WO2016194591A1 - Ultrasonic transducer and ultrasonic inspection device - Google Patents

Ultrasonic transducer and ultrasonic inspection device Download PDF

Info

Publication number
WO2016194591A1
WO2016194591A1 PCT/JP2016/064440 JP2016064440W WO2016194591A1 WO 2016194591 A1 WO2016194591 A1 WO 2016194591A1 JP 2016064440 W JP2016064440 W JP 2016064440W WO 2016194591 A1 WO2016194591 A1 WO 2016194591A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
region
ultrasonic transducer
ultrasonic
cmut
Prior art date
Application number
PCT/JP2016/064440
Other languages
French (fr)
Japanese (ja)
Inventor
俊太郎 町田
峰 利之
耕司 藤崎
泰一 竹崎
龍崎 大介
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2017521778A priority Critical patent/JP6470406B2/en
Priority to CN201680038034.7A priority patent/CN107710787B/en
Publication of WO2016194591A1 publication Critical patent/WO2016194591A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers

Definitions

  • the present invention relates to an ultrasonic transducer, a manufacturing technique thereof, and an ultrasonic inspection apparatus, for example, an ultrasonic transducer manufactured by a MEMS (Micro Electro Mechanical Systems) technique and a technique effective when applied to the manufacturing technique.
  • MEMS Micro Electro Mechanical Systems
  • Ultrasonic transducers are used for various purposes such as diagnosis of tumors in the human body and inspection of cracks in buildings by transmitting and receiving ultrasonic waves.
  • CMUT Capacitive
  • This CMUT has advantages such as a wider frequency band of ultrasonic waves that can be used or higher sensitivity than conventional ultrasonic transducers using piezoelectric materials.
  • CMUT since it can be manufactured using LSI processing technology, there is an advantage that fine processing is possible.
  • Patent Document 1 and Patent Document 2 describe CMUTs in which dummy cells are arranged on the outer periphery of a CMUT cell array so as to equalize membrane distortion or device characteristics.
  • Patent Document 3 describes a CMUT in which a beam structure (“embossed structure”, “beam structure”) is arranged on a CMUT membrane to adjust the resonance frequency of the membrane.
  • JP 2010-172181 A International Publication No. 2008/136198 US Pat. No. 8,483,014
  • a semiconductor chip on which a CMUT is formed has a cell array region in which a plurality of cells are formed, and a peripheral region that is in contact with the cell array region and formed outside the cell array region.
  • the flatness may be low.
  • no cells are formed in the peripheral region and the flatness is high. For this reason, a large difference in surface area occurs between the cell array region and the peripheral region.
  • a passivation film surface protective film
  • a passivation film is formed on the uppermost layer of the CMUT in order to suppress the intrusion of moisture and foreign matter into the cell.
  • An object of the present invention is to improve uniformity of device characteristics among a plurality of cells by suppressing variations in the film thickness of the membrane in the plurality of cells constituting the CMUT.
  • An ultrasonic transducer includes a semiconductor chip including a cell array region in which a plurality of cells are formed and a peripheral region in contact with the cell array region. Each of the plurality of cells is formed on the substrate, the first electrode formed on the substrate, the first insulating film formed on the first electrode, the first insulating film, and in the plan view. A cavity overlapping with the one electrode; and a second insulating film formed on the cavity.
  • each of the plurality of cells is formed on the second insulating film and overlaps the cavity in plan view, a third insulating film formed on the second electrode, and a third insulating film A beam structure that is formed above and overlaps the cavity in plan view, and a fourth insulation that covers the beam structure (“embossed ⁇ structure”, “beam structure”) and is formed on the third insulating film And a membrane.
  • a third insulating film there are a third insulating film, a plurality of pattern structures formed on the third insulating film and corresponding to a beam structure, and a fourth insulating film covering the plurality of pattern structures. Is formed.
  • an ultrasonic inspection apparatus is configured to contact an object and transmit an ultrasonic wave from the ultrasonic probe that transmits and receives an ultrasonic wave to and from the object.
  • a transmission unit that supplies a drive signal to the ultrasonic probe and a reception unit that receives a reflected echo signal output from the ultrasonic probe that has received the ultrasonic wave are provided. Then, the ultrasonic inspection apparatus electrically connects the image processing unit that generates an image based on the reflected echo signal and the ultrasonic probe and the transmission unit while transmitting the ultrasonic wave, while receiving the ultrasonic wave.
  • a transmission / reception separating unit that switches a connection path so as to electrically connect the ultrasonic probe and the receiving unit.
  • the ultrasonic probe includes the ultrasonic transducer that is electrically connected to the transmission / reception separating unit and configured as described above.
  • CMUT complementary metal-oxide-semiconductor
  • FIG. 4 is a plan view showing a schematic layout configuration example of a CMUT chip in the first embodiment.
  • FIG. 5 is a cross-sectional view taken along line AA in FIG. 4.
  • FIG. 4 is a cross-sectional view taken along line BB in FIG. 3.
  • FIG. 4 is a cross-sectional view taken along the line CC in FIG. 3.
  • FIG. 4 is a cross-sectional view taken along line DD in FIG. 3.
  • FIG. 5 is a cross-sectional view taken along line AA in FIG. 4.
  • FIG. 4 is a cross-sectional view taken along line BB in FIG. 3.
  • FIG. 4 is a cross-sectional view taken along the line CC in FIG. 3.
  • FIG. 4 is a cross-sectional view taken along line DD in FIG. 3.
  • FIG. 6 is a cross-sectional view showing a CMUT manufacturing process in the first embodiment.
  • FIG. 10 is a cross-sectional view showing a manufacturing step of the CMUT following FIG. 9.
  • FIG. 11 is a cross-sectional view showing a manufacturing step of the CMUT following FIG. 10.
  • FIG. 12 is a cross-sectional view showing a manufacturing step of the CMUT following FIG. 11.
  • FIG. 13 is a cross-sectional view showing a manufacturing step of the CMUT following FIG.
  • FIG. 14 is a cross-sectional view showing a manufacturing step of the CMUT following FIG. 13.
  • FIG. 15 is a cross-sectional view showing a manufacturing step of the CMUT following FIG. 14.
  • FIG. 16 is a cross-sectional view showing a manufacturing step of the CMUT following FIG. 15.
  • FIG. 17 is a cross-sectional view showing a manufacturing step of the CMUT following FIG. 16.
  • FIG. 18 is a cross-sectional view showing a manufacturing step of the CMUT following FIG. 17.
  • FIG. 19 is a cross-sectional view showing a manufacturing step of the CMUT following FIG. 18.
  • FIG. 10 is a plan view illustrating a schematic layout configuration example of a CMUT chip in Modification 1;
  • FIG. 11 is a plan view showing a schematic layout configuration example of a CMUT chip in Modification 2.
  • FIG. 10 is a plan view showing a schematic layout configuration example of a CMUT chip in Modification 3.
  • FIG. 10 is a plan view illustrating a schematic layout configuration example of a CMUT chip in Modification 3.
  • 6 is a plan view showing a main surface of a semiconductor wafer in a second embodiment. It is an enlarged view which expands and shows the partial area
  • the constituent elements are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say.
  • FIG. 1 shows a cross-sectional structure of one basic CMUT cell.
  • a lower electrode 102 is formed above the substrate 101 via an insulating film 104a, and a cavity 103 surrounded by an insulating film 104b is formed above the lower electrode 102.
  • a membrane 106 is disposed by the upper insulating film 104 b and the upper electrode 105 in the cavity 103.
  • an ultrasonic wave can be transmitted efficiently by applying an alternating voltage having a frequency close to the resonance frequency of the membrane 106.
  • the membrane 106 When receiving ultrasonic waves, the membrane 106 vibrates due to the pressure of the ultrasonic waves that reach the surface of the membrane 106. Then, since the distance between the upper electrode 105 and the lower electrode 102 changes, ultrasonic waves can be detected as a change in capacitance. Also at this time, ultrasonic waves having a frequency close to the resonance frequency of the membrane 106 can be received efficiently.
  • the ultrasonic transmission efficiency and the reception efficiency are also related to the DC voltage applied between the upper electrode 105 and the lower electrode 102.
  • the DC voltage applied between the upper electrode 105 and the lower electrode 102 is increased, the reaction force by the spring of the membrane 106 and the electrostatic force between the upper electrode 105 and the lower electrode 102 maintain an equilibrium state. A phenomenon that the hollow portion 103 is crushed occurs. The DC voltage when this phenomenon occurs is called a pull-in voltage.
  • the CMUT drive voltage is determined based on the pull-in voltage.
  • the resonance frequency and the pull-in voltage of the CMUT membrane 106 are important parameters when designing and using the CMUT.
  • Resonance frequency (F) and pull-in voltage (V) are both F ⁇ t / w 2 and V ⁇ t 1.5 / w between membrane width w (cavity width) and film thickness t. It is necessary to produce the width w and the film thickness t as designed as the equation holds.
  • a MEMS device such as a CMUT has a great influence on device characteristics, and thus requires more control than when manufacturing an ordinary LSI.
  • CMUT chips semiconductor chips
  • semiconductor wafer silicon wafer
  • the width w and the thickness t of the membrane 106 of all the CMUT cells in the semiconductor wafer It is important to suppress the variation in the cell as much as possible and to make the cell device characteristics such as the resonance frequency and the pull-in voltage of each CMUT cell uniform.
  • the width w of the membrane 106 is determined by the accuracy of the lithography process for forming the pattern of the sacrificial layer that becomes the mold of the cavity 103. According to LSI lithography technology, even if a large number of CMUT cells are formed on a semiconductor wafer, the width w of the membrane by the lithography process, that is, the variation width of the sacrificial layer is very small, and the width w of the membrane is uniform. Can be produced.
  • the thickness t of the membrane 106 is determined by the film formation process of each film constituting the membrane 106, in FIG. 1, the film formation process of the insulating film 104 b and the upper electrode 105 above the cavity 103. Therefore, in order to uniformly manufacture the device characteristics of a large number of CMUT cells on a cell array or a semiconductor wafer, the thickness of each film constituting the membrane 106 of each CMUT cell is controlled, It is important to make the thickness of the membrane 106 uniform in the cell array and the semiconductor wafer.
  • the film thickness on the pattern varies depending on the pattern density (pattern unit surface area) on the semiconductor wafer on which the film is formed. There is. This is called a loading effect, and occurs when the film formation mechanism in the CVD method is rate-controlled by the supply of the reaction gas.
  • deposition species are formed by collision of gas molecules and electrons in the plasma, and these are deposited on the surface of the pattern, so that a loading effect is likely to occur. Therefore, when the pattern density is different between the cell array and the outer area, the thickness of the film formed at the center and the outer periphery of the array is different. As a result, the device characteristics of each CMUT cell in the cell array are different. Can be non-uniform.
  • FIG. 2 is a cross-sectional view of a CMUT showing, for example, a simplified structure in which the beam structure 201 is disposed on the insulating film 104b.
  • the membrane 106 is constituted by the insulating film 104 b, the upper electrode 105, and the beam structure 201.
  • This beam structure 201 has a function of increasing the vibration of the membrane 106 in the thickness direction of the membrane 106, in other words, a function of causing the membrane 106 to perform piston-like vibration, compared to the case where the beam structure 201 does not exist.
  • the transmission / reception efficiency of ultrasonic waves in the CMUT can be improved.
  • the thickness t of the membrane 106 can be adjusted by providing the beam structure 201, an advantage that the resonance frequency and the pull-in voltage of the membrane 106 can be adjusted can be obtained.
  • the beam structure 201 has a convex shape, and when the beam structure 201 is provided on the insulating film 104b, a large convex step is generated on the insulating film 104b. Become. In the case where such a beam structure 201 in which a large step is generated in the membrane 106 exists, the surface area of the membrane 106 is increased as compared with the CMUT cell as shown in FIG. It will be.
  • the CMUT provided with the beam structure 201 there is a large difference in surface area between the inside of the cell array and the region where the CMUT cells in the outer region (peripheral region) of the cell array that is normally flat are not arranged. Occurs. For this reason, in the CMUT provided with the beam structure 201, a loading effect is likely to occur when an insulating film (passivation film, surface protective film) is formed so as to cover the beam structure 201. As a result, the thickness of the insulating film formed at the center of the cell array and the outer periphery of the array becomes particularly large, which increases the possibility that the device characteristics of each CMUT cell in the cell array become non-uniform. Become.
  • a contrivance is made to suppress the film thickness variation of the membrane 106 in a plurality of CMUT cells (particularly, each CMUT cell in which the beam structure 201 is formed) constituting the CMUT. That is, in the first embodiment, a device for suppressing the film thickness variation of the membrane 106 and improving the uniformity of device characteristics among a plurality of CMUT cells is provided.
  • this device is applied to suppress the film thickness variation of the membrane 106 in a plurality of CMUT cells.
  • the basic idea of the first embodiment is to improve the uniformity of the device characteristics of the CMUT by suppressing variations in the membrane thickness in the cell array, and to configure the constituent elements that constitute the CMUT cell in the region excluding the cell array. This is realized by arranging and making the membrane thickness of each CMUT cell in the cell array uniform.
  • a plurality of pattern structures corresponding to the beam structure constituting the CMUT cell are in contact with the cell array region in which the plurality of CMUT cells are formed.
  • FIG. 3 is a top view showing a semiconductor chip (hereinafter referred to as a CMUT chip 301) on which the cell array according to the first embodiment is formed.
  • FIG. 3 shows an example of a CMUT cell in which the cavity 103 has a hexagonal shape when viewed from the upper surface of the CMUT chip 301.
  • CMUT cells constitute a cell array 310 indicated by a one-dot chain line.
  • CMUT cells are connected in parallel by wiring 304 connecting the upper electrode 105 in units of 15 and are connected to a plug 306 for supplying power to the upper electrode 105 via a lead wiring 305 from the upper electrode 105.
  • One CMUT cell channel is configured.
  • CMUT cell channels are arranged on the lower electrode 102.
  • the lower electrode 102 is connected to a plug 303 for supplying power to the lower electrode 102 via an extraction wiring 302 of the lower electrode 102.
  • the pattern structure 311 is a structure corresponding to the beam structure 201 of the CMUT cell, and is arranged in a peripheral region outside the cell array region.
  • Each CMUT cell includes a cavity portion 103 disposed on the lower electrode 102, an upper electrode 105 disposed on the cavity portion 103, a beam structure 201 constituting a part of the membrane, and the like.
  • FIG. 4 is an enlarged top view of the area AR in FIG.
  • the CMUT cell is provided with an etching hole 401 for forming the cavity 103. That is, the etching hole 401 is connected to the cavity 103.
  • An insulating film made of a silicon oxide film is formed so as to cover the lower electrode 102 between the lower electrode 102 and the cavity 103, and a silicon oxide film is also formed between the upper electrode 105 and the cavity 103. Although an insulating film is formed, FIG. 4 is not shown to show the cavity 103 and the lower electrode 102.
  • FIG. 5 shows a cross-sectional view taken along line AA in FIG.
  • the lower electrode 102 of the CMUT cell is disposed on an insulating film 502 made of a silicon oxide film formed on a semiconductor substrate 501.
  • a cavity 103 is disposed on the lower electrode 102 via an insulating film 503 made of a silicon oxide film.
  • An insulating film 504 made of a silicon oxide film is disposed so as to surround the cavity 103, and the upper electrode 105 and a lead wiring 305 from the upper electrode 105 are disposed on the insulating film 504.
  • An insulating film 505 made of a silicon nitride film and an insulating film 506 made of a silicon oxide film are disposed on the upper electrode 105 and the lead-out wiring 305 from the upper electrode 105.
  • the insulating film 504 and the insulating film 505 are formed with etching holes 401 penetrating these films, and the etching holes 401 are filled with the insulating film 506.
  • the etching hole 401 is formed to form the cavity 103.
  • the beam structure 201 is arranged at a position included in the cavity 103 as viewed from the upper surface of the main surface of the semiconductor substrate 501, and overlaps with the lead wiring 305 from the upper electrode 105.
  • a pattern structure 311 is disposed in a peripheral region outside the cell array region. Further, an insulating film 507 made of a silicon nitride film is disposed on the insulating film 506 so as to cover the beam structure 201 and the pattern structure 311.
  • the insulating film 504, the insulating film 505, the insulating film 506, the insulating film 507, the upper electrode 105, and the beam structure 201 arranged in the upper layer of the cavity 103 constitute the membrane 106 of the CMUT cell.
  • FIG. 6 shows a cross-sectional view taken along line BB in FIG.
  • the pattern structure 311 arranged in the peripheral region outside the cell array region is arranged in an upper layer of the extraction wiring 302 from the lower electrode 102, and the extraction wiring 305 and the cavity 103 from the upper electrode 105 and the upper electrode 105.
  • the structure is such that there is no interposition between the lead wiring 302 from the lower electrode 102 and the pattern structure 311.
  • FIG. 7 shows a cross-sectional view taken along the line CC of FIG.
  • Reference numeral 701 denotes an end face of the CMUT chip 301.
  • a lower electrode 102 in the lower layer of the pattern structure 311 arranged in the peripheral region outside the cell array region, a lower electrode 102, a lead wiring 302 from the lower electrode 102, a lead wiring 305 from the upper electrode 105 or the upper electrode 105, a cavity
  • the part 103 does not exist. That is, only the insulating film (insulating films 502 to 506) is interposed between the semiconductor substrate 501 and the pattern structure 311.
  • FIG. 8 shows a cross-sectional view taken along the line DD in FIG.
  • the pattern structure 311 arranged in the peripheral region outside the cell array region is arranged between the plug 306 and the end surface 701 of the CMUT chip.
  • the CMUT according to the first embodiment includes, for example, a CMUT chip including a cell array region CAR in which a plurality of CMUT cells are formed and a peripheral region PER in contact with the cell array region CAR, as shown in FIG. 301 (semiconductor chip).
  • Each of the plurality of CMUT cells is formed on the lower electrode 102 and the lower electrode 102 formed on the semiconductor substrate 501 with the semiconductor substrate 501 and the insulating film 502 interposed therebetween as shown in FIG.
  • the insulating film 503 is formed, and the cavity 103 is formed on the insulating film 503 and overlaps the lower electrode 102 in plan view.
  • each of the plurality of CMUT cells includes an insulating film 504 formed on the cavity 103 and an upper electrode formed on the insulating film 504 and overlapping the cavity 103 in plan view. 105, and an insulating film 505 and an insulating film 506 formed over the upper electrode 105.
  • Each of the plurality of CMUT cells is formed on the insulating film 506 and overlaps the cavity 103 in plan view, and covers the beam structure 201 and is formed on the insulating film 506. And an insulating film 507.
  • the membrane 106 is formed by the insulating films 504 to 507, the upper electrode 105, and the beam structure 201 arranged on the cavity 103.
  • the thickness of the beam structure 201 is configured to be approximately equal to or greater than the combined thickness of the insulating films 504 to 506 and the upper electrode 105, for example.
  • the beam structure 201 has the largest aspect ratio indicated by the thickness / width among the components constituting the CMUT cell.
  • insulating films 502 to 506 are stacked on the semiconductor substrate 501 in the peripheral region, and the insulating film 506 corresponds to the beam structure 201 that is a component of the CMUT cell.
  • a pattern structure 311 is formed, and an insulating film 507 is formed so as to cover the pattern structure 311. That is, as shown in FIG. 5, the beam structure 201 is formed in the CMUT cell, and the pattern structure 311 corresponding to the beam structure 201 is formed in the peripheral region. That is, in the CMUT cell, the pattern structure 311 is formed so as to protrude from the insulating film 506 in the peripheral region as the beam structure 201 protruding from the insulating film 506 is formed.
  • a convex shape is formed on the insulating film 506 by each of the beam structure 201 and the pattern structure 311.
  • the pattern structure 311 and the beam structure 201 are formed, for example, by processing a silicon nitride film, whereby the pattern structure 311 and the beam structure 201 are: It is formed from the same material. Further, although not limited thereto, for example, the pattern structure 311 has substantially the same structure as the beam structure 201.
  • a beam structure 201 is formed in each of the plurality of CMUT cells formed in the cell array region CAR, and the plurality of CMUT cells themselves are regularly arranged. Therefore, the beam structure 201 which is a constituent element of the CMUT cell is also arranged in a regular arrangement pattern.
  • a plurality of pattern structures 311 corresponding to the beam structures 201 are arranged almost regularly in the peripheral region PER. Specifically, in the peripheral region PER, a plurality of pattern structures 311 are arranged in an arrangement pattern substantially equal to the arrangement pattern of the beam structures 201. In other words, at least a part of the arrangement pattern of the plurality of pattern structures 311 is equal to the arrangement pattern of the plurality of beam structures 201.
  • the lead wiring 302 electrically connected to the lower electrode 102, the plug 303 electrically connected to the lead wiring 302, and the upper electrode 105 are electrically connected.
  • a lead wire 305 connected to the lead wire 305 and a plug 306 electrically connected to the lead wire 305 are formed. Therefore, since the plurality of pattern structures 311 need to be arranged at positions that do not overlap the plug 303 and the plug 306 in plan view, the plurality of pattern structures 311 are completely equal to the arrangement pattern of the beam structure 201. It cannot be arranged.
  • a part of the plurality of pattern structures 311 can be arranged at a position overlapping the lead-out wiring 302 in plan view, and a part of the plurality of pattern structures 311 is a plane. In view, it can be arranged at a position overlapping the lead wiring 305. This is because, as shown in FIGS. 5 and 6, in the thickness direction of the semiconductor substrate 501, the extraction wiring 305 is disposed below the pattern structure 311, and the extraction wiring 302 is disposed below the pattern structure 311. Because it is.
  • the peripheral region PER is divided into a first lead region in which the lead wiring 302 and the plug 303 are formed, a second lead region in which the lead wiring 305 and the plug 306 are formed, and an outer region of the first lead region.
  • the first outer edge region is divided into the second outer edge region which is the outer region of the second lead-out region.
  • the pattern structure 311 is formed not only in the first extraction region and the second extraction region, but also in the first outer edge region and the second outer edge region.
  • the CMUT in the first embodiment is configured.
  • a feature point in the first embodiment is that a pattern structure 311 corresponding to a beam structure 201 which is a component constituting a CMUT cell is formed in a peripheral region PER outside the cell array region CAR.
  • a pitch substantially equal to the cell pitch of the cell array that is, in the first embodiment, the CMUT excluding the region where the plug 306 for supplying power to the upper electrode 105 is formed and the region where the plug 303 for supplying power to the lower electrode 102 is formed.
  • a pattern structure 311 is arranged in the peripheral region PER of the chip 301.
  • the feature point of the first embodiment is that the peripheral structure PER provided outside the cell array region CAR is provided with the pattern structure 311 corresponding to the beam structure 201 of the CMUT cell, and at least a plurality of pattern structures 311 are provided. This is because a part of the arrangement pattern of the pattern structure 311 is arranged to be equal to the arrangement pattern of the plurality of beam structures 201.
  • the convex beam structure 201 is formed on the surface of the cell array region CAR. Is disposed, the surface of the peripheral region PER is relatively flat. As a result, a large difference in surface area occurs between the cell array region CAR and the peripheral region PER. When such a large difference in surface area occurs, when the film formation process is performed by the CVD method after forming the convex beam structure 201 (in FIG.
  • the insulating film 507) due to the loading effect based on the difference in surface area, Depending on the difference in surface area, the thickness of the insulating film that is gradually deposited increases from the center of the cell array region CAR toward the end of the peripheral region PER.
  • the device characteristics of the CMUT cell arranged at the center of the cell array region CAR and the CMUT cell arranged at the outer periphery of the cell array region CAR become non-uniform. That is, the resonance frequency and the pull-in voltage are higher in the CMUT cell disposed in the outer peripheral portion of the cell array region CAR having a larger film thickness than in the CMUT cell disposed in the center portion of the cell array region CAR having a small film thickness.
  • the DC voltage applied to the CMUT cell As described above, making the DC voltage applied to the CMUT cell as equal as possible to the CMUT cell pull-in voltage leads to an improvement in sensitivity. However, if the pull-in voltage of each CMUT cell in the cell array is different, the DC voltage to be applied is different. Needs to be determined based on the CMUT cell having the lowest pull-in voltage among the plurality of CMUT cells in the cell array. This is because when a CMUT cell having a relatively high pull-in voltage in the cell array is used as a reference and a DC voltage close to the pull-in voltage is applied to all CMUT cells in the cell array, the CMUT cell having a low pull-in voltage is pulled in. This is because it may not contribute to the transmission and reception of ultrasonic waves.
  • the CMUT cell having the lowest pull-in voltage among the plurality of CMUT cells in the cell array the CMUT cell having a relatively high pull-in voltage in the cell array Since the applied DC voltage is a low voltage as seen from the pull-in voltage of the CMUT cell, the sensitivity is lowered.
  • the pattern structure 311 having a relatively large step (convex shape) corresponding to the beam structure 201 constituting the CMUT cell in the peripheral region PER outside the cell array region CAR.
  • Arrangement pitches are approximately equal to the arrangement pitch of the plurality of CMUT cells.
  • the difference between the surface area in the peripheral region PER in which the plurality of pattern structures 311 is formed and the surface area in the cell array region CAR in which the plurality of beam structures 201 are formed is When the plurality of pattern structures 311 are not formed in the PER, the difference is smaller than the difference between the surface area in the peripheral region PER and the surface area in the cell array region CAR in which the plurality of beam structures 201 are formed.
  • the CVD method is performed after the beam structure 201 and the pattern structure 311 are formed. Even if the film formation is performed, the insulating film deposited on the central portion of the cell array region CAR and the outer peripheral portion of the cell array region CAR can be made uniform. Therefore, the device characteristics such as the resonance frequency and the pull-in voltage become uniform between the CMUT cell arranged at the center of the cell array region CAR and the CMUT cell arranged at the outer periphery of the cell array region CAR. It is possible to transmit and receive good ultrasonic waves.
  • the beam structure 201 is a structure having the largest aspect ratio (thickness / width) among the components constituting the CMUT cell. That is, a structure having a large aspect ratio is a structure in which the convex shape protrudes most, and contributes most to an increase in surface area. In other words, since the surface area of the cell array region CAR is increased by the beam structure 201 having the largest aspect ratio, the pattern structure 311 corresponding to the beam structure 201 having the largest aspect ratio is provided in the peripheral region PER.
  • the difference between the surface area of the cell array region CAR and the surface area of the peripheral region PER cannot be minimized.
  • the difference between the surface area of the cell array region CAR and the surface area of the peripheral region PER is minimized. Can do it.
  • the fact that the difference between the surface area of the cell array region CAR and the surface area of the peripheral region PER can be minimized means that the loading effect at the time of film formation can be suppressed, and thereby the surface of the cell array region CAR ( This means that the film thickness of the film covering the uneven shape and the film thickness covering the surface of the peripheral region PER (uneven shape) can be improved.
  • the pattern structure 311 disposed in the peripheral region PER is composed of a structure corresponding to the structure having the highest aspect ratio among the structures disposed in the cell array region CAR. It is. Specifically, in the first embodiment, since the structure having the highest aspect ratio among the structures arranged in the cell array region CAR is the beam structure 201, the pattern structure arranged in the peripheral region PER. As 311, a structure corresponding to the beam structure 201 which is a component of the CMUT cell is employed.
  • a semiconductor wafer having a plurality of chip regions, a scribe region that partitions the plurality of chip regions, and an off-chip region formed outside the plurality of chip regions is prepared.
  • an insulating film 502 made of a silicon oxide film is deposited on the semiconductor substrate (semiconductor wafer) 501 by a plasma CVD method (Chemical Vapor Deposition) by 1000 nm.
  • a titanium nitride film, an aluminum alloy film, and a titanium nitride film are stacked to a thickness of 100 nm, 600 nm, and 100 nm on the insulating film 502 by using a sputtering method, respectively.
  • patterning is performed using a photolithography technique and a dry etching technique to form the lower electrode 102 and the lead-out wiring 302 drawn from the lower electrode 102 shown in FIG. 3 in each of the plurality of chip regions.
  • an insulating film 503 made of a silicon oxide film is deposited on the main surface including the lower electrode 102 by 3000 nm by using a plasma CVD method. Then, as shown in FIG. 11, planarization is performed by using a CMP technique (Chemical ⁇ ⁇ Mechanical Polishing) until the thickness of the insulating film 503 on the lower electrode 102 becomes 200 nm.
  • CMP technique Chemical ⁇ ⁇ Mechanical Polishing
  • a polycrystalline silicon film (polysilicon film) is deposited on the upper surface of the insulating film 503 by a plasma CVD method to a thickness of 300 nm, and a polycrystalline silicon film is used by using a photolithography technique and a dry etching technique.
  • a sacrificial layer 1203 made of a polycrystalline silicon film is formed on the insulating film 503 by patterning the film. That is, a sacrificial layer 1203 that overlaps the lower electrode 102 in plan view is formed on the insulating film 503 in each of the plurality of chip regions. This sacrificial layer 1203 becomes a cavity in a subsequent process.
  • an insulating film 504 made of a silicon oxide film is deposited to a thickness of 200 nm by plasma CVD so as to cover the sacrificial layer 1203 and the insulating film 503. That is, the insulating film 504 is formed over the insulating film 503 that covers the sacrificial layer 1203 and is formed on the main surface.
  • a laminated film of a titanium nitride film, an aluminum alloy film, and a titanium nitride film is deposited by sputtering to a thickness of 50 nm, 100 nm, and 50 nm, respectively.
  • the upper electrode 105 is formed by using a photolithography technique and a dry etching technique.
  • the upper electrode 105 that overlaps the sacrificial layer 1203 in plan view is formed on the insulating film 504 in each of the plurality of chip regions.
  • an insulating film 505 made of a silicon nitride film is 200 nm so as to cover the insulating film 504, the upper electrode 105, and the extraction wiring 305 extracted from the upper electrode. accumulate.
  • an etching hole 401 reaching the sacrifice layer 1203 is formed in the insulating film 505 and the insulating film 504 by using a photolithography technique and a dry etching technique. That is, in each of the plurality of chip regions, the etching hole 401 that penetrates the insulating film 504 and the insulating film 505 and reaches the sacrifice layer 1203 is formed.
  • the sacrificial layer 1203 is isotropically etched with xenon fluoride (XeF 2 ) gas through the etching hole 401, thereby forming the cavity 103. To do.
  • XeF 2 xenon fluoride
  • an insulating film 506 made of a silicon oxide film is deposited to a thickness of 200 nm by using a plasma CVD method to fill the etching hole 401.
  • the etching hole 401 is closed by the insulating film 506 in each of the plurality of chip regions.
  • an insulating film made of a silicon nitride film is deposited by 800 nm, and by using a photolithography technique and a dry etching technique, Overlapping beam structures 201 of CMUT cells and a pattern structure 311 corresponding to the beam structure 201 are formed in the peripheral region outside the cell array region. Thereby, a convex shape is formed on the insulating film 506 by the beam structure 201 and the pattern structure 311. At this time, all pattern structures 311 arranged in the peripheral region outside the cell array region shown in FIG. 3 are also formed.
  • an insulating film 507 made of a silicon nitride film is deposited by 400 nm by using the plasma CVD method.
  • the pattern structure 311 having a relatively large step (convex shape) corresponding to the beam structure 201 constituting the CMUT cell is formed in the peripheral region outside the cell array region. ing.
  • the surface area on the insulating film 506 in the peripheral region where the plurality of pattern structures 311 are formed and the insulating film 506 in the cell array region where the plurality of beam structures 201 are formed. The difference from the surface area can be reduced.
  • the insulating film 507 it is possible to suppress the occurrence of a loading effect when forming the insulating film 507 by the plasma CVD method.
  • the film thickness of the insulating film deposited on the outer peripheral portion can be made substantially uniform.
  • a plug 303 for performing electrical connection to the lower electrode 102 and a plug 306 (see FIG. 3) for performing electrical connection to the upper electrode 105 are formed.
  • the CMUT according to the first embodiment can be manufactured.
  • the arrangement of the pattern structures 311 formed in the peripheral region PER outside the cell array region CAR is arranged at a pitch equal to the arrangement pitch of CMUT cells in the cell array.
  • the region overlaps with the end portions of the plug 303, the plug 306, and the CMUT chip 301, and an area where the pattern structure 311 cannot be arranged at the same pitch occurs in the peripheral area PER.
  • the arrangement pitch and the pattern shape of the pattern structure 311 may be changed as in the structure 2001 and the structure 2002 shown in FIG.
  • Making the arrangement pitch of the pattern structures 311 arranged in the peripheral area PER equal to the arrangement pitch of the plurality of CMUT cells in the cell array means that the surface area (unit surface area) of the cell array area CAR and the surface area (unit) of the peripheral area in the CMUT chip Although it is desirable from the viewpoint of equalizing the surface area), by disposing the structure 2002 having a different shape in the region where the pattern structure 311 disposed in the peripheral region PER cannot be disposed, the unit surface area and the cell array region CAR of the peripheral region PER are arranged.
  • the unit surface area can be made substantially equal. As a result, device characteristics can be made more uniform in the plurality of CMUT cells constituting the cell array.
  • FIG. 21 is a diagram in which dummy cells 2003 are arranged on the outer periphery of the cell array 310, and a pattern structure 311 is further arranged outside the region 2004 in which the dummy cells 2003 and the cell array 310 are arranged.
  • a dummy cell is a cell that includes at least an electrode (upper electrode and lower electrode) and either a cavity or a filling part filled with a cavity, and does not perform an ultrasonic wave transmission / reception function. Means.
  • the dummy cell 2003 is arranged to make the distortion of the membrane uniform or to make the device characteristics uniform.
  • the pattern structure 311 may be arranged outside the area where the 310 and the dummy cell 2003 are arranged.
  • the dummy cell 2003 it is possible to dispose the dummy cell 2003 in a region outside the cell array 310 to the extent that the influence of the loading effect does not reach the cell array 310.
  • the dummy cell 2003 since the dummy cell 2003 includes electrodes (upper electrode and lower electrode), a large number of unnecessary floating electrodes are formed on the CMUT chip 301, and an increase in parasitic capacitance via the floating electrodes, etc. May cause the sensitivity of the cell array 310 to decrease.
  • the dummy cell 2003 since the dummy cell 2003 includes a cavity, when the dummy cell 2003 is disposed in the entire peripheral region outside the cell array 310, the cavity of the dummy cell 2003 near the end of the CMUT chip 301 is obtained by cutting the CMUT chip 301 from the substrate.
  • the upper membrane may peel off. The peeled membrane may be reattached on the CMUT chip 301 and may damage the CMUT cells in the cell array 310.
  • a pattern structure that does not include electrodes or cavities outside the region where the dummy cells 2003 for uniformizing membrane distortion are arranged in order to suppress the loading effect.
  • the dummy cells 2003 are arranged on the outer periphery of the cell array 310, and the pattern structures 311 (the structures 2001 and 2002) are arranged in the outer region of the dummy cells 2003.
  • the membrane distortion can be made uniform by the dummy cell 2003, and the parasitic capacitance caused by the dummy cell 2003 is increased by the pattern structure 311 (the structure 2001 and the structure 2002).
  • the pattern structure 311 the structure 2001 and the structure 2002.
  • each cavity 103 of the plurality of CMUT cells has a hexagonal shape when viewed from the top surface of the substrate (in plan view).
  • the shape of each cavity 103 of the CMUT cell is not limited to this, and may be, for example, a circular shape or a rectangular shape.
  • FIG. 22 is a diagram showing the CMUT chip 301 when the CMUT cell has a rectangular cavity shape and a large number of rectangular pattern structures 311 are arranged on the cavity portion. Also in the third modification shown in FIG. 22, a pattern structure that generates a relatively large step is arranged outside the cell array 310. Also in the third modification, the pattern structures 311 are arranged at substantially the same pitch as the cell pitch of the cell array 310, so that the central portion of the cell array 310 and the cell array are arranged as in the case of the hexagonal cell. The difference in surface area can be reduced with respect to the outer periphery of the.
  • the film thickness deposited on the central portion of the cell array 310 and the outer peripheral portion of the cell array 310 can be made uniform even when the film forming process by the CVD method is performed. Therefore, according to the third modification as well, the device characteristics such as the resonance frequency and the pull-in voltage between the CMUT cell arranged at the center of the cell array 310 and the CMUT cell arranged at the outer periphery of the cell array 310 become uniform, and the efficiency is improved. Good ultrasound transmission and reception is possible.
  • the pattern structure 311 corresponding to the beam structure 201 is arranged in the peripheral region.
  • the beam structure is included in the constituent elements of the CMUT cell.
  • a pattern structure 311 corresponding to this structure may be arranged in the peripheral region.
  • the constituent material of the CMUT described in the first embodiment is one example of the combination.
  • the material of the upper electrode 105 and the lower electrode 102 tungsten or other conductive material May be used.
  • a material that can ensure wet etching selectivity with respect to the material surrounding the sacrificial layer 1203 can be used. Therefore, as the material of the sacrificial layer 1203, SOG (Spin-on-Glass) or a metal film can be used in addition to the polycrystalline silicon film.
  • FIG. 23 is a top view showing a semiconductor wafer 2101 in which CMUT chips 301 (chip regions 2102) are arranged.
  • CMUT chips 301 chips regions 2102
  • a plurality of CMUT chips 301 are formed on a semiconductor wafer 2101 in a matrix arrangement of 8 rows and 2 columns.
  • An off-chip region 2103 is formed in a region other than the plurality of chip regions 2102 in which the plurality of CMUT chips 301 are arranged. That is, the off-chip region 2103 is formed in the outer region of the plurality of chip regions 2102 on the main surface of the semiconductor wafer 2101.
  • FIG. 24 is a top view showing the region BR of FIG. 23 in an enlarged manner.
  • This region BR is a region where the corners of the four CMUT chips 301 face each other, and a scribe region 2201 is formed between the CMUT chips 301.
  • the scribe area 2201 is an area where the semiconductor wafer is cut by dicing or the like in order to cut out the CMUT chip 301.
  • FIG. 25 is a top view showing the region CR of FIG. 23 in an enlarged manner. In this region CR, a boundary region between the chip region 2102 and the off-chip region 2103 is shown.
  • FIG. 26 is a diagram showing a state of the region BR after the scribe region 2201 of the semiconductor wafer 2101 shown in FIG. 23 is cut by a dicing process.
  • FIG. 27 is a diagram illustrating a state of the region CR after the scribe region 2201 of the semiconductor wafer 2101 illustrated in FIG. 23 is cut by a dicing process.
  • Reference numeral 2202 denotes a surface cut by a dicing process.
  • the semiconductor wafer 2101 since the semiconductor wafer 2101 is generally cut with a dicing blade having a certain width, an area substantially equal to the width of the dicing blade in the scribe area 2201 is cut.
  • the pattern structure 311 arranged in the scribe region 2201 and the off-chip region 2103 outside the CMUT chip 301 is also cut.
  • the feature point of the second embodiment is that the beam constituting the CMUT cell also in the scribe region 2201 and the off-chip region 2103 other than the plurality of chip regions 2102 of the semiconductor wafer 2101.
  • the pattern structure 311 corresponding to the structure 201 is arranged on the insulating film (insulating film 506 shown in FIG. 5). As described above, by disposing the pattern structure 311 also in the scribe region 2201 and the off-chip region 2103, the unit surface area on the entire main surface of the semiconductor wafer 2101 can be made substantially uniform.
  • the second embodiment it is possible to suppress variation in the thickness of the membrane of each CMUT cell in the cell array formed on the CMUT chip 301, and thereby, all CMUT cells in the cell array can be suppressed.
  • the device characteristics can be made uniform.
  • the loading effect generated when a film is formed by the CVD method depends on the film forming conditions of the film constituting the membrane, but it may affect the boundary area between the areas having different unit surface areas to several millimeters. . Therefore, even if the pattern structure 311 is disposed in the peripheral region PER that is the outer region of the cell array region CAR, these regions must be disposed unless the pattern structure 311 is disposed up to the scribe region 2201 and the off-chip region 2103 other than the chip region 2102 There is a possibility that the effect of the loading effect due to the difference in unit surface area may reach the cell array region CAR. As a result, there is a possibility that the device characteristics of the CMUT cell arranged in the central part of the cell array region CAR and the CMUT cell arranged in the outer peripheral part become non-uniform.
  • the size of the chip region 2102 needs to be increased in order to maintain the size (size) of the cell array having the function of transmitting and receiving ultrasonic waves.
  • the number of CMUT chips 301 that can be obtained from the semiconductor wafer 2101 decreases, leading to a decrease in yield and an increase in chip price (cost).
  • a pattern structure 311 corresponding to the beam structure 201 is arranged also in the scribe area 2201 and the off-chip area 2103 other than the chip area 2102. is doing.
  • the unit surface area of the entire main surface of the semiconductor wafer 2101 can be made substantially uniform. Therefore, according to the second embodiment, it is necessary to dispose the cell array at a distance from the scribe region 2201 and the off-chip region 2103 in order to suppress the loading effect caused by the scribe region 2201 and the off-chip region 2103. There is no.
  • the device characteristics of the CMUT cells in the cell array formed in all the chip regions 2102 are made uniform, and the number of CMUT chips 301 that can be acquired from the semiconductor wafer 2101 is reduced. Both yield reduction and chip price increase can be suppressed.
  • the CMUT manufacturing method according to the second embodiment is the same as the CMUT manufacturing method according to the first embodiment.
  • a pattern of the pattern structure 311 may be laid out in advance in the scribe region 2201 in a photomask for forming the beam structure 201 in the chip region 2102.
  • the off-chip region 2103 only needs to be patterned not only in the chip region 2102 but also in the off-chip region 2103 using a photomask for forming the beam structure 201.
  • the pattern structure 311 may be patterned in the off-chip region 2103 using a photomask dedicated to the pattern in the off-chip region 2103.
  • the unit on the entire main surface of the semiconductor wafer 2101 is changed. If the surface areas are substantially equal, the same effect can be obtained regardless of the arrangement pitch and pattern shape.
  • the present invention is not limited to this, and depends on the degree of effect.
  • the pattern structure 311 may be disposed only in one of the scribe region 2201 and the off-chip region 2103.
  • FIG. 28 is a block diagram showing a schematic configuration of the ultrasonic inspection apparatus 2401 according to the third embodiment.
  • the ultrasonic inspection apparatus 2401 according to the first embodiment includes a main body and an ultrasonic probe 2402.
  • the main body includes a transmission / reception separation unit 2403, a transmission unit 2404, a bias unit 2405, a reception unit 2406, A phasing addition unit 2407, an image processing unit 2408, a display unit 2409, a control unit 2410, and an operation unit 2411 are included.
  • the ultrasonic probe 2402 is a device that transmits and receives ultrasonic waves to and from a subject by making contact with the subject, and is manufactured using the CMUT in the first embodiment or the second embodiment. .
  • An ultrasonic wave is transmitted from the ultrasonic probe 2402 to the subject, and a reflected echo signal from the subject is received by the ultrasonic probe 2402.
  • the ultrasonic probe 2402 is electrically connected to a transmission / reception separating unit 2403 described later.
  • the transmission unit 2404 and the bias unit 2405 have a function of supplying a drive signal to the ultrasonic probe 2402 in order to transmit an ultrasonic wave from the ultrasonic probe 2402.
  • the receiving unit 2406 has a function of receiving a reflected echo signal output from the ultrasonic probe 2402.
  • the receiving unit 2406 further performs signal processing such as analog-digital conversion (AD conversion) on the received reflected echo signal.
  • AD conversion analog-digital conversion
  • the transmission / reception separating unit 2403 electrically connects the ultrasonic probe 2402 and the transmission unit 2404 when transmitting ultrasonic waves, while electrically connecting the ultrasonic probe 2402 and the reception unit 2406 when receiving ultrasonic waves. Has a function of switching the connection path so as to be connected. That is, the transmission / reception separating unit 2403 switches between transmission and reception so as to pass a drive signal from the transmission unit 2404 to the ultrasonic probe 2402 during transmission and to pass a reception signal from the ultrasonic probe 2402 to the reception unit 2406 during reception. Have the function of separating.
  • the phasing addition unit 2407 has a function of adding a reflection echo signal output from the focus point in consideration of a time difference received by each CMUT cell. That is, the phasing addition unit 2407 has a function of adding (phasing addition) in consideration of the phase difference of the reflected echo signal.
  • the image processing unit 2408 has a function of forming an inspection image based on the phasing-added reflected echo signal, and the display unit 2409 is a display device that displays the image-processed inspection image.
  • the control unit 2410 has a function of controlling each component constituting the main body, and the control unit 2410 controls transmission / reception of ultrasonic waves of the ultrasonic probe 2402.
  • the operation unit 2411 is a device that gives an instruction to the control unit 2410.
  • the operation unit 2411 includes, for example, an input device such as a trackball, a keyboard, or a mouse.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the embodiments described above are described in detail for better understanding of the present invention, and are not necessarily limited to those provided with all the configurations described above.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. .
  • the embodiment includes the following forms.
  • Each of the plurality of pattern structures is an ultrasonic transducer formed of the same material as the beam structure.
  • Each of the plurality of pattern structures is an ultrasonic transducer having the same structure as the beam structure.
  • the difference between the surface area on the third insulating film in the peripheral region where the plurality of pattern structures are formed and the surface area on the third insulating film in the cell array region where the plurality of beam structures are formed is: The surface area on the third insulating film in the peripheral region and the surface area on the third insulating film in the cell array region in which the plurality of beam structures are formed when the plurality of pattern structures are not formed in the peripheral region Ultrasonic transducer, smaller than the difference.
  • a membrane is configured by the second insulating film, the second electrode, the third insulating film, the beam structure, and the fourth insulating film,
  • the ultrasonic transducer has a function of increasing the vibration of the membrane in the thickness direction of the membrane as compared with the case where the beam structure does not exist.
  • the thickness of the said beam structure is an ultrasonic transducer which is more than the thickness which combined the said 2nd insulating film, the said 2nd electrode, and the said 3rd insulating film.
  • (Appendix 7) (A) preparing a semiconductor wafer having a plurality of chip regions, a scribe region that partitions the plurality of chip regions, and an off-chip region formed outside the plurality of chip regions on a main surface; (B) forming a first electrode in each of the plurality of chip regions; (C) forming a first insulating film on the main surface including on the first electrode; (D) forming a sacrificial layer overlapping the first electrode in plan view on the first insulating film in each of the plurality of chip regions; (E) forming a second insulating film on the first insulating film covering the sacrificial layer and formed on the main surface; (F) forming a second electrode that overlaps the sacrificial layer in plan view on the second insulating film in each of the plurality of chip regions; (G) forming a third insulating film on the main surface including the second electrode; (H) forming an etching hole that penetrates the third insulating film and the
  • Each of the plurality of chip regions is A cell array region in which a plurality of cells are formed; A peripheral region in contact with the cell array region; Including In the step (k), the plurality of pattern structures are also formed on the third insulating film in the peripheral region of each of the plurality of chip regions.
  • step (l) In the method of manufacturing an ultrasonic transducer according to appendix 7, In the step (l), the fourth insulating film is formed using a plasma CVD method.

Abstract

In a capacitive-detection-type ultrasonic transducer, variation in the film thickness of a membrane of each cell in a cell array of the ultrasonic transducer causes the device characteristics of cells in the cell array to be nonuniform. Provided is an ultrasonic transducer provided with a CMUT chip 301 including a cell array region CAR in which a plurality of cells are formed and a peripheral region PER adjoining the cell array region CAR, wherein a beam structure 201 is disposed in the cell array region CAR, and a plurality of pattern structures 311 corresponding to the beam structure 201 are disposed in the peripheral region PER. This reduces the difference between the unit surface area of the cell array region CAR and the unit surface area of the peripheral region PER. As a result, it is possible to improve uniformity in the film thickness of an insulating film covering the beam structure 201 and the pattern structures 311.

Description

超音波トランスデューサおよび超音波検査装置Ultrasonic transducer and ultrasonic inspection device
 本発明は、超音波トランスデューサおよびその製造技術並びに超音波検査装置に関し、例えば、MEMS(Micro Electro Mechanical Systems)技術により製造される超音波トランスデューサおよびその製造技術に適用して有効な技術に関する。 The present invention relates to an ultrasonic transducer, a manufacturing technique thereof, and an ultrasonic inspection apparatus, for example, an ultrasonic transducer manufactured by a MEMS (Micro Electro Mechanical Systems) technique and a technique effective when applied to the manufacturing technique.
 超音波トランスデューサは、超音波を送受信することにより、人体内の腫瘍の診断や建造物に発生した亀裂の検査などの様々な用途に用いられている。 Ultrasonic transducers are used for various purposes such as diagnosis of tumors in the human body and inspection of cracks in buildings by transmitting and receiving ultrasonic waves.
 これまでは、圧電体の振動を利用した超音波トランスデューサが用いられてきたが、近年のMEMS技術の進歩により、振動部をシリコン基板上に作製した静電容量検出型超音波トランスデューサ(CMUT:Capacitive Micromachined Ultrasonic Transducer)が実用化を目指して盛んに開発されている。 Up to now, ultrasonic transducers using the vibration of piezoelectric materials have been used, but due to the recent advancement of MEMS technology, a capacitive detection type ultrasonic transducer (CMUT: Capacitive) in which a vibration part is fabricated on a silicon substrate. Micromachined (Ultrasonic Transducer) has been actively developed for practical use.
 このCMUTは、従来の圧電体を用いた超音波トランスデューサと比較して、使用できる超音波の周波数帯域が広い、あるいは、高感度であるなどの利点を有している。また、LSI加工技術を用いて作製することができるので、微細加工が可能である利点も有している。 This CMUT has advantages such as a wider frequency band of ultrasonic waves that can be used or higher sensitivity than conventional ultrasonic transducers using piezoelectric materials. In addition, since it can be manufactured using LSI processing technology, there is an advantage that fine processing is possible.
 例えば、特許文献1および特許文献2には、CMUTのセルアレイの外周にダミーセルを配置することにより、メンブレンの歪みを均一化、あるいは、デバイス特性を均一化するCMUTが記載されている。また、特許文献3には、CMUTのメンブレン上に梁構造(「embossed structure」,「beam structure」)を配置して、メンブレンの共振周波数を調整するCMUTが記載されている。 For example, Patent Document 1 and Patent Document 2 describe CMUTs in which dummy cells are arranged on the outer periphery of a CMUT cell array so as to equalize membrane distortion or device characteristics. Patent Document 3 describes a CMUT in which a beam structure (“embossed structure”, “beam structure”) is arranged on a CMUT membrane to adjust the resonance frequency of the membrane.
特開2010-172181号公報JP 2010-172181 A 国際公開第2008/136198号International Publication No. 2008/136198 米国特許第8,483,014号明細書US Pat. No. 8,483,014
 通常、CMUTが形成された半導体チップには、複数のセルが形成されたセルアレイ領域と、セルアレイ領域と接して、セルアレイ領域の外側に形成される周辺領域とが存在する。このとき、セルアレイ領域には複数のセルが形成されるため、平坦性が低くなる場合がある一方、通常、周辺領域にはセルが形成されずに平坦性が高い。このため、セルアレイ領域と周辺領域との間に大きな表面積の差が生じることになる。ここで、例えば、CMUTの最上層には、セル内への水分や異物の浸入を抑制するため、パッシベーション膜(表面保護膜)が形成されるが、このパッシベーション膜の成膜工程においては、平坦性に依存して膜厚に差が生じることがある。したがって、セルアレイ領域でのパッシベーション膜の膜厚と、周辺領域でのパッシベーション膜の膜厚に差が生じ、この結果、セルアレイ領域の中心部でのパッシベーション膜の膜厚と、セルアレイ領域の端部でのパッシベーション膜の膜厚に差が生じる。これにより、CMUTでは、セルアレイ領域に形成されている複数のセルのそれぞれのメンブレンの膜厚ばらつきが発生する。このため、セルアレイ領域に形成されている複数のセル間のデバイス特性(例えば、感度)が不均一化する。 Usually, a semiconductor chip on which a CMUT is formed has a cell array region in which a plurality of cells are formed, and a peripheral region that is in contact with the cell array region and formed outside the cell array region. At this time, since a plurality of cells are formed in the cell array region, the flatness may be low. On the other hand, normally, no cells are formed in the peripheral region and the flatness is high. For this reason, a large difference in surface area occurs between the cell array region and the peripheral region. Here, for example, a passivation film (surface protective film) is formed on the uppermost layer of the CMUT in order to suppress the intrusion of moisture and foreign matter into the cell. Depending on the nature, there may be a difference in film thickness. Therefore, there is a difference between the thickness of the passivation film in the cell array region and the thickness of the passivation film in the peripheral region. As a result, the thickness of the passivation film in the central portion of the cell array region and the edge of the cell array region are different. A difference occurs in the thickness of the passivation film. Thereby, in CMUT, the film thickness variation of each membrane of the plurality of cells formed in the cell array region occurs. For this reason, device characteristics (for example, sensitivity) between a plurality of cells formed in the cell array region become non-uniform.
 本発明の目的は、CMUTを構成する複数のセルにおけるメンブレンの膜厚ばらつきを抑制することにより、複数のセル間におけるデバイス特性の均一化を向上することにある。 An object of the present invention is to improve uniformity of device characteristics among a plurality of cells by suppressing variations in the film thickness of the membrane in the plurality of cells constituting the CMUT.
 その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 Other issues and novel features will become clear from the description of the present specification and the accompanying drawings.
  一実施の形態における超音波トランスデューサは、複数のセルが形成されたセルアレイ領域と、セルアレイ領域に接する周辺領域と、を含む半導体チップを備える。複数のセルのそれぞれは、基板と、基板上に形成された第1電極と、第1電極上に形成された第1絶縁膜と、第1絶縁膜上に形成され、かつ、平面視において第1電極と重なる空洞部と、空洞部上に形成された第2絶縁膜と、を有する。さらに、複数のセルのそれぞれは、第2絶縁膜上に形成され、かつ、平面視において空洞部と重なる第2電極と、第2電極上に形成された第3絶縁膜と、第3絶縁膜上に形成され、かつ、平面視において空洞部と重なる梁構造体と、梁構造体(「embossed structure」,「beam structure」)を覆い、かつ、第3絶縁膜上に形成された第4絶縁膜と、を有する。ここで、周辺領域には、第3絶縁膜と、第3絶縁膜上に形成され、梁構造体に相当する複数のパターン構造体と、複数のパターン構造体を覆う第4絶縁膜と、が形成されている。 An ultrasonic transducer according to an embodiment includes a semiconductor chip including a cell array region in which a plurality of cells are formed and a peripheral region in contact with the cell array region. Each of the plurality of cells is formed on the substrate, the first electrode formed on the substrate, the first insulating film formed on the first electrode, the first insulating film, and in the plan view. A cavity overlapping with the one electrode; and a second insulating film formed on the cavity. Furthermore, each of the plurality of cells is formed on the second insulating film and overlaps the cavity in plan view, a third insulating film formed on the second electrode, and a third insulating film A beam structure that is formed above and overlaps the cavity in plan view, and a fourth insulation that covers the beam structure (“embossed 構造 structure”, “beam structure”) and is formed on the third insulating film And a membrane. Here, in the peripheral region, there are a third insulating film, a plurality of pattern structures formed on the third insulating film and corresponding to a beam structure, and a fourth insulating film covering the plurality of pattern structures. Is formed.
 また、一実施の形態における超音波検査装置は、被検体に接触させて、被検体との間で超音波を送受信する超音波探触子と、超音波探触子から超音波を発信させるために、超音波探触子に駆動信号を供給する送信部と、超音波を受信した超音波探触子から出力される反射エコー信号を受信する受信部と、を備える。そして、超音波検査装置は、反射エコー信号に基づいて画像を生成する画像処理部と、超音波の発信時には、超音波探触子と送信部とを電気的に接続する一方、超音波の受信時には、超音波探触子と受信部とを電気的に接続するように接続経路を切り換える送受信分離部と、を備える。ここで、超音波探触子は、送受信分離部と電気的に接続され、かつ、上述した構成の超音波トランスデューサを含む。 In addition, an ultrasonic inspection apparatus according to an embodiment is configured to contact an object and transmit an ultrasonic wave from the ultrasonic probe that transmits and receives an ultrasonic wave to and from the object. In addition, a transmission unit that supplies a drive signal to the ultrasonic probe and a reception unit that receives a reflected echo signal output from the ultrasonic probe that has received the ultrasonic wave are provided. Then, the ultrasonic inspection apparatus electrically connects the image processing unit that generates an image based on the reflected echo signal and the ultrasonic probe and the transmission unit while transmitting the ultrasonic wave, while receiving the ultrasonic wave. In some cases, a transmission / reception separating unit that switches a connection path so as to electrically connect the ultrasonic probe and the receiving unit is provided. Here, the ultrasonic probe includes the ultrasonic transducer that is electrically connected to the transmission / reception separating unit and configured as described above.
 一実施の形態によれば、CMUTを構成する複数のセルにおけるメンブレンの膜厚ばらつきを抑制することができる。この結果、一実施の形態によれば、複数のセル間におけるデバイス特性の均一化を向上することができる。 According to one embodiment, it is possible to suppress membrane thickness variations in a plurality of cells constituting the CMUT. As a result, according to one embodiment, it is possible to improve the uniformity of device characteristics among a plurality of cells.
基本的なCMUTの構成例を示す断面図である。It is sectional drawing which shows the structural example of basic CMUT. メンブレンに梁構造体が設けられたCMUTの構成例を示す断面図である。It is sectional drawing which shows the structural example of CMUT by which the beam structure was provided in the membrane. 実施の形態1におけるCMUTチップの模式的なレイアウト構成例を示す平面図である。4 is a plan view showing a schematic layout configuration example of a CMUT chip in the first embodiment. FIG. 図3に示す一部領域を拡大して示す拡大図である。It is an enlarged view which expands and shows the partial area | region shown in FIG. 図4のA-A線で切断した断面図である。FIG. 5 is a cross-sectional view taken along line AA in FIG. 4. 図3のB-B線で切断した断面図である。FIG. 4 is a cross-sectional view taken along line BB in FIG. 3. 図3のC-C線で切断した断面図である。FIG. 4 is a cross-sectional view taken along the line CC in FIG. 3. 図3のD-D線で切断した断面図である。FIG. 4 is a cross-sectional view taken along line DD in FIG. 3. 実施の形態1におけるCMUTの製造工程を示す断面図である。FIG. 6 is a cross-sectional view showing a CMUT manufacturing process in the first embodiment. 図9に続くCMUTの製造工程を示す断面図である。FIG. 10 is a cross-sectional view showing a manufacturing step of the CMUT following FIG. 9. 図10に続くCMUTの製造工程を示す断面図である。FIG. 11 is a cross-sectional view showing a manufacturing step of the CMUT following FIG. 10. 図11に続くCMUTの製造工程を示す断面図である。FIG. 12 is a cross-sectional view showing a manufacturing step of the CMUT following FIG. 11. 図12に続くCMUTの製造工程を示す断面図である。FIG. 13 is a cross-sectional view showing a manufacturing step of the CMUT following FIG. 図13に続くCMUTの製造工程を示す断面図である。FIG. 14 is a cross-sectional view showing a manufacturing step of the CMUT following FIG. 13. 図14に続くCMUTの製造工程を示す断面図である。FIG. 15 is a cross-sectional view showing a manufacturing step of the CMUT following FIG. 14. 図15に続くCMUTの製造工程を示す断面図である。FIG. 16 is a cross-sectional view showing a manufacturing step of the CMUT following FIG. 15. 図16に続くCMUTの製造工程を示す断面図である。FIG. 17 is a cross-sectional view showing a manufacturing step of the CMUT following FIG. 16. 図17に続くCMUTの製造工程を示す断面図である。FIG. 18 is a cross-sectional view showing a manufacturing step of the CMUT following FIG. 17. 図18に続くCMUTの製造工程を示す断面図である。FIG. 19 is a cross-sectional view showing a manufacturing step of the CMUT following FIG. 18. 変形例1におけるCMUTチップの模式的なレイアウト構成例を示す平面図である。FIG. 10 is a plan view illustrating a schematic layout configuration example of a CMUT chip in Modification 1; 変形例2におけるCMUTチップの模式的なレイアウト構成例を示す平面図である。FIG. 11 is a plan view showing a schematic layout configuration example of a CMUT chip in Modification 2. 変形例3におけるCMUTチップの模式的なレイアウト構成例を示す平面図である。FIG. 10 is a plan view showing a schematic layout configuration example of a CMUT chip in Modification 3. 実施の形態2における半導体ウェハの主面を示す平面図である。FIG. 6 is a plan view showing a main surface of a semiconductor wafer in a second embodiment. 図23に示す一部領域を拡大して示す拡大図である。It is an enlarged view which expands and shows the partial area | region shown in FIG. 図23に示す他の一部領域を拡大して示す拡大図である。It is an enlarged view which expands and shows the other partial area | region shown in FIG. 半導体ウェハのスクライブ領域をダイシング処理により切断した後の一部領域を拡大して示す図である。It is a figure which expands and shows a partial area | region after cut | disconnecting the scribe area | region of a semiconductor wafer by a dicing process. 半導体ウェハのスクライブ領域をダイシング処理により切断した後の他の一部領域を拡大して示す図である。It is a figure which expands and shows the other partial area | region after cut | disconnecting the scribe area | region of a semiconductor wafer by a dicing process. 実施の形態3における超音波検査装置の構成例を示すブロック図である。6 is a block diagram illustrating an exemplary configuration of an ultrasonic inspection apparatus according to Embodiment 3. FIG.
 以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。 In the following embodiments, when it is necessary for the sake of convenience, the description will be divided into a plurality of sections or embodiments. However, unless otherwise specified, they are not irrelevant to each other. There are some or all of the modifications, details, supplementary explanations, and the like.
 また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。 Further, in the following embodiments, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), especially when clearly indicated and when clearly limited to a specific number in principle, etc. Except, it is not limited to the specific number, and may be more or less than the specific number.
 さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。 Further, in the following embodiments, the constituent elements (including element steps and the like) are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say.
 同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうではないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。 Similarly, in the following embodiments, when referring to the shape, positional relationship, etc., of components, etc., unless otherwise specified, and in principle, it is considered that this is not clearly the case, it is substantially the same. Including those that are approximate or similar to the shape. The same applies to the above numerical values and ranges.
 また、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。なお、図面をわかりやすくするために平面図であってもハッチングを付す場合がある。 In all the drawings for explaining the embodiments, the same members are, in principle, given the same reference numerals, and the repeated explanation thereof is omitted. In order to make the drawings easy to understand, even a plan view may be hatched.
 (実施の形態1)
 <CMUTの基本構造および動作>
 図1を用いて、CMUTの基本的な構造および動作を説明する。図1は、基本的な1つのCMUTセルの断面構造を示している。基板101の上層に絶縁膜104aを介して下部電極102が形成され、この下部電極102の上層に絶縁膜104bに囲まれた空洞部103が形成されている。空洞部103の上層の絶縁膜104bと上部電極105により、メンブレン106が配置される。
(Embodiment 1)
<Basic structure and operation of CMUT>
The basic structure and operation of the CMUT will be described with reference to FIG. FIG. 1 shows a cross-sectional structure of one basic CMUT cell. A lower electrode 102 is formed above the substrate 101 via an insulating film 104a, and a cavity 103 surrounded by an insulating film 104b is formed above the lower electrode 102. A membrane 106 is disposed by the upper insulating film 104 b and the upper electrode 105 in the cavity 103.
 上部電極105と下部電極102の間に直流電圧と交流電圧とを重畳すると、静電気力が上部電極105と下部電極102の間に働き、メンブレン106が印加した交流電圧の周波数で振動することで、超音波を発信する。この際に、メンブレン106の共振周波数に近い周波数の交流電圧を印加することにより、効率良く超音波を送信することができる。 When a DC voltage and an AC voltage are superimposed between the upper electrode 105 and the lower electrode 102, an electrostatic force acts between the upper electrode 105 and the lower electrode 102, and the membrane 106 vibrates at the frequency of the AC voltage applied. Send ultrasonic waves. At this time, an ultrasonic wave can be transmitted efficiently by applying an alternating voltage having a frequency close to the resonance frequency of the membrane 106.
 超音波を受信する場合は、メンブレン106の表面に到達した超音波の圧力により、メンブレン106が振動する。すると、上部電極105と下部電極102との間の距離が変化するため、静電容量の変化として超音波を検出することができる。この際も、メンブレン106の共振周波数に近い周波数の超音波を効率よく受信できる。 When receiving ultrasonic waves, the membrane 106 vibrates due to the pressure of the ultrasonic waves that reach the surface of the membrane 106. Then, since the distance between the upper electrode 105 and the lower electrode 102 changes, ultrasonic waves can be detected as a change in capacitance. Also at this time, ultrasonic waves having a frequency close to the resonance frequency of the membrane 106 can be received efficiently.
 超音波の送信の効率および受信の効率は、上部電極105と下部電極102との間に印加する直流電圧にも関係する。上部電極105と下部電極102との間に印加する直流電圧を増大していくと、メンブレン106のバネによる反力と、上部電極105と下部電極102との間の静電気力とが平衡状態を保持できなくなり、空洞部103が潰れる現象が発生する。この現象が発生する時の直流電圧は、プルイン電圧と呼ばれる。上部電極105と下部電極102との間に印加する直流電圧がプルイン電圧に近いほど、CMUTのメンブレン106の振動エネルギーと電気エネルギーの変換効率が高くなる。したがって、CMUTを使用する際に印加する直流電圧は、プルイン電圧にできるだけ近い電圧を印加することが、CMUTによる超音波の送信効率および受信効率を向上する観点から重要である。つまり、プルイン電圧を基準としてCMUTの駆動電圧を決定することになる。 The ultrasonic transmission efficiency and the reception efficiency are also related to the DC voltage applied between the upper electrode 105 and the lower electrode 102. As the DC voltage applied between the upper electrode 105 and the lower electrode 102 is increased, the reaction force by the spring of the membrane 106 and the electrostatic force between the upper electrode 105 and the lower electrode 102 maintain an equilibrium state. A phenomenon that the hollow portion 103 is crushed occurs. The DC voltage when this phenomenon occurs is called a pull-in voltage. The closer the DC voltage applied between the upper electrode 105 and the lower electrode 102 is to the pull-in voltage, the higher the conversion efficiency between vibration energy and electric energy of the CMUT membrane 106. Therefore, it is important from the viewpoint of improving the transmission efficiency and reception efficiency of ultrasonic waves by the CMUT that the DC voltage applied when using the CMUT is as close as possible to the pull-in voltage. That is, the CMUT drive voltage is determined based on the pull-in voltage.
 <改善の検討>
 上述した動作原理からも明らかであるが、CMUTのメンブレン106の共振周波数とプルイン電圧はCMUTを設計する際や使用する際の重要なパラメータである。共振周波数(F)と、プルイン電圧(V)はともに、メンブレンの幅 w(空洞の幅)と膜厚tとの間に、F∝t/w、V∝t1.5/wの関係式が成り立ち、幅wと膜厚tとを設計通りに作製する必要がある。特に、CMUTのようなMEMSデバイスでは、デバイス特性への影響が大きいため、通常のLSIを製造する際よりも、より一層の制御が求められる。
<Examination of improvement>
As is clear from the operation principle described above, the resonance frequency and the pull-in voltage of the CMUT membrane 106 are important parameters when designing and using the CMUT. Resonance frequency (F) and pull-in voltage (V) are both F∝t / w 2 and V∝t 1.5 / w between membrane width w (cavity width) and film thickness t. It is necessary to produce the width w and the film thickness t as designed as the equation holds. In particular, a MEMS device such as a CMUT has a great influence on device characteristics, and thus requires more control than when manufacturing an ordinary LSI.
 半導体基板である半導体ウェハ(シリコンウェハ)を用いて、半導体ウェハ上に多数のCMUTチップ(半導体チップ)を作製する場合は、半導体ウェハ内のすべてのCMUTセルのメンブレン106の幅wと厚さtのばらつきを可能な限り抑制し、それぞれのCMUTセルの共振周波数やプルイン電圧といったセルのデバイス特性を均一にすることが重要である。 When a large number of CMUT chips (semiconductor chips) are produced on a semiconductor wafer using a semiconductor wafer (silicon wafer) which is a semiconductor substrate, the width w and the thickness t of the membrane 106 of all the CMUT cells in the semiconductor wafer. It is important to suppress the variation in the cell as much as possible and to make the cell device characteristics such as the resonance frequency and the pull-in voltage of each CMUT cell uniform.
 前述したように、CMUTはLSI加工技術を用いて作製されるので、メンブレン106の幅wは空洞部103の型となる犠牲層のパターンを形成するリソグラフィ工程の精度で決定される。LSIのリソグラフィ技術によれば、半導体ウェハ上に多数のCMUTセルを形成しても、リソグラフィ工程によるメンブレンの幅w、つまり、犠牲層の幅の変動幅は非常に小さく、メンブレンの幅wを均一に作製することが可能である。 As described above, since the CMUT is manufactured using LSI processing technology, the width w of the membrane 106 is determined by the accuracy of the lithography process for forming the pattern of the sacrificial layer that becomes the mold of the cavity 103. According to LSI lithography technology, even if a large number of CMUT cells are formed on a semiconductor wafer, the width w of the membrane by the lithography process, that is, the variation width of the sacrificial layer is very small, and the width w of the membrane is uniform. Can be produced.
 一方、メンブレン106の厚さtは、メンブレン106を構成する各膜の成膜プロセス、図1では、空洞部103より上層の絶縁膜104bと上部電極105の成膜プロセスにより決定される。したがって、セルアレイや半導体ウェハ上の多数のCMUTセルのデバイス特性を均一に製造するためには、各CMUTセルのメンブレン106を構成する各膜に対して、成膜される厚さを制御して、セルアレイ内や半導体ウェハ内で、メンブレン106の厚さを均一にすることが重要である。 On the other hand, the thickness t of the membrane 106 is determined by the film formation process of each film constituting the membrane 106, in FIG. 1, the film formation process of the insulating film 104 b and the upper electrode 105 above the cavity 103. Therefore, in order to uniformly manufacture the device characteristics of a large number of CMUT cells on a cell array or a semiconductor wafer, the thickness of each film constituting the membrane 106 of each CMUT cell is controlled, It is important to make the thickness of the membrane 106 uniform in the cell array and the semiconductor wafer.
 メンブレン106を構成する絶縁膜をCVD法(Chemical Vapor Deposition)で成膜する場合、成膜を行う半導体ウェハ上のパターン密度(パターンの単位表面積)に依存して、パターン上の膜厚が異なることがある。これは、ローディング効果と呼ばれ、CVD法での成膜機構が反応ガスの供給に律速される場合に生じる。特に、プラズマCVD法は、プラズマ中でガス分子と電子の衝突により堆積種が形成され、それらがパターンの表面に堆積する成膜機構となるため、ローディング効果が生じ易い。したがって、セルアレイとその外側の領域でパターン密度が異なる場合には、セルアレイのアレイ中心部と外周部で成膜される膜の厚さが異なり、この結果、セルアレイ内の各CMUTセルのデバイス特性が不均一になる可能性がある。 When the insulating film constituting the membrane 106 is formed by CVD (Chemical Vapor Deposition), the film thickness on the pattern varies depending on the pattern density (pattern unit surface area) on the semiconductor wafer on which the film is formed. There is. This is called a loading effect, and occurs when the film formation mechanism in the CVD method is rate-controlled by the supply of the reaction gas. In particular, in the plasma CVD method, deposition species are formed by collision of gas molecules and electrons in the plasma, and these are deposited on the surface of the pattern, so that a loading effect is likely to occur. Therefore, when the pattern density is different between the cell array and the outer area, the thickness of the film formed at the center and the outer periphery of the array is different. As a result, the device characteristics of each CMUT cell in the cell array are different. Can be non-uniform.
 図2は、例えば、梁構造体201を絶縁膜104b上に配置する構造を単純化して示すCMUTの断面図である。図2において、絶縁膜104bと上部電極105と梁構造体201とによって、メンブレン106が構成されることになる。この梁構造体201は、梁構造体201が存在しない場合よりも、メンブレン106の厚さ方向におけるメンブレン106の振動を大きくする機能、言い換えれば、メンブレン106にピストンライクな振動をさせる機能を有しており、この梁構造体201を設けることにより、CMUTにおける超音波の送受信効率を向上することができる。また、梁構造体201を設けることにより、メンブレン106の厚さtを調整することができるため、メンブレン106の共振周波数やプルイン電圧を調整することができる利点も得ることができる。 FIG. 2 is a cross-sectional view of a CMUT showing, for example, a simplified structure in which the beam structure 201 is disposed on the insulating film 104b. In FIG. 2, the membrane 106 is constituted by the insulating film 104 b, the upper electrode 105, and the beam structure 201. This beam structure 201 has a function of increasing the vibration of the membrane 106 in the thickness direction of the membrane 106, in other words, a function of causing the membrane 106 to perform piston-like vibration, compared to the case where the beam structure 201 does not exist. By providing this beam structure 201, the transmission / reception efficiency of ultrasonic waves in the CMUT can be improved. Moreover, since the thickness t of the membrane 106 can be adjusted by providing the beam structure 201, an advantage that the resonance frequency and the pull-in voltage of the membrane 106 can be adjusted can be obtained.
 ただし、図2に示すように、梁構造体201は凸形状をしており、梁構造体201を絶縁膜104b上に設ける場合には、絶縁膜104b上に大きな凸状の段差が生じることになる。このようなメンブレン106に大きな段差が生じる梁構造体201が存在する場合では、段差を生じさせる梁構造体201が存在しない図1に示すようなCMUTセルと比較すると、メンブレン106の表面積が増大することになる。 However, as shown in FIG. 2, the beam structure 201 has a convex shape, and when the beam structure 201 is provided on the insulating film 104b, a large convex step is generated on the insulating film 104b. Become. In the case where such a beam structure 201 in which a large step is generated in the membrane 106 exists, the surface area of the membrane 106 is increased as compared with the CMUT cell as shown in FIG. It will be.
 したがって、特に、梁構造体201を設けるCMUTでは、セルアレイ内と、通常は平坦な構造となるセルアレイの外側領域(周辺領域)のCMUTセルが配置されていない領域との間に、大きな表面積の差が生じる。このため、梁構造体201を設けるCMUTにおいては、梁構造体201を覆うように絶縁膜(パッシベーション膜、表面保護膜)を形成する際、ローディング効果が生じやすくなる。この結果、セルアレイのアレイ中心部とアレイ外周部で成膜される絶縁膜の厚さが特に大きくなり、これによって、セルアレイ内の各CMUTセルのデバイス特性が不均一になる可能性が高まることになる。 Therefore, in particular, in the CMUT provided with the beam structure 201, there is a large difference in surface area between the inside of the cell array and the region where the CMUT cells in the outer region (peripheral region) of the cell array that is normally flat are not arranged. Occurs. For this reason, in the CMUT provided with the beam structure 201, a loading effect is likely to occur when an insulating film (passivation film, surface protective film) is formed so as to cover the beam structure 201. As a result, the thickness of the insulating film formed at the center of the cell array and the outer periphery of the array becomes particularly large, which increases the possibility that the device characteristics of each CMUT cell in the cell array become non-uniform. Become.
 そこで、本実施の形態1では、CMUTを構成する複数のCMUTセル(特に、梁構造体201が形成された各CMUTセル)におけるメンブレン106の膜厚ばらつきを抑制する工夫を施している。すなわち、本実施の形態1では、メンブレン106の膜厚ばらつきを抑制して、複数のCMUTセル間におけるデバイス特性の均一化を向上する工夫を施している。以下に、この工夫を施した本実施の形態1における技術的思想について説明することにする。 Therefore, in the first embodiment, a contrivance is made to suppress the film thickness variation of the membrane 106 in a plurality of CMUT cells (particularly, each CMUT cell in which the beam structure 201 is formed) constituting the CMUT. That is, in the first embodiment, a device for suppressing the film thickness variation of the membrane 106 and improving the uniformity of device characteristics among a plurality of CMUT cells is provided. Hereinafter, the technical idea of the first embodiment in which this device is applied will be described.
 <実施の形態1におけるCMUTの構成>
 本実施の形態1における基本思想は、セルアレイ内のメンブレン厚さのばらつきを抑制することによりCMUTのデバイス特性の均一性を向上するという目的を、セルアレイを除く領域にCMUTセルを構成する構成要素を配置し、セルアレイ内の各CMUTセルのメンブレン厚さを均一化することで実現するものである。
<Configuration of CMUT in Embodiment 1>
The basic idea of the first embodiment is to improve the uniformity of the device characteristics of the CMUT by suppressing variations in the membrane thickness in the cell array, and to configure the constituent elements that constitute the CMUT cell in the region excluding the cell array. This is realized by arranging and making the membrane thickness of each CMUT cell in the cell array uniform.
 具体的に、本実施の形態1では、セルアレイが形成された半導体チップにおいて、CMUTセルを構成する梁構造に相当する複数のパターン構造体を、複数のCMUTセルが形成されたセルアレイ領域と接する周辺領域に配置することにより、セルアレイ内の各CMUTセルのメンブレンの膜厚ばらつきを抑制し、これによって、各CMUTセルのデバイス特性の均一化を実現している。 Specifically, in the first embodiment, in the semiconductor chip in which the cell array is formed, a plurality of pattern structures corresponding to the beam structure constituting the CMUT cell are in contact with the cell array region in which the plurality of CMUT cells are formed. By disposing in the region, variation in the film thickness of the membrane of each CMUT cell in the cell array is suppressed, thereby realizing uniform device characteristics of each CMUT cell.
 図3は、本実施の形態1におけるセルアレイが形成された半導体チップ(以下、CMUTチップ301と呼ぶ)を示した上面図である。この図3は、空洞部103が、CMUTチップ301の上面から見て、6角形をしたCMUTセルを例として示している。90個のCMUTセルが一点鎖線で示したセルアレイ310を構成している。また、CMUTセルが15個単位で上部電極105を結ぶ配線304により並列接続され、上部電極105からの引き出し配線305を介して、上部電極105への電源供給のためのプラグ306へ接続されており、1つのCMUTセルチャンネルを構成している。図3では、合計6列のCMUTセルチャンネルが下部電極102上に配置されている。下部電極102は、下部電極102の引き出し配線302を介して、下部電極102への電源供給のためのプラグ303へ接続されている。パターン構造体311は、CMUTセルの梁構造体201に相当する構造体であり、セルアレイ領域外の周辺領域に配置したものである。各CMUTセルは、下部電極102上に配置された空洞部103と、空洞部103上に配置された上部電極105と、メンブレンの一部を構成する梁構造体201などを備えて構成される。 FIG. 3 is a top view showing a semiconductor chip (hereinafter referred to as a CMUT chip 301) on which the cell array according to the first embodiment is formed. FIG. 3 shows an example of a CMUT cell in which the cavity 103 has a hexagonal shape when viewed from the upper surface of the CMUT chip 301. Ninety-seven CMUT cells constitute a cell array 310 indicated by a one-dot chain line. Further, CMUT cells are connected in parallel by wiring 304 connecting the upper electrode 105 in units of 15 and are connected to a plug 306 for supplying power to the upper electrode 105 via a lead wiring 305 from the upper electrode 105. One CMUT cell channel is configured. In FIG. 3, a total of six rows of CMUT cell channels are arranged on the lower electrode 102. The lower electrode 102 is connected to a plug 303 for supplying power to the lower electrode 102 via an extraction wiring 302 of the lower electrode 102. The pattern structure 311 is a structure corresponding to the beam structure 201 of the CMUT cell, and is arranged in a peripheral region outside the cell array region. Each CMUT cell includes a cavity portion 103 disposed on the lower electrode 102, an upper electrode 105 disposed on the cavity portion 103, a beam structure 201 constituting a part of the membrane, and the like.
 図4は、図3の領域ARを拡大した上面図である。図4に示すように、CMUTセルには、空洞部103を形成するためのエッチング孔401が設けられている。すなわち、エッチング孔401は、空洞部103に接続されている。なお、下部電極102と空洞部103の間に下部電極102を覆うように、酸化シリコン膜からなる絶縁膜が形成されており、上部電極105と空洞部103の間にも、酸化シリコン膜からなる絶縁膜が形成されているが、図4では、空洞部103および下部電極102を示すために図示していない。 FIG. 4 is an enlarged top view of the area AR in FIG. As shown in FIG. 4, the CMUT cell is provided with an etching hole 401 for forming the cavity 103. That is, the etching hole 401 is connected to the cavity 103. An insulating film made of a silicon oxide film is formed so as to cover the lower electrode 102 between the lower electrode 102 and the cavity 103, and a silicon oxide film is also formed between the upper electrode 105 and the cavity 103. Although an insulating film is formed, FIG. 4 is not shown to show the cavity 103 and the lower electrode 102.
 図5は、図4のA-A線で切断した断面図を示している。図5に示すように、半導体基板501上に形成された酸化シリコン膜からなる絶縁膜502上にCMUTセルの下部電極102が配置されている。下部電極102の上層には酸化シリコン膜からなる絶縁膜503を介して空洞部103が配置されている。空洞部103を囲むように酸化シリコン膜からなる絶縁膜504が配置され、絶縁膜504の上層に上部電極105と上部電極105からの引き出し配線305が配置されている。上部電極105と上部電極105からの引き出し配線305の上層には窒化シリコン膜からなる絶縁膜505と酸化シリコン膜からなる絶縁膜506が配置されている。また、絶縁膜504および絶縁膜505には、これらの膜を貫通するエッチング孔401が形成され、このエッチング孔401は、絶縁膜506によって埋め込まれている。このエッチング孔401は、空洞部103を形成するために形成されたものである。絶縁膜506の上層には、半導体基板501の主面の上面からみて、空洞部103に内包される位置に梁構造体201が配置され、また、上部電極105からの引き出し配線305と重なるようにセルアレイ領域の外側の周辺領域に配置したパターン構造体311が配置されている。さらに、梁構造体201およびパターン構造体311を覆い、かつ、絶縁膜506の上層に、窒化シリコン膜からなる絶縁膜507が配置されている。空洞部103の上層に配置された絶縁膜504と絶縁膜505と絶縁膜506と絶縁膜507と上部電極105と梁構造体201とにより、CMUTセルのメンブレン106が構成される。 FIG. 5 shows a cross-sectional view taken along line AA in FIG. As shown in FIG. 5, the lower electrode 102 of the CMUT cell is disposed on an insulating film 502 made of a silicon oxide film formed on a semiconductor substrate 501. A cavity 103 is disposed on the lower electrode 102 via an insulating film 503 made of a silicon oxide film. An insulating film 504 made of a silicon oxide film is disposed so as to surround the cavity 103, and the upper electrode 105 and a lead wiring 305 from the upper electrode 105 are disposed on the insulating film 504. An insulating film 505 made of a silicon nitride film and an insulating film 506 made of a silicon oxide film are disposed on the upper electrode 105 and the lead-out wiring 305 from the upper electrode 105. The insulating film 504 and the insulating film 505 are formed with etching holes 401 penetrating these films, and the etching holes 401 are filled with the insulating film 506. The etching hole 401 is formed to form the cavity 103. On the upper layer of the insulating film 506, the beam structure 201 is arranged at a position included in the cavity 103 as viewed from the upper surface of the main surface of the semiconductor substrate 501, and overlaps with the lead wiring 305 from the upper electrode 105. A pattern structure 311 is disposed in a peripheral region outside the cell array region. Further, an insulating film 507 made of a silicon nitride film is disposed on the insulating film 506 so as to cover the beam structure 201 and the pattern structure 311. The insulating film 504, the insulating film 505, the insulating film 506, the insulating film 507, the upper electrode 105, and the beam structure 201 arranged in the upper layer of the cavity 103 constitute the membrane 106 of the CMUT cell.
 図6は、図3のB-B線で切断した断面図を示している。図6において、セルアレイ領域の外側の周辺領域に配置したパターン構造体311は、下部電極102からの引き出し配線302の上層に配置され、上部電極105や上部電極105からの引き出し配線305や空洞部103が、下部電極102からの引き出し配線302とパターン構造体311の間に介在しない構成となっている。 FIG. 6 shows a cross-sectional view taken along line BB in FIG. In FIG. 6, the pattern structure 311 arranged in the peripheral region outside the cell array region is arranged in an upper layer of the extraction wiring 302 from the lower electrode 102, and the extraction wiring 305 and the cavity 103 from the upper electrode 105 and the upper electrode 105. However, the structure is such that there is no interposition between the lead wiring 302 from the lower electrode 102 and the pattern structure 311.
 図7は、図3のC-C線で切断した断面図を示している。701は、CMUTチップ301の端面である。図7において、セルアレイ領域の外側の周辺領域に配置したパターン構造体311の下層には、下部電極102や下部電極102からの引き出し配線302、上部電極105や上部電極105からの引き出し配線305、空洞部103が存在しない。すなわち、半導体基板501とパターン構造体311の間には、絶縁膜(絶縁膜502~506)のみが介在する構成となっている。 FIG. 7 shows a cross-sectional view taken along the line CC of FIG. Reference numeral 701 denotes an end face of the CMUT chip 301. In FIG. 7, in the lower layer of the pattern structure 311 arranged in the peripheral region outside the cell array region, a lower electrode 102, a lead wiring 302 from the lower electrode 102, a lead wiring 305 from the upper electrode 105 or the upper electrode 105, a cavity The part 103 does not exist. That is, only the insulating film (insulating films 502 to 506) is interposed between the semiconductor substrate 501 and the pattern structure 311.
 図8は、図3のD-D線で切断した断面図を示している。図8において、セルアレイ領域の外側の周辺領域に配置したパターン構造体311は、プラグ306とCMUTチップの端面701との間に配置された構成となっている。 FIG. 8 shows a cross-sectional view taken along the line DD in FIG. In FIG. 8, the pattern structure 311 arranged in the peripheral region outside the cell array region is arranged between the plug 306 and the end surface 701 of the CMUT chip.
 以上のように、本実施の形態1におけるCMUTは、例えば、図3に示すように、複数のCMUTセルが形成されたセルアレイ領域CARと、セルアレイ領域CARに接する周辺領域PERと、を含むCMUTチップ301(半導体チップ)を備える。 As described above, the CMUT according to the first embodiment includes, for example, a CMUT chip including a cell array region CAR in which a plurality of CMUT cells are formed and a peripheral region PER in contact with the cell array region CAR, as shown in FIG. 301 (semiconductor chip).
 そして、複数のCMUTセルのそれぞれは、例えば、図5に示すように、半導体基板501と、絶縁膜502を介して、半導体基板501上に形成された下部電極102と、下部電極102上に形成された絶縁膜503と、絶縁膜503上に形成され、かつ、平面視において下部電極102と重なる空洞部103とを有する。さらに、複数のCMUTセルのそれぞれは、図5に示すように、空洞部103上に形成された絶縁膜504と、絶縁膜504上に形成され、かつ、平面視において空洞部103と重なる上部電極105と、上部電極105上に形成された絶縁膜505および絶縁膜506とを有する。また、複数のCMUTセルのそれぞれは、絶縁膜506上に形成され、かつ、平面視において空洞部103と重なる梁構造体201と、梁構造体201を覆い、かつ、絶縁膜506上に形成された絶縁膜507とを有する。ここで、本実施の形態1におけるCMUTセルでは、図5に示すように、空洞部103上に配置されている絶縁膜504~507と上部電極105と梁構造体201とによって、メンブレン106が形成されることになる。特に、本実施の形態1において、梁構造体201の厚さは、例えば、絶縁膜504~506と上部電極105とを組み合わせた厚さと概ね等しいか、それ以上となるように構成されている。また、梁構造体201は、厚さ/幅で示されるアスペクト比が、CMUTセルを構成する構成要素の中で、最も大きい構成要素となっている。 Each of the plurality of CMUT cells is formed on the lower electrode 102 and the lower electrode 102 formed on the semiconductor substrate 501 with the semiconductor substrate 501 and the insulating film 502 interposed therebetween as shown in FIG. The insulating film 503 is formed, and the cavity 103 is formed on the insulating film 503 and overlaps the lower electrode 102 in plan view. Further, as shown in FIG. 5, each of the plurality of CMUT cells includes an insulating film 504 formed on the cavity 103 and an upper electrode formed on the insulating film 504 and overlapping the cavity 103 in plan view. 105, and an insulating film 505 and an insulating film 506 formed over the upper electrode 105. Each of the plurality of CMUT cells is formed on the insulating film 506 and overlaps the cavity 103 in plan view, and covers the beam structure 201 and is formed on the insulating film 506. And an insulating film 507. Here, in the CMUT cell according to the first embodiment, as shown in FIG. 5, the membrane 106 is formed by the insulating films 504 to 507, the upper electrode 105, and the beam structure 201 arranged on the cavity 103. Will be. In particular, in the first embodiment, the thickness of the beam structure 201 is configured to be approximately equal to or greater than the combined thickness of the insulating films 504 to 506 and the upper electrode 105, for example. The beam structure 201 has the largest aspect ratio indicated by the thickness / width among the components constituting the CMUT cell.
 一方、図5に示すように、周辺領域には、半導体基板501上に絶縁膜502~506が積層配置されており、絶縁膜506上に、CMUTセルの構成要素である梁構造体201に相当するパターン構造体311が形成され、パターン構造体311を覆うように絶縁膜507が形成されている。すなわち、図5に示すように、CMUTセルには、梁構造体201が形成されており、周辺領域には、この梁構造体201に対応するパターン構造体311が形成されていることになる。すなわち、CMUTセルには、絶縁膜506から凸状に張り出した梁構造体201が形成されているように、周辺領域にも、絶縁膜506から凸状に張り出すようにパターン構造体311が形成されている。つまり、梁構造体201およびパターン構造体311のそれぞれによって、絶縁膜506上に凸形状が形成されることになる。 On the other hand, as shown in FIG. 5, insulating films 502 to 506 are stacked on the semiconductor substrate 501 in the peripheral region, and the insulating film 506 corresponds to the beam structure 201 that is a component of the CMUT cell. A pattern structure 311 is formed, and an insulating film 507 is formed so as to cover the pattern structure 311. That is, as shown in FIG. 5, the beam structure 201 is formed in the CMUT cell, and the pattern structure 311 corresponding to the beam structure 201 is formed in the peripheral region. That is, in the CMUT cell, the pattern structure 311 is formed so as to protrude from the insulating film 506 in the peripheral region as the beam structure 201 protruding from the insulating film 506 is formed. Has been. That is, a convex shape is formed on the insulating film 506 by each of the beam structure 201 and the pattern structure 311.
 特に、本実施の形態1において、パターン構造体311および梁構造体201は、例えば、窒化シリコン膜を加工することにより形成されており、これにより、パターン構造体311と梁構造体201とは、同一材料から形成されていることになる。さらには、限定するものではないが、例えば、パターン構造体311は、梁構造体201と略同一構造をしている。 In particular, in the first embodiment, the pattern structure 311 and the beam structure 201 are formed, for example, by processing a silicon nitride film, whereby the pattern structure 311 and the beam structure 201 are: It is formed from the same material. Further, although not limited thereto, for example, the pattern structure 311 has substantially the same structure as the beam structure 201.
 次に、図3に示すように、セルアレイ領域CARに形成されている複数のCMUTセルのそれぞれには、梁構造体201が形成されており、複数のCMUTセル自体が規則的に配列されていることから、CMUTセルの構成要素である梁構造体201も規則的な配置パターンで配置されていることになる。そして、本実施の形態1においては、図3に示すように、周辺領域PERには、梁構造体201に相当する複数のパターン構造体311がほぼ規則的に配置されている。具体的には、周辺領域PERにおいては、複数のパターン構造体311が、梁構造体201の配置パターンと概ね等しい配置パターンで配置されている。言い換えれば、複数のパターン構造体311の配置パターンの少なくとも一部は、複数の梁構造体201の配置パターンと等しくなっている。 Next, as shown in FIG. 3, a beam structure 201 is formed in each of the plurality of CMUT cells formed in the cell array region CAR, and the plurality of CMUT cells themselves are regularly arranged. Therefore, the beam structure 201 which is a constituent element of the CMUT cell is also arranged in a regular arrangement pattern. In the first embodiment, as shown in FIG. 3, a plurality of pattern structures 311 corresponding to the beam structures 201 are arranged almost regularly in the peripheral region PER. Specifically, in the peripheral region PER, a plurality of pattern structures 311 are arranged in an arrangement pattern substantially equal to the arrangement pattern of the beam structures 201. In other words, at least a part of the arrangement pattern of the plurality of pattern structures 311 is equal to the arrangement pattern of the plurality of beam structures 201.
 つまり、図3に示すように、周辺領域PERには、下部電極102と電気的に接続された引き出し配線302と、引き出し配線302と電気的に接続されたプラグ303と、上部電極105と電気的に接続された引き出し配線305と、引き出し配線305と電気的に接続されたプラグ306とが形成されている。したがって、複数のパターン構造体311は、平面視において、プラグ303およびプラグ306と重ならない位置に配置する必要があることから、複数のパターン構造体311が梁構造体201の配置パターンと完全に等しく配置するわけにはいかないのである。 That is, as shown in FIG. 3, in the peripheral region PER, the lead wiring 302 electrically connected to the lower electrode 102, the plug 303 electrically connected to the lead wiring 302, and the upper electrode 105 are electrically connected. A lead wire 305 connected to the lead wire 305 and a plug 306 electrically connected to the lead wire 305 are formed. Therefore, since the plurality of pattern structures 311 need to be arranged at positions that do not overlap the plug 303 and the plug 306 in plan view, the plurality of pattern structures 311 are completely equal to the arrangement pattern of the beam structure 201. It cannot be arranged.
 ただし、図3に示すように、複数のパターン構造体311の一部は、平面視において、引き出し配線302と重なる位置に配置することができるとともに、複数のパターン構造体311の一部は、平面視において、引き出し配線305と重なる位置に配置することができる。なぜなら、図5および図6に示すように、半導体基板501の厚さ方向において、パターン構造体311の下層に引き出し配線305が配置されているとともに、パターン構造体311の下層に引き出し配線302が配置されているからである。 However, as shown in FIG. 3, a part of the plurality of pattern structures 311 can be arranged at a position overlapping the lead-out wiring 302 in plan view, and a part of the plurality of pattern structures 311 is a plane. In view, it can be arranged at a position overlapping the lead wiring 305. This is because, as shown in FIGS. 5 and 6, in the thickness direction of the semiconductor substrate 501, the extraction wiring 305 is disposed below the pattern structure 311, and the extraction wiring 302 is disposed below the pattern structure 311. Because it is.
 さらに、図3において、周辺領域PERを、引き出し配線302およびプラグ303が形成された第1引き出し領域と、引き出し配線305およびプラグ306が形成された第2引き出し領域と、第1引き出し領域の外側領域である第1外縁領域と、第2引き出し領域の外側領域である第2外縁領域とに分けるとする。この場合、図3に示すように、パターン構造体311は、第1引き出し領域および第2引き出し領域だけでなく、第1外縁領域および第2外縁領域にも形成されている。以上のようにして、本実施の形態1におけるCMUTが構成されていることになる。 Further, in FIG. 3, the peripheral region PER is divided into a first lead region in which the lead wiring 302 and the plug 303 are formed, a second lead region in which the lead wiring 305 and the plug 306 are formed, and an outer region of the first lead region. The first outer edge region is divided into the second outer edge region which is the outer region of the second lead-out region. In this case, as shown in FIG. 3, the pattern structure 311 is formed not only in the first extraction region and the second extraction region, but also in the first outer edge region and the second outer edge region. As described above, the CMUT in the first embodiment is configured.
 <実施の形態1における特徴>
 続いて、本実施の形態1における特徴点について説明する。本実施の形態1における特徴点は、例えば、図3に示すように、セルアレイ領域CARの外側の周辺領域PERに、CMUTセルを構成する構成要素である梁構造体201に相当するパターン構造体311をセルアレイのセルピッチと概ね等しいピッチで敷き詰めて配置している点にある。すなわち、本実施の形態1では、上部電極105への電源供給のためのプラグ306が形成されている領域と下部電極102への電源供給のためのプラグ303が形成されている領域とを除くCMUTチップ301の周辺領域PERにパターン構造体311を配置している。言い換えれば、本実施の形態1における特徴点は、セルアレイ領域CARの外側に設けられている周辺領域PERに、CMUTセルの梁構造体201に対応するパターン構造体311を設け、かつ、少なくとも、複数のパターン構造体311の配置パターンの一部が複数の梁構造体201の配置パターンと等しくなるように配置している点にある。このような構成にすることにより、セルアレイ内の各CMUTセル間のメンブレンの厚さのばらつきを抑制することができ、これによって、セルアレイ内のすべてのCMUTセルのデバイス特性を均一にすることができる。
<Characteristics in Embodiment 1>
Next, feature points in the first embodiment will be described. For example, as shown in FIG. 3, a feature point in the first embodiment is that a pattern structure 311 corresponding to a beam structure 201 which is a component constituting a CMUT cell is formed in a peripheral region PER outside the cell array region CAR. Are arranged at a pitch substantially equal to the cell pitch of the cell array. That is, in the first embodiment, the CMUT excluding the region where the plug 306 for supplying power to the upper electrode 105 is formed and the region where the plug 303 for supplying power to the lower electrode 102 is formed. A pattern structure 311 is arranged in the peripheral region PER of the chip 301. In other words, the feature point of the first embodiment is that the peripheral structure PER provided outside the cell array region CAR is provided with the pattern structure 311 corresponding to the beam structure 201 of the CMUT cell, and at least a plurality of pattern structures 311 are provided. This is because a part of the arrangement pattern of the pattern structure 311 is arranged to be equal to the arrangement pattern of the plurality of beam structures 201. By adopting such a configuration, it is possible to suppress variations in the thickness of the membrane between the CMUT cells in the cell array, thereby making it possible to make the device characteristics of all the CMUT cells in the cell array uniform. .
 つまり、セルアレイ領域CARの外側の周辺領域PERにCMUTセルを構成する梁構造体201に相当するパターン構造体311を配置しない場合には、セルアレイ領域CARの表面には、凸形状の梁構造体201が配置されている一方、周辺領域PERの表面は比較的平坦になる。この結果、セルアレイ領域CARと周辺領域PERにおいて、表面積に大きな差が発生する。このような大きな表面積の差が生じる場合、凸形状の梁構造体201を形成した後にCVD法により成膜処理を実施すると(図5では、絶縁膜507)、表面積の差に基づくローディング効果により、その表面積の差に依存して、セルアレイ領域CARの中央部から周辺領域PERの端部に向かって、徐々に堆積する絶縁膜の膜厚が厚くなってしまう。その結果、セルアレイ領域CARの中央部に配置されているCMUTセルとセルアレイ領域CARの外周部に配置されているCMUTセルとのデバイス特性が不均一になる。すなわち、膜厚が薄いセルアレイ領域CARの中央部に配置されたCMUTセルよりも、膜厚が厚いセルアレイ領域CARの外周部に配置されたCMUTセルの方が共振周波数やプルイン電圧が高くなる。この状態では、すべてのCMUTセルが設計した所望の周波数で効率良く超音波の送受信を行うことができず、各CMUTセルのチャンネル内やチャンネル間で感度が異なることになる。このことは、CMUTチップ301としての感度が低下することを意味する。 That is, when the pattern structure 311 corresponding to the beam structure 201 constituting the CMUT cell is not disposed in the peripheral region PER outside the cell array region CAR, the convex beam structure 201 is formed on the surface of the cell array region CAR. Is disposed, the surface of the peripheral region PER is relatively flat. As a result, a large difference in surface area occurs between the cell array region CAR and the peripheral region PER. When such a large difference in surface area occurs, when the film formation process is performed by the CVD method after forming the convex beam structure 201 (in FIG. 5, the insulating film 507), due to the loading effect based on the difference in surface area, Depending on the difference in surface area, the thickness of the insulating film that is gradually deposited increases from the center of the cell array region CAR toward the end of the peripheral region PER. As a result, the device characteristics of the CMUT cell arranged at the center of the cell array region CAR and the CMUT cell arranged at the outer periphery of the cell array region CAR become non-uniform. That is, the resonance frequency and the pull-in voltage are higher in the CMUT cell disposed in the outer peripheral portion of the cell array region CAR having a larger film thickness than in the CMUT cell disposed in the center portion of the cell array region CAR having a small film thickness. In this state, it is not possible to efficiently transmit and receive ultrasonic waves at a desired frequency designed by all CMUT cells, and the sensitivity differs within and among the channels of each CMUT cell. This means that the sensitivity of the CMUT chip 301 is lowered.
 前述したように、CMUTセルに印加する直流電圧をCMUTセルのプルイン電圧と可能な限り等しくすることが感度の向上に繋がるが、セルアレイ内の各CMUTセルのプルイン電圧が異なる場合、印加する直流電圧をセルアレイ内の複数のCMUTセルの中で最も低いプルイン電圧のCMUTセルを基準にして決定する必要がある。なぜなら、セルアレイ内で相対的に高いプルイン電圧を有するCMUTセルを基準にして、そのプルイン電圧に近い直流電圧をセルアレイ内のすべてのCMUTセルに印加すると、低いプルイン電圧を有するCMUTセルがプルインしてしまい、超音波の送信および受信に寄与しなくなる可能性があるからである。逆に、セルアレイ内の複数のCMUTセルの中で最も低いプルイン電圧のCMUTセルを基準にして、印加する直流電圧を決定した場合も、セルアレイ内で相対的に高いプルイン電圧を有するCMUTセルでは、印加された直流電圧は、そのCMUTセルのプルイン電圧からみれば低い電圧となってしまうため、感度が低くなってしまうのである。 As described above, making the DC voltage applied to the CMUT cell as equal as possible to the CMUT cell pull-in voltage leads to an improvement in sensitivity. However, if the pull-in voltage of each CMUT cell in the cell array is different, the DC voltage to be applied is different. Needs to be determined based on the CMUT cell having the lowest pull-in voltage among the plurality of CMUT cells in the cell array. This is because when a CMUT cell having a relatively high pull-in voltage in the cell array is used as a reference and a DC voltage close to the pull-in voltage is applied to all CMUT cells in the cell array, the CMUT cell having a low pull-in voltage is pulled in. This is because it may not contribute to the transmission and reception of ultrasonic waves. Conversely, even when the DC voltage to be applied is determined based on the CMUT cell having the lowest pull-in voltage among the plurality of CMUT cells in the cell array, the CMUT cell having a relatively high pull-in voltage in the cell array Since the applied DC voltage is a low voltage as seen from the pull-in voltage of the CMUT cell, the sensitivity is lowered.
 これに対し、本実施の形態1では、セルアレイ領域CARの外側の周辺領域PERに、CMUTセルを構成する梁構造体201に相当する比較的大きな段差(凸形状)を有するパターン構造体311を、複数のCMUTセルの配置ピッチと概ね等しい配置ピッチで配置している。これにより、本実施の形態1によれば、複数のパターン構造体311が形成された周辺領域PERにおける表面積と複数の梁構造体201が形成されたセルアレイ領域CARにおける表面積との差は、周辺領域PERに複数のパターン構造体311を形成しない場合の周辺領域PERにおける表面積と複数の梁構造体201が形成されたセルアレイ領域CARにおける表面積との差よりも小さくなる。この結果、セルアレイ領域CARの中央部と、セルアレイ領域CARの外周部との間で、表面積に大きな差が生じなくすることができるため、梁構造体201およびパターン構造体311を形成した後にCVD法により成膜を行っても、セルアレイ領域CARの中央部とセルアレイ領域CARの外周部に堆積する絶縁膜の膜厚を均一にすることができる。したがって、セルアレイ領域CARの中央部に配置されたCMUTセルとセルアレイ領域CARの外周部に配置されたCMUTセルとの間で、共振周波数やプルイン電圧といったデバイス特性も均一になり、これによって、効率の良い超音波の送受信を行なうことが可能となる。 On the other hand, in the first embodiment, the pattern structure 311 having a relatively large step (convex shape) corresponding to the beam structure 201 constituting the CMUT cell in the peripheral region PER outside the cell array region CAR. Arrangement pitches are approximately equal to the arrangement pitch of the plurality of CMUT cells. Thus, according to the first embodiment, the difference between the surface area in the peripheral region PER in which the plurality of pattern structures 311 is formed and the surface area in the cell array region CAR in which the plurality of beam structures 201 are formed is When the plurality of pattern structures 311 are not formed in the PER, the difference is smaller than the difference between the surface area in the peripheral region PER and the surface area in the cell array region CAR in which the plurality of beam structures 201 are formed. As a result, it is possible to prevent a large difference in surface area between the central portion of the cell array region CAR and the outer periphery of the cell array region CAR. Therefore, the CVD method is performed after the beam structure 201 and the pattern structure 311 are formed. Even if the film formation is performed, the insulating film deposited on the central portion of the cell array region CAR and the outer peripheral portion of the cell array region CAR can be made uniform. Therefore, the device characteristics such as the resonance frequency and the pull-in voltage become uniform between the CMUT cell arranged at the center of the cell array region CAR and the CMUT cell arranged at the outer periphery of the cell array region CAR. It is possible to transmit and receive good ultrasonic waves.
 特に、本実施の形態1では、周辺領域PERに配置するパターン構造体311として、CMUTセルの構成要素である梁構造体201に相当する構造体を採用している。これは、以下に示す理由による。すなわち、梁構造体201は、CMUTセルを構成する構成要素の中で最もアスペクト比(厚さ/幅)が大きな構造体である。つまり、アスペクト比が大きい構造体は、凸形状が最も張り出す構造体であり、表面積の増大に最も寄与する。言い換えれば、アスペクト比の最も大きい梁構造体201によって、セルアレイ領域CARの表面積の増大が生じることから、周辺領域PERにおいても、最もアスペクト比の大きな梁構造体201に相当するパターン構造体311を設けなければ、セルアレイ領域CARの表面積と周辺領域PERの表面積との差を最も小さくすることができないのである。言い換えれば、周辺領域PERにおいても、最もアスペクト比の大きな梁構造体201に相当するパターン構造体311を設けることにより、セルアレイ領域CARの表面積と周辺領域PERの表面積との差を最小限にすることができるのである。そして、セルアレイ領域CARの表面積と周辺領域PERの表面積との差を最小限にすることができるということは、成膜時のローディング効果を抑制できることを意味し、これによって、セルアレイ領域CARの表面(凹凸形状)を覆う膜の膜厚と、周辺領域PERの表面(凹凸形状)を覆う膜の膜厚の均一性を高めることができることを意味する。この結果、セルアレイ領域CARの中央部に配置されたCMUTセルとセルアレイ領域CARの外周部に配置されたCMUTセルとの間で、共振周波数やプルイン電圧といったデバイス特性の均一性を高めることができることになり、これによって、効率の良い超音波の送受信を行なうことができるのである。以上の理由から、周辺領域PERに配置されるパターン構造体311としては、セルアレイ領域CARに配置される構造体の中で、最もアスペクト比の高い構造体に相当する構造体から構成することが望ましいのである。具体的に、本実施の形態1では、セルアレイ領域CARに配置される構造体の中で、最もアスペクト比の高い構造体が梁構造体201であることから、周辺領域PERに配置するパターン構造体311として、CMUTセルの構成要素である梁構造体201に相当する構造体を採用している。 In particular, in the first embodiment, a structure corresponding to the beam structure 201 that is a component of the CMUT cell is adopted as the pattern structure 311 arranged in the peripheral region PER. This is due to the following reason. That is, the beam structure 201 is a structure having the largest aspect ratio (thickness / width) among the components constituting the CMUT cell. That is, a structure having a large aspect ratio is a structure in which the convex shape protrudes most, and contributes most to an increase in surface area. In other words, since the surface area of the cell array region CAR is increased by the beam structure 201 having the largest aspect ratio, the pattern structure 311 corresponding to the beam structure 201 having the largest aspect ratio is provided in the peripheral region PER. Otherwise, the difference between the surface area of the cell array region CAR and the surface area of the peripheral region PER cannot be minimized. In other words, also in the peripheral region PER, by providing the pattern structure 311 corresponding to the beam structure 201 having the largest aspect ratio, the difference between the surface area of the cell array region CAR and the surface area of the peripheral region PER is minimized. Can do it. The fact that the difference between the surface area of the cell array region CAR and the surface area of the peripheral region PER can be minimized means that the loading effect at the time of film formation can be suppressed, and thereby the surface of the cell array region CAR ( This means that the film thickness of the film covering the uneven shape and the film thickness covering the surface of the peripheral region PER (uneven shape) can be improved. As a result, it is possible to improve the uniformity of device characteristics such as the resonance frequency and the pull-in voltage between the CMUT cell arranged at the center of the cell array region CAR and the CMUT cell arranged at the outer periphery of the cell array region CAR. Thus, efficient transmission / reception of ultrasonic waves can be performed. For the above reasons, it is desirable that the pattern structure 311 disposed in the peripheral region PER is composed of a structure corresponding to the structure having the highest aspect ratio among the structures disposed in the cell array region CAR. It is. Specifically, in the first embodiment, since the structure having the highest aspect ratio among the structures arranged in the cell array region CAR is the beam structure 201, the pattern structure arranged in the peripheral region PER. As 311, a structure corresponding to the beam structure 201 which is a component of the CMUT cell is employed.
 <実施の形態1におけるCMUTの製造方法>
 次に、本実施の形態1におけるCMUTの製造方法について、図面を参照しながら説明する。図9~図19は、図4のA-A線での断面図に対応している。
<Manufacturing Method of CMUT in Embodiment 1>
Next, a CMUT manufacturing method according to the first embodiment will be described with reference to the drawings. 9 to 19 correspond to cross-sectional views taken along line AA in FIG.
 まず、複数のチップ領域と、複数のチップ領域を区画するスクライブ領域と、複数のチップ領域の外側に形成されたオフチップ領域と、を主面に有する半導体ウェハを準備する。そして、図9に示すように、半導体基板(半導体ウェハ)501上に、プラズマCVD法(Chemical Vapor Deposition)で酸化シリコン膜からなる絶縁膜502を1000nm堆積する。次に、絶縁膜502上に、スパッタリング法を使用することにより、窒化チタン膜とアルミニウム合金膜と窒化チタン膜とをそれぞれ100nm、600nm、100nm積層する。その後、フォトリソグラフィ技術およびドライエッチング技術を使用してパターニングすることにより、下部電極102と図3に示す下部電極102から引き出される引き出し配線302とを複数のチップ領域のそれぞれに形成する。 First, a semiconductor wafer having a plurality of chip regions, a scribe region that partitions the plurality of chip regions, and an off-chip region formed outside the plurality of chip regions is prepared. Then, as shown in FIG. 9, an insulating film 502 made of a silicon oxide film is deposited on the semiconductor substrate (semiconductor wafer) 501 by a plasma CVD method (Chemical Vapor Deposition) by 1000 nm. Next, a titanium nitride film, an aluminum alloy film, and a titanium nitride film are stacked to a thickness of 100 nm, 600 nm, and 100 nm on the insulating film 502 by using a sputtering method, respectively. Thereafter, patterning is performed using a photolithography technique and a dry etching technique to form the lower electrode 102 and the lead-out wiring 302 drawn from the lower electrode 102 shown in FIG. 3 in each of the plurality of chip regions.
 続いて、図10に示すように、プラズマCVD法を使用することにより、下部電極102上を含む主面に酸化シリコン膜からなる絶縁膜503を3000nm堆積する。そして、図11に示すように、CMP技術(Chemical Mechanical Polishing)を使用することにより、下部電極102上の絶縁膜503の膜厚が200nmになるまで平坦化を実施する。 Subsequently, as shown in FIG. 10, an insulating film 503 made of a silicon oxide film is deposited on the main surface including the lower electrode 102 by 3000 nm by using a plasma CVD method. Then, as shown in FIG. 11, planarization is performed by using a CMP technique (Chemical ま で Mechanical Polishing) until the thickness of the insulating film 503 on the lower electrode 102 becomes 200 nm.
 その後、図12に示すように、絶縁膜503の上面に、プラズマCVD法で多結晶シリコン膜(ポリシリコン膜)を300nm堆積し、フォトリソグラフィ技術およびドライエッチング技術を使用することにより、多結晶シリコン膜をパターニングすることで、絶縁膜503上に多結晶シリコン膜からなる犠牲層1203を形成する。すなわち、複数のチップ領域のそれぞれにおいて、絶縁膜503上に、平面視において下部電極102と重なる犠牲層1203を形成する。この犠牲層1203は、その後の工程で空洞部となる。 Thereafter, as shown in FIG. 12, a polycrystalline silicon film (polysilicon film) is deposited on the upper surface of the insulating film 503 by a plasma CVD method to a thickness of 300 nm, and a polycrystalline silicon film is used by using a photolithography technique and a dry etching technique. A sacrificial layer 1203 made of a polycrystalline silicon film is formed on the insulating film 503 by patterning the film. That is, a sacrificial layer 1203 that overlaps the lower electrode 102 in plan view is formed on the insulating film 503 in each of the plurality of chip regions. This sacrificial layer 1203 becomes a cavity in a subsequent process.
 次に、図13に示すように、犠牲層1203と絶縁膜503とを覆うように、プラズマCVD法により、酸化シリコン膜からなる絶縁膜504を200nm堆積する。つまり、犠牲層1203を覆い、かつ、主面に形成された絶縁膜503上に絶縁膜504を形成する。 Next, as shown in FIG. 13, an insulating film 504 made of a silicon oxide film is deposited to a thickness of 200 nm by plasma CVD so as to cover the sacrificial layer 1203 and the insulating film 503. That is, the insulating film 504 is formed over the insulating film 503 that covers the sacrificial layer 1203 and is formed on the main surface.
 続いて、図14に示すように、CMUTセルの上部電極105を形成するため、スパッタリング法により、窒化チタン膜とアルミニウム合金膜と窒化チタン膜との積層膜をそれぞれ50nm、100nm、50nm堆積する。そして、フォトリソグラフィ技術およびドライエッチング技術を使用することにより、上部電極105を形成する。その際、上部電極から引き出される引き出し配線305や、図3に示す複数の上部電極105をつなぐ配線304も同時に形成される。このように、図14に示す工程では、複数のチップ領域のそれぞれにおいて、絶縁膜504上に、平面視において犠牲層1203と重なる上部電極105を形成する。 Subsequently, as shown in FIG. 14, in order to form the upper electrode 105 of the CMUT cell, a laminated film of a titanium nitride film, an aluminum alloy film, and a titanium nitride film is deposited by sputtering to a thickness of 50 nm, 100 nm, and 50 nm, respectively. Then, the upper electrode 105 is formed by using a photolithography technique and a dry etching technique. At this time, a lead wire 305 drawn from the upper electrode and a wire 304 connecting the plurality of upper electrodes 105 shown in FIG. As described above, in the process shown in FIG. 14, the upper electrode 105 that overlaps the sacrificial layer 1203 in plan view is formed on the insulating film 504 in each of the plurality of chip regions.
 そして、図15に示すように、プラズマCVD法を使用することにより、窒化シリコン膜からなる絶縁膜505を絶縁膜504と上部電極105と上部電極から引き出された引き出し配線305とを覆うように200nm堆積する。 Then, as shown in FIG. 15, by using a plasma CVD method, an insulating film 505 made of a silicon nitride film is 200 nm so as to cover the insulating film 504, the upper electrode 105, and the extraction wiring 305 extracted from the upper electrode. accumulate.
 次に、図16に示すように、フォトリソグラフィ技術およびドライエッチング技術を使用することにより、絶縁膜505および絶縁膜504に犠牲層1203に到達するエッチング孔401を形成する。つまり、複数のチップ領域のそれぞれにおいて、絶縁膜504および絶縁膜505を貫通して犠牲層1203に達するエッチング孔401を形成する。 Next, as shown in FIG. 16, an etching hole 401 reaching the sacrifice layer 1203 is formed in the insulating film 505 and the insulating film 504 by using a photolithography technique and a dry etching technique. That is, in each of the plurality of chip regions, the etching hole 401 that penetrates the insulating film 504 and the insulating film 505 and reaches the sacrifice layer 1203 is formed.
 その後、図17に示すように、複数のチップ領域のそれぞれにおいて、エッチング孔401を介して、犠牲層1203をフッ化キセノン(XeF)ガスで等方性エッチングすることにより、空洞部103を形成する。 Thereafter, as shown in FIG. 17, in each of the plurality of chip regions, the sacrificial layer 1203 is isotropically etched with xenon fluoride (XeF 2 ) gas through the etching hole 401, thereby forming the cavity 103. To do.
 続いて、図18に示すように、エッチング孔401を埋め込むために、プラズマCVD法を使用することにより、酸化シリコン膜からなる絶縁膜506を200nm堆積する。このように、複数のチップ領域のそれぞれにおいて、絶縁膜506によって、エッチング孔401を塞ぐ。 Subsequently, as shown in FIG. 18, an insulating film 506 made of a silicon oxide film is deposited to a thickness of 200 nm by using a plasma CVD method to fill the etching hole 401. Thus, the etching hole 401 is closed by the insulating film 506 in each of the plurality of chip regions.
 その後、図19に示すように、プラズマCVD法を使用することにより、窒化シリコン膜からなる絶縁膜を800nm堆積し、フォトリソグラフィ技術およびドライエッチング技術を使用することにより、平面視において空洞部103と重なるCMUTセルの梁構造体201と、セルアレイ領域の外側の周辺領域に、梁構造体201に相当するパターン構造体311とを形成する。これにより、梁構造体201およびパターン構造体311によって、絶縁膜506上に凸形状が形成される。この際に、図3に示すセルアレイ領域の外側の周辺領域に配置されるすべてのパターン構造体311も形成される。 Thereafter, as shown in FIG. 19, by using a plasma CVD method, an insulating film made of a silicon nitride film is deposited by 800 nm, and by using a photolithography technique and a dry etching technique, Overlapping beam structures 201 of CMUT cells and a pattern structure 311 corresponding to the beam structure 201 are formed in the peripheral region outside the cell array region. Thereby, a convex shape is formed on the insulating film 506 by the beam structure 201 and the pattern structure 311. At this time, all pattern structures 311 arranged in the peripheral region outside the cell array region shown in FIG. 3 are also formed.
 そして、図5に示すように、プラズマCVD法を使用することにより、窒化シリコン膜からなる絶縁膜507を400nm堆積する。このとき、本実施の形態1によれば、セルアレイ領域の外側の周辺領域に、CMUTセルを構成する梁構造体201に相当する比較的大きな段差(凸形状)を有するパターン構造体311を形成している。これにより、本実施の形態1によれば、複数のパターン構造体311が形成された周辺領域における絶縁膜506上の表面積と複数の梁構造体201が形成されたセルアレイ領域おける絶縁膜506上の表面積との差を小さくすることができる。この結果、プラズマCVD法による絶縁膜507の成膜時におけるローディング効果の発生を抑制することができる。これにより、本実施の形態1によれば、セルアレイ領域の中央部とセルアレイ領域の外周部との間で、表面積に大きな差が生じなくすることができるため、セルアレイ領域の中央部とセルアレイ領域の外周部に堆積する絶縁膜の膜厚を概ね均一にすることができる。 Then, as shown in FIG. 5, an insulating film 507 made of a silicon nitride film is deposited by 400 nm by using the plasma CVD method. At this time, according to the first embodiment, the pattern structure 311 having a relatively large step (convex shape) corresponding to the beam structure 201 constituting the CMUT cell is formed in the peripheral region outside the cell array region. ing. Thus, according to the first embodiment, the surface area on the insulating film 506 in the peripheral region where the plurality of pattern structures 311 are formed and the insulating film 506 in the cell array region where the plurality of beam structures 201 are formed. The difference from the surface area can be reduced. As a result, it is possible to suppress the occurrence of a loading effect when forming the insulating film 507 by the plasma CVD method. Thus, according to the first embodiment, it is possible to prevent a large difference in surface area between the central portion of the cell array region and the outer peripheral portion of the cell array region. The film thickness of the insulating film deposited on the outer peripheral portion can be made substantially uniform.
 最後に、下部電極102への電気的な接続を実施するためのプラグ303(図3参照)と、上部電極105への電気的な接続を実施するためのプラグ306(図3参照)を形成する。以上のようにして、本実施の形態1におけるCMUTを製造することができる。 Finally, a plug 303 (see FIG. 3) for performing electrical connection to the lower electrode 102 and a plug 306 (see FIG. 3) for performing electrical connection to the upper electrode 105 are formed. . As described above, the CMUT according to the first embodiment can be manufactured.
 <変形例1>
 図3では、セルアレイ領域CARの外側の周辺領域PERに形成されているパターン構造体311の配置をセルアレイ内のCMUTセルの配置ピッチと等しいピッチで配置している。しかし、図3に示すように、プラグ303およびプラグ306やCMUTチップ301の端部に重なってしまい、等しいピッチでパターン構造体311を配置できない領域が周辺領域PERに発生してしまう。その場合は、図20に示す構造体2001や構造体2002のように、配置ピッチやパターン構造体311のパターン形状を変えてもよい。周辺領域PERに配置されるパターン構造体311の配置ピッチをセルアレイ内の複数のCMUTセルの配置ピッチと等しくすることが、CMUTチップにおけるセルアレイ領域CARの表面積(単位表面積)と周辺領域の表面積(単位表面積)を等しくする観点から望ましいが、周辺領域PERに配置されるパターン構造体311を配置できない領域にも、形状の異なる構造体2002を配置することにより、周辺領域PERの単位表面積とセルアレイ領域CARの単位表面積を概ね等しくすることができる。この結果、セルアレイ構成する複数のCMUTセルにおいて、デバイス特性のより一層の均一化を実現することができる。
<Modification 1>
In FIG. 3, the arrangement of the pattern structures 311 formed in the peripheral region PER outside the cell array region CAR is arranged at a pitch equal to the arrangement pitch of CMUT cells in the cell array. However, as shown in FIG. 3, the region overlaps with the end portions of the plug 303, the plug 306, and the CMUT chip 301, and an area where the pattern structure 311 cannot be arranged at the same pitch occurs in the peripheral area PER. In that case, the arrangement pitch and the pattern shape of the pattern structure 311 may be changed as in the structure 2001 and the structure 2002 shown in FIG. Making the arrangement pitch of the pattern structures 311 arranged in the peripheral area PER equal to the arrangement pitch of the plurality of CMUT cells in the cell array means that the surface area (unit surface area) of the cell array area CAR and the surface area (unit) of the peripheral area in the CMUT chip Although it is desirable from the viewpoint of equalizing the surface area), by disposing the structure 2002 having a different shape in the region where the pattern structure 311 disposed in the peripheral region PER cannot be disposed, the unit surface area and the cell array region CAR of the peripheral region PER are arranged. The unit surface area can be made substantially equal. As a result, device characteristics can be made more uniform in the plurality of CMUT cells constituting the cell array.
 <変形例2>
 図21は、セルアレイ310の外周にダミーセル2003を配置し、ダミーセル2003とセルアレイ310を配置した領域2004の外側に、さらに、パターン構造体311を配置した図である。本明細書でいうダミーセルとは、少なくとも、電極(上部電極および下部電極)と空洞部あるいは空洞部を充填した充填部とのいずれかを含むセルであって、超音波の送受信機能を果たさないセルを意味している。ダミーセル2003は、メンブレンの歪みを均一化あるいはデバイス特性を均一化するために配置しているが、図21に示すように、その外周に表面積差が生じるような状況が発生する場合には、セルアレイ310とダミーセル2003を配置した領域の外側にパターン構造体311を配置してもよい。セルアレイ310の外側の領域に、ローディング効果の影響がセルアレイ310まで及ばない程度まで、ダミーセル2003を配置することは可能である。しかし、ダミーセル2003を設ける場合、ダミーセル2003が電極(上部電極および下部電極)を含むため、CMUTチップ301上に多数の不要な浮遊電極が形成され、それらの浮遊電極を介した寄生容量の増加などがセルアレイ310の感度低下を引き起こす可能性がある。また、ダミーセル2003は空洞部を含むため、セルアレイ310の外側の周辺領域全体にダミーセル2003を配置する場合、基板からCMUTチップ301を切り出す工程で、CMUTチップ301の端部近傍のダミーセル2003の空洞部上のメンブレンが剥がれる可能性がある。剥がれたメンブレンはCMUTチップ301上に再付着して、セルアレイ310内のCMUTセルにダメージを与える可能性がある。
<Modification 2>
FIG. 21 is a diagram in which dummy cells 2003 are arranged on the outer periphery of the cell array 310, and a pattern structure 311 is further arranged outside the region 2004 in which the dummy cells 2003 and the cell array 310 are arranged. As used herein, a dummy cell is a cell that includes at least an electrode (upper electrode and lower electrode) and either a cavity or a filling part filled with a cavity, and does not perform an ultrasonic wave transmission / reception function. Means. The dummy cell 2003 is arranged to make the distortion of the membrane uniform or to make the device characteristics uniform. However, as shown in FIG. The pattern structure 311 may be arranged outside the area where the 310 and the dummy cell 2003 are arranged. It is possible to dispose the dummy cell 2003 in a region outside the cell array 310 to the extent that the influence of the loading effect does not reach the cell array 310. However, when the dummy cell 2003 is provided, since the dummy cell 2003 includes electrodes (upper electrode and lower electrode), a large number of unnecessary floating electrodes are formed on the CMUT chip 301, and an increase in parasitic capacitance via the floating electrodes, etc. May cause the sensitivity of the cell array 310 to decrease. In addition, since the dummy cell 2003 includes a cavity, when the dummy cell 2003 is disposed in the entire peripheral region outside the cell array 310, the cavity of the dummy cell 2003 near the end of the CMUT chip 301 is obtained by cutting the CMUT chip 301 from the substrate. The upper membrane may peel off. The peeled membrane may be reattached on the CMUT chip 301 and may damage the CMUT cells in the cell array 310.
 一方、図21に示す本変形例2のように、メンブレン歪みを均一化するためのダミーセル2003を配置した領域の外側に、ローディング効果を抑制するために、電極や空洞部を含まないパターン構造体311のみを配置した場合、寄生容量の増加やメンブレンの剥がれることを抑制することができる。すなわち、本変形例2によれば、セルアレイ310の外周にダミーセル2003を配置し、さらに、ダミーセル2003の外側領域に、パターン構造体311(構造体2001、構造体2002)を配置している。これにより、本変形例2によれば、ダミーセル2003によって、メンブレン歪みを均一化することができるとともに、パターン構造体311(構造体2001、構造体2002)によって、ダミーセル2003に起因する寄生容量の増加やメンブレンの剥がれを防止しながら、ローディング効果を抑制することができる利点を得ることができる。 On the other hand, as in Modification 2 shown in FIG. 21, a pattern structure that does not include electrodes or cavities outside the region where the dummy cells 2003 for uniformizing membrane distortion are arranged in order to suppress the loading effect. When only 311 is disposed, an increase in parasitic capacitance and peeling of the membrane can be suppressed. That is, according to the second modification, the dummy cells 2003 are arranged on the outer periphery of the cell array 310, and the pattern structures 311 (the structures 2001 and 2002) are arranged in the outer region of the dummy cells 2003. Thereby, according to the second modification, the membrane distortion can be made uniform by the dummy cell 2003, and the parasitic capacitance caused by the dummy cell 2003 is increased by the pattern structure 311 (the structure 2001 and the structure 2002). In addition, it is possible to obtain an advantage that the loading effect can be suppressed while preventing peeling of the membrane.
 <変形例3>
 なお、図3と図4と図20と図21において、複数のCMUTセルのそれぞれの空洞部103は、基板の上面から見て(平面視において)、六角形の形状をしているが、複数のCMUTセルのそれぞれの空洞部103の形状は、これに限らず、例えば、円形形状でも矩形形状をしていてもよい。
<Modification 3>
3, 4, 20, and 21, each cavity 103 of the plurality of CMUT cells has a hexagonal shape when viewed from the top surface of the substrate (in plan view). The shape of each cavity 103 of the CMUT cell is not limited to this, and may be, for example, a circular shape or a rectangular shape.
 図22は、CMUTセルが矩形形状の空洞形状をしており、かつ、矩形形状のパターン構造体311を空洞部上に多数配置した場合のCMUTチップ301を示す図である。図22に示す本変形例3においても、セルアレイ310の外側に、比較的大きな段差を発生させるパターン構造体を配置している。この本変形例3においても、セルアレイ310のセルピッチとほぼ同じピッチで、パターン構造体311配置しているので、空洞部の形状が六角形のセルの場合と同様に、セルアレイ310の中心部とセルアレイの外周部との間で表面積の差を小さくすることができる。この結果、本変形例3によっても、CVD法による成膜処理を行っても、セルアレイ310の中央部とセルアレイ310の外周部に堆積する膜の膜厚を均一にすることができる。したがって、本変形例3によっても、セルアレイ310の中央部に配置されたCMUTセルと、セルアレイ310の外周部に配置されたCMUTセルとの共振周波数やプルイン電圧といったデバイス特性が均一になり、効率のよい超音波の送信と受信が可能となる。 FIG. 22 is a diagram showing the CMUT chip 301 when the CMUT cell has a rectangular cavity shape and a large number of rectangular pattern structures 311 are arranged on the cavity portion. Also in the third modification shown in FIG. 22, a pattern structure that generates a relatively large step is arranged outside the cell array 310. Also in the third modification, the pattern structures 311 are arranged at substantially the same pitch as the cell pitch of the cell array 310, so that the central portion of the cell array 310 and the cell array are arranged as in the case of the hexagonal cell. The difference in surface area can be reduced with respect to the outer periphery of the. As a result, according to the third modification as well, the film thickness deposited on the central portion of the cell array 310 and the outer peripheral portion of the cell array 310 can be made uniform even when the film forming process by the CVD method is performed. Therefore, according to the third modification as well, the device characteristics such as the resonance frequency and the pull-in voltage between the CMUT cell arranged at the center of the cell array 310 and the CMUT cell arranged at the outer periphery of the cell array 310 become uniform, and the efficiency is improved. Good ultrasound transmission and reception is possible.
 さらに、実施の形態1では、CMUTセルを構成する構成要素の中で、梁構造体201に相当するパターン構造体311を周辺領域に配置したが、例えば、CMUTセルの構成要素の中に梁構造体201のようにアスペクト比の高い構造体が含まれる場合には、この構造体に相当するパターン構造体311を周辺領域に配置してもよい。 Furthermore, in the first embodiment, among the constituent elements constituting the CMUT cell, the pattern structure 311 corresponding to the beam structure 201 is arranged in the peripheral region. For example, the beam structure is included in the constituent elements of the CMUT cell. When a structure with a high aspect ratio is included like the body 201, a pattern structure 311 corresponding to this structure may be arranged in the peripheral region.
 また、実施の形態1で説明したCMUTの構成材料は、その組み合わせの1つの例を示したものであり、例えば、上部電極105や下部電極102の材料として、タングステンやその他の導電性を持つ材料を使用してもよい。さらには、犠牲層1203の材料も、犠牲層1203の周囲を囲む材料とのウェットエッチング選択性を確保することができる材料を使用することができる。したがって、犠牲層1203の材料としては、多結晶シリコン膜の他に、SOG(Spin-on-Glass)あるいは金属膜などを使用することもできる。 The constituent material of the CMUT described in the first embodiment is one example of the combination. For example, as the material of the upper electrode 105 and the lower electrode 102, tungsten or other conductive material May be used. Further, as the material of the sacrificial layer 1203, a material that can ensure wet etching selectivity with respect to the material surrounding the sacrificial layer 1203 can be used. Therefore, as the material of the sacrificial layer 1203, SOG (Spin-on-Glass) or a metal film can be used in addition to the polycrystalline silicon film.
 (実施の形態2)
 本実施の形態2では、CMUTチップを形成した半導体基板上において、CMUTチップが形成されているチップ領域以外のスクライブ領域とオフチップ領域にも、CMUTセルを構成する梁構造に相当するパターン構造体を絶縁膜上に配置している。これにより、本実施の形態2においても、セルアレイ内に形成されている各CMUTセルのメンブレンの膜厚ばらつきを抑制することができ、これによって、各CMUTセルのデバイス特性の均一化を実現することができる。
(Embodiment 2)
In the second embodiment, on the semiconductor substrate on which the CMUT chip is formed, the pattern structure corresponding to the beam structure constituting the CMUT cell also in the scribe region and the off-chip region other than the chip region where the CMUT chip is formed. Is disposed on the insulating film. Thereby, also in the second embodiment, it is possible to suppress the variation in the film thickness of the membrane of each CMUT cell formed in the cell array, thereby realizing uniform device characteristics of each CMUT cell. Can do.
 図23は、CMUTチップ301(チップ領域2102)が配列された半導体ウェハ2101を示す上面図である。本実施の形態2では、半導体ウェハ2101上に、横8列、縦2列の行列配置で複数のCMUTチップ301(複数のチップ領域2102)が形成されている。これらの複数のCMUTチップ301が配列されている複数のチップ領域2102以外の領域には、オフチップ領域2103が形成されている。すなわち、半導体ウェハ2101の主面のうち、複数のチップ領域2102の外側領域にオフチップ領域2103が形成されている。 FIG. 23 is a top view showing a semiconductor wafer 2101 in which CMUT chips 301 (chip regions 2102) are arranged. In the second embodiment, a plurality of CMUT chips 301 (a plurality of chip regions 2102) are formed on a semiconductor wafer 2101 in a matrix arrangement of 8 rows and 2 columns. An off-chip region 2103 is formed in a region other than the plurality of chip regions 2102 in which the plurality of CMUT chips 301 are arranged. That is, the off-chip region 2103 is formed in the outer region of the plurality of chip regions 2102 on the main surface of the semiconductor wafer 2101.
 図24は、図23の領域BRを拡大して示す上面図である。この領域BRは、4つのCMUTチップ301の角部が対向する領域であり、CMUTチップ301の間にスクライブ領域2201が形成されている。スクライブ領域2201は、CMUTチップ301を切り出すため、ダイシング処理などにより半導体ウェハを切断する領域である。 FIG. 24 is a top view showing the region BR of FIG. 23 in an enlarged manner. This region BR is a region where the corners of the four CMUT chips 301 face each other, and a scribe region 2201 is formed between the CMUT chips 301. The scribe area 2201 is an area where the semiconductor wafer is cut by dicing or the like in order to cut out the CMUT chip 301.
 図25は、図23の領域CRを拡大して示す上面図である。この領域CRには、チップ領域2102とオフチップ領域2103の境界領域が示されている。 FIG. 25 is a top view showing the region CR of FIG. 23 in an enlarged manner. In this region CR, a boundary region between the chip region 2102 and the off-chip region 2103 is shown.
 図26は、図23に示す半導体ウェハ2101のスクライブ領域2201をダイシング処理により切断した後の領域BRの状態を示す図である。同様に、図27は、図23に示す半導体ウェハ2101のスクライブ領域2201をダイシング処理により切断した後の領域CRの状態を示す図である。2202はダイシング処理により切断された面である。半導体ウェハ2101のダイシングでは、一般的にある幅を持ったダイシングブレードで半導体ウェハ2101を切断するため、スクライブ領域2201のダイシングブレードの幅とほぼ等しい領域が切断される。この際に、CMUTチップ301の外側のスクライブ領域2201やオフチップ領域2103に配置したパターン構造体311も切断されることになる。 FIG. 26 is a diagram showing a state of the region BR after the scribe region 2201 of the semiconductor wafer 2101 shown in FIG. 23 is cut by a dicing process. Similarly, FIG. 27 is a diagram illustrating a state of the region CR after the scribe region 2201 of the semiconductor wafer 2101 illustrated in FIG. 23 is cut by a dicing process. Reference numeral 2202 denotes a surface cut by a dicing process. In the dicing of the semiconductor wafer 2101, since the semiconductor wafer 2101 is generally cut with a dicing blade having a certain width, an area substantially equal to the width of the dicing blade in the scribe area 2201 is cut. At this time, the pattern structure 311 arranged in the scribe region 2201 and the off-chip region 2103 outside the CMUT chip 301 is also cut.
 本実施の形態2における特徴点は、例えば、図24および図25に示すように、半導体ウェハ2101の複数のチップ領域2102以外のスクライブ領域2201やオフチップ領域2103にも、CMUTセルを構成する梁構造体201に相当するパターン構造体311を絶縁膜(図5に示す絶縁膜506)上に配置している点にある。このようにスクライブ領域2201やオフチップ領域2103にもパターン構造体311を配置することにより、半導体ウェハ2101の主面の全面での単位表面積を概ね均等にすることができる。この結果、本実施の形態2によれば、CMUTチップ301に形成されているセルアレイ内の各CMUTセルのメンブレンの厚さばらつきを抑制することができ、これによって、セルアレイ内のすべてのCMUTセルのデバイス特性を均一にすることができる。 For example, as shown in FIG. 24 and FIG. 25, the feature point of the second embodiment is that the beam constituting the CMUT cell also in the scribe region 2201 and the off-chip region 2103 other than the plurality of chip regions 2102 of the semiconductor wafer 2101. The pattern structure 311 corresponding to the structure 201 is arranged on the insulating film (insulating film 506 shown in FIG. 5). As described above, by disposing the pattern structure 311 also in the scribe region 2201 and the off-chip region 2103, the unit surface area on the entire main surface of the semiconductor wafer 2101 can be made substantially uniform. As a result, according to the second embodiment, it is possible to suppress variation in the thickness of the membrane of each CMUT cell in the cell array formed on the CMUT chip 301, and thereby, all CMUT cells in the cell array can be suppressed. The device characteristics can be made uniform.
 例えば、CVD法により成膜する際に発生するローディング効果は、メンブレンを構成する膜の成膜条件にも依存するが、単位表面積が異なる領域の境界領域から数mm程度まで影響が及ぶことがある。したがって、セルアレイ領域CARの外側領域である周辺領域PERにパターン構造体311を配置しても、チップ領域2102以外のスクライブ領域2201やオフチップ領域2103までパターン構造体311を配置しないと、これらの領域との単位表面積差に起因するローディング効果の影響がセルアレイ領域CARにまで及ぶおそれがある。この結果、セルアレイ領域CARの中央部に配置されたCMUTセルと外周部に配置されたCMUTセルとのデバイス特性が不均一になる可能性がある。 For example, the loading effect generated when a film is formed by the CVD method depends on the film forming conditions of the film constituting the membrane, but it may affect the boundary area between the areas having different unit surface areas to several millimeters. . Therefore, even if the pattern structure 311 is disposed in the peripheral region PER that is the outer region of the cell array region CAR, these regions must be disposed unless the pattern structure 311 is disposed up to the scribe region 2201 and the off-chip region 2103 other than the chip region 2102 There is a possibility that the effect of the loading effect due to the difference in unit surface area may reach the cell array region CAR. As a result, there is a possibility that the device characteristics of the CMUT cell arranged in the central part of the cell array region CAR and the CMUT cell arranged in the outer peripheral part become non-uniform.
 ここで、この影響を抑制するために、スクライブ領域2201やオフチップ領域2103とチップ領域2102との境界から数mmの距離を確保して、チップ領域2102内にセルアレイを配置することが考えられる。ところが、この場合、超音波を送受信する機能を有するセルアレイの大きさ(サイズ)を維持するためには、チップ領域2102のサイズを大きくする必要がある。この結果、半導体ウェハ2101から取得できるCMUTチップ301の数が減少するため、歩留り低下やチップ価格(コスト)の上昇につながる。 Here, in order to suppress this influence, it is conceivable to arrange a cell array in the chip area 2102 while securing a distance of several mm from the boundary between the scribe area 2201 or the off-chip area 2103 and the chip area 2102. However, in this case, the size of the chip region 2102 needs to be increased in order to maintain the size (size) of the cell array having the function of transmitting and receiving ultrasonic waves. As a result, the number of CMUT chips 301 that can be obtained from the semiconductor wafer 2101 decreases, leading to a decrease in yield and an increase in chip price (cost).
 一方、本実施の形態2では、例えば、図24や図25に示すように、チップ領域2102以外のスクライブ領域2201やオフチップ領域2103にも、梁構造体201に相当するパターン構造体311を配置している。このため、本実施の形態2によれば、半導体ウェハ2101の主面の全面の単位表面積を概ね均一にすることができる。このことから、本実施の形態2によれば、スクライブ領域2201やオフチップ領域2103に起因するローディング効果を抑制するために、スクライブ領域2201やオフチップ領域2103から距離を離してセルアレイを配置する必要がない。したがって、セルアレイの中央部に配置されるCMUTセルと外周部に配置されるCMUTセルとのデバイス特性を均一にするためにチップサイズを大きくする必要がない。すなわち、本実施の形態2によれば、すべてのチップ領域2102内に形成されるセルアレイ内のCMUTセルのデバイス特性を均一化することと、半導体ウェハ2101から取得できるCMUTチップ301の数の減少による歩留り低下やチップ価格の上昇を抑制することとを両立できる。 On the other hand, in the second embodiment, for example, as shown in FIGS. 24 and 25, a pattern structure 311 corresponding to the beam structure 201 is arranged also in the scribe area 2201 and the off-chip area 2103 other than the chip area 2102. is doing. For this reason, according to the second embodiment, the unit surface area of the entire main surface of the semiconductor wafer 2101 can be made substantially uniform. Therefore, according to the second embodiment, it is necessary to dispose the cell array at a distance from the scribe region 2201 and the off-chip region 2103 in order to suppress the loading effect caused by the scribe region 2201 and the off-chip region 2103. There is no. Therefore, it is not necessary to increase the chip size in order to make the device characteristics uniform between the CMUT cell arranged at the center of the cell array and the CMUT cell arranged at the outer periphery. That is, according to the second embodiment, the device characteristics of the CMUT cells in the cell array formed in all the chip regions 2102 are made uniform, and the number of CMUT chips 301 that can be acquired from the semiconductor wafer 2101 is reduced. Both yield reduction and chip price increase can be suppressed.
 本実施の形態2におけるCMUTの製造方法は、前記実施の形態1におけるCMUTの製造方法と同様である。スクライブ領域2201にパターン構造体311を配置するためには、チップ領域2102に梁構造体201を形成するフォトマスクにおいて、スクライブ領域2201にもパターン構造体311のパターンを予めレイアウトしておけばよい。また、オフチップ領域2103は、梁構造体201を形成するフォトマスクを用いて、チップ領域2102だけでなく、オフチップ領域2103にもパターニングしておくだけでよい。あるいは、オフチップ領域2103のパターン専用のフォトマスクを用いて、オフチップ領域2103にパターン構造体311をパターニングしてもよい。 The CMUT manufacturing method according to the second embodiment is the same as the CMUT manufacturing method according to the first embodiment. In order to arrange the pattern structure 311 in the scribe region 2201, a pattern of the pattern structure 311 may be laid out in advance in the scribe region 2201 in a photomask for forming the beam structure 201 in the chip region 2102. Further, the off-chip region 2103 only needs to be patterned not only in the chip region 2102 but also in the off-chip region 2103 using a photomask for forming the beam structure 201. Alternatively, the pattern structure 311 may be patterned in the off-chip region 2103 using a photomask dedicated to the pattern in the off-chip region 2103.
 また、前記実施の形態1で説明したように、スクライブ領域2201やオフチップ領域2103に配置するパターン構造体311の配置ピッチやパターン形状をかえても、半導体ウェハ2101の主面の全面において、単位表面積を概ね等しくすれば、配置ピッチやパターン形状に関わらず同様の効果を得ることができる。 Further, as described in the first embodiment, even if the arrangement pitch and pattern shape of the pattern structures 311 arranged in the scribe region 2201 and the off-chip region 2103 are changed, the unit on the entire main surface of the semiconductor wafer 2101 is changed. If the surface areas are substantially equal, the same effect can be obtained regardless of the arrangement pitch and pattern shape.
 さらに、本実施の形態2では、例えば、スクライブ領域2201とオフチップ領域2103の両方の領域にパターン構造体311を配置する例について説明したが、これに限定されるものではなく、効果の度合いにより、スクライブ領域2201とオフチップ領域2103の一方の領域にのみにパターン構造体311を配置してもよい。 Furthermore, in the second embodiment, for example, the example in which the pattern structure 311 is arranged in both the scribe region 2201 and the off-chip region 2103 has been described. However, the present invention is not limited to this, and depends on the degree of effect. The pattern structure 311 may be disposed only in one of the scribe region 2201 and the off-chip region 2103.
 (実施の形態3)
 次に、前記実施の形態1あるいは前記実施の形態2におけるCMUTを備える超音波検査装置の一構成例とその役割について、図面を参照しながら説明する。
(Embodiment 3)
Next, one configuration example and role of an ultrasonic inspection apparatus including the CMUT in the first embodiment or the second embodiment will be described with reference to the drawings.
 図28は、本実施の形態3における超音波検査装置2401の模式的な構成を示すブロック図である。図28において、本実施の形態1における超音波検査装置2401は、本体と超音波探触子2402とにより構成され、本体は、送受分離部2403、送信部2404、バイアス部2405、受信部2406、整相加算部2407、画像処理部2408、表示部2409、制御部2410、操作部2411から構成される。 FIG. 28 is a block diagram showing a schematic configuration of the ultrasonic inspection apparatus 2401 according to the third embodiment. In FIG. 28, the ultrasonic inspection apparatus 2401 according to the first embodiment includes a main body and an ultrasonic probe 2402. The main body includes a transmission / reception separation unit 2403, a transmission unit 2404, a bias unit 2405, a reception unit 2406, A phasing addition unit 2407, an image processing unit 2408, a display unit 2409, a control unit 2410, and an operation unit 2411 are included.
 超音波探触子2402は、被検体に接触させて被検体との間で超音波を送受波する装置であり、前記実施の形態1あるいは前記実施の形態2におけるCMUTを使用して製造される。超音波探触子2402から超音波が被検体に送波され、被検体からの反射エコー信号が超音波探触子2402により受波される。この超音波探触子2402は、後述する送受分離部2403と電気的に接続される。 The ultrasonic probe 2402 is a device that transmits and receives ultrasonic waves to and from a subject by making contact with the subject, and is manufactured using the CMUT in the first embodiment or the second embodiment. . An ultrasonic wave is transmitted from the ultrasonic probe 2402 to the subject, and a reflected echo signal from the subject is received by the ultrasonic probe 2402. The ultrasonic probe 2402 is electrically connected to a transmission / reception separating unit 2403 described later.
 送信部2404およびバイアス部2405は、超音波探触子2402から超音波を発信させるために、超音波探触子2402に駆動信号を供給する機能を有する。 The transmission unit 2404 and the bias unit 2405 have a function of supplying a drive signal to the ultrasonic probe 2402 in order to transmit an ultrasonic wave from the ultrasonic probe 2402.
 受信部2406は、超音波探触子2402から出力される反射エコー信号を受信する機能を有する。受信部2406は、さらに、受信した反射エコー信号に対して、アナログデジタル変換(AD変換)等の信号処理を行う。 The receiving unit 2406 has a function of receiving a reflected echo signal output from the ultrasonic probe 2402. The receiving unit 2406 further performs signal processing such as analog-digital conversion (AD conversion) on the received reflected echo signal.
 送受分離部2403は、超音波の発信時には、超音波探触子2402と送信部2404とを電気的に接続する一方、超音波の受信時には、超音波探触子2402と受信部2406とを電気的に接続するように接続経路を切り換える機能を有する。すなわち、送受分離部2403は、送信時には送信部2404から超音波探触子2402へ駆動信号を渡し、受信時には超音波探触子2402から受信部2406へ受信信号を渡すよう送信と受信とを切り換えて分離する機能を有する。 The transmission / reception separating unit 2403 electrically connects the ultrasonic probe 2402 and the transmission unit 2404 when transmitting ultrasonic waves, while electrically connecting the ultrasonic probe 2402 and the reception unit 2406 when receiving ultrasonic waves. Has a function of switching the connection path so as to be connected. That is, the transmission / reception separating unit 2403 switches between transmission and reception so as to pass a drive signal from the transmission unit 2404 to the ultrasonic probe 2402 during transmission and to pass a reception signal from the ultrasonic probe 2402 to the reception unit 2406 during reception. Have the function of separating.
 整相加算部2407は、フォーカス点から出力される反射エコー信号をそれぞれのCMUTセルで受信する時間差を考慮して加算する機能を有する。すなわち、整相加算部2407は、反射エコー信号の位相差を考慮して加算(整相加算)する機能を有する。 The phasing addition unit 2407 has a function of adding a reflection echo signal output from the focus point in consideration of a time difference received by each CMUT cell. That is, the phasing addition unit 2407 has a function of adding (phasing addition) in consideration of the phase difference of the reflected echo signal.
 画像処理部2408は、整相加算された反射エコー信号に基づいて検査画像を形成する機能を有し、表示部2409は、画像処理された検査画像を表示する表示装置である。 The image processing unit 2408 has a function of forming an inspection image based on the phasing-added reflected echo signal, and the display unit 2409 is a display device that displays the image-processed inspection image.
 制御部2410は、本体を構成する各構成部を制御する機能を有し、制御部2410は、超音波探触子2402の超音波の送受信を制御する。 The control unit 2410 has a function of controlling each component constituting the main body, and the control unit 2410 controls transmission / reception of ultrasonic waves of the ultrasonic probe 2402.
 操作部2411は、制御部2410に指示を与える装置であり、操作部2411は、例えば、トラックボールやキーボードやマウス等の入力機器から構成される。 The operation unit 2411 is a device that gives an instruction to the control unit 2410. The operation unit 2411 includes, for example, an input device such as a trackball, a keyboard, or a mouse.
 以上、本発明者によってなされた発明をその実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。すなわち、本発明は、上述した実施の形態に限定されるものではなく、様々な変形例が含まれる。例えば、上述した実施の形態は、本発明のより良い理解のために詳細に説明した形態であり、必ずしも説明のすべての構成を備えるものに限定されるものではない。また、ある実施の形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say. That is, the present invention is not limited to the above-described embodiment, and includes various modifications. For example, the embodiments described above are described in detail for better understanding of the present invention, and are not necessarily limited to those provided with all the configurations described above. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. . Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 前記実施の形態は、以下の形態を含む。 The embodiment includes the following forms.
 (付記1)
 複数のセルが形成されたセルアレイ領域と、
 前記セルアレイ領域に接する周辺領域と、
 を含み、
 前記複数のセルのそれぞれは、
 基板と、
 前記基板上に形成された第1電極と、
 前記第1電極上に形成された第1絶縁膜と、
 前記第1絶縁膜上に形成され、かつ、平面視において前記第1電極と重なる空洞部と、
 前記空洞部上に形成された第2絶縁膜と、
 前記第2絶縁膜上に形成され、かつ、平面視において前記空洞部と重なる第2電極と、
 前記第2電極上に形成された第3絶縁膜と、
 前記第3絶縁膜から凸状に張り出し、かつ、平面視において前記空洞部と重なる梁構造体と、
 前記梁構造体を覆い、かつ、前記第3絶縁膜上に形成された第4絶縁膜と、
 を有し、
 前記周辺領域には、
 前記第3絶縁膜と、
 前記第3絶縁膜から凸状に張り出した複数のパターン構造体と、
 前記複数のパターン構造体を覆う前記第4絶縁膜と、
 が形成されている、超音波トランスデューサ。
(Appendix 1)
A cell array region in which a plurality of cells are formed;
A peripheral region in contact with the cell array region;
Including
Each of the plurality of cells is
A substrate,
A first electrode formed on the substrate;
A first insulating film formed on the first electrode;
A cavity formed on the first insulating film and overlapping the first electrode in plan view;
A second insulating film formed on the cavity,
A second electrode formed on the second insulating film and overlapping the cavity in plan view;
A third insulating film formed on the second electrode;
A beam structure protruding from the third insulating film and overlapping the cavity in plan view;
A fourth insulating film covering the beam structure and formed on the third insulating film;
Have
In the peripheral area,
The third insulating film;
A plurality of pattern structures protruding in a convex shape from the third insulating film;
The fourth insulating film covering the plurality of pattern structures;
An ultrasonic transducer is formed.
 (付記2)
 付記1に記載の超音波トランスデューサにおいて、
 前記複数のパターン構造体のそれぞれは、前記梁構造体と同一材料から形成されている、超音波トランスデューサ。
(Appendix 2)
In the ultrasonic transducer according to attachment 1,
Each of the plurality of pattern structures is an ultrasonic transducer formed of the same material as the beam structure.
 (付記3)
 付記1に記載の超音波トランスデューサにおいて、
 前記複数のパターン構造体のそれぞれは、前記梁構造体と同一構造をしている、超音波トランスデューサ。
(Appendix 3)
In the ultrasonic transducer according to attachment 1,
Each of the plurality of pattern structures is an ultrasonic transducer having the same structure as the beam structure.
 (付記4)
 付記1に記載の超音波トランスデューサにおいて、
 前記複数のパターン構造体が形成された前記周辺領域における前記第3絶縁膜上の表面積と複数の前記梁構造体が形成された前記セルアレイ領域における前記第3絶縁膜上の表面積との差は、前記周辺領域に前記複数のパターン構造体を形成しない場合の前記周辺領域における前記第3絶縁膜上の表面積と複数の前記梁構造体が形成された前記セルアレイ領域における前記第3絶縁膜上の表面積との差よりも小さい、超音波トランスデューサ。
(Appendix 4)
In the ultrasonic transducer according to attachment 1,
The difference between the surface area on the third insulating film in the peripheral region where the plurality of pattern structures are formed and the surface area on the third insulating film in the cell array region where the plurality of beam structures are formed is: The surface area on the third insulating film in the peripheral region and the surface area on the third insulating film in the cell array region in which the plurality of beam structures are formed when the plurality of pattern structures are not formed in the peripheral region Ultrasonic transducer, smaller than the difference.
 (付記5)
 付記1に記載の超音波トランスデューサにおいて、
 前記第2絶縁膜と前記第2電極と前記第3絶縁膜と前記梁構造体と前記第4絶縁膜とによって、メンブレンが構成され、
 前記梁構造体は、前記梁構造体が存在しない場合よりも、前記メンブレンの厚さ方向における前記メンブレンの振動を大きくする機能を有する、超音波トランスデューサ。
(Appendix 5)
In the ultrasonic transducer according to attachment 1,
A membrane is configured by the second insulating film, the second electrode, the third insulating film, the beam structure, and the fourth insulating film,
The ultrasonic transducer has a function of increasing the vibration of the membrane in the thickness direction of the membrane as compared with the case where the beam structure does not exist.
 (付記6)
 付記1に記載の超音波トランスデューサにおいて、
 前記梁構造体の厚さは、前記第2絶縁膜と前記第2電極と前記第3絶縁膜とを組み合わせた厚さ以上である、超音波トランスデューサ。
(Appendix 6)
In the ultrasonic transducer according to attachment 1,
The thickness of the said beam structure is an ultrasonic transducer which is more than the thickness which combined the said 2nd insulating film, the said 2nd electrode, and the said 3rd insulating film.
 (付記7)
 (a)複数のチップ領域と、前記複数のチップ領域を区画するスクライブ領域と、前記複数のチップ領域の外側に形成されたオフチップ領域と、を主面に有する半導体ウェハを準備する工程、
 (b)前記複数のチップ領域のそれぞれに第1電極を形成する工程、
 (c)前記第1電極上を含む前記主面に第1絶縁膜を形成する工程、
 (d)前記複数のチップ領域のそれぞれにおいて、前記第1絶縁膜上に、平面視において前記第1電極と重なる犠牲層を形成する工程、
 (e)前記犠牲層を覆い、かつ、前記主面に形成された前記第1絶縁膜上に第2絶縁膜を形成する工程、
 (f)前記複数のチップ領域のそれぞれにおいて、前記第2絶縁膜上に、平面視において前記犠牲層と重なる第2電極を形成する工程、
 (g)前記第2電極上を含む前記主面に第3絶縁膜を形成する工程、
 (h)前記複数のチップ領域のそれぞれにおいて、前記第3絶縁膜および前記第2絶縁膜を貫通して前記犠牲層に達するエッチング孔を形成する工程、
 (i)前記複数のチップ領域のそれぞれにおいて、前記エッチング孔を介して、前記犠牲層を除去することにより、空洞部を形成する工程、
 (j)前記(i)工程後、前記複数のチップ領域のそれぞれにおいて、前記エッチング孔を塞ぐ工程、
 (k)前記(j)工程後、前記複数のチップ領域の前記第3絶縁膜上に、平面視において前記空洞部と重なる梁構造体を形成し、かつ、前記スクライブ領域の前記第3絶縁膜上に、前記梁構造体に相当する複数のパターン構造体を形成する工程、
 (l)前記(k)工程後、前記梁構造体および前記複数のパターン構造体を覆い、かつ、前記主面に形成された前記第3絶縁膜上に第4絶縁膜を形成する工程、
 を備える、超音波トランスデューサの製造方法。
(Appendix 7)
(A) preparing a semiconductor wafer having a plurality of chip regions, a scribe region that partitions the plurality of chip regions, and an off-chip region formed outside the plurality of chip regions on a main surface;
(B) forming a first electrode in each of the plurality of chip regions;
(C) forming a first insulating film on the main surface including on the first electrode;
(D) forming a sacrificial layer overlapping the first electrode in plan view on the first insulating film in each of the plurality of chip regions;
(E) forming a second insulating film on the first insulating film covering the sacrificial layer and formed on the main surface;
(F) forming a second electrode that overlaps the sacrificial layer in plan view on the second insulating film in each of the plurality of chip regions;
(G) forming a third insulating film on the main surface including the second electrode;
(H) forming an etching hole that penetrates the third insulating film and the second insulating film and reaches the sacrificial layer in each of the plurality of chip regions;
(I) forming a cavity by removing the sacrificial layer through the etching hole in each of the plurality of chip regions;
(J) After the step (i), a step of closing the etching hole in each of the plurality of chip regions;
(K) After the step (j), a beam structure is formed on the third insulating film in the plurality of chip regions so as to overlap the cavity in plan view, and the third insulating film in the scribe region A step of forming a plurality of pattern structures corresponding to the beam structure;
(L) After the step (k), a step of covering the beam structure and the plurality of pattern structures and forming a fourth insulating film on the third insulating film formed on the main surface;
A method for manufacturing an ultrasonic transducer.
 (付記8)
 付記7に記載の超音波トランスデューサの製造方法において、
 前記(k)工程は、前記オフチップ領域の前記第3絶縁膜上にも、前記複数のパターン構造体を形成する、超音波トランスデューサの製造方法。
(Appendix 8)
In the method of manufacturing an ultrasonic transducer according to appendix 7,
In the method (k), the plurality of pattern structures are formed on the third insulating film in the off-chip region.
 (付記9)
 付記7に記載の超音波トランスデューサの製造方法において、
 前記複数のチップ領域のそれぞれは、
 複数のセルが形成されたセルアレイ領域と、
 前記セルアレイ領域に接する周辺領域と、
 を含み、
 前記(k)工程は、前記複数のチップ領域のそれぞれの前記周辺領域の前記第3絶縁膜上にも、前記複数のパターン構造体を形成する、超音波トランスデューサの製造方法。
(Appendix 9)
In the method of manufacturing an ultrasonic transducer according to appendix 7,
Each of the plurality of chip regions is
A cell array region in which a plurality of cells are formed;
A peripheral region in contact with the cell array region;
Including
In the step (k), the plurality of pattern structures are also formed on the third insulating film in the peripheral region of each of the plurality of chip regions.
 (付記10)
 付記7に記載の超音波トランスデューサの製造方法において、
 前記(k)工程で形成される前記梁構造体および前記複数のパターン構造体のそれぞれによって、前記第3絶縁膜上に凸形状が形成される、超音波トランスデューサの製造方法。
(Appendix 10)
In the method of manufacturing an ultrasonic transducer according to appendix 7,
A method of manufacturing an ultrasonic transducer, wherein a convex shape is formed on the third insulating film by each of the beam structure and the plurality of pattern structures formed in the step (k).
 (付記11)
 付記7に記載の超音波トランスデューサの製造方法において、
 前記(l)工程は、プラズマCVD法を使用して、前記第4絶縁膜を形成する、超音波トランスデューサの製造方法。
(Appendix 11)
In the method of manufacturing an ultrasonic transducer according to appendix 7,
In the step (l), the fourth insulating film is formed using a plasma CVD method.
 101 基板
 102 下部電極
 103 空洞部
 104a 絶縁膜
 104b 絶縁膜
 105 上部電極
 106 メンブレン
 201 梁構造体
 301 CMUTチップ
 302 引き出し配線
 303 プラグ
 304 配線
 305 引き出し配線
 306 プラグ
 310 セルアレイ
 311 パターン構造体
 401 エッチング孔
 501 半導体基板
 502 絶縁膜
 503 絶縁膜
 504 絶縁膜
 505 絶縁膜
 506 絶縁膜
 507 絶縁膜
 701 端面
 1203 犠牲層
 2001 構造体
 2002 構造体
 2003 ダミーセル
 2004 領域
 2101 半導体ウェハ
 2102 チップ領域
 2103 オフチップ領域
 2201 スクライブ領域
 2202 面
 2401 超音波検査装置
 2402 超音波探触子
 2403 送受分離部
 2404 送信部
 2405 バイアス部
 2406 受信部
 2407 整相加算部
 2408 画像処理部
 2409 表示部
 2410 制御部
 2411 操作部
 CAR セルアレイ領域
 PER 周辺領域
DESCRIPTION OF SYMBOLS 101 Substrate 102 Lower electrode 103 Cavity portion 104a Insulating film 104b Insulating film 105 Upper electrode 106 Membrane 201 Beam structure 301 CMUT chip 302 Lead wire 303 Plug 304 Wire 305 Lead wire 306 Plug 310 Cell array 311 Pattern structure 401 Etching hole 501 Semiconductor substrate 502 Insulating Film 503 Insulating Film 504 Insulating Film 505 Insulating Film 506 Insulating Film 507 Insulating Film 701 End Face 1203 Sacrificial Layer 2001 Structure 2002 Structure 2003 Dummy Cell 2004 Area 2101 Semiconductor Wafer 2102 Chip Area 2103 Off-Chip Area 2202 Surface Scribe 1 2202 Ultrasonic inspection apparatus 2402 Ultrasonic probe 2403 Transmission / reception separation unit 2404 Transmission unit 2405 Bias unit 240 Receiving unit 2407 phasing addition unit 2408 image processing unit 2409 display unit 2410 control unit 2411 operation unit CAR cell array region PER peripheral region

Claims (15)

  1.  複数のセルが形成されたセルアレイ領域と、
     前記セルアレイ領域に接する周辺領域と、
     を含み、
     前記複数のセルのそれぞれは、
     基板と、
     前記基板上に形成された第1電極と、
     前記第1電極上に形成された第1絶縁膜と、
     前記第1絶縁膜上に形成され、かつ、平面視において前記第1電極と重なる空洞部と、
     前記空洞部上に形成された第2絶縁膜と、
     前記第2絶縁膜上に形成され、かつ、平面視において前記空洞部と重なる第2電極と、
     前記第2電極上に形成された第3絶縁膜と、
     前記第3絶縁膜上に形成され、かつ、平面視において前記空洞部と重なる梁構造体と、
     前記梁構造体を覆い、かつ、前記第3絶縁膜上に形成された第4絶縁膜と、
     を有し、
     前記周辺領域には、
     前記第3絶縁膜と、
     前記第3絶縁膜上に形成され、前記梁構造体に相当する複数のパターン構造体と、
     前記複数のパターン構造体を覆う前記第4絶縁膜と、
     が形成されている、超音波トランスデューサ。
    A cell array region in which a plurality of cells are formed;
    A peripheral region in contact with the cell array region;
    Including
    Each of the plurality of cells is
    A substrate,
    A first electrode formed on the substrate;
    A first insulating film formed on the first electrode;
    A cavity formed on the first insulating film and overlapping the first electrode in plan view;
    A second insulating film formed on the cavity,
    A second electrode formed on the second insulating film and overlapping the cavity in plan view;
    A third insulating film formed on the second electrode;
    A beam structure formed on the third insulating film and overlapping the cavity in plan view;
    A fourth insulating film covering the beam structure and formed on the third insulating film;
    Have
    In the peripheral area,
    The third insulating film;
    A plurality of pattern structures formed on the third insulating film and corresponding to the beam structures;
    The fourth insulating film covering the plurality of pattern structures;
    An ultrasonic transducer is formed.
  2.  請求項1に記載の超音波トランスデューサにおいて、
     前記梁構造体および前記複数のパターン構造体のそれぞれによって、前記第3絶縁膜上に凸形状が形成される、超音波トランスデューサ。
    The ultrasonic transducer according to claim 1.
    An ultrasonic transducer in which a convex shape is formed on the third insulating film by each of the beam structure and the plurality of pattern structures.
  3.  請求項1に記載の超音波トランスデューサにおいて、
     前記梁構造体は、厚さ/幅で示されるアスペクト比が、前記複数のセルのそれぞれを構成する構成要素の中で、最も大きい構成要素である、超音波トランスデューサ。
    The ultrasonic transducer according to claim 1.
    The ultrasonic transducer, wherein the beam structure has the largest aspect ratio indicated by thickness / width among the components constituting each of the plurality of cells.
  4.  請求項1に記載の超音波トランスデューサにおいて、
     前記複数のパターン構造体の配置パターンの少なくとも一部は、複数の前記梁構造体の配置パターンと等しい、超音波トランスデューサ。
    The ultrasonic transducer according to claim 1.
    The ultrasonic transducer in which at least a part of the arrangement pattern of the plurality of pattern structures is equal to the arrangement pattern of the plurality of beam structures.
  5.  請求項1に記載の超音波トランスデューサにおいて、
     前記周辺領域には、
     前記第1電極と電気的に接続された第1配線と、
     前記第1配線と電気的に接続された第1プラグと、
     前記第2電極と電気的に接続された第2配線と、
     前記第2配線と電気的に接続された第2プラグと、
     が形成されている、超音波トランスデューサ。
    The ultrasonic transducer according to claim 1.
    In the peripheral area,
    A first wiring electrically connected to the first electrode;
    A first plug electrically connected to the first wiring;
    A second wiring electrically connected to the second electrode;
    A second plug electrically connected to the second wiring;
    An ultrasonic transducer is formed.
  6.  請求項5に記載の超音波トランスデューサにおいて、
     前記複数のパターン構造体は、平面視において、前記第1プラグおよび前記第2プラグと重ならない位置に配置されている、超音波トランスデューサ。
    The ultrasonic transducer according to claim 5, wherein
    The ultrasonic transducer, wherein the plurality of pattern structures are arranged at positions that do not overlap the first plug and the second plug in plan view.
  7.  請求項5に記載の超音波トランスデューサにおいて、
     前記複数のパターン構造体の一部は、平面視において、前記第1配線と重なる位置に配置されている、超音波トランスデューサ。
    The ultrasonic transducer according to claim 5, wherein
    The ultrasonic transducer, wherein a part of the plurality of pattern structures is arranged at a position overlapping the first wiring in a plan view.
  8.  請求項5に記載の超音波トランスデューサにおいて、
     前記複数のパターン構造体の一部は、平面視において、前記第2配線と重なる位置に配置されている、超音波トランスデューサ。
    The ultrasonic transducer according to claim 5, wherein
    The ultrasonic transducer, wherein a part of the plurality of pattern structures is arranged at a position overlapping the second wiring in a plan view.
  9.  請求項5に記載の超音波トランスデューサにおいて、
     前記周辺領域は、
     前記第1配線および前記第1プラグが形成された第1引き出し領域と、
     前記第2配線および前記第2プラグが形成された第2引き出し領域と、
     前記第1引き出し領域の外側領域である第1外縁領域と、
     前記第2引き出し領域の外側領域である第2外縁領域と、
     を含む、超音波トランスデューサ。
    The ultrasonic transducer according to claim 5, wherein
    The peripheral area is
    A first lead region in which the first wiring and the first plug are formed;
    A second lead region in which the second wiring and the second plug are formed;
    A first outer edge region that is an outer region of the first lead region;
    A second outer edge region that is an outer region of the second lead region;
    Including an ultrasonic transducer.
  10.  請求項9に記載の超音波トランスデューサにおいて、
     前記複数のパターン構造体は、前記第1外縁領域に配置されている、超音波トランスデューサ。
    The ultrasonic transducer according to claim 9, wherein
    The plurality of pattern structures are ultrasonic transducers arranged in the first outer edge region.
  11.  請求項9に記載の超音波トランスデューサにおいて、
     前記複数のパターン構造体は、前記第2外縁領域に配置されている、超音波トランスデューサ。
    The ultrasonic transducer according to claim 9, wherein
    The plurality of pattern structures are ultrasonic transducers arranged in the second outer edge region.
  12.  請求項9に記載の超音波トランスデューサにおいて、
     前記複数のパターン構造体は、前記第1外縁領域および前記第2外縁領域に配置されている、超音波トランスデューサ。
    The ultrasonic transducer according to claim 9, wherein
    The plurality of pattern structures are ultrasonic transducers arranged in the first outer edge region and the second outer edge region.
  13.  請求項1に記載の超音波トランスデューサにおいて、
     前記基板の厚さ方向において、前記複数のパターン構造体のうちの一部のパターン構造体と前記基板との間には、絶縁膜のみが介在する、超音波トランスデューサ。
    The ultrasonic transducer according to claim 1.
    An ultrasonic transducer in which only an insulating film is interposed between a part of the plurality of pattern structures and the substrate in the thickness direction of the substrate.
  14.  請求項1に記載の超音波トランスデューサにおいて、
     前記周辺領域には、
     少なくとも、前記空洞部、あるいは、前記空洞部を充填した充填部のいずれかを含むダミーセルであって、超音波の送受信機能を果たさない前記ダミーセルと、
     前記複数のパターン構造体と、
     が形成され、
     前記ダミーセルは、前記複数のパターン構造体よりも、前記セルアレイ領域に近い位置に配置されている、超音波トランスデューサ。
    The ultrasonic transducer according to claim 1.
    In the peripheral area,
    At least the dummy cell including either the cavity part or the filling part filled with the cavity part, and the dummy cell that does not perform the function of transmitting and receiving ultrasonic waves, and
    The plurality of pattern structures;
    Formed,
    The ultrasonic transducer, wherein the dummy cell is disposed closer to the cell array region than the plurality of pattern structures.
  15.  被検体に接触させて、前記被検体との間で超音波を送受信する超音波探触子と、
     前記超音波探触子から超音波を発信させるために、前記超音波探触子に駆動信号を供給する送信部と、
     超音波を受信した前記超音波探触子から出力される反射エコー信号を受信する受信部と、
     前記反射エコー信号に基づいて画像を生成する画像処理部と、
     超音波の発信時には、前記超音波探触子と前記送信部とを電気的に接続する一方、超音波の受信時には、前記超音波探触子と前記受信部とを電気的に接続するように接続経路を切り換える送受信分離部と、
     を備える、超音波検査装置であって、
     前記超音波探触子は、前記送受信分離部と電気的に接続され、かつ、超音波トランスデューサを含み、
     前記超音波トランスデューサは、
     複数のセルが形成されたセルアレイ領域と、
     前記セルアレイ領域に接する周辺領域と、
     を含む半導体チップを備え、
     前記複数のセルのそれぞれは、
     基板と、
     前記基板上に形成された第1電極と、
     前記第1電極上に形成された第1絶縁膜と、
     前記第1絶縁膜上に形成され、かつ、平面視において前記第1電極と重なる空洞部と、
     前記空洞部上に形成された第2絶縁膜と、
     前記第2絶縁膜上に形成され、かつ、平面視において前記空洞部と重なる第2電極と、
     前記第2電極上に形成された第3絶縁膜と、
     前記第3絶縁膜上に形成され、かつ、平面視において前記空洞部と重なる梁構造体と、
     前記梁構造体を覆い、かつ、前記第3絶縁膜上に形成された第4絶縁膜と、
     を有し、
     前記周辺領域には、
     前記第3絶縁膜と、
     前記第3絶縁膜上に形成され、前記梁構造体に相当する複数のパターン構造体と、
     前記複数のパターン構造体を覆う前記第4絶縁膜と、
     が形成されている、超音波検査装置。
    An ultrasonic probe that is brought into contact with the subject and transmits / receives ultrasonic waves to / from the subject;
    A transmitter for supplying a drive signal to the ultrasonic probe to transmit ultrasonic waves from the ultrasonic probe;
    A receiving unit that receives a reflected echo signal output from the ultrasonic probe that has received the ultrasonic wave; and
    An image processing unit for generating an image based on the reflected echo signal;
    When transmitting an ultrasonic wave, the ultrasonic probe and the transmitting unit are electrically connected, while when receiving an ultrasonic wave, the ultrasonic probe and the receiving unit are electrically connected. A transmission / reception separation unit for switching connection paths;
    An ultrasonic inspection apparatus comprising:
    The ultrasonic probe is electrically connected to the transmission / reception separating unit, and includes an ultrasonic transducer;
    The ultrasonic transducer is
    A cell array region in which a plurality of cells are formed;
    A peripheral region in contact with the cell array region;
    A semiconductor chip including
    Each of the plurality of cells is
    A substrate,
    A first electrode formed on the substrate;
    A first insulating film formed on the first electrode;
    A cavity formed on the first insulating film and overlapping the first electrode in plan view;
    A second insulating film formed on the cavity,
    A second electrode formed on the second insulating film and overlapping the cavity in plan view;
    A third insulating film formed on the second electrode;
    A beam structure formed on the third insulating film and overlapping the cavity in plan view;
    A fourth insulating film covering the beam structure and formed on the third insulating film;
    Have
    In the peripheral area,
    The third insulating film;
    A plurality of pattern structures formed on the third insulating film and corresponding to the beam structures;
    The fourth insulating film covering the plurality of pattern structures;
    An ultrasonic inspection apparatus is formed.
PCT/JP2016/064440 2015-05-29 2016-05-16 Ultrasonic transducer and ultrasonic inspection device WO2016194591A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017521778A JP6470406B2 (en) 2015-05-29 2016-05-16 Ultrasonic transducer and ultrasonic inspection device
CN201680038034.7A CN107710787B (en) 2015-05-29 2016-05-16 Ultrasonic transducer and ultrasonic inspection apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-110530 2015-05-29
JP2015110530 2015-05-29

Publications (1)

Publication Number Publication Date
WO2016194591A1 true WO2016194591A1 (en) 2016-12-08

Family

ID=57441009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064440 WO2016194591A1 (en) 2015-05-29 2016-05-16 Ultrasonic transducer and ultrasonic inspection device

Country Status (3)

Country Link
JP (1) JP6470406B2 (en)
CN (1) CN107710787B (en)
WO (1) WO2016194591A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210043826A1 (en) * 2018-01-22 2021-02-11 Soitec Methods for designing and producing a device comprising and array of micromachined elements, and device produced by said methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008085246A (en) * 2006-09-29 2008-04-10 Hitachi Ltd Semiconductor device, and manufacturing method therefor
WO2010100861A1 (en) * 2009-03-05 2010-09-10 株式会社日立メディコ Ultrasonic transducer, method of producing same, and ultrasound probe using same
JP2015066202A (en) * 2013-09-30 2015-04-13 セイコーエプソン株式会社 Ultrasound device, probe, electronic apparatus and ultrasonic image device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101982985B (en) * 2002-05-02 2015-02-25 哈曼国际工业有限公司 Electric loudspeaker and constructing method thereof
EP1542005B1 (en) * 2003-12-09 2007-01-24 Kabushiki Kaisha Toshiba Ultrasonic probe with conductive acoustic matching layer
CN102281818B (en) * 2009-01-16 2013-11-06 株式会社日立医疗器械 Ultrasonic probe manufacturing method and ultrasonic probe
KR101492033B1 (en) * 2010-10-15 2015-02-10 가부시키가이샤 히타치 메디코 Ultrasonic transducer and ultrasonic diagnostic equipment using the same
JP6248535B2 (en) * 2013-10-23 2017-12-20 セイコーエプソン株式会社 Ultrasonic device, ultrasonic probe head, ultrasonic probe, electronic apparatus, ultrasonic imaging apparatus, and method of manufacturing ultrasonic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008085246A (en) * 2006-09-29 2008-04-10 Hitachi Ltd Semiconductor device, and manufacturing method therefor
WO2010100861A1 (en) * 2009-03-05 2010-09-10 株式会社日立メディコ Ultrasonic transducer, method of producing same, and ultrasound probe using same
JP2015066202A (en) * 2013-09-30 2015-04-13 セイコーエプソン株式会社 Ultrasound device, probe, electronic apparatus and ultrasonic image device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210043826A1 (en) * 2018-01-22 2021-02-11 Soitec Methods for designing and producing a device comprising and array of micromachined elements, and device produced by said methods
US11706989B2 (en) * 2018-01-22 2023-07-18 Soitec Methods for designing and producing a device comprising an array of micromachined elements, and device produced by said methods

Also Published As

Publication number Publication date
JP6470406B2 (en) 2019-02-13
JPWO2016194591A1 (en) 2018-03-15
CN107710787A (en) 2018-02-16
CN107710787B (en) 2019-12-06

Similar Documents

Publication Publication Date Title
JP4800170B2 (en) Ultrasonic transducer and manufacturing method thereof
JP5851238B6 (en) Ultrasonic transducer, its manufacturing method, and ultrasonic probe using the same
US7923795B2 (en) Ultrasonic transducer device
JP4471856B2 (en) Ultrasonic transducer and manufacturing method thereof
JP6251661B2 (en) Ultrasonic transducer, manufacturing method thereof, ultrasonic transducer array and ultrasonic inspection apparatus
JP5812660B2 (en) Electromechanical converter and manufacturing method thereof
JP2010004199A (en) Ultrasonic transducer and manufacturing method thereof
US20130069480A1 (en) Electromechanical transducer and method of manufacturing the electromechanical transducer
JP2019522449A (en) Electrical contact arrangement for micromachined ultrasonic transducers
US9986342B2 (en) Transducer, method for manufacturing transducer, and object information acquiring apparatus
JP6267787B2 (en) Ultrasonic transducer, method for manufacturing the same, and ultrasonic inspection apparatus
EP3306952B1 (en) Ultrasonic transducer element, method for manufacturing same, and ultrasonic image pickup device
JP6470406B2 (en) Ultrasonic transducer and ultrasonic inspection device
US10751027B2 (en) Ultrasound probe, performance evaluation method therefor, and ultrasound diagnostic equipment
JP6752727B2 (en) Ultrasound Transducer and Ultrasound Imaging Device
JP7141934B2 (en) Ultrasonic transducer, manufacturing method thereof and ultrasonic imaging device
JP2013219303A (en) Semiconductor device and manufacturing method of the same
JP2018186409A (en) Capacitance type transducer and manufacturing method for the same
JP2015186157A (en) Electrostatic capacity type transducer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803027

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017521778

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16803027

Country of ref document: EP

Kind code of ref document: A1