがある。線速度は特に限定されないが、10~300m/分であることが好ましく、より好ましくは、30~200m/分である。線速度が上記の範囲内にある場合、十分に高い研磨速度が達成されることに加え、被研磨物に対し適度な摩擦力を付与することができる。一方で、研磨パッドと被研磨物との間に直接発生する摩擦は、研磨に寄与しないため、極力小さいことが好ましい。 Also, the polishing conditions include linear velocity. In general, the number of revolutions of the polishing pad, the number of revolutions of the carrier, the size of the object to be polished, the number of objects to be polished, etc. affect the linear velocity. When the linear velocity is high, the frequency with which the abrasive grains come into contact with the object to be polished is high, so that the frictional force acting between the object to be polished and the abrasive grains increases, and the mechanical polishing action on the object to be polished increases. Also, the heat generated by friction may enhance the chemical polishing action by the polishing composition. The linear velocity is not particularly limited, but is preferably 10 to 300 m / min, and more preferably 30 to 200 m / min. When the linear velocity is within the above range, a sufficiently high polishing rate can be achieved, and an appropriate frictional force can be applied to the object to be polished. On the other hand, since friction generated directly between the polishing pad and the object to be polished does not contribute to polishing, it is preferable that the friction is as small as possible.
 研磨パッドは、材質、厚み、あるいは硬度などの物性によって限定されるものではない。例えば、種々の硬度や厚みを有するポリウレタンタイプ、不織布タイプ、スウェードタイプ、砥粒を含むもの、砥粒を含まないものなど、任意の研磨パッドを用いることができる。
 上記した研磨用組成物は、一度研磨に使用された後、回収され再度研磨に使用されることができる。研磨用組成物を再使用する方法の一例として、研磨装置から排出される使用済みの研磨用組成物をタンク内にいったん回収し、タンク内から再び研磨装置内へ循環させて使用する方法が挙げられる。研磨用組成物を循環使用することで、廃液となる研磨用組成物の排出量を削減し、研磨用組成物の使用量を減らすことができる。このことは、環境負荷を軽減できる点と、被研磨物の製造コストを抑制できる点で有用である。
The polishing pad is not limited by physical properties such as material, thickness, or hardness. For example, an arbitrary polishing pad such as a polyurethane type having various hardness and thickness, a nonwoven fabric type, a suede type, a type including abrasive grains, or a type including no abrasive grains can be used.
The polishing composition described above can be used once for polishing and then recovered and used for polishing again. As an example of a method of reusing a polishing composition, a method of once collecting a used polishing composition discharged from a polishing apparatus in a tank and circulating it from the tank to the polishing apparatus again is used. It is done. By circulating the polishing composition, it is possible to reduce the amount of the polishing composition discharged as a waste liquid and reduce the amount of the polishing composition used. This is useful in that the environmental load can be reduced and the manufacturing cost of the object to be polished can be suppressed.
 研磨用組成物を循環使用すると、研磨用組成物中のシリカなどの成分が研磨により消費され、損失する。このため、シリカなどの成分の減少分を循環使用中の研磨用組成物に補充してもよい。補充する成分は個別に研磨用組成物に添加してもよいし、あるいは、二以上の成分を任意の濃度で含んだ混合物として研磨用組成物に添加してもよい。この場合、研磨用組成物が再利用されるのに好適な状態に調整され、研磨性能が好適に維持される。
 研磨条件には、研磨用組成物の供給速度が含まれる。研磨用組成物の供給速度は、被研磨物の種類や、研磨装置の種類、他の研磨条件に依存するが、研磨用組成物が被研磨物および研磨パッドの全体に均一に供給されるのに十分な速度であることが好ましい。
When the polishing composition is recycled, components such as silica in the polishing composition are consumed and lost by polishing. For this reason, you may replenish the polishing composition in circulation use for the decrease of components, such as a silica. The components to be replenished may be added individually to the polishing composition, or may be added to the polishing composition as a mixture containing two or more components at an arbitrary concentration. In this case, the polishing composition is adjusted to a state suitable for reuse, and the polishing performance is suitably maintained.
The polishing conditions include the supply rate of the polishing composition. The supply rate of the polishing composition depends on the type of object to be polished, the type of polishing apparatus, and other polishing conditions, but the polishing composition is uniformly supplied to the entire object to be polished and the polishing pad. It is preferable that the speed is sufficient.
 次に、本発明の実施例及び比較例を説明する。
表1に示される粒径、含有量からなるシリカ、液状媒体である水、および添加剤であるpH調整剤を混合して、砥粒を水に分散させ、実施例、比較例の研磨用組成物を製造した。pH調整剤として硝酸及び水酸化カリウムを用い、表1に記載のpHに調整した。
 発明例、及び比較例の研磨用組成物を用いて、下記の研磨条件で、白色ジルコニアセラミック製の矩形板状部材(寸法は縦60mm、横80mm)の研磨を行った。そして、研磨前の矩形板状部材の質量と、研磨後の矩形板状部材の質量とを測定し、研磨前後の質量差から研磨速度を算出した。結果を表1に示す。
Next, examples and comparative examples of the present invention will be described.
The composition shown in Table 1 was mixed with silica having a particle size and content, water as a liquid medium, and a pH adjuster as an additive, and the abrasive grains were dispersed in water. The thing was manufactured. Nitric acid and potassium hydroxide were used as pH adjusting agents, and the pH was adjusted to those shown in Table 1.
Using the polishing compositions of the inventive example and the comparative example, a rectangular plate-shaped member made of white zirconia ceramic (size: 60 mm length, 80 mm width) was polished under the following polishing conditions. And the mass of the rectangular plate-shaped member before grinding | polishing and the mass of the rectangular plate-shaped member after grinding | polishing were measured, and the grinding | polishing rate was computed from the mass difference before and behind grinding | polishing. The results are shown in Table 1.
(研磨条件)
   研磨装置:片面研磨装置(定盤の直径:380mm)
   研磨布:ポリウレタン製研磨布
   研磨荷重:225gf/cm
   定盤の回転速度:90min-1
   研磨速度(線速度):71.5m/分
   研磨時間:15分
   研磨用組成物の供給速度:26mL/分
(Polishing conditions)
Polishing device: Single-side polishing device (surface plate diameter: 380 mm)
Abrasive cloth: Abrasive cloth made of polyurethane Abrasive load: 225 gf / cm 2
Surface plate rotation speed: 90 min -1
Polishing speed (linear speed): 71.5 m / min Polishing time: 15 minutes Supply speed of polishing composition: 26 mL / min
 各研磨用組成物中に含まれるシリカの含有量、およびその中の平均粒径10~45nm、46~70nm、80~170nmのシリカの割合は表1に示すとおりである。また、比較例においては、平均粒径46~79nmのシリカの含有量も示した。実施例1~8、比較例2、5及び7において、平均粒径10~45nmのシリカ中も最も個数の多いものの粒径はいずれも33nmであり、平均粒径80~170nmのシリカ中も最も個数の多いものの粒径はいずれも130nmである。ただし、比較例3においては、平均粒径10~45nmのシリカ中も最も個数の多いものの粒径はいずれも27nmであり、平均粒径80~170nmのシリカ中も最も個数の多いものの粒径は130nmである。シリカの平均粒子径は、画像解析ソフトウエアを使用して測定した。測定は、走査型電子顕微鏡の画像から選択した合計1000個以上のシリカについて実施した。表1では、平均粒子径が大粒子径または少粒子径の範囲内にある場合について、それぞれその含有量を示した。B/Aの値は、各平均粒子径範囲の砥粒中の最も個数の多い粒子径を、動的光散乱法による粒度分布測定装置によって測定される粒子の粒度分布によって特定することによって算出した。また、各研磨用組成物の研磨速度を算出するために、研磨の前後に基板の重量を測定した。研磨前後の基板重量の差から算出された研磨速度を表1の「研磨速度」の欄に示す。 The content of silica contained in each polishing composition, and the ratio of silica having an average particle size of 10 to 45 nm, 46 to 70 nm, and 80 to 170 nm therein are as shown in Table 1. In the comparative example, the content of silica having an average particle size of 46 to 79 nm is also shown. In Examples 1 to 8 and Comparative Examples 2, 5, and 7, the largest number of silica particles having an average particle diameter of 10 to 45 nm is 33 nm, and the largest among silica particles having an average particle diameter of 80 to 170 nm. The particle size of the large number is 130 nm. However, in Comparative Example 3, the particle diameter of the largest number of silica particles having an average particle diameter of 10 to 45 nm is 27 nm, and the particle diameter of the largest particle number of silica having an average particle diameter of 80 to 170 nm is 130 nm. The average particle size of silica was measured using image analysis software. The measurement was performed on a total of 1000 or more silicas selected from images of a scanning electron microscope. Table 1 shows the contents when the average particle diameter is within the range of the large particle diameter or the small particle diameter. The value of B / A was calculated by specifying the most numerous particle diameter in the abrasive grains in each average particle diameter range by the particle size distribution of the particles measured by a particle size distribution measuring apparatus by a dynamic light scattering method. . Moreover, in order to calculate the polishing rate of each polishing composition, the weight of the substrate was measured before and after polishing. The polishing rate calculated from the difference in substrate weight before and after polishing is shown in the column “Polishing rate” in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例の研磨用組成物を用いてジルコニアを研磨した場合には、比較例に比較して高い研磨速度が得られた。
 なお、比較例1では小粒径シリカが含まれず、比較例2では小粒径シリカの含有量が40質量%未満であり大粒径シリカの含有量が29質量%を超え、比較例3では小粒径シリカの含有量が83%を超え大粒径シリカの含有量が17質量%未満であり、比較例4では大粒径シリカが含まれず、比較例5では大粒径シリカの含有量が29質量%を超え、比較例6では小粒径シリカが含まれず大粒径シリカの含有量が29質量%を超え、比較例7では小粒径シリカの含有量が40%未満であり大粒径シリカ29質量%を超えている。
As shown in Table 1, when zirconia was polished using the polishing composition of the example, a higher polishing rate was obtained compared to the comparative example.
In Comparative Example 1, the small particle size silica is not included. In Comparative Example 2, the content of the small particle size silica is less than 40% by mass, and the content of the large particle size silica exceeds 29% by mass. The content of the small particle size silica exceeds 83% and the content of the large particle size silica is less than 17% by mass. Comparative Example 4 does not include the large particle size silica, and Comparative Example 5 includes the large particle size silica. In Comparative Example 6, the small particle size silica is not included, and the content of the large particle size silica exceeds 29 mass%. In Comparative Example 7, the content of the small particle size silica is less than 40%, which is large. The particle size of silica exceeds 29% by mass.

Claims (8)

  1.  水および砥粒を含有する研磨用組成物であって、前記砥粒は平均粒子径が10~45nmの砥粒を前記砥粒全体量中71~83質量%かつ、平均粒子径が80~170nmの砥粒を前記砥粒全体量中17~29質量%含有し、前記平均粒子径が10~45nmの砥粒と前記平均粒子径が80~170nmの砥粒の合計量が前記砥粒全体量中の90質量%以上占めることを特徴とする研磨用組成物。 A polishing composition containing water and abrasive grains, wherein the abrasive grains have an average particle diameter of 10 to 45 nm and 71 to 83 mass% of the total abrasive grains and an average particle diameter of 80 to 170 nm. The total amount of abrasive grains having an average particle diameter of 10 to 45 nm and abrasive grains having an average particle diameter of 80 to 170 nm is the total amount of abrasive grains. Polishing composition characterized by occupying 90 mass% or more in the inside.
  2.  前記平均粒子径が10~45nmの砥粒中、最も個数が多い砥粒の粒子径Aに対する、前記平均粒子径が80~170nmの砥粒中、最も個数が多い砥粒の粒子径Bの比B/Aが2.5以上である、請求項1に記載の研磨用組成物。 Ratio of the particle diameter B of the abrasive grains having the largest number in the abrasive grains having the average particle diameter of 80 to 170 nm to the grain diameter A of the abrasive grains having the largest number in the abrasive grains having the average particle diameter of 10 to 45 nm. The polishing composition according to claim 1, wherein B / A is 2.5 or more.
  3.  pHが5.0~10.0であることを特徴とする請求項1または2に記載の研磨用組成物。 The polishing composition according to claim 1 or 2, wherein the pH is 5.0 to 10.0.
  4.  前記砥粒がシリカであることを特徴とする、請求項1~3のいずれか1項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 3, wherein the abrasive grains are silica.
  5.  金属又は半金属の酸化物又はこれらの複合材料を1種以上含む研磨対象物の表面を研磨することに使用されることを特徴とする請求項1~4のいずれか1項に記載の研磨用組成物。 5. The polishing material according to claim 1, wherein the polishing material is used for polishing a surface of an object to be polished containing at least one metal or metalloid oxide or a composite material thereof. Composition.
  6.  前記研磨対象物が、第3、4および13族から選ばれる1種又は2種以上の金属又は半金属の酸化物又はこれらの複合材料を1種以上含むことを特徴とする、請求項1~5のいずれか1項に記載の研磨用組成物。 The polishing object includes one or more oxides of one or two or more metals or metalloids selected from Groups 3, 4, and 13, or a composite material thereof. 6. The polishing composition according to any one of 5 above.
  7.  請求項1~6のいずれか1項に記載の研磨用組成物を用いて研磨対象物を研磨する研磨方法。 A polishing method for polishing an object to be polished using the polishing composition according to any one of claims 1 to 6.
  8.  請求項7に記載の研磨方法を用いる金属又は半金属の酸化物またはこれらの複合材料1種以上を含む部品の製造方法。 A method for producing a component containing at least one metal or semi-metal oxide or a composite material thereof using the polishing method according to claim 7.
PCT/JP2016/064773 2015-06-03 2016-05-18 Polishing composition, polishing method, and production method WO2016194614A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017521790A JPWO2016194614A1 (en) 2015-06-03 2016-05-18 Polishing composition, polishing method, and production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015113015 2015-06-03
JP2015-113015 2015-06-03

Publications (1)

Publication Number Publication Date
WO2016194614A1 true WO2016194614A1 (en) 2016-12-08

Family

ID=57441183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064773 WO2016194614A1 (en) 2015-06-03 2016-05-18 Polishing composition, polishing method, and production method

Country Status (3)

Country Link
JP (1) JPWO2016194614A1 (en)
TW (1) TW201715012A (en)
WO (1) WO2016194614A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108655965A (en) * 2017-03-28 2018-10-16 福吉米株式会社 Composition for polishing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342455A (en) * 2000-05-31 2001-12-14 Yamaguchi Seiken Kogyo Kk Precision polishing composition for hard brittle material
JP2002030274A (en) * 2000-05-12 2002-01-31 Nissan Chem Ind Ltd Abrasive composition
JP2003297777A (en) * 2002-03-29 2003-10-17 Speedfam Co Ltd Composition for polishing, method for modifying the same and method for polishing the same
JP2004331753A (en) * 2003-05-06 2004-11-25 Nippon Chem Ind Co Ltd Polishing composition, method for preparing polishing composition, and polishing method
JP2004335664A (en) * 2003-05-06 2004-11-25 Shin Etsu Handotai Co Ltd Polishing composition, its manufacturing method, and polishing method of wafer using it
JP2010036290A (en) * 2008-08-04 2010-02-18 Jsr Corp Aqueous dispersing element for chemical mechanical polishing to be used for manufacturing circuit board, method of manufacturing circuit board, circuit board, and multilayer circuit board
WO2014061417A1 (en) * 2012-10-16 2014-04-24 日立化成株式会社 Polishing solution for cmp, stock solution, and polishing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030274A (en) * 2000-05-12 2002-01-31 Nissan Chem Ind Ltd Abrasive composition
JP2001342455A (en) * 2000-05-31 2001-12-14 Yamaguchi Seiken Kogyo Kk Precision polishing composition for hard brittle material
JP2003297777A (en) * 2002-03-29 2003-10-17 Speedfam Co Ltd Composition for polishing, method for modifying the same and method for polishing the same
JP2004331753A (en) * 2003-05-06 2004-11-25 Nippon Chem Ind Co Ltd Polishing composition, method for preparing polishing composition, and polishing method
JP2004335664A (en) * 2003-05-06 2004-11-25 Shin Etsu Handotai Co Ltd Polishing composition, its manufacturing method, and polishing method of wafer using it
JP2010036290A (en) * 2008-08-04 2010-02-18 Jsr Corp Aqueous dispersing element for chemical mechanical polishing to be used for manufacturing circuit board, method of manufacturing circuit board, circuit board, and multilayer circuit board
WO2014061417A1 (en) * 2012-10-16 2014-04-24 日立化成株式会社 Polishing solution for cmp, stock solution, and polishing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108655965A (en) * 2017-03-28 2018-10-16 福吉米株式会社 Composition for polishing

Also Published As

Publication number Publication date
TW201715012A (en) 2017-05-01
JPWO2016194614A1 (en) 2018-03-29

Similar Documents

Publication Publication Date Title
JP4614981B2 (en) Chemical mechanical polishing aqueous dispersion and semiconductor device chemical mechanical polishing method
JP6756460B2 (en) Polishing method and manufacturing method of ceramic parts
TW201542792A (en) Polishing composition
JP6145501B1 (en) Polishing composition and silicon substrate polishing method
JPWO2014069043A1 (en) Polishing composition
WO2016136177A1 (en) Composition for polishing, polishing method and method for producing hard-brittle material substrate
CN110099977B (en) Polishing composition and method for polishing silicon wafer
WO2016103576A1 (en) Polishing composition, polishing method, and method for manufacturing ceramic component
JP6415569B2 (en) Composition for polishing titanium alloy material
JP6825957B2 (en) Polishing composition
JP6096969B1 (en) Abrasive material, polishing composition, and polishing method
WO2016194614A1 (en) Polishing composition, polishing method, and production method
WO2018088370A1 (en) Polishing composition and silicon wafer polishing method
JP6760880B2 (en) Magnesium or magnesium alloy polishing composition and polishing method using it
WO2022009990A1 (en) Polishing composition and polishing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803049

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017521790

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16803049

Country of ref document: EP

Kind code of ref document: A1