WO2016192070A1 - 多输入多输出传输方法、终端及基站 - Google Patents

多输入多输出传输方法、终端及基站 Download PDF

Info

Publication number
WO2016192070A1
WO2016192070A1 PCT/CN2015/080740 CN2015080740W WO2016192070A1 WO 2016192070 A1 WO2016192070 A1 WO 2016192070A1 CN 2015080740 W CN2015080740 W CN 2015080740W WO 2016192070 A1 WO2016192070 A1 WO 2016192070A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
terminal
channel state
antenna array
state
Prior art date
Application number
PCT/CN2015/080740
Other languages
English (en)
French (fr)
Inventor
李元杰
任海豹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/080740 priority Critical patent/WO2016192070A1/zh
Priority to CN201580080483.3A priority patent/CN107615676B/zh
Publication of WO2016192070A1 publication Critical patent/WO2016192070A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas

Definitions

  • the present invention relates to communications technologies, and in particular, to a multiple input multiple output (MIMO) transmission method, a terminal, and a base station.
  • MIMO multiple input multiple output
  • MIMO is a technology that uses multi-antenna transmission at the transmitting end and the receiving end.
  • the MIMO channel correlation is low or irrelevant, different antennas can transmit different signals in parallel, thereby achieving the purpose of improving spectrum utilization.
  • the channel In the Line of Sight (LoS) channel environment, the channel has a high correlation and is not suitable for transmitting multiple streams.
  • LoS MIMO is a technology that can still implement MIMO multiplexing in the LoS channel environment.
  • LoS MIMO technology is mainly used for the transmission of microwave backhaul.
  • the transmitting and receiving antennas are fixed on the transmitting tower, and the LoS channel is between the transmitting and receiving antennas.
  • the antenna spacing can be used to design a 2 ⁇ 2 MIMO channel with quadrature phase difference.
  • the phase difference between the two paths at the receiving end is 90°, and at this time, the interference signal at the receiving end can be completely eliminated. This is equivalent to creating two independent channels, effectively increasing the capacity of the existing channel.
  • the positions of the transmitting and receiving antennas are fixed, and basically no change after the mounting.
  • the terminal moves in real time, and the channel state such as the distance between the terminal and the base station and the antenna inclination of the terminal constantly changes, and the phase difference between the two paths cannot be guaranteed to be 90°, thereby destroying the LoS. MIMO transmission conditions, parallel transmission of multi-stream data is not possible. Therefore, LoS MIMO is difficult to use in mobile communications.
  • the embodiments of the present invention provide a MIMO transmission method, a terminal, and a base station, which achieve the purpose of implementing a LoS MIMO transmission by adaptively adjusting system parameters.
  • an embodiment of the present invention provides a multiple input multiple output transmission method, including:
  • a status ratio value sent by the terminal where the status ratio indicates the base station and the terminal a ratio of a first channel state to a current channel state, where the first channel state is a channel state that needs to be satisfied when the base station performs Los MIMO transmission with the terminal;
  • the base station performs data transmission with the terminal through the antenna array.
  • a ratio of a first channel state to a current channel state between the base station and the terminal is specifically: an antenna spacing and a maximum in the first channel state. a product of the number of antennas, and a ratio of an antenna spacing of the base station to a number of transmission antennas in the current channel state, wherein an antenna spacing in the first channel state is an antenna spacing of a base station in the first channel state
  • the maximum number of antennas in the first channel state is the largest one of the number of antennas of the base station and the number of antennas of the terminal in the first channel state.
  • the determining, by the base station, the antenna array for the LoS MIMO transmission according to the state ratio includes:
  • the determining, by the base station, the antenna array for the LoS MIMO transmission according to the state ratio includes:
  • the base station adjusts an antenna array corresponding to the current channel state, so that the adjusted antenna array satisfies at least one of the following conditions: a difference between an antenna spacing of the adjusted antenna array and an antenna spacing in the first channel state.
  • the absolute value is the smallest, and the absolute value of the difference between the number of transmission antennas of the adjusted antenna array and the maximum number of antennas in the first channel state is the smallest;
  • the base station uses the adjusted antenna array as an antenna array for LoS MIMO transmission.
  • the determining, by the base station, the antenna array from the antenna array set is: the antenna An antenna array having the smallest absolute value of the difference between d tn ⁇ V n and ⁇ (d t0 ⁇ V 0 ) in the array set, wherein the d tn is an antenna spacing of the nth antenna array, and the V n is
  • the antenna array used for the Los MIMO transmission is the nth antenna array, the number of antennas of the base station and the largest number of antennas of the terminal, the ⁇ is the state ratio, the d T0 is the antenna spacing of the base station in the current channel state, the V 0 is the number of transmission antennas of the base station in the current channel state, the n is a positive integer, and the nth antenna array is determined.
  • Antenna array for Los MIMO transmission is the antenna An antenna array having the smallest absolute value of the difference between d tn ⁇ V n and ⁇ (d t0 ⁇ V 0 ) in the array set
  • the base station receives the status sent by the terminal After the ratio, it also includes:
  • the current channel state can be adjusted to a channel state suitable for LoS MIMO transmission; otherwise, the current channel state cannot be adjusted to be suitable for LoS MIMO transmission.
  • Channel status If the base station determines that the state ratio falls within a preset interval, the current channel state can be adjusted to a channel state suitable for LoS MIMO transmission; otherwise, the current channel state cannot be adjusted to be suitable for LoS MIMO transmission.
  • the base station according to the state ratio Identify antenna arrays for LoS MIMO transmission including:
  • the antenna array corresponding to the current channel state is an antenna array for LoS MIMO transmission.
  • any one of the first to fourth possible implementation manners of the first aspect in a seventh possible implementation manner of the first aspect, is a wavelength, the R is a transmission and reception interval between the base station and the terminal, and the V is the largest one of the number of antennas of the base station and the number of antennas of the terminal.
  • ⁇ t is the antenna tilt angle of the transmitting end
  • the ⁇ r is the antenna tilt angle of the receiving end
  • the d t is the transmitting antenna spacing
  • the d r is the receiving antenna spacing
  • the present invention provides a multiple input multiple output transmission method, including:
  • the terminal determines a state ratio, where the state ratio represents a ratio of a first channel state between the base station and the terminal to a current channel state, where the first channel state is when the base station performs Los MIMO transmission with the terminal The channel state that needs to be met;
  • the terminal performs data transmission with the base station through the antenna array.
  • the method before the sending, by the terminal, the status ratio to the base station, the method further includes:
  • the terminal determines that the state ratio falls within a preset interval, sending an index corresponding to the state ratio or the state ratio to the base station; otherwise, sending, to the base station, indicating that the domain is not suitable for LoS MIMO The number of conditions transmitted or the index corresponding to the number of conditions.
  • the terminal determines a state ratio, including:
  • H is a channel matrix formed by two antennas adjacent to the transmitting end of the current channel to the receiving end antenna;
  • ⁇ 1, ⁇ 2 are the characteristic values, and V is the maximum number of antennas in the current channel state.
  • the state ratio ⁇ is determined based on the ⁇ 1, ⁇ 2, and V.
  • an embodiment of the present invention provides a base station, including:
  • a receiving module configured to receive a state ratio value sent by the terminal, where the state ratio represents a ratio of a first channel state between the base station and the terminal to a current channel state, where the first channel state is the base station and the Describe the channel state that the terminal needs to satisfy when performing Los MIMO transmission;
  • a processing module configured to determine, according to the state ratio received by the receiving module, an antenna array for LoS MIMO transmission, and perform data transmission with the terminal by using the antenna array.
  • a ratio of a first channel state to a current channel state between the base station and the terminal is specifically: an antenna spacing and a maximum in the first channel state. a product of the number of antennas, and a ratio of an antenna spacing of the base station to a number of transmission antennas in the current channel state, wherein an antenna spacing in the first channel state is an antenna spacing of a base station in the first channel state
  • the maximum number of antennas in the first channel state is the largest one of the number of antennas of the base station and the number of antennas of the terminal in the first channel state.
  • the processing module is specifically configured to determine, from the antenna array set, that at least the following conditions are met An antenna array as an antenna array for LoS MIMO transmission: the absolute value of the difference between the determined antenna spacing of the antenna array and the antenna spacing in the first channel state is the smallest, and the determined antenna array of the antenna array is determined The absolute value of the difference between the number and the maximum number of antennas in the first channel state is the smallest.
  • the processing module is configured to adjust an antenna array corresponding to the current channel state, so that the adjustment is performed.
  • the latter antenna array satisfies at least one of the following conditions: the absolute value of the difference between the antenna spacing of the adjusted antenna array and the antenna spacing in the first channel state is the smallest, and the number of transmission antennas of the adjusted antenna array is The absolute value of the difference of the maximum number of antennas in the first channel state is the smallest, and the adjusted antenna array is used as an antenna array for LoS MIMO transmission.
  • the antenna array that is determined by the base station from the antenna array set is specifically: the antenna An antenna array having the smallest absolute value of the difference between d tn ⁇ V n and ⁇ (d t0 ⁇ V 0 ) in the array set, wherein the d tn is an antenna spacing of the nth antenna array, and the V n is
  • the antenna array used for the Los MIMO transmission is the nth antenna array, the number of antennas of the base station and the largest number of antennas of the terminal, the ⁇ is the state ratio, the d T0 is the antenna spacing of the base station in the current channel state, the V 0 is the number of transmission antennas of the base station in the current channel state, the n is a positive integer, and the nth antenna array is determined.
  • Antenna array for Los MIMO transmission is the antenna An antenna array having the smallest absolute value of the difference between d tn ⁇ V n and ⁇ (d t0 ⁇ V 0 ) in the array set,
  • the processing module is further used After the receiving module receives the state ratio sent by the terminal, determining whether the state ratio falls within a preset interval;
  • the processing module determines that the state ratio falls within a preset interval, the current channel state can be adjusted to a channel state suitable for LoS MIMO transmission; otherwise, the current channel state cannot be adjusted to be suitable for LoS MIMO.
  • the channel status of the transmission If the processing module determines that the state ratio falls within a preset interval, the current channel state can be adjusted to a channel state suitable for LoS MIMO transmission; otherwise, the current channel state cannot be adjusted to be suitable for LoS MIMO. The channel status of the transmission.
  • any one of the first to fourth possible implementation manners of the third aspect in a sixth possible implementation manner of the third aspect, if the receiving module receives Place The state ratio is 1, and the processing module determines that the antenna array corresponding to the current channel state is an antenna array for LoS MIMO transmission.
  • any one of the first to fourth possible implementation manners of the third aspect in a seventh possible implementation manner of the first aspect,
  • is the wavelength
  • R is the transmission and reception interval between the base station and the terminal
  • V is the largest one of the number of antennas of the base station and the number of antennas of the terminal
  • ⁇ t is the antenna inclination of the transmitting end
  • ⁇ r is the antenna tilt angle of the receiving end
  • d t is the transmitting antenna spacing
  • d r is the receiving antenna spacing.
  • an embodiment of the present invention provides a terminal, including:
  • a processing module configured to determine a state ratio, where the state ratio represents a ratio of a first channel state between the base station and the terminal to a current channel state, where the first channel state is performed by the base station and the terminal The channel state that needs to be satisfied when Los MIMO transmission;
  • a sending module configured to send, to the base station, the state ratio determined by the processing module, so that the base station determines an antenna array for LoS MIMO transmission according to the state ratio, and passes the antenna array and the antenna The base station performs data transmission.
  • the processing module is further configured to determine, before the sending module sends the status ratio to the base station, whether the status ratio falls within a preset Within the interval;
  • the sending module is configured to: if the processing module determines that the state ratio falls within a preset interval, send an index corresponding to the state ratio or the state ratio to the base station; otherwise, The base station transmits an index indicating a condition that is not suitable for LoS MIMO transmission or an index corresponding to the number of conditions.
  • the processing module is specifically configured to perform channel correlation on the current channel.
  • the matrix W performs eigenvalue decomposition to determine a eigenvalue matrix ⁇ 0 ;
  • H is a channel matrix formed by two antennas adjacent to the transmitting end of the current channel to the receiving end antenna;
  • ⁇ 1, ⁇ 2 are the characteristic values, and V is the maximum number of antennas in the current channel state.
  • the state ratio ⁇ is determined based on the ⁇ 1, ⁇ 2, and V.
  • an embodiment of the present invention provides a base station, including:
  • a receiver configured to receive a state ratio value sent by the terminal, where the state ratio represents a ratio of a first channel state between the base station and the terminal to a current channel state, where the first channel state is the base station and the Describe the channel state that the terminal needs to satisfy when performing Los MIMO transmission;
  • a processor configured to determine, according to the state ratio received by the receiver, an antenna array for LoS MIMO transmission, and perform data transmission with the terminal by using the antenna array.
  • a ratio of a first channel state to a current channel state between the base station and the terminal is specifically: an antenna spacing and a maximum in the first channel state. a product of the number of antennas, and a ratio of an antenna spacing of the base station to a number of transmission antennas in the current channel state, wherein an antenna spacing in the first channel state is an antenna spacing of a base station in the first channel state
  • the maximum number of antennas in the first channel state is the largest one of the number of antennas of the base station and the number of antennas of the terminal in the first channel state.
  • the processor is configured to determine, from the antenna array set, that at least the following conditions are met An antenna array as an antenna array for LoS MIMO transmission: the absolute value of the difference between the determined antenna spacing of the antenna array and the antenna spacing in the first channel state is the smallest, and the determined antenna array of the antenna array is determined The absolute value of the difference between the number and the maximum number of antennas in the first channel state is the smallest.
  • the processor is configured to adjust an antenna array corresponding to the current channel state, so that the adjustment is performed.
  • the latter antenna array satisfies at least one of the following conditions: the absolute value of the difference between the antenna spacing of the adjusted antenna array and the antenna spacing in the first channel state is the smallest, and the number of transmission antennas of the adjusted antenna array is The absolute value of the difference of the maximum number of antennas in the first channel state is the smallest, and the adjusted antenna array is used as an antenna array for LoS MIMO transmission.
  • the antenna array determined by the processor from the antenna array set is: An antenna array having a minimum absolute value of a difference between d tn ⁇ V n and ⁇ (d t0 ⁇ V 0 ) in the antenna array set, wherein the d tn is an antenna spacing of the nth antenna array, and the V n is
  • the antenna array used for the Los MIMO transmission is the nth antenna array, the number of antennas of the base station and the largest one of the number of antennas of the terminal, where ⁇ is the state ratio, d t0 is the antenna spacing of the base station in the current channel state, the V 0 is the number of transmission antennas of the base station in the current channel state, the n is a positive integer, and the nth antenna array is determined.
  • Antenna array for Los MIMO transmission is:
  • the processor is further used After the receiver receives the state ratio sent by the terminal, determining whether the state ratio falls within a preset interval; if the processor determines that the state ratio falls within a preset interval, the The current channel state can be adjusted to a channel state suitable for LoS MIMO transmission; otherwise, the current channel state cannot be adjusted to a channel state suitable for LoS MIMO transmission.
  • any one of the first to fourth possible implementation manners of the fifth aspect in a sixth possible implementation manner of the fifth aspect, And if the state ratio ratio received by the receiver is 1, determining that the antenna array corresponding to the current channel state is an antenna array for LoS MIMO transmission.
  • any one of the first to fourth possible implementation manners of the fifth aspect in a seventh possible implementation manner of the fifth aspect, is a wavelength, the R is a transmission and reception interval between the base station and the terminal, and the V is the largest one of the number of antennas of the base station and the number of antennas of the terminal.
  • ⁇ t is the antenna tilt angle of the transmitting end
  • the ⁇ r is the antenna tilt angle of the receiving end
  • the d t is the transmitting antenna spacing
  • the d r is the receiving antenna spacing
  • an embodiment of the present invention provides a terminal, including:
  • a processor configured to determine a state ratio, the state ratio represents a ratio of a first channel state between the base station and the terminal to a current channel state, where the first channel state is performed by the base station and the terminal The channel state that needs to be satisfied when Los MIMO transmission;
  • a transmitter configured to send, to the base station, the state ratio determined by the processor, so that the base station determines an antenna array for LoS MIMO transmission according to the state ratio;
  • the processor is further configured to perform data transmission with the base station by using the antenna array.
  • the processor is further configured to determine, before the transmitter sends the status ratio to the base station, whether the status ratio falls within a preset Within the interval;
  • the transmitter is specifically configured to send an index corresponding to the state ratio or the state ratio to the base station; otherwise, The base station transmits an index indicating a condition that is not suitable for LoS MIMO transmission or an index corresponding to the number of conditions.
  • the processor is specifically configured to perform channel correlation on the current channel
  • the matrix W performs eigenvalue decomposition to determine a eigenvalue matrix ⁇ 0
  • H is a channel matrix formed by two antennas adjacent to the transmitting end of the current channel to the receiving end antenna
  • ⁇ 1, ⁇ 2 are the characteristic values, and V is the maximum number of antennas in the current channel state.
  • the state ratio ⁇ is determined based on the ⁇ 1, ⁇ 2, and V.
  • the MIMO transmission method, the terminal, and the base station provided by the embodiment of the present invention, after receiving the state ratio value fed back by the terminal, the base station determines an antenna array for the LoS MIMO transmission according to the state ratio, and sends the array information to the terminal, so that the subsequent communication is performed.
  • the base station adaptively adjusts the system parameters to implement LoS MIMO transmission.
  • FIG. 1 is a diagram of a LoS MIMO transmission model applied to a multiple input multiple output transmission method according to the present invention
  • Embodiment 1 of a multiple input multiple output transmission method according to the present invention
  • Embodiment 4 is a flowchart of Embodiment 4 of a multiple input multiple output transmission method according to the present invention.
  • FIG. 5 is a schematic structural diagram of Embodiment 1 of a base station according to the present invention.
  • Embodiment 1 of a terminal according to the present invention is a schematic structural diagram of Embodiment 1 of a terminal according to the present invention.
  • Embodiment 7 is a schematic structural diagram of Embodiment 2 of a base station according to the present invention.
  • FIG. 8 is a schematic structural diagram of Embodiment 2 of a terminal according to the present invention.
  • each antenna spacing of the receiving end is d r
  • the antenna tilt angle of the receiving end is ⁇ r
  • the angle between the projection of the receiving antenna Rx in the horizontal plane and the x-axis is ⁇ r
  • the distance between each antenna of the transmitting end is d t
  • the inclination of the transmitting end is ⁇ t
  • the distance between transmitting and receiving is R.
  • the distance from the nth transmitting antenna to the mth receiving antenna can be expressed as formula (3):
  • the channel from the nth transmit antenna to the mth receive antenna can be represented as a vector as shown in equation (4):
  • is the wavelength and r is the transmission and reception pitch.
  • the transmission of LoS MIMO depends on the wavelength ⁇ , the transmission and reception pitch R, the maximum antenna number V, the antenna tilt angle ⁇ t of the transmitting end, and the antenna tilt angle ⁇ r of the receiving end.
  • the embodiment of the present invention provides a multiple input multiple output transmission method to solve the problem that LoS MIMO is difficult to be applied in mobile communication in the prior art. Specifically, see Figure 2.
  • the maximum number of antennas generally refers to the largest one of the number of transmission antennas of the terminal and the number of transmission antennas of the base station.
  • the first channel described in the embodiment of the present invention generally refers to a channel that satisfies the above formula (5).
  • FIG. 2 is a flowchart of Embodiment 1 of a multiple input multiple output transmission method according to the present invention.
  • the present invention is described in detail from the perspective of a base station.
  • the embodiment of the present invention is applicable to a scenario in which a base station and a terminal need to perform LoS MIMO transmission in mobile communication. Specifically, the embodiment includes the following steps:
  • the base station receives a state ratio value sent by the terminal, where the state ratio represents a ratio of a first channel state between the base station and the terminal to a current channel state, where the first channel state is the base station and the terminal.
  • the channel state that needs to be satisfied when performing Los MIMO transmission.
  • the location of the base station does not change, and the terminal moves in real time.
  • the formula (5) when the position change of the terminal causes the distance R between the transceivers to change, or the antenna tilt angle of the terminal changes, the formula (5) is not established, thereby reducing the transmission performance of the LoS MIMO.
  • the antenna tilt angle of the terminal changes. It can be understood that when the terminal is the transmitting end, the antenna tilt angle ⁇ t of the transmitting end changes; when the terminal is the receiving end, the antenna tilt angle ⁇ r of the receiving end changes.
  • the base station receives a state ratio value indicating a ratio of the first channel state to the current channel state, for example, a state ratio ⁇ .
  • a state ratio value indicating a ratio of the first channel state to the current channel state, for example, a state ratio ⁇ .
  • the base station determines an antenna array for LoS MIMO transmission according to the state ratio.
  • the base station After receiving the state ratio, the base station determines an antenna array in the antenna array set according to the state ratio, the antenna array being an equally spaced antenna array. At this time, the product of the maximum antenna number V and the antenna spacing of the base station is the smallest difference from the product of the maximum antenna number V and the antenna spacing of the base station in the first channel.
  • the base station performs data transmission with the terminal by using the antenna array.
  • the base station After determining the antenna array, the base station sends the determined array information of the antenna array to the terminal, so that in the subsequent communication, the base station uses the determined antenna array and the terminal to perform data transmission.
  • the multiple input multiple output transmission method provided by the embodiment of the present invention, after receiving the state ratio value sent by the terminal, the base station determines an antenna array for the LoS MIMO transmission according to the state ratio, and sends the array information to the terminal, so that the subsequent communication is performed.
  • the base station uses the determined antenna array to perform data transmission with the terminal to implement mobile communication.
  • the base station adaptively adjusts system parameters to implement LoS MIMO transmission.
  • the ratio of the first channel state to the current channel state between the base station and the terminal is specifically: a product of the antenna spacing and the maximum number of antennas in the first channel state, and The ratio of the antenna spacing of the base station to the number of transmission antennas in the current channel state, where the antenna spacing in the first channel state is the antenna spacing of the base station in the first channel state, the first channel
  • the maximum number of antennas in the state is the largest one of the number of antennas of the base station and the number of antennas of the terminal in the first channel state.
  • the base station may determine an antenna array for LoS MIMO transmission from the antenna array set. Specifically, the base station determines, from the antenna array set, an antenna array that satisfies at least one of the following conditions as an antenna array for LoS MIMO transmission: determining an antenna spacing of the antenna array and the first channel state The absolute value of the difference in antenna spacing is the smallest, the number of transmission antennas of the determined antenna array, and the maximum antenna number in the first channel state The absolute value of the difference is the smallest.
  • the base station may adjust the antenna array corresponding to the current channel state to satisfy the Los MIMO transmission. Specifically, the base station adjusts the antenna array corresponding to the current channel state, so that the adjusted antenna array satisfies at least one of the following conditions: an antenna spacing of the adjusted antenna array and an antenna spacing in the first channel state.
  • the absolute value of the difference is the smallest, the absolute value of the difference between the number of transmission antennas of the adjusted antenna array and the maximum number of antennas in the first channel state is the smallest; the base station uses the adjusted antenna array as Antenna array for LoS MIMO transmission.
  • the antenna array determined from the antenna array set, or the antenna array finally obtained by adjusting the current antenna array is, for example, an nth array.
  • d tn ⁇ V n and ⁇ (d t0 ⁇ V in the antenna array set)
  • An antenna array having a minimum absolute value of 0 ) wherein the d tn is an antenna spacing of an nth antenna array, and the V n is when the antenna array for Los MIMO transmission is the nth antenna array
  • the base station receives an index of the state ratio value sent by the terminal, determines the state ratio according to the index, and then determines an antenna array for LoS MIMO transmission according to the state ratio.
  • the terminal may not directly send the state ratio to the base station, but send the index of the state ratio to the base station.
  • the mapping between the index and the state ratio is pre-stored on the base station.
  • the base station After receiving the index of the state ratio value sent by the terminal, the base station determines the state ratio according to the index query correspondence.
  • the base station may first determine whether the state ratio falls within a preset interval; if the base station determines that the state ratio falls within a preset interval, The current channel state can be adjusted to a channel state suitable for LoS MIMO transmission. At this time, the base station determines an antenna array for LoS MIMO transmission according to the state ratio; otherwise, if the base station determines that the state ratio falls outside the preset interval, the base station determines The current channel state cannot be adjusted to the channel state suitable for LoS MIMO transmission.
  • a state that can be adjusted to a channel state suitable for LoS MIMO transmission can be preset The range of ratios. After the base station receives the state ratio or determines the state ratio according to the index, it is determined whether the state ratio falls within a preset interval. If the node falls, the base station adjusts the antenna according to the state ratio sent by the terminal to determine that the antenna is used to determine The antenna array of the LoS MIMO transmission; otherwise, if the base station determines that the state ratio falls outside the range, the base station determines that the current channel is not adapted to the LoS MIMO transmission anyway, and at this time, the communication between the base station and the terminal It is carried out by means of communication other than LoS MIMO transmission.
  • the present invention is described in detail by using a base station to determine whether a specific state ratio is within a preset range.
  • the base station may also determine whether the index corresponding to the state ratio falls within a preset interval. For example, there are 10 indexes, and the first interval 1 to 5 and the second interval 2 to 6 may be set, if the state ratio falls within the first interval.
  • the current channel state can be adjusted to a channel state suitable for Los MIMO transmission, or the base station can determine an antenna array for Los MIMO transmission from the antenna array set; if the state ratio falls within the second interval, It indicates that the current channel state cannot be adjusted to the channel state suitable for Los MIMO transmission, or that the base station cannot determine the antenna array for Los MIMO transmission from the antenna array set.
  • the state ratio is 1, determining that the antenna array corresponding to the current channel state is an antenna array for LoS MIMO transmission.
  • the state ratio indicates a ratio of the first channel state between the base station and the terminal to the current channel state, for example, the state ratio is ⁇ .
  • the maximum number of antennas is V in the first channel state
  • the antenna spacing of the base station is d
  • the antenna spacing of the base station is d 0
  • the antenna array corresponding to the current channel state is an antenna array for LoS MIMO transmission.
  • the base station may not directly send the information of the array to the base station, but send the index of the array information to the terminal.
  • the mapping between the index and the array information is pre-stored on the terminal.
  • the terminal After receiving the index of the array information sent by the base station, the terminal queries the corresponding information according to the index information to determine the array information.
  • the terminal when the terminal sends the uplink information, it is the transmitting end, and the base station is the receiving end; when the terminal receives the downlink information, it is the receiving end, and the base station is the transmitting end.
  • the present invention will be described in detail below with the base station as the transmitting end and the terminal as the receiving end.
  • the second embodiment and the third embodiment can be seen.
  • d t0 represents the antenna spacing of the base station in the current channel state, that is, the antenna spacing of the transmitting end
  • V 0 represents the current number of antennas of the base station in the current channel state
  • d t0 may also indicate some specified reference antenna spacing.
  • V 0 can also represent the number of certain reference antennas
  • d t1 represents the antenna spacing of the base station in the first channel state
  • V 1 represents the number of antennas of the base station and the antennas of the terminal in the first channel state. The largest one of the numbers, that is, the antenna spacing and the number of antennas that the base station should select according to the beta value transmitted by the terminal.
  • the terminal may directly send the value of ⁇ to the base station, or may also use an index table, for example, to establish a quantization table of ⁇ , and the index corresponding to the parameter after quantization is 0, 1, ..., the terminal The index of ⁇ is sent.
  • the parameters that can be adjusted by the base station, or the parameters that the base station can easily adjust are the antenna spacing d t and the number of antennas V.
  • the physical meaning of the variant of equation (6) is: in equation (5), when the distance between transceivers When R changes, or when the inclination angle of the terminal antenna changes, it is desirable to adjust the d t or V so that the formula (5) is still established.
  • indicates that the base station should multiply d t0 ⁇ V 0 by ⁇ times with respect to the current d t0 and V 0 to obtain a desired state, that is, d t1 ⁇ V 1 in the first channel state.
  • the base station determines an antenna array for LoS MIMO transmission in the set of K antenna arrays at the transmitting end according to the ⁇ transmitted by the terminal.
  • the base station selects the nth antenna array in the antenna array set, the antenna spacing is d tn , and the maximum antenna number is V n , then the absolute value of the difference between d tn ⁇ V n and ⁇ (d t0 ⁇ V 0 ) At the minimum, or alternatively, the absolute value of the difference between d tn ⁇ V n of the antenna array determined by the base station and d t1 ⁇ V 1 in the first channel state is the smallest, and n is a positive integer.
  • the base antenna array of the base station has N antennas, as shown in FIG. 3.
  • FIG. 3 is an antenna model diagram applicable to the implementation method of the LoS MIMO transmission in the mobile communication according to the present invention. As can be seen from Figure 3, different antennas can be selected to form different antenna arrays A1, A2, A3, A4:
  • A2 ⁇ 0, 2, 4,... ⁇ ;
  • A4 ⁇ 0, 4, 8,... ⁇ ;
  • each array has a different antenna spacing or a different number of antennas.
  • the base station determines an antenna array that satisfies the conditional array for LoS MIMO transmission according to the state ratio.
  • Each parameter in the parameter is a parameter of the current channel state, and is known. Therefore, the terminal can calculate the current channel state information. In addition, the terminal can also be obtained through channel estimation.
  • the value assumes that the channel matrix formed by the adjacent two antennas to the receiving antenna at the transmitting end of the current channel is H, and the channel correlation matrix is defined as W, then:
  • the terminal performs eigenvalue decomposition on the channel correlation matrix W to obtain The value, which is the value of the state ratio ⁇ .
  • the terminal performs eigenvalue decomposition on the channel correlation matrix W of the current channel to determine a eigenvalue matrix ⁇ 0 ;
  • ⁇ 1 and ⁇ 2 are the characteristic values, and V is the number of transmission antennas in the current channel state;
  • the state ratio ⁇ is derived from the ⁇ 1, ⁇ 2, V.
  • ⁇ determined according to ⁇ 1 when there is no error, ⁇ determined according to ⁇ 1 is equal to ⁇ determined according to ⁇ 2.
  • ⁇ determined according to ⁇ 1 and ⁇ determined according to ⁇ 2 may be averaged to obtain a final state ratio ⁇ .
  • the state ratio ⁇ is defined as the ratio of the first channel state to the current channel state.
  • the distance between the terminal and the base station, the antenna spacing d r1 , The antenna tilt angle ⁇ r1 of the terminal and the antenna tilt angle ⁇ t 1 of the base station may change.
  • the definition ⁇ is expressed by the formula (9):
  • the parameter with the suffix of 1 is the parameter in the first channel state, and the parameter without the suffix 1 indicates the parameter in the current channel state.
  • is greater than a predetermined fixed value, or ⁇ is less than a preset fixed value, it indicates that it is not suitable for LoS MIMO transmission, and if ⁇ is in a preset state ratio suitable for LoS MIMO transmission.
  • the current channel state is suitable for LoS MIMO transmission.
  • the state ratio ⁇ can also be quantized into a special form of 1 bit, indicating that the current parameter is suitable for LoS MIMO or not suitable for LoS MIMO transmission.
  • Embodiment 4 is a flow chart of Embodiment 4 of a multiple input multiple output transmission method according to the present invention.
  • the present invention is transmitted in detail from the perspective of a terminal, and the embodiment of the present invention is applicable to a base station in mobile communication.
  • the terminal determines a state ratio, where the state ratio represents a ratio of a first channel state between the base station and the terminal to a current channel state, where the first channel state is that the base station performs Los MIMO with the terminal.
  • the channel state that needs to be met during transmission.
  • the terminal sends the status ratio to the base station, so that the base station determines an antenna array for LoS MIMO transmission according to the status ratio.
  • the terminal performs data transmission with the base station by using the antenna array.
  • the method for implementing the LoS MIMO transmission in the mobile communication provided by the embodiment of the present invention, after the terminal sends the state ratio to the base station, the terminal determines the antenna array for the LoS MIMO transmission according to the state ratio, and sends the array information to the terminal, so that the subsequent In the communication, the base station uses the determined antenna array and the terminal to perform data transmission, and in the mobile communication, when the physical location of the terminal changes, the base station adaptively adjusts the system parameters to implement LoS MIMO transmission.
  • the terminal before the terminal sends the state ratio to the base station, it is further determined whether the state ratio falls within a preset interval range suitable for the state ratio of the LoS MIMO transmission; The terminal determines that the state ratio falls within a preset interval range suitable for the state ratio of the LoS MIMO transmission, and the current channel state is suitable for LoS MIMO transmission; otherwise, the current channel state is not suitable for LoS MIMO transmission.
  • the terminal sends the status ratio to the base station, where the terminal sends an index corresponding to the status ratio to the base station.
  • the terminal before the terminal sends the state ratio to the base station, it is further determined whether the state ratio falls within a preset interval; if the terminal determines that the state ratio falls Sending, to the base station, an index corresponding to the state ratio or the state ratio in a preset interval; otherwise, transmitting, to the base station, a condition number indicating that the domain is not suitable for LoS MIMO transmission or the condition number index.
  • the terminal determines a state ratio, and the terminal performs eigenvalue decomposition on a channel correlation matrix of a current channel to determine the state ratio.
  • FIG. 5 is a schematic structural diagram of Embodiment 1 of a base station according to the present invention.
  • the base station provided in this embodiment is an embodiment of the device corresponding to the embodiment of the present invention. The specific implementation process is not described here. specific, The base station provided in this embodiment specifically includes:
  • the receiving module 11 is configured to receive a state ratio value sent by the terminal, where the state ratio represents a ratio of a first channel state between the base station and the terminal to a current channel state, where the first channel state is the base station and a channel state that the terminal needs to satisfy when performing Los MIMO transmission;
  • the processing module 12 is configured to determine an antenna array for LoS MIMO transmission according to the state ratio received by the receiving module 11, and perform data transmission with the terminal by using the antenna array.
  • the base station provided by the embodiment of the present invention, after receiving the state ratio value sent by the terminal, determines the antenna array used for the LoS MIMO transmission according to the state ratio, and sends the array information to the terminal, so that the base station determines the subsequent communication.
  • the antenna array and the terminal perform data transmission to realize mobile communication.
  • the base station adaptively adjusts system parameters to implement LoS MIMO transmission.
  • a ratio of a first channel state to a current channel state between the base station and the terminal is specifically: an antenna spacing and a maximum number of antennas in the first channel state.
  • a product a ratio of an antenna spacing of the base station to a number of transmission antennas in the current channel state, wherein an antenna spacing in the first channel state is an antenna spacing of a base station in the first channel state,
  • the maximum number of antennas in the first channel state is the largest one of the number of antennas of the base station and the number of antennas of the terminal in the first channel state.
  • the processing module 12 is specifically configured to determine, from the antenna array set, an antenna array that satisfies at least one of the following conditions as an antenna array for LoS MIMO transmission:
  • the absolute value of the difference between the antenna spacing of the antenna array and the antenna spacing in the first channel state is the smallest, and the difference between the determined number of transmitting antennas of the antenna array and the maximum number of antennas in the first channel state The absolute value of the value is the smallest.
  • the processing module 12 is specifically configured to adjust an antenna array corresponding to the current channel state, so that the adjusted antenna array meets at least one of the following conditions: the adjusted antenna
  • the absolute value of the difference between the antenna spacing of the array and the antenna spacing in the first channel state is the smallest, and the absolute difference between the adjusted number of transmitting antennas of the antenna array and the maximum number of antennas in the first channel state The value is the smallest and the adjusted antenna array is used as an antenna array for LoS MIMO transmission.
  • the antenna array determined by the processing module 12 from the antenna array set is specifically: d tn ⁇ V n and ⁇ (d t0 ⁇ in the antenna array set).
  • the number of antennas of the base station is the largest one of the number of antennas of the terminal
  • the ⁇ is the state ratio
  • the d t0 is the antenna spacing of the base station in the current channel state
  • V 0 is the number of transmission antennas of the base station in the current channel state
  • the n is a positive integer
  • the nth antenna array is the determined antenna array for Los MIMO transmission.
  • the processing module 12 is further configured to: after the receiving module 11 receives the state ratio value sent by the terminal, determine whether the state ratio falls within a preset interval. If the processing module 12 determines that the state ratio falls within a preset interval, the current channel state can be adjusted to a channel state suitable for LoS MIMO transmission; otherwise, the current channel state cannot be adjusted to be suitable. Channel status of LoS MIMO transmission.
  • the processing module 12 is specifically configured to: if the state ratio value received by the receiving module 11 is 1, the processing module 12 determines that the current channel state corresponds to The antenna array is an antenna array for LoS MIMO transmission.
  • is the wavelength
  • R is the transmission and reception interval between the base station and the terminal
  • V is the largest one of the number of antennas of the base station and the number of antennas of the terminal
  • ⁇ t is the antenna inclination of the transmitting end
  • ⁇ r is the antenna tilt angle of the receiving end
  • d t is the transmitting antenna spacing
  • d r is the receiving antenna spacing.
  • FIG. 6 is a schematic structural diagram of Embodiment 1 of a terminal according to the present invention.
  • the terminal provided in this embodiment is an apparatus embodiment corresponding to the embodiment of FIG. 4 of the present invention, and the specific implementation process is not described herein again.
  • the medium terminal provided in this embodiment includes:
  • the processing module 21 is configured to determine a state ratio, where the state ratio represents a ratio of a first channel state between the base station and the terminal to a current channel state, where the first channel state is the base station and the terminal The channel state that needs to be satisfied when performing Los MIMO transmission;
  • the sending module 22 is configured to send, to the base station, the state ratio determined by the processing module 21, so that the base station determines an antenna array for LoS MIMO transmission according to the state ratio, and passes the antenna array. Data transmission with the base station.
  • the terminal provided by the embodiment of the present invention, after the terminal sends the state ratio to the base station, the terminal determines the antenna array for the LoS MIMO transmission according to the state ratio, and sends the array information to the terminal.
  • the base station uses the determined antenna array and the terminal to perform data transmission, and in the mobile communication, when the physical location of the terminal changes, the base station adaptively adjusts the system parameters to implement LoS MIMO transmission.
  • the processing module 21 is further configured to determine, before the sending module 22 sends the state ratio to the base station, whether the state ratio falls within a preset interval.
  • the sending module 22 is configured to: if the processing module 21 determines that the state ratio falls within a preset interval, send an index corresponding to the state ratio or the state ratio to the base station; otherwise, An index indicating a condition that is not suitable for LoS MIMO transmission or an index corresponding to the number of conditions is transmitted to the base station.
  • the processing module 21 is specifically configured to perform eigenvalue decomposition on the channel correlation matrix W of the current channel to determine a eigenvalue matrix ⁇ 0 ;
  • H is a channel matrix formed by two antennas adjacent to the transmitting end of the current channel to the receiving end antenna;
  • ⁇ 1, ⁇ 2 are the characteristic values, and V is the maximum number of antennas in the current channel state.
  • the state ratio ⁇ is determined based on the ⁇ 1, ⁇ 2, and V.
  • FIG. 7 is a schematic structural diagram of Embodiment 2 of a base station according to the present invention.
  • the base station provided in this embodiment is an embodiment of the device corresponding to the embodiment of the present invention. The specific implementation process is not described here.
  • the base station provided in this embodiment specifically includes:
  • the receiver 31 is configured to receive a state ratio value sent by the terminal, where the state ratio represents a ratio of a first channel state between the base station and the terminal to a current channel state, where the first channel state is the base station and a channel state that the terminal needs to satisfy when performing Los MIMO transmission;
  • the processor 32 is configured to determine an antenna array for LoS MIMO transmission according to the state ratio received by the receiver 31, and perform data transmission with the terminal by using the antenna array.
  • the base station provided by the embodiment of the present invention, after receiving the state ratio value sent by the terminal, the base station according to The state ratio determines the antenna array used for LoS MIMO transmission, and sends the array information to the terminal, so that in the subsequent communication, the base station uses the determined antenna array and the terminal to perform data transmission, and realizes the physical position change of the terminal in the mobile communication.
  • the base station implements LoS MIMO transmission by adaptively adjusting system parameters.
  • a ratio of a first channel state to a current channel state between the base station and the terminal is specifically: an antenna spacing and a maximum number of antennas in the first channel state.
  • a product a ratio of an antenna spacing of the base station to a number of transmission antennas in the current channel state, wherein an antenna spacing in the first channel state is an antenna spacing of a base station in the first channel state,
  • the maximum number of antennas in the first channel state is the largest one of the number of antennas of the base station and the number of antennas of the terminal in the first channel state.
  • the processor 32 is specifically configured to determine, from the antenna array set, an antenna array that satisfies at least one of the following conditions as an antenna array for LoS MIMO transmission:
  • the absolute value of the difference between the antenna spacing of the antenna array and the antenna spacing in the first channel state is the smallest, and the difference between the determined number of transmitting antennas of the antenna array and the maximum number of antennas in the first channel state
  • the absolute value of the value is the smallest
  • the processor 32 is specifically configured to adjust an antenna array corresponding to the current channel state, so that the adjusted antenna array meets at least one of the following conditions: the adjusted antenna
  • the absolute value of the difference between the antenna spacing of the array and the antenna spacing in the first channel state is the smallest, and the absolute difference between the adjusted number of transmitting antennas of the antenna array and the maximum number of antennas in the first channel state The value is the smallest and the adjusted antenna array is used as an antenna array for LoS MIMO transmission.
  • the antenna array determined by the processor 32 from the antenna array set is specifically: d tn ⁇ V n and ⁇ (d t0 ⁇ in the antenna array set).
  • the number of antennas of the base station is the largest one of the number of antennas of the terminal
  • the ⁇ is the state ratio
  • the d t0 is the antenna spacing of the base station in the current channel state
  • V 0 is the number of transmission antennas of the base station in the current channel state
  • the n is a positive integer
  • the nth antenna array is the determined antenna array for Los MIMO transmission.
  • the processor 32 is further configured to be at the receiver 31. After receiving the state ratio value sent by the terminal, determining whether the state ratio falls within a preset interval; if the processor 32 determines that the state ratio falls within a preset interval, the current channel state The channel state suitable for LoS MIMO transmission can be adjusted; otherwise, the current channel state cannot be adjusted to a channel state suitable for LoS MIMO transmission.
  • the processor 32 is configured to: if the state ratio received by the receiver 31 is 1, determine that the antenna array corresponding to the current channel state is used. Antenna array for LoS MIMO transmission.
  • the ⁇ is a wavelength
  • the R is a transmission and reception interval between the base station and the terminal
  • the V is the largest one of the number of antennas of the base station and the number of antennas of the terminal.
  • ⁇ t is the antenna tilt angle of the transmitting end
  • the ⁇ r is the antenna tilt angle of the receiving end
  • the d t is the transmitting antenna spacing
  • the d r is the receiving antenna spacing
  • FIG. 8 is a schematic structural diagram of Embodiment 2 of a terminal according to the present invention.
  • the terminal provided in this embodiment is an apparatus embodiment corresponding to the embodiment of FIG. 4 of the present invention, and the specific implementation process is not described herein again.
  • the terminal provided in this embodiment specifically includes:
  • the processor 41 is configured to determine a state ratio, where the state ratio represents a ratio of a first channel state between the base station and the terminal to a current channel state, where the first channel state is the base station and the terminal The channel state that needs to be satisfied when performing Los MIMO transmission;
  • the transmitter 42 is configured to send, to the base station, the state ratio determined by the processor 41, so that the base station determines an antenna array for LoS MIMO transmission according to the state ratio;
  • the processor 41 is further configured to perform data transmission with the base station by using the antenna array.
  • the terminal After receiving the state ratio to the base station, the terminal according to the embodiment of the present invention determines the antenna array for the LoS MIMO transmission according to the state ratio, and sends the array information to the terminal, so that the base station uses the determined antenna in the subsequent communication.
  • the array and the terminal perform data transmission to realize mobile communication.
  • the base station adaptively adjusts system parameters to implement LoS MIMO transmission.
  • the processor 41 is further configured to determine, before the transmitter 42 sends the status ratio to the base station, whether the status ratio falls within a preset interval.
  • the sending The transmitter 42 is specifically configured to send an index corresponding to the state ratio or the state ratio to the base station; otherwise, send an index indicating that the condition is not suitable for the LoS MIMO transmission or the index corresponding to the condition number.
  • the processor 41 is specifically configured to perform eigenvalue decomposition on a channel correlation matrix W of the current channel to determine a eigenvalue matrix ⁇ 0 ;
  • H is a channel matrix formed by two antennas adjacent to the transmitting end of the current channel to the receiving end antenna;
  • ⁇ 1, ⁇ 2 are the characteristic values, and V is the maximum number of antennas in the current channel state.
  • the state ratio ⁇ is determined based on the ⁇ 1, ⁇ 2, and V.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Abstract

本发明实施例提供一种MIMO传输方法、终端及基站,该方法中,基站接收终端发送的状态比值,根据状态比值确定用于LoS MIMO传输的天线阵列;并通过天线阵列与终端进行数据传输,使得后续通信中,基站采用确定出的天线阵列与终端进行数据传输,实现移动通信中,当终端的物理位置变化时,基站通过自适应调整系统参数,实现LoS MIMO传输。

Description

多输入多输出传输方法、终端及基站 技术领域
本发明涉及通信技术,尤其涉及一种多输入多输出(Multiple Input Multiple Output,MIMO)传输方法、终端及基站。
背景技术
MIMO是一种在发射端和接收端采用多天线方式传输的技术,当MIMO信道相关性较低或者不相关时,多个天线上可以并行传输不同的信号,从而达到提高频谱利用率的目的。直视路径(Line of Sight,LoS)信道环境下,信道有较高的相关性,不合适传输多流。而LoS MIMO是一种在LoS信道环境下仍能实现MIMO复用的技术。
目前LoS MIMO技术主要用于微波回传(backhaul)的传输中,收发天线固定在发射塔上,收发天线之间是LoS信道。以2×2MIMO系统为例,由于微波传输使用高载波频率,从而在接收端形成一个短的传输路径和一个长的传输路径,可采用天线间距来设计一个具有正交相位差的2×2MIMO信道使得接收端2个路径之间的相位差是90°,此时,接收端干扰信号能够被完全消除。这样相当于创建了两个独立的通道,有效的增加了现有信道的容量。
现有技术中,收发天线的位置都是固定不变的,架设好后就基本不再变化。然而,移动通信过程中,终端是实时移动的,终端和基站之间的距离、终端的天线倾角等信道状态不断发生变化,无法保证2个路径间的相位差一直为90°,从而破坏了LoS MIMO的传输条件,无法进行多流数据的并行传输。因此,LoS MIMO很难用于移动通信中。
发明内容
本发明实施例提供一种MIMO传输方法、终端及基站,达到基站通过自适应调整系统参数,实现LoS MIMO传输的目的。
第一个方面,本发明实施例提供一种多输入多输出传输方法,包括:
基站接收终端发送的状态比值,所述状态比值表示所述基站与所述终端 之间的第一信道状态与当前信道状态的比值,所述第一信道状态为所述基站与所述终端进行Los MIMO传输时需要满足的信道状态;
所述基站根据所述状态比值确定用于LoS MIMO传输的天线阵列;
所述基站通过所述天线阵列与所述终端进行数据传输。
在第一个方面的第一种可能的实现方式中,所述基站与所述终端之间的第一信道状态与当前信道状态的比值具体为:所述第一信道状态下的天线间距与最大天线数的乘积,与所述当前信道状态下基站的天线间距与传输天线个数的乘积的比值,其中,所述第一信道状态下的天线间距为所述第一信道状态下基站的天线间距,所述第一信道状态下的最大天线数为所述第一信道状态下,所述基站的天线个数与所述终端的天线个数中最大的一个。
结合第一个方面的第一种可能的实现方式,在第一个方面的第二种可能的实现方式中,所述基站根据所述状态比值确定用于LoS MIMO传输的天线阵列,包括:
所述基站从天线阵列集合中确定出至少满足下述条件之一的天线阵列作为用于LoS MIMO传输的天线阵列:确定出的天线阵列的天线间距与所述第一信道状态下的天线间距的差值的绝对值最小、确定出的天线阵列的传输天线个数与所述第一信道状态下的最大天线个数的差值的绝对值最小。
结合第一个方面的第一种可能的实现方式,在第一个方面的第三种可能的实现方式中,所述基站根据所述状态比值确定用于LoS MIMO传输的天线阵列,包括:
所述基站调整所述当前信道状态对应的天线阵列,使得调整后的天线阵列至少满足下述条件之一:调整后的天线阵列的天线间距与所述第一信道状态下天线间距的差值的绝对值最小、调整后的天线阵列的传输天线个数与所述第一信道状态下的最大天线个数的差值的绝对值最小;
所述基站将调整后的天线阵列作为用于LoS MIMO传输的天线阵列。
结合第一个方面的第二种可能的实现方式,在第一个方面的第四种可能的实现方式中,所述基站从所述天线阵列集合中确定出的天线阵列具体为:所述天线阵列集合中dtn×Vn与β×(dt0×V0)的差的绝对值最小的天线阵列,其中,所述dtn为第n个天线阵列的天线间距,所述Vn为当用于Los MIMO传输的天线阵列为所述第n个天线阵列时,所述基站的天线个数与所述终端的天 线个数中最大的一个,所述β为所述状态比值,所述dt0为所述当前信道状态下基站的天线间距,所述V0为所述当前信道状态下基站的传输天线个数,所述n为正整数,所述第n个天线阵列为确定出的用于Los MIMO传输的天线阵列。
结合第一个方面、第一个方面的第一种至第四种中任一种可能的实现方式,在第一个方面的第五种可能的实现方式中,所述基站接收终端发送的状态比值之后,还包括:
所述基站判断所述状态比值是否落于预设的区间范围内;
若所述基站判断出所述状态比值落于预设的区间范围内,则所述当前信道状态能够调整到适合LoS MIMO传输的信道状态;否则,所述当前信道状态无法调整到适合LoS MIMO传输的信道状态。
结合第一个方面、第一个方面的第一种至第四种中任一种可能的实现方式,在第一个方面的第六种可能的实现方式中,所述基站根据所述状态比值确定用于LoS MIMO传输的天线阵列,包括:
若所述状态比值为1,则确定所述当前信道状态对应的天线阵列为用于LoS MIMO传输的天线阵列。
结合第一个方面、第一个方面的第一种至第四种中任一种可能的实现方式,在第一个方面的第七种可能的实现方式中,所述第一信道状态下,
Figure PCTCN2015080740-appb-000001
其中,所述λ为波长,所述R为所述基站与所述终端之间的收发间距,所述V为所述基站的天线个数与所述终端的天线个数中最大的一个,所述θt为发射端天线倾角,所述θr为接收端天线倾角,所述dt为发射端天线间距,所述dr为接收端天线间距,当所述终端发送上行数据时,所述终端为所述发射端,所述基站为所述接收端,当所述终端接收下行数据时,所述终端为所述接收端,所述基站为所述发射端。
第二个方面,本发明提供一种多输入多输出传输方法,包括:
终端确定状态比值,所述状态比值表示所述基站与所述终端之间的第一信道状态与当前信道状态的比值,所述第一信道状态为所述基站与所述终端进行Los MIMO传输时需要满足的信道状态;
所述终端向所述基站发送所述状态比值,以使所述基站根据所述状态比值确定用于LoS MIMO传输的天线阵列;
所述终端通过所述天线阵列与所述基站进行数据传输。
在第二个方面的第一种可能的实现方式中,所述终端向所述基站发送所述状态比值之前,还包括:
所述终端判断所述状态比值是否落于预设的区间范围内;
若所述终端判断出所述状态比值落于预设的区间范围内,则向所述基站发送所述状态比值或所述状态比值对应的索引;否则,向所述基站发送表示不适合LoS MIMO传输的条件数或所述条件数对应的索引。
结合第二个方面或第二个方面的第一种可能的实现方式,在第二个方面的第二种可能的实现方式中,所述终端确定状态比值,包括:
所述终端对所述当前信道的信道相关矩阵W进行特征值分解以确定出特征值矩阵Λ0;其中,
Figure PCTCN2015080740-appb-000002
H为所述当前信道下发射端相邻两个天线到接收端天线构成的信道矩阵;
Figure PCTCN2015080740-appb-000003
Figure PCTCN2015080740-appb-000004
ω1、ω2为所述特征值,V为所述当前信道状态下的最大天线数,当所述终端发送上行数据时,所述终端为所述发射端,所述基站为所述接收端,当所述终端接收下行数据时,所述终端为所述接收端,所述基站为所述发射端;
根据所述ω1、ω2、V确定出所述状态比值β。
第三个方面,本发明实施例提供一种基站,包括:
接收模块,用于接收终端发送的状态比值,所述状态比值表示所述基站与所述终端之间的第一信道状态与当前信道状态的比值,所述第一信道状态为所述基站与所述终端进行Los MIMO传输时需要满足的信道状态;
处理模块,用于根据所述接收模块接收的所述状态比值确定用于LoS MIMO传输的天线阵列,并通过所述天线阵列与所述终端进行数据传输。
在第三个方面的第一种可能的实现方式中,所述基站与所述终端之间的第一信道状态与当前信道状态的比值具体为:所述第一信道状态下的天线间距与最大天线数的乘积,与所述当前信道状态下基站的天线间距与传输天线个数的乘积的比值,其中,所述第一信道状态下的天线间距为所述第一信道状态下基站的天线间距,所述第一信道状态下的最大天线数为所述第一信道状态下,所述基站的天线个数与所述终端的天线个数中最大的一个。
结合第三个方面的第一种可能的实现方式,在第三个方面的第二种可能的实现方式中,所述处理模块,具体用于从天线阵列集合中确定出至少满足下述条件之一的天线阵列作为用于LoS MIMO传输的天线阵列:确定出的天线阵列的天线间距与所述第一信道状态下的天线间距的差值的绝对值最小、确定出的天线阵列的传输天线个数与所述第一信道状态下的最大天线个数的差值的绝对值最小。
结合第三个方面的第一种可能的实现方式,在第三个方面的第三种可能的实现方式中,所述处理模块,具体用于调整所述当前信道状态对应的天线阵列,使得调整后的天线阵列至少满足下述条件之一:调整后的天线阵列的天线间距与所述第一信道状态下天线间距的差值的绝对值最小、调整后的天线阵列的传输天线个数与所述第一信道状态下的最大天线个数的差值的绝对值最小,并将调整后的天线阵列作为用于LoS MIMO传输的天线阵列。
结合第三个方面的第一种可能的实现方式,在第三个方面的第四种可能的实现方式中,所述基站从所述天线阵列集合中确定出的天线阵列具体为:所述天线阵列集合中dtn×Vn与β×(dt0×V0)的差的绝对值最小的天线阵列,其中,所述dtn为第n个天线阵列的天线间距,所述Vn为当用于Los MIMO传输的天线阵列为所述第n个天线阵列时,所述基站的天线个数与所述终端的天线个数中最大的一个,所述β为所述状态比值,所述dt0为所述当前信道状态下基站的天线间距,所述V0为所述当前信道状态下基站的传输天线个数,所述n为正整数,所述第n个天线阵列为确定出的用于Los MIMO传输的天线阵列。
结合第三个方面、第三个方面的第一种至第四种中任一种可能的实现方式,在第三个方面的第五种可能的实现方式中,所述处理模块,还用于在所述接收模块接收终端发送的状态比值之后,判断出所述状态比值是否落于预设的区间范围内;
若所述处理模块判断出所述状态比值落于预设的区间范围内,则所述当前信道状态能够调整到适合LoS MIMO传输的信道状态;否则,所述当前信道状态无法调整到适合LoS MIMO传输的信道状态。
结合第三个方面、第三个方面的第一种至第四种中任一种可能的实现方式,在第三个方面的第六种可能的实现方式中,若所述接收模块接收到的所 述状态比值为1,则所述处理模块确定所述当前信道状态对应的天线阵列为用于LoS MIMO传输的天线阵列。
结合第三个方面、第三个方面的第一种至第四种中任一种可能的实现方式,在第一个方面的第七种可能的实现方式中,所述第一信道状态下,
Figure PCTCN2015080740-appb-000005
其中,λ为波长,R为所述基站与所述终端之间的收发间距,V为所述基站的天线个数与所述终端的天线个数中最大的一个,θt为发射端天线倾角,θr为接收端天线倾角,dt为发射端天线间距,dr为接收端天线间距,当所述终端发送上行数据时,所述终端为所述发射端,所述基站为所述接收端,当所述终端接收下行数据时,所述终端为所述接收端,所述基站为所述发射端。
第四个方面,本发明实施例提供一种终端,包括;
处理模块,用于确定状态比值,所述状态比值表示所述基站与所述终端之间的第一信道状态与当前信道状态的比值,所述第一信道状态为所述基站与所述终端进行Los MIMO传输时需要满足的信道状态;
发送模块,用于向所述基站发送所述处理模块确定出的所述状态比值,以使所述基站根据所述状态比值确定用于LoS MIMO传输的天线阵列,并通过所述天线阵列与所述基站进行数据传输。
在第四个方面的第一种可能的实现方式中,所述处理模块,还用于在所述发送模块向所述基站发送所述状态比值之前,判断所述状态比值是否落于预设的区间范围内;
所述发送模块,用于若所述处理模块判断出所述状态比值落于预设的区间范围内,则向所述基站发送所述状态比值或所述状态比值对应的索引;否则,向所述基站发送表示不适合LoS MIMO传输的条件数或所述条件数对应的索引。
结合第四个方面或第四个方面的第一种可能的实现方式,在第四个方面的第二种可能的实现方式中,所述处理模块,具体用于对所述当前信道的信道相关矩阵W进行特征值分解以确定出特征值矩阵Λ0;其中,
Figure PCTCN2015080740-appb-000006
Figure PCTCN2015080740-appb-000007
H为所述当前信道下发射端相邻两个天线到接收端天线构成的信道矩阵;
Figure PCTCN2015080740-appb-000008
Figure PCTCN2015080740-appb-000009
ω1、ω2为所述特征值,V为所述当前信道状态下的最大天线数,当所述终端发送上行数据时,所述终端为所述发射端,所述基站为所述接收端,当所述终端接收下行数据时,所述终端为所述接收端,所述基站为所述发射端;
根据所述ω1、ω2、V确定出所述状态比值β。
第五个方面,本发明实施例提供一种基站,包括:
接收器,用于接收终端发送的状态比值,所述状态比值表示所述基站与所述终端之间的第一信道状态与当前信道状态的比值,所述第一信道状态为所述基站与所述终端进行Los MIMO传输时需要满足的信道状态;
处理器,用于根据所述接收器接收到的所述状态比值确定用于LoS MIMO传输的天线阵列,并通过所述天线阵列与所述终端进行数据传输。
在第五个方面的第一种可能的实现方式中,所述基站与所述终端之间的第一信道状态与当前信道状态的比值具体为:所述第一信道状态下的天线间距与最大天线数的乘积,与所述当前信道状态下基站的天线间距与传输天线个数的乘积的比值,其中,所述第一信道状态下的天线间距为所述第一信道状态下基站的天线间距,所述第一信道状态下的最大天线数为所述第一信道状态下,所述基站的天线个数与所述终端的天线个数中最大的一个。
结合第五个方面的第一种可能的实现方式,在第五个方面的第二种可能的实现方式中,所述处理器,具体用于从天线阵列集合中确定出至少满足下述条件之一的天线阵列作为用于LoS MIMO传输的天线阵列:确定出的天线阵列的天线间距与所述第一信道状态下的天线间距的差值的绝对值最小、确定出的天线阵列的传输天线个数与所述第一信道状态下的最大天线个数的差值的绝对值最小。
结合第五个方面的第一种可能的实现方式,在第五个方面的第三种可能的实现方式中,所述处理器,具体用于调整所述当前信道状态对应的天线阵列,使得调整后的天线阵列至少满足下述条件之一:调整后的天线阵列的天线间距与所述第一信道状态下天线间距的差值的绝对值最小、调整后的天线阵列的传输天线个数与所述第一信道状态下的最大天线个数的差值的绝对值最小,并将调整后的天线阵列作为用于LoS MIMO传输的天线阵列。
结合第五个方面的第二种可能的实现方式,在第五个方面的第四种可能的实现方式中,所述处理器从所述天线阵列集合中确定出的天线阵列具体为: 所述天线阵列集合中dtn×Vn与β×(dt0×V0)的差的绝对值最小的天线阵列,其中,所述dtn为第n个天线阵列的天线间距,所述Vn为当用于Los MIMO传输的天线阵列为所述第n个天线阵列时,所述基站的天线个数与所述终端的天线个数中最大的一个,所述β为所述状态比值,所述dt0为所述当前信道状态下基站的天线间距,所述V0为所述当前信道状态下基站的传输天线个数,所述n为正整数,所述第n个天线阵列为确定出的用于Los MIMO传输的天线阵列。
结合第五个方面、第五个方面的第一种至第四种中任一种可能的实现方式,在第五个方面的第五种可能的实现方式中,所述处理器,还用于在所述接收器接收终端发送的状态比值之后,判断所述状态比值是否落于预设的区间范围内;若所述处理器判断出所述状态比值落于预设的区间范围内,则所述当前信道状态能够调整到适合LoS MIMO传输的信道状态;否则,所述当前信道状态无法调整到适合LoS MIMO传输的信道状态。
结合第五个方面、第五个方面的第一种至第四种中任一种可能的实现方式,在第五个方面的第六种可能的实现方式中,所述处理器,具体用于若所述接收器接收到的所述状态比值为1,则确定所述当前信道状态对应的天线阵列为用于LoS MIMO传输的天线阵列。
结合第五个方面、第五个方面的第一种至第四种中任一种可能的实现方式,在第五个方面的第七种可能的实现方式中,所述第一信道状态下,
Figure PCTCN2015080740-appb-000010
其中,所述λ为波长,所述R为所述基站与所述终端之间的收发间距,所述V为所述基站的天线个数与所述终端的天线个数中最大的一个,所述θt为发射端天线倾角,所述θr为接收端天线倾角,所述dt为发射端天线间距,所述dr为接收端天线间距,当所述终端发送上行数据时,所述终端为所述发射端,所述基站为所述接收端,当所述终端接收下行数据时,所述终端为所述接收端,所述基站为所述发射端。
第六个方面,本发明实施例提供一种终端,包括:
处理器,用于确定状态比值,所述状态比值表示所述基站与所述终端之间的第一信道状态与当前信道状态的比值,所述第一信道状态为所述基站与所述终端进行Los MIMO传输时需要满足的信道状态;
发送器,用于向所述基站发送所述处理器确定出的所述状态比值,以使所述基站根据所述状态比值确定用于LoS MIMO传输的天线阵列;
所述处理器,还用于通过所述天线阵列与所述基站进行数据传输。
在第六个方面的第一种可能的实现方式中,所述处理器,还用于在所述发送器向所述基站发送所述状态比值之前,判断所述状态比值是否落于预设的区间范围内;
若所述处理器判断出所述状态比值落于预设的区间范围内,则所述发送器具体用于向所述基站发送所述状态比值或所述状态比值对应的索引;否则,向所述基站发送表示不适合LoS MIMO传输的条件数或所述条件数对应的索引。
结合第六个方面或第六个方面的第一种可能的实现方式,在第六个方面的第二种可能的实现方式中,所述处理器,具体用于对所述当前信道的信道相关矩阵W进行特征值分解以确定出特征值矩阵Λ0;其中,
Figure PCTCN2015080740-appb-000011
H为所述当前信道下发射端相邻两个天线到接收端天线构成的信道矩阵;
Figure PCTCN2015080740-appb-000012
Figure PCTCN2015080740-appb-000013
ω1、ω2为所述特征值,V为所述当前信道状态下的最大天线数,当所述终端发送上行数据时,所述终端为所述发射端,所述基站为所述接收端,当所述终端接收下行数据时,所述终端为所述接收端,所述基站为所述发射端;
根据所述ω1、ω2、V确定出所述状态比值β。
本发明实施例提供的MIMO传输方法、终端及基站,基站在接收到终端反馈的状态比值后,根据状态比值确定出用于LoS MIMO传输的天线阵列,并将阵列信息发送给终端,使得后续通信中,基站采用确定出的天线阵列与终端进行数据传输,实现移动通信中,当终端的物理位置变化时,基站通过自适应调整系统参数,实现LoS MIMO传输。
附图说明
图1为本发明多输入多输出传输方法所适用的LoS MIMO传输模型图;
图2为本发明多输入多输出传输方法实施例一的流程图;
图3为本发明移动通信中LoS MIMO传输的实现方法所适用的天线模型 图;
图4为本发明多输入多输出传输方法实施例四的流程图;
图5为本发明基站实施例一的结构示意图;
图6为本发明终端实施例一的结构示意图;
图7为本发明基站实施例二的结构示意图;
图8为本发明终端实施例二的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明多输入多输出传输方法所适用的LoS MIMO传输模型图。请参照图1,对于一个N发M收的LoS传输阵列,接收端每个天线间距为dr,接收端天线倾角为θr,接收天线Rx在水平面的投影与x轴的夹角为φr;发射端每个天线间距为dt,发射端倾角为θt,收发间距离为R。由此,则发射端第n个发射天线到起点的距离
Figure PCTCN2015080740-appb-000014
可以用公式(1)所示的向量表示,起点到第m个接收天线的距离
Figure PCTCN2015080740-appb-000015
可以用公式(2)所示的向量表示:
Figure PCTCN2015080740-appb-000016
Figure PCTCN2015080740-appb-000017
根据三角形几何原理及上述公式(1)和公式(2),则第n个发射天线到第m个接收天线的距离可以表示为公式(3):
Figure PCTCN2015080740-appb-000018
一般来说,第n个发射天线到第m个接收天线的信道可以表示为公式(4)所示的向量:
Figure PCTCN2015080740-appb-000019
其中,λ为波长,r为收发间距。
由公式(3)和(4)可以证明:在收发间距R远大于天线间距dt、dr的情况下,实现多流并行MIMO传输的条件,即最优LoS MIMO信道要满足的条可以表示为公式(5):
Figure PCTCN2015080740-appb-000020
其中,V=max{M,N}。
因此,可得出如下结论:LoS MIMO的传输取决于波长λ、收发间距R、最大天线数V、发射端天线倾角θt及接收端天线倾角θr。当上述公式(5)成立时,接收端和发射端可进行LoS MIMO传输。
有鉴于此,本发明实施例提供一种多输入多输出传输方法,以解决现有技术中LoS MIMO难以应用于移动通信中的问题。具体的,可参见图2。
需要说明的是,本发明以下实施例中,若未做特殊说明,则最大天线数一般指终端的传输天线个数与基站的传输天线个数中的最大的一个。
另外,还需要说明的是,本发明实施例中所述的第一信道,一般指满足上述公式(5)的信道。
图2为本发明多输入多输出传输方法实施例一的流程图。本实施例是从基站的角度对本发明进行详细阐述,本发明实施例适用于移动通信中基站与终端需要进行LoS MIMO传输的场景。具体的,本实施例包括如下步骤:
101、基站接收终端发送的状态比值,所述状态比值表示所述基站与所述终端之间的第一信道状态与当前信道状态的比值,所述第一信道状态为所述基站与所述终端进行Los MIMO传输时需要满足的信道状态。
移动通信中,一般而言基站的位置不会发生变化,而终端是实时移动的。根据上述公式(5)可知,当终端的位置变化导致收发间距离R发生变化,或者终端的天线倾角发生变化时,导致公式(5)不成立,从而降低LoS MIMO的传输性能。其中,终端的天线倾角发生变化,可理解为当终端为发射端时,发射端天线倾角θt发生变化;当终端为接收端时,接收端天线倾角θr发生变化。
由公式(5)可知,当收发间距离R发生变化,或者终端的天线倾角发生变化时,可通过调整波长λ、最大天线数V、基站的天线倾角、基站的天线间距或终端的天线间距来使得公式(5)仍然成立或使得公式(5)的变化量 最小。然而,由于波长λ一般固定;终端的天线间距、基站的天线倾角不易调节,因此,可通过基站调节天线间距、最大天线数V中的至少一个来维持公式(5)的成立或使得公式(5)的变化量最小。
本步骤中,基站接收终端发送的表示第一信道状态与当前信道状态的比值的状态比值,例如,状态比值β。此时,若第一信道状态下,基站的天线个数与终端的天线个数中最大的一个值为V,基站的天线间距为d;当前信道状态下,基站的天线数为V0,基站的天线间距为d0,则
Figure PCTCN2015080740-appb-000021
102、所述基站根据所述状态比值确定用于LoS MIMO传输的天线阵列。
在接收到状态比值后,基站根据状态比值在天线阵列集合中确定一个天线阵列,该天线阵列为等间距天线阵列。此时,最大天线数V和基站的天线间距的积,与第一信道下最大天线数V和基站的天线间距的积的差值最小。
103、所述基站通过所述天线阵列与所述终端进行数据传输。
在确定出天线阵列后,基站将确定出的天线阵列的阵列信息发送给终端,使得后续通信中,基站采用确定出的天线阵列与终端进行数据传输。
本发明实施例提供的多输入多输出传输方法,基站在接收到终端发送的状态比值后,根据状态比值确定出用于LoS MIMO传输的天线阵列,并将阵列信息发送给终端,使得后续通信中,基站采用确定出的天线阵列与终端进行数据传输,实现移动通信中,当终端的物理位置变化时,基站通过自适应调整系统参数,实现LoS MIMO传输。
进一步的,上述实施例一中,所述基站与所述终端之间的第一信道状态与当前信道状态的比值具体为:所述第一信道状态下的天线间距与最大天线数的乘积,与所述当前信道状态下基站的天线间距与传输天线个数的乘积的比值,其中,所述第一信道状态下的天线间距为所述第一信道状态下基站的天线间距,所述第一信道状态下的最大天线数为所述第一信道状态下,所述基站的天线个数与所述终端的天线个数中最大的一个。
更进一步的,上述实施例一中,基站可从天线阵列集合中确定出用于LoS MIMO传输的天线阵列。具体的,所述基站从天线阵列集合中确定出至少满足下述条件之一的天线阵列作为用于LoS MIMO传输的天线阵列:确定出的天线阵列的天线间距与所述第一信道状态下的天线间距的差值的绝对值最小、确定出的天线阵列的传输天线个数与所述第一信道状态下的最大天线个 数的差值的绝对值最小。
更进一步的,上述实施例一种,基站可将当前信道状态对应的天线阵列进行调整,使其满足Los MIMO传输。具体的,所述基站调整所述当前信道状态对应的天线阵列,使得调整后的天线阵列至少满足下述条件之一:调整后的天线阵列的天线间距与所述第一信道状态下天线间距的差值的绝对值最小、调整后的天线阵列的传输天线个数与所述第一信道状态下的最大天线个数的差值的绝对值最小;所述基站将调整后的天线阵列作为用于LoS MIMO传输的天线阵列。
上述从天线阵列集合中确定出的天线阵列,或者调整当前天线阵列最终得到的天线阵列例如为第n阵列,此时,所述天线阵列集合中dtn×Vn与β×(dt0×V0)的差的绝对值最小的天线阵列,其中,所述dtn为第n个天线阵列的天线间距,所述Vn为当用于Los MIMO传输的天线阵列为所述第n个天线阵列时,所述基站的天线个数与所述终端的天线个数中最大的一个,所述β为所述状态比值,所述dt0为所述当前信道状态下基站的天线间距,所述V0为所述当前信道状态下基站的传输天线个数,所述n为正整数,所述第n个天线阵列为确定出的用于Los MIMO传输的天线阵列。
进一步的,上述实施例一中,基站接收所述终端发送的状态比值的索引,根据所述索引确定所述状态比值,然后,再根据状态比值确定用于LoS MIMO传输的天线阵列。
具体的,终端也可以不直接将状态比值发送给基站,而是将状态比值的索引发送给基站。基站上预先保存有索引与状态比值的对应关系,当基站接收到终端发送的状态比值的索引后,根据索引查询对应关系从而确定出状态比值。
可选的,上述实施例一中,基站接收终端发送的状态比值之后,可先判断状态比值是否落于预设的区间范围内;若基站判断出状态比值落于预设的区间范围内,则当前信道状态能够调整到适合LoS MIMO传输的信道状态,此时基站根据状态比值确定用于LoS MIMO传输的天线阵列;否则,若基站判断出状态比值落于预设的区间范围外,则基站确定当前信道状态无法调整到适合LoS MIMO传输的信道状态。
具体的,可预先设定能够调整到适合LoS MIMO传输的信道状态的状态 比值的区间范围。当基站接收到状态比值或者根据索引确定出状态比值后,判断该状态比值是否落于预设的区间范围内,若落于,则基站根据终端发送的状态比值对天线进行调节从而确定出用于LoS MIMO传输的天线阵列;否则,若基站判断出该状态比值落于区间范围之外,则基站确定出当前信道无论如何调节,都不适合LoS MIMO传输,此时,基站与终端之间的通信采用LoS MIMO传输之外的通信方式进行。
上述实施例中是以基站判断具体的状态比值是否落于预设的区间范围内为例对本发明进行详细说明,然而,本发明实施例并不以此为限制,在其他可行的实施方式中,基站也可以判断状态比值对应的索引是否落于预设的区间范围内,例如,共有10个索引,可设置第一区间1~5及第二区间2~6,若状态比值落于第一区间范围内,则表示当前信道状态能够调整到适合Los MIMO传输的信道状态,或者表示基站能够从天线阵列集合中确定出用于Los MIMO传输的天线阵列;若状态比值落于第二区间范围内,则表示当前信道状态无法调整到适合Los MIMO传输的信道状态,或者表示基站无法从天线阵列集合中确定出用于Los MIMO传输的天线阵列。
可选的,上述实施例一中,若所述状态比值为1,则确定所述当前信道状态对应的天线阵列为用于LoS MIMO传输的天线阵列。
具体的,状态比值表示基站与终端之间的第一信道状态与当前信道状态的比值,例如,状态比值为β。此时,若第一信道状态下,最大天线数为V,基站的天线间距为d;当前信道状态下,最大天线数为V0,基站的天线间距为d0,则
Figure PCTCN2015080740-appb-000022
由此可知,当β=1时,dV与d0V0相等,即当前信道状态对应的天线阵列为用于LoS MIMO传输的天线阵列。
可选的,上述实施例一中,基站也可以不直接将天下阵列信息发送给基站,而是将阵列信息的索引发送给终端。终端上预先保存有索引与阵列信息的对应关系,当终端接收到基站发送的阵列信息的索引后,根据索引信息查询对应关系从而确定出阵列信息。
移动通信过程中,当终端发送上行信息时,其为发射端,基站为接收端;而当终端接收下行信息时,其为接收端,基站为发射端。下面,以基站为发射端、终端为接收端对本发明进行详细说明,具体可见实施例二与实施例三。
本发明多输入多输出传输方法实施例二中,当收发间距离R发生变化,或者终端的天线倾角,即接收端天线倾角θr发生变化时,导致上述的公式(5) 不成,从而降低了LoS MIMO的传输性能。本实施例中,定义当前信道状态下,表示当前信道状态与第一信道状态的差异的状态比值β为:β=(dt1×V1)/dt0×V0  (6)。
其中,dt0表示当前信道状态下,基站的天线间距,即发射端天线间距,V0表示当前信道状态下,基站的当前天线个数;或者,dt0也可表示某些指定的基准天线间距,V0也可表示某些指定的基准天线个数;dt1则表示第一信道状态下,基站的天线间距,V1则表示第一信道状态下,基站的天线个数与终端的天线个数中最大的一个,即基站根据终端发送的β值应该选择的天线间距和天线个数。
上述公式(6)中,终端可直接将β的值发送给基站,或者,也可以通过索引表的方式,例如建立β的量化表格,量化后参数对应的索引为0,1,……,终端发送的是β的索引。
显然,公式(6)可变形为:dt1×V1=β×(dt0×V0)。一般来说,基站可调整的参数,或者基站易于调节的参数为天线间距dt和天线个数V,则公式(6)的变形式的物理意义在于:公式(5)中,当收发间距离R发生变化,或者终端天线倾角发生变化时,希望通过调节dt或V使得公式(5)依旧成立。β则表示相对于当前的dt0、V0,基站应该将dt0×V0乘以β倍,得到期望状态,即第一信道状态下的dt1×V1
基站根据终端发送的β,在发射端的K个天线阵列集合中确定用于LoS MIMO传输的一个天线阵列。假设基站选定天线阵列集合中第n个天线阵列,其天线间距为dtn,最大天线数为Vn,则dtn×Vn与β×(dt0×V0)的差值的绝对值最小,或者说,基站确定的天线阵列的dtn×Vn与第一信道状态下的dt1×V1的差值的绝对值最小,n为正整数。
例如,基站的发射端天线阵列有N个天线,如图3所示,图3为本发明移动通信中LoS MIMO传输的实现方法所适用的天线模型图。由图3可知,选择不同的天线可构成不同的天线阵列A1,A2,A3,A4:
A1:{0,1,2,…};
A2:{0,2,4,…};
A3:{0,3,6,…};
A4:{0,4,8,…};
……
这样一来,每个阵列有不同的天线间距或者不同的天线个数。基站根据状态比值确定满足条件的阵列做LoS MIMO传输的天线阵列。
下面,对状态比值β的计算做一个详细说明。具体的,并不需要按照公式(6)先得到每个参数再算出状态比值β,而是由公式(5)可知,假设当终端和基站之间的距离为R1、天线间距为dt1、最大天线数为V1、波长为λ、基站的天线倾角为θt、终端的天线倾角为θr时满足第一信道状态,则有如下公式(7):
Figure PCTCN2015080740-appb-000023
对公式(6)变形得到
Figure PCTCN2015080740-appb-000024
将公式(7)带入该变形式,得到:
Figure PCTCN2015080740-appb-000025
Figure PCTCN2015080740-appb-000026
由公式(8)可知,
Figure PCTCN2015080740-appb-000027
中的每个参数都是当前信道状态的参数,都是已知的,因此,终端可根据当前信道状态信息计算出
Figure PCTCN2015080740-appb-000028
另外,终端也可以通过信道估计得到
Figure PCTCN2015080740-appb-000029
值,假设当前信道下发射端相邻两个天线到接收端天线构成的信道矩阵为H,定义信道相关矩阵为W,则有:
Figure PCTCN2015080740-appb-000030
终端对信道相关矩阵W进行特征值分解,就可得到
Figure PCTCN2015080740-appb-000031
值,即状态比值β的值。
具体的,终端对当前信道的信道相关矩阵W进行特征值分解以确定出特征值矩阵Λ0
Figure PCTCN2015080740-appb-000032
Figure PCTCN2015080740-appb-000033
ω1、ω2为所述特征值,V为所述当前信道状态下的传输天线个数;
根据所述ω1、ω2、V得出所述状态比值β。
一般来说,在没有误差的时候,根据ω1确定出的β与根据ω2确定出的β是相等的。当有误差时,可对根据ω1确定出的β与根据ω2确定出的β进行平均以得到最终的状态比值β。
在本发明多输入多输出传输方法实施例三中,定义状态比值β为第一信道状态与当前信道状态的比值,在移动蜂窝中,终端与基站的收发间距离、终端的天线间距dr1、终端的天线倾角θr1、基站的天线倾角θt1都有可能发生变化,定义β用公式(9)表示:
Figure PCTCN2015080740-appb-000034
其中,后缀有1的参数为第一信道状态下的参数,没有后缀1的参数表示当前信道状态下的参数。
将公式(8)
Figure PCTCN2015080740-appb-000035
变形为:
Figure PCTCN2015080740-appb-000036
由公式(10)可得出,y体现了信道条件的变化,x则为基站可以调节的参数,并且根据公式(9)可知:β=y1/y。当y值发生变化时,为了确保
Figure PCTCN2015080740-appb-000037
的值为1,则需要x1=x/β,即:1/x1=β×(1/x),从而得出:dt1×V1=β×(dto×V0)。由此,β的值同样可以由终端通过信道估计后的特征值得到,具体可见上述实施例二。
上述实施例二与实施例三中,当状态比值β=1时,说明当前信道状态达到最优LoS MIMO传输状态,基站无需调节天线个数等;当β≠1时,说明当前信道状态偏离最优LoS MIMO传输状态,需要基站根据该状态比值β,在发射端的K个天线阵列集合中确定用于LoS MIMO传输的一个天线阵列。例如,确定出的天线阵列的天线间距为dtn,天线个数为V',并满足dtn×V'=β×dt×V。此时,若β大于某个预设的固定值,或者β小于某个预设的固定值,表示已不适合做LoS MIMO传输,反之,若β落于预设的适合LoS MIMO传输的状态比值的区间范围内,则说明当前信道状态适合LoS MIMO传输。另外,状态比值β还可以量化为1个比特的特殊形式,表示当前参数适合做LoS MIMO或者不适合做LoS MIMO传输。
图4为本发明多输入多输出传输方法实施例四的流程图。本实施例是从终端的角度对本发明进行详细传输,本发明实施例适用于移动通信中基站与 终端需要进行LoS MIMO传输的场景。具体的,本实施例包括如下步骤:
201、终端确定状态比值,所述状态比值表示所述基站与所述终端之间的第一信道状态与当前信道状态的比值,所述第一信道状态为所述基站与所述终端进行Los MIMO传输时需要满足的信道状态。
202、所述终端向所述基站发送所述状态比值,以使所述基站根据所述状态比值确定用于LoS MIMO传输的天线阵列。
203、所述终端通过所述天线阵列与所述基站进行数据传输。
本实施例中,有关状态比值及如何计算状态比值的描述可参见上述实施例一至实施例三,在此不再赘述。
本发明实施例提供的移动通信中LoS MIMO传输的实现方法,终端向基站发送状态比值后,由终端根据状态比值确定出用于LoS MIMO传输的天线阵列,并将阵列信息发送给终端,使得后续通信中,基站采用确定出的天线阵列与终端进行数据传输,实现移动通信中,当终端的物理位置变化时,基站通过自适应调整系统参数,实现LoS MIMO传输。
进一步的,上述实施例四中,所述终端向所述基站发送所述状态比值之前,还判断所述状态比值是否落于预设的适合LoS MIMO传输的状态比值的区间范围内;若所述终端判断出所述状态比值落于预设的适合LoS MIMO传输的状态比值的区间范围内,则所述当前信道状态适合LoS MIMO传输;否则,所述当前信道状态不适合LoS MIMO传输。
进一步的,上述实施例四中,所述终端向所述基站发送所述状态比值,包括:所述终端向所述基站发送所述状态比值对应的索引。
进一步的,上述实施例四中,所述终端向所述基站发送所述状态比值之前,还判断所述状态比值是否落于预设的区间范围内;若所述终端判断出所述状态比值落于预设的区间范围内,则向所述基站发送所述状态比值或所述状态比值对应的索引;否则,向所述基站发送表示不适合LoS MIMO传输的条件数或所述条件数对应的索引。
进一步的,上述实施例四中,所述终端确定状态比值,包括:所述终端对当前信道的信道相关矩阵进行特征值分解以确定出所述状态比值。
图5为本发明基站实施例一的结构示意图。本实施例提供的基站是与本发明图2实施例对应的装置实施例,具体实现过程在此不再赘述。具体的, 本实施例提供的基站具体包括:
接收模块11,用于接收终端发送的状态比值,所述状态比值表示所述基站与所述终端之间的第一信道状态与当前信道状态的比值,所述第一信道状态为所述基站与所述终端进行Los MIMO传输时需要满足的信道状态;
处理模块12,用于根据所述接收模块11接收到的所述状态比值确定用于LoS MIMO传输的天线阵列,并通过所述天线阵列与所述终端进行数据传输。
本发明实施例提供的基站,基站在接收到终端发送的状态比值后,根据状态比值确定出用于LoS MIMO传输的天线阵列,并将阵列信息发送给终端,使得后续通信中,基站采用确定出的天线阵列与终端进行数据传输,实现移动通信中,当终端的物理位置变化时,基站通过自适应调整系统参数,实现LoS MIMO传输。
可选的,在本发明一实施例中,所述基站与所述终端之间的第一信道状态与当前信道状态的比值具体为:所述第一信道状态下的天线间距与最大天线数的乘积,与所述当前信道状态下基站的天线间距与传输天线个数的乘积的比值,其中,所述第一信道状态下的天线间距为所述第一信道状态下基站的天线间距,所述第一信道状态下的最大天线数为所述第一信道状态下,所述基站的天线个数与所述终端的天线个数中最大的一个。
可选的,在本发明一实施例中,所述处理模块12,具体用于从天线阵列集合中确定出至少满足下述条件之一的天线阵列作为用于LoS MIMO传输的天线阵列:确定出的天线阵列的天线间距与所述第一信道状态下的天线间距的差值的绝对值最小、确定出的天线阵列的传输天线个数与所述第一信道状态下的最大天线个数的差值的绝对值最小。
可选的,在本发明一实施例中,所述处理模块12,具体用于调整所述当前信道状态对应的天线阵列,使得调整后的天线阵列至少满足下述条件之一:调整后的天线阵列的天线间距与所述第一信道状态下天线间距的差值的绝对值最小、调整后的天线阵列的传输天线个数与所述第一信道状态下的最大天线个数的差值的绝对值最小,并将调整后的天线阵列作为用于LoS MIMO传输的天线阵列。
可选的,在本发明一实施例中,所述处理模块12从所述天线阵列集合中确定出的天线阵列具体为:所述天线阵列集合中dtn×Vn与β×(dt0×V0)的差的绝 对值最小的天线阵列,其中,所述dtn为第n个天线阵列的天线间距,所述Vn为当用于Los MIMO传输的天线阵列为所述第n个天线阵列时,所述基站的天线个数与所述终端的天线个数中最大的一个,所述β为所述状态比值,所述dt0为所述当前信道状态下基站的天线间距,所述V0为所述当前信道状态下基站的传输天线个数,所述n为正整数,所述第n个天线阵列为确定出的用于Los MIMO传输的天线阵列。
可选的,在本发明一实施例中,所述处理模块12,还用于在所述接收模块11接收终端发送的状态比值之后,判断出所述状态比值是否落于预设的区间范围内;若所述处理模块12判断出所述状态比值落于预设的区间范围内,则所述当前信道状态能够调整到适合LoS MIMO传输的信道状态;否则,所述当前信道状态无法调整到适合LoS MIMO传输的信道状态。
可选的,在本发明一实施例中,所述处理模块12,具体用于若所述接收模块11接收到的所述状态比值为1,则所述处理模块12确定所述当前信道状态对应的天线阵列为用于LoS MIMO传输的天线阵列。
可选的,在本发明一实施例中,所述第一信道状态下,
Figure PCTCN2015080740-appb-000038
其中,λ为波长,R为所述基站与所述终端之间的收发间距,V为所述基站的天线个数与所述终端的天线个数中最大的一个,θt为发射端天线倾角,θr为接收端天线倾角,dt为发射端天线间距,dr为接收端天线间距,当所述终端发送上行数据时,所述终端为所述发射端,所述基站为所述接收端,当所述终端接收下行数据时,所述终端为所述接收端,所述基站为所述发射端。
图6为本发明终端实施例一的结构示意图,本实施例提供的终端是与本发明图4实施例对应的装置实施例,具体实现过程在此不再赘述。具体的,本实施例提供的中终端包括:
处理模块21,用于确定状态比值,所述状态比值表示所述基站与所述终端之间的第一信道状态与当前信道状态的比值,所述第一信道状态为所述基站与所述终端进行Los MIMO传输时需要满足的信道状态;
发送模块22,用于向所述基站发送所述处理模块21确定出的所述状态比值,以使所述基站根据所述状态比值确定用于LoS MIMO传输的天线阵列,并通过所述天线阵列与所述基站进行数据传输。
本发明实施例提供的终端,终端向基站发送状态比值后,由终端根据状态比值确定出用于LoS MIMO传输的天线阵列,并将阵列信息发送给终端, 使得后续通信中,基站采用确定出的天线阵列与终端进行数据传输,实现移动通信中,当终端的物理位置变化时,基站通过自适应调整系统参数,实现LoS MIMO传输。
可选的,在本发明一实施例中,所述处理模块21,还用于在所述发送模块22向所述基站发送所述状态比值之前,判断所述状态比值是否落于预设的区间范围内;
所述发送模块22,用于若所述处理模块21判断出所述状态比值落于预设的区间范围内,则向所述基站发送所述状态比值或所述状态比值对应的索引;否则,向所述基站发送表示不适合LoS MIMO传输的条件数或所述条件数对应的索引。
可选的,在本发明一实施例中,所述处理模块21,具体用于对所述当前信道的信道相关矩阵W进行特征值分解以确定出特征值矩阵Λ0;其中,
Figure PCTCN2015080740-appb-000039
Figure PCTCN2015080740-appb-000040
H为所述当前信道下发射端相邻两个天线到接收端天线构成的信道矩阵;
Figure PCTCN2015080740-appb-000041
Figure PCTCN2015080740-appb-000042
ω1、ω2为所述特征值,V为所述当前信道状态下的最大天线数,当所述终端发送上行数据时,所述终端为所述发射端,所述基站为所述接收端,当所述终端接收下行数据时,所述终端为所述接收端,所述基站为所述发射端;
根据所述ω1、ω2、V确定出所述状态比值β。
图7为本发明基站实施例二的结构示意图。本实施例提供的基站是与本发明图2实施例对应的装置实施例,具体实现过程在此不再赘述。具体的,本实施例提供的基站具体包括:
接收器31,用于接收终端发送的状态比值,所述状态比值表示所述基站与所述终端之间的第一信道状态与当前信道状态的比值,所述第一信道状态为所述基站与所述终端进行Los MIMO传输时需要满足的信道状态;
处理器32,用于根据所述接收器31接收到的所述状态比值确定用于LoS MIMO传输的天线阵列,并通过所述天线阵列与所述终端进行数据传输。
本发明实施例提供的基站,基站在接收到终端发送的状态比值后,根据 状态比值确定出用于LoS MIMO传输的天线阵列,并将阵列信息发送给终端,使得后续通信中,基站采用确定出的天线阵列与终端进行数据传输,实现移动通信中,当终端的物理位置变化时,基站通过自适应调整系统参数,实现LoS MIMO传输。
可选的,在本发明一实施例中,所述基站与所述终端之间的第一信道状态与当前信道状态的比值具体为:所述第一信道状态下的天线间距与最大天线数的乘积,与所述当前信道状态下基站的天线间距与传输天线个数的乘积的比值,其中,所述第一信道状态下的天线间距为所述第一信道状态下基站的天线间距,所述第一信道状态下的最大天线数为所述第一信道状态下,所述基站的天线个数与所述终端的天线个数中最大的一个。
可选的,在本发明一实施例中,所述处理器32,具体用于从天线阵列集合中确定出至少满足下述条件之一的天线阵列作为用于LoS MIMO传输的天线阵列:确定出的天线阵列的天线间距与所述第一信道状态下的天线间距的差值的绝对值最小、确定出的天线阵列的传输天线个数与所述第一信道状态下的最大天线个数的差值的绝对值最小
可选的,在本发明一实施例中,所述处理器32,具体用于调整所述当前信道状态对应的天线阵列,使得调整后的天线阵列至少满足下述条件之一:调整后的天线阵列的天线间距与所述第一信道状态下天线间距的差值的绝对值最小、调整后的天线阵列的传输天线个数与所述第一信道状态下的最大天线个数的差值的绝对值最小,并将调整后的天线阵列作为用于LoS MIMO传输的天线阵列。
可选的,在本发明一实施例中,所述处理器32从所述天线阵列集合中确定出的天线阵列具体为:所述天线阵列集合中dtn×Vn与β×(dt0×V0)的差的绝对值最小的天线阵列,其中,所述dtn为第n个天线阵列的天线间距,所述Vn为当用于Los MIMO传输的天线阵列为所述第n个天线阵列时,所述基站的天线个数与所述终端的天线个数中最大的一个,所述β为所述状态比值,所述dt0为所述当前信道状态下基站的天线间距,所述V0为所述当前信道状态下基站的传输天线个数,所述n为正整数,所述第n个天线阵列为确定出的用于Los MIMO传输的天线阵列。
可选的,在本发明一实施例中,所述处理器32,还用于在所述接收器31 接收终端发送的状态比值之后,判断所述状态比值是否落于预设的区间范围内;若所述处理器32判断出所述状态比值落于预设的区间范围内,则所述当前信道状态能够调整到适合LoS MIMO传输的信道状态;否则,所述当前信道状态无法调整到适合LoS MIMO传输的信道状态。
可选的,在本发明一实施例中,所述处理器32,具体用于若所述接收器31接收到的所述状态比值为1,则确定所述当前信道状态对应的天线阵列为用于LoS MIMO传输的天线阵列。
可选的,在本发明一实施例中,所述第一信道状态下,
Figure PCTCN2015080740-appb-000043
其中,所述λ为波长,所述R为所述基站与所述终端之间的收发间距,所述V为所述基站的天线个数与所述终端的天线个数中最大的一个,所述θt为发射端天线倾角,所述θr为接收端天线倾角,所述dt为发射端天线间距,所述dr为接收端天线间距,当所述终端发送上行数据时,所述终端为所述发射端,所述基站为所述接收端,当所述终端接收下行数据时,所述终端为所述接收端,所述基站为所述发射端。
图8为本发明终端实施例二的结构示意图。本实施例提供的终端是与本发明图4实施例对应的装置实施例,具体实现过程在此不再赘述。具体的,本实施例提供的终端具体包括:
处理器41,用于确定状态比值,所述状态比值表示所述基站与所述终端之间的第一信道状态与当前信道状态的比值,所述第一信道状态为所述基站与所述终端进行Los MIMO传输时需要满足的信道状态;
发送器42,用于向所述基站发送所述处理器41确定出的所述状态比值,以使所述基站根据所述状态比值确定用于LoS MIMO传输的天线阵列;
所述处理器41,还用于通过所述天线阵列与所述基站进行数据传输。
本发明实施例提供的终端,向基站发送状态比值后,由终端根据状态比值确定出用于LoS MIMO传输的天线阵列,并将阵列信息发送给终端,使得后续通信中,基站采用确定出的天线阵列与终端进行数据传输,实现移动通信中,当终端的物理位置变化时,基站通过自适应调整系统参数,实现LoS MIMO传输。
可选的,在本发明一实施例中,所述处理器41,还用于在所述发送器42向所述基站发送所述状态比值之前,判断所述状态比值是否落于预设的区间范围内;
若所述处理器41判断出所述状态比值落于预设的区间范围内,则所述发 送器42具体用于向所述基站发送所述状态比值或所述状态比值对应的索引;否则,向所述基站发送表示不适合LoS MIMO传输的条件数或所述条件数对应的索引。
可选的,在本发明一实施例中,所述处理器41,具体用于对所述当前信道的信道相关矩阵W进行特征值分解以确定出特征值矩阵Λ0;其中,
Figure PCTCN2015080740-appb-000044
Figure PCTCN2015080740-appb-000045
H为所述当前信道下发射端相邻两个天线到接收端天线构成的信道矩阵;
Figure PCTCN2015080740-appb-000046
Figure PCTCN2015080740-appb-000047
ω1、ω2为所述特征值,V为所述当前信道状态下的最大天线数,当所述终端发送上行数据时,所述终端为所述发射端,所述基站为所述接收端,当所述终端接收下行数据时,所述终端为所述接收端,所述基站为所述发射端;
根据所述ω1、ω2、V确定出所述状态比值β。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (33)

  1. 一种多输入多输出传输方法,其特征在于,包括:
    基站接收终端发送的状态比值,所述状态比值表示所述基站与所述终端之间的第一信道状态与当前信道状态的比值,所述第一信道状态为所述基站与所述终端进行Los MIMO传输时需要满足的信道状态;
    所述基站根据所述状态比值确定用于LoS MIMO传输的天线阵列;
    所述基站通过所述天线阵列与所述终端进行数据传输。
  2. 根据权利要求1所述的方法,其特征在于,所述基站与所述终端之间的第一信道状态与当前信道状态的比值具体为:所述第一信道状态下的天线间距与最大天线数的乘积,与所述当前信道状态下基站的天线间距与传输天线个数的乘积的比值,其中,所述第一信道状态下的天线间距为所述第一信道状态下基站的天线间距,所述第一信道状态下的最大天线数为所述第一信道状态下,所述基站的天线个数与所述终端的天线个数中最大的一个。
  3. 根据权利要求2所述的方法,其特征在于,所述基站根据所述状态比值确定用于LoS MIMO传输的天线阵列,包括:
    所述基站从天线阵列集合中确定出至少满足下述条件之一的天线阵列作为用于LoS MIMO传输的天线阵列:确定出的天线阵列的天线间距与所述第一信道状态下的天线间距的差值的绝对值最小、确定出的天线阵列的传输天线个数与所述第一信道状态下的最大天线个数的差值的绝对值最小。
  4. 根据权利要求2所述的方法,其特征在于,所述基站根据所述状态比值确定用于LoS MIMO传输的天线阵列,包括:
    所述基站调整所述当前信道状态对应的天线阵列,使得调整后的天线阵列至少满足下述条件之一:调整后的天线阵列的天线间距与所述第一信道状态下天线间距的差值的绝对值最小、调整后的天线阵列的传输天线个数与所述第一信道状态下的最大天线个数的差值的绝对值最小;
    所述基站将调整后的天线阵列作为用于LoS MIMO传输的天线阵列。
  5. 根据权利要求3所述的方法,其特征在于,所述基站从所述天线阵列集合中确定出的天线阵列具体为:所述天线阵列集合中dtn×Vn与β×(dt0×V0)的差的绝对值最小的天线阵列,其中,所述dtn为第n个天线阵列的天线间距,所述Vn为当用于Los MIMO传输的天线阵列为所述第n个天线阵列时,所述 基站的天线个数与所述终端的天线个数中最大的一个,所述β为所述状态比值,所述dt0为所述当前信道状态下基站的天线间距,所述V0为所述当前信道状态下基站的传输天线个数,所述n为正整数,所述第n个天线阵列为确定出的用于Los MIMO传输的天线阵列。
  6. 根据权利要求1~5任一项所述的方法,其特征在于,所述基站接收终端发送的状态比值之后,还包括:
    所述基站判断所述状态比值是否落于预设的区间范围内;
    若所述基站判断出所述状态比值落于预设的区间范围内,则所述当前信道状态能够调整到适合LoS MIMO传输的信道状态;否则,所述当前信道状态无法调整到适合LoS MIMO传输的信道状态。
  7. 根据权利要求1~5任一项所述的方法,其特征在于,所述基站根据所述状态比值确定用于LoS MIMO传输的天线阵列,包括:
    若所述状态比值为1,则确定所述当前信道状态对应的天线阵列为用于LoS MIMO传输的天线阵列。
  8. 根据权利要求1~5任一项所述的方法,其特征在于,所述第一信道状态下,
    Figure PCTCN2015080740-appb-100001
    其中,所述λ为波长,所述R为所述基站与所述终端之间的收发间距,所述V为所述基站的天线个数与所述终端的天线个数中最大的一个,所述θt为发射端天线倾角,所述θr为接收端天线倾角,所述dt为发射端天线间距,所述dr为接收端天线间距,当所述终端发送上行数据时,所述终端为所述发射端,所述基站为所述接收端,当所述终端接收下行数据时,所述终端为所述接收端,所述基站为所述发射端。
  9. 一种多输入多输出传输方法,其特征在于,包括:
    终端确定状态比值,所述状态比值表示所述基站与所述终端之间的第一信道状态与当前信道状态的比值,所述第一信道状态为所述基站与所述终端进行Los MIMO传输时需要满足的信道状态;
    所述终端向所述基站发送所述状态比值,以使所述基站根据所述状态比值确定用于LoS MIMO传输的天线阵列;
    所述终端通过所述天线阵列与所述基站进行数据传输。
  10. 根据权利要求9所述的方法,其特征在于,所述终端向所述基站发送所述状态比值之前,还包括:
    所述终端判断所述状态比值是否落于预设的区间范围内;
    若所述终端判断出所述状态比值落于预设的区间范围内,则向所述基站发送所述状态比值或所述状态比值对应的索引;否则,向所述基站发送表示不适合LoS MIMO传输的条件数或所述条件数对应的索引。
  11. 根据权利要求9或10所述的方法,其特征在于,所述终端确定状态比值,包括:
    所述终端对所述当前信道的信道相关矩阵W进行特征值分解以确定出特征值矩阵Λ0;其中,
    Figure PCTCN2015080740-appb-100002
    H为所述当前信道下发射端相邻两个天线到接收端天线构成的信道矩阵;
    Figure PCTCN2015080740-appb-100003
    Figure PCTCN2015080740-appb-100004
    ω1、ω2为所述特征值,V为所述当前信道状态下的最大天线数,当所述终端发送上行数据时,所述终端为所述发射端,所述基站为所述接收端,当所述终端接收下行数据时,所述终端为所述接收端,所述基站为所述发射端;
    根据所述ω1、ω2、V确定出所述状态比值β。
  12. 一种基站,其特征在于,包括:
    接收模块,用于接收终端发送的状态比值,所述状态比值表示所述基站与所述终端之间的第一信道状态与当前信道状态的比值,所述第一信道状态为所述基站与所述终端进行Los MIMO传输时需要满足的信道状态;
    处理模块,用于根据所述接收模块接收的所述状态比值确定用于LoS MIMO传输的天线阵列,并通过所述天线阵列与所述终端进行数据传输。
  13. 根据权利要求12所述的基站,其特征在于,所述基站与所述终端之间的第一信道状态与当前信道状态的比值具体为:所述第一信道状态下的天线间距与最大天线数的乘积,与所述当前信道状态下基站的天线间距与传输天线个数的乘积的比值,其中,所述第一信道状态下的天线间距为所述第一信道状态下基站的天线间距,所述第一信道状态下的最大天线数为所述第一信道状态下,所述基站的天线个数与所述终端的天线个数中最大的一个。
  14. 根据权利要求13所述的基站,其特征在于,所述处理模块,具体用于从天线阵列集合中确定出至少满足下述条件之一的天线阵列作为用于LoS  MIMO传输的天线阵列:确定出的天线阵列的天线间距与所述第一信道状态下的天线间距的差值的绝对值最小、确定出的天线阵列的传输天线个数与所述第一信道状态下的最大天线个数的差值的绝对值最小。
  15. 根据权利要求13所述的基站,其特征在于,所述处理模块,具体用于调整所述当前信道状态对应的天线阵列,使得调整后的天线阵列至少满足下述条件之一:调整后的天线阵列的天线间距与所述第一信道状态下天线间距的差值的绝对值最小、调整后的天线阵列的传输天线个数与所述第一信道状态下的最大天线个数的差值的绝对值最小,并将调整后的天线阵列作为用于LoS MIMO传输的天线阵列。
  16. 根据权利要求14所述的基站,其特征在于,所述处理模块从所述天线阵列集合中确定出的天线阵列具体为:所述天线阵列集合中dtn×Vn与β×(dt0×V0)的差的绝对值最小的天线阵列,其中,所述dtn为第n个天线阵列的天线间距,所述Vn为当用于Los MIMO传输的天线阵列为所述第n个天线阵列时,所述基站的天线个数与所述终端的天线个数中最大的一个,所述β为所述状态比值,所述dt0为所述当前信道状态下基站的天线间距,所述V0为所述当前信道状态下基站的传输天线个数,所述n为正整数,所述第n个天线阵列为确定出的用于Los MIMO传输的天线阵列。
  17. 根据权利要求12~16任一项所述的基站,其特征在于,所述处理模块,还用于在所述接收模块接收终端发送的状态比值之后,判断出所述状态比值是否落于预设的区间范围内;
    若所述处理模块判断出所述状态比值落于预设的区间范围内,则所述当前信道状态能够调整到适合LoS MIMO传输的信道状态;否则,所述当前信道状态无法调整到适合LoS MIMO传输的信道状态。
  18. 根据权利要求12~16任一项所述的基站,其特征在于,若所述接收模块接收到的所述状态比值为1,则所述处理模块确定所述当前信道状态对应的天线阵列为用于LoS MIMO传输的天线阵列。
  19. 根据权利要求12~16任一项所述的基站,其特征在于,所述第一信道状态下,
    Figure PCTCN2015080740-appb-100005
    其中,λ为波长,R为所述基站与所述终端之间的收发间距,V为所述基站的天线个数与所述终端的天线个数中最大的一个,θt为发射端天线倾角,θr为接收端天线倾角,dt为发射端天线间距,dr为接收端天线间距,当所述终端发送上行数据时,所述终端为所述发射端,所述基 站为所述接收端,当所述终端接收下行数据时,所述终端为所述接收端,所述基站为所述发射端。
  20. 一种终端,其特征在于,包括;
    处理模块,用于确定状态比值,所述状态比值表示所述基站与所述终端之间的第一信道状态与当前信道状态的比值,所述第一信道状态为所述基站与所述终端进行Los MIMO传输时需要满足的信道状态;
    发送模块,用于向所述基站发送所述处理模块确定出的所述状态比值,以使所述基站根据所述状态比值确定用于LoS MIMO传输的天线阵列,并通过所述天线阵列与所述基站进行数据传输。
  21. 根据权利要求20所述的终端,其特征在于,所述处理模块,还用于在所述发送模块向所述基站发送所述状态比值之前,判断所述状态比值是否落于预设的区间范围内;
    所述发送模块,用于若所述处理模块判断出所述状态比值落于预设的区间范围内,则向所述基站发送所述状态比值或所述状态比值对应的索引;否则,向所述基站发送表示不适合LoS MIMO传输的条件数或所述条件数对应的索引。
  22. 根据权利要求20或21所述的终端,其特征在于,所述处理模块,具体用于对所述当前信道的信道相关矩阵W进行特征值分解以确定出特征值矩阵Λ0;其中,
    Figure PCTCN2015080740-appb-100006
    H为所述当前信道下发射端相邻两个天线到接收端天线构成的信道矩阵;
    Figure PCTCN2015080740-appb-100007
    Figure PCTCN2015080740-appb-100008
    ω1、ω2为所述特征值,V为所述当前信道状态下的最大天线数,当所述终端发送上行数据时,所述终端为所述发射端,所述基站为所述接收端,当所述终端接收下行数据时,所述终端为所述接收端,所述基站为所述发射端;
    根据所述ω1、ω2、V确定出所述状态比值β。
  23. 一种基站,其特征在于,包括:
    接收器,用于接收终端发送的状态比值,所述状态比值表示所述基站与所述终端之间的第一信道状态与当前信道状态的比值,所述第一信道状态为 所述基站与所述终端进行Los MIMO传输时需要满足的信道状态;
    处理器,用于根据所述接收器接收到的所述状态比值确定用于LoS MIMO传输的天线阵列,并通过所述天线阵列与所述终端进行数据传输。
  24. 根据权利要求23所述的基站,其特征在于,所述基站与所述终端之间的第一信道状态与当前信道状态的比值具体为:所述第一信道状态下的天线间距与最大天线数的乘积,与所述当前信道状态下基站的天线间距与传输天线个数的乘积的比值,其中,所述第一信道状态下的天线间距为所述第一信道状态下基站的天线间距,所述第一信道状态下的最大天线数为所述第一信道状态下,所述基站的天线个数与所述终端的天线个数中最大的一个。
  25. 根据权利要求24所述的基站,其特征在于,所述处理器,具体用于从天线阵列集合中确定出至少满足下述条件之一的天线阵列作为用于LoS MIMO传输的天线阵列:确定出的天线阵列的天线间距与所述第一信道状态下的天线间距的差值的绝对值最小、确定出的天线阵列的传输天线个数与所述第一信道状态下的最大天线个数的差值的绝对值最小。
  26. 根据权利要求24所述的基站,其特征在于,所述处理器,具体用于调整所述当前信道状态对应的天线阵列,使得调整后的天线阵列至少满足下述条件之一:调整后的天线阵列的天线间距与所述第一信道状态下天线间距的差值的绝对值最小、调整后的天线阵列的传输天线个数与所述第一信道状态下的最大天线个数的差值的绝对值最小,并将调整后的天线阵列作为用于LoS MIMO传输的天线阵列。
  27. 根据权利要求25所述的基站,其特征在于,所述处理器从所述天线阵列集合中确定出的天线阵列具体为:所述天线阵列集合中dtn×Vn与β×(dt0×V0)的差的绝对值最小的天线阵列,其中,所述dtn为第n个天线阵列的天线间距,所述Vn为当用于Los MIMO传输的天线阵列为所述第n个天线阵列时,所述基站的天线个数与所述终端的天线个数中最大的一个,所述β为所述状态比值,所述dt0为所述当前信道状态下基站的天线间距,所述V0为所述当前信道状态下基站的传输天线个数,所述n为正整数,所述第n个天线阵列为确定出的用于Los MIMO传输的天线阵列。
  28. 根据权利要求23~27任一项所述的基站,其特征在于,所述处理器,还用于在所述接收器接收终端发送的状态比值之后,判断所述状态比值是否 落于预设的区间范围内;若所述处理器判断出所述状态比值落于预设的区间范围内,则所述当前信道状态能够调整到适合LoS MIMO传输的信道状态;否则,所述当前信道状态无法调整到适合LoS MIMO传输的信道状态。
  29. 根据权利要求23~27任一项所述的基站,其特征在于,所述处理器,具体用于若所述接收器接收到的所述状态比值为1,则确定所述当前信道状态对应的天线阵列为用于LoS MIMO传输的天线阵列。
  30. 根据权利要求23~27任一项所述的基站,其特征在于,所述第一信道状态下,
    Figure PCTCN2015080740-appb-100009
    其中,所述λ为波长,所述R为所述基站与所述终端之间的收发间距,所述V为所述基站的天线个数与所述终端的天线个数中最大的一个,所述θt为发射端天线倾角,所述θr为接收端天线倾角,所述dt为发射端天线间距,所述dr为接收端天线间距,当所述终端发送上行数据时,所述终端为所述发射端,所述基站为所述接收端,当所述终端接收下行数据时,所述终端为所述接收端,所述基站为所述发射端。
  31. 一种终端,其特征在于,包括:
    处理器,用于确定状态比值,所述状态比值表示所述基站与所述终端之间的第一信道状态与当前信道状态的比值,所述第一信道状态为所述基站与所述终端进行Los MIMO传输时需要满足的信道状态;
    发送器,用于向所述基站发送所述处理器确定出的所述状态比值,以使所述基站根据所述状态比值确定用于LoS MIMO传输的天线阵列;
    所述处理器,还用于通过所述天线阵列与所述基站进行数据传输。
  32. 根据权利要求31所述的终端,其特征在于,所述处理器,还用于在所述发送器向所述基站发送所述状态比值之前,判断所述状态比值是否落于预设的区间范围内;
    若所述处理器判断出所述状态比值落于预设的区间范围内,则所述发送器具体用于向所述基站发送所述状态比值或所述状态比值对应的索引;否则,向所述基站发送表示不适合LoS MIMO传输的条件数或所述条件数对应的索引。
  33. 根据权利要求32或33所述的终端,其特征在于,所述处理器,具体用于对所述当前信道的信道相关矩阵W进行特征值分解以确定出特征值矩阵Λ0;其中,
    Figure PCTCN2015080740-appb-100010
    H为所述当前信道下发射端相邻两个天线到接收端天线构成的信道矩阵;
    Figure PCTCN2015080740-appb-100011
    Figure PCTCN2015080740-appb-100012
    ω1、ω2为所述特征值,V为所述当前信道状态下的最大天线数,当所述终端发送上行数据时,所述终端为所述发射端,所述基站为所述接收端,当所述终端接收下行数据时,所述终端为所述接收端,所述基站为所述发射端;
    根据所述ω1、ω2、V确定出所述状态比值β。
PCT/CN2015/080740 2015-06-04 2015-06-04 多输入多输出传输方法、终端及基站 WO2016192070A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/080740 WO2016192070A1 (zh) 2015-06-04 2015-06-04 多输入多输出传输方法、终端及基站
CN201580080483.3A CN107615676B (zh) 2015-06-04 2015-06-04 多输入多输出传输方法、终端及基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/080740 WO2016192070A1 (zh) 2015-06-04 2015-06-04 多输入多输出传输方法、终端及基站

Publications (1)

Publication Number Publication Date
WO2016192070A1 true WO2016192070A1 (zh) 2016-12-08

Family

ID=57439914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/080740 WO2016192070A1 (zh) 2015-06-04 2015-06-04 多输入多输出传输方法、终端及基站

Country Status (2)

Country Link
CN (1) CN107615676B (zh)
WO (1) WO2016192070A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11956051B2 (en) 2020-03-26 2024-04-09 Telefonaktiebolaget Lm Ericsson (Publ) Multi-beam tracking for efficient and reliable mmWave communication among devices

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113258970B (zh) * 2020-02-10 2023-10-03 大唐移动通信设备有限公司 确定天线阵面切换的方法、终端及基站
CN115776317A (zh) * 2021-09-08 2023-03-10 华为技术有限公司 天线探测方法、装置、设备以及存储介质
WO2023141802A1 (en) * 2022-01-26 2023-08-03 Qualcomm Incorporated Signaling aspects of distance estimation for line of sight multiple input multiple output communications

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101061606A (zh) * 2004-11-18 2007-10-24 艾格瑞系统有限公司 用于多输入多输出无线局域网的天线布置
CN101536355A (zh) * 2006-10-10 2009-09-16 英特尔公司 具有全向和扇形定向天线模式的自适应多天线系统
CN103532647A (zh) * 2013-10-14 2014-01-22 无锡清华信息科学与技术国家实验室物联网技术中心 基于WiFi物理层时域特征的视距传播路径判断方法和系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7545867B1 (en) * 2003-05-14 2009-06-09 Marvell International, Ltd. Adaptive channel bandwidth selection for MIMO wireless systems
GB2478243B (en) * 2006-12-29 2011-11-02 Nokia Corp Improvements in or relating to distance estimation
KR101528782B1 (ko) * 2009-02-26 2015-06-15 삼성전자주식회사 다중 안테나 시스템에서 채널 환경에 따라 통신 방식을 변경하기 위한 장치 및 방법
CN102664669B (zh) * 2012-04-26 2015-03-25 厦门大学 一种提高室内分布式多输入多输出系统信道容量的方法
US9077407B2 (en) * 2012-05-15 2015-07-07 Broadcom Corporation Geometrical closed loop line of sight (LOS) multiple-input-multiple-output (MIMO)
US20140210666A1 (en) * 2013-01-25 2014-07-31 Alexander Maltsev Apparatus, system and method of wireless communication via an antenna array
CN103138818A (zh) * 2013-02-01 2013-06-05 深圳大学 一种mimo极化信道的去极化模型处理方法及其系统
CN104104419A (zh) * 2013-04-03 2014-10-15 中兴通讯股份有限公司 一种多天线通信系统的实现装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101061606A (zh) * 2004-11-18 2007-10-24 艾格瑞系统有限公司 用于多输入多输出无线局域网的天线布置
CN101536355A (zh) * 2006-10-10 2009-09-16 英特尔公司 具有全向和扇形定向天线模式的自适应多天线系统
CN103532647A (zh) * 2013-10-14 2014-01-22 无锡清华信息科学与技术国家实验室物联网技术中心 基于WiFi物理层时域特征的视距传播路径判断方法和系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11956051B2 (en) 2020-03-26 2024-04-09 Telefonaktiebolaget Lm Ericsson (Publ) Multi-beam tracking for efficient and reliable mmWave communication among devices

Also Published As

Publication number Publication date
CN107615676B (zh) 2020-10-09
CN107615676A (zh) 2018-01-19

Similar Documents

Publication Publication Date Title
US11251843B2 (en) Methods and devices for determining precoder parameters in a wireless communication network
US11569879B2 (en) Multi-beam codebooks with further optimized overhead
US10247808B2 (en) Location reporting for extremely high frequency (EHF) devices
US11336353B2 (en) Devices, methods and computer programs for wireless communication with rotational beam management
WO2022057918A1 (zh) 电子设备、无线通信方法以及计算机可读存储介质
JP7413544B2 (ja) チャネル相反性に基づくプリコーディングマトリックスの構成方法および装置
WO2012100533A1 (zh) 预编码处理方法、基站和通信系统
US11212647B2 (en) Location reporting of a wireless device
US9166662B1 (en) Methods and apparatus for antenna spoofing
JP2018510328A (ja) ワイヤレス通信デバイス間の距離を推定するための技法
US10103794B2 (en) Method and apparatus for determining parameters and conditions for line of sight MIMO communication
WO2018127126A1 (zh) 一种信道状态信息上报方法、基站和用户设备
CN110212952B (zh) 确定用于视距mimo通信的参数和条件的方法和装置
US9319117B2 (en) Codeword feedback method and receiver
WO2016192070A1 (zh) 多输入多输出传输方法、终端及基站
CN108012583B (zh) 传输信号的方法和设备
WO2013044824A1 (en) Robust transceiver design
EP2341638B1 (en) Iterave method and system for multiple user multiple input multiple output (Mu-Mimo) communication
US10320457B2 (en) Beam tracking method, apparatus, and system
WO2018094709A1 (zh) 一种确定预编码矩阵的方法、装置及系统
JP2010166316A (ja) Mimo通信システム
TW202139617A (zh) 更新波束成形碼簿的方法及無線通信裝置
WO2019157742A1 (zh) 信道状态信息矩阵信息处理方法及通信装置
WO2017088658A1 (zh) 获取信道信息的方法及装置
US20230291457A1 (en) Wireless communication device transmitting and receiving data using channel state information feedback and operating method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15893726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15893726

Country of ref document: EP

Kind code of ref document: A1