WO2016191905A1 - 数据传输方法及发送端设备 - Google Patents

数据传输方法及发送端设备 Download PDF

Info

Publication number
WO2016191905A1
WO2016191905A1 PCT/CN2015/080204 CN2015080204W WO2016191905A1 WO 2016191905 A1 WO2016191905 A1 WO 2016191905A1 CN 2015080204 W CN2015080204 W CN 2015080204W WO 2016191905 A1 WO2016191905 A1 WO 2016191905A1
Authority
WO
WIPO (PCT)
Prior art keywords
channels
radio frequency
channel
symbol
symbols
Prior art date
Application number
PCT/CN2015/080204
Other languages
English (en)
French (fr)
Inventor
吴涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/080204 priority Critical patent/WO2016191905A1/zh
Publication of WO2016191905A1 publication Critical patent/WO2016191905A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying

Definitions

  • the embodiments of the present invention relate to communication technologies, and in particular, to a data transmission method and a transmitting end device.
  • Wired-Fidelity Wireless Local Area Networks
  • Wireless-Fidelity WiFi for short
  • the 802.11ad system operates in the 60 GHz band and can be used to implement wireless high-definition audio and video signals transmission in the home. It can bring a more complete HD video solution for home multimedia applications, which can be called wireless Gigabit. (Wireless Gigabit, referred to as WiGig).
  • WiGig wireless Gigabit
  • the 60 GHz band can be divided into at least two channels. That is, at least two channels can be included in the 802.11ad system.
  • only a single radio channel single channel transmission mode is supported, that is, data corresponding to one channel can be transmitted through one radio frequency channel.
  • Embodiments of the present invention provide a data transmission method and a transmitting end device to improve the capacity of the system.
  • an embodiment of the present invention provides a data transmission method, which is applied to a wireless local area network WLAN in a 60 GHz band, where the method includes:
  • the modulating symbols of the at least two channels are interleaved, and determining the data symbols of each of the radio frequency channels includes:
  • the modulation symbols of the at least two channels are interleaved in a traveling listed form to obtain the first symbol matrix
  • Determining, according to the first symbol matrix and the number of channels of the at least one radio frequency channel, the data symbols of each radio frequency channel includes:
  • L is the number of channels of the at least one RF channel; The data symbol for the 1st RF channel.
  • the modulating symbols of the at least two channels are interleaved, and determining the data symbols of each of the radio frequency channels includes:
  • the modulation symbols of the at least two channels are interleaved in a column-out form, and obtaining the second symbol matrix includes :
  • Determining, according to the second symbol matrix and the number of channels of the at least one radio frequency channel, the data symbols of each of the radio frequency channels includes:
  • L is the number of channels of the at least one RF channel; The data symbol for the 1st RF channel.
  • the generating the each radio frequency channel according to the data symbol of each radio frequency channel includes:
  • the CP obtains data to be transmitted of each of the radio frequency channels.
  • the generating the each radio frequency according to the data symbols of each radio frequency channel includes:
  • a guard interval GI is added to obtain data to be transmitted of each of the radio frequency channels.
  • the embodiment of the present invention further provides a data transmission method, which is applied to a wireless local area network WLAN in a 60 GHz band, where the method includes:
  • the generating the data symbols of each radio frequency channel according to the precoding matrix and the modulation symbols of the at least two channels includes:
  • the preset coding matrix is a square matrix whose order is equal to the number of channels of the at least two channels;
  • the multiplying the preset coding matrix by the modulation symbols of the at least two channels to obtain the third symbol matrix includes :
  • k 1, 2, ..., K
  • M is the number of channels in the at least two channels
  • K is the number of symbols in the modulation symbols of each channel in a unit symbol period
  • T is the third symbol matrix
  • F is the precoding matrix
  • x m (k) is the kth symbol in the modulation symbol of the mth channel;
  • Determining, according to the third symbol matrix and the number of channels of the at least one radio frequency channel, the data symbols of each radio frequency channel includes:
  • L is the number of channels of the at least one RF channel; The data symbol for the 1st RF channel.
  • F is a Fourier transform matrix; the value of the m 2th row m 2 column in F is as follows (7):
  • F is an inverse Fourier transform matrix; the value of the m 2th row and the m 2th column in F is as follows (8) :
  • the embodiment of the present invention provides a transmitting end device, which is applied to a wireless local area network WLAN in a frequency band of 60 GHz, where the sending end device includes:
  • An interleaving module configured to interleave modulation symbols of the at least two channels, and determine data symbols of each of the at least one radio frequency channel;
  • a generating module configured to generate, according to the data symbols of each radio frequency channel, data to be sent of each radio frequency channel
  • the interleaving module is further configured to use the travel symbol of the modulation symbols of the at least two channels according to formula (1) Forming, interleaving, obtaining the first symbol matrix; determining, by using formula (2), data symbols of each of the radio frequency channels according to the first symbol matrix and the number of channels of the at least one radio frequency channel;
  • L is the number of channels of the at least one RF channel; The data symbol for the 1st RF channel.
  • the interleaving module is further configured to perform interleaving on a modulation symbol of the at least two channels in a form of a column to obtain a second symbol. a matrix; determining data symbols of each of the radio frequency channels according to the second symbol matrix and the number of channels of the at least one radio frequency channel.
  • the interleaving module is further configured to perform, by using a column, a modulation symbol of the at least two channels according to formula (3) The form is interleaved to obtain the second symbol matrix, and the data symbols of each of the radio frequency channels are determined according to the second symbol matrix and the number of channels of the at least one radio frequency channel by using formula (4);
  • L is the number of channels of the at least one RF channel; The data symbol for the 1st RF channel.
  • the generating module is further configured to map data symbols of each radio frequency channel Mapping the preset pilot symbols corresponding to each of the radio frequency channels to the at least one pilot subcarrier to obtain a symbol corresponding to each of the radio frequency channels in the frequency domain, to the at least one data subcarrier Performing an inverse Fourier transform IDFT on the symbol corresponding to each radio channel in the domain, and obtaining symbols corresponding to each of the radio frequency channels in the time domain, corresponding to each of the radio frequency channels in the time domain At the forefront of the symbol, a cyclic prefix CP is added to obtain data to be transmitted for each of the radio frequency channels.
  • the generating module is further configured to be used in a time domain of a data subcarrier. At the forefront of the data symbols of each radio channel, a guard interval GI is added to obtain data to be transmitted for each radio channel.
  • the embodiment of the present invention further provides a transmitting end device, which is applied to a wireless local area network WLAN in a frequency band of 60 GHz, where the sending end device includes:
  • a modulation module configured to perform code modulation on information bits corresponding to each of the at least two channels, to obtain modulation symbols of each channel;
  • an encoding module configured to encode, according to the precoding matrix, the modulation symbols of the at least two channels to obtain data symbols of each of the at least one radio frequency channel;
  • a generating module configured to generate, according to the data symbols of each radio frequency channel, data to be sent of each radio frequency channel
  • a sending module configured to send the to-be-sent data of each of the radio frequency channels on each of the radio frequency channels.
  • the coding module is further configured to: multiply the preset coding matrix by a modulation symbol of the at least two channels to obtain a third symbol a number matrix, the data symbols of each of the radio frequency channels are determined according to the third symbol matrix and the number of channels of the at least one radio frequency channel, where the preset coding matrix is a channel whose order is equal to the at least two channels The square of the number.
  • the coding module is further configured to multiply the preset coding matrix by the at least two by using a formula (5) a modulation symbol of the channel, the third symbol matrix is obtained, and the data symbol of each radio frequency channel is determined according to the third symbol matrix and the number of channels of the at least one radio frequency channel by using formula (6);
  • the processor is configured to enter information bits corresponding to each of the at least two channels.
  • Line coding modulation obtaining modulation symbols of each channel, interleaving modulation symbols of the at least two channels, determining data symbols of each radio frequency channel in at least one radio frequency channel, according to data of each radio frequency channel The symbol generates the to-be-sent data of each of the radio frequency channels;
  • the transmitter is configured to send, to the each radio frequency channel, data to be sent of each of the radio frequency channels.
  • the processor is further configured to perform interleaving on the modulation symbols of the at least two channels by using a travel listed manner to obtain the first symbol. a matrix; determining data symbols of each of the radio frequency channels according to the first symbol matrix and the number of channels of the at least one radio frequency channel.
  • the processor is further configured to use the travel symbol of the modulation symbols of the at least two channels according to formula (1)
  • the form is interleaved to obtain the first symbol matrix, and the data symbols of each of the radio frequency channels are determined according to the first symbol matrix and the number of channels of the at least one radio frequency channel by using formula (2);
  • L is the number of channels of the at least one RF channel; The data symbol for the 1st RF channel.
  • the processor is further configured to perform interleaving on a modulation symbol of the at least two channels in a column-out format to obtain a second symbol. a matrix, the data symbols of each of the radio frequency channels are determined according to the second symbol matrix and the number of channels of the at least one radio frequency channel.
  • the processor is further configured to perform, by using a column, a modulation symbol of the at least two channels according to formula (3) Interleaving in the form of obtaining the second symbol matrix, using equation (4) according to the second The symbol matrix and the number of channels of the at least one radio frequency channel determine data symbols of each of the radio frequency channels;
  • L is the number of channels of the at least one RF channel; The data symbol for the 1st RF channel.
  • the processor is further configured to map data symbols of each radio frequency channel Mapping the preset pilot symbols corresponding to each of the radio frequency channels to the at least one pilot subcarrier to obtain a symbol corresponding to each of the radio frequency channels in the frequency domain, to the at least one data subcarrier Performing an inverse Fourier transform IDFT on the symbol corresponding to each radio channel in the domain, and obtaining symbols corresponding to each of the radio frequency channels in the time domain, corresponding to each of the radio frequency channels in the time domain At the forefront of the symbol, a cyclic prefix CP is added to obtain data to be transmitted for each of the radio frequency channels.
  • the processor is further configured to be in a time domain of a data subcarrier. At the forefront of the data symbols of each radio channel, a guard interval GI is added to obtain data to be transmitted for each radio channel.
  • the embodiment of the present invention further provides a transmitting end device, which is applied to a wireless local area network WLAN in a frequency band of 60 GHz, where the transmitting end device includes: a processor and a transmitter;
  • the transmitter is configured to send, to the each radio frequency channel, data to be sent of each of the radio frequency channels.
  • the processor is further configured to: multiply the preset coding matrix by a modulation symbol of the at least two channels to obtain a third symbol.
  • a matrix the predetermined coding matrix is a square matrix whose order is equal to the number of channels of the at least two channels, and each of the radio frequencies is determined according to the third symbol matrix and the number of channels of the at least one radio frequency channel The data symbol of the channel.
  • the processor is further configured to: multiply the preset encoding matrix by the at least two by using formula (5) Modulating symbols of the channels, obtaining the third symbol matrix, determining the data symbols of each of the radio frequency channels according to the third symbol matrix and the number of channels of the at least one radio frequency channel by using formula (6);
  • k 1, 2, ..., K
  • M is the number of channels in the at least two channels
  • K is the number of symbols in the modulation symbols of each channel in a unit symbol period
  • T is the third symbol matrix
  • F is the precoding matrix
  • x m (k) is the kth symbol in the modulation symbol of the mth channel;
  • L is the number of channels of the at least one RF channel; The data symbol for the 1st RF channel.
  • F is a Fourier transform matrix; and the value of the m 2th row and the m 2th column in F is as follows: (7):
  • F is an inverse Fourier transform matrix; the value of the m 2th row and the m 2th column in F is as follows (8) :
  • the data transmission method and the transmitting end device of the embodiment of the present invention can be adjusted by adjusting at least two channels
  • the symbols are interleaved to determine data symbols for each of the at least one RF channel such that modulation symbols of the at least two channels are distributed to each of the RF channels, such that the data symbols are determined according to the data symbols of each of the RF channels
  • the data to be sent of each radio channel is transmitted, so that each radio channel can transmit data corresponding to the at least two channels, so that the capacity of the communication system is not limited by the number of radio channels of the transmitting device, and the communication is improved. The capacity of the system.
  • FIG. 1 is a schematic diagram of a scenario for transmitting data applicable to an embodiment of the present invention
  • FIG. 3 is a flowchart of a data transmission method according to Embodiment 2 of the present invention.
  • FIG. 5 is a flowchart of a data transmission method according to Embodiment 3 of the present invention.
  • FIG. 6 is a data structure diagram of data to be transmitted of each radio frequency channel according to Embodiment 3 of the present invention.
  • FIG. 7 is another data structure diagram of data to be transmitted of each radio frequency channel according to Embodiment 3 of the present invention.
  • FIG. 9 is a schematic structural diagram of a device at a transmitting end according to Embodiment 5 of the present invention.
  • FIG. 10 is a schematic structural diagram of another device at a transmitting end according to Embodiment 5 of the present invention.
  • FIG. 11 is a schematic structural diagram of still another transmitting end device according to Embodiment 5 of the present invention.
  • FIG. 13 is a schematic structural diagram of another device at a transmitting end according to Embodiment 6 of the present invention.
  • FIG. 14 is a schematic structural diagram of still another transmitting end device according to Embodiment 6 of the present invention.
  • FIG. 15 is a schematic structural diagram of a device at a transmitting end according to Embodiment 7 of the present invention.
  • FIG. 16 is a schematic structural diagram of a device at a transmitting end according to Embodiment 8 of the present invention.
  • the technical solutions of the embodiments of the present invention can be applied to an Orthogonal Frequency Division Multiplexing (OFDM) system, for example, a WLAN system, especially WiFi.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the method of the embodiments of the present invention can also be applied to a single carrier (SC) system.
  • SC single carrier
  • the methods of embodiments of the present invention may also apply other types of OFDM systems.
  • the embodiments of the present invention are not limited herein.
  • the STA may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), or A wireless device (such as Wi-Fi) communication function of a handheld device, a computing device, or other processing device connected to a wireless modem.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • a wireless device such as Wi-Fi communication function of a handheld device, a computing device, or other processing device connected to a wireless modem.
  • the sending end device and the receiving end device may also be an Access Point (AP) in the WLAN, and the access point may be used to communicate with the access terminal through the wireless local area network, and transmit the data of the access terminal to the network. Side, or transmit data from the network side to the access terminal.
  • the receiving end device may be a communication peer corresponding to the sending end device.
  • FIG. 1 is a schematic diagram of a scenario for transmitting data applicable to an embodiment of the present invention.
  • the scenario system shown in FIG. 1 may be a WLAN system.
  • the system of FIG. 1 includes one or more access points AP 101 and one or more site STAs 102.
  • FIG. 1 exemplifies one access point and two sites.
  • Wireless communication can be made between the access point 101 and the site 102 by various standards. Among them, access point 101 and site Multi-User Multiple-Input Multiple-Output (MU-MIMO) can be used for wireless communication between 102s.
  • MU-MIMO Multi-User Multiple-Input Multiple-Output
  • Embodiments of the present invention are applicable to both 802.11ad systems and later more advanced communication systems, such as WLANs operating in the 60 GHz band.
  • the 802.11ad system can be applied to point-to-point short-range wireless high-definition audio and video signal transmission, wireless access, backhaul, point-to-multipoint transmission and other scenarios.
  • Embodiment 1 of the present invention provides a data transmission method.
  • the method of this embodiment can be performed by a transmitting device.
  • the sender device can be a site or an access point.
  • the transmitting device is an access point
  • the receiving device is a site; when the transmitting device is a site, the receiving device is an access point.
  • FIG. 2 is a flowchart of a data transmission method according to Embodiment 1 of the present invention.
  • the method shown in FIG. 2 is applied to a WLAN system in the 60 GHz band, and the method may include:
  • S201 Perform coding and modulation on information bits corresponding to each of the at least two channels to obtain modulation symbols for each channel.
  • the at least two channels may, for example, comprise four channels, each having a bandwidth of 2.16 GHz.
  • the information bits corresponding to each channel may be digital baseband signals generated by a signal source of the transmitting device.
  • the information bits corresponding to each channel may be a bit stream composed of at least one bit.
  • the information bits corresponding to different channels in the at least two channels may be different, that is, the information bits corresponding to the different channels may be bit streams composed of different bits.
  • the information bits corresponding to each channel are coded and modulated, for example, the bit stream of the information bits corresponding to each channel is subjected to encryption, channel coding, and the like to generate a coded symbol, and then the coded symbol is adopted by using a preset modulation mode. Modulation is performed to obtain modulation symbols for each channel.
  • the transmitting end device may encode and modulate information bits corresponding to each channel by using a coding and modulation module corresponding to each channel.
  • the code modulation module corresponding to each channel can be integrated into the internal device of the transmitting device as a single channel data processor of the transmitting device.
  • the coding and modulation module corresponding to each channel may perform the same coding and debugging mode for encoding and modulating information bits corresponding to different channels in the at least two channels.
  • S202 Interleave the modulation symbols of the at least two channels to determine data symbols of each of the at least one radio frequency channel.
  • One of the at least one RF channel may correspond to one transmit antenna of the transmitting device. That is, the number of radio channels of the transmitting device is the transmitting day of the transmitting device. The number of lines.
  • Interleaving the modulation symbols of the at least two channels may be to reorder the modulation symbols of the at least two channels, and then determining the data symbols of each radio frequency channel according to the reordered symbols, so that the at least two channels may be Modulation symbols are distributed to the at least two radio frequency channels. That is, the data symbols of each of the radio frequency channels may include partial symbols of the at least two channels.
  • the modulation symbols of the at least two channels are interleaved, for example, the modulation symbols of the at least two channels may be interleaved by the multi-channel interleaver of the transmitting device device, thereby modulating the at least two channels.
  • the symbols are reordered to form a new sequence of symbols consisting of modulation symbols of the at least two channels, thereby aggregating the at least two channels into one channel.
  • the new symbol sequence is the modulation symbol of the aggregated one channel.
  • the multi-channel interleaver can be implemented, for example, in the form of software and/or hardware.
  • S203 Generate data to be sent for each radio frequency channel according to the data symbols of each radio frequency channel.
  • the data structure of the data part is different in the radio frame structure sent by the sending end device, so the transmitting end device may determine, for example, each radio frequency channel according to different carrier transmission modes. Data to be sent.
  • the transmitting device may send the to-be-sent data of each radio channel on a single carrier of each radio channel. If the carrier transmission is a multi-carrier transmission mode, the transmitting device may send the to-be-sent data of each radio channel on the multiple carriers of each radio channel.
  • Embodiment 2 of the present invention further provides a data transmission method.
  • FIG. 3 is a flowchart of a data transmission method according to Embodiment 2 of the present invention. As shown in FIG. 3, the method is performed on the basis of the foregoing embodiment.
  • the modulation symbols of the at least two channels are interleaved in the foregoing S202, and determining the data symbols of each radio channel may include:
  • S302. Determine data symbols of each radio frequency channel according to the first symbol matrix and the number of channels of the at least one radio frequency channel.
  • the modulation symbols of the at least two channels are interleaved in a manner listed in the manner of travel.
  • Obtaining the first symbol matrix may include:
  • the modulation symbols of the at least two channels are interleaved in a traveling list form to obtain the first symbol matrix
  • formula (1) can be:
  • the unit symbol period refers to an Orthogonal Frequency Division Multiplexing (OFDM) symbol period.
  • T(m,k) is a parameter of the mth row and kth column in the first symbol matrix.
  • the modulation symbol x 1 (k) of the first channel of the two channels may be x 1 (1), x 1 (2), ..., x 1 (K).
  • the modulation symbol x 2 (k) of the second channel of the two channels may be x 2 (1), x 2 (2), ..., x 2 (K).
  • the first symbol matrix T can be obtained according to the modulation symbols of the two channels and the formula (1).
  • Determining, according to the first symbol matrix and the number of channels of the at least one radio frequency channel, the data symbols of each radio frequency channel may include:
  • L is the number of channels of the at least one RF channel;
  • the L is 1.
  • the data symbols y 1 (1), y 1 (2), ..., y 1 (2*K) of the one radio frequency channel can be x 1 ( 1), x 2 (1), x 1 (2), x 2 (2), ..., x 1 (K), x 2 (K).
  • the L is 2.
  • the data symbols y 1 (1), y 1 (2), ..., y 1 (K) of the first RF channel of the two RF channels can be sequentially for
  • the data symbols y 2 (1), y 2 (2), ..., y 2 (K) of the second RF channel of the two RF channels may be
  • Embodiment 2 of the present invention further provides another data transmission method.
  • FIG. 4 is a flowchart of another data transmission method according to Embodiment 2 of the present invention. As shown in FIG. 4, the method is performed on the basis of the foregoing embodiment.
  • the modulation symbols of the at least two channels are interleaved in the foregoing S202, and determining the data symbols of each radio channel may include:
  • S401 Interleave the modulation symbols of the at least two channels and the form that is performed by using a column to obtain a second symbol matrix.
  • S402. Determine data symbols of each radio frequency channel according to the second symbol matrix and the number of channels of the at least one radio frequency channel.
  • the modulation symbols of the at least two channels are interleaved in a column-out form to obtain the second symbol matrix.
  • formula (3) can be:
  • T(m, k) is a parameter of the kth row and m columns in the second symbol matrix.
  • the number of channels in the at least two channels may be 2.
  • the modulation symbol x 1 (k) of the first channel of the two channels may be x 1 (1), x 1 (2), ..., x 1 (K).
  • the modulation symbol x 2 (k) of the second channel of the two channels may be x 2 (1), x 2 (2), ..., x 2 (K).
  • the second symbol matrix T can be obtained according to the modulation symbols of the two channels and the formula (3).
  • determining, in S402, the data symbols of each of the radio frequency channels according to the second symbol matrix and the number of channels of the at least one radio frequency channel including:
  • the data symbols of each of the radio frequency channels are determined according to the second symbol matrix and the number of channels of the at least one radio frequency channel.
  • L is the number of channels of the at least one RF channel;
  • the L is 1.
  • the data symbols y 1 (1), y 1 (2), ..., y 1 (2*K) of the one radio frequency channel can be x 1 ( 1), x 2 (1), x 1 (2), x 2 (2), ..., x 1 (K), x 2 (K).
  • the L is 2.
  • the data symbols y 1 (1), y 1 (2), ..., y 1 (K) of the first RF channel of the two RF channels can be sequentially for
  • the data symbols y 2 (1), y 2 (2), ..., y 2 (K) of the second RF channel of the two RF channels may be
  • the data symbol of each radio frequency channel may further include a part of the at least two channels, by implementing an implementation of interleaving the modulation symbols of the at least two channels.
  • the modulation symbols are distributed on the frequency band corresponding to the at least one radio frequency channel to realize the diversity transmission of the debug symbols in the frequency domain, thereby improving the capacity of the system.
  • Embodiment 3 of the present invention further provides a data transmission method.
  • FIG. 5 is a flowchart of a data transmission method according to Embodiment 3 of the present invention. As shown in FIG. 5, the method is based on the foregoing embodiment.
  • the generating, by the S203, the data to be sent of each radio channel according to the data symbols of each radio channel may include:
  • the symbol corresponding to each radio frequency channel in the frequency domain includes: a symbol corresponding to each radio frequency channel at a frequency point corresponding to 512 sub-carriers.
  • An inverse Fourier transform is performed on the symbol corresponding to each of the radio frequency channels in the frequency domain, and the symbol corresponding to each radio frequency channel of the unit symbol period in the time domain obtained includes 512 symbols in the time domain.
  • FIG. 6 is a data structure diagram of data to be transmitted of each radio frequency channel according to Embodiment 3 of the present invention.
  • the data to be transmitted of each radio channel in a unit symbol period includes data composed of 128 symbols and CP and 512 symbols. Where CP is the last 128 symbols of the 512 symbols.
  • determining, according to the data symbols of each radio channel, the data to be sent of each radio channel may be:
  • a guard interval is added to the front end of the data symbol of each radio channel in the time domain of a data subcarrier, and data to be transmitted of each radio channel is obtained.
  • FIG. 7 is another data structure diagram of data to be transmitted of each radio frequency channel according to Embodiment 3 of the present invention.
  • the data to be transmitted of each radio channel in a unit symbol period includes data composed of 64 symbols and 448 symbols generated after modulation of a 64-bit Golay sequence. That is, the GI is 64 symbols generated after modulation of the 64-bit Gray sequence.
  • the data transmission method of the third embodiment of the present invention further provides an implementation scheme for determining data to be transmitted corresponding to the radio frequency channel corresponding to different carrier transmission modes, which can make the data transmission method more practical, thereby improving different transmission modes.
  • the capacity of the system is not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to be transmitted corresponding to the radio frequency channel corresponding to different carrier transmission modes, which can make the data transmission method more practical, thereby improving different transmission modes.
  • the sending end device may transform the modulation symbols of the at least two channels by using a precoding matrix to form a symbol matrix composed of a plurality of symbol sequences, and then aggregate the at least two channels into one channel.
  • the plurality of symbol sequences are modulation symbols of the aggregated one channel.
  • the transmitting end device includes a transmitting antenna, that is, the at least one radio frequency channel includes a radio frequency channel
  • the transmitting end device further determines the one radio frequency channel according to the new symbol sequence sequentially formed by the plurality of symbol sequences output by the multi-channel interleaver Data symbol. If the transmitting end device includes at least two transmitting antennas, that is, the at least one radio frequency channel includes at least two radio frequency channels, the transmitting end device further needs to determine each of the at least two radio frequency channels according to the plurality of symbol sequences. The symbols are then determined based on the symbols of each of the RF channels, respectively.
  • the generating, by the S802, the data symbols of each of the at least one radio frequency channel according to the precoding matrix and the modulation symbols of the at least two channels may include:
  • the preset coding matrix is multiplied by the modulation symbols of the at least two channels, and obtaining the third symbol matrix includes:
  • the third symbol matrix is obtained by multiplying the preset encoding matrix by the modulation symbols of the at least two channels by using equation (5).
  • k 1, 2, ..., K
  • M is the number of channels in the at least two channels
  • K is the number of symbols in the modulation symbols of each channel in a unit symbol period
  • T is the third symbol matrix
  • F is the precoding matrix, and the predetermined coding matrix is a square matrix whose order is equal to the number of channels of the at least two channels
  • x m (k) is the kth symbol in the modulation symbol of the mth channel.
  • determining, according to the third symbol matrix and the number of channels of the at least one radio frequency channel, the data symbols of each radio frequency channel including:
  • the data symbols of each of the radio frequency channels are determined according to the third symbol matrix and the number of channels of the at least one radio frequency channel.
  • L is the number of channels of the at least one RF channel;
  • the precoding matrix is a matrix of 2 rows and 2 columns.
  • the modulation symbol x 1 (k) of the first channel of the two channels may be x 1 (1), x 1 (2), ..., x 1 (K).
  • the modulation symbol x 2 (k) of the second channel of the two channels may be x 2 (1), x 2 (2), ..., x 2 (K).
  • the L is 1. According to the formula (6) and the third symbol matrix, it can be determined that the data symbols y 1 (1), y 1 (2), ..., y 1 (2*K) of the one radio frequency channel can be z 1 ( 1), z 1 (2), ..., z 1 (K), z 1 (1), z 1 (2), ..., z 1 (K).
  • the data symbols y 1 (1), y 1 (2), ..., y 1 (K) of the first RF channel of the two RF channels can be determined.
  • the data symbols y 2 (1), y 2 (2), ..., y of the second RF channel of the two RF channels 2 (K) may be z 2 (1), z 2 (2), ..., z 2 (K) in order.
  • the F is the Fourier transform matrix;
  • F in the equation is an m-th row of the m 2 row (7):
  • M may be 2
  • F may be
  • F is the inverse Fourier transform matrix; shown in F m 1 -th row m 2 column is the following equation (8):
  • M may be 2
  • F may be
  • determining, according to the data symbols of each radio channel, the data to be sent of each radio channel may be:
  • the Cyclic Prefix may be a symbol corresponding to each RF channel in the time domain, that is, 128 symbols at the last end of the 512 symbols.
  • the data transmission method of the fourth embodiment of the present invention may transform the modulation symbols of the at least two channels according to the precoding matrix to determine data symbols of each of the at least one radio frequency channel, so that the modulation symbol distribution of the at least two channels Up to each of the radio frequency channels, and thus the data to be transmitted of each of the radio frequency channels generated according to the data symbols of each of the radio frequency channels is transmitted, so that each of the radio frequency channels can transmit data corresponding to the at least two channels.
  • the capacity of the communication system is not limited by the number of radio frequency channels of the transmitting device, and the capacity of the communication system is increased.
  • the fourth embodiment further provides an implementation of interleaving the modulation symbols of the at least two channels, which can better ensure that the data symbols of each radio frequency channel can include partial modulation symbols of the at least two channels, thereby The modulation symbols of each channel are distributed on the frequency band corresponding to the at least one radio frequency channel, and the diversity transmission of the debug symbols in the frequency domain is implemented to improve the capacity of the system.
  • the data transmission method of the fourth embodiment of the present invention further provides an implementation scheme for determining the to-be-sent data corresponding to the radio frequency channel corresponding to multiple different carrier transmission modes, which can make the data transmission method more practical, thereby improving different transmissions. The capacity of the system in the mode.
  • the modulating module 901 is configured to perform code modulation on information bits corresponding to each of the at least two channels to obtain modulation symbols for each channel.
  • the interleaving module 902 is configured to interleave the modulation symbols of the at least two channels to determine data symbols of each of the at least one radio frequency channel.
  • the generating module 903 is configured to generate data to be sent of each radio frequency channel according to the data symbols of each radio frequency channel.
  • the sending module 904 is configured to send, to the each radio frequency channel, the data to be sent of each radio channel.
  • the interleaving module 902 is further configured to perform interleaving on the modulation symbols of the at least two channels in a traveling listed manner to obtain a first symbol matrix; and according to the first symbol matrix and the channel of the at least one radio frequency channel. The number determines the data symbol for each RF channel.
  • L is the number of channels of the at least one RF channel; The data symbol for the 1st RF channel.
  • the interleaving module 902 is further configured to perform interleaving on the modulation symbols of the at least two channels in a column-out format to obtain a second symbol matrix; and according to the second symbol matrix and the channel of the at least one radio frequency channel The number determines the data symbol for each RF channel.
  • the interleaving module 902 is further configured to interleave the modulation symbols of the at least two channels by using a column according to the formula (3), to obtain the second symbol matrix, and adopt the formula (4)
  • the data symbols of each of the radio frequency channels are determined according to the second symbol matrix and the number of channels of the at least one radio frequency channel.
  • L is the number of channels of the at least one RF channel; The data symbol for the 1st RF channel.
  • Embodiment 5 of the present invention further provides another sender device.
  • FIG. 10 is a schematic structural diagram of another device at a transmitting end according to Embodiment 5 of the present invention. As shown in FIG. 10, the transmitting device 900 is based on the foregoing FIG. 9, wherein the generating module 903 may include a mapping unit 1001, a transform unit 1002, and an adding unit 1003.
  • the mapping unit 1001 is configured to map the data symbols of each radio frequency channel to at least one data subcarrier, and map the preset pilot symbols corresponding to each radio frequency channel to at least one pilot subcarrier to obtain a frequency domain. The symbol corresponding to each RF channel.
  • the transform unit 1002 is configured to perform IDFT on the symbol corresponding to each radio frequency channel in the frequency domain, and obtain a symbol corresponding to each radio frequency channel in the time domain.
  • the adding unit 1003 is configured to add a CP to obtain the to-be-sent data of each radio frequency channel at the forefront of the symbol corresponding to each of the radio frequency channels in the time domain.
  • Embodiment 5 of the present invention further provides another sending end device.
  • FIG. 11 is a schematic structural diagram of still another transmitting end device according to Embodiment 5 of the present invention. As shown in FIG. 11, the transmitting device 900 is based on the foregoing FIG. 9, wherein the generating module 903 can include: an adding unit 1101.
  • the adding unit 1101 is further configured to add a GI to obtain a to-be-sent data of each of the radio frequency channels at a front end of the data symbols of each of the radio frequency channels in a time domain of one data subcarrier.
  • the transmitting device described in FIG. 10 above may be applicable to multi-carrier transmission, and the transmitting device illustrated in FIG. 11 may be applicable to single-carrier transmission.
  • the transmitting device 900 of the embodiment of the present invention may include at least one antenna, that is, at least one radio frequency channel.
  • the mapping The unit 1001, the transform unit 1002, and the adding unit 1003 may respectively include at least one subunit independently of each other to respectively acquire data to be transmitted of each radio frequency channel in the at least one radio frequency channel.
  • the adding unit 1101 in the transmitting device 900 shown in FIG. 11 may also include at least one subunit independently of each other to respectively acquire data to be transmitted of each radio frequency channel in the at least one radio frequency channel.
  • Embodiment 6 of the present invention further provides a transmitting end device.
  • FIG. 12 is a schematic structural diagram of a device at a transmitting end according to Embodiment 6 of the present invention.
  • the transmitting device 900 shown in FIG. 12 can be applied to a WLAN in a 60 GHz band.
  • the source device 1200 includes:
  • the modulation module 1201 is configured to perform code modulation on information bits corresponding to each channel of the at least two channels to obtain modulation symbols of each channel.
  • the encoding module 1202 is configured to encode the modulation symbols of the at least two channels according to the precoding matrix to obtain data symbols of each of the at least one radio frequency channel;
  • the generating module 1203 is configured to generate data to be sent of each radio frequency channel according to the data symbols of each radio frequency channel.
  • the sending module 1204 is configured to send the to-be-sent data of each of the radio frequency channels on each of the radio frequency channels.
  • the encoding module 1202 is further configured to multiply the preset encoding matrix by the modulation symbols of the at least two channels to obtain a third symbol matrix; the preset encoding matrix is a channel whose order is equal to the at least two channels a square matrix of numbers; determining data symbols of each of the radio frequency channels according to the third symbol matrix and the number of channels of the at least one radio frequency channel.
  • the encoding module 1202 is further configured to use the formula (5) to multiply the preset encoding matrix by the modulation symbols of the at least two channels, to obtain the third symbol matrix, and use the formula (6) according to the third symbol.
  • the matrix and the number of channels of the at least one RF channel determine the data symbols for each of the RF channels.
  • k 1, 2, ..., K
  • M is the number of channels in the at least two channels
  • K is the number of symbols in the modulation symbols of each channel in the unit symbol period
  • T is the third symbol matrix
  • F is the precoding matrix
  • x m (k) is the kth symbol in the modulation symbol of the mth channel.
  • L is the number of channels of the at least one RF channel; The data symbol for the 1st RF channel.
  • F is a Fourier transform matrix
  • F is an inverse Fourier transform matrix; the value of the m 2th row of the m 2th column in F is as follows (8):
  • Embodiment 6 of the present invention further provides a transmitting end device.
  • FIG. 13 is a schematic structural diagram of another transmitting device according to Embodiment 6 of the present invention. As shown in FIG. 13, the transmitting device 1200 can be based on the foregoing FIG. 12, wherein the generating module 1202 can include a mapping unit 1301, a transform unit 1302, and an adding unit 1303.
  • the mapping unit 1301 is further configured to map the data symbols of each radio frequency channel to the at least one data subcarrier, and map the preset pilot symbols corresponding to each radio frequency channel to the at least one pilot subcarrier to obtain A symbol corresponding to each of the radio frequency channels in the frequency domain.
  • the adding unit 1303 is configured to add a CP to obtain the to-be-sent data of each radio frequency channel at the forefront of the symbol corresponding to each of the radio frequency channels in the time domain.
  • Embodiment 6 of the present invention further provides another transmitting end device.
  • FIG. 14 is a schematic structural diagram of still another transmitting end device according to Embodiment 6 of the present invention. As shown in FIG. 14, the transmitting device 1200 is based on the foregoing description of FIG. 12, wherein the generating module 1202 may include: an adding unit 1401.
  • the adding unit 1401 is configured to add a GI to obtain a to-be-sent data of each of the radio frequency channels at a front end of the data symbols of each of the radio frequency channels in a time domain of one data subcarrier.
  • the transmitting end device described in FIG. 13 above is applicable to multi-carrier transmission, and the transmitting end described in FIG. The device is suitable for single carrier transmission.
  • the transmitting device 1200 of the embodiment of the present invention may include at least one antenna, that is, at least one radio frequency channel.
  • the mapping unit 1301, the transforming unit 1302, and the adding unit 1303 may respectively include at least one subunit independently of each other to respectively acquire the radio frequency channels in the at least one radio frequency channel to be sent. data.
  • the adding unit 1401 in the transmitting device 120 shown in FIG. 14 may also include at least one subunit independently of each other to respectively acquire data to be transmitted of each radio frequency channel in the at least one radio frequency channel.
  • Embodiment 7 of the present invention provides a transmitting end device.
  • FIG. 15 is a schematic structural diagram of a device at a transmitting end according to Embodiment 7 of the present invention. As shown in FIG. 15, the transmitting device 1500 can be applied to a WLAN in a 60 GHz band, and the transmitting device 1500 includes a processor 1501 and a transmitter 1502.
  • the processor 1501 is configured to perform code modulation on information bits corresponding to each channel of the at least two channels, obtain modulation symbols of each channel, interleave modulation symbols of the at least two channels, and determine at least one radio frequency.
  • the data symbols of each radio channel in the channel generate data to be transmitted for each radio channel according to the data symbols of each radio channel.
  • the processor 1501 is further configured to perform interleaving on the modulation symbols of the at least two channels in a traveling listed manner to obtain a first symbol matrix, and according to the first symbol matrix and the channel of the at least one radio frequency channel. The number determines the data symbol for each RF channel.
  • the processor 1501 is further configured to perform interleaving on the modulation symbols of the at least two channels according to the formula (1) by using a traveling list, to obtain the first symbol matrix, according to the first formula (2).
  • the symbol matrix and the number of channels of the at least one radio frequency channel determine data symbols for each of the radio frequency channels.
  • L is the number of channels of the at least one RF channel; The data symbol for the 1st RF channel.
  • the processor 1501 is further configured to perform interleaving on the modulation symbols of the at least two channels in a column-out format to obtain a second symbol matrix, according to the second symbol matrix and the channel of the at least one radio frequency channel. The number determines the data symbol for each RF channel.
  • L is the number of channels of the at least one RF channel; The data symbol for the 1st RF channel.
  • the processor 1501 is further configured to map the data symbols of each radio channel to the at least one data subcarrier, and map the preset pilot symbols corresponding to each radio channel to the at least one pilot subcarrier.
  • the symbol corresponding to each radio channel in the frequency domain is obtained, and the symbol corresponding to each radio channel in the frequency domain is IDFT, and the symbol corresponding to each radio channel in the time domain is obtained, in the time domain.
  • a CP is added to obtain data to be transmitted for each RF channel.
  • the processor 1501 is further configured to add a GI to obtain a to-be-sent data of each radio frequency channel at a front end of a data symbol of each of the radio frequency channels in a time domain of one data subcarrier.
  • Embodiment 8 of the present invention further provides a transmitting end device.
  • FIG. 16 is a schematic structural diagram of a device at a transmitting end according to Embodiment 8 of the present invention.
  • the transmitting device 1600 of FIG. 16 can be applied to a WLAN in the 60 GHz band.
  • the transmitting device 1600 includes a processor 1601 and a transmitter 1602.
  • the processor 1601 is configured to perform code modulation on information bits corresponding to each channel of the at least two channels, obtain modulation symbols of each channel, and generate at least one radio frequency channel according to the precoding matrix and the modulation symbols of the at least two channels.
  • the data symbols of each of the RF channels generate data to be transmitted for each of the RF channels according to the data symbols of each of the RF channels.
  • the transmitter 1602 is configured to send the to-be-sent data of each of the radio frequency channels on each of the radio frequency channels.
  • the processor 1601 is further configured to: multiply the preset coding matrix by the modulation symbols of the at least two channels to obtain a third symbol matrix; and according to the third symbol matrix and the number of channels of the at least one radio frequency channel The data symbols of each of the RF channels are determined, and the preset coding matrix is a square matrix whose order is equal to the number of channels of the at least two channels.
  • the processor 1601 is further configured to use the formula (5) to multiply the preset encoding matrix by the modulation symbols of the at least two channels, to obtain the third symbol matrix, and use the formula (6) according to the third symbol.
  • the matrix and the number of channels of the at least one RF channel determine the data symbols for each of the RF channels.
  • k 1, 2, ..., K
  • M is the number of channels in the at least two channels
  • K is the number of symbols in the modulation symbols of each channel in a unit symbol period
  • T is the third symbol matrix
  • F is the precoding matrix
  • x m (k) is the kth symbol in the modulation symbol of the mth channel.
  • L is the number of channels of the at least one RF channel; The data symbol for the 1st RF channel.
  • F is the Fourier transform matrix; F. In an m-th row of the m 2 value of the following formula (7).
  • F is an inverse Fourier transform matrix; the value of the m 2th row of the m 2th column in F is as follows (8).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种数据传输方法及发送端设备。本发明的数据传输方法包括对至少两个信道的信息比特进行编码调制获得至少两个信道的调制符号,对调制符号交织确定射频通道的数据符号,根据射频通道的数据符号生成射频通道的待发送数据并进行发送。本发明实施例可提高通信系统的容量。

Description

数据传输方法及发送端设备 技术领域
本发明实施例涉及通信技术,尤其涉及一种数据传输方法及发送端设备。
背景技术
电气和电子工程师协会(Institute of Electrical and Electronic Engineers,简称IEEE)提出的无线局域网(Wireless Local Area Networks,简称WLAN)的技术标准,802.11版本历经802.11a,802.11b,802.11d,802.11n和802.11ac等各个版本,技术越来越成熟,使得无线仿真(WIreless-Fidelity,简称WiFi)系统即WLAN系统的传输速度越来越快。
802.11ad系统作为802.11系统的一个子系统,工作频段为60GHz频段,可用于实现家庭内部无线高清音视频信号的传输,为家庭多媒体应用带来更完备的高清视频解决方案,可称作无线千兆(Wireless Gigabit,简称WiGig)。目前802.11ad系统中,60GHz频段可被划分为至少两个信道。也就是说,802.11ad系统中可包括至少两个信道。在当前通信系统中只支持单射频通道单信道的传输方式,即一个信道对应的数据可通过一个射频频道进行传输。
因此发送端设备至少具有与信道个数相同的射频通道,以传输该至少两个信道对应的数据。这使得通信系统的容量受到发送端设备的射频通道数量的限制。
发明内容
本发明实施例提供一种数据传输方法及发送端设备,以提高系统的容量。
第一方面,本发明实施例提供一种数据传输方法,应用于60GHz频段的无线局域网WLAN中,所述方法包括:
对至少两个信道中每个信道对应的信息比特进行编码调制,获得所述每个信道的调制符号;
对所述至少两个信道的调制符号进行交织,确定至少一个射频通道中每个射频通道的数据符号;
根据所述每个射频通道的数据符号生成所述每个射频通道的待发送数据;
在所述每个射频通道上发送所述每个射频通道的待发送数据。
根据第一方面,在第一方面的第一种可能实现的方式中,所述对所述至少两个信道的调制符号进行交织,确定所述每个射频通道的数据符号包括:
对所述至少两个信道的调制符号采用行进列出的形式进行交织,获得第一符号矩阵;
根据所述第一符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号。
根据第一方面的第一种可能实现的方式,在第二种可能实现的方式中,所述对所述至少两个信道的调制符号采用行进列出的形式进行交织,获得第一符号矩阵包括:
根据公式(1),对所述至少两个信道的调制符号采用行进列出的形式进行交织,获得所述第一符号矩阵;
其中,T(m,k)=xm(k)          公式(1);
其中,m=1,2…,M;k=1,2…,K;M为所述至少两个信道中信道的个数;K为单位符号周期内所述每个信道的调制符号中的符号个数;T为所述第一符号矩阵;xm(k)为第m个信道的调制符号中的第k个符号;
所述根据所述第一符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号包括:
采用公式(2),根据所述第一符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号;
其中,
Figure PCTCN2015080204-appb-000001
       公式(2);
Figure PCTCN2015080204-appb-000002
l=1,2,…,L;
Figure PCTCN2015080204-appb-000003
为向上取整;L为所述至少一个射频通道的通道个数;
Figure PCTCN2015080204-appb-000004
为第l个射频通道的数据符号。
根据第一方面,在第一方面的第三种可能实现的方式中,所述对所述至少两个信道的调制符号进行交织,确定所述每个射频通道的数据符号包括:
对所述至少两个信道的调制符号采用列进行出的形式进行交织,获得第 二符号矩阵;
根据所述第二符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号。
根据第一方面的第三种可能实现的方式,在第四种可能实现的方式中,所述对所述至少两个信道的调制符号采用列进行出的形式进行交织,获得第二符号矩阵包括:
根据公式(3),对所述至少两个信道的调制符号采用列进行出的形式进行交织,获得所述第二符号矩阵;
其中,T(k,m)=xm(k)         公式(3);
其中,m=1,2…,M;k=1,2…,K;M为所述至少两个信道中信道的个数;K为单位符号周期内所述每个信道的调制符号中的符号个数;T为所述第二符号矩阵;xm(k)为第m个信道的调制符号中的第k个符号;
所述根据所述第二符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号包括:
采用公式(4),根据所述第二符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号;
其中,
Figure PCTCN2015080204-appb-000005
        公式(4);
Figure PCTCN2015080204-appb-000006
l=1,2,…,L;
Figure PCTCN2015080204-appb-000007
为向上取整;L为所述至少一个射频通道的通道个数;
Figure PCTCN2015080204-appb-000008
为第l个射频通道的数据符号。
根据第一方面至第一方面的第四种可能实现的方式中任意一种,在第五种可能实现的方式中,所述根据所述每个射频通道的数据符号生成所述每个射频通道的待发送数据包括:
将所述每个射频通道的数据符号映射至至少一个数据子载波上,将所述每个射频通道对应的预设导频符号映射至至少一个导频子载波上,获得频域上所述每个射频通道对应的符号;
对所述频域上所述每个射频通道对应的符号,进行逆傅里叶变换IDFT,获得时域上的所述每个射频通道对应的符号;
在所述时域上的所述每个射频通道对应的符号的最前端,添加循环前缀 CP,获得所述每个射频通道的待发送数据。
根据第一方面至第一方面的第四种可能实现的方式中任意一种,在第;六种可能实现的方式中,所述根据所述每个射频通道的数据符号生成所述每个射频通道的待发送数据包括:
在一个数据子载波的时域上的所述每个射频通道的数据符号的最前端,添加保护间隔GI,获得所述每个射频通道的待发送数据。
第二方面,本发明实施例还提供一种数据传输方法,应用于60GHz频段的无线局域网WLAN中,所述方法包括:
对至少两个信道中每个信道对应的信息比特进行编码调制,获得所述每个信道的调制符号;
根据预编码矩阵和所述至少两个信道的调制符号生成至少一个射频通道中每个射频通道的数据符号;
根据所述每个射频通道的数据符号生成所述每个射频通道的待发送数据;
在所述每个射频通道上发送所述每个射频通道的待发送数据。
根据第二方面,在第二方面的第一种可能实现的方式中,所述根据预编码矩阵和所述至少两个信道的调制符号生成所述每个射频通道的数据符号包括:
将所述预设编码矩阵乘以所述至少两个信道的调制符号,获得第三符号矩阵;所述预设编码矩阵为阶数等于所述至少两个信道的信道个数的方阵;
根据所述第三符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号。
根据第二方面的第一种可能实现的方式,在第二种可能实现的方式中,所述将所述预设编码矩阵乘以所述至少两个信道的调制符号,获得第三符号矩阵包括:
采用公式(5),将所述预设编码矩阵乘以所述至少两个信道的调制符号,获得所述第三符号矩阵;
其中,
Figure PCTCN2015080204-appb-000009
       公式(5);
其中,k=1,2…,K;M为所述至少两个信道中信道的个数;K为单位符号周期内所述每个信道的调制符号中的符号个数;|z1(k) z2(k) … zM(k)|T为所述第三符号矩阵;F为所述预编码矩阵,xm(k)为第m个信道的调制符号中的第k个符号;
所述根据所述第三符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号包括:
采用公式(6),根据所述第三符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号;
Figure PCTCN2015080204-appb-000010
         公式(6);
其中,
Figure PCTCN2015080204-appb-000011
l=1,2,…,L;
Figure PCTCN2015080204-appb-000012
为向下取整;L为所述至少一个射频通道的通道个数;
Figure PCTCN2015080204-appb-000013
为第l个射频通道的数据符号。
根据第二方面的第二种可能实现的方式,在第三种可能实现的方式中,F为傅里叶变换矩阵;F中第m1行第m2列的值为如下公式(7):
Figure PCTCN2015080204-appb-000014
      公式(7)。
根据第二方面的第二种可能实现的方式,在第四种可能实现的方式中,F为逆傅里叶变换矩阵;F中第m1行第m2列的值为如下公式(8):
Figure PCTCN2015080204-appb-000015
       公式(8)。
第三方面,本发明实施例提供一种发送端设备,应用于60GHz频段的无线局域网WLAN中,所述发送端设备包括:
调制模块,用于对至少两个信道中每个信道对应的信息比特进行编码调制,获得所述每个信道的调制符号;
交织模块,用于对所述至少两个信道的调制符号进行交织,确定至少一个射频通道中每个射频通道的数据符号;
生成模块,用于根据所述每个射频通道的数据符号生成所述每个射频通道的待发送数据;
发送模块,用于在所述每个射频通道上发送所述每个射频通道的待发送数据。
根据第三方面,在第三方面的第一种可能实现的方式中,所述交织模块,还用于对所述至少两个信道的调制符号采用行进列出的形式进行交织,获得第一符号矩阵;根据所述第一符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号。
根据第三方面的第一种可能实现的方式,在第二种可能实现的方式中,所述交织模块,还用于根据公式(1)对所述至少两个信道的调制符号采用行进列出的形式进行交织,获得所述第一符号矩阵;采用公式(2)根据所述第一符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号;
其中,T(m,k)=xm(k)          公式(1);
m=1,2…,M;k=1,2…,K;M为所述至少两个信道中信道的个数;K为单位符号周期内所述每个信道的调制符号中的符号个数;T为所述第一符号矩阵;xm(k)为第m个信道的调制符号中的第k个符号;
其中,
Figure PCTCN2015080204-appb-000016
         公式(2);
Figure PCTCN2015080204-appb-000017
l=1,2,…,L;
Figure PCTCN2015080204-appb-000018
为向上取整;L为所述至少一个射频通道的通道个数;
Figure PCTCN2015080204-appb-000019
为第l个射频通道的数据符号。
根据第三方面,在第三方面的第三种可能实现的方式中,所述交织模块,还用于对所述至少两个信道的调制符号采用列进行出的形式进行交织,获得第二符号矩阵;根据所述第二符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号。
根据第三方面的第三种可能实现的方式,在第四种可能实现的方式中,所述交织模块,还用于根据公式(3)对所述至少两个信道的调制符号采用列进行出的形式进行交织,获得所述第二符号矩阵,采用公式(4)根据所述第二符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号;
其中,T(k,m)=xm(k)          公式(3);
m=1,2…,M;k=1,2…,K;M为所述至少两个信道中信道的个数;K为单位符号周期内所述每个信道的调制符号中的符号个数;T为所述第二符号矩 阵;xm(k)为第m个信道的调制符号中的第k个符号;
其中,
Figure PCTCN2015080204-appb-000020
            公式(4);
Figure PCTCN2015080204-appb-000021
l=1,2,…,L;
Figure PCTCN2015080204-appb-000022
为向上取整;L为所述至少一个射频通道的通道个数;
Figure PCTCN2015080204-appb-000023
为第l个射频通道的数据符号。
根据第三方面至第三方面的第四种可能实现的方式中任意一种,在第五种可能实现的方式中,所述生成模块,还用于将所述每个射频通道的数据符号映射至至少一个数据子载波上,将所述每个射频通道对应的预设导频符号映射至至少一个导频子载波上,获得频域上所述每个射频通道对应的符号,对所述频域上所述每个射频通道对应的符号,进行逆傅里叶变换IDFT,获得时域上的所述每个射频通道对应的符号,在所述时域上的所述每个射频通道对应的符号的最前端,添加循环前缀CP,获得所述每个射频通道的待发送数据。
根据第三方面至第三方面的第四种可能实现的方式中任意一种,在第六种可能实现的方式中,所述生成模块,还用于在一个数据子载波的时域上的所述每个射频通道的数据符号的最前端,添加保护间隔GI,获得所述每个射频通道的待发送数据。
第四方面,本发明实施例还提供一种发送端设备,应用于60GHz频段的无线局域网WLAN中,所述发送端设备包括:
调制模块,用于对至少两个信道中每个信道对应的信息比特进行编码调制,获得所述每个信道的调制符号;
编码模块,用于根据预编码矩阵对所述至少两个信道的调制符号进行编码获得至少一个射频通道中每个射频通道的数据符号;
生成模块,用于根据所述每个射频通道的数据符号生成所述每个射频通道的待发送数据;
发送模块,用于在所述每个射频通道上发送所述每个射频通道的待发送数据。
根据第四方面,在第四方面的第一种可能实现的方式中,所述编码模块,还用于将所述预设编码矩阵乘以所述至少两个信道的调制符号,获得第三符 号矩阵,根据所述第三符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号,所述预设编码矩阵为阶数等于所述至少两个信道的信道个数的方阵。
根据第四方面的第一种可能实现的方式,在第二种可能实现的方式中,所述编码模块,还用于采用公式(5)将所述预设编码矩阵乘以所述至少两个信道的调制符号,获得所述第三符号矩阵,采用公式(6)根据所述第三符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号;
其中,
Figure PCTCN2015080204-appb-000024
       公式(5);
其中,k=1,2…,K;M为所述至少两个信道中信道的个数;K为单位符号周期内所述每个信道的调制符号中的符号个数;|z1(k) z2(k) … zM(k)|T为所述第三符号矩阵;F为所述预编码矩阵,xm(k)为第m个信道的调制符号中的第k个符号;
其中,
Figure PCTCN2015080204-appb-000025
          公式(6);
Figure PCTCN2015080204-appb-000026
l=1,2,…,L;
Figure PCTCN2015080204-appb-000027
为向下取整;L为所述至少一个射频通道的通道个数;
Figure PCTCN2015080204-appb-000028
为第l个射频通道的数据符号。
根据第四方面的第二种可能实现的方式,在第三种可能实现的方式中,F为傅里叶变换矩阵;F中第m1行第m2列的值为如下公式(7):
Figure PCTCN2015080204-appb-000029
        公式(7)。
根据第四方面的第二种可能实现的方式,在第四种可能实现的方式中,F为逆傅里叶变换矩阵;F中第m1行第m2列的值为如下公式(8):
Figure PCTCN2015080204-appb-000030
       公式(8)。
第五方面,本发明实施例还提供一种发送端设备,应用于60GHz频段的无线局域网WLAN中,所述发送端设备包括:处理器和发射机;
其中,所述处理器,用于对至少两个信道中每个信道对应的信息比特进 行编码调制,获得所述每个信道的调制符号,对所述至少两个信道的调制符号进行交织,确定至少一个射频通道中每个射频通道的数据符号,根据所述每个射频通道的数据符号生成所述每个射频通道的待发送数据;
所述发射机,用于在所述每个射频通道上发送所述每个射频通道的待发送数据。
根据第五方面,在第五方面的第一种可能实现的方式中,所述处理器,还用于对所述至少两个信道的调制符号采用行进列出的形式进行交织,获得第一符号矩阵;根据所述第一符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号。
根据第五方面的第一种可能实现的方式,在第二种可能实现的方式中,所述处理器,还用于根据公式(1)对所述至少两个信道的调制符号采用行进列出的形式进行交织,获得所述第一符号矩阵,采用公式(2)根据所述第一符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号;
其中,T(m,k)=xm(k)             公式(1);
m=1,2…,M;k=1,2…,K;M为所述至少两个信道中信道的个数;K为单位符号周期内所述每个信道的调制符号中的符号个数;T为所述第一符号矩阵;xm(k)为第m个信道的调制符号中的第k个符号;
其中,
Figure PCTCN2015080204-appb-000031
          公式(2);
Figure PCTCN2015080204-appb-000032
l=1,2,…,L;
Figure PCTCN2015080204-appb-000033
为向上取整;L为所述至少一个射频通道的通道个数;
Figure PCTCN2015080204-appb-000034
为第l个射频通道的数据符号。
根据第五方面,在第五方面的第三种可能实现的方式中,所述处理器,还用于对所述至少两个信道的调制符号采用列进行出的形式进行交织,获得第二符号矩阵,根据所述第二符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号。
根据第五方面的第三种可能实现的方式,在第四种可能实现的方式中,所述处理器,还用于根据公式(3)对所述至少两个信道的调制符号采用列进行出的形式进行交织,获得所述第二符号矩阵,采用公式(4)根据所述第二 符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号;
其中,T(k,m)=xm(k)           公式(3);
m=1,2…,M;k=1,2…,K;M为所述至少两个信道中信道的个数;K为单位符号周期内所述每个信道的调制符号中的符号个数;T为所述第二符号矩阵;xm(k)为第m个信道的调制符号中的第k个符号;
其中,
Figure PCTCN2015080204-appb-000035
              公式(4);
Figure PCTCN2015080204-appb-000036
l=1,2,…,L;
Figure PCTCN2015080204-appb-000037
为向上取整;L为所述至少一个射频通道的通道个数;
Figure PCTCN2015080204-appb-000038
为第l个射频通道的数据符号。
根据第五方面至第五方面的第四种可能实现的方式中任意一种,在第五种可能实现的方式中,所述处理器,还用于将所述每个射频通道的数据符号映射至至少一个数据子载波上,将所述每个射频通道对应的预设导频符号映射至至少一个导频子载波上,获得频域上所述每个射频通道对应的符号,对所述频域上所述每个射频通道对应的符号,进行逆傅里叶变换IDFT,获得时域上的所述每个射频通道对应的符号,在所述时域上的所述每个射频通道对应的符号的最前端,添加循环前缀CP,获得所述每个射频通道的待发送数据。
根据第五方面至第五方面的第四种可能实现的方式中任意一种,在第六种可能实现的方式中,所述处理器,还用于在一个数据子载波的时域上的所述每个射频通道的数据符号的最前端,添加保护间隔GI,获得所述每个射频通道的待发送数据。
第六方面,本发明实施例还提供一种发送端设备,应用于60GHz频段的无线局域网WLAN中,所述发送端设备包括:处理器和发射机;
所述处理器,用于对至少两个信道中每个信道对应的信息比特进行编码调制,获得所述每个信道的调制符号,根据预编码矩阵和所述至少两个信道的调制符号生成至少一个射频通道中每个射频通道的数据符号,根据所述每个射频通道的数据符号生成所述每个射频通道的待发送数据;
所述发射机,用于在所述每个射频通道上发送所述每个射频通道的待发送数据。
根据第六方面,在第六方面的第一种可能实现的方式中,所述处理器,还用于将所述预设编码矩阵乘以所述至少两个信道的调制符号,获得第三符号矩阵;所述预设编码矩阵为阶数等于所述至少两个信道的信道个数的方阵,根据所述第三符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号。
根据第六方面的第一种可能实现的方式,在第二种可能实现的方式中,所述处理器,还用于采用公式(5),将所述预设编码矩阵乘以所述至少两个信道的调制符号,获得所述第三符号矩阵,采用公式(6)根据所述第三符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号;
其中,
Figure PCTCN2015080204-appb-000039
        公式(5);
其中,k=1,2…,K;M为所述至少两个信道中信道的个数;K为单位符号周期内所述每个信道的调制符号中的符号个数;|z1(k) z2(k) … zM(k)|T为所述第三符号矩阵;F为所述预编码矩阵,xm(k)为第m个信道的调制符号中的第k个符号;
其中,
Figure PCTCN2015080204-appb-000040
         公式(6);
Figure PCTCN2015080204-appb-000041
l=1,2,…,L;
Figure PCTCN2015080204-appb-000042
为向下取整;L为所述至少一个射频通道的通道个数;
Figure PCTCN2015080204-appb-000043
为第l个射频通道的数据符号。
根据第六方面的第二种可能实现的方式,在第三种可能实现的方式中,F为傅里叶变换矩阵;F中第m1行第m2列的值为如下公式(7):
Figure PCTCN2015080204-appb-000044
        公式(7)。
根据第六方面的第二种可能实现的方式,在第四种可能实现的方式中,F为逆傅里叶变换矩阵;F中第m1行第m2列的值为如下公式(8):
Figure PCTCN2015080204-appb-000045
       公式(8)。
本发明实施例数据传输方法及发送端设备,可通过对至少两个信道的调 制符号进行交织,确定至少一个射频通道中每个射频通道的数据符号,使得该至少两个信道的调制符号分布至该每个射频通道,因而将根据该每个射频通道的数据符号确定的该每个射频通道的待发送数据进行发送,可使得该每个射频通道可传输该至少两个信道对应的数据,从而使得通信系统的容量不受该发送端设备的射频通道数量的限制,提高通信系统的容量。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例可应用的传输数据的场景示意图;
图2为本发明实施例一提供的数据传输方法的流程图;
图3为本发明实施例二提供的一种数据传输方法的流程图;
图4为本发明实施例二提供的另一种数据传输方法的流程图;
图5为本发明实施例三提供的数据传输方法的流程图;
图6为本发明实施例三提供的每个射频通道的待发送数据的一种数据结构图;
图7为本发明实施例三提供的每个射频通道的待发送数据的另一种数据结构图;
图8为本发明实施例四提供的数据传输方法的流程图;
图9为本发明实施例五提供的发送端设备的结构示意图;
图10为本发明实施例五提供的另一种发送端设备的结构示意图;
图11为本发明实施例五提供的又一种发送端设备的结构示意图;
图12为本发明实施例六提供的发送端设备的结构示意图;
图13为本发明实施例六提供的另一种发送端设备的结构示意图;
图14为本发明实施例六提供的又一种发送端设备的结构示意图;
图15为本发明实施例七提供的一种发送端设备的结构示意图;
图16为本发明实施例八提供的一种发送端设备的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明各实施例的技术方案,可以应用于正交频分复用(Orthogonal Frequency Division Multiplexing,简称OFDM)系统中,例如,WLAN系统,特别是WiFi等。本发明各实施例的方法还可以应用于单载波(Single Carrier,简称SC)系统中。当然,本发明实施例的方法还可应用其它类型的OFDM系统。本发明实施例在此不作限制。
相对应的,发送端设备和接收端设备可以是WLAN中用户站点(Station,简称STA),该用户站点也可以称为系统、用户单元、接入终端、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理、用户装置或用户设备(User Equipment,简称UE)。该STA可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,简称SIP)电话、无线本地环路(Wireless Local Loop,简称WLL)站、个人数字助理(Personal Digital Assistant,简称PDA)、具有无线局域网(如Wi-Fi)通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备。
另外,发送端设备和接收端设备也可以是WLAN中接入点(Access Point,简称AP),接入点可用于与接入终端通过无线局域网进行通信,并将接入终端的数据传输至网络侧,或将来自网络侧的数据传输至接入终端。接收端设备可以是与发送端设备相对应的通信对端。
以下,为了便于理解和说明,作为示例而非限定,以将本发明的传输数据的方法和装置在Wi-Fi系统中的执行过程和动作进行说明。
图1是本发明实施例可应用的传输数据的场景示意图。如图1所示的场景系统可以是WLAN系统,图1的系统包括一个或者多个接入点AP101和一个或者多个站点STA102,图1以一个接入点和两个站点为例。接入点101和站点102之间可以通过各种标准进行无线通信。其中,接入点101和站点 102之间可以采用多用户多入多出技术(Multi-User Multiple-Input Multiple-Output,简称MU-MIMO)进行无线通信。
本发明各实施例均可适用于802.11ad系统及其后更先进的通信系统,如工作在60GHz频段的WLAN中。该802.11ad系统可适用于点对点近距离的无线高清音视频信号传输、无线接入、回传、点到多点的传输等场景。
实施例一
本发明实施例一提供一种数据传输方法。该实施例的方法可由发送端设备执行。该发送端设备可为站点或接入点。当发送端设备为接入点时,接收端设备为站点;当发送端设备为站点时,接收端设备为接入点。图2为本发明实施例一提供的数据传输方法的流程图。如图2所示的方法应用于60GHz频段的WLAN系统中,该方法可包括:
S201、对至少两个信道中每个信道对应的信息比特进行编码调制,获得该每个信道的调制符号。
该至少两个信道例如可以包括4个信道,每个信道的带宽为2.16GHz。该每个信道对应的信息比特可以为发送端设备的信号源产生的数字基带信号。该每个信道对应的信息比特可以为至少一个比特组成的比特流。该至少两个信道中不同信道对应的信息比特可以不同,即该不同信道对应的信息比特可以为不同比特组成的比特流。
对该每个信道对应的信息比特进行编码调制,例如可以是对该每个信道对应的信息比特的比特流进行加密、信道编码等处理生成编码符号,继而采用预设的调制方式对该编码符号进行调制,从而获得该每个信道的调制符号。该发送端设备可以通过该每个信道对应的编码调制模块对该每个信道对应的信息比特进行编码调制。该每个信道对应的编码调制模块,可以作为该发送端设备的一个单信道数据处理器集成该发送端设备内部。该每个信道对应的编码调制模块,对该至少两个信道中不同信道对应的信息比特进行编码调制采用的编码调试方式可以相同。
S202、对该至少两个信道的调制符号进行交织,确定至少一个射频通道中每个射频通道的数据符号。
该至少一个射频通道中一个射频通道可对应发送端设备的一个发射天线。也就是说,该发送端设备的射频通道的数量即为该发送端设备的发射天 线个数。
对该至少两个信道的调制符号进行交织可以是将至少两个信道的调制符号进行重排序,继而根据重排序后的符号确定该每个射频通道的数据符号,可使得该至少两个信道的调制符号分布至该至少两个射频通道。也就是说,该每个射频通道的数据符号可包括该至少两个信道的部分符号。
可选的,对该至少两个信道的调制符号进行交织,例如可以通过该发送端设备设备的多信道交织器将该至少两个信道的调制符号进行交织,从而对该至少两个信道的调制符号的进行重排序,形成该至少两个信道的调制符号组成的新的符号序列,从而将该至少两个信道汇聚成一个信道。该新的符号序列即为该汇聚成的一个信道的调制符号。其中,该多信道交织器例如可以通过软件和/或硬件的形式实现。
若发送端设备包括一个发射天线,即该至少一个射频通道包括一个射频通道,该发送端设备还根据该多信道交织器输出的该新的序号序列确定该一个射频通道的数据符号。若该发送端设备包括至少两个发射天线,即该至少一个射频通道包括至少两个射频通道,该发送端设备还需根据该多信道交织器输出的该新的符号序列确定该至少两个射频通道中每个射频通道的符号,继而分别根据该每个射频通道的符号确定该每个射频通道的数据符号。
S203、根据该每个射频通道的数据符号生成该每个射频通道的待发送数据。
不同的载波传输方式,该发送端设备发送的无线帧结构中,数据部分的数据结构不同,因此该发送端设备例如可以是根据不同的载波传输方式分别采用对应的方式确定该每个射频通道的待发送数据。
S204、在该每个射频通道上发送该每个射频通道的待发送数据。
若载波传输为单载波传输方式,则该发送端设备可以是在该每个射频通道的单载波上发送该每个射频通道的待发送数据。若载波传输为多载波传输方式,则该发送端设备可以是在该每个射频通道的多载波上发送该每个射频通道的待发送数据。
本发明实施例一提供的数据传输方法,可通过对至少两个信道的调制符号进行交织,确定至少一个射频通道中每个射频通道的数据符号,使得该至少两个信道的调制符号分布至该每个射频通道,因而将根据该每个射频通道 的数据符号生成的该每个射频通道的待发送数据进行发送,可使得该每个射频通道可传输该至少两个信道对应的数据,从而使得通信系统的容量不受该发送端设备的射频通道数量的限制,提高通信系统的容量。
实施例二
本发明实施例二还提供一种数据传输方法。图3为本发明实施例二提供的一种数据传输方法的流程图。如图3所示,该方法在上述实施例的基础上,可选的,上述S202中对该至少两个信道的调制符号进行交织,确定该每个射频通道的数据符号可以包括:
S301、对该至少两个信道的调制符号及采用行进列出的形式进行交织,获得第一符号矩阵。
S302、根据该第一符号矩阵及及所述至少一个射频通道的通道个数确定该每个射频通道的数据符号。
可选的,S301中对该至少两个信道的调制符号采用行进列出的形式进行交织,获得第一符号矩阵可包括:
根据公式(1),对该至少两个信道的调制符号采用行进列出的形式进行交织,获得该第一符号矩阵;
其中,该公式(1)可以为:
T(m,k)=xm(k)         公式(1)。
其中,m=1,2…,M;k=1,2…,K;M为该至少两个信道中信道的个数;K为单位符号周期内该每个信道的调制符号中的符号个数;T为该第一符号矩阵;xm(k)为第m个信道的调制符号中的第k个符号。
其中,该单位符号周期指的是一个正交频分复用(Orthogonal Frequency Division Multiplexing,简称OFDM)符号周期。T(m,k)为所述第一符号矩阵中第m行k列的参数。
举例来说,若M为2,即该至少两个信道中信道个数可以为2。不同载波传输方法,该发送端设备发送的无线帧结构中,数据部分的数据结构不同,单位符号周期内该每个信道的调制符号中的符号个数不同。也就是说,K可以是根据该发送端设备的载波传输所确定的。若该发送端设备采用的在载波传输方式为单载波传输方式,则对该每个信道对应的数据进行编码调制获得的单位周期内的该每个信道的调制符号中的符号个数可以为448,即K为 448。若该发送端设备采用的在载波传输方式为多单载波传输方式,则对该每个信道对应的数据进行编码调制获得的单位周期内的该每个信道的调制符号中的符号个数可以为336,即K为336。
该两个信道中第一信道的调制符号x1(k)可以为x1(1),x1(2),…,x1(K)。该两个信道中第二信道的调制符号x2(k)可以为x2(1),x2(2),…,x2(K)。
因此根据该两个信道的调制符号及该公式(1)可获得该第一符号矩阵T可以为
Figure PCTCN2015080204-appb-000046
上述S302中根据该第一符号矩阵及该至少一个射频通道的通道个数确定该每个射频通道的数据符号可以包括:
采用公式(2),根据该第一符号矩阵及该至少一个射频通道的通道个数确定该每个射频通道的数据符号;
其中,该公式(2)可以为:
Figure PCTCN2015080204-appb-000047
         公式(2)
其中,
Figure PCTCN2015080204-appb-000048
l=1,2,…,L;
Figure PCTCN2015080204-appb-000049
为向上取整;L为该至少一个射频通道的通道个数;
Figure PCTCN2015080204-appb-000050
为该第l个射频通道的数据符号。
举例来说,若该发送端设备的包括1个射频通道,即该L为1。根据该公式(2)及该第一符号矩阵,可确定该1个射频通道的数据符号y1(1),y1(2),…,y1(2*K)可依次为x1(1),x2(1),x1(2),x2(2),…,x1(K),x2(K)。
若该发送端设备的包括2个射频通道,即该L为2。
根据该公式(2)及该第一符号矩阵,可确定该2个射频通道中第1个射频通道的数据符号y1(1),y1(2),…,y1(K)可依次为
Figure PCTCN2015080204-appb-000051
该2个射频通道中第2个射频通道的数据符号y2(1),y2(2),…,y2(K)可依次为
Figure PCTCN2015080204-appb-000052
本发明实施例二还提供另一种数据传输方法。图4为本发明实施例二提供的另一种数据传输方法的流程图。如图4所示,该方法在上述实施例的基础上,可选的,上述S202中对该至少两个信道的调制符号进行交织,确定该每个射频通道的数据符号可以包括:
S401、对该至少两个信道的调制符号及采用列进行出的形式进行交织,获得第二符号矩阵。
S402、根据该第二符号矩阵及及所述至少一个射频通道的通道个数确定该每个射频通道的数据符号。
可选的,S401中对该至少两个信道的调制符号及采用列进行出的形式进行交织,获得第二符号矩阵,可包括:
根据公式(3),对该至少两个信道的调制符号采用列进行出的形式进行交织,获得该第二符号矩阵。
其中,该公式(3)可以为:
T(k,m)=xm(k)      公式(3)
其中,m=1,2…,M;k=1,2…,K;M为该述至少两个信道中信道的个数;K为单位符号周期内该每个信道的调制符号中的符号个数;T为该第二符号矩阵;xm(k)为第m个信道的调制符号中的第k个符号。
其中,T(m,k)为所述第二符号矩阵中第k行m列的参数。
举例来说,若M为2,即该至少两个信道中信道个数可以为2。
该两个信道中第一信道的调制符号x1(k)可以为x1(1),x1(2),…,x1(K)。该两个信道中第二信道的调制符号x2(k)可以为x2(1),x2(2),…,x2(K)。
因此根据该两个信道的调制符号及该公式(3)可获得该第二符号矩阵T可以为
Figure PCTCN2015080204-appb-000053
可选的,S402中根据该第二符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号包括:
采用公式(4),根据所述第二符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号。
其中,公式(4)可以为:
Figure PCTCN2015080204-appb-000054
            公式(4);
其中,
Figure PCTCN2015080204-appb-000055
l=1,2,…,L;
Figure PCTCN2015080204-appb-000056
为向上取整;L为该至少一个射频通道的通道个数;
Figure PCTCN2015080204-appb-000057
为第l个射 频通道的数据符号。
举例来说,若该发送端设备的包括1个射频通道,即该L为1。根据该公式(4)及该第二符号矩阵,可确定该1个射频通道的数据符号y1(1),y1(2),…,y1(2*K)可依次为x1(1),x2(1),x1(2),x2(2),…,x1(K),x2(K)。
若该发送端设备的包括2个射频通道,即该L为2。
根据该公式(4)及该第二符号矩阵,可确定该2个射频通道中第1个射频通道的数据符号y1(1),y1(2),…,y1(K)可依次为
Figure PCTCN2015080204-appb-000058
该2个射频通道中第2个射频通道的数据符号y2(1),y2(2),…,y2(K)可依次为
Figure PCTCN2015080204-appb-000059
本发明实施例二的数据传输方法,通过多种对该至少两个信道的调制符号进行交织的实现方案,可更好地保证该每个射频通道的数据符号可包括该至少两个信道的部分调制符号,从而将该每个信道的调制符号分布在该至少一个射频通道对应的频带上,实现调试符号在频域的分集发送,提高系统的容量。
实施例三
本发明实施例三还提供一种数据传输方法。图5为本发明实施例三提供的数据传输方法的流程图。如图5所示,该方法在上述实施例的基础上,可选的,上述S203中根据该每个射频通道的数据符号生成该每个射频通道的待发送数据可以包括:
S501、将该每个射频通道的数据符号映射至至少一个数据子载波上,将该每个射频通道对应的预设导频符号映射至至少一个导频子载波上,获得频域上该每个射频通道对应的符号。
若该发送端设备采用的载波传输方式为多载波传输方式,那么该至少一个数据子载波可包括336个子载波。该至少一个导频子载波可以为该通信系统中每个符号周期中预留的预设个数的导频子载波中的至少一个子载波。将该每个射频通道的数据符号映射至至少一个数据子载波上,可以是将该每个射频通道的数据符号映射至该至少一个数据子载波的各资源单元中。将该每个射频通道对应的预设导频符号映射至至少一个导频子载波上,可以是将该每个射频通道对应的预设导频符号映射至至少一个导频子载波上的各资源单元中。
对于该多载波传输方法,该频域上该每个射频通道对应的符号包括:512个子载波所对应频点上该每个射频通道对应的符号。
S502、对该频域上该每个射频通道对应的符号,进行逆傅里叶变换,获得时域上的该每个射频通道对应的符号。
对该频域上该每个射频通道对应的符号进行逆傅里叶变换,获得的该时域上单位符号周期的该每个射频通道对应的符号包括时域上的512个符号。
S503、在该时域上的该每个射频通道对应的符号的最前端,添加循环前缀,获得该每个射频通道的待发送数据。
该循环前缀(Cyclic Prefix,简称CP)可以为该时域上该每个射频通道对应的符号,即该512个符号中的最后端的128个符号。
图6为本发明实施例三提供的每个射频通道的待发送数据的一种数据结构图。如图6所示,单位符号周期内该每个射频通道的待发送数据包括128个符号组成的CP和512个符号组成的数据。其中,CP为该512个符号的最后面的128个符号。
可选的,上述S203中根据该每个射频通道的数据符号,确定该每个射频通道的待发送数据可以包括:
在一个数据子载波的时域上的该每个射频通道的数据符号的最前端,添加保护间隔(Guard Interval,简称GI),获得该每个射频通道的待发送数据。
图7为本发明实施例三提供的每个射频通道的待发送数据的另一种数据结构图。如图7所示,单位符号周期内该每个射频通道的待发送数据包括对64位的格雷(Golay)序列调制后生成的64个符号和448个符号组成的数据。也就是说,该GI为对64位的格雷序列调制后生成的64个符号。
本发明实施例三的数据传输方法,还提供多种不同的载波传输方式对应的确定射频通道对应的待发送数据的实现方案,可使得该数据传输方法的实用性更广,从而提高不同传输方式下系统的容量。
实施例四
本发明实施例四还提供另一种数据传输方法。该实施例的方法可由发送端设备执行。图8为本发明实施例四提供的数据传输方法的流程图。如图8所示,该方法可包括:
S801、对至少两个信道中每个信道对应的信息比特进行编码调制,获得 该每个信道的调制符号。
该S801的具体实现过程与上述实施例一中S201类似,在此不再赘述。
S802、根据预编码矩阵和该至少两个信道的调制符号生成至少一个射频通道中每个射频通道的数据符号。
可选的,该发送端设备可以是通过预编码矩阵对该至少两个信道的调制符号进行变换,形成多个符号序列组成的符号矩阵,继而将该至少两个信道汇聚成一个信道。该多个符号序列即为该汇聚成的一个信道的调制符号。
若发送端设备包括一个发射天线,即该至少一个射频通道包括一个射频通道,该发送端设备还根据该多信道交织器输出的该多个符号序列依次组成的新的符号序列确定该一个射频通道的数据符号。若该发送端设备包括至少两个发射天线,即该至少一个射频通道包括至少两个射频通道,该发送端设备还需根据该多个符号序列分别确定该至少两个射频通道中每个射频通道的符号,继而分别根据该每个射频通道的符号确定该每个射频通道的数据符号。
S803、根据该每个射频通道的数据符号生成该每个射频通道的待发送数据。
该S803的具体实现过程与上述实施例一中S203类似,在此不再赘述。
S804、在该每个射频通道上发送该每个射频通道的待发送数据。
该S804的具体实现过程与上述实施例一中S204类似,在此不再赘述。
可选的,上述S802中根据预编码矩阵和该至少两个信道的调制符号生成至少一个射频通道中每个射频通道的数据符号,可包括:
将该预设编码矩阵乘以该至少两个信道的调制符号,获得第三符号矩阵;
根据该第三符号矩阵及该至少一个射频通道的通道个数确定该每个射频通道的数据符号。
可选的,上述将该预设编码矩阵乘以该至少两个信道的调制符号,获得第三符号矩阵包括:
采用公式(5),将所述预设编码矩阵乘以所述至少两个信道的调制符号,获得该第三符号矩阵。
其中,该公式(5)可以为:
Figure PCTCN2015080204-appb-000060
     公式(5)
其中,k=1,2…,K;M为该至少两个信道中信道的个数;K为单位符号周期内该每个信道的调制符号中的符号个数;|z1(k) z2(k) … zM(k)|T为该第三符号矩阵;F为该预编码矩阵,该预设编码矩阵为阶数等于该至少两个信道的信道个数的方阵;xm(k)为第m个信道的调制符号中的第k个符号。
可选的,上述所述根据所述第三符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号包括:
采用公式(6),根据该第三符号矩阵及该至少一个射频通道的通道个数确定该每个射频通道的数据符号。
其中,公式(6)可以为:
Figure PCTCN2015080204-appb-000061
        公式(6)
其中,
Figure PCTCN2015080204-appb-000062
l=1,2,…,L;
Figure PCTCN2015080204-appb-000063
为向下取整;L为该至少一个射频通道的通道个数;
Figure PCTCN2015080204-appb-000064
为第l个射频通道的数据符号。
举例来说,若M为2,即该至少两个信道中信道个数可以为2,该预编码矩阵为2行2列的矩阵。该两个信道中第一信道的调制符号x1(k)可以为x1(1),x1(2),…,x1(K)。该两个信道中第二信道的调制符号x2(k)可以为x2(1),x2(2),…,x2(K)。
该至少两个信道的调制符号组成的矩阵可以为
Figure PCTCN2015080204-appb-000065
该预编码矩阵乘以该至少两个信道的调制符号组成的矩阵获得的该第三符号矩阵可为
Figure PCTCN2015080204-appb-000066
若该发送端设备的包括1个射频通道,即该L为1。根据该公式(6)及该第三符号矩阵,可确定该1个射频通道的数据符号y1(1),y1(2),…,y1(2*K)可依次为z1(1),z1(2),…,z1(K),z1(1),z1(2),…,z1(K)。
若该发送端设备的包括2个射频通道,即该L为2。
根据该公式(6)及该第三符号矩阵,可确定该2个射频通道中第1个射 频通道的数据符号y1(1),y1(2),…,y1(K)可依次为z1(1),z1(2),…,z1(K),该2个射频通道中第2个射频通道的数据符号y2(1),y2(2),…,y2(K)可依次为z2(1),z2(2),…,z2(K)。
可选的,该F为傅里叶变换矩阵;F中第m1行第m2列的值为如下公式(7):
Figure PCTCN2015080204-appb-000067
      公式(7)。
举例来说,若该至少两个信道的信道个数为2,则M可以为2,则F可以为
Figure PCTCN2015080204-appb-000068
若该至少两个信道的信道个数为3,则M可以为3,则F可以为
Figure PCTCN2015080204-appb-000069
可选的,F为逆傅里叶变换矩阵;F中第m1行第m2列的值为如下公式(8)所示:
Figure PCTCN2015080204-appb-000070
       公式(8)。
举例来说,若该至少两个信道的信道个数为2,则M可以为2,则F可以为
Figure PCTCN2015080204-appb-000071
若该至少两个信道的信道个数为3,则M可以为3,则F可以为
Figure PCTCN2015080204-appb-000072
可选的,上述S803中根据该每个射频通道的数据符号,确定该每个射频通道的待发送数据可以包括:
将该每个射频通道的数据符号映射至至少一个数据子载波上,将该每个射频通道对应的预设导频符号映射至至少一个导频子载波上,获得频域上该每个射频通道对应的符号;
对该频域上该每个射频通道对应的符号,进行逆傅里叶变换,获得时域上的该每个射频通道对应的符号;
在该时域上的该每个射频通道对应的符号的最前端,添加循环前缀,获得该每个射频通道的待发送数据。
具体地,若该发送端设备采用的载波传输方式为多载波传输方式,那么该至少一个数据子载波可包括336个子载波。该至少一个导频子载波可以为该通信系统中每个符号周期中预留的预设个数的导频子载波中的至少一个子载波。将该每个射频通道的数据符号映射至至少一个数据子载波上,可以是将该每个射频通道的数据符号映射至该至少一个数据子载波的各资源单元中。将该每个射频通道对应的预设导频符号映射至至少一个导频子载波上,可以是将该每个射频通道对应的预设导频符号映射至至少一个导频子载波上的各资源单元中。
对于该多载波传输方法,该频域上该每个射频通道对应的符号包括:512个子载波所对应频点上该每个射频通道对应的符号。
对该频域上该每个射频通道对应的符号进行逆傅里叶变换,获得的该时域上单位符号周期的该每个射频通道对应的符号包括时域上的512个符号。
该循环前缀(Cyclic Prefix,简称CP)可以为该时域上该每个射频通道对应的符号,即该512个符号中的最后端的128个符号。
本发明实施例四的数据传输方法,可根据预编码矩阵对至少两个信道的调制符号进行变换从而确定至少一个射频通道中每个射频通道的数据符号,使得该至少两个信道的调制符号分布至该每个射频通道,因而将根据该每个射频通道的数据符号生成的该每个射频通道的待发送数据进行发送,可使得该每个射频通道可传输该至少两个信道对应的数据,从而使得通信系统的容量不受该发送端设备的射频通道数量的限制,提高通信系统的容量。
该实施例四还提供一种对该至少两个信道的调制符号进行交织的实现方案,可更好地保证该每个射频通道的数据符号可包括该至少两个信道的部分调制符号,从而将该每个信道的调制符号分布在该至少一个射频通道对应的频带上,实现调试符号在频域的分集发送,提高系统的容量。并且由于本发明实施例四的数据传输方法还提供多种不同的载波传输方式对应的确定射频通道对应的待发送数据的实现方案,可使得该数据传输方法的实用性更广,从而提高不同传输方式下系统的容量。
实施例五
本发明实施例五还提供一种发送端设备。图9为本发明实施例五提供的发送端设备的结构示意图。该图9所示的发送端设备900可应用于60GHz频 段的WLAN中。如图9所述,发送端设备900包括:
调制模块901,用于对至少两个信道中每个信道对应的信息比特进行编码调制,获得该每个信道的调制符号。
交织模块902,用于对该至少两个信道的调制符号进行交织确定至少一个射频通道中每个射频通道的数据符号。
生成模块903,用于根据该每个射频通道的数据符号生成该每个射频通道的待发送数据。
发送模块904,用于在该每个射频通道上发送该每个射频通道的待发送数据。
可选的,交织模块902,还用于对该至少两个信道的调制符号采用行进列出的形式进行交织,获得第一符号矩阵;根据该第一符号矩阵及该至少一个射频通道的通道个数确定该每个射频通道的数据符号。
可选的,交织模块902,还用于根据公式(1)对该至少两个信道的调制符号采用行进列出的形式进行交织,获得该第一符号矩阵;采用公式(2)根据该第一符号矩阵及该至少一个射频通道的通道个数确定该每个射频通道的数据符号。
其中,T(m,k)=xm(k)            公式(1)
m=1,2…,M;k=1,2…,K;M为该至少两个信道中信道的个数;K为单位符号周期内该每个信道的调制符号中的符号个数;T为该第一符号矩阵;xm(k)为第m个信道的调制符号中的第k个符号。
其中,
Figure PCTCN2015080204-appb-000073
        公式(2)
Figure PCTCN2015080204-appb-000074
l=1,2,…,L;
Figure PCTCN2015080204-appb-000075
为向上取整;L为该至少一个射频通道的通道个数;
Figure PCTCN2015080204-appb-000076
为第l个射频通道的数据符号。
可替代的,交织模块902,还用于对该至少两个信道的调制符号采用列进行出的形式进行交织,获得第二符号矩阵;根据该第二符号矩阵及该至少一个射频通道的通道个数确定该每个射频通道的数据符号。
可选的,交织模块902,还用于根据公式(3)对该至少两个信道的调制符号采用列进行出的形式进行交织,获得该第二符号矩阵,采用公式(4)根 据该第二符号矩阵及该至少一个射频通道的通道个数确定该每个射频通道的数据符号。
其中,T(k,m)=xm(k)          公式(3)
m=1,2…,M;k=1,2…,K;M为该至少两个信道中信道的个数;K为单位符号周期内该每个信道的调制符号中的符号个数;T为该第二符号矩阵;xm(k)为第m个信道的调制符号中的第k个符号。
其中,
Figure PCTCN2015080204-appb-000077
           公式(4)
Figure PCTCN2015080204-appb-000078
l=1,2,…,L;
Figure PCTCN2015080204-appb-000079
为向上取整;L为该至少一个射频通道的通道个数;
Figure PCTCN2015080204-appb-000080
为第l个射频通道的数据符号。
本发明实施例五还提供另一种发送端设备。图10为本发明实施例五提供的另一种发送端设备的结构示意图。如图10所示,该发送端设备900在上述图9所述的基础上,其中生成模块903,可包括映射单元1001、变换单元1002及添加单元1003。
映射单元1001,用于将该每个射频通道的数据符号映射至至少一个数据子载波上,将该每个射频通道对应的预设导频符号映射至至少一个导频子载波上,获得频域上该每个射频通道对应的符号。
变换单元1002,用于对该频域上该每个射频通道对应的符号,进行IDFT,获得时域上的该每个射频通道对应的符号。
添加单元1003,用于在该时域上的该每个射频通道对应的符号的最前端,添加CP,获得该每个射频通道的待发送数据。
本发明实施例五还提供又一种发送端设备。图11为本发明实施例五提供的又一种发送端设备的结构示意图。如图11所示,该发送端设备900在上述图9所述的基础上,其中生成模块903可包括:添加单元1101。
添加单元1101还用于在一个数据子载波的时域上的该每个射频通道的数据符号的最前端,添加GI,获得该每个射频通道的待发送数据。
上述图10所述的发送端设备可适用于多载波传输,图11所述的发送端设备可适用于单载波传输。本发明实施例的发送端设备900可包括至少一个天线,即至少一个射频通道。那么,附图10所示的发送端设备900中,映射 单元1001、变换单元1002及添加单元1003可分别包括相互独立的至少一个子单元以分别获取该至少一个射频通道中各射频通道的待发送数据。附图11所示的发送端设备900中添加单元1101也可包括相互独立的至少一个子单元以分别获取该至少一个射频通道中各射频通道的待发送数据。
本发明实施例五提供的各发送端设备,可执行上述实施例一至实施例三中任一所述的信息传输方法,其有益效果与上述实施例类似,在此不再赘述。
实施例六
本发明实施例六还提供一种发送端设备。图12为本发明实施例六提供的发送端设备的结构示意图。该图12所示的发送端设备900可应用于60GHz频段的WLAN中。如图12所示,发送端设备1200包括:
调制模块1201,用于对至少两个信道中每个信道对应的信息比特进行编码调制,获得该每个信道的调制符号;
编码模块1202,用于根据预编码矩阵对该至少两个信道的调制符号进行编码获得至少一个射频通道中每个射频通道的数据符号;
生成模块1203,用于根据该每个射频通道的数据符号生成该每个射频通道的待发送数据。
发送模块1204,用于在该每个射频通道上发送该每个射频通道的待发送数据。
可选的,编码模块1202,还用于将该预设编码矩阵乘以该至少两个信道的调制符号,获得第三符号矩阵;该预设编码矩阵为阶数等于该至少两个信道的信道个数的方阵;根据该第三符号矩阵及该至少一个射频通道的通道个数确定该每个射频通道的数据符号。
可选的,编码模块1202,还用于采用公式(5)将该预设编码矩阵乘以该至少两个信道的调制符号,获得该第三符号矩阵,采用公式(6)根据该第三符号矩阵及该至少一个射频通道的通道个数确定该每个射频通道的数据符号。
其中,
Figure PCTCN2015080204-appb-000081
      公式(5)
其中,k=1,2…,K;M为该至少两个信道中信道的个数;K为单位符号周 期内该每个信道的调制符号中的符号个数;|z1(k) z2(k) … zM(k)|T为该第三符号矩阵;F为该预编码矩阵,xm(k)为第m个信道的调制符号中的第k个符号。
其中,
Figure PCTCN2015080204-appb-000082
         公式(6)
Figure PCTCN2015080204-appb-000083
l=1,2,…,L;
Figure PCTCN2015080204-appb-000084
为向下取整;L为该至少一个射频通道的通道个数;
Figure PCTCN2015080204-appb-000085
为第l个射频通道的数据符号。
可选的,F为傅里叶变换矩阵;F中第m1行第m2列的值为如下公式(7):
Figure PCTCN2015080204-appb-000086
     公式(7)
可替代地,F为逆傅里叶变换矩阵;F中第m1行第m2列的值为如下公式(8):
Figure PCTCN2015080204-appb-000087
      公式(8)
本发明实施例六还提供一种发送端设备。图13为本发明实施例六提供的另一种发送端设备的结构示意图。如图13所示,该发送端设备1200可在上述图12所示的基础上,其中,生成模块1202可包括映射单元1301、变换单元1302及添加单元1303。
映射单元1301,还用于将该每个射频通道的数据符号映射至至少一个数据子载波上,将所述每个射频通道对应的预设导频符号映射至至少一个导频子载波上,获得频域上所述每个射频通道对应的符号。
变换单元1302,还用于对该频域上该每个射频通道对应的符号,进行IDFT,获得时域上的该每个射频通道对应的符号。
添加单元1303,用于在时域上的该每个射频通道对应的符号的最前端,添加CP,获得该每个射频通道的待发送数据。
本发明实施例六还提供又一种发送端设备。图14为本发明实施例六提供的又一种发送端设备的结构示意图。如图14所示,该发送端设备1200在上述图12所述的基础上,其中生成模块1202可包括:添加单元1401。
添加单元1401,可用于在一个数据子载波的时域上的该每个射频通道的数据符号的最前端,添加GI,获得该每个射频通道的待发送数据。
上述图13所述的发送端设备可适用于多载波传输,图14所述的发送端 设备可适用于单载波传输。本发明实施例的发送端设备1200可包括至少一个天线,即至少一个射频通道。那么,附图13所示的发送端设备1200中,映射单元1301、变换单元1302及添加单元1303可分别包括相互独立的至少一个子单元以分别获取该至少一个射频通道中各射频通道的待发送数据。附图14所示的发送端设备120中添加单元1401也可包括相互独立的至少一个子单元以分别获取该至少一个射频通道中各射频通道的待发送数据。
本发明实施例六提供的各发送端设备,可执行上述实施例四所示的信息传输方法,其有益效果与上述实施例类似,在此不再赘述。
实施例七
本发明实施例七提供一种发送端设备。图15为本发明实施例七提供的一种发送端设备的结构示意图。如图15所示,该发送端设备1500可应用于60GHz频段的WLAN中,该发送端设备1500包括:处理器1501和发射机1502。
其中,处理器1501,用于对至少两个信道中每个信道对应的信息比特进行编码调制,获得该每个信道的调制符号,对该至少两个信道的调制符号进行交织,确定至少一个射频通道中每个射频通道的数据符号,根据该每个射频通道的数据符号生成该每个射频通道的待发送数据。
发射机1502,用于在该每个射频通道上发送该每个射频通道的待发送数据。
可选的,处理器1501,还用于对该至少两个信道的调制符号采用行进列出的形式进行交织,获得第一符号矩阵;根据该第一符号矩阵及该至少一个射频通道的通道个数确定该每个射频通道的数据符号。
可选的,处理器1501,还用于根据公式(1)对该至少两个信道的调制符号采用行进列出的形式进行交织,获得该第一符号矩阵,采用公式(2)根据该第一符号矩阵及该至少一个射频通道的通道个数确定该每个射频通道的数据符号。
其中,T(m,k)=xm(k)       公式(1)
m=1,2…,M;k=1,2…,K;M为该至少两个信道中信道的个数;K为单位符号周期内该每个信道的调制符号中的符号个数;T为该第一符号矩阵;xm(k)为第m个信道的调制符号中的第k个符号。
其中,
Figure PCTCN2015080204-appb-000088
      公式(2)
Figure PCTCN2015080204-appb-000089
l=1,2,…,L;
Figure PCTCN2015080204-appb-000090
为向上取整;L为该至少一个射频通道的通道个数;
Figure PCTCN2015080204-appb-000091
为第l个射频通道的数据符号。
可替代地,处理器1501,还用于对该至少两个信道的调制符号采用列进行出的形式进行交织,获得第二符号矩阵,根据该第二符号矩阵及该至少一个射频通道的通道个数确定该每个射频通道的数据符号。
可选的,处理器1501,还用于根据公式(3)对该至少两个信道的调制符号采用列进行出的形式进行交织,获得该第二符号矩阵,采用公式(4)根据该第二符号矩阵及该至少一个射频通道的通道个数确定该每个射频通道的数据符号。
其中,T(k,m)=xm(k)         公式(3)
m=1,2…,M;k=1,2…,K;M为该至少两个信道中信道的个数;K为单位符号周期内该每个信道的调制符号中的符号个数;T为该第二符号矩阵;xm(k)为第m个信道的调制符号中的第k个符号。
其中,
Figure PCTCN2015080204-appb-000092
       公式(4)
Figure PCTCN2015080204-appb-000093
l=1,2,…,L;
Figure PCTCN2015080204-appb-000094
为向上取整;L为该至少一个射频通道的通道个数;
Figure PCTCN2015080204-appb-000095
为第l个射频通道的数据符号。
可选的,处理器1501,还用于将该每个射频通道的数据符号映射至至少一个数据子载波上,将该每个射频通道对应的预设导频符号映射至至少一个导频子载波上,获得频域上该每个射频通道对应的符号,对该频域上该每个射频通道对应的符号,进行IDFT,获得时域上的该每个射频通道对应的符号,在该时域上的该每个射频通道对应的符号的最前端,添加CP,获得该每个射频通道的待发送数据。
可替代地,处理器1501,还用于在一个数据子载波的时域上的该每个射频通道的数据符号的最前端,添加GI,获得该每个射频通道的待发送数据。
本发明实施例七提供的各发送端设备,可执行上述实施例一至三中任一所示的信息传输方法,其有益效果与上述实施例类似,在此不再赘述。
实施例八
本发明实施例八还提供一种发送端设备。图16为本发明实施例八提供的发送端设备的结构示意图。该图16的发送端设备1600可应用于60GHz频段的WLAN中。如图16所示,该发送端设备1600包括:处理器1601和发射机1602。
处理器1601,用于对至少两个信道中每个信道对应的信息比特进行编码调制,获得该每个信道的调制符号,根据预编码矩阵和该至少两个信道的调制符号生成至少一个射频通道中每个射频通道的数据符号,根据该每个射频通道的数据符号生成该每个射频通道的待发送数据。
发射机1602,用于在该每个射频通道上发送该每个射频通道的待发送数据。
可选的,处理器1601,还用于将该预设编码矩阵乘以该至少两个信道的调制符号,获得第三符号矩阵;根据该第三符号矩阵及该至少一个射频通道的通道个数确定该每个射频通道的数据符号,该预设编码矩阵为阶数等于该至少两个信道的信道个数的方阵。
可选的,处理器1601,还用于采用公式(5)将该预设编码矩阵乘以该至少两个信道的调制符号,获得该第三符号矩阵,采用公式(6)根据该第三符号矩阵及该至少一个射频通道的通道个数确定该每个射频通道的数据符号。
其中,
Figure PCTCN2015080204-appb-000096
        公式(5)
其中,k=1,2…,K;M为该至少两个信道中信道的个数;K为单位符号周期内该每个信道的调制符号中的符号个数;|z1(k) z2(k) … zM(k)|T为该第三符号矩阵;F为该预编码矩阵,xm(k)为第m个信道的调制符号中的第k个符号。
其中,
Figure PCTCN2015080204-appb-000097
        公式(6)
Figure PCTCN2015080204-appb-000098
l=1,2,…,L;
Figure PCTCN2015080204-appb-000099
为向下取整; L为该至少一个射频通道的通道个数;
Figure PCTCN2015080204-appb-000100
为第l个射频通道的数据符号。
可选的,F为傅里叶变换矩阵;F中第m1行第m2列的值为如下公式(7)。
Figure PCTCN2015080204-appb-000101
      公式(7)
可替代地,F为逆傅里叶变换矩阵;F中第m1行第m2列的值为如下公式(8)。
Figure PCTCN2015080204-appb-000102
        公式(8)
本发明实施例七提供的各发送端设备,可执行上述实施例四所示的信息传输方法,其有益效果与上述实施例类似,在此不再赘述。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (36)

  1. 一种数据传输方法,其特征在于,应用于60GHz频段的无线局域网WLAN中,所述方法包括:
    对至少两个信道中每个信道对应的信息比特进行编码调制,获得所述每个信道的调制符号;
    对所述至少两个信道的调制符号进行交织,确定至少一个射频通道中每个射频通道的数据符号;
    根据所述每个射频通道的数据符号生成所述每个射频通道的待发送数据;
    在所述每个射频通道上发送所述每个射频通道的待发送数据。
  2. 根据权利要求1所述的方法,其特征在于,所述对所述至少两个信道的调制符号进行交织,确定所述每个射频通道的数据符号包括:
    对所述至少两个信道的调制符号采用行进列出的形式进行交织,获得第一符号矩阵;
    根据所述第一符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号。
  3. 根据权利要求2所述的方法,其特征在于,所述对所述至少两个信道的调制符号采用行进列出的形式进行交织,获得第一符号矩阵包括:
    根据公式(1),对所述至少两个信道的调制符号采用行进列出的形式进行交织,获得所述第一符号矩阵;
    其中,T(m,k)=xm(k)             公式(1);
    其中,m=1,2…,M;k=1,2…,K;M为所述至少两个信道中信道的个数;K为单位符号周期内所述每个信道的调制符号中的符号个数;T为所述第一符号矩阵;xm(k)为第m个信道的调制符号中的第k个符号;
    所述根据所述第一符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号包括:
    采用公式(2),根据所述第一符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号;
    其中,
    Figure PCTCN2015080204-appb-100001
    Figure PCTCN2015080204-appb-100002
    l=1,2,…,L;
    Figure PCTCN2015080204-appb-100003
    为向上取整;L为所述至少一个射频通道的通道个数;
    Figure PCTCN2015080204-appb-100004
    为第l个射频通道的数据符号。
  4. 根据权利要求1所述的方法,其特征在于,所述对所述至少两个信道的调制符号进行交织,确定所述每个射频通道的数据符号包括:
    对所述至少两个信道的调制符号采用列进行出的形式进行交织,获得第二符号矩阵;
    根据所述第二符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号。
  5. 根据权利要求4所述的方法,其特征在于,所述对所述至少两个信道的调制符号采用列进行出的形式进行交织,获得第二符号矩阵包括:
    根据公式(3),对所述至少两个信道的调制符号采用列进行出的形式进行交织,获得所述第二符号矩阵;
    其中,T(k,m)=xm(k)           公式(3);
    其中,m=1,2…,M;k=1,2…,K;M为所述至少两个信道中信道的个数;K为单位符号周期内所述每个信道的调制符号中的符号个数;T为所述第二符号矩阵;xm(k)为第m个信道的调制符号中的第k个符号;
    所述根据所述第二符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号包括:
    采用公式(4),根据所述第二符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号;
    其中,
    Figure PCTCN2015080204-appb-100005
    Figure PCTCN2015080204-appb-100006
    l=1,2,…,L;
    Figure PCTCN2015080204-appb-100007
    为向上取整;L为所述至少一个射频通道的通道个数;
    Figure PCTCN2015080204-appb-100008
    为第l个射频通道的数据符号。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述根据所述每个射频通道的数据符号生成所述每个射频通道的待发送数据包括:
    将所述每个射频通道的数据符号映射至至少一个数据子载波上,将所述 每个射频通道对应的预设导频符号映射至至少一个导频子载波上,获得频域上所述每个射频通道对应的符号;
    对所述频域上所述每个射频通道对应的符号,进行逆傅里叶变换IDFT,获得时域上的所述每个射频通道对应的符号;
    在所述时域上的所述每个射频通道对应的符号的最前端,添加循环前缀CP,获得所述每个射频通道的待发送数据。
  7. 根据权利要求1-5中任一项所述的方法,其特征在于,所述根据所述每个射频通道的数据符号生成所述每个射频通道的待发送数据包括:
    在一个数据子载波的时域上的所述每个射频通道的数据符号的最前端,添加保护间隔GI,获得所述每个射频通道的待发送数据。
  8. 一种数据传输方法,其特征在于,应用于60GHz频段的无线局域网WLAN中,所述方法包括:
    对至少两个信道中每个信道对应的信息比特进行编码调制,获得所述每个信道的调制符号;
    根据预编码矩阵和所述至少两个信道的调制符号生成至少一个射频通道中每个射频通道的数据符号;
    根据所述每个射频通道的数据符号生成所述每个射频通道的待发送数据;
    在所述每个射频通道上发送所述每个射频通道的待发送数据。
  9. 根据权利要求8所述的方法,其特征在于,所述根据预编码矩阵和所述至少两个信道的调制符号生成所述每个射频通道的数据符号包括:
    将所述预设编码矩阵乘以所述至少两个信道的调制符号,获得第三符号矩阵;所述预设编码矩阵为阶数等于所述至少两个信道的信道个数的方阵;
    根据所述第三符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号。
  10. 根据权利要求9所述的方法,其特征在于,所述将所述预设编码矩阵乘以所述至少两个信道的调制符号,获得第三符号矩阵包括:
    采用公式(5),将所述预设编码矩阵乘以所述至少两个信道的调制符号,获得所述第三符号矩阵;
    其中,
    Figure PCTCN2015080204-appb-100009
         公式(5);
    其中,k=1,2…,K;M为所述至少两个信道中信道的个数;K为单位符号周期内所述每个信道的调制符号中的符号个数;|z1(k) z2(k) … zM(k)|T为所述第三符号矩阵;F为所述预编码矩阵,xm(k)为第m个信道的调制符号中的第k个符号;
    所述根据所述第三符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号包括:
    采用公式(6),根据所述第三符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号;
    Figure PCTCN2015080204-appb-100010
    其中,
    Figure PCTCN2015080204-appb-100011
    l=1,2,…,L;
    Figure PCTCN2015080204-appb-100012
    为向下取整;L为所述至少一个射频通道的通道个数;
    Figure PCTCN2015080204-appb-100013
    为第l个射频通道的数据符号。
  11. 根据权利要求10所述的方法,其特征在于,F为傅里叶变换矩阵;F中第m1行第m2列的值为如下公式(7):
    Figure PCTCN2015080204-appb-100014
               公式(7)。
  12. 根据权利要求10所述的方法,其特征在于,F为逆傅里叶变换矩阵;F中第m1行第m2列的值为如下公式(8):
    Figure PCTCN2015080204-appb-100015
                公式(8)。
  13. 一种发送端设备,其特征在于,应用于60GHz频段的无线局域网WLAN中,所述发送端设备包括:
    调制模块,用于对至少两个信道中每个信道对应的信息比特进行编码调制,获得所述每个信道的调制符号;
    交织模块,用于对所述至少两个信道的调制符号进行交织,确定至少一个射频通道中每个射频通道的数据符号;
    生成模块,用于根据所述每个射频通道的数据符号生成所述每个射频通 道的待发送数据;
    发送模块,用于在所述每个射频通道上发送所述每个射频通道的待发送数据。
  14. 根据权利要求13所述的发送端设备,其特征在于,
    所述交织模块,还用于对所述至少两个信道的调制符号采用行进列出的形式进行交织,获得第一符号矩阵;根据所述第一符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号。
  15. 根据权利要求14所述的发送端设备,其特征在于,
    所述交织模块,还用于根据公式(1)对所述至少两个信道的调制符号采用行进列出的形式进行交织,获得所述第一符号矩阵;采用公式(2)根据所述第一符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号;
    其中,T(m,k)=xm(k)              公式(1);
    m=1,2…,M;k=1,2…,K;M为所述至少两个信道中信道的个数;K为单位符号周期内所述每个信道的调制符号中的符号个数;T为所述第一符号矩阵;xm(k)为第m个信道的调制符号中的第k个符号;
    其中,
    Figure PCTCN2015080204-appb-100016
    Figure PCTCN2015080204-appb-100017
    l=1,2,…,L;
    Figure PCTCN2015080204-appb-100018
    为向上取整;L为所述至少一个射频通道的通道个数;
    Figure PCTCN2015080204-appb-100019
    为第l个射频通道的数据符号。
  16. 根据权利要求13所述的发送端设备,其特征在于,
    所述交织模块,还用于对所述至少两个信道的调制符号采用列进行出的形式进行交织,获得第二符号矩阵;根据所述第二符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号。
  17. 根据权利要求16所述的发送端设备,其特征在于,
    所述交织模块,还用于根据公式(3)对所述至少两个信道的调制符号采用列进行出的形式进行交织,获得所述第二符号矩阵,采用公式(4)根据所述第二符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号;
    其中,T(k,m)=xm(k)          公式(3);
    m=1,2…,M;k=1,2…,K;M为所述至少两个信道中信道的个数;K为单位符号周期内所述每个信道的调制符号中的符号个数;T为所述第二符号矩阵;xm(k)为第m个信道的调制符号中的第k个符号;
    其中,
    Figure PCTCN2015080204-appb-100020
    Figure PCTCN2015080204-appb-100021
    l=1,2,…,L;
    Figure PCTCN2015080204-appb-100022
    为向上取整;L为所述至少一个射频通道的通道个数;
    Figure PCTCN2015080204-appb-100023
    为第l个射频通道的数据符号。
  18. 根据权利要求13-17中任一项所述的发送端设备,其特征在于,
    所述生成模块,还用于将所述每个射频通道的数据符号映射至至少一个数据子载波上,将所述每个射频通道对应的预设导频符号映射至至少一个导频子载波上,获得频域上所述每个射频通道对应的符号,对所述频域上所述每个射频通道对应的符号,进行逆傅里叶变换IDFT,获得时域上的所述每个射频通道对应的符号,在所述时域上的所述每个射频通道对应的符号的最前端,添加循环前缀CP,获得所述每个射频通道的待发送数据。
  19. 根据权利要求13-17中任一项所述的发送端设备,其特征在于,
    所述生成模块,还用于在一个数据子载波的时域上的所述每个射频通道的数据符号的最前端,添加保护间隔GI,获得所述每个射频通道的待发送数据。
  20. 一种发送端设备,其特征在于,应用于60GHz频段的无线局域网WLAN中,所述发送端设备包括:
    调制模块,用于对至少两个信道中每个信道对应的信息比特进行编码调制,获得所述每个信道的调制符号;
    编码模块,用于根据预编码矩阵对所述至少两个信道的调制符号进行编码获得至少一个射频通道中每个射频通道的数据符号;
    生成模块,用于根据所述每个射频通道的数据符号生成所述每个射频通道的待发送数据;
    发送模块,用于在所述每个射频通道上发送所述每个射频通道的待发送数据。
  21. 根据权利要求20所述的发送端设备,其特征在于,
    所述编码模块,还用于将所述预设编码矩阵乘以所述至少两个信道的调制符号,获得第三符号矩阵,根据所述第三符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号,所述预设编码矩阵为阶数等于所述至少两个信道的信道个数的方阵。
  22. 根据权利要求21所述的发送端设备,其特征在于,
    所述编码模块,还用于采用公式(5)将所述预设编码矩阵乘以所述至少两个信道的调制符号,获得所述第三符号矩阵,采用公式(6)根据所述第三符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号;
    其中,
    Figure PCTCN2015080204-appb-100024
              公式(5);
    其中,k=1,2…,K;M为所述至少两个信道中信道的个数;K为单位符号周期内所述每个信道的调制符号中的符号个数;|z1(k) z2(k) … zM(k)|T为所述第三符号矩阵;F为所述预编码矩阵,xm(k)为第m个信道的调制符号中的第k个符号;
    其中,
    Figure PCTCN2015080204-appb-100025
    Figure PCTCN2015080204-appb-100026
    l=1,2,…,L;
    Figure PCTCN2015080204-appb-100027
    为向下取整;L为所述至少一个射频通道的通道个数;
    Figure PCTCN2015080204-appb-100028
    为第l个射频通道的数据符号。
  23. 根据权利要求22所述的发送端设备,其特征在于,F为傅里叶变换矩阵;F中第m1行第m2列的值为如下公式(7):
                公式(7)。
  24. 根据权利要求22所述的发送端设备,其特征在于,F为逆傅里叶变换矩阵;F中第m1行第m2列的值为如下公式(8):
    Figure PCTCN2015080204-appb-100030
               公式(8)。
  25. 一种发送端设备,其特征在于,应用于60GHz频段的无线局域网 WLAN中,所述发送端设备包括:处理器和发射机;
    其中,所述处理器,用于对至少两个信道中每个信道对应的信息比特进行编码调制,获得所述每个信道的调制符号,对所述至少两个信道的调制符号进行交织,确定至少一个射频通道中每个射频通道的数据符号,根据所述每个射频通道的数据符号生成所述每个射频通道的待发送数据;
    所述发射机,用于在所述每个射频通道上发送所述每个射频通道的待发送数据。
  26. 根据权利要求25所述的发送端设备,其特征在于,
    所述处理器,还用于对所述至少两个信道的调制符号采用行进列出的形式进行交织,获得第一符号矩阵;根据所述第一符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号。
  27. 根据权利要求26所述的发送端设备,其特征在于,
    所述处理器,还用于根据公式(1)对所述至少两个信道的调制符号采用行进列出的形式进行交织,获得所述第一符号矩阵,采用公式(2)根据所述第一符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号;
    其中,T(m,k)=xm(k)             公式(1);
    m=1,2…,M;k=1,2…,K;M为所述至少两个信道中信道的个数;K为单位符号周期内所述每个信道的调制符号中的符号个数;T为所述第一符号矩阵;xm(k)为第m个信道的调制符号中的第k个符号;
    其中,
    Figure PCTCN2015080204-appb-100031
    Figure PCTCN2015080204-appb-100032
    l=1,2,…,L;
    Figure PCTCN2015080204-appb-100033
    为向上取整;L为所述至少一个射频通道的通道个数;
    Figure PCTCN2015080204-appb-100034
    为第l个射频通道的数据符号。
  28. 根据权利要求25所述的发送端设备,其特征在于,
    所述处理器,还用于对所述至少两个信道的调制符号采用列进行出的形式进行交织,获得第二符号矩阵,根据所述第二符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号。
  29. 根据权利要求28所述的发送端设备,其特征在于,
    所述处理器,还用于根据公式(3)对所述至少两个信道的调制符号采用列进行出的形式进行交织,获得所述第二符号矩阵,采用公式(4)根据所述第二符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号;
    其中,T(k,m)=xm(k)            公式(3);
    m=1,2…,M;k=1,2…,K;M为所述至少两个信道中信道的个数;K为单位符号周期内所述每个信道的调制符号中的符号个数;T为所述第二符号矩阵;xm(k)为第m个信道的调制符号中的第k个符号;
    其中,
    Figure PCTCN2015080204-appb-100035
    Figure PCTCN2015080204-appb-100036
    l=1,2,…,L;
    Figure PCTCN2015080204-appb-100037
    为向上取整;L为所述至少一个射频通道的通道个数;
    Figure PCTCN2015080204-appb-100038
    为第l个射频通道的数据符号。
  30. 根据权利要求25-29中任一项所述的发送端设备,其特征在于,
    所述处理器,还用于将所述每个射频通道的数据符号映射至至少一个数据子载波上,将所述每个射频通道对应的预设导频符号映射至至少一个导频子载波上,获得频域上所述每个射频通道对应的符号,对所述频域上所述每个射频通道对应的符号,进行逆傅里叶变换IDFT,获得时域上的所述每个射频通道对应的符号,在所述时域上的所述每个射频通道对应的符号的最前端,添加循环前缀CP,获得所述每个射频通道的待发送数据。
  31. 根据权利要求25-29中任一项所述的发送端设备,其特征在于,
    所述处理器,还用于在一个数据子载波的时域上的所述每个射频通道的数据符号的最前端,添加保护间隔GI,获得所述每个射频通道的待发送数据。
  32. 一种发送端设备,其特征在于,应用于60GHz频段的无线局域网WLAN中,所述发送端设备包括:处理器和发射机;
    所述处理器,用于对至少两个信道中每个信道对应的信息比特进行编码调制,获得所述每个信道的调制符号,根据预编码矩阵和所述至少两个信道的调制符号生成至少一个射频通道中每个射频通道的数据符号,根据所述每个射频通道的数据符号生成所述每个射频通道的待发送数据;
    所述发射机,用于在所述每个射频通道上发送所述每个射频通道的待发 送数据。
  33. 根据权利要求32所述的发送端设备,其特征在于,
    所述处理器,还用于将所述预设编码矩阵乘以所述至少两个信道的调制符号,获得第三符号矩阵;所述预设编码矩阵为阶数等于所述至少两个信道的信道个数的方阵,根据所述第三符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号。
  34. 根据权利要求33所述的发送端设备,其特征在于,
    所述处理器,还用于采用公式(5),将所述预设编码矩阵乘以所述至少两个信道的调制符号,获得所述第三符号矩阵,采用公式(6)根据所述第三符号矩阵及所述至少一个射频通道的通道个数确定所述每个射频通道的数据符号;
    其中,
    Figure PCTCN2015080204-appb-100039
             公式(5);
    其中,k=1,2…,K;M为所述至少两个信道中信道的个数;K为单位符号周期内所述每个信道的调制符号中的符号个数;|z1(k) z2(k) … zM(k)|T为所述第三符号矩阵;F为所述预编码矩阵,xm(k)为第m个信道的调制符号中的第k个符号;
    其中,
    Figure PCTCN2015080204-appb-100040
    Figure PCTCN2015080204-appb-100041
    l=1,2,…,L;
    Figure PCTCN2015080204-appb-100042
    为向下取整;L为所述至少一个射频通道的通道个数;
    Figure PCTCN2015080204-appb-100043
    为第l个射频通道的数据符号。
  35. 根据权利要求34所述的发送端设备,其特征在于,F为傅里叶变换矩阵;F中第m1行第m2列的值为如下公式(7):
    Figure PCTCN2015080204-appb-100044
                公式(7)。
  36. 根据权利要求34所述的发送端设备,其特征在于,F为逆傅里叶变换矩阵;F中第m1行第m2列的值为如下公式(8):
    Figure PCTCN2015080204-appb-100045
                 公式(8)。
PCT/CN2015/080204 2015-05-29 2015-05-29 数据传输方法及发送端设备 WO2016191905A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/080204 WO2016191905A1 (zh) 2015-05-29 2015-05-29 数据传输方法及发送端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/080204 WO2016191905A1 (zh) 2015-05-29 2015-05-29 数据传输方法及发送端设备

Publications (1)

Publication Number Publication Date
WO2016191905A1 true WO2016191905A1 (zh) 2016-12-08

Family

ID=57439915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/080204 WO2016191905A1 (zh) 2015-05-29 2015-05-29 数据传输方法及发送端设备

Country Status (1)

Country Link
WO (1) WO2016191905A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101573874A (zh) * 2006-12-05 2009-11-04 联邦科学技术研究组织 无线频域多通道通信
CN102548003A (zh) * 2012-03-14 2012-07-04 北京邮电大学 智能光载无线系统中的多通道微波资源调度方法
CN103391170A (zh) * 2012-05-13 2013-11-13 美国博通公司 多信道支持
EP2733881A1 (en) * 2012-11-15 2014-05-21 Alcatel Lucent Transmission method, transmitter apparatus, reception method and receiver apparatus for a joint transmission of first data units and at least second data units

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101573874A (zh) * 2006-12-05 2009-11-04 联邦科学技术研究组织 无线频域多通道通信
CN102548003A (zh) * 2012-03-14 2012-07-04 北京邮电大学 智能光载无线系统中的多通道微波资源调度方法
CN103391170A (zh) * 2012-05-13 2013-11-13 美国博通公司 多信道支持
EP2733881A1 (en) * 2012-11-15 2014-05-21 Alcatel Lucent Transmission method, transmitter apparatus, reception method and receiver apparatus for a joint transmission of first data units and at least second data units

Similar Documents

Publication Publication Date Title
US9948370B2 (en) Method and apparatus for multiple frame transmission for supporting MU-MIMO
KR101341269B1 (ko) 무선랜 시스템에서 훈련신호 전송 방법 및 장치
KR101649458B1 (ko) 반송파 집적 및 클러스터된 dft를 갖는 업링크 mimo용 데이터 및 제어 다중화
US10686478B2 (en) System and method for orthogonal frequency division multiple access (OFDMA) transmission
US10044421B2 (en) Wireless communication via combined channel training and physical layer header signaling
KR101507676B1 (ko) 무선 프레임 송신 방법 및 장치
WO2019137058A1 (zh) 资源指示方法、终端设备和网络设备
KR102070962B1 (ko) 물리 계층 프로토콜 데이터 유닛 전송 방법 및 장치
CN111934832B (zh) 基于多信道传输信号的方法和装置
WO2019052388A1 (zh) 数据传输的方法和设备
US11109365B2 (en) Communication method, terminal, and network device for repeating uplink control information to obtain data segment
WO2017059719A1 (zh) 传输数据的方法和设备
WO2016070395A1 (zh) 传输信息的方法、接入点和用户设备
US11444818B2 (en) Signal transmission method and apparatus
WO2016191905A1 (zh) 数据传输方法及发送端设备
CN109150255B (zh) 一种波束匹配方法及通信设备
EP4351067A1 (en) Device and method for supporting communication using plurality of bandwidths in wireless local area network system
WO2022052073A1 (zh) 信道估计的方法、装置、通信设备及存储介质
KR20240047290A (ko) Wlan 시스템에서 복수의 대역폭들을 이용한 통신을 지원하는 장치 및 방법
WO2017193834A1 (zh) 一种信号处理方法及装置
WO2018076748A1 (zh) 传输信号的方法和装置
KR20220003443A (ko) Wlan 시스템에서 다중 자원 단위에 기초한 통신을 위한 장치 및 방법
WO2017024431A1 (zh) 传输数据的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15893569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15893569

Country of ref document: EP

Kind code of ref document: A1