WO2016192373A1 - Mems麦克风、压力传感器集成结构及其制造方法 - Google Patents

Mems麦克风、压力传感器集成结构及其制造方法 Download PDF

Info

Publication number
WO2016192373A1
WO2016192373A1 PCT/CN2015/097315 CN2015097315W WO2016192373A1 WO 2016192373 A1 WO2016192373 A1 WO 2016192373A1 CN 2015097315 W CN2015097315 W CN 2015097315W WO 2016192373 A1 WO2016192373 A1 WO 2016192373A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
pressure sensor
diaphragm
etching
mems microphone
Prior art date
Application number
PCT/CN2015/097315
Other languages
English (en)
French (fr)
Inventor
孙艳美
Original Assignee
歌尔声学股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔声学股份有限公司 filed Critical 歌尔声学股份有限公司
Priority to JP2017539537A priority Critical patent/JP6484343B2/ja
Priority to EP15894016.3A priority patent/EP3249952B1/en
Priority to US15/554,653 priority patent/US10273150B2/en
Priority to KR1020177019456A priority patent/KR101965089B1/ko
Publication of WO2016192373A1 publication Critical patent/WO2016192373A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • H04R31/006Interconnection of transducer parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • B81C1/00158Diaphragms, membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00301Connecting electric signal lines from the MEMS device with external electrical signal lines, e.g. through vias
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L7/00Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements
    • G01L7/02Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges
    • G01L7/08Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges of the flexible-diaphragm type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/005Electrostatic transducers using semiconductor materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0257Microphones or microspeakers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0264Pressure sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0102Surface micromachining
    • B81C2201/0105Sacrificial layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0128Processes for removing material
    • B81C2201/013Etching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use

Definitions

  • the present invention relates to the field of sensors, and more particularly to an integrated structure of a MEMS microphone and a pressure sensor.
  • the invention also relates to a manufacturing method for integrating a MEMS microphone and a pressure sensor.
  • sensors have been widely used in electronic products such as mobile phones and notebook computers.
  • the pressure sensor and the MEMS microphone are respectively packaged on the PCB board in two separate single forms, and then a series of processes such as DB and WB are performed, and the size of the package form is large, which is disadvantageous for In consumer electronics applications.
  • the current problem is that the packaging process of each sensor is relatively mature, the process capability is approaching the limit, and it is difficult to further reduce the size of the chip according to the requirements of the system manufacturer.
  • An object of the present invention is to provide a new technical solution for a method of manufacturing a MEMS microphone and a pressure sensor integrated structure.
  • a method of fabricating an integrated structure of a MEMS microphone and a pressure sensor comprising the steps of:
  • the method further comprises: etching the second polysilicon layer, forming a corrosion hole step for penetrating the corrosive material in the region of the diaphragm and the upper electrode; in the step d) and the step e) There is further included a step of continuing to deposit a polysilicon film on the diaphragm and the upper electrode, and forming a flange at the lower end of the diaphragm and the upper electrode at the position of the etching hole.
  • a step of thinning the diaphragm is further included.
  • the step d) further comprises a step of etching a sacrificial layer, forming a through hole penetrating the diaphragm and the first polysilicon layer, the upper electrode and the first polysilicon layer respectively on the sacrificial layer; A step of forming a metal portion in the via hole to extract the electrical signal of the first polysilicon layer.
  • the airflow via hole is first etched on the back electrode and the insulating layer under the back electrode, and then the insulating layer under the back electrode is etched away.
  • the present invention also provides a MEMS microphone, pressure sensor integrated structure, including a common substrate on which a diaphragm, a back pole, and a support between the diaphragm and the back electrode are disposed on the common substrate. a sacrificial layer; further disposed on the common substrate with an upper electrode and a lower electrode constituting a pressure sensor, and a sacrificial layer supported between the upper electrode and the lower electrode; wherein the common substrate corresponds to the back electrode
  • the position is provided with a back cavity that is suspended above the back cavity.
  • an insulating layer is provided at a position where the back electrode and the lower electrode are in contact with the common substrate.
  • the sacrificial layer of the MEMS microphone and the pressure sensor is provided with through holes respectively penetrating the back electrode and the diaphragm, the lower electrode and the upper electrode, and the back electrodes and the lower electrodes are respectively provided with electrical signals in the through holes.
  • a plurality of flanges extending toward the back pole are disposed on one end surface of the diaphragm adjacent to the back pole; and a plurality of protrusions extending to the lower electrode are disposed on one end surface of the upper electrode adjacent to the lower electrode edge.
  • the flange is in the shape of an inverted cone.
  • the integrated structure of the invention, the capacitance structure of the MEMS microphone and the capacitance of the pressure sensor is integrated on a common substrate, which improves the integration of the MEMS microphone and the pressure sensor, and can greatly reduce the size of the entire package structure.
  • the diaphragm of the MEMS microphone and the upper electrode of the pressure sensor can adopt the same material and manufacturing process
  • the back electrode of the MEMS microphone and the lower electrode of the pressure sensor can adopt the same material and manufacturing process, so that the common substrate can be simultaneously MEMS microphones and pressure sensors are produced to increase production efficiency.
  • the inventors of the present invention have found that in the prior art, the packaging process of each sensor has been relatively mature, and the process capability has reached the limit, and it is difficult to further reduce the size of the chip according to the requirements of the system manufacturer. Therefore, the technical task to be achieved by the present invention or the technical problem to be solved is not thought of or expected by those skilled in the art, so the present invention is a new technical solution.
  • Figure 1 is a schematic illustration of the integrated structure of the present invention.
  • 2 to 10 are process flow diagrams of a method of fabricating an integrated structure of the present invention.
  • the present invention provides an integrated structure of a MEMS microphone and a pressure sensor, which includes a common substrate 1, and a capacitor structure of a MEMS microphone is disposed at an upper end of the common substrate 1. And the capacitance structure of the pressure sensor.
  • the capacitance structure of the pressure sensor of the present invention includes a lower electrode 3b disposed on the common substrate 1, an upper electrode 6b, and a sacrificial layer 7 supporting the upper electrode 6b above the lower electrode 3b.
  • a sacrificial layer 7 supporting the upper electrode 6b above the lower electrode 3b.
  • a device for converting pressure into an electrical signal can be constructed by a conventional lead.
  • the upper electrode 6b is deformed, the distance between the upper electrode 6b and the lower electrode 3b is changed, and the changed electric signal is finally output.
  • the capacitor structure of the MEMS microphone of the present invention includes a back electrode 3a disposed above the common substrate 1, a diaphragm 6a, and a sacrificial layer 7 supported between the back electrode 3a and the diaphragm 6a.
  • the capacitance structure of the MEMS microphone of the present invention may adopt the manner in which the diaphragm 6a is on the upper and lower poles 3a, or the diaphragm 6a may be on the lower and back poles 3a.
  • the capacitance structure of the MEMS microphone adopts a structure in which the diaphragm 6a is on the upper and lower poles 3a, that is, the back pole 3a is disposed on the common substrate 1.
  • the diaphragm 6a is supported above the back pole 3a by the sacrificial layer 7, so that the diaphragm 6a and the back pole 3a have a certain distance, and a conventional lead wire can constitute a component for converting a sound signal into an electrical signal.
  • the principle of operation of the MEMS microphone capacitor structure is well known to those skilled in the art and will not be described herein.
  • the back surface 10 is disposed on the common substrate 1 at a position corresponding to the back electrode 3a such that the back electrode 3a is suspended above the back cavity 10.
  • a plurality of airflow conducting holes 30 are further disposed on the back pole 3a to balance the airflow of the front cavity and the rear cavity of the MEMS microphone.
  • the common substrate 1 can be made of a single crystal silicon material
  • the back electrode 3a, the diaphragm 6a, the lower electrode 3b, and the upper electrode 6b can each be made of a polysilicon material, which is known to those skilled in the art. Said to belong to the existing technology.
  • an insulating layer 2 is provided at a place where the back electrode 3a and the lower electrode 3b are in contact with the common substrate 1, and the insulating layer 2 is preferably made of a silicon dioxide material.
  • the integrated structure of the invention integrates the capacitance structure of the MEMS microphone and the capacitance structure of the pressure sensor on the common substrate, improves the integration degree of the MEMS microphone and the pressure sensor, and can greatly reduce the size of the entire package structure.
  • the diaphragm of the MEMS microphone and the upper electrode of the pressure sensor can adopt the same material and manufacturing process
  • the back electrode of the MEMS microphone and the lower electrode of the pressure sensor can adopt the same material and manufacturing process, so that the common substrate can be simultaneously MEMS microphones and pressure sensors are produced to increase production efficiency.
  • the integrated device of the present invention can connect the diaphragm and the back, upper and lower electrodes by conventional leads.
  • the sacrificial layer 7 of the MEMS microphone and the pressure sensor is provided with through holes respectively penetrating the back electrode 3a and the diaphragm 6a, the lower electrode 3b and the upper electrode 6b, in the through hole
  • the metal portion 8 electrically connecting the back electrode 3a and the lower electrode 3b is provided in the inside, and the electrical signals of the back electrode 3a and the lower electrode 3b are taken out by the metal portion 8.
  • a plurality of flanges 61 extending toward the back pole 3a are disposed on an end surface of the diaphragm 6a adjacent to the back pole 3a; and a side end surface of the upper electrode 6b adjacent to the lower electrode 3b
  • a plurality of flanges 61 extending to the lower electrode 3b are provided, and the shape of the flange 61 is preferably an inverted conical shape, and the flange 61 can be evenly distributed on the surfaces of the diaphragm 6a and the upper electrode 6b.
  • the diaphragm 6a and the upper electrode 6b can be prevented from being bonded to the back electrode 3a and the lower electrode 3b. To avoid the failure of MEMS microphones and pressure sensors.
  • the invention also provides a manufacturing method of a MEMS microphone and a pressure sensor integrated structure, which comprises the following steps:
  • insulating layer 2 sequentially depositing an insulating layer 2 and a first polysilicon layer 3 on the common substrate 1, with reference to FIG. 2; wherein the insulating layer 2 is insulated between the common substrate 1 and the first polysilicon layer 3 At the same time, it can also act as a barrier layer in the process of subsequent bulk silicon corrosion, so as not to damage the structure of the upper layer;
  • the technique of releasing the diaphragm 6a and the upper electrode 6b by etching the sacrificial layer 7 is a common knowledge of those skilled in the art.
  • the step of etching the second polysilicon layer 6 to form the etching hole 60 in the region of the diaphragm 6a and the upper electrode 6b refer to FIG.
  • the etching hole 60 Through the etching hole 60, the corrosive material can be smoothly entered into the sacrificial layer 7, and the sacrificial layer 7 is corroded;
  • a step of continuing to deposit a polysilicon film on the diaphragm 6a and the upper electrode 6b is further included, and the polysilicon film enters into the etching hole 60 and is located at the position of the etching hole 60.
  • the film 6a and the flange 61 at the lower end of the upper electrode 6b are referred to FIG. 6; by the flange 61, the diaphragm 6a and the upper electrode 6b can be prevented from being bonded to the back electrode 3a and the lower electrode 3b, thereby causing the MEMS microphone and the pressure sensor. Failure.
  • the diaphragm 6a of the MEMS microphone and the upper electrode 6b of the pressure sensor are made of the same material, and in order to realize the respective operating parameters, the etching may be performed in step c).
  • the upper electrode 6b is selected to have a large size area
  • the diaphragm 6a is selected to have a small size area.
  • the step of thinning the upper surface of the diaphragm 6a is further performed, and the working of the MEMS microphone and the pressure sensor is realized by the thickness of the respective sensitive structure film layer. Parameter requirements.
  • the conventional lead wire can be connected between the back electrode 3a and the diaphragm 6a, and between the lower electrode 3b and the upper electrode 6b.
  • the step d) further includes etching the sacrificial layer 7, and forming the through-diaphragm 6a and the first polysilicon layer 3, the upper electrode 6b and the first polysilicon layer 3 on the sacrificial layer 7, respectively.
  • the first polysilicon layer 3 is etched to form mutually independent back electrodes 3a and lower electrodes 3b so that the respective signals are independent of each other.
  • an insulating layer needs to be disposed between the metal portion 8 and the diaphragm 6a and the upper electrode 6b to prevent the metal portion 8 from being electrically connected to the diaphragm 6a and the upper electrode 6b.
  • a metal electrode is further disposed on the upper electrode 6b to take out the respective signals.
  • the gas flow via hole 30 is first etched on the back electrode 3a and the insulating layer 2 under the back electrode 3a, and then the insulating layer 2 under the back electrode 3a is etched away. Therefore, damage to the back pole 3a during etching can be avoided.
  • the capacitance structure of the MEMS microphone and the pressure sensor can be simultaneously fabricated on the common substrate, the manufacturing efficiency is improved, and the manufacturing cost is also saved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Pressure Sensors (AREA)

Abstract

本发明公开了一种MEMS麦克风、压力传感器集成结构及其制造方法,在共用衬底上依次沉积绝缘层、第一多晶硅层、牺牲层和第二多晶硅层;刻蚀第二多晶硅层,形成振膜、上电极;腐蚀牺牲层,形成麦克风、压力传感器的容腔,并将麦克风、压力传感器之间的牺牲层腐蚀掉;刻蚀第一多晶硅层,形成麦克风的背极以及压力传感器的下电极;对共用衬底位于麦克风背极下方的位置进行刻蚀,形成背腔;将位于背极下方的绝缘层刻蚀掉。将麦克风的电容结构、压力传感器的电容结构集成在共用衬底上,提高了麦克风和压力传感器的集成度,可以大大降低整个封装结构的尺寸;另外,可以在共用衬底上同时制作出麦克风和压力传感器,提高了生产的效率。

Description

MEMS麦克风、压力传感器集成结构及其制造方法 技术领域
本发明涉及传感器领域,更具体地,涉及一种MEMS麦克风及压力传感器的集成结构;本发明还涉及一种对MEMS麦克风、压力传感器进行集成的制造方法。
背景技术
近年来,随着科学技术的发展,手机、笔记本电脑等电子产品的体积在不断减小,而且人们对这些便携电子产品的性能要求也越来越高,这就要求与之配套的电子零部件的体积也必须随之减小。
传感器作为测量器件,已经普遍应用在手机、笔记本电脑等电子产品上。在现有的工艺结构中,压力传感器和MEMS麦克风分别以两个独立的单体形式被封装在PCB板上,然后进行DB、WB等一系列工艺,这种封装形式的尺寸较大,不利于在消费类电子产品应用。目前的问题是,各传感器的封装工艺已经比较成熟,工艺能力已经接近极限,很难再根据系统厂商的要求进一步缩减芯片的尺寸。
发明内容
本发明的一个目的是提供一种MEMS麦克风、压力传感器集成结构的制造方法的新技术方案。
根据本发明的第一方面,提供了一种MEMS麦克风、压力传感器的集成结构的制造方法,包括以下步骤:
a)在共用衬底上依次沉积绝缘层和第一多晶硅层;
b)在第一多晶硅层上方继续依次沉积牺牲层和第二多晶硅层;
c)刻蚀第二多晶硅层,形成MEMS麦克风的振膜以及压力传感器的上电极;
d)腐蚀牺牲层,形成MEMS麦克风、压力传感器的容腔,并将MEMS麦克风、压力传感器之间的牺牲层腐蚀掉;
e)刻蚀第一多晶硅层,形成MEMS麦克风的背极以及压力传感器的下电极;
f)对共用衬底位于MEMS麦克风背极下方的位置进行刻蚀,形成背腔;
g)将位于背极下方的绝缘层刻蚀掉。
优选地,所述步骤c)中,还包括刻蚀第二多晶硅层,在振膜、上电极的区域形成供腐蚀材料穿入的腐蚀孔步骤;在所述步骤d)与步骤e)之间还包括在振膜、上电极继续沉积多晶硅薄膜,并在腐蚀孔位置形成位于振膜、上电极下端的凸缘的步骤。
优选地,在形成凸缘后,还包括对振膜进行减薄的步骤。
优选地,所述步骤d)中还包括腐蚀牺牲层,在牺牲层上形成分别贯通振膜与第一多晶硅层、上电极与第一多晶硅层的通孔的步骤;还包括在通孔中制作金属部,以将第一多晶硅层电信号引出的步骤。
优选地,所述步骤g)中,首先在背极以及位于背极下方的绝缘层上刻蚀出气流导通孔,之后再将位于背极下方的绝缘层刻蚀掉。
本发明还提供了一种MEMS麦克风、压力传感器集成结构,包括共用衬底,在所述共用衬底上设置有构成MEMS麦克风的振膜、背极,以及支撑在振膜与背极之间的牺牲层;在所述共用衬底上还设置有构成压力传感器的上电极、下电极,以及支撑在上电极与下电极之间的牺牲层;其中,所述共用衬底上与背极对应的位置设置有背腔,所述背极悬置在背腔的上方。
优选地,所述背极、下电极与共用衬底之间接触的位置设有绝缘层。
优选地,所述MEMS麦克风、压力传感器的牺牲层上设有分别贯通背极与振膜、下电极与上电极的通孔,在所述通孔内分别设有将背极、下电极电信号引出的金属部。
优选地,在所述振膜邻近背极的一侧端面上设置有多个伸向背极的凸缘;在所述上电极邻近下电极的一侧端面上设置有多个伸向下电极的凸缘。
优选地,所述凸缘呈倒立的圆锥状。
本发明的集成结构,将MEMS麦克风的电容结构、压力传感器的电容 结构集成在共用衬底上,提高了MEMS麦克风和压力传感器的集成度,可以大大降低整个封装结构的尺寸。同时,MEMS麦克风的振膜、压力传感器的上电极可以采用相同的材料和制作工艺,MEMS麦克风的背极、压力传感器的下电极可以采用相同的材料和制作工艺,使得可以在共用衬底上同时制作出MEMS麦克风和压力传感器,提高了生产的效率。
本发明的发明人发现,在现有技术中,各传感器的封装工艺已经比较成熟,工艺能力已经接近极限,很难再根据系统厂商的要求进一步缩减芯片的尺寸。因此,本发明所要实现的技术任务或者所要解决的技术问题是本领域技术人员从未想到的或者没有预期到的,故本发明是一种新的技术方案。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1是本发明集成结构的示意图。
图2至图10是本发明集成结构制造方法的工艺流程图。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的 值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
参考图1,为了减小封装的整体尺寸,本发明提供了一种MEMS麦克风、压力传感器的集成结构,其包括共用衬底1,在所述共用衬底1的上端设置有MEMS麦克风的电容结构以及压力传感器的电容结构。
具体地,本发明压力传感器的电容结构包括设置在共用衬底1上的下电极3b、上电极6b,以及将上电极6b支撑在下电极3b上方的牺牲层7。通过该牺牲层7,使得上电极6b与下电极3b之间具有一定的距离,通过传统的引线,即可构成将压力转换为电信号的器件。例如当其受到外界的压力时,上电极6b发生变形,改变了上电极6b与下电极3b之间的距离,最终将变化的电信号输出。
本发明MEMS麦克风的电容结构包括设置在共用衬底1上方的背极3a、振膜6a,以及支撑在背极3a与振膜6a之间的牺牲层7。对于本领域的技术人员来说,本发明MEMS麦克风的电容结构可以采用振膜6a在上、背极3a在下的方式,也可以采用振膜6a在下、背极3a在上的方式。在本发明一个具体的实施方式中,为了与压力传感器对应起来,MEMS麦克风的电容结构采用振膜6a在上、背极3a在下的结构,也就是说,背极3a设置在共用衬底1上,振膜6a通过牺牲层7支撑在背极3a的上方,从而使得振膜6a与背极3a之间具有一定的距离,通过传统的引线,即可构成将声音信号转化为电信号的组件。MEMS麦克风电容结构的动作原理属于本领域技术人员的公知常识,在此不再进行赘述。
为了使MEMS麦克风的电容结构发挥作用,所述共用衬底1上与背极3a对应的位置设置有背腔10,使得该背极3a悬置在背腔10的上方。同时,在所述背极3a上还设置有多个气流导通孔30,以便于均衡MEMS麦克风前腔与后腔的气流。
本发明中,共用衬底1可以采用单晶硅材料制成,背极3a、振膜6a、下电极3b、上电极6b均可采用多晶硅材料,这对于本领域的技术人员来 说,属于现有的技术。其中,为了绝缘,在所述背极3a、下电极3b与共用衬底1接触的地方设置有绝缘层2,该绝缘层2优选可以采用二氧化硅材料。
本发明的集成结构,将MEMS麦克风的电容结构、压力传感器的电容结构集成在共用衬底上,提高了MEMS麦克风和压力传感器的集成度,可以大大降低整个封装结构的尺寸。同时,MEMS麦克风的振膜、压力传感器的上电极可以采用相同的材料和制作工艺,MEMS麦克风的背极、压力传感器的下电极可以采用相同的材料和制作工艺,使得可以在共用衬底上同时制作出MEMS麦克风和压力传感器,提高了生产的效率。
本发明的集成装置,如上文所述,可以通过传统的引线来连接振膜与背极、上电极与下电极。在本发明一个具体的实施方式中,所述MEMS麦克风、压力传感器的牺牲层7上设有分别贯通背极3a与振膜6a、下电极3b与上电极6b的通孔,在所述通孔内分别设有电连接背极3a、下电极3b的金属部8,通过该金属部8将背极3a、下电极3b的电信号引出。
本发明另一实施方式中,在所述振膜6a邻近背极3a的一侧端面上设置有多个伸向背极3a的凸缘61;在所述上电极6b邻近下电极3b的一侧端面上设置有多个伸向下电极3b的凸缘61,该凸缘61的形状优选采用倒立的圆锥状,该凸缘61可以均匀地分布在振膜6a、上电极6b的表面上。当振膜6a、上电极6b受到的压力较大,使得振膜6a、上电极6b发生的变形较大时,可以防止振膜6a、上电极6b与背极3a、下电极3b贴合在一起,避免造成MEMS麦克风以及压力传感器的失效。
本发明还提供了一种MEMS麦克风、压力传感器集成结构的制造方法,其包括以下步骤:
a)在共用衬底1上依次沉积绝缘层2和第一多晶硅层3,参考图2;其中,该绝缘层2在保证共用衬底1与第一多晶硅层3之间绝缘的同时,其在后续体硅腐蚀的工艺中也可以作为阻挡层,以免破坏上层的结构;
b)在第一多晶硅层3的上表面继续依次沉积牺牲层7和第二多晶硅层6,参考图3;
c)刻蚀第二多晶硅层6,形成MEMS麦克风的振膜6a以及压力传感器 的上电极6b;在该步骤中,根据MEMS麦克风及压力传感器的工作参数要求,在预定的位置将第二多晶硅层6进行刻蚀,分别形成MEMS麦克风的振膜6a、压力传感器的上电极6b,参考图4;
d)腐蚀牺牲层7,将振膜6a与第一多晶硅层3之间的部分牺牲层7腐蚀掉,使得振膜6a仅靠其边缘位置的牺牲层支撑在第一多晶硅层3上;同样地,将上电极6b与第一多晶硅层3之间的部分牺牲层7腐蚀掉,使得上电极6b仅靠其边缘位置的牺牲层支撑在第一多晶硅层3上,并形成了如图4所示的MEMS麦克风、压力传感器的容腔4;在该步骤中,将MEMS麦克风、压力传感器之间的牺牲层刻蚀掉,以便将MEMS麦克风、压力传感器分隔开,参考图5;
e)将MEMS麦克风、压力传感器之间的第一多晶硅层3进行刻蚀,从而使MEMS麦克风、压力传感器的信号独立,形成MEMS麦克风的背极3a以及压力传感器的下电极3b,参考图7;
f)对共用衬底1位于MEMS麦克风背极3a下方的位置进行刻蚀,形成背腔10,参考图9;
g)将位于背极3a下方的绝缘层2刻蚀掉,使得背极3a悬置在背腔10的上方,参考图10。
如上文所述,通过腐蚀牺牲层7来释放振膜6a、上电极6b的技术,属于本领域技术人员的公知常识。在本发明一个优选的实施方式中,所述步骤c)中,还包括刻蚀第二多晶硅层6,以在振膜6a、上电极6b的区域形成腐蚀孔60的步骤,参考图4;通过该腐蚀孔60,可以让腐蚀材料顺利地进入至牺牲层7上,对牺牲层7进行腐蚀;
此时,在所述步骤d)与步骤e)之间还包括在振膜6a、上电极6b继续沉积多晶硅薄膜的步骤,多晶硅薄膜进入至腐蚀孔60中,并在腐蚀孔60位置形成位于振膜6a、上电极6b下端的凸缘61,参考图6;通过该凸缘61,可以防止振膜6a、上电极6b与背极3a、下电极3b贴合在一起,造成MEMS麦克风以及压力传感器的失效。
本发明的制造方法中,MEMS麦克风的振膜6a与压力传感器的上电极6b采用相同的材料,为了实现各自的工作参数,可在步骤c)进行刻蚀第 二多晶硅层6时,选择上电极6b具有较大的尺寸面积,选择振膜6a具有较小的尺寸面积。在发明一个较为优选的实施方式中,在形成凸缘61后,还包括对振膜6a的上表面进行减薄的步骤,通过各自敏感结构膜层的厚度,来实现MEMS麦克风、压力传感器的工作参数要求。
如上文所述,背极3a与振膜6a之间、下电极3b与上电极6b之间可以采用传统的引线进行连接。本发明的制造方法中,所述步骤d)还包括腐蚀牺牲层7,在牺牲层7上形成分别贯通振膜6a与第一多晶硅层3、上电极6b与第一多晶硅层3的通孔5;在该通孔5中例如以沉积的方式制作金属部8,将第一多晶硅层3上用于形成背极3a、下电极3b的位置的信号引出,参考图8;后续通过对第一多晶硅层3进行刻蚀,形成相互独立的背极3a、下电极3b,使得各自的信号相互独立。当然对于本领域的技术人员来说,金属部8与振膜6a、上电极6b之间需要设置绝缘层,防止金属部8与振膜6a、上电极6b导通在一起;同时,在振膜6a、上电极6b上还设置有金属电极,以便将各自的信号引出。
在本发明制造方法的步骤g)中,首先在背极3a以及位于背极3a下方的绝缘层2上刻蚀气流导通孔30,之后再将位于背极3a下方的绝缘层2刻蚀掉,从而可以避免在刻蚀的过程中对背极3a造成损坏。
本发明的制造方法,可以同时在共用衬底上制作出MEMS麦克风以及压力传感器的电容结构,提高了制造的效率,同时也节约了制造的成本。
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (10)

  1. 一种MEMS麦克风、压力传感器集成结构的制造方法,其特征在于,包括以下步骤:
    a)在共用衬底(1)上依次沉积绝缘层(2)和第一多晶硅层(3);
    b)在第一多晶硅层(3)上方继续依次沉积牺牲层(7)和第二多晶硅层(6);
    c)刻蚀第二多晶硅层(6),形成MEMS麦克风的振膜(6a)以及压力传感器的上电极(6b);
    d)腐蚀牺牲层(7),形成MEMS麦克风、压力传感器的容腔(4),并将MEMS麦克风、压力传感器之间的牺牲层(7)腐蚀掉;
    e)刻蚀第一多晶硅层(3),形成MEMS麦克风的背极(3a)以及压力传感器的下电极(3b);
    f)对共用衬底(1)位于MEMS麦克风背极(3a)下方的位置进行刻蚀,形成背腔(10);
    g)将位于背极(3a)下方的绝缘层(2)刻蚀掉。
  2. 根据权利要求1所述的制造方法,其特征在于:所述步骤c)中,还包括刻蚀第二多晶硅层(6),在振膜(6a)、上电极(6b)的区域形成供腐蚀材料穿入的腐蚀孔(60)步骤;在所述步骤d)与步骤e)之间还包括在振膜(6a)、上电极(6b)继续沉积多晶硅薄膜,并在腐蚀孔(60)位置形成位于振膜(6a)、上电极(6b)下端的凸缘(61)的步骤。
  3. 根据权利要求2所述的制造方法,其特征在于:在形成凸缘(61)后,还包括对振膜(6a)进行减薄的步骤。
  4. 根据权利要求1所述的制造方法,其特征在于:所述步骤d)中还包括腐蚀牺牲层(7),在牺牲层(7)上形成分别贯通振膜(6a)与第一多晶硅层(3)、上电极(6b)与第一多晶硅层(3)的通孔(5)的步骤;还包括在通孔(5)中制作金属部(8),以将第一多晶硅层(3)电信号引出的步骤。
  5. 根据权利要求1所述的制造方法,其特征在于:所述步骤g)中, 首先在背极(3a)以及位于背极(3a)下方的绝缘层(2)上刻蚀出气流导通孔(30),之后再将位于背极(3a)下方的绝缘层(2)刻蚀掉。
  6. 一种MEMS麦克风、压力传感器集成结构,其特征在于:包括共用衬底(1),在所述共用衬底(1)上设置有构成MEMS麦克风的振膜(6a)、背极(3a),以及支撑在振膜(6a)与背极(3a)之间的牺牲层(7);在所述共用衬底(1)上还设置有构成压力传感器的上电极(6b)、下电极(3b),以及支撑在上电极(6b)与下电极(3b)之间的牺牲层(7);其中,所述共用衬底(1)上与背极(3a)对应的位置设有背腔(10),所述背极(3a)悬置在背腔(10)的上方。
  7. 根据权利要求6所述的集成结构,其特征在于:所述背极(3a)、下电极(3b)与共用衬底(1)之间接触的位置设有绝缘层(2)。
  8. 根据权利要求6所述的集成结构,其特征在于:所述MEMS麦克风、压力传感器的牺牲层(7)上设有分别贯通背极(3a)与振膜(6a)、下电极(3b)与上电极(6b)的通孔,在所述通孔内分别设有将背极(3a)、下电极(3b)电信号引出的金属部(8)。
  9. 根据权利要求6所述的集成结构,其特征在于:在所述振膜(6a)邻近背极(3a)的一侧端面上设置有多个伸向背极(3a)的凸缘(61);在所述上电极(6b)邻近下电极(3b)的一侧端面上设置有多个伸向下电极(3b)的凸缘(61)。
  10. 根据权利要求6所述的集成结构,其特征在于:所述凸缘(61)呈倒立的圆锥状。
PCT/CN2015/097315 2015-05-29 2015-12-14 Mems麦克风、压力传感器集成结构及其制造方法 WO2016192373A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017539537A JP6484343B2 (ja) 2015-05-29 2015-12-14 Memsマイクロフォンと圧力センサの集積構造及びその製造方法
EP15894016.3A EP3249952B1 (en) 2015-05-29 2015-12-14 Integrated structure of mems microphone and pressure sensor, and manufacturing method thereof
US15/554,653 US10273150B2 (en) 2015-05-29 2015-12-14 Integrated structure of MEMS microphone and pressure sensor and manufacturing method for the integrated structure
KR1020177019456A KR101965089B1 (ko) 2015-05-29 2015-12-14 Mems 마이크, 압력 센서 집적 구조 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510287121.3 2015-05-29
CN201510287121.3A CN104883652B (zh) 2015-05-29 2015-05-29 Mems麦克风、压力传感器集成结构及其制造方法

Publications (1)

Publication Number Publication Date
WO2016192373A1 true WO2016192373A1 (zh) 2016-12-08

Family

ID=53950956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097315 WO2016192373A1 (zh) 2015-05-29 2015-12-14 Mems麦克风、压力传感器集成结构及其制造方法

Country Status (6)

Country Link
US (1) US10273150B2 (zh)
EP (1) EP3249952B1 (zh)
JP (1) JP6484343B2 (zh)
KR (1) KR101965089B1 (zh)
CN (1) CN104883652B (zh)
WO (1) WO2016192373A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114715836A (zh) * 2022-04-14 2022-07-08 苏州感芯微系统技术有限公司 一种复合功能mems器件结构及其制造方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104883652B (zh) 2015-05-29 2019-04-12 歌尔股份有限公司 Mems麦克风、压力传感器集成结构及其制造方法
CN105307092B (zh) 2015-12-04 2018-03-23 歌尔股份有限公司 Mems麦克风、环境传感器的集成结构及制造方法
WO2018091644A1 (en) 2016-11-18 2018-05-24 Robert Bosch Gmbh System of non-acoustic sensor combined with mems microphone
CN106535071B (zh) * 2016-11-21 2023-03-21 歌尔微电子有限公司 Mems麦克风与环境传感器的集成装置及其制造方法
US20210337333A1 (en) * 2016-12-29 2021-10-28 Gmems Tech Shenzhen Limited Process of fabricating capacitive microphone comprising moveable single conductor and stationary composite conductor
US11765534B2 (en) * 2016-12-29 2023-09-19 Gmems Tech Shenzhen Limited Capacitive microphone with two signal outputs that are additive inverse of each other
US20210314718A1 (en) * 2016-12-29 2021-10-07 Gmems Tech Shenzhen Limited Process of fabricating lateral mode capacitive microphone including a capacitor plate with sandwich structure
US20210345054A1 (en) * 2016-12-29 2021-11-04 Gmems Tech Shenzhen Limited Process of fabricating capacitive microphone comprising movable composite conductor and stationary single conductor
US11765533B2 (en) * 2016-12-29 2023-09-19 Gmems Tech Shenzhen Limited Capacitive microphone with two signal outputs that are additive inverse of each other
US10798508B2 (en) * 2016-12-29 2020-10-06 Gmems Tech Shenzhen Limited Process of fabricating lateral mode capacitive microphone
US11601763B2 (en) * 2016-12-29 2023-03-07 Gmems Tech Shenzhen Limited Lateral mode capacitive microphone including a capacitor plate with sandwich structure for ultra high performance
US10623867B2 (en) * 2017-05-01 2020-04-14 Apple Inc. Combined ambient pressure and acoustic MEMS sensor
KR102359943B1 (ko) * 2017-09-13 2022-02-07 현대자동차 주식회사 마이크로폰 장치
CN108666412A (zh) * 2018-05-31 2018-10-16 歌尔股份有限公司 一种mems麦克风和气压传感器集成结构及其制作方法
US10715924B2 (en) 2018-06-25 2020-07-14 Taiwan Semiconductor Manufacturing Co., Ltd. MEMS microphone having diaphragm
CN110118702A (zh) * 2019-04-23 2019-08-13 瑞声声学科技(深圳)有限公司 一种玻璃破碎检测装置及方法
CN111107473B (zh) * 2019-12-13 2022-02-25 潍坊歌尔微电子有限公司 Mic和压力传感器的集成结构与方法
CN111491244B (zh) * 2020-03-16 2021-11-16 歌尔微电子有限公司 一种mems麦克风的加工方法和mems麦克风
CN112062085B (zh) * 2020-09-10 2024-02-23 浙江集迈科微电子有限公司 一种硅基光刻胶介质横向传输线结构的制作工艺
KR20230007678A (ko) * 2021-07-06 2023-01-13 주식회사 디비하이텍 멤스 마이크로폰
CN114374920A (zh) * 2021-12-29 2022-04-19 瑞声声学科技(深圳)有限公司 骨传导麦克风
CN114640934B (zh) * 2022-04-20 2024-04-02 瑶芯微电子科技(上海)有限公司 Mems麦克风及其制备方法
CN116659711B (zh) * 2023-07-28 2023-09-29 苏州敏芯微电子技术股份有限公司 Mems压力传感器及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7795063B2 (en) * 2007-12-31 2010-09-14 Solid State System Co., Ltd. Micro-electro-mechanical systems (MEMS) device and process for fabricating the same
CN102158787A (zh) * 2011-03-15 2011-08-17 迈尔森电子(天津)有限公司 Mems麦克风与压力集成传感器及其制作方法
CN102180435A (zh) * 2011-03-15 2011-09-14 迈尔森电子(天津)有限公司 集成mems器件及其形成方法
US20130161702A1 (en) * 2011-12-25 2013-06-27 Kun-Lung Chen Integrated mems device
CN104045052A (zh) * 2013-03-14 2014-09-17 台湾积体电路制造股份有限公司 Mems集成压力传感器和麦克风器件及其形成方法
CN104883652A (zh) * 2015-05-29 2015-09-02 歌尔声学股份有限公司 Mems麦克风、压力传感器集成结构及其制造方法
CN204681590U (zh) * 2015-05-29 2015-09-30 歌尔声学股份有限公司 Mems麦克风、压力传感器集成结构

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110138902A1 (en) * 2008-05-27 2011-06-16 Tufts University Mems microphone array on a chip
EP2320678B1 (en) * 2009-10-23 2013-08-14 Nxp B.V. Microphone device with accelerometer for vibration compensation
EP2363717B1 (en) * 2010-02-12 2012-11-14 Nxp B.V. Accelerometer and production method
JP2011176534A (ja) * 2010-02-24 2011-09-08 Omron Corp 音響センサ
US8216882B2 (en) * 2010-08-23 2012-07-10 Freescale Semiconductor, Inc. Method of producing a microelectromechanical (MEMS) sensor device
DE102012209235B4 (de) * 2012-05-31 2023-08-10 Robert Bosch Gmbh Sensormodul mit zwei mikromechanischen Sensorelementen
CA2900661A1 (en) * 2013-03-13 2014-09-18 Rolls-Royce North American Technologies, Inc. Gas turbine engine and electrical system
US9187317B2 (en) * 2013-03-14 2015-11-17 Taiwan Semiconductor Manufacturing Company, Ltd. MEMS integrated pressure sensor and microphone devices and methods of forming same
US9181080B2 (en) * 2013-06-28 2015-11-10 Infineon Technologies Ag MEMS microphone with low pressure region between diaphragm and counter electrode
CN203545672U (zh) * 2013-08-06 2014-04-16 瑞声声学科技(深圳)有限公司 Mems封装
DE102015206863B3 (de) * 2015-04-16 2016-05-25 Robert Bosch Gmbh Verfahren zur Herstellung einer Mikrofonstruktur und einer Drucksensorstruktur im Schichtaufbau eines MEMS-Bauelements

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7795063B2 (en) * 2007-12-31 2010-09-14 Solid State System Co., Ltd. Micro-electro-mechanical systems (MEMS) device and process for fabricating the same
CN102158787A (zh) * 2011-03-15 2011-08-17 迈尔森电子(天津)有限公司 Mems麦克风与压力集成传感器及其制作方法
CN102180435A (zh) * 2011-03-15 2011-09-14 迈尔森电子(天津)有限公司 集成mems器件及其形成方法
US20130161702A1 (en) * 2011-12-25 2013-06-27 Kun-Lung Chen Integrated mems device
CN104045052A (zh) * 2013-03-14 2014-09-17 台湾积体电路制造股份有限公司 Mems集成压力传感器和麦克风器件及其形成方法
CN104883652A (zh) * 2015-05-29 2015-09-02 歌尔声学股份有限公司 Mems麦克风、压力传感器集成结构及其制造方法
CN204681590U (zh) * 2015-05-29 2015-09-30 歌尔声学股份有限公司 Mems麦克风、压力传感器集成结构

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114715836A (zh) * 2022-04-14 2022-07-08 苏州感芯微系统技术有限公司 一种复合功能mems器件结构及其制造方法

Also Published As

Publication number Publication date
US10273150B2 (en) 2019-04-30
US20180050902A1 (en) 2018-02-22
CN104883652B (zh) 2019-04-12
EP3249952A4 (en) 2018-02-28
EP3249952B1 (en) 2020-01-15
EP3249952A1 (en) 2017-11-29
KR20170094428A (ko) 2017-08-17
JP2018510533A (ja) 2018-04-12
CN104883652A (zh) 2015-09-02
KR101965089B1 (ko) 2019-04-02
JP6484343B2 (ja) 2019-03-13

Similar Documents

Publication Publication Date Title
WO2016192373A1 (zh) Mems麦克风、压力传感器集成结构及其制造方法
US9676615B2 (en) MEMS silicone microphone and manufacturing method thereof
US10349187B2 (en) Acoustic sensor integrated MEMS microphone structure and fabrication method thereof
CN106535071B (zh) Mems麦克风与环境传感器的集成装置及其制造方法
US8587078B2 (en) Integrated circuit and fabricating method thereof
US20150260593A1 (en) Mirco-electro-mechanical system pressure sensor and manufacturing method thereof
US9319772B2 (en) Multi-floor type MEMS microphone
CN103281661A (zh) 一种mems麦克风结构及其制造方法
CN102333254B (zh) 一种与cmos电路纵向集成的mems硅麦克风及其制备方法
US9758369B2 (en) Method for manufacturing a microphone structure and a pressure sensor structure in the layer structure of a MEMS element
CN103832967B (zh) Mems传感器的加工方法
CN204681590U (zh) Mems麦克风、压力传感器集成结构
CN104378724A (zh) 一种无背部大声学腔体的mems硅麦克风
CN103347241B (zh) 电容式硅麦克风芯片及其制备方法
US10177027B2 (en) Method for reducing cracks in a step-shaped cavity
CN104754480A (zh) 微型机电系统麦克风及其制造方法
WO2017092075A1 (zh) 一种环境传感器及其制造方法
US9878900B2 (en) Manufacturing method for a micromechanical pressure sensor device and corresponding micromechanical pressure sensor device
CN213694144U (zh) Mems传感器芯片、麦克风和电子设备
TWI547181B (zh) 微機電麥克風感測器及其製備方法
JP4737720B2 (ja) ダイヤフラム及びその製造方法並びにそのダイヤフラムを有するコンデンサマイクロホン及びその製造方法
US8687827B2 (en) Micro-electro-mechanical system microphone chip with expanded back chamber
CN204231666U (zh) 一种无背部大声学腔体的mems硅麦克风
CN203039908U (zh) 电容式微硅麦克风
CN103974182A (zh) 电容式微硅麦克风的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894016

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177019456

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017539537

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015894016

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15554653

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE