WO2016194135A1 - Vehicle control device and vehicle control method - Google Patents

Vehicle control device and vehicle control method Download PDF

Info

Publication number
WO2016194135A1
WO2016194135A1 PCT/JP2015/065902 JP2015065902W WO2016194135A1 WO 2016194135 A1 WO2016194135 A1 WO 2016194135A1 JP 2015065902 W JP2015065902 W JP 2015065902W WO 2016194135 A1 WO2016194135 A1 WO 2016194135A1
Authority
WO
WIPO (PCT)
Prior art keywords
route
travel route
vehicle
travel
capability
Prior art date
Application number
PCT/JP2015/065902
Other languages
French (fr)
Japanese (ja)
Inventor
三浦 雅博
出口 欣高
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2015/065902 priority Critical patent/WO2016194135A1/en
Publication of WO2016194135A1 publication Critical patent/WO2016194135A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance

Definitions

  • the present invention relates to a vehicle control device and a vehicle control method.
  • Patent Document 1 discloses a travel plan for stopping a vehicle according to a control guideline determined from a preset emergency stop mode when it is determined that the vehicle needs to be emergency stopped based on abnormality information from an ECU. Reset it.
  • Patent Document 1 when an abnormality is detected, a travelable distance is calculated from the remaining amount of fuel, a candidate stop location is selected, and a new stop position is set. Therefore, in Patent Document 1, when a sensor or actuator fails, it can not be said that the driving action that can be taken is limited and can be reached even if the stop position is set to the remaining travelable distance. It cannot be said that the safety of this is sufficiently secured.
  • the present invention has been made in view of the above problems, and its purpose is to set an appropriate destination and traveling route that can ensure safety according to the situation of the failure, and safety and reliability of automatic driving. It is providing the vehicle control apparatus and vehicle control method which can improve this.
  • a vehicle control apparatus includes a detection unit that detects surrounding information of a vehicle and an actuator unit that is used for vehicle travel control, and includes at least one of the detection capability of the detection unit and the capability of the actuator unit.
  • a route that can be driven with the reduced ability is calculated, and a new evacuation area that exists on the route that can be driven is calculated. Set as the destination and determine the travel route to reach the evacuation area.
  • FIG. 1 is a schematic configuration diagram of a vehicle control device according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating the detection range of the sensor group according to the embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a redundant configuration of the actuator according to the embodiment of the present invention.
  • FIG. 4 is a diagram illustrating an example of the first travel route, the retreat area, and the second travel route according to the embodiment of the present invention.
  • FIG. 5 is a diagram illustrating another example of the first travel route, the retreat area, and the second travel route according to the embodiment of the present invention.
  • FIG. 6 is a flowchart for explaining an operation example of the vehicle control device according to the embodiment of the present invention.
  • the vehicle control device 1 is applied to a vehicle having an automatic driving function.
  • the vehicle control device 1 includes a GPS receiver 10, a user input unit 20, a map database 30 in which map information such as road information and facility information is stored, a sensor group 40, and traveling A control unit 60, a steering actuator 80, an accelerator pedal actuator 81, and a brake actuator 82 are provided.
  • the GPS receiver 10 detects the current location of the vehicle on the ground by receiving radio waves from an artificial satellite.
  • the GPS receiver 10 outputs the detected current position of the host vehicle to the travel control unit 60.
  • the user input unit 20 is a device for a driver or a passenger to input various information, and displays a screen for setting a destination, for example, on the display.
  • the user input unit 20 outputs information input by the driver or the occupant to the travel control unit 60.
  • Sensor group 40 is a plurality of sensors that are installed in the host vehicle and detect surrounding information of the host vehicle.
  • the sensor group 40 includes cameras 41 and 42, an around view camera 43, laser range finders 44, 45, 46 and 47, and an actuator sensor 48.
  • functions and detection ranges of the cameras 41 and 42, the around view camera 43, and the laser range finders 44, 45, 46, and 47 in the sensor group 40 will be described with reference to FIG.
  • the cameras 41 and 42 are cameras having an image sensor such as a CCD (charge-coupled device) or a CMOS (complementary metal oxide semiconductor), and photograph the front of the host vehicle. More specifically, the camera 41 is a camera that detects obstacles (pedestrians, bicycles, two-wheeled vehicles, other vehicles, etc.) and traffic lights existing in front of the host vehicle, and the detection range is a detection range 41a shown in FIG. is there.
  • the camera 41 has an image processing function, and detects information indicating the relationship between the detected front obstacle and the host vehicle, for example, speed and position information of the front obstacle based on the host vehicle, The position, size, and color of the signal light can be detected.
  • the camera 42 is a camera that captures a distance farther than the camera 41, and detects an obstacle present in the distance.
  • the detection range of the camera 42 is a detection range 42a shown in FIG.
  • the camera 42 also has an image processing function, and can detect information indicating the relationship between the obstacle in the far distance and the host vehicle.
  • the around view camera 43 is composed of a total of four cameras installed at the front, rear, and side of the host vehicle, and detects the white line in the vicinity of the host vehicle, other vehicles in the adjacent lane, and the like.
  • the detection range of the around view camera 43 is a detection range 43a shown in FIG.
  • Laser range finders 44 to 47 are installed on the front right side, front left side, rear right side, and rear left side of the host vehicle, respectively, on the right front side, left front side, right rear side, and left rear side of the host vehicle. Detect obstacles to be detected. Specifically, the laser range finders 44 to 47 scan the laser beam within a certain angle range, receive the reflected light at that time, and detect the time difference between the laser emission time and the light reception time of the reflected light. The distance and angle between the vehicle and the obstacle are detected. The detection ranges of the laser range finders 44 to 47 are detection ranges 44a to 47a shown in FIG. 2, respectively.
  • Actuator sensor 48 detects the output values of steering actuator 80 (actuator means), accelerator pedal actuator 81 (actuator means), and brake actuator 82 (actuator means).
  • Sensor group 40 outputs the detected information to travel control unit 60.
  • the sensor which comprises the sensor group 40 is not restricted to said thing, For example, you may use a laser sensor, a millimeter wave radar, an ultrasonic sensor, etc.
  • the traveling control unit 60 is based on information acquired from the GPS receiver 10, the user input unit 20, the map database 30, and the sensor group 40, and includes a steering actuator 80, an accelerator pedal actuator 81, a brake actuator 82 (hereinafter simply referred to as various actuators). ) To realize automatic driving.
  • the map database 30 may be stored in a car navigation device mounted on the host vehicle, or may be stored on a server. When the map database 30 is stored on the server, the traveling control unit 60 can acquire map information at any time by communication.
  • the traveling control unit 60 is a computer including, for example, a CPU, a ROM, a RAM, a data bus connecting them, and an input / output interface. The CPU performs predetermined processing according to a program stored in the ROM.
  • the travel control unit 60 includes a destination setting unit 61, a first travel route determination unit 62, a detection capability calculation unit 63, a travelable route calculation unit 64, a retreat area determination unit 65, and a second travel route determination unit. 66, a switching determination unit 67, a driving action plan determination unit 68, a vehicle control policy determination unit 69, and a vehicle control unit 70.
  • the destination setting unit 61 sets a destination based on information acquired from the user input unit 20. Then, the destination setting unit 61 outputs the set destination to the first travel route determination unit 62 and the travelable route calculation unit 64.
  • the first travel route determination unit 62 determines the destination from the current location based on the destination acquired from the destination setting unit 61, the current location of the host vehicle acquired from the GPS receiver 10, and the map information acquired from the map database 30.
  • the optimal first travel route to the ground is determined.
  • the optimal first travel route is, for example, a route that can be reached from the current location to the destination in the shortest distance or the shortest time.
  • the first travel route determination unit 62 outputs the determined first travel route to the switching determination unit 67.
  • the first travel route is a route including a travel lane level, and is a route on the assumption that all the sensor groups 40 are operating normally.
  • the detection capability calculation unit 63 calculates the detection capability of the sensor group 40 based on the information acquired from the sensor group 40, and determines whether or not the detection capability is reduced. In addition, the detection capability calculation unit 63 determines whether or not the driving capability of various actuators is reduced based on information acquired from the actuator sensor 48. When the detection capability calculation unit 63 detects a sensor having a reduced detection capability or an actuator having a decrease in drive capability, the detection capability calculation unit 63 outputs information related to the sensor or actuator to the travelable route calculation unit 64 and the switching determination unit 67.
  • the detection capability calculation unit 63 calculates the difference between the output values of the sensor group 40 (laser range finders 44 to 47) having a redundant configuration, so that the detection capability of a sensor whose output value is smaller than the other sensors is reduced. It can be judged as a sensor. Further, the detection capability calculation unit 63 may compare the output values of the laser range finders 44 to 47 with the map information. In addition, the detection capability calculation unit 63 calculates the difference between the output value during normal operation and the current output value for the cameras 41 and 42 (including the around view camera 43), so that the current output value is normal operation. It can be determined that a camera having a lower detection capability is a camera having a smaller output value than the current output value.
  • the travelable route calculation unit 64 (travelable route calculation means) has a decrease in detection capability or drive capability based on the information of the sensor having decreased detection capability or the actuator having decreased drive capability acquired from the detection capability calculation unit 63. The route that can travel from the current location to the destination in the state is calculated. The travelable route calculation unit 64 outputs the calculated route to the save area determination unit 65.
  • the evacuation area determination unit 65 determines an evacuation area that exists on the travelable route acquired from the travelable route calculation unit 64.
  • the evacuation area is a stop place when the vehicle needs to be urgently stopped, for example, a public facility or a parking lot in a park.
  • the evacuation area is registered in the map database 30 in advance.
  • the evacuation area determination unit 65 outputs the determined evacuation area to the second travel route determination unit 66.
  • the second travel route determination unit 66 determines the travel route from the current location to the retreat area as the second travel route with the retreat area acquired from the retreat area determination unit 65 as a new destination. That is, the second travel route determination unit 66 has a function of resetting the travel route.
  • the second travel route determination unit 66 outputs the determined second travel route to the switching determination unit 67. Note that the second travel route is a route including the travel lane level as in the first travel route.
  • the switching determination unit 67 switches between the first travel route and the second travel route in accordance with the information of the sensor having a decreased detection capability or the actuator having the decreased drive capability acquired from the detection capability calculation unit 63. Specifically, thresholds relating to the detection capability of the sensor group 40 and the driving capability of various actuators are set in advance in the switching determination unit 67, and the switching determination unit 67 detects the detection capability and driving capability of the sensor whose detection capability has decreased. Compare the drive capability of the actuator with reduced threshold and the threshold. When the detection capability of the sensor having the reduced detection capability or the drive capability of the actuator having the reduced drive capability is greater than the threshold, the switching determination unit 67 outputs the first travel route to the driving action plan determination unit 68. On the other hand, when the detection capability of the sensor having the reduced detection capability and the drive capability of the actuator having the reduced drive capability are equal to or less than the threshold value, the switching determination unit 67 outputs the second travel route to the driving action plan determination unit 68.
  • the threshold value is set, for example, as a half value of the output value during normal operation of the sensor group 40, but is not limited thereto.
  • a plurality of threshold values may be set in the switching determination unit 67, and the switching determination unit 67 may change the threshold value used for comparison according to the traveling environment. For example, when the host vehicle is traveling at a high speed (for example, 80 km / h), the switching determination unit 67 can use a threshold value higher than a threshold value used for a normal speed (for example, 50 km / h). On the other hand, when the host vehicle is traveling at a low speed (for example, 30 km / h), the switching determination unit 67 can use a threshold lower than the threshold used at the normal speed.
  • the driving action plan determination unit 68 determines the driving action plan in real time during traveling based on the travel route switched by the switching determination unit 67 and the information acquired from the sensor group 40.
  • the driving action plan of the present invention is a plan relating to how many meters before the intersection, for example, in the scene of turning right at an intersection existing ahead, the lane change to the right turn lane. Further, since the driving action plan determination unit 68 determines the driving action plan in real time during traveling, in the example of the right turn at this intersection, when the right turn lane is crowded, the above-described lane change is performed to improve safety. It is possible to plan to change lanes to the right turn lane further before the point. Then, the driving action plan determination unit 68 outputs the determined driving action plan to the vehicle control policy determination unit 69.
  • the vehicle control policy determination unit 69 determines the control policy of the host vehicle based on the driving action plan acquired from the driving action plan determination unit 68.
  • the control policy is a vehicle speed command value or a steering command value for achieving a driving action plan.
  • the vehicle speed command value and the steering command value are explained by taking the above-mentioned right turn of the intersection as an example.
  • the vehicle control policy determination unit 69 outputs the determined control policy (command value) to the vehicle control unit 70.
  • the vehicle control unit 70 outputs control signals to various actuators according to the control policy acquired from the vehicle control policy determination unit 69, and controls the various actuators.
  • the steering actuator 80 includes a steering reaction force generation motor 80a and a rack assist motor 80b as drive devices.
  • the steering reaction force generation motor 80a is installed on the steering side
  • the rack assist motor 80b is installed on the rack side.
  • the steering reaction force generation motor 80a and the rack assist motor 80b operate in a standby system or a parallel operation system, and have a redundant configuration that functions as a backup performance so that safety can be compensated even if one of them fails. .
  • the detection capability calculation unit 63 calculates the difference between the output values of the steering reaction force generation motor 80a and the rack assist motor 80b, thereby driving the steering actuator 80. It is possible to identify an actuator with reduced capacity. Note that the accelerator pedal actuator 81 and the brake actuator 82 may have a redundant configuration.
  • the first travel route determination unit 62 determines a first travel route (route indicated by a dotted arrow in FIG. 4) that can reach the destination with the shortest distance.
  • a first travel route route indicated by a dotted arrow in FIG. 4
  • the detection capability of the laser range finder 44 is lowered, it is not preferable to travel on the first travel route because information on the right front side cannot be acquired.
  • the evacuation area determination unit 65 determines an evacuation area existing on a route that can be traveled in a state where the detection capability of the laser range finder 44 is lowered. Then, the second travel route determination unit 66 determines a second travel route (route indicated by a solid arrow in FIG. 4) that can travel to the retreat area.
  • the second travel route is a route that can travel to the evacuation area by repeating the left turn without making a right turn, and the need for the laser range finder 44 is low compared to the first travel route, improving the safety of automatic driving Can be made.
  • the first travel route determination unit 62 determines a first travel route (route indicated by a dotted arrow in FIG. 4) that can reach the destination with the shortest distance.
  • the steering reaction force generation motor 80a shown in FIG. 3 breaks down, and the performance of the backup rack assist motor 80b may not be able to make a right turn due to the surrounding traffic conditions and the shape of the road. .
  • the evacuation area determination unit 65 exists on a route where the ability of the steering reaction force generation motor 80a is reduced, that is, on a route that can travel with straight or slow steering. Determine the evacuation area. Then, the second travel route determination unit 66 determines a second travel route (route indicated by a solid arrow in FIG. 5) that can travel to the retreat area.
  • the second travel route is a route that can travel straight to the evacuation area without making a right turn or by slow steering, and the need for the steering reaction force generation motor 80a is low compared to the first travel route. Driving safety can be improved.
  • the second travel route determination unit 66 can determine the route having the highest reliability with respect to the sensor having the reduced detection capability as the second travel route.
  • the route having the highest reliability with respect to the sensor having the reduced detection capability is a route that can travel without using the information of the sensor having the reduced detection capability as much as possible. For example, when the detection capability of the camera 41 decreases and the detection accuracy of the traffic signal information decreases, the route with the fewest traffic signals existing up to the evacuation area corresponds to the route with the highest reliability for the sensor with the reduced detection capability.
  • the second travel route determination unit 66 selects the route with the highest reliability with respect to the backup performance (steering speed, steering torque, etc. that can be output with the performance of the backup) of the steering actuator 80 whose driving ability has decreased. May be determined as
  • step S101 the destination setting unit 61 sets the destination input by the driver or the occupant.
  • step S102 the first travel route determination unit 62 acquires map information from the map database 30.
  • step S ⁇ b> 103 the first travel route determination unit 62 acquires information from the sensor group 40.
  • step S ⁇ b> 104 the first travel route determination unit 62 acquires the current location of the host vehicle from the GPS receiver 10.
  • step S105 the first travel route determination unit 62 determines the first travel route based on the destination, the map information, and the current location.
  • step S106 the detection capability calculation unit 63 calculates the detection capability of the sensor group 40 and the drive capability of various actuators, and determines whether the detection capability or the drive capability has decreased.
  • step S107 the travelable route calculation unit 64 calculates a route that can be traveled in a state where the detection capability of the sensor is reduced or the drive capability of the actuator is reduced.
  • step S108 the evacuation area determination unit 65 determines the evacuation area existing on the travelable route calculated in step S107.
  • step S109 the second travel route determination unit 66 determines the travel route from the current location to the retreat area as the second travel route with the retreat area determined in step S108 as a new destination.
  • step S110 the switching determination unit 67 switches to the first travel route when the detection capability of the sensor whose detection capability has decreased and the drive capability of the actuator whose drive capability has decreased are larger than the threshold value.
  • the switching determination unit 67 switches to the second travel route when the detection capability of the sensor or the driving capability of the actuator is equal to or less than the threshold value.
  • step S111 the driving action plan determination unit 68 determines a driving action plan based on the travel route switched in step S110.
  • step S112 the vehicle control policy determination unit 69 determines a vehicle control policy based on the athletic action plan.
  • step S113 the vehicle control unit 70 controls various actuators based on the vehicle control policy.
  • step S114 the traveling control unit 60 determines whether the destination has been reached using the current location acquired from the GPS receiver 10. If the destination has been reached (Yes in step S114), a series of processing ends. On the other hand, if the destination has not been reached (No in step S114), the process returns to step S102.
  • the vehicle control device 1 When the vehicle control device 1 detects a decrease in the detection capability of the sensor or a decrease in the drive capability of the actuator, the vehicle control device 1 calculates a route that can be traveled in a state where the detection capability of the sensor is reduced or in a state where the drive capability of the actuator is reduced. A save area existing on the possible route is determined, and the save area is set as a new destination. Then, the vehicle control device 1 resets the travel route from the current location to the evacuation area. Accordingly, the vehicle control device 1 can reset an appropriate destination (retreat area) and a travel route that can ensure safety according to the detection capability of the sensor or the drive capability of the actuator. Safety and reliability are improved.
  • the evacuation area is registered in advance in the vehicle control device 1, the evacuation area can be set during traveling. This improves the safety and reliability of automatic driving.
  • the vehicle control device 1 can determine the route having the highest reliability for the sensor having the reduced detection capability or the highest reliability for the steering actuator 80 having the reduced driving capability as the second travel route. Thereby, since the vehicle control apparatus 1 can determine a suitable 2nd driving
  • the vehicle control device 1 may determine a route without a traffic signal as a second travel route (a route without an arrow traffic signal when there is only an arrow signal) as the second travel route. Good.
  • the conventional technology does not know the environment in the far distance while driving on the highway, and reduces the speed to a low speed (for example, 50 km / h) in order to earn fuel consumption up to the next parking area There is a risk of traveling. Therefore, when the detection capability of the camera 42 decreases, the vehicle control device 1 determines a retreat area that exists on the general road as a new purpose, and determines a route that reaches this retreat area as a second travel route. Also good. Further, the steering actuator 80 has been described as a reduction in the driving capability of the actuator means.
  • the actuator means includes an engine and a motor, which are driving sources of the vehicle, or a hydraulic brake or a regenerative motor that generates a braking force. . Therefore, the present invention can be applied even when the driving ability or braking ability of these actuators is lowered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Abstract

The present invention comprises: detection means (41-47) that detect periphery information for a vehicle; actuator means (80-82) used in vehicle travel control; a capacity determination means (63) that determines whether or not at least one capacity has reduced among the detection capacities of the detection means (41-47) and the capacities of the actuator means (80-82); a travelable route calculation means (64) that calculates a route that can be traveled in a capacity-reduced state, if a determination is made by the capacity determination means (63) that at least one capacity among the detection capacities and the capacities of the actuator means (80-82) has reduced; a refuge area setting means (65) that sets as a new destination a refuge area on the travelable route calculated by the travelable route calculation means (64); and a travel route determination means (66) that determines a travel route that reaches the refuge area set by the refuge area setting means (65).

Description

車両制御装置及び車両制御方法Vehicle control apparatus and vehicle control method
 本発明は、車両制御装置及び車両制御方法に関する。 The present invention relates to a vehicle control device and a vehicle control method.
 従来より、緊急時に車両の状態に応じて走行制御を行うことが可能な自律走行制御装置が知られている(特許文献1)。特許文献1は、ECUからの異常情報に基づいて車両を緊急停止させる必要があると判定した場合には、予め設定された緊急停止モードから決まる制御指針に従って、車両を停止させるための走行計画を再設定する。 Conventionally, an autonomous traveling control device capable of performing traveling control according to the state of a vehicle in an emergency is known (Patent Document 1). Patent Document 1 discloses a travel plan for stopping a vehicle according to a control guideline determined from a preset emergency stop mode when it is determined that the vehicle needs to be emergency stopped based on abnormality information from an ECU. Reset it.
特開2011-240816号公報JP 2011-240816 A
 しかしながら、特許文献1では、異常検出時に、燃料の残量から走行可能距離を算出し、停車可能な候補場所を選定し、新たな停車位置として設定するようになっている。そのため特許文献1では、センサやアクチュエータ故障時においては、取り得る運転行動に制限が発生してしまい残量分の走行可能距離に停車位置を設定しても到達できるとはいえず、故障発生時の安全性が十分に担保されているとはいえない。 However, in Patent Document 1, when an abnormality is detected, a travelable distance is calculated from the remaining amount of fuel, a candidate stop location is selected, and a new stop position is set. Therefore, in Patent Document 1, when a sensor or actuator fails, it can not be said that the driving action that can be taken is limited and can be reached even if the stop position is set to the remaining travelable distance. It cannot be said that the safety of this is sufficiently secured.
 本発明は、上記問題に鑑みて成されたものであり、その目的は、故障の状況に応じた安全性を担保できる適切な目的地および走行ルートを設定でき、自動運転の安全性及び信頼性を向上することができる車両制御装置及び車両制御方法を提供することである。 The present invention has been made in view of the above problems, and its purpose is to set an appropriate destination and traveling route that can ensure safety according to the situation of the failure, and safety and reliability of automatic driving. It is providing the vehicle control apparatus and vehicle control method which can improve this.
 本発明の一態様に係る車両制御装置は、車両の周辺情報を検知する検知手段と、車両の走行制御に用いるアクチュエータ手段とを備え、検知手段の検知能力及びアクチュエータ手段の能力のうち少なくとも1つの能力が低下したか否かを判断し、少なくとも1つの能力が低下したと判断した場合、能力の低下した状態で走行可能なルートを算出し、走行可能なルート上に存在する退避エリアを新たな目的地として設定し、退避エリアに到達する走行ルートを決定する。 A vehicle control apparatus according to an aspect of the present invention includes a detection unit that detects surrounding information of a vehicle and an actuator unit that is used for vehicle travel control, and includes at least one of the detection capability of the detection unit and the capability of the actuator unit. When it is determined whether or not the ability has decreased, and it is determined that at least one ability has decreased, a route that can be driven with the reduced ability is calculated, and a new evacuation area that exists on the route that can be driven is calculated. Set as the destination and determine the travel route to reach the evacuation area.
図1は、本発明の実施形態に係る車両制御装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a vehicle control device according to an embodiment of the present invention. 図2は、本発明の実施形態に係るセンサ群の検知範囲を説明する図である。FIG. 2 is a diagram illustrating the detection range of the sensor group according to the embodiment of the present invention. 図3は、本発明の実施形態に係るアクチュエータの冗長構成を説明する図である。FIG. 3 is a diagram illustrating a redundant configuration of the actuator according to the embodiment of the present invention. 図4は、本発明の実施形態に係る第1走行ルート、退避エリア、及び第2走行ルートの一例を説明する図である。FIG. 4 is a diagram illustrating an example of the first travel route, the retreat area, and the second travel route according to the embodiment of the present invention. 図5は、本発明の実施形態に係る第1走行ルート、退避エリア、及び第2走行ルートの他の例を説明する図である。FIG. 5 is a diagram illustrating another example of the first travel route, the retreat area, and the second travel route according to the embodiment of the present invention. 図6は、本発明の実施形態に係る車両制御装置の一動作例を説明するフローチャートである。FIG. 6 is a flowchart for explaining an operation example of the vehicle control device according to the embodiment of the present invention.
 以下、本発明の実施形態について、図面を参照して説明する。図面の記載において同一部分には同一符号を付して説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the drawings, the same portions are denoted by the same reference numerals, and description thereof is omitted.
 図1を参照して、本発明の実施形態に係る車両制御装置1の構成を説明する。車両制御装置1は、自動運転機能を有する車両に適用される。図1に示すように、車両制御装置1は、GPS受信機10と、ユーザ入力部20と、道路情報や施設情報などの地図情報が記憶されている地図データベース30と、センサ群40と、走行制御部60と、ステアリングアクチュエータ80と、アクセルペダルアクチュエータ81と、ブレーキアクチュエータ82とを備える。 With reference to FIG. 1, the structure of the vehicle control apparatus 1 which concerns on embodiment of this invention is demonstrated. The vehicle control device 1 is applied to a vehicle having an automatic driving function. As shown in FIG. 1, the vehicle control device 1 includes a GPS receiver 10, a user input unit 20, a map database 30 in which map information such as road information and facility information is stored, a sensor group 40, and traveling A control unit 60, a steering actuator 80, an accelerator pedal actuator 81, and a brake actuator 82 are provided.
 GPS受信機10は、人工衛星からの電波を受信することにより、地上における自車両の現在地を検知する。GPS受信機10は、検知した自車両の現在地を走行制御部60に出力する。 The GPS receiver 10 detects the current location of the vehicle on the ground by receiving radio waves from an artificial satellite. The GPS receiver 10 outputs the detected current position of the host vehicle to the travel control unit 60.
 ユーザ入力部20は、運転者又は乗員が各種の情報を入力するための装置であって、例えば目的地を設定するための画面をディスプレイに表示する。ユーザ入力部20は、運転者又は乗員によって入力された情報を走行制御部60に出力する。 The user input unit 20 is a device for a driver or a passenger to input various information, and displays a screen for setting a destination, for example, on the display. The user input unit 20 outputs information input by the driver or the occupant to the travel control unit 60.
 センサ群40(検知手段)は、自車両に設置され、自車両の周辺情報を検知する複数のセンサである。具体的に、センサ群40は、カメラ41,42、アラウンドビューカメラ43、レーザレンジファインダー44,45,46,47、アクチュエータセンサ48から構成される。ここで、図2を参照しながらセンサ群40のうち、カメラ41,42、アラウンドビューカメラ43、レーザレンジファインダー44,45,46,47の機能と検知範囲を説明する。 Sensor group 40 (detection means) is a plurality of sensors that are installed in the host vehicle and detect surrounding information of the host vehicle. Specifically, the sensor group 40 includes cameras 41 and 42, an around view camera 43, laser range finders 44, 45, 46 and 47, and an actuator sensor 48. Here, functions and detection ranges of the cameras 41 and 42, the around view camera 43, and the laser range finders 44, 45, 46, and 47 in the sensor group 40 will be described with reference to FIG.
 カメラ41,42は、CCD(charge-coupled device)やCMOS(complementary metal oxide semiconductor)などの撮像素子を有したカメラであり、自車両の前方を撮影する。より詳しくは、カメラ41は、自車両前方に存在する障害物(歩行者、自転車、二輪車、他車両など)や信号機を検知するカメラであり、その検知範囲は、図2に示す検知範囲41aである。カメラ41は、画像処理機能を有しており、検知した前方障害物と自車両との関係を示す情報、例えば自車両を基準とした前方障害物の速度や位置情報を検知したり、信号機の位置、大きさ、信号灯の色を検知したりすることができる。 The cameras 41 and 42 are cameras having an image sensor such as a CCD (charge-coupled device) or a CMOS (complementary metal oxide semiconductor), and photograph the front of the host vehicle. More specifically, the camera 41 is a camera that detects obstacles (pedestrians, bicycles, two-wheeled vehicles, other vehicles, etc.) and traffic lights existing in front of the host vehicle, and the detection range is a detection range 41a shown in FIG. is there. The camera 41 has an image processing function, and detects information indicating the relationship between the detected front obstacle and the host vehicle, for example, speed and position information of the front obstacle based on the host vehicle, The position, size, and color of the signal light can be detected.
 また、カメラ42は、カメラ41より前遠方を撮影するカメラであり、前遠方に存在する障害物を検知する。カメラ42の検知範囲は、図2に示す検知範囲42aである。カメラ42も、カメラ41と同様に画像処理機能を有しており、前遠方の障害物と自車両との関係を示す情報を検知することができる。 Also, the camera 42 is a camera that captures a distance farther than the camera 41, and detects an obstacle present in the distance. The detection range of the camera 42 is a detection range 42a shown in FIG. Similarly to the camera 41, the camera 42 also has an image processing function, and can detect information indicating the relationship between the obstacle in the far distance and the host vehicle.
 アラウンドビューカメラ43は、自車両の前方と後方、及び側方に設置される合計4台のカメラで構成され、自車近傍の白線や隣接車線の他車両などを検知する。アラウンドビューカメラ43の検知範囲は、図2に示す検知範囲43aである。 The around view camera 43 is composed of a total of four cameras installed at the front, rear, and side of the host vehicle, and detects the white line in the vicinity of the host vehicle, other vehicles in the adjacent lane, and the like. The detection range of the around view camera 43 is a detection range 43a shown in FIG.
 レーザレンジファインダー44~47は、それぞれ自車両の前方右側、前方左側、後方右側、後方左側に設置され、それぞれ自車両の右前側方、左前側方、右後側方、左後側方に存在する障害物などを検知する。具体的にレーザレンジファインダー44~47は、レーザ光をある角度範囲内で走査し、その時の反射光を受光して、レーザ発射時点と反射光の受光時点との時間差を検知することにより、自車両と障害物との距離や角度を検知する。レーザレンジファインダー44~47の検知範囲は、それぞれ図2に示す検知範囲44a~47aである。 Laser range finders 44 to 47 are installed on the front right side, front left side, rear right side, and rear left side of the host vehicle, respectively, on the right front side, left front side, right rear side, and left rear side of the host vehicle. Detect obstacles to be detected. Specifically, the laser range finders 44 to 47 scan the laser beam within a certain angle range, receive the reflected light at that time, and detect the time difference between the laser emission time and the light reception time of the reflected light. The distance and angle between the vehicle and the obstacle are detected. The detection ranges of the laser range finders 44 to 47 are detection ranges 44a to 47a shown in FIG. 2, respectively.
 アクチュエータセンサ48は、ステアリングアクチュエータ80(アクチュエータ手段)と、アクセルペダルアクチュエータ81(アクチュエータ手段)と、ブレーキアクチュエータ82(アクチュエータ手段)の出力値を検知する。 Actuator sensor 48 detects the output values of steering actuator 80 (actuator means), accelerator pedal actuator 81 (actuator means), and brake actuator 82 (actuator means).
 センサ群40は、検知した情報を走行制御部60に出力する。なお、センサ群40を構成するセンサは上記のものに限られず、例えばレーザセンサやミリ波レーダ、超音波センサなどを用いてもよい。 Sensor group 40 outputs the detected information to travel control unit 60. In addition, the sensor which comprises the sensor group 40 is not restricted to said thing, For example, you may use a laser sensor, a millimeter wave radar, an ultrasonic sensor, etc.
 図1に戻って、車両制御装置1の構成の続きを説明する。
 走行制御部60は、GPS受信機10、ユーザ入力部20、地図データベース30、センサ群40から取得した情報に基づいて、ステアリングアクチュエータ80、アクセルペダルアクチュエータ81、ブレーキアクチュエータ82(以下、単に各種アクチュエータという)を制御して、自動運転を実現する。なお、地図データベース30は、自車両に搭載されるカーナビゲーション装置に記憶されていてもよいし、サーバ上に記憶されていてもよい。地図データベース30がサーバ上に記憶されている場合、走行制御部60は、通信により随時地図情報を取得することができる。また、走行制御部60は、例えばCPU、ROM、RAMおよびそれらを接続するデータバスと入出力インターフェースから構成されるコンピュータであり、ROMに格納されたプログラムに従い、CPUが所定の処理を行う。
Returning to FIG. 1, the continuation of the configuration of the vehicle control device 1 will be described.
The traveling control unit 60 is based on information acquired from the GPS receiver 10, the user input unit 20, the map database 30, and the sensor group 40, and includes a steering actuator 80, an accelerator pedal actuator 81, a brake actuator 82 (hereinafter simply referred to as various actuators). ) To realize automatic driving. The map database 30 may be stored in a car navigation device mounted on the host vehicle, or may be stored on a server. When the map database 30 is stored on the server, the traveling control unit 60 can acquire map information at any time by communication. The traveling control unit 60 is a computer including, for example, a CPU, a ROM, a RAM, a data bus connecting them, and an input / output interface. The CPU performs predetermined processing according to a program stored in the ROM.
 走行制御部60は、目的地設定部61と、第1走行ルート決定部62と、検知能力計算部63と、走行可能ルート算出部64と、退避エリア決定部65と、第2走行ルート決定部66と、切替判断部67と、運転行動計画決定部68と、車両制御方針決定部69と、車両制御部70を備える。 The travel control unit 60 includes a destination setting unit 61, a first travel route determination unit 62, a detection capability calculation unit 63, a travelable route calculation unit 64, a retreat area determination unit 65, and a second travel route determination unit. 66, a switching determination unit 67, a driving action plan determination unit 68, a vehicle control policy determination unit 69, and a vehicle control unit 70.
 目的地設定部61は、ユーザ入力部20から取得した情報に基づいて目的地を設定する。そして、目的地設定部61は、設定した目的地を第1走行ルート決定部62及び走行可能ルート算出部64に出力する。 The destination setting unit 61 sets a destination based on information acquired from the user input unit 20. Then, the destination setting unit 61 outputs the set destination to the first travel route determination unit 62 and the travelable route calculation unit 64.
 第1走行ルート決定部62は、目的地設定部61から取得した目的地と、GPS受信機10から取得した自車両の現在地と、地図データベース30から取得した地図情報とに基づいて、現在地から目的地までの最適な第1走行ルートを決定する。最適な第1走行ルートとは、例えば現在地から目的地まで最短距離又は最短時間で到達できるルートである。第1走行ルート決定部62は、決定した第1走行ルートを切替判断部67に出力する。なお、第1走行ルートは、走行車線レベルを含むルートであり、センサ群40がすべて正常に動作していることを前提としたルートである。 The first travel route determination unit 62 determines the destination from the current location based on the destination acquired from the destination setting unit 61, the current location of the host vehicle acquired from the GPS receiver 10, and the map information acquired from the map database 30. The optimal first travel route to the ground is determined. The optimal first travel route is, for example, a route that can be reached from the current location to the destination in the shortest distance or the shortest time. The first travel route determination unit 62 outputs the determined first travel route to the switching determination unit 67. The first travel route is a route including a travel lane level, and is a route on the assumption that all the sensor groups 40 are operating normally.
 検知能力計算部63(能力判断手段)は、センサ群40から取得した情報に基づいてセンサ群40の検知能力を計算して、検知能力が低下しているか否かを判断する。また、検知能力計算部63は、アクチュエータセンサ48から取得した情報に基づいて各種アクチュエータの駆動能力が低下しているか否かを判断する。検知能力計算部63は、検知能力が低下したセンサまたは駆動能力が低下したアクチュエータを検知した場合、そのセンサまたはアクチュエータに関する情報を走行可能ルート算出部64及び切替判断部67に出力する。 The detection capability calculation unit 63 (capability determination means) calculates the detection capability of the sensor group 40 based on the information acquired from the sensor group 40, and determines whether or not the detection capability is reduced. In addition, the detection capability calculation unit 63 determines whether or not the driving capability of various actuators is reduced based on information acquired from the actuator sensor 48. When the detection capability calculation unit 63 detects a sensor having a reduced detection capability or an actuator having a decrease in drive capability, the detection capability calculation unit 63 outputs information related to the sensor or actuator to the travelable route calculation unit 64 and the switching determination unit 67.
 続いて、検知能力計算部63が行うセンサ群40の検知能力低下の判断方法の一例について説明する。検知能力計算部63は、冗長構成となっているセンサ群40(レーザレンジファインダー44~47)の出力値の差分を計算することにより、出力値が他のセンサより小さいセンサを検知能力が低下したセンサと判断できる。また、検知能力計算部63は、レーザレンジファインダー44~47の出力値と地図情報とを比較してもよい。また、検知能力計算部63は、カメラ41,42(アラウンドビューカメラ43も含む)について、正常動作時の出力値と現在の出力値との差分を計算することにより、現在の出力値が正常動作時の出力値より小さいカメラを検知能力が低下したカメラと判断できる。 Subsequently, an example of a method for determining a decrease in the detection capability of the sensor group 40 performed by the detection capability calculator 63 will be described. The detection capability calculation unit 63 calculates the difference between the output values of the sensor group 40 (laser range finders 44 to 47) having a redundant configuration, so that the detection capability of a sensor whose output value is smaller than the other sensors is reduced. It can be judged as a sensor. Further, the detection capability calculation unit 63 may compare the output values of the laser range finders 44 to 47 with the map information. In addition, the detection capability calculation unit 63 calculates the difference between the output value during normal operation and the current output value for the cameras 41 and 42 (including the around view camera 43), so that the current output value is normal operation. It can be determined that a camera having a lower detection capability is a camera having a smaller output value than the current output value.
 走行可能ルート算出部64(走行可能ルート算出手段)は、検知能力計算部63から取得した検知能力が低下したセンサまたは駆動能力が低下したアクチュエータの情報に基づいて、検知能力または駆動能力が低下した状態で現在地から目的地まで走行可能なルートを算出する。走行可能ルート算出部64は、算出したルートを退避エリア決定部65に出力する。 The travelable route calculation unit 64 (travelable route calculation means) has a decrease in detection capability or drive capability based on the information of the sensor having decreased detection capability or the actuator having decreased drive capability acquired from the detection capability calculation unit 63. The route that can travel from the current location to the destination in the state is calculated. The travelable route calculation unit 64 outputs the calculated route to the save area determination unit 65.
 退避エリア決定部65(退避エリア設定手段)は、走行可能ルート算出部64から取得した走行可能ルート上に存在する退避エリアを決定する。退避エリアとは、車両を緊急停止させる必要がある場合の停車場所であり、例えば公共施設や公園の駐車場である。退避エリアは、予め地図データベース30に登録されている。退避エリア決定部65は、決定した退避エリアを第2走行ルート決定部66に出力する。 The evacuation area determination unit 65 (evacuation area setting means) determines an evacuation area that exists on the travelable route acquired from the travelable route calculation unit 64. The evacuation area is a stop place when the vehicle needs to be urgently stopped, for example, a public facility or a parking lot in a park. The evacuation area is registered in the map database 30 in advance. The evacuation area determination unit 65 outputs the determined evacuation area to the second travel route determination unit 66.
 第2走行ルート決定部66(走行ルート決定手段)は、退避エリア決定部65から取得した退避エリアを新たな目的地として、現在地から退避エリアまでの走行ルートを第2走行ルートとして決定する。すなわち、第2走行ルート決定部66は、走行ルートを再設定する機能を有する。第2走行ルート決定部66は、決定した第2走行ルートを切替判断部67に出力する。なお、第2走行ルートも第1走行ルートと同様に走行車線レベルを含むルートである。 The second travel route determination unit 66 (travel route determination means) determines the travel route from the current location to the retreat area as the second travel route with the retreat area acquired from the retreat area determination unit 65 as a new destination. That is, the second travel route determination unit 66 has a function of resetting the travel route. The second travel route determination unit 66 outputs the determined second travel route to the switching determination unit 67. Note that the second travel route is a route including the travel lane level as in the first travel route.
 切替判断部67は、検知能力計算部63から取得した検知能力が低下したセンサまたは駆動能力が低下したアクチュエータの情報に応じて第1走行ルートと第2走行ルートとを切り替える。具体的には、切替判断部67にはセンサ群40の検知能力や各種アクチュエータの駆動能力に関する閾値が予め設定されており、切替判断部67は、検知能力が低下したセンサの検知能力や駆動能力が低下したアクチュエータの駆動能力と閾値とを比較する。検知能力が低下したセンサの検知能力や駆動能力が低下したアクチュエータの駆動能力が閾値より大きい場合、切替判断部67は、第1走行ルートを運転行動計画決定部68に出力する。一方、検知能力が低下したセンサの検知能力や駆動能力が低下したアクチュエータの駆動能力が閾値以下の場合、切替判断部67は、第2走行ルートを運転行動計画決定部68に出力する。 The switching determination unit 67 switches between the first travel route and the second travel route in accordance with the information of the sensor having a decreased detection capability or the actuator having the decreased drive capability acquired from the detection capability calculation unit 63. Specifically, thresholds relating to the detection capability of the sensor group 40 and the driving capability of various actuators are set in advance in the switching determination unit 67, and the switching determination unit 67 detects the detection capability and driving capability of the sensor whose detection capability has decreased. Compare the drive capability of the actuator with reduced threshold and the threshold. When the detection capability of the sensor having the reduced detection capability or the drive capability of the actuator having the reduced drive capability is greater than the threshold, the switching determination unit 67 outputs the first travel route to the driving action plan determination unit 68. On the other hand, when the detection capability of the sensor having the reduced detection capability and the drive capability of the actuator having the reduced drive capability are equal to or less than the threshold value, the switching determination unit 67 outputs the second travel route to the driving action plan determination unit 68.
 閾値は、例えばセンサ群40の正常動作時の出力値の半分の値として設定されるが、これに限られない。切替判断部67には複数の閾値が設定されていてもよく、走行環境に応じて切替判断部67は比較に用いる閾値を変更してもよい。例えば自車両が高速(例えば80km/h)で走行している場合、切替判断部67は通常速度(例えば50km/h)で用いる閾値より高い閾値を用いることができる。一方、自車両が低速(例えば30km/h)で走行している場合、切替判断部67は通常速度で用いる閾値より低い閾値を用いることができる。 The threshold value is set, for example, as a half value of the output value during normal operation of the sensor group 40, but is not limited thereto. A plurality of threshold values may be set in the switching determination unit 67, and the switching determination unit 67 may change the threshold value used for comparison according to the traveling environment. For example, when the host vehicle is traveling at a high speed (for example, 80 km / h), the switching determination unit 67 can use a threshold value higher than a threshold value used for a normal speed (for example, 50 km / h). On the other hand, when the host vehicle is traveling at a low speed (for example, 30 km / h), the switching determination unit 67 can use a threshold lower than the threshold used at the normal speed.
 運転行動計画決定部68は、切替判断部67によって切り替えられた走行ルートとセンサ群40から取得した情報に基づいて、運転行動計画を走行中にリアルタイムで決定する。本発明の運転行動計画とは、例えば前方に存在する交差点を右折するシーンにおいて、交差点の手前何m地点で右折レーンに車線変更するかに関する計画である。さらに、運転行動計画決定部68は、走行中にリアルタイムで運転行動計画を決定するため、この交差点右折の例において、右折レーンが混み合っている場合には、安全性向上のため上記した車線変更地点よりさらに手前で右折レーンに車線変更するように計画することができる。そして、運転行動計画決定部68は、決定した運転行動計画を車両制御方針決定部69に出力する。 The driving action plan determination unit 68 determines the driving action plan in real time during traveling based on the travel route switched by the switching determination unit 67 and the information acquired from the sensor group 40. The driving action plan of the present invention is a plan relating to how many meters before the intersection, for example, in the scene of turning right at an intersection existing ahead, the lane change to the right turn lane. Further, since the driving action plan determination unit 68 determines the driving action plan in real time during traveling, in the example of the right turn at this intersection, when the right turn lane is crowded, the above-described lane change is performed to improve safety. It is possible to plan to change lanes to the right turn lane further before the point. Then, the driving action plan determination unit 68 outputs the determined driving action plan to the vehicle control policy determination unit 69.
 車両制御方針決定部69は、運転行動計画決定部68から取得した運転行動計画に基づいて自車両の制御方針を決定する。制御方針とは、運転行動計画を達成するための車速指令値や操舵指令値のことである。この車速指令値や操舵指令値とは、上述した交差点右折を例にあげて説明すると、自車両が車線変更地点に到達した際に、周囲に存在する他車両との安全な距離を保ちつつ車線変更するために必要な車速や操舵に関する指令値である。そして、車両制御方針決定部69は、決定した制御方針(指令値)を車両制御部70に出力する。 The vehicle control policy determination unit 69 determines the control policy of the host vehicle based on the driving action plan acquired from the driving action plan determination unit 68. The control policy is a vehicle speed command value or a steering command value for achieving a driving action plan. The vehicle speed command value and the steering command value are explained by taking the above-mentioned right turn of the intersection as an example. When the own vehicle reaches the lane change point, the lane while maintaining a safe distance from other vehicles in the vicinity. This is a command value related to the vehicle speed and steering necessary for the change. Then, the vehicle control policy determination unit 69 outputs the determined control policy (command value) to the vehicle control unit 70.
 車両制御部70は、車両制御方針決定部69から取得した制御方針にしたがって、各種アクチュエータに制御信号を出力し、各種アクチュエータを制御する。 The vehicle control unit 70 outputs control signals to various actuators according to the control policy acquired from the vehicle control policy determination unit 69, and controls the various actuators.
 次に、図3を参照して、ステアリングアクチュエータ80の冗長構成について説明する。図3に示すようにステアリングアクチュエータ80は、駆動装置として操舵反力生成用モータ80aとラックアシスト用モータ80bを備える。操舵反力生成用モータ80aはステアリング側に設置され、ラックアシスト用モータ80bはラック側に設置される。操舵反力生成用モータ80a及びラックアシスト用モータ80bは、待機方式または並列作動方式で動作し、どちらか一方が故障しても安全を補償できるようにバックアップ性能として機能する冗長構成となっている。 Next, a redundant configuration of the steering actuator 80 will be described with reference to FIG. As shown in FIG. 3, the steering actuator 80 includes a steering reaction force generation motor 80a and a rack assist motor 80b as drive devices. The steering reaction force generation motor 80a is installed on the steering side, and the rack assist motor 80b is installed on the rack side. The steering reaction force generation motor 80a and the rack assist motor 80b operate in a standby system or a parallel operation system, and have a redundant configuration that functions as a backup performance so that safety can be compensated even if one of them fails. .
 なお、ステアリングアクチュエータ80がこのような冗長構成を有しているため、検知能力計算部63は、操舵反力生成用モータ80a及びラックアシスト用モータ80bの出力値の差分を計算することにより、駆動能力が低下したアクチュエータを特定できる。なお、アクセルペダルアクチュエータ81やブレーキアクチュエータ82が冗長構成を有するようにしてもよい。 Since the steering actuator 80 has such a redundant configuration, the detection capability calculation unit 63 calculates the difference between the output values of the steering reaction force generation motor 80a and the rack assist motor 80b, thereby driving the steering actuator 80. It is possible to identify an actuator with reduced capacity. Note that the accelerator pedal actuator 81 and the brake actuator 82 may have a redundant configuration.
 次に、図4を参照して、第1走行ルート、退避エリア、及び第2走行ルートの一例について説明する。図4に示すように、第1走行ルート決定部62は、目的地まで最短距離で到達できる第1走行ルート(図4の点線矢印で示すルート)を決定する。このとき、図4に示すように、レーザレンジファインダー44の検知能力が低下した場合、前方右側の情報を取得できなくなるため第1走行ルートを走行することは安全上好ましくない。 Next, an example of the first travel route, the evacuation area, and the second travel route will be described with reference to FIG. As shown in FIG. 4, the first travel route determination unit 62 determines a first travel route (route indicated by a dotted arrow in FIG. 4) that can reach the destination with the shortest distance. At this time, as shown in FIG. 4, when the detection capability of the laser range finder 44 is lowered, it is not preferable to travel on the first travel route because information on the right front side cannot be acquired.
 そこで、図4に示すように、退避エリア決定部65は、レーザレンジファインダー44の検知能力が低下した状態で走行可能なルート上に存在する退避エリアを決定する。そして、第2走行ルート決定部66は、退避エリアまで走行可能な第2走行ルート(図4の実線矢印で示すルート)を決定する。第2走行ルートは、右折することなく左折の繰り返しで退避エリアまで走行可能なルートであり、第1走行ルートと比較してレーザレンジファインダー44の必要性が低いため、自動運転の安全性を向上させることができる。 Therefore, as shown in FIG. 4, the evacuation area determination unit 65 determines an evacuation area existing on a route that can be traveled in a state where the detection capability of the laser range finder 44 is lowered. Then, the second travel route determination unit 66 determines a second travel route (route indicated by a solid arrow in FIG. 4) that can travel to the retreat area. The second travel route is a route that can travel to the evacuation area by repeating the left turn without making a right turn, and the need for the laser range finder 44 is low compared to the first travel route, improving the safety of automatic driving Can be made.
 次に、図5を参照して、第1走行ルート、退避エリア、及び第2走行ルートの他の例について説明する。図5に示すように、第1走行ルート決定部62は、目的地まで最短距離で到達できる第1走行ルート(図4の点線矢印で示すルート)を決定する。このとき、図3に示す操舵反力生成用モータ80aが故障し、バックアップ用のラックアシスト用モータ80bの性能では、周囲の交通状況や道路の形状などにより、右折が十分に行えない場合がある。 Next, another example of the first travel route, the evacuation area, and the second travel route will be described with reference to FIG. As shown in FIG. 5, the first travel route determination unit 62 determines a first travel route (route indicated by a dotted arrow in FIG. 4) that can reach the destination with the shortest distance. At this time, the steering reaction force generation motor 80a shown in FIG. 3 breaks down, and the performance of the backup rack assist motor 80b may not be able to make a right turn due to the surrounding traffic conditions and the shape of the road. .
 このような場合、図5に示すように、退避エリア決定部65は、操舵反力生成用モータ80aの能力が低下した状態で、すなわち直進またはゆっくりとした操舵で走行可能なルート上に存在する退避エリアを決定する。そして、第2走行ルート決定部66は、退避エリアまで走行可能な第2走行ルート(図5の実線矢印で示すルート)を決定する。第2走行ルートは、右折することなく直進またはゆっくりとした操舵で退避エリアまで走行可能なルートであり、第1走行ルートと比較して操舵反力生成用モータ80aの必要性が低いため、自動運転の安全性を向上させることができる。 In such a case, as shown in FIG. 5, the evacuation area determination unit 65 exists on a route where the ability of the steering reaction force generation motor 80a is reduced, that is, on a route that can travel with straight or slow steering. Determine the evacuation area. Then, the second travel route determination unit 66 determines a second travel route (route indicated by a solid arrow in FIG. 5) that can travel to the retreat area. The second travel route is a route that can travel straight to the evacuation area without making a right turn or by slow steering, and the need for the steering reaction force generation motor 80a is low compared to the first travel route. Driving safety can be improved.
 なお、退避エリアが複数存在する場合、第2走行ルートも複数存在する場合がある。また、退避エリアが1つしか存在しない場合でも第2走行ルートは複数存在する場合がある。このように第2走行ルートが複数存在する場合、第2走行ルート決定部66は、検知能力が低下したセンサに対する信頼度が最も高いルートを第2走行ルートとして決定することができる。検知能力が低下したセンサに対する信頼度が最も高いルートとは、可能な限り検知能力が低下したセンサの情報を使用しない状態で走行可能なルートである。例えば、カメラ41の検知能力が低下し、信号機情報の検知精度が低下した場合、退避エリアまでに存在する信号機がもっとも少ないルートが、検知能力が低下したセンサに対する信頼度が最も高いルートに該当する。また、第2走行ルート決定部66は、駆動能力が低下したステアリングアクチュエータ80のバックアップ性能(バックアップ分の性能で出力可能な操舵速度や操舵トルクなど)に対する信頼度が最も高いルートを第2走行ルートとして決定してもよい。 In addition, when there are a plurality of evacuation areas, there may be a plurality of second travel routes. Even when there is only one evacuation area, there may be a plurality of second traveling routes. As described above, when there are a plurality of second travel routes, the second travel route determination unit 66 can determine the route having the highest reliability with respect to the sensor having the reduced detection capability as the second travel route. The route having the highest reliability with respect to the sensor having the reduced detection capability is a route that can travel without using the information of the sensor having the reduced detection capability as much as possible. For example, when the detection capability of the camera 41 decreases and the detection accuracy of the traffic signal information decreases, the route with the fewest traffic signals existing up to the evacuation area corresponds to the route with the highest reliability for the sensor with the reduced detection capability. . In addition, the second travel route determination unit 66 selects the route with the highest reliability with respect to the backup performance (steering speed, steering torque, etc. that can be output with the performance of the backup) of the steering actuator 80 whose driving ability has decreased. May be determined as
 次に、図6に示すフローチャートを参照して、車両制御装置1の一動作例を説明する。この処理は、自車両のイグニッションキーがオンされると開始する。 Next, an operation example of the vehicle control device 1 will be described with reference to the flowchart shown in FIG. This process starts when the ignition key of the host vehicle is turned on.
 ステップS101において、目的地設定部61は、運転者又は乗員によって入力された目的地を設定する。 In step S101, the destination setting unit 61 sets the destination input by the driver or the occupant.
 ステップS102において、第1走行ルート決定部62は、地図データベース30から地図情報を取得する。 In step S102, the first travel route determination unit 62 acquires map information from the map database 30.
 ステップS103において、第1走行ルート決定部62は、センサ群40から情報を取得する。 In step S <b> 103, the first travel route determination unit 62 acquires information from the sensor group 40.
 ステップS104において、第1走行ルート決定部62は、GPS受信機10から自車両の現在地を取得する。 In step S <b> 104, the first travel route determination unit 62 acquires the current location of the host vehicle from the GPS receiver 10.
 ステップS105において、第1走行ルート決定部62は、目的地、地図情報、現在地に基づいて第1走行ルートを決定する。 In step S105, the first travel route determination unit 62 determines the first travel route based on the destination, the map information, and the current location.
 ステップS106において、検知能力計算部63は、センサ群40の検知能力や各種アクチュエータの駆動能力を計算して、検知能力または駆動能力が低下しているか否かを判断する。 In step S106, the detection capability calculation unit 63 calculates the detection capability of the sensor group 40 and the drive capability of various actuators, and determines whether the detection capability or the drive capability has decreased.
 ステップS107において、走行可能ルート算出部64は、センサの検知能力が低下した状態またはアクチュエータの駆動能力が低下した状態で走行可能なルートを算出する。 In step S107, the travelable route calculation unit 64 calculates a route that can be traveled in a state where the detection capability of the sensor is reduced or the drive capability of the actuator is reduced.
 ステップS108において、退避エリア決定部65は、ステップS107で算出された走行可能ルート上に存在する退避エリアを決定する。 In step S108, the evacuation area determination unit 65 determines the evacuation area existing on the travelable route calculated in step S107.
 ステップS109において、第2走行ルート決定部66は、ステップS108で決定された退避エリアを新たな目的地として、現在地から退避エリアまでの走行ルートを第2走行ルートとして決定する。 In step S109, the second travel route determination unit 66 determines the travel route from the current location to the retreat area as the second travel route with the retreat area determined in step S108 as a new destination.
 ステップS110において、切替判断部67は、検知能力が低下したセンサの検知能力や駆動能力が低下したアクチュエータの駆動能力が閾値より大きい場合は、第1走行ルートに切り替える。一方、切替判断部67は、センサの検知能力やアクチュエータの駆動能力が閾値以下の場合は、第2走行ルートに切り替える。 In step S110, the switching determination unit 67 switches to the first travel route when the detection capability of the sensor whose detection capability has decreased and the drive capability of the actuator whose drive capability has decreased are larger than the threshold value. On the other hand, the switching determination unit 67 switches to the second travel route when the detection capability of the sensor or the driving capability of the actuator is equal to or less than the threshold value.
 ステップS111において、運転行動計画決定部68は、ステップS110で切り替えられた走行ルートに基づいて運転行動計画を決定する。 In step S111, the driving action plan determination unit 68 determines a driving action plan based on the travel route switched in step S110.
 ステップS112において、車両制御方針決定部69は、運動行動計画に基づいて車両制御方針を決定する。 In step S112, the vehicle control policy determination unit 69 determines a vehicle control policy based on the athletic action plan.
 ステップS113において、車両制御部70は、車両制御方針に基づいて各種アクチュエータを制御する。 In step S113, the vehicle control unit 70 controls various actuators based on the vehicle control policy.
 ステップS114において、走行制御部60は、GPS受信機10から取得した現在地を用いて目的地に到着したか否かを判断する。目的地に到着した場合(ステップS114でYes)、一連の処理が終了する。一方、目的地に到着していない場合(ステップS114でNo)、処理がステップS102に戻る。 In step S114, the traveling control unit 60 determines whether the destination has been reached using the current location acquired from the GPS receiver 10. If the destination has been reached (Yes in step S114), a series of processing ends. On the other hand, if the destination has not been reached (No in step S114), the process returns to step S102.
 以上説明したように、本実施形態に係る車両制御装置1によれば、以下の作用効果が得られる。 As described above, according to the vehicle control device 1 according to the present embodiment, the following operational effects can be obtained.
 車両制御装置1は、センサの検知能力低下またはアクチュエータの駆動能力低下を検知した場合、センサの検知能力が低下した状態またはアクチュエータの駆動能力が低下した状態で走行可能なルートを算出し、この走行可能ルート上に存在する退避エリアを決定し、退避エリアを新たな目的地に設定する。そして、車両制御装置1は、現在地から退避エリアまでの走行ルートを再設定する。これにより、車両制御装置1は、センサの検知能力またはアクチュエータの駆動能力に応じて安全性を担保できる適切な目的地(退避エリア)および走行ルートを再設定することが可能となるため、自動運転の安全性及び信頼性が向上する。 When the vehicle control device 1 detects a decrease in the detection capability of the sensor or a decrease in the drive capability of the actuator, the vehicle control device 1 calculates a route that can be traveled in a state where the detection capability of the sensor is reduced or in a state where the drive capability of the actuator is reduced. A save area existing on the possible route is determined, and the save area is set as a new destination. Then, the vehicle control device 1 resets the travel route from the current location to the evacuation area. Accordingly, the vehicle control device 1 can reset an appropriate destination (retreat area) and a travel route that can ensure safety according to the detection capability of the sensor or the drive capability of the actuator. Safety and reliability are improved.
 また、車両制御装置1には退避エリアが予め登録されているため、走行中に退避エリアを設定することができる。これにより、自動運転の安全性及び信頼性が向上する。 Further, since the evacuation area is registered in advance in the vehicle control device 1, the evacuation area can be set during traveling. This improves the safety and reliability of automatic driving.
 また、車両制御装置1は、検知能力が低下したセンサに対する信頼度または駆動能力が低下したステアリングアクチュエータ80に対する信頼度が最も高いルートを第2走行ルートとして決定することができる。これにより、車両制御装置1は、走行状況に応じて適切な第2走行ルートを決定できるため、自動運転の安全性及び信頼性が向上する。 Further, the vehicle control device 1 can determine the route having the highest reliability for the sensor having the reduced detection capability or the highest reliability for the steering actuator 80 having the reduced driving capability as the second travel route. Thereby, since the vehicle control apparatus 1 can determine a suitable 2nd driving | running route according to a driving | running | working condition, the safety | security and reliability of automatic driving | operation improve.
 上記のように、本発明の実施形態を記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。例えば、カメラ41の検知能力が低下した場合、車両制御装置1は、第2走行ルートとして信号機がないルート(矢印信号のみのときは矢印信号機がないルート)を第2走行ルートとして決定してもよい。また、カメラ42の検知能力が低下した場合、従来技術では高速道路を走行中に前遠方の環境がわからず次のパーキングエリアまでの燃費を稼ぐために低速(例えば50km/h)まで速度を落として走行するおそれがある。そこで、車両制御装置1は、カメラ42の検知能力が低下した場合、新たな目的として一般道路上に存在する退避エリアを決定し、第2走行ルートとしてこの退避エリアまで到達するルートを決定してもよい。また、アクチュエータ手段の駆動能力低下として、ステアリングアクチュエータ80を取り上げて説明したが、車両の走行駆動源であるエンジンやモータ、あるいは、制動力を発生させる油圧ブレーキまたは回生モータなどもアクチュエータ手段に含まれる。そのため、これらのアクチュエータの駆動能力もしくは制動能力が低下した場合にも本発明を適用できる。 As described above, the embodiments of the present invention have been described. However, it should not be understood that the descriptions and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art. For example, when the detection capability of the camera 41 is reduced, the vehicle control device 1 may determine a route without a traffic signal as a second travel route (a route without an arrow traffic signal when there is only an arrow signal) as the second travel route. Good. In addition, when the detection capability of the camera 42 is reduced, the conventional technology does not know the environment in the far distance while driving on the highway, and reduces the speed to a low speed (for example, 50 km / h) in order to earn fuel consumption up to the next parking area There is a risk of traveling. Therefore, when the detection capability of the camera 42 decreases, the vehicle control device 1 determines a retreat area that exists on the general road as a new purpose, and determines a route that reaches this retreat area as a second travel route. Also good. Further, the steering actuator 80 has been described as a reduction in the driving capability of the actuator means. However, the actuator means includes an engine and a motor, which are driving sources of the vehicle, or a hydraulic brake or a regenerative motor that generates a braking force. . Therefore, the present invention can be applied even when the driving ability or braking ability of these actuators is lowered.
41、42 カメラ
43 アラウンドビューカメラ
44~47 レーザレンジファインダー
63 検知能力計算部
64 走行可能ルート算出部
65 退避エリア決定部
66 第2走行ルート決定部
80 ステアリングアクチュエータ
81 アクセルペダルアクチュエータ
82 ブレーキアクチュエータ
41, 42 Camera 43 Around view cameras 44 to 47 Laser range finder 63 Detection capability calculation unit 64 Travelable route calculation unit 65 Retreat area determination unit 66 Second travel route determination unit 80 Steering actuator 81 Accelerator pedal actuator 82 Brake actuator

Claims (4)

  1.  車両の周辺情報を検知する検知手段と、
     前記車両の走行制御に用いるアクチュエータ手段と、
     前記検知手段の検知能力及び前記アクチュエータ手段の能力の少なくとも1つの能力が低下したか否かを判断する能力判断手段と、
     前記能力判断手段によって前記検知能力及び前記アクチュエータ手段の能力のうち少なくとも1つの能力が低下したと判断された場合、前記能力の低下した状態で走行可能なルートを算出する走行可能ルート算出手段と、
     前記走行可能ルート算出手段によって算出された走行可能なルート上に存在する退避エリアを新たな目的地として設定する退避エリア設定手段と、
     前記退避エリア設定手段によって設定された前記退避エリアに到達する走行ルートを決定する走行ルート決定手段と
    を備えることを特徴とする車両制御装置。
    Detection means for detecting surrounding information of the vehicle;
    Actuator means used for travel control of the vehicle;
    Ability judging means for judging whether or not at least one ability of the sensing means and the ability of the actuator means has decreased;
    When it is determined by the capability determination means that at least one of the detection capability and the capability of the actuator unit has decreased, a travelable route calculation unit that calculates a route that can be traveled with the decreased capability;
    Retreat area setting means for setting a retreat area existing on a travelable route calculated by the travelable route calculation means as a new destination;
    A vehicle control apparatus comprising: a travel route determining unit that determines a travel route that reaches the retreat area set by the retreat area setting unit.
  2.  前記退避エリア設定手段は、予め地図データベースに登録されている退避エリアを新たな目的地として設定することを特徴とする請求項1に記載の車両制御装置。 The vehicle control device according to claim 1, wherein the evacuation area setting means sets a evacuation area registered in advance in the map database as a new destination.
  3.  前記走行ルート決定手段は、前記走行可能なルートが複数存在する場合、低下した前記能力に対する信頼度が最も高いルートを走行ルートとして決定することを特徴とする請求項1または2に記載の車両制御装置。 3. The vehicle control according to claim 1, wherein the travel route determination unit determines, as a travel route, a route having the highest reliability with respect to the reduced ability when there are a plurality of travelable routes. apparatus.
  4.  車両の周辺情報を検知する検知手段の検知能力及び前記車両の走行制御に用いるアクチュエータ手段の能力のうち、少なくとも1つの能力が低下したか否かを判断し、
     前記少なくとも1つの能力が低下したと判断した場合、前記能力の低下した状態で走行可能なルートを算出し、
     走行可能なルート上に存在する退避エリアを新たな目的地として設定し、
     前記退避エリアに到達する走行ルートを決定することを特徴とする車両制御方法。
     
     
    Determining whether or not at least one of the detection capability of the detection means for detecting the surrounding information of the vehicle and the capability of the actuator means used for driving control of the vehicle has decreased,
    If it is determined that the at least one ability has declined, calculate a route that can be run with the ability reduced,
    Set the evacuation area that exists on the route that can travel as a new destination,
    A vehicle control method, comprising: determining a travel route that reaches the retreat area.

PCT/JP2015/065902 2015-06-02 2015-06-02 Vehicle control device and vehicle control method WO2016194135A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/065902 WO2016194135A1 (en) 2015-06-02 2015-06-02 Vehicle control device and vehicle control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/065902 WO2016194135A1 (en) 2015-06-02 2015-06-02 Vehicle control device and vehicle control method

Publications (1)

Publication Number Publication Date
WO2016194135A1 true WO2016194135A1 (en) 2016-12-08

Family

ID=57440937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065902 WO2016194135A1 (en) 2015-06-02 2015-06-02 Vehicle control device and vehicle control method

Country Status (1)

Country Link
WO (1) WO2016194135A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021693A1 (en) * 2017-07-24 2019-01-31 株式会社小糸製作所 Lamp device, sensor system, and sensor device
JP2019137321A (en) * 2018-02-14 2019-08-22 日立オートモティブシステムズ株式会社 Driving control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160492A (en) * 1996-12-04 1998-06-19 Toyota Motor Corp Vehicle-controlling apparatus
JP2003063373A (en) * 2001-08-27 2003-03-05 Toyota Motor Corp Automatic retracting device for vehicle
JP2014106854A (en) * 2012-11-29 2014-06-09 Toyota Infotechnology Center Co Ltd Automatic driving vehicle control apparatus and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160492A (en) * 1996-12-04 1998-06-19 Toyota Motor Corp Vehicle-controlling apparatus
JP2003063373A (en) * 2001-08-27 2003-03-05 Toyota Motor Corp Automatic retracting device for vehicle
JP2014106854A (en) * 2012-11-29 2014-06-09 Toyota Infotechnology Center Co Ltd Automatic driving vehicle control apparatus and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021693A1 (en) * 2017-07-24 2019-01-31 株式会社小糸製作所 Lamp device, sensor system, and sensor device
US11333743B2 (en) 2017-07-24 2022-05-17 Koito Manufacturing Co., Ltd. Lamp device, sensor system, and sensor device
JP2019137321A (en) * 2018-02-14 2019-08-22 日立オートモティブシステムズ株式会社 Driving control device

Similar Documents

Publication Publication Date Title
JP6536852B2 (en) Vehicle control apparatus and vehicle control method
JP6353525B2 (en) Method for controlling the speed of a host vehicle and system for controlling the speed of a host vehicle
JP6269552B2 (en) Vehicle travel control device
US9896098B2 (en) Vehicle travel control device
JP6705388B2 (en) Automatic driving system
JP6500984B2 (en) Vehicle control apparatus and vehicle control method
JP6558282B2 (en) Automated driving system
KR20200023691A (en) Appartus and method for driving control of vehicle
JP2017159789A (en) Automatic driving system
US20200361451A1 (en) Vehicle control device, vehicle management device, vehicle control method, and storage medium
CN111629944A (en) Vehicle control device, vehicle, and vehicle control method
JP7046289B1 (en) Vehicle controls, vehicle systems, vehicle control methods, and programs
JP7048833B1 (en) Vehicle control devices, vehicle control methods, and programs
JP2018086958A (en) Vehicle control system
US11273825B2 (en) Vehicle control device, vehicle control method, and storage medium
WO2016194135A1 (en) Vehicle control device and vehicle control method
JP2022096236A (en) Vehicle control device, vehicle control method and program
JP2023036593A (en) Vehicular recognition device, vehicle control system, vehicular recognition method and program
CN115139787A (en) Driving support device, driving support method, and storage medium
JP6354646B2 (en) Collision avoidance support device
JP7177968B1 (en) VEHICLE CONTROL DEVICE, VEHICLE CONTROL METHOD, AND PROGRAM
JP7492453B2 (en) Vehicle recognition system and method
US20230159021A1 (en) Parking Assistance Device
US20230294680A1 (en) Driving assistance device, driving assistance method, and storage medium
JP2024045889A (en) Vehicle Control Systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15894170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP