WO2016192625A1 - 波长转换装置及其制备方法、相关发光装置和投影系统 - Google Patents

波长转换装置及其制备方法、相关发光装置和投影系统 Download PDF

Info

Publication number
WO2016192625A1
WO2016192625A1 PCT/CN2016/084246 CN2016084246W WO2016192625A1 WO 2016192625 A1 WO2016192625 A1 WO 2016192625A1 CN 2016084246 W CN2016084246 W CN 2016084246W WO 2016192625 A1 WO2016192625 A1 WO 2016192625A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
wavelength conversion
heat dissipation
conversion device
metal heat
Prior art date
Application number
PCT/CN2016/084246
Other languages
English (en)
French (fr)
Inventor
田梓峰
徐虎
许颜正
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Publication of WO2016192625A1 publication Critical patent/WO2016192625A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/28Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings
    • F21V7/30Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings the coatings comprising photoluminescent substances
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/08Combinations of only two kinds of elements the elements being filters or photoluminescent elements and reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/24Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by the material
    • F21V7/26Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by the material the material comprising photoluminescent substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/38Combination of two or more photoluminescent elements of different materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/206Control of light source other than position or intensity

Definitions

  • the invention relates to the field of illumination, and in particular to a wavelength conversion device, a preparation method thereof, a related illumination device and a projection system.
  • LD Laser Diode
  • the laser emits excitation light to excite the wavelength conversion material to obtain visible light of various colors, and this technology is increasingly used in illumination and display.
  • This technology has the advantages of high efficiency, low energy consumption, low cost and long life, and is an ideal alternative to existing white or monochromatic light sources.
  • the reflective wavelength conversion device is highly efficient, it is widely used in illumination display devices.
  • the material of the reflective layer it is mainly divided into two structures: a metal specular reflection layer and a diffuse reflection layer.
  • the thermal stability of the reflectivity is much higher than that of the metal specular reflection layer, but its thermal conductivity is poor, which will cause the heat generated by the luminescent layer to pass through the diffuse reflection layer.
  • the divergence causes heat to accumulate, further preventing the heat generated by the luminescent layer from being dissipated, thereby reducing the reliability of the light source and simultaneously reducing the luminous efficiency of the luminescent layer, resulting in low efficiency of the light source.
  • the existence of voids greatly increases the thermal resistance of the diffuse reflection layer, and its heat conduction effect is poor, which also leads to light source efficiency. low.
  • the present invention provides a wavelength conversion device that is resistant to high temperatures and has good heat dissipation.
  • the present invention provides a wavelength conversion device comprising a light-emitting layer, a reflective layer and a metal heat-dissipating layer which are sequentially stacked, and the reflective layer and the metal heat-dissipating layer are connected by a bonding layer, and the bonding layer is a (Cu, Al) O 2 layer.
  • the bonding layer is a CuAlO 2 layer.
  • the thickness of the bonding layer is 1 to 10 ⁇ m.
  • the reflective layer is a ceramic reflective layer, which is an alumina ceramic reflective layer, an alumina boron nitride composite ceramic reflective layer or an alumina zirconia composite ceramic reflective layer.
  • the reflective layer has a thickness of 50 to 3000 ⁇ m, preferably, the reflective layer has a thickness of 100 to 1500 ⁇ m. .
  • the metal heat dissipation layer is a copper heat dissipation layer or a copper-aluminum alloy heat dissipation layer.
  • the metal plating layer is further coated on the surface of the metal heat dissipation layer, and the metal plating layer is a nickel plating layer, a gold plating layer or a nickel gold double plating layer.
  • the luminescent layer comprises a wavelength converting material and a binder
  • the wavelength converting material is a phosphor, a nano luminescent material or a quantum dot
  • the bonding agent is glass
  • the glass is one or more of SiO 2 -B 2 O 3 -RO , SiO 2 -TiO 2 -Nb 2 O 5 -R' 2 O , ZnO-P 2 O 5 , wherein R is selected from Mg Or one or more of Ca, Sr, Ba, Na, K, and R' is selected from one or more of Li, Na, and K.
  • the present invention also provides a light-emitting device comprising an excitation light source and the above-described wavelength conversion device.
  • the present invention also provides a projection system comprising the above described illumination device.
  • the invention also provides a method for preparing a wavelength conversion device, which comprises the following steps in sequence: S1, obtaining a ceramic reflective layer containing aluminum oxide and a metal heat dissipation layer containing copper, and using a direct copper plating method or a vacuum diffusion method to form a ceramic reflective layer Sealed with the metal heat dissipation layer, forming a (Cu, Al) O 2 layer bonding layer between the ceramic reflective layer and the metal heat dissipation layer; S2, plating a metal plating layer on the surface of the metal heat dissipation layer; S3, in the ceramic reflective layer The luminescent layer is formed by sintering on the surface away from the metal heat dissipation layer.
  • the luminescent layer comprises a wavelength converting material and a binder
  • the wavelength converting material is a phosphor, a nano luminescent material or a quantum dot
  • the binder is glass
  • the temperature at which the luminescent layer is sintered forms is greater than or equal to the softening point temperature of the glass.
  • the metal plating layer is a nickel plating layer, a gold plating layer or a nickel gold double plating layer.
  • the temperature of the direct copper application method is not lower than the sintering temperature of the step S3, and the temperature of the vacuum diffusion method is not lower than the step S3.
  • the present invention includes the following beneficial effects: the reflective layer is connected to the metal heat dissipation layer through the (Cu, Al)O 2 bonding layer, so that the heat in the reflective layer can be quickly transferred to the metal heat dissipation layer, which is lost.
  • the connection mode is not only high in heat conductivity, thin in thickness, but also firmly connected, and can withstand the high temperature in the operation of the wavelength conversion device, so that the wavelength conversion device can maintain efficient and stable light emission under high power illumination.
  • FIG. 1 is a schematic structural diagram of a wavelength conversion device according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural view of a modified embodiment of a wavelength conversion device according to Embodiment 1 of the present invention.
  • the conventional wavelength conversion device uses a high-temperature-resistant diffuse reflection layer as a reflective layer, which causes heat accumulation due to poor heat dissipation of the diffuse reflection layer, so that the wavelength conversion device operates at a high temperature and the luminous efficiency is lowered.
  • the inventor intends to combine the reflective layer and the metal heat dissipation layer to achieve rapid dissipation of heat of the reflective layer.
  • conventional mechanical fixation, bonding, or the like, or interface thermal resistance is large, or cannot withstand high temperatures, or the bonding is not strong. Can not adapt to the long-term high-power operation of the wavelength conversion device.
  • the thermal stability problem of the connection structure between the reflective layer and the metal heat dissipation layer in the process of preparing the light-emitting layer using the reflective layer as a substrate is also considered.
  • the preparation method of the light-emitting layer is to soften the wavelength conversion material and the glass at the glass. After the temperature is heated and sintered, the film is cooled and formed. Generally, the softening point of the glass with high transmittance is Above 700 °C. At the same time, in the common solder joint method, the welding temperature of mature silver and solder is about 700 ⁇ 800 °C. Then, in the preparation process of the light-emitting layer, the stability of the connection structure between the reflective layer and the metal heat dissipation layer will inevitably be affected.
  • the present invention provides a wavelength conversion device to overcome the above problem, and the reflective layer and the metal heat dissipation layer are connected by a (Cu, Al)O 2 layer bonding layer, and the (Cu, Al) O 2 layer can be very
  • the thin thickness enables a firm connection and good thermal conductivity, which enables the wavelength conversion device to remain stable under high power illumination.
  • the preparation temperature of the (Cu, Al)O 2 layer (or the temperature at which the stability is broken) is higher than the softening point of the glass having a high transmittance, so that (Cu, Al) is not produced in the process of preparing the light-emitting layer.
  • the O 2 layer is destroyed.
  • the schematic diagram of the structure of the wavelength conversion device according to the first embodiment of the present invention is a cross-sectional view of the wavelength conversion device, so as to clearly express the composition of each layer.
  • the wavelength conversion device includes a light emitting layer 101.
  • the reflective layer 102 and the metal heat dissipation layer 103, and the reflective layer 102 and the metal heat dissipation layer 103 pass through the bonding layer 104. Connected.
  • the excitation light source emits excitation light to illuminate the light incident surface of the light-emitting layer 101, generating a laser light and releasing a large amount of heat.
  • Part of the laser is passed through the luminescent layer 101 and incident on the reflective layer 102 is reflected by the reflective layer 102 back to the light-emitting layer 101 and finally emerges from the light incident surface of the light-emitting layer 101.
  • the heat generated by the light-emitting layer 101 reaches the reflective layer 102, and passes through the bonding layer 104. It diffuses into the metal heat sink layer 103 and eventually dissipates into the surrounding environment.
  • the reflective layer 102 is a ceramic reflective layer, and the layer serves mainly two functions, one is a reflective luminescent layer 101. The generated light, the second is to quickly transfer the heat generated by the light-emitting layer 101 to the metal heat-dissipating layer 103, thus requiring the reflective layer 102 to have both a high light reflectivity and a high thermal conductivity.
  • the reflective layer 102 It also has the function of carrying the light-emitting layer 101, and the thermal expansion coefficient of the reflective layer 102 and the light-emitting layer 101 is required to be as close as possible, and the bonding force is strong.
  • the reflective layer 102 A ceramic reflective layer containing alumina is selected as the reflective layer, and the ceramic reflective layer is a pure alumina ceramic reflective layer.
  • the ceramic reflective layer may also be an alumina composite ceramic reflective layer, such as alumina nitrogen. Boron composite ceramic reflective layer, alumina zirconia composite ceramic reflective layer, etc., wherein zirconia in alumina zirconia composite ceramic can improve the structural toughness of alumina ceramic and improve the reflectivity of reflective layer, which is a better Technical solution.
  • the thickness of the reflective layer 102 is preferably 50 to 3000 ⁇ m. In this interval, it varies according to the size of the structure. If the thickness of the reflective layer is less than 50 ⁇ m, the reflectivity cannot be satisfied, and the thickness is higher than 3000 ⁇ m. It cannot meet the requirements for heat dissipation. More preferably, the thickness of the reflective layer is selected to be 100 to 1500 ⁇ m.
  • the metal heat dissipation layer 103 It is a copper-containing metal heat dissipation layer, such as a copper heat dissipation layer, which has good thermal conductivity and low cost.
  • the metal heat dissipation layer 103 It is also possible to select a copper-aluminum alloy heat-dissipating layer, and the aluminum has better thermal shock resistance, which makes the wavelength conversion device more excellent in thermal stability.
  • the bonding layer 104 is a (Cu, Al) O 2 layer. Under low oxygen pressure, the aluminum oxide-containing ceramic reflective layer and the copper-containing metal layer are melted at a high temperature at the interface to form a eutectic liquid. Bonding between the two, specifically, copper forms a cuprous oxide on the surface in a trace oxygen atmosphere, and cuprous oxide forms a eutectic solution of copper oxide aluminum with aluminum at a high temperature close to the melting point of copper (Cu , Al)O 2 , thereby achieving the connection of the aluminum oxide and the copper, and realizing the bonding of the reflective layer 102 and the metal heat dissipation layer 103.
  • the bonding layer 104 is a CuAlO 2 layer, which is a specific example of a (Cu, Al) O 2 layer.
  • the bonding layer (Cu, Al) O 2 layer 104 achieves the bonding of the reflective layer 102 and the metal heat dissipation layer 103 at a very thin thickness.
  • the bonding layer 104 has a thickness of 1 to 10 ⁇ m. If the thickness of the bonding layer 104 is less than 1 ⁇ m, the bonding force is too weak, the bonding force is too low, and when the thickness of the bonding layer 104 is more than 10 ⁇ m, the self-defect generated by the bonding layer 104 during the growth process increases. Causes a decrease in adhesion.
  • the light-emitting layer 101 includes a wavelength converting material and a binder, wherein the wavelength converting material refers to a material capable of converting light incident to the material into light of different wavelengths, such as phosphors, nano-luminescent materials, and Quantum dots.
  • the bonding agent causes the wavelength converting material to have a layer structure by bonding.
  • the bonding agent is glass.
  • the glass material is SiO 2 -B 2 O 3 -RO and SiO 2 -TiO 2 .
  • the thermal expansion coefficient of the glass material is close to that of alumina, which can effectively avoid the damage caused by the difference in thermal expansion coefficients of the layers during the operation or manufacturing process of the wavelength conversion device.
  • the luminescent layer 101 is sintered on the surface of the reflective layer 102 by mixing the wavelength converting material with the glass bonding agent.
  • the glass adhesive softens into a liquid or semi-solid semi-liquid state to form a continuum, and the wavelength is formed.
  • the conversion material is coated therein.
  • the sintering temperature of the light-emitting layer 101 is lower than the formation temperature of the bonding layer 104, so that the bonding layer 104 is not damaged during the preparation of the light-emitting layer 101.
  • the wavelength conversion device further includes a metal plating layer 105, as shown in FIG. 1, the metal plating layer 105.
  • the surface of the metal heat dissipation layer 103 is applied to the surface of the metal heat dissipation layer 103.
  • the metal plating layer 105 is applied to the bottom surface of the metal heat dissipation layer 103.
  • the metal coating 105 is plated on the metal heat sink layer 103 except for other surfaces connected to the bonding layer 104.
  • the metal plating layer 105 serves to prevent oxidation of the metal heat dissipation layer 103, particularly in the light-emitting layer 101.
  • Metal plating 105 It can be nickel plating, gold plating or gold-plated nickel-gold double plating on the basis of nickel plating.
  • the metal plating layer 105 since the sintering temperature is high, the metal plating layer 105 The inevitable volatilization occurs, so the metal plating layer 105 on the surface of the metal heat dissipating layer 103 may be discontinuously distributed or only have a small range of distribution, which is desirable in the present invention because the metal plating layer 105 The thermal conductivity is not as good as that of a copper metal heat sink.
  • the metal plating layer 105 functions only as an anti-oxidation layer in the preparation process as a wavelength conversion device.
  • the wavelength conversion device provided in this embodiment uses the (Cu, Al)O 2 layer bonding layer 104 to connect the reflective layer 102 and the metal heat dissipation layer 103, which has high heat conductivity, thin thickness and strong connection, and can withstand the operation of the wavelength conversion device.
  • the high temperature allows the wavelength conversion device to maintain efficient and stable light output under high power illumination.
  • Another embodiment of the present invention also provides a light-emitting device comprising an excitation light source and the wavelength conversion device provided by the above embodiment, the excitation light source illuminating the light-emitting layer of the wavelength conversion device.
  • the excitation wavelength converting material generates laser light of different wavelengths, thereby providing multicolor light for illumination or display.
  • the excitation light source may be a solid state light source, such as an LED light source and a laser diode source, especially for a laser diode source, having a high luminous power, and capable of emitting high-intensity polychromatic light in conjunction with the wavelength conversion device of the present invention.
  • the wavelength conversion device of the present invention has excellent heat dissipation, thermal stability, and low optical loss (ie, high light reflectance), which can satisfy the application of a high power laser light source.
  • Yet another embodiment of the present invention also provides a projection system including the above-described light emitting device, in addition to the above A light splitting system, a light modulation system that modulates light, and a light projection system.
  • the invention also provides a preparation method of the wavelength conversion device in the above embodiment, and the specific steps include:
  • the direct copper plating method is: first, in a trace oxygen atmosphere, the copper surface is oxidized to cuprous oxide, and then placed on the alumina-containing ceramic reflection.
  • vacuum diffusion method is: alumina containing ceramics
  • the surface of the reflective layer and the metal heat-dissipating layer containing copper is subjected to cleaning and polishing treatment, and the two layers are pressed, and then a high pressure is applied for a period of time in the temperature range near the melting point of copper, and atoms at the interface interpenetrate to form (Cu, Al)O. 2 layers to achieve the sealing of alumina and copper.
  • step S2 The metal plating layer is plated on the surface of the metal heat dissipation layer by a chemical plating method, and the metal plating layer is a nickel plating layer, a gold plating layer or a nickel gold double plating layer for preventing the surface of the metal heat dissipation layer from being oxidized in the subsequent step.
  • step S3 the alumina-containing ceramic reflective layer is first physically or chemically cleaned away from the surface of the metal heat-dissipating layer, and then the ceramic-reflective layer is used as a substrate, and the wavelength conversion material and the binder slurry are coated thereon. Sintered to form a light-emitting layer.
  • the wavelength conversion material is a phosphor, a nano luminescent material or a quantum dot, and the physicochemical performance temperature does not change during the sintering process
  • the binder is glass, and the temperature at which the luminescent layer is formed by sintering is greater than or equal to the softening point temperature of the glass, so that The glass has a certain fluidity, and the air between the particles is extruded to form a continuous body, and the wavelength conversion material is wrapped therein to form a stable layer.
  • the sintering temperature in this step S3 is lower than the temperature at which the (Cu, Al)O 2 layer is formed in the step S1, and thus the (Cu, Al)O 2 layer can be stabilized during sintering to form the light-emitting layer.
  • Steps S1 - S3 are performed according to the above-mentioned arrangement order, wherein the temperature of the (Cu, Al) O 2 layer bonding layer is the highest in the step S1, and if the step S2 or S3 is performed first, the metal plating layer is completely volatilized or the light emitting layer is caused. deformation.
  • Step S2 is a step of preventing oxidation of the metal heat dissipation layer by step S3, naturally before step S3. During the progress of step S3, the metal plating layer partially volatilizes, and the (Cu, Al)O 2 layer bonding layer remains stable.
  • the wavelength conversion device prepared by the method for preparing the wavelength conversion device in the embodiment has stable structure, good thermal stability, good heat dissipation performance, and can withstand the high temperature in the operation of the wavelength conversion device, so that the wavelength conversion device maintains high efficiency under high power illumination. Stable light.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Abstract

一种波长转换装置,包括依次叠置的发光层(101)、反射层(102)和金属散热层(103),反射层(102)与金属散热层(103)通过键合层(104)连接,键合层(104)为(Cu,Al)O 2层,反射层(102)通过(Cu,Al)O 2键合层(104)与金属散热层(103)连接,使得反射层(102)中的热量能够快速传递到金属散热层(103)散失掉,这种连接方式不仅导热高、厚度薄而且连接牢固,能够耐受波长转换装置工作中的高温,从而使波长转换装置在大功率发光下保持高效稳定的出光。还要求保护包括该波长转换装置的发光装置和投影系统,以及波长转换装置的制备方法。

Description

波长转换装置及其制备方法、相关发光装置和投影系统 技术领域
本发明涉及发光领域,特别是涉及一种波长转换装置及其制备方法、相关发光装置和投影系统。
背景技术
随着显示和照明技术的发展,原始的卤素灯泡作为光源越来越不能满足显示和照明高功率和高亮度的需求。采用固态光源如 LD ( Laser Diode ,激光二极管)发出的激发光以激发波长转换材料的方法能够获得各种颜色的可见光,该技术越来越多的应用于照明和显示中。这种技术具有效率高、能耗少、成本低、寿命长的优势,是现有白光或者单色光光源的理想替代方案。
技术问题
由于反射式波长转换装置效率高,被广泛的应用于照明显示装置中,根据反射层材料的不同,其主要分为两种结构:一是金属镜面反射层,二是漫反射层。
首先,对于金属镜面反射结构,其耐候性能差,容易在高温下出现硫化氧化使得可靠性较低。
其次,对于漫反射层结构,一般以散射颗粒和玻璃粉组成,其反射率的热稳定性远高于金属镜面反射层,但是自身导热性差,这将导致发光层产生的热量难以通过漫反射层发散出去,导致热量聚集,进一步使得发光层产生的热量无法发散,从而降低了光源可靠性并同时降低了发光层的发光效率,导致光源效率低。而对于以散射颗粒和空隙组成的漫反射层结构,与上述散射颗粒和玻璃粉的方案相同,空隙的存在大大的增加了漫反射层的热阻,其导热效果很差,同样会导致光源效率低。
因此需要一种新的波长转换装置结构,能够同时具有良好的反射和热稳定性,从而在大功率发光的情况下保持高效稳定的出光。
技术解决方案
针对上述现有技术中波长转换装置耐温性差和散热差的缺陷,本发明提供一种耐高温、散热良好的波长转换装置。
本发明提供了一种波长转换装置 包括依次叠置的发光层、反射层和金属散热层,反射层与金属散热层通过键合层连接,键合层为 (Cu,Al)O2 层。
优选地,键合层为 CuAlO2 层。
优选地,键合层的厚度为 1~10μm 。
优选地,反射层为陶瓷反射层,该陶瓷反射层为氧化铝陶瓷反射层、氧化铝氮化硼复合陶瓷反射层或氧化铝氧化锆复合陶瓷反射层。
优选地,反射层的厚度为 50~3000μm ,优选地,反射层的厚度为 100~1500μm 。
优选地,金属散热层为铜散热层或铜铝合金散热层。
优选地,还包括金属镀层,金属镀层贴镀于金属散热层表面,金属镀层为镍镀层、金镀层或镍金双镀层。
优选地,发光层包括波长转换材料和粘接剂,波长转换材料为荧光粉、纳米发光材料或量子点,粘接剂为玻璃。
优选地,玻璃为 SiO2-B2O3-RO 、 SiO2-TiO2-Nb2O5-R' 2O 、 ZnO-P2O5 中的一种或多种,其中 R 选自 Mg 、 Ca 、 Sr 、 Ba 、 Na 、 K 中的一种或多种, R' 选自 Li 、 Na 、 K 中的一种或多种。
本发明还提供了一种发光装置,包括激发光源和上述的波长转换装置。
本发明还提供了一种投影系统,包括上述的发光装置。
本发明还提供了一种制备波长转换装置的方法,依次包括如下步骤: S1 、获取含氧化铝的陶瓷反射层和含铜的金属散热层,采用直接敷铜法或真空扩散法将陶瓷反射层与金属散热层封接为一体,在陶瓷反射层与金属散热层之间形成 (Cu,Al)O2 层键合层; S2 、在金属散热层表面镀制金属镀层; S3 、在陶瓷反射层远离金属散热层的表面上烧结形成发光层。
优选地,发光层包括波长转换材料和粘接剂,波长转换材料为荧光粉、纳米发光材料或量子点,粘接剂为玻璃,烧结形成发光层的温度大于等于玻璃的软化点温度。
优选地,金属镀层为镍镀层、金镀层或镍金双镀层。
直接敷铜法的温度不低于步骤 S3 的烧结温度,真空扩散法的温度不低于步骤 S3 中的烧结温度。
有益效果
与现有技术相比,本发明包括如下有益效果:反射层通过 (Cu,Al)O2 键合层与金属散热层连接,使得反射层中的热量能够快速传递到金属散热层散失掉,这种连接方式不仅导热高、厚度薄而且连接牢固,能够耐受波长转换装置工作中的高温,从而使波长转换装置在大功率发光下保持高效稳定的出光。
附图说明
图 1 为本发明实施例一的波长转换装置的结构示意图;
图 2 为本发明实施例一的波长转换装置的变形实施例的结构示意图 。
本发明的最佳实施方式
正如背景技术所述,现有的波长转换装置要使用耐高温的漫反射层做为反射层,则会因漫反射层散热差而导致热量积累,使得波长转换装置工作在高温下发光效率降低。
发明人意图将反射层与金属散热层结合在一起,以实现将反射层的热量快速散失,然而常规的机械固定、粘接等方法或者界面热阻大,或者不能承受高温,或者结合不牢固,无法适应波长转换装置长时间高功率下的工作。
此外,还要考虑在以反射层为基板制备发光层的过程中,反射层与金属散热层的连接结构的热稳定性问题,发光层的制备方法为将波长转换材料与玻璃在玻璃的软化点温度以上加热烧结后冷却成形,一般透过率高的玻璃的软化点都在 700 ℃ 以上。与此同时,普通的焊接连接法中,目前应用成熟的银、锡焊的焊接温度约为 700~800 ℃ ,那么在发光层的制备过程中,将不可避免的影响反射层与金属散热层的连接结构的稳定性。
基于此,本发明提供了一种波长转换装置,以克服上述问题,将反射层和金属散热层以 (Cu,Al)O2 层键合层连接, (Cu,Al)O2 层可以以很薄的厚度实现牢固的连接,而且导热性能良好,能够使波长转换装置在大功率发光下保持稳定。此外, (Cu,Al)O2 层的制备温度(或者破坏其稳定性的温度)高于一般透过率高的玻璃的软化点,那么在制备发光层过程中不会对 (Cu,Al)O2 层产生破坏。
以上是本发明的核心思想,为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和实施方式对本发明实施例进行详细说明。
本发明结合结构示意图进行描述, 为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本实用发明的范围。
请参见图 1 ,图 1 为本发明实施例一的波长转换装置的结构示意图,该结构示意图为波长转换装置的剖面图,以便于清楚表达各层构成。如图 1 所示,波长转换装置包括发光层 101 、反射层 102 和金属散热层 103 ,反射层 102 与金属散热层 103 之间通过键合层 104 连接。在波长转换装置工作状态下,激发光源发出激发光照射发光层 101 的光入射面,产生受激光并放出大量的热量。部分受激光穿过发光层 101 ,入射到反射层 102 ,被反射层 102 反射回发光层 101 并最终从发光层 101 的光入射面出射。而发光层 101 产生的热量到达反射层 102 后,经键合层 104 扩散到金属散热层 103 并最终散失到周围环境中。
本实施例中, 反射层 102 为陶瓷反射层,该层主要起两个作用,一是反射发光层 101 产生的光,二是将发光层 101 产生的热量迅速传导到金属散热层 103 ,因此要求反射层 102 既有较高的光反射率又有较高的热导率。此外,反射层 102 还具有承载发光层 101 的作用,要求反射层 102 与发光层 101 的热膨胀系数尽可能的接近,粘接力强。为实现上述作用,反射层 102 选择含有氧化铝的陶瓷反射层作为反射层,该陶瓷反射层为纯氧化铝陶瓷反射层,在本发明的其他实施方式中,陶瓷反射层也可以为氧化铝复合陶瓷反射层,例如氧化铝氮化硼复合陶瓷反射层、氧化铝氧化锆复合陶瓷反射层等,其中,氧化铝氧化锆复合陶瓷中的氧化锆可以提高氧化铝陶瓷的结构韧性并提高反射层的反射率,是一种更优的技术方案。
本实施例中,反射层 102 的厚度优选为 50~3000μm ,在此区间内根据结构大小的需要而变动,反射层厚度低于 50μm 则无法满足反射率的要求,而厚度高于 3000μm 则无法满足散热的要求。更优选地,反射层的厚度选择为 100~1500μm 。
本实施例中,金属散热层 103 为含铜的金属散热层,例如铜散热层,其导热性能好,成本低。此外,金属散热层 103 也可以选择铜铝合金散热层,铝的抗热震性能更好,使得波长转换装置的热稳定性更优。
本实施例中,键合层 104 为 (Cu,Al)O2 层,在低氧气压情况下,含氧化铝的陶瓷反射层与含铜的金属层在其界面高温熔融形成共晶液实现两者之间的键合,具体来说,铜在微量氧环境下,在其表面形成氧化亚铜,氧化亚铜在接近铜的熔点的高温下与氧化铝形成氧化铜铝的共晶液 (Cu,Al)O2 ,从而实现氧化铝与铜的连接,实现反射层 102 与金属散热层 103 的结合。在本发明的一个实施方案中,该键合层 104 为 CuAlO2 层,此为 (Cu,Al)O2 层的一个特殊实例。
本实施例中,键合层 (Cu,Al)O2 层 104 在很薄的厚度下实现反射层 102 与金属散热层 103 的结合,优选地,键合层 104 的厚度为 1~10μm 。若键合层 104 厚度小于 1μm ,则导致结合力太弱,粘接力太低,而到键合层 104 厚度大于 10μm ,则键合层 104 在长大的过程中产生的自身缺陷增多,同样导致粘接力下降。
在本实施例中,发光层 101 包括波长转换材料和粘接剂,其中波长转换材料是指能够将入射到该材料的光转换成不同波长的出射光的材料,例如荧光粉、纳米发光材料和量子点。粘接剂通过粘接作用使波长转换材料成为层结构,本实施例中,粘接剂为玻璃,具体的,该玻璃材料为玻璃为 SiO2-B2O3-RO 、 SiO2-TiO2-Nb2O5-R' 2O 、 ZnO-P2O5 中的一种或多种,其中 R 选自 Mg 、 Ca 、 Sr 、 Ba 、 Na 、 K 中的一种或多种, R' 选自 Li 、 Na 、 K 中的一种或多种,该类玻璃材料的热膨胀系数与氧化铝接近,可以有效避免波长转换装置在工作或制造过程中因各层热膨胀系数不同而产生的破坏。发光层 101 通过将波长转换材料与玻璃粘接剂混合后,在反射层 102 的表面烧结而成,在烧结过程中,玻璃粘接剂软化呈液态或半固半液态,形成连续体,将波长转换材料包覆其中。发光层 101 的烧结温度低于键合层 104 的形成温度,因此在制备发光层 101 的过程中,不会对键合层 104 产生破坏。
在本实施例中,波长转换装置还包括金属镀层 105 ,如图 1 所示,该金属镀层 105 贴镀于金属散热层 103 的表面,在实施例一中,金属镀层 105 贴镀于金属散热层 103 的底面。在该实施例的一个变形实施例中,如图 2 所示,金属镀层 105 贴镀于金属散热层 103 的除了与键合层 104 连接的其他表面上。该金属镀层 105 用于防止金属散热层 103 氧化,尤其防止在发光层 101 的制备烧结过程中,较高的温度(玻璃粘接剂软化点温度)下金属散热层 103 的氧化。金属镀层 105 可以为镍镀层、金镀层或者在镀镍的基础上镀金的镍金双镀层。在制备发光层 101 过程中,由于烧结温度较高,金属镀层 105 不可避免的发生挥发现象,因此金属散热层 103 表面的金属镀层 105 可能会呈不连续分布或仅存小范围分布,这是本发明所希望看到的,因为金属镀层 105 的导热性不如铜金属散热层。金属镀层 105 仅作为波长转换装置在制备过程中防氧化层而发挥作用。
本实施例提供的波长转换装置,利用 (Cu,Al)O2 层键合层 104 连接反射层 102 和金属散热层 103 ,不仅导热高、厚度薄而且连接牢固,能够耐受波长转换装置工作中的高温,从而使波长转换装置在大功率发光下保持高效稳定的出光。
本发明的另一个实施例还提供了一种发光装置,该发光装置包括激发光源和上述实施例提供的波长转换装置,激发光源照射波长转换装置的发光层 101 ,激发波长转换材料产生不同波长的受激光,从而实现提供多色光用于照明或者显示。激发光源可以为固态光源,例如发光二极管光源和激光二极管光源,尤其对于激光二极管光源,发光功率高,配合本发明的波长转换装置,能够发出高亮度的多色光。而本发明的波长转换装置优异的散热性、热稳定性和低光损耗(即高光反射率)能够满足大功率激光光源的应用。
本发明的又一个实施例还提供了一种投影系统,该投影系统包括上述发光装置,除此之外还包括 分光合光系统、对光线进行调制的光调制系统以及光投影系统等。
本发明还提供了一种上述实施例中的波长转换装置的制备方法,具体步骤包括:
S1 、获取含氧化铝的陶瓷反射层和含铜的金属散热层,采用直接敷铜法或真空扩散法将陶瓷反射层与金属散热层封接为一体,在陶瓷反射层与金属散热层之间形成 (Cu,Al)O2 层键合层;
S2 、在金属散热层表面镀制金属镀层;
S3 、在陶瓷反射层远离金属散热层的表面上烧结形成发光层。
其中,步骤 S1 制备 (Cu,Al)O2 层键合层的方法中,直接敷铜法为:首先在微量氧气气氛下,铜表面氧化成氧化亚铜,然后置于含氧化铝的陶瓷反射层上,在略低于铜熔点的温度范围内,铜与氧化铝形成 (Cu,Al)O2 共晶液,实现氧化铝与铜的封接;真空扩散法为:将含氧化铝的陶瓷反射层和含铜的金属散热层表面经过清洗抛光处理,将两层紧压,然后在铜的熔点的附近温度范围内施加高压一段时间,其界面处的原子相互渗透形成 (Cu,Al)O2 层,实现氧化铝与铜的封接。
在步骤 S2 中,利用化学电镀的方法在金属散热层表面镀制金属镀层,金属镀层为镍镀层、金镀层或镍金双镀层,用于防止在后续步骤中金属散热层表面被氧化。
在步骤 S3 中,首先用物理或化学方法清洁含氧化铝的陶瓷反射层远离金属散热层的表面,然后以该陶瓷反射层为基板,将波长转换材料与粘接剂的浆料涂覆其上,烧结形成发光层。波长转换材料为荧光粉、纳米发光材料或量子点,物理化学性能温度,不会在烧结过程中产生变化,而粘接剂为玻璃,烧结形成发光层的温度大于等于玻璃的软化点温度,使得玻璃具有一定的流动性,将各颗粒间的空气挤出,形成连续体,将波长转换材料包裹其中成为稳定的层体。该步骤 S3 中的烧结温度低于步骤 S1 中形成 (Cu,Al)O2 层的温度,因此 (Cu,Al)O2 层可以在烧结形成发光层过程中保持稳定。
步骤 S1-S3 为按照上述排列次序进行,其中, S1 步骤中制备 (Cu,Al)O2 层键合层的温度最高,若先进行步骤 S2 或 S3 ,则会导致金属镀层完全挥发或发光层形变。步骤 S2 作为防止金属散热层被步骤 S3 氧化的工序,自然在步骤 S3 之前。在进行步骤 S3 过程中,金属镀层部分挥发,而 (Cu,Al)O2 层键合层保持稳定。
本实施例制备波长转换装置的方法制备出的波长转换装置结构稳定、热稳定性好、散热性能好,能够耐受波长转换装置工作中的高温,从而使波长转换装置在大功率发光下保持高效稳定的出光。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (15)

1、一种波长转换装置,其特征在于,包括依次叠置的发光层、反射层和金属散热层,所述反射层与所述金属散热层通过键合层连接,所述键合层为(Cu,Al)O2层。
2、根据权利要求1所述的波长转换装置,其特征在于,所述键合层为CuAlO2层。
3、根据权利要求1或2所述的波长转换装置,其特征在于,所述键合层的厚度为1~10μm。
4、根据权利要求1所述的波长转换装置,其特征在于,所述反射层为陶瓷反射层,该陶瓷反射层为氧化铝陶瓷反射层、氧化铝氮化硼复合陶瓷反射层或氧化铝氧化锆复合陶瓷反射层。
5、根据权利要求3所述的波长转换层,其特征在于,所述反射层的厚度为50~3000μm,优选地,所述反射层的厚度为100~1500μm。
6、根据权利要求1所述的波长转换装置,其特征在于,所述金属散热层为铜散热层或铜铝合金散热层。
7、根据权利要求1或6所述的波长转换装置,其特征在于,还包括金属镀层,所述金属镀层贴镀于所述金属散热层表面,所述金属镀层为镍镀层、金镀层或镍金双镀层。
8、根据权利要求1所述的波长转换装置,其特征在于,所述发光层包括波长转换材料和粘接剂,所述波长转换材料为荧光粉、纳米发光材料或量子点,所述粘接剂为玻璃。
9、根据权利要求8所述的波长转换装置,其特征在于,所述玻璃为SiO2-B2O3-RO、SiO2-TiO2-Nb2O5-R’2O、ZnO-P2O5中的一种或多种,其中R选自Mg、Ca、Sr、Ba、Na、K中的一种或多种,R’选自Li、Na、K中的一种或多种。
10、一种发光装置,包括激发光源和权利要求1至9中任一项所述的波长转换装置。
11、一种投影系统,包括权利要求10所述的发光装置。
12、一种制备波长转换装置的方法,依次包括如下步骤:
S1、获取含氧化铝的陶瓷反射层和含铜的金属散热层,采用直接敷铜法或真空扩散法将所述陶瓷反射层与所述金属散热层封接为一体,在所述陶瓷反射层与所述金属散热层之间形成(Cu,Al)O2层键合层;
S2、在所述金属散热层表面镀制金属镀层;
S3、在所述陶瓷反射层远离所述金属散热层的表面上烧结形成发光层。
13、根据权利要求12所述的制备波长转换装置的方法,其特征在于,所述发光层包括波长转换材料和粘接剂,所述波长转换材料为荧光粉、纳米发光材料或量子点,所述粘接剂为玻璃,所述烧结形成发光层的温度大于等于所述玻璃的软化点温度。
14、根据权利要求12所述的制备波长转换装置的方法,其特征在于,所述金属镀层为镍镀层、金镀层或镍金双镀层。
15、根据权利要求12所述的制备波长转换装置的方法,其特征在于,所述直接敷铜法的温度不低于所述步骤S3中的烧结温度,所述真空扩散法的温度不低于所述步骤S3中的烧结温度。
PCT/CN2016/084246 2015-06-02 2016-06-01 波长转换装置及其制备方法、相关发光装置和投影系统 WO2016192625A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510293665.0 2015-06-02
CN201510293665.0A CN106287580A (zh) 2015-06-02 2015-06-02 波长转换装置及其制备方法、相关发光装置和投影系统

Publications (1)

Publication Number Publication Date
WO2016192625A1 true WO2016192625A1 (zh) 2016-12-08

Family

ID=57442189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/084246 WO2016192625A1 (zh) 2015-06-02 2016-06-01 波长转换装置及其制备方法、相关发光装置和投影系统

Country Status (3)

Country Link
CN (1) CN106287580A (zh)
TW (1) TWI632323B (zh)
WO (1) WO2016192625A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110017454A (zh) * 2019-04-17 2019-07-16 陕西科技大学 一种量子点led灯

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107783360A (zh) * 2016-08-25 2018-03-09 深圳市光峰光电技术有限公司 光源装置及显示系统
CN107180904A (zh) * 2017-05-12 2017-09-19 广东工业大学 一种紫外led封装器件
CN108954039B (zh) * 2017-05-19 2020-07-03 深圳光峰科技股份有限公司 波长转换装置及其制备方法
CN109424944A (zh) * 2017-07-13 2019-03-05 深圳光峰科技股份有限公司 一种波长转换装置及光源
CN109654391B (zh) * 2017-10-10 2020-09-11 深圳光峰科技股份有限公司 波长转换装置
CN109696792B (zh) * 2017-10-24 2022-03-29 中强光电股份有限公司 投影机及波长转换装置
CN111063810B (zh) * 2018-10-16 2021-11-12 深圳光峰科技股份有限公司 发光装置及其制备方法
CN111380037A (zh) * 2018-12-27 2020-07-07 深圳光峰科技股份有限公司 波长转换装置及其制造方法
US20220347781A1 (en) * 2019-07-16 2022-11-03 Ngk Spark Plug Co., Ltd. Wavelength conversion member for soldering, wavelength conversion device, and light source device
CN112578551A (zh) 2019-09-30 2021-03-30 台达电子工业股份有限公司 波长转换装置
CN112578552A (zh) 2019-09-30 2021-03-30 台达电子工业股份有限公司 波长转换装置
CN112666780B (zh) 2019-10-15 2022-06-24 台达电子工业股份有限公司 波长转换装置
CN113534311B (zh) * 2021-07-24 2022-10-14 福州大学 一种量子点扩散板及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070096128A1 (en) * 2005-10-31 2007-05-03 Kyocera Corporation Wavelength Converter, Lighting System, and Lighting System Assembly
CN101969092A (zh) * 2010-09-16 2011-02-09 兰红波 垂直结构金属衬底准光子晶体hb-led芯片及制造方法与应用
CN102569573A (zh) * 2012-02-28 2012-07-11 江苏新广联科技股份有限公司 改善热传导的led芯片
CN103819215A (zh) * 2014-03-20 2014-05-28 李磊 氮化铝基陶瓷覆铜板的制备方法
CN103968332A (zh) * 2013-01-25 2014-08-06 深圳市光峰光电技术有限公司 一种波长转换装置、发光装置及投影系统
CN104100933A (zh) * 2013-04-04 2014-10-15 深圳市绎立锐光科技开发有限公司 一种波长转换装置及其制作方法、相关发光装置
CN204829755U (zh) * 2015-06-02 2015-12-02 深圳市光峰光电技术有限公司 波长转换装置、相关发光装置和投影系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070096128A1 (en) * 2005-10-31 2007-05-03 Kyocera Corporation Wavelength Converter, Lighting System, and Lighting System Assembly
CN101969092A (zh) * 2010-09-16 2011-02-09 兰红波 垂直结构金属衬底准光子晶体hb-led芯片及制造方法与应用
CN102569573A (zh) * 2012-02-28 2012-07-11 江苏新广联科技股份有限公司 改善热传导的led芯片
CN103968332A (zh) * 2013-01-25 2014-08-06 深圳市光峰光电技术有限公司 一种波长转换装置、发光装置及投影系统
CN104100933A (zh) * 2013-04-04 2014-10-15 深圳市绎立锐光科技开发有限公司 一种波长转换装置及其制作方法、相关发光装置
CN103819215A (zh) * 2014-03-20 2014-05-28 李磊 氮化铝基陶瓷覆铜板的制备方法
CN204829755U (zh) * 2015-06-02 2015-12-02 深圳市光峰光电技术有限公司 波长转换装置、相关发光装置和投影系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110017454A (zh) * 2019-04-17 2019-07-16 陕西科技大学 一种量子点led灯

Also Published As

Publication number Publication date
TW201710622A (zh) 2017-03-16
CN106287580A (zh) 2017-01-04
TWI632323B (zh) 2018-08-11

Similar Documents

Publication Publication Date Title
WO2016192625A1 (zh) 波长转换装置及其制备方法、相关发光装置和投影系统
US10505089B2 (en) Method of manufacturing light emitting device
CN106206904B (zh) 一种波长转换装置、荧光色轮及发光装置
US9842973B2 (en) Method of manufacturing ceramic LED packages with higher heat dissipation
CN204829755U (zh) 波长转换装置、相关发光装置和投影系统
TWI270993B (en) Method of manufacturing ceramic LED packages
US7670872B2 (en) Method of manufacturing ceramic LED packages
WO2016173525A1 (zh) 一种波长转换装置、发光装置及投影装置
WO2005106973A1 (ja) 発光素子用配線基板
US20140124822A1 (en) Graphite-containing substrates for led packages
WO2008058446A1 (en) Light emitting system
WO2018010470A1 (zh) 一种波长转换装置及其制备方法
WO2011147286A1 (zh) 板上芯片发光二极管结构
WO2018137312A1 (zh) 一种荧光模块及相关光源
WO2016173526A1 (zh) 波长转化装置、光源系统和投影设备
WO2015184614A1 (zh) 大功率高温白光led封装及其制作方法
CN113701125A (zh) 透射式波长转换装置及其发光装置
WO2019010910A1 (zh) 一种波长转换装置及光源
CN111063810B (zh) 发光装置及其制备方法
CN201754415U (zh) 一种led器件
CN101969093A (zh) 一种led器件
EP4194947A1 (en) Wavelength conversion apparatus and manufacturing method therefor
WO2021093564A1 (zh) 红光发光模块及其制备方法
CN212060849U (zh) 波长转换装置、发光装置和投影装置
WO2022077886A1 (zh) 一种无机材料封装的白光led芯片、器件及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16802548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16802548

Country of ref document: EP

Kind code of ref document: A1