WO2016192268A1 - 管道渗漏监测系统 - Google Patents

管道渗漏监测系统 Download PDF

Info

Publication number
WO2016192268A1
WO2016192268A1 PCT/CN2015/092315 CN2015092315W WO2016192268A1 WO 2016192268 A1 WO2016192268 A1 WO 2016192268A1 CN 2015092315 W CN2015092315 W CN 2015092315W WO 2016192268 A1 WO2016192268 A1 WO 2016192268A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
rfid
sensor
network node
wireless communication
Prior art date
Application number
PCT/CN2015/092315
Other languages
English (en)
French (fr)
Inventor
叶柃
牛琳
Original Assignee
浙江鑫宙竹基复合材料科技有限公司
叶柃
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江鑫宙竹基复合材料科技有限公司, 叶柃 filed Critical 浙江鑫宙竹基复合材料科技有限公司
Publication of WO2016192268A1 publication Critical patent/WO2016192268A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • F17D5/02Preventing, monitoring, or locating loss

Definitions

  • the utility model relates to a pipeline leakage monitoring system.
  • Underground pipelines are used to transport materials and energy. They are an important infrastructure for urban construction. Water pipelines are responsible for water supply and drainage, and are an important part of underground pipelines. Pipe leakage caused by valve corrosion, barbaric construction, external force and other reasons is inevitable. If it is not discovered in time, it will lead to waste of water resources, loose soil around the ground, collapse of the ground, and even devastating effects on surrounding buildings. Therefore, it is especially important to find leaks in time and find leaks as soon as possible.
  • the commonly used leak detection methods include audio-visual method, correlation analysis method, regional method, regional loading method, etc.
  • the audio-visual method uses the principle of sound wave technology, and uses the listening equipment to find the water leakage point, which depends on the listening experience of the testing personnel.
  • the correlation analysis method is to use the relevant data collector, the system collects the water leakage sound wave related data on the valve plug, and transmits it to the computer, and the data is calculated by special software. Analysis, judging the occurrence of water leakage and determining the location of the water leakage point, but this method has many limited conditions, such as meeting certain water pressure conditions, valve plug density, accuracy of detection results and distance between two sensors, water leakage sound
  • the propagation speed, the instrument's own error, the pipe wall thickness error have a great relationship, the application range and conditions are limited; the regional method is to enter and exit the community valve through the switch under certain conditions, and determine the minimum late-water intake in the community as the community pipe network.
  • this method can only find the water leakage Leakage point can not be determined; region table method is installed in the detection zone The flow meter is installed on the inlet pipe, and the total amount of water inflow and the total amount of water are used to judge the water leakage in the pipe section in the area, but this method cannot determine the position of the water leakage point.
  • the common types of water pipelines are steel pipes, ductile iron pipes, and glass pipes.
  • the radial structure of the bamboo-wound composite pipe comprises an inner liner layer, a structural layer and an outer protective layer, and the inner liner layer is formed by winding a non-woven resin impregnated on the mold, and the structural layer is wound by the resin-impregnated bamboo sheet. Cured on the inner liner. Due to the toughness of the bamboo itself, there is a gap between the cured structural layer and the inner liner layer, and there is a resin function, so that the inner wall of the slit after curing is relatively smooth. Due to the particularity of the structure, a targeted leak monitoring system can be designed for the bamboo composite pressure pipe.
  • the utility model is completed in view of the above problems, and the object thereof is to provide a pipeline leakage monitoring system, which can automatically monitor the micro-leakage of the bamboo-wound composite pipe water delivery pipe and find a leakage point.
  • a pipeline leakage monitoring system including a bamboo wound composite pipe, a power generation module, an RFID (Radio Frequency Identification) sensing tag, an RFID network node, a wireless network node, a ground base station, and a monitoring terminal.
  • RFID Radio Frequency Identification
  • the power generation module includes a generator and a rectifier circuit;
  • the RFID sensor tag includes a sensor module, a micro control module, a storage module, a radio frequency module, and an antenna, and is installed between the inner liner layer and the structural layer at the bottom end of the bamboo-wound composite pipe along the gravity direction;
  • the RFID network node includes a reader, a first wireless communication module and a first power supply module, is mounted on an outer wall of the bamboo-wound composite pipe, and is located within a range identifiable by the RFID sensor tag;
  • the wireless network node includes a second wireless communication module And second
  • the power supply module is installed on the outer wall of the bamboo-wound composite pipe or in the soil between the bamboo-wound composite pipe and the ground surface; the output end of the power generation module is connected to the input end of the first power supply module and the input end of the second power supply module;
  • the first wireless communication The module is wirelessly connected to the second wireless communication module;
  • the second wireless communication module is wirelessly connected to the ground
  • the sensor module comprises one or more of a humidity sensor, an acoustic wave sensor, a water immersion sensor, and a liquid level sensor.
  • the RFID sensing tag is packaged in a waterproof housing.
  • the inlay and outer casing of the RFID sensing tag are flexible and bendable materials.
  • the RFID network node is mounted on the outer wall of the bamboo wound composite tube that corresponds vertically to the RFID sensor tag.
  • the wireless network node further includes one or both of a vibration sensor and a pressure sensor.
  • the first wireless communication module and the second wireless communication module are both ZigBee communication modules.
  • the generator is one or more of a solar generator, a wind energy generator, a water flow generator, and a friction generator.
  • the first power supply module and the second power supply module each include a rechargeable battery and a monitoring circuit.
  • the monitoring terminal comprises a wireless transceiver unit, a data storage unit, a central processing unit and an alarm unit.
  • the data is collected by the sensor, and the underground data is transmitted to the ground through the RFID radio frequency identification technology and the wireless communication network technology, and transmitted to the monitoring terminal server via the wireless network or the communication satellite.
  • the RFID sensor tag is disposed between the inner liner layer and the structural layer. If the pipe leaks, even if the leak point is small, it will first ooze out from the inner liner layer in the gap. The middle flow to the bottom end, when the sensor module of the RFID sensor tag can be sensed for the first time, realizing timely monitoring of minute leakage.
  • the RFID sensor tag storage module stores a global unique ID code.
  • the location is written into the RFID sensor tag through the handheld reader in advance, and is read during monitoring.
  • the ID code, geographical location data and sensor data are packaged and sent to the monitoring terminal. If the sensor data is abnormal, the leak point can be found according to the attached ID code and its geographical location data.
  • the RFID radio frequency identification technology is used to transmit the data in the wall of the bamboo-wound composite pipe to the outside of the pipe wall without destroying the pipe wall structure.
  • the RFID sensor tag can realize the intelligent production of the bamboo-wound composite pipe. In the production process, after installing the label, each section of the pipeline has its own ID code. All the data before the raw material data, structural design data, inspection data, engineering data used, etc.
  • the power module is also installed in the system to supply power to the underground RFID network node and the wireless network node, which solves the problem that the underground system is inconvenient and often takes out charging, so that the whole system can run for a long time and stably.
  • FIG. 1 is a schematic view of a pipeline leakage monitoring system according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing the position of an RFID sensor tag in a pipeline leakage monitoring system according to an embodiment of the present invention.
  • FIG. 3 is a structural block diagram of a pipeline leakage monitoring system according to an embodiment of the present invention.
  • a pipeline leakage monitoring system includes a bamboo-wound composite pipe 1, a power generation module 2, an RFID sensor tag 3, an RFID network node 4, a wireless network node 5, a ground base station 6, and a monitoring terminal 7.
  • the bamboo-wound composite pipe 1 generally includes an inner liner layer, a structural layer, and an outer protective layer radially from the inside to the outside.
  • the inner liner layer is formed by winding a non-woven resin impregnated with a resin on the mold
  • the structural layer is formed by winding a resin-impregnated bamboo sheet on the inner liner layer
  • the outer protective layer is a layer of anti-corrosion protection layer.
  • the RFID sensor tag 3 is installed between the inner liner layer and the structural layer at the bottom end of the bamboo-wound composite pipe 1 in the direction of gravity, so that leakage can be sensed in time. happening. In order to cover the entire length of the sensing section, a plurality of RFID sensing tags 3 should be arranged in the axial direction.
  • the RFID sensor tag 3 includes a sensor module, a micro control module, a storage module, a radio frequency module, and an antenna.
  • the sensor module is used to collect data, and then processed by the micro control module and stored in the storage module through the radio frequency module. Control the antenna to send data or receive commands to collect data.
  • the sensor module should select a sensor sensitive to water leakage, which may be one or more of a humidity sensor, an acoustic wave sensor, a water immersion sensor, and a liquid level sensor. Since the technology in which the humidity sensor and the RFID electronic tag are combined is more mature, the RFID sensor tag 3 can be made thin, so the humidity sensor is preferred.
  • the RFID sensor tag 3 Since the environment in which the RFID sensor tag 3 is exposed is exposed to water, in order to protect the internal structure from being affected, it should be packaged in a waterproof case. Since the pipe is cylindrical, the RFID sensor tag 3 is placed in a curved curved interlayer, so that the inlay and the casing of the RFID sensor tag 3 can be designed as a flexible and bendable material to fit the interlayer without damaging the RFID transmission. The internal structure of the label 3 is sensed.
  • the RFID network node 4 includes a reader, a first wireless communication module and a first power supply module.
  • the reader is used for inductive coupling with the RFID sensor tag 3 to transmit signals and energy, and the RFID network node 4 is fixedly mounted on the outer wall of the bamboo wound composite pipe 1.
  • the RFID sensor tag 3 can be kept in the magnetic field of the reader, and the reader always supplies power to the RFID sensor tag 3, and the two can be mutually connected at any time.
  • the data is transmitted, preferably installed on the outer wall of the bamboo-wound composite pipe 1 corresponding to the RFID sensor tag 3, where the signal strength is the highest; the first wireless communication module is used to connect the RFID network node 4 into the wireless network, and the first power supply module Powering the reader and the first wireless communication module.
  • the wireless network node 5 includes a second wireless communication module and a second power supply module, and is installed on the outer wall of the bamboo-wound composite pipe 1 or in the soil between the bamboo-wound composite pipe 1 and the ground surface to expand the underground network, and the auxiliary will be located at a deeper position.
  • the data in the RFID network node 4 is transmitted to the ground, and the second power supply module is responsible for powering the second wireless communication module;
  • the wireless network node 5 may further comprise one or two of sensors, preferably vibration sensors or pressure sensors. In order to sense the vibration and pressure of the soil on the upper side of the pipeline in each area, it can be used to monitor whether there is construction or external force.
  • the first wireless communication module is wirelessly connected to the second wireless communication module; the second wireless communication module is wirelessly connected to the ground base station 6; and the ground base station 6 and the monitoring terminal 7 are connected by wireless network or satellite communication.
  • the first wireless communication module and the second wireless communication module are preferably ZigBee communication modules. Because the ZigBee wireless network has low power consumption and low cost, it can expand indefinitely from the group network, and is very suitable for underground situations.
  • the power generation module 2 includes a generator and a rectifier circuit, and the generator is responsible for generating electric energy, and then converted into a direct current by the rectifier circuit, and is connected to the input end of the first power supply module and the input end of the second power supply module through the output end of the power generation module 2, It is powered.
  • the generator can use one or several of solar generators, wind power generators, water flow generators and friction generators. If both solar generators and wind energy generators need to extend the surface to obtain solar energy and wind energy, the city will be beautiful.
  • the impact is caused; the friction generator is a newly developed technology, and it needs to be continuously improved through practice; while the water flow generator uses the water flow in the pipeline to impinge the impeller to drive the generator to generate electricity, so the water flow generator is preferred.
  • the first power supply module and the second power supply module preferably each include a rechargeable battery and a monitoring circuit for monitoring whether the voltage and current of the battery reach a saturation value, and if so, stopping charging.
  • the monitoring terminal 7 preferably includes a wireless transceiver unit, a data storage unit, a central processing unit and an alarm unit; the wireless transceiver unit, the data storage unit and the alarm unit are all connected to the central processor, and the wireless transceiver unit is responsible for receiving the wirelessly transmitted data through the central unit.
  • the processor analyzes the processing and saves the processing result in the data storage unit. If the safety range is exceeded, the alarm unit alarm is activated.
  • the pipeline leakage monitoring system provided by the above embodiment of the present invention solves the power supply problem underground, and fully utilizes the hydraulic resources in the pipeline to generate electricity; the pipeline leakage situation and position can be automatically, timely and accurately obtained, and an alarm notification is provided.
  • the staff handles the problem in a timely manner, and can also warn whether there is construction or external force posing a safety threat to the underground pipeline.

Abstract

一种管道渗漏监测系统,包括竹缠绕复合管(1)、发电模块(2)、RFID传感标签(3)、RFID网络节点(4)、无线网络节点(5),地面基站(6)和监控终端(7);RFID传感标签(3)安装于竹缠绕复合管(1)沿重力方向底端的内衬层与结构层之间;RFID网络节点(4)安装于竹缠绕复合管(1)的外壁上,并且位于RFID传感标签(3)可识别的范围之内;无线网络节点(5)安装于竹缠绕复合管(1)外壁上或竹缠绕复合管(1)与地表间的土壤中;发电模块(2)的输出端与第一供电模块的输入端和第二供电模块的输入端连接;第一无线通信模块与第二无线通信模块无线连接;第二无线通信模块与地面基站(6)无线连接;地面基站与监控终端(7)之间通过无线网络或卫星通信连接。该管道渗漏监测系统能自动监测到竹缠绕复合管输水管道的微小渗漏并找到渗漏点。

Description

管道渗漏监测系统 【技术领域】
本实用新型涉及一种管道渗漏监测系统。
【背景技术】
地下管道用于输送物质和能量,是城市建设重要的基础设施,输水管道担负着给水、排水的重任,是地下管道重要的组成部分。由于阀门锈蚀、野蛮施工、外力作用等原因造成的管道渗漏在所难免,如果不能及时发现,就会导致水资源的浪费,周围土质疏松,地面坍塌,甚至对周围建筑产生破坏性的影响。因此,及时发现渗漏并尽快找到漏水点显得尤为重要。目前,常用的检漏方法有音听法、相关分析法、区域法、区域装表法等,音听法是利用声波技术原理,采用听音设备寻找漏水点,需要依靠检测人员的听音经验和现场经验,检测灵敏度和分辨率较低,检测过程难以规范控制;相关分析法是利用相关数据采集器,系统采集阀栓上的漏水声波相关数据,传输到计算机,由专门软件对数据进行计算分析,判断漏水的发生并确定漏水点的位置,但是这种方法受限条件很多,如要求满足一定的水压条件、阀栓密度,其检测结果的准确性与两传感器间的距离、漏水声的传播速度、仪器自身误差、管道壁厚误差有很大关系,应用范围、条件受限;区域法是在一定条件下,通过开关进出小区阀门,测定小区内的深夜最小进水量为小区管网的漏水量,并通过关闭区内阀门以确定漏水管段的方法,该方法只能发现漏水,不能确定漏水点;区域装表法是在检测区 的进水管上装置流量计,用进水总量和用水总量差,判断区域内管段漏水,但这种方法不能确定漏水点位置。
输水管道常用类型有钢管、球墨铸铁管、玻璃钢管等。最近新兴的竹缠绕复合管以其绿色环保的特性正在慢慢引起人们的关注。竹缠绕复合管径向结构包括内衬层、结构层和外防护层,内衬层是由浸润有树脂的无纺布缠绕在模具上形成,结构层是通过浸有树脂的竹片缠绕多层在内衬层上固化而成。由于竹材自身的韧性,固化后的结构层与内衬层间会留有缝隙,并且有树脂的作用,使得固化后的缝隙内壁较为光滑。由于该结构的特殊性,所以针对竹复合压力管可以设计针对性的渗漏监测系统。
【实用新型内容】
本实用新型鉴于上述问题而完成,其目的在于提供一种管道渗漏监测系统,能自动监测到竹缠绕复合管输水管道的微小渗漏并找到渗漏点。
根据本实用新型的一个实施例,提出了一种管道渗漏监测系统,包括竹缠绕复合管,发电模块,RFID(射频识别)传感标签,RFID网络节点,无线网络节点,地面基站和监控终端;发电模块包括发电机和整流电路;RFID传感标签包括传感器模块、微控制模块、存储模块、射频模块和天线,安装于竹缠绕复合管沿重力方向底端的内衬层与结构层之间;RFID网络节点包括阅读器、第一无线通信模块和第一供电模块,安装于竹缠绕复合管的外壁上,并且位于RFID传感标签可识别的范围之内;无线网络节点包括第二无线通信模块和第二 供电模块,安装于竹缠绕复合管外壁上或竹缠绕复合管与地表间的土壤中;发电模块的输出端与第一供电模块的输入端和第二供电模块的输入端连接;第一无线通信模块与第二无线通信模块无线连接;第二无线通信模块与地面基站无线连接;地面基站与监控终端之间通过无线网络或卫星通信连接。
可选地,传感器模块包括湿度传感器、声波传感器、水浸传感器、液位传感器中的一种或几种。
可选地,RFID传感标签被封装在防水外壳中。
可选地,RFID传感标签的嵌体和外壳为柔性可弯曲材质。
可选地,RFID网络节点安装在与RFID传感标签垂直对应的竹缠绕复合管外壁上。
可选地,无线网络节点还包括振动传感器和压力传感器中的一种或两种。
可选地,第一无线通信模块和第二无线通信模块均为ZigBee通信模块。
可选地,发电机为太阳能发电机、风能发电机、水流发电机和摩擦发电机中的一种或几种。
可选地,第一供电模块和第二供电模块均包括可充电电池和监测电路。
可选地,监控终端包括无线收发单元、数据存储单元、中央处理器和报警单元。
根据本实用新型上述实施例提出的技术方案,利用传感器采集数据,通过RFID射频识别技术和无线通信网络技术将地下的数据传输至地面上,并经由无线网络或通信卫星传输至监控终端服务器,实现了对管道渗漏的全自动监测。利用竹缠绕复合管的结构特性,将RFID传感标签布置在内衬层与结构层之间,如果管道出现渗漏,即使渗漏点很小,也会首先从内衬层渗出,在缝隙中流向底端,这时RFID传感标签的传感器模块就能够第一时间感应到,实现了对于微小渗漏的及时监测。RFID传感标签的存储模块中都储存有全球唯一的ID代码,在每段管道被安装在地下时,会事先通过手持式阅读器将其地理位置写入RFID传感标签,在监测时,读取的ID代码、地理位置数据与传感数据会一起打包被发送至监控终端,如果出现传感数据异常,根据随附的ID代码及其地理位置数据就可以找到渗漏点。而且,利用RFID射频识别技术将竹缠绕复合管管壁内的数据传输至管壁外,不需要破坏管壁结构。另外,RFID传感标签可以实现竹缠绕复合管的智能化生产。在生产过程中,安装好标签后每段管道就有了自己的ID代码,原材料数据、结构设计数据、检验数据、所使用的工程数据等被埋设之前的所有数据都可以通过另外的手持式或固定式阅读器读写,建立起管道数据库。系统中还设置了发电模块为地下的RFID网络节点、无线网络节点供电,解决了埋于地下不方便经常取出充电的问题,使整套系统能够长期、稳定的运行下去。
附图说明
为了更清楚的说明本实用新型实施例的技术方案,下面将对实施 例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本实用新型的一些实施例,而非对本实用新型的限制。
图1是本实用新型实施例提出的管道渗漏监测系统示意图。
图2是本实用新型实施例提出的管道渗漏监测系统中RFID传感标签位置示意图。
图3是本实用新型实施例提出的管道渗漏监测系统结构原理框图。
【具体实施方式】
下面结合附图对本实用新型实施例中的技术方案进行清除、完整的描述。显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,也属于本实用新型保护的范围。
如图1所示,一种管道渗漏监测系统,包括竹缠绕复合管1,发电模块2,RFID传感标签3,RFID网络节点4,无线网络节点5,地面基站6和监控终端7。如图2所示,竹缠绕复合管1一般径向由内至外包括内衬层、结构层和外防护层。内衬层是由浸润有树脂的无纺布缠绕在模具上形成,结构层是通过浸有树脂的竹片缠绕多层在内衬层上固化而成,外防护层是一层防腐保护层。由于竹材自身的韧性,固化后的结构层与内衬层间会留有缝隙,并且有树脂的作用,使得固化后的缝隙内壁较为光滑,使得如果有液体从内衬层中渗出,都会在缝隙中因重力作用流到底部。将RFID传感标签3安装于竹缠绕复合管1沿重力方向底端的内衬层与结构层之间,就可以及时感应到渗漏 情况。为使感应范围覆盖整段管道,应在轴向布置多个RFID传感标签3。
如图3所示,RFID传感标签3包括传感器模块、微控制模块、存储模块、射频模块和天线,传感器模块用以采集数据,然后通过微控制模块处理后储存在存储模块中,通过射频模块控制天线发出数据或接收命令采集数据。传感器模块应该选择对漏水感应敏感的传感器,可以是湿度传感器、声波传感器、水浸传感器、液位传感器中的一种或几种。由于目前湿度传感器与RFID电子标签相结合的技术更成熟,可以将RFID传感标签3做的很薄,所以优选湿度传感器。由于RFID传感标签3所处环境会接触到水,为保护内部结构不受影响,应将其封装在防水外壳中。由于管道为圆筒状,RFID传感标签3被置于具有弧度的曲面夹层,所以可以将RFID传感标签3的嵌体和外壳设计为柔性可弯曲材质,以贴合夹层,不损坏RFID传感标签3内部结构。
RFID网络节点4包括阅读器、第一无线通信模块和第一供电模块,阅读器用以与RFID传感标签3电感耦合传输信号和能量,将RFID网络节点4固定安装于竹缠绕复合管1的外壁上,并且位于RFID传感标签3可识别的范围之内,就可以使RFID传感标签3一直处于阅读器的磁场内,阅读器一直为RFID传感标签3供电,两者间也可以随时相互传输数据,优选安装在与RFID传感标签3垂直对应的竹缠绕复合管1外壁上,此处信号强度最高;第一无线通信模块用以将RFID网络节点4连接入无线网络,第一供电模块为阅读器和第一无线通信模块供电。
无线网络节点5包括第二无线通信模块和第二供电模块,安装于竹缠绕复合管1外壁上或竹缠绕复合管1与地表间的土壤中,用以扩展地下网络,辅助将位于较深位置的RFID网络节点4中的数据传输至地面上,第二供电模块负责为第二无线通信模块供电;无线网络节点5还可以包括传感器,优选振动传感器或压力传感器中的一种或两种,用以感应各区域管道上侧覆土的振动、压力情况,可以用来监测是否存在施工情况或外力作用。
第一无线通信模块与第二无线通信模块无线连接;第二无线通信模块与地面基站6无线连接;地面基站6与监控终端7之间通过无线网络或卫星通信连接。第一无线通信模块和第二无线通信模块优选为ZigBee通信模块,因为ZigBee无线网络功耗低、成本低,能够自组网无限扩展,非常适用于地下情况。
发电模块2包括发电机和整流电路,发电机负责产生电能,再由整流电路转化为直流电,通过发电模块2的输出端与第一供电模块的输入端和第二供电模块的输入端连接,为其供电。发电机可以选用太阳能发电机、风能发电机、水流发电机和摩擦发电机中的一种或几种,如果是太阳能发电机和风能发电机均需要伸出地表获取太阳能和风能,会对城市美观造成影响;摩擦发电机是新近研发出的技术,还需要通过实践不断完善;而水流发电机利用管道内的水流冲击叶轮机带动发电机发电,所以优选水流发电机。第一供电模块和第二供电模块优选均包括可充电电池和监测电路,监测电路用于监测电池的电压和电流是否达到饱和值,如果达到则停止充电。
监控终端7优选包括无线收发单元、数据存储单元、中央处理器和报警单元;无线收发单元、数据存储单元和报警单元均与中央处理器连接,无线收发单元负责接收无线传输来的数据,通过中央处理器分析处理,并将处理结果保存在数据存储单元中,如果超出安全范围,则启动报警单元报警。
本实用新型上述实施方式提供的管道渗漏监测系统,在地下解决了供电问题,并且充分利用了管道中的水力资源发电;能够自动、及时、准确地获取管道渗漏情况及位置,并报警通知工作人员及时处理问题,而且还可以预警是否有施工或外力作用在对地下管道造成安全威胁。
以上所述仅为本实用新型的具体实施方式,但本实用新型的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本实用新型实施例公开的技术范围内,可轻易想到的变化或替换,都应涵盖在本实用新型保护范围内。

Claims (10)

  1. 一种管道渗漏监测系统,其特征在于,包括竹缠绕复合管,发电模块,RFID传感标签,RFID网络节点,无线网络节点,地面基站和监控终端;所述发电模块包括发电机和整流电路;所述RFID传感标签包括传感器模块、微控制模块、存储模块、射频模块和天线,安装于所述竹缠绕复合管沿重力方向底端的内衬层与结构层之间;所述RFID网络节点包括阅读器、第一无线通信模块和第一供电模块,安装于所述竹缠绕复合管的外壁上,并且位于所述RFID传感标签可识别的范围之内;所述无线网络节点包括第二无线通信模块和第二供电模块,安装于所述竹缠绕复合管外壁上或所述竹缠绕复合管与地表间的土壤中;所述发电模块的输出端与所述第一供电模块的输入端和所述第二供电模块的输入端连接;所述第一无线通信模块与所述第二无线通信模块无线连接;所述第二无线通信模块与所述地面基站无线连接;所述地面基站与所述监控终端之间通过无线网络或卫星通信连接。
  2. 如权利要求1所述的管道渗漏监测系统,其特征在于,所述传感器模块包括湿度传感器、声波传感器、水浸传感器、液位传感器中的一种或几种。
  3. 如权利要求1所述的管道渗漏监测系统,其特征在于,所述RFID传感标签被封装在防水外壳中。
  4. 如权利要求1所述的管道渗漏监测系统,其特征在于,所述RFID传感标签的嵌体和外壳为柔性可弯曲材质。
  5. 如权利要求1所述的管道渗漏监测系统,其特征在于,所述RFID网络节点安装在与所述RFID传感标签垂直对应的竹缠绕复合管外壁上。
  6. 如权利要求1所述的管道渗漏监测系统,其特征在于,所述无线网络节点还包括振动传感器和压力传感器中的一种或两种。
  7. 如权利要求1所述的管道渗漏监测系统,其特征在于,所述第一无线通信模块和所述第二无线通信模块均为ZigBee通信模块。
  8. 如权利要求1所述的管道渗漏监测系统,其特征在于,所述发电机为太阳能发电机、风能发电机、水流发电机和摩擦发电机中的一种或几种。
  9. 如权利要求1所述的管道渗漏监测系统,其特征在于,所述第一供电模块和所述第二供电模块均包括可充电电池和监测电路。
  10. 如权利要求1所述的管道渗漏监测系统,其特征在于,所述监控终端包括无线收发单元、数据存储单元、中央处理器和报警单元。
PCT/CN2015/092315 2015-05-30 2015-10-20 管道渗漏监测系统 WO2016192268A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201520378381.7U CN204693052U (zh) 2015-05-30 2015-05-30 管道渗漏监测系统
CN201520378381.7 2015-05-30

Publications (1)

Publication Number Publication Date
WO2016192268A1 true WO2016192268A1 (zh) 2016-12-08

Family

ID=54233342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/092315 WO2016192268A1 (zh) 2015-05-30 2015-10-20 管道渗漏监测系统

Country Status (2)

Country Link
CN (1) CN204693052U (zh)
WO (1) WO2016192268A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109708006A (zh) * 2018-12-26 2019-05-03 安徽金大仪器有限公司 一种管道无线压力器的监控和报警系统
CN109915740A (zh) * 2019-05-06 2019-06-21 重庆大学 一种管道泄漏的检测装置及检测方法
CN112203245A (zh) * 2020-08-05 2021-01-08 上海建工一建集团有限公司 基于5g基站的超高层建造监测系统及监测方法
CN112863141A (zh) * 2021-02-06 2021-05-28 广东联博新型建材有限公司 一种防挖断智能管网及其控制方法
CN113671146A (zh) * 2021-10-22 2021-11-19 南京沛沛骧环保科技有限公司 一种可检测可燃气体的地下探测仪
CN114087541A (zh) * 2021-11-18 2022-02-25 安徽东鸿水务环境工程有限公司 一种智慧管网水平衡监测系统
CN114593366A (zh) * 2022-05-11 2022-06-07 浙江浙能航天氢能技术有限公司 一种加氢站氢气泄漏的监控系统及监控方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204693052U (zh) * 2015-05-30 2015-10-07 浙江鑫宙竹基复合材料科技有限公司 管道渗漏监测系统
CN105226837B (zh) * 2015-10-30 2017-09-29 郑州大学 一种自供电流体输运管网漏点自动检测系统及方法
CN105862942A (zh) * 2016-05-25 2016-08-17 广州市建筑科学研究院有限公司 地下水位分地层和综合水位在线监测装置及其监测方法
CN105821823A (zh) * 2016-05-25 2016-08-03 广州市建筑科学研究院有限公司 地下结构底板下孔隙水压力在线监测装置及其监测方法
CN106838626B (zh) * 2017-03-01 2019-04-26 中国人民解放军空军勤务学院 一种轻质油库区油料土壤渗漏监测系统及监测方法
CN108662438A (zh) * 2017-03-28 2018-10-16 南宁富桂精密工业有限公司 漏水侦测装置及侦测系统
CN107524925A (zh) * 2017-09-30 2017-12-29 上海邦芯物联网科技有限公司 一种管道泄露监测系统
CN107806571A (zh) * 2017-09-30 2018-03-16 上海邦芯物联网科技有限公司 一种用于管道检漏的gps示踪系统和方法
CN107940244A (zh) * 2017-10-13 2018-04-20 北京无线电计量测试研究所 一种供水管网泄露监测系统和方法
CN108980637A (zh) * 2018-07-12 2018-12-11 北京目黑科技有限公司 一种管道渗漏监测系统及监测方法
CN109595469A (zh) * 2018-12-29 2019-04-09 清华大学 输水管网的水压检测和水流系统及方法
CN109813983B (zh) * 2019-01-29 2020-12-22 薛金山 管网监测设备使用的供电、数据传输装置及施工应用方法
CN110701488B (zh) * 2019-09-26 2021-03-30 宁夏电通物联网科技股份有限公司 基于光纤湿度传感器的管道漏水检测装置及系统及方法
CN111383423B (zh) * 2020-02-13 2021-11-23 江苏大学 一种基于排水管网流量监测的道路塌陷预警方法及系统
CN112924120A (zh) * 2021-01-26 2021-06-08 马鞍山十七冶工程科技有限责任公司 一种地下综合管廊接缝渗漏监测装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5708195A (en) * 1995-07-06 1998-01-13 Hitachi, Ltd. Pipeline breakage sensing system and sensing method
CN101398130A (zh) * 2008-04-23 2009-04-01 深圳市凯旺电子有限公司 一种利用现有无线网络监控流体传输管道的监控系统
CN101555991A (zh) * 2009-05-21 2009-10-14 北京航空航天大学 一种天然气管网安全监测的无线传感器网络节点装置
CN202158359U (zh) * 2011-04-28 2012-03-07 大庆博赢油田技术开发有限公司 城市地下给水管网漏水监测控制系统
CN203202640U (zh) * 2013-03-18 2013-09-18 王平 基于无线传感网络的远程燃气管道泄漏检测系统
CN104075122A (zh) * 2014-06-12 2014-10-01 东北大学 一种便携式一体化管道泄漏检测装置及方法
CN204693052U (zh) * 2015-05-30 2015-10-07 浙江鑫宙竹基复合材料科技有限公司 管道渗漏监测系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5708195A (en) * 1995-07-06 1998-01-13 Hitachi, Ltd. Pipeline breakage sensing system and sensing method
CN101398130A (zh) * 2008-04-23 2009-04-01 深圳市凯旺电子有限公司 一种利用现有无线网络监控流体传输管道的监控系统
CN101555991A (zh) * 2009-05-21 2009-10-14 北京航空航天大学 一种天然气管网安全监测的无线传感器网络节点装置
CN202158359U (zh) * 2011-04-28 2012-03-07 大庆博赢油田技术开发有限公司 城市地下给水管网漏水监测控制系统
CN203202640U (zh) * 2013-03-18 2013-09-18 王平 基于无线传感网络的远程燃气管道泄漏检测系统
CN104075122A (zh) * 2014-06-12 2014-10-01 东北大学 一种便携式一体化管道泄漏检测装置及方法
CN204693052U (zh) * 2015-05-30 2015-10-07 浙江鑫宙竹基复合材料科技有限公司 管道渗漏监测系统

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109708006A (zh) * 2018-12-26 2019-05-03 安徽金大仪器有限公司 一种管道无线压力器的监控和报警系统
CN109915740A (zh) * 2019-05-06 2019-06-21 重庆大学 一种管道泄漏的检测装置及检测方法
CN109915740B (zh) * 2019-05-06 2020-04-10 重庆大学 一种管道泄漏的检测装置及检测方法
CN112203245A (zh) * 2020-08-05 2021-01-08 上海建工一建集团有限公司 基于5g基站的超高层建造监测系统及监测方法
CN112863141A (zh) * 2021-02-06 2021-05-28 广东联博新型建材有限公司 一种防挖断智能管网及其控制方法
CN112863141B (zh) * 2021-02-06 2022-09-16 广东联博新型建材有限公司 一种防挖断智能管网及其控制方法
CN113671146A (zh) * 2021-10-22 2021-11-19 南京沛沛骧环保科技有限公司 一种可检测可燃气体的地下探测仪
CN114087541A (zh) * 2021-11-18 2022-02-25 安徽东鸿水务环境工程有限公司 一种智慧管网水平衡监测系统
CN114087541B (zh) * 2021-11-18 2023-06-27 安徽东鸿水务环境工程有限公司 一种智慧管网水平衡监测系统
CN114593366A (zh) * 2022-05-11 2022-06-07 浙江浙能航天氢能技术有限公司 一种加氢站氢气泄漏的监控系统及监控方法
CN114593366B (zh) * 2022-05-11 2022-08-02 浙江浙能航天氢能技术有限公司 一种加氢站氢气泄漏的监控系统及监控方法

Also Published As

Publication number Publication date
CN204693052U (zh) 2015-10-07

Similar Documents

Publication Publication Date Title
WO2016192268A1 (zh) 管道渗漏监测系统
CN102748588B (zh) 一种地下管道监控方法
JP5695624B2 (ja) 地中施設物管理のための無線通信システム
CA3102529C (en) Fire hydrant leak detector
Ben-Mansour et al. Computational fluid dynamic simulation of small leaks in water pipelines for direct leak pressure transduction
CN204611355U (zh) 一种管道泄漏自动监测报警装置
JP6136031B2 (ja) 配管異常検知データロガー装置、配管構造及び配管異常検知システム
JP5673593B2 (ja) 漏水検知方法および漏水検知装置
CN105425752A (zh) 一种管网实时监控系统及其工作方法
CN105226837B (zh) 一种自供电流体输运管网漏点自动检测系统及方法
KR20190047240A (ko) 지하 맨홀을 활용한 지하 안전 통합관리 시스템
CA2962754A1 (en) Pipeline wireless sensor network
CN110081318A (zh) 一种管网监控系统
KR101382232B1 (ko) 소음 수준 및 분포를 이용한 상시 누수진단 시스템
CN207145984U (zh) 供水管网主动报漏系统
CN204963895U (zh) 基于北斗定位的窨井盖监测系统
CN109118033A (zh) 一种用于确定地下管道或管件位置信息的方法和系统
CN203571437U (zh) 管道安全智能监测预警系统
CN106053609B (zh) 一种基于无线无源技术的汽轮机发电机组漏氢在线监测装置
CN205388231U (zh) 一种无线供电式管道应力监控系统
CN204855450U (zh) 一种综合管廊电磁检测传感器
JP2015038506A (ja) 漏水検知方法および漏水検知装置
CN208884569U (zh) 一种具有管体测温功能的竹复合管廊
KR102590763B1 (ko) 자력을 이용한 이형 누수감지센서
CN107452174A (zh) 一种地下电力管网防外力破坏系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15893917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15893917

Country of ref document: EP

Kind code of ref document: A1