WO2016190259A1 - Low-reflection graphene and low-reflection graphene for optical member use - Google Patents

Low-reflection graphene and low-reflection graphene for optical member use Download PDF

Info

Publication number
WO2016190259A1
WO2016190259A1 PCT/JP2016/065082 JP2016065082W WO2016190259A1 WO 2016190259 A1 WO2016190259 A1 WO 2016190259A1 JP 2016065082 W JP2016065082 W JP 2016065082W WO 2016190259 A1 WO2016190259 A1 WO 2016190259A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
low
reflection
low reflection
reflection graphene
Prior art date
Application number
PCT/JP2016/065082
Other languages
French (fr)
Japanese (ja)
Inventor
那由太 嶋田
健児 矢沢
貴壽 山田
雅考 長谷川
和輝 植草
Original Assignee
尾池工業株式会社
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 尾池工業株式会社, 国立研究開発法人産業技術総合研究所 filed Critical 尾池工業株式会社
Publication of WO2016190259A1 publication Critical patent/WO2016190259A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • G02B1/116Multilayers including electrically conducting layers

Definitions

  • the present invention relates to low reflection graphene and low reflection graphene for optical members.
  • the present invention relates to a low reflection graphene having a low light reflection characteristic below a certain level in the visible light region and the infrared region, and an optical member using the low reflection graphene.
  • Low reflection materials are conventionally used for controlling the amount of light reflection in various optical devices.
  • a lens optical system such as an optical microscope, a telescope, or a camera
  • noise can be reduced by using a low reflective material. This is because the stray light phenomenon in which light incident from the lens is confined in a lens barrel or the like and repeatedly reflected inside can be reduced.
  • the above stray light may be detected by a detector, and it may not be possible to determine whether it is an observation target or noise derived from stray light.
  • a material for reducing such a decrease in stray light a material having lower reflection is desired.
  • JP 2002-146533 A Japanese Patent No. 4762945
  • the present invention solves the above-mentioned problem, and particularly, low reflection graphene having a low total light reflectance in a region of a wavelength of 200 nm or more and 2000 nm or less that covers an ultraviolet region and an infrared region, and It is an object to provide a utilized optical member.
  • a low-reflection graphene with a thin film thickness and an optical member using the same are provided.
  • graphene is actively developed as a transparent conductive film or other material or member that transmits light, but the inventors have intensively studied, and have a completely different concept from the conventional low-reflective graphene and an optical member using the same. Found to provide.
  • low reflection graphene having a total light reflectance of 1.5% or less in a wavelength range of 200 nm to 2000 nm.
  • a first graphene layer having a plane substantially parallel to a first direction, and an orientation in a second direction connected to the first graphene layer and intersecting the first direction A low-reflection graphene is provided.
  • low-reflection graphene in the Raman resonance spectroscopy, low-reflection graphene is provided a peak in a wave number range 2550 cm -1 or 2800 cm -1 is observed.
  • an optical member using low-reflection graphene as a cylindrical base material is provided.
  • a noise reduction wall for optical wireless communication using low reflection graphene as a wall surface is provided.
  • a display device using low-reflection graphene as a conductive low-reflection film is provided.
  • a graphene film having a total light reflectance of 1.5% or less in a wavelength range of 200 nm to 2000 nm by introducing methane gas, argon gas, and hydrogen gas into a plasma CVD film forming apparatus. Is provided on a substrate, and a method for forming a low reflection graphene is provided.
  • low-reflectance graphene and a manufacturing method thereof are provided.
  • Patent Document 1 describes a carbon thin body having a structure capable of producing a planar electron source by a simple method.
  • this document is not a material that focuses on reflectivity.
  • Patent Document 2 includes a substrate having no metal catalyst, and a number of wall shapes standing directly on the surface of the substrate.
  • the thickness is 0.05 nm to 30 nm, and the vertical and horizontal lengths of the surface.
  • graphene that exhibits extremely low reflection with a relative total reflectance of 1.5% in the region of 200 nm to 2000 nm that covers the visible light region and the infrared region.
  • a method for producing such low reflection graphene is provided.
  • the low reflection graphene according to the present invention will be described with reference to the drawings.
  • the low reflection graphene of the present invention is not construed as being limited to the description of the embodiments and examples shown below. Note that in the drawings referred to in this embodiment mode and examples, the same portions or portions having similar functions are denoted by the same reference numerals, and repetitive description thereof is omitted.
  • FIG. 1 is a schematic diagram showing a low reflection graphene 1 according to an embodiment of the present invention.
  • the graphene of the present invention has a first graphene layer 13 extending substantially parallel to the base material 10 and a second graphene layer 15 standing on the first graphene layer 13.
  • up, down, left, and right are defined in the direction when the base material direction is down in the drawings.
  • the stacking direction of the surface formed by the first graphene layer 13 is defined as the first direction L1
  • the orientation direction of the surface formed by the second graphene layer 15 is defined as the second direction L2.
  • the base material 10 can use copper foil.
  • a metal having a catalytic function such as nickel, cobalt, or chromium, or a metal such as aluminum, a silicon substrate, a glass substrate, a Ge substrate, a ZnS substrate, a fluoride substrate such as calcium fluoride, sapphire, or the like
  • An inorganic substrate such as an oxide substrate may be used, and a resin substrate such as PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PC (polycarbonate), acrylic, and polyimide may be used as the organic substrate.
  • the present embodiment is characterized in that since it has the first graphene layer 13 extending in the first direction L1, the adhesive surface with the base material 10 is wide and the mechanical strength is high. In addition, since the first graphene layer 13 extending in the first direction L1 as described above has high adhesion to the substrate, the low-reflection graphene 1 of the present embodiment is used as a desired substrate. It is possible to adhere.
  • the low-reflection graphene 1 when used in a lens barrel of a microscope, a telescope, a camera, etc., the low-reflection graphene 1 is laminated on copper foil, polyimide, etc., and this is attached to the inner member of the lens barrel so that the lens barrel can be easily assembled. Can do. Furthermore, in this embodiment, even when directly laminated on the internal member, the adhesive strength is such that it does not peel naturally. Thereby, it is possible to create a lens barrel more easily.
  • the base material 10 is shown as a flat plate structure for simplicity, but the low reflection graphene 1 according to the present invention is not limited to this, and curved surfaces such as a sphere and a lens-type structure are used. It may be a structure having a cylindrical structure, a structure having irregularities, a structure having a rough surface, a structure having a predetermined pattern shape, or the like.
  • the first direction is parallel to the planar direction of the base material for simplicity, but may be substantially parallel.
  • first direction L1 and the second direction L2 are orthogonal to each other.
  • first direction L1 and the second direction L2 do not have to be orthogonal, and may intersect at an angle of, for example, about 60 degrees.
  • the standing second graphene layer 15 does not have to be perfectly aligned in the L2 direction.
  • the low-reflection graphene 1 has the above-described structure and has an extremely low relative total light reflectance in a region of 200 nm to 2000 nm covering the ultraviolet region to the infrared region.
  • the reflectivity realized by the present invention cannot be achieved by a conventional method in which graphene is simply laminated immediately above.
  • the above characteristics are the first graphene layers stacked in the first direction L1. 13 and the second graphene layer 15 oriented in the second direction L2 combine the light confinement effect due to the formation of the recesses and the above-described characteristics of the high light absorptivity of the graphene, and thus a synergistic effect It can be said that it was generated.
  • a recessed part means that the shape which the 2nd adjacent 2nd graphene layer 15 and the 1st graphene layer 13 to which these adhere
  • the low reflection graphene 1 created as described above can be used as a wall surface material of a lens barrel as a countermeasure against stray light in the lens barrel described above.
  • the countermeasure against stray light in the lens barrel it can be used as a noise canceller in the field of optical wireless communication, for example.
  • a display device can be used as a low reflection film in a display device.
  • a display device that suppresses flickering and optical color mixing by suppressing the inflow of light from the outside of the panel by bonding to a substrate opposite to the light emitting surface is provided. Is possible.
  • a base material 10 having a predetermined shape is prepared.
  • the low reflection graphene 1 can be directly laminated on the base material 10, and the low reflection graphene 1 may be formed on another base material and disposed on the substrate 10.
  • the base material 10 the base material having the material and shape described in the first embodiment can be arbitrarily selected.
  • a plasma CVD film forming apparatus is used to install the base material in a quartz glass tube and introduce a carbon-containing gas, an inert gas, and an additive gas at a predetermined gas ratio to generate plasma.
  • the low reflection graphene 1 is formed on the substrate.
  • a low reflection graphene 1 can be formed on the copper foil by winding a heater around the glass tube and heating the copper foil at a high temperature.
  • microwave surface wave plasma chemical vapor deposition method microwave surface wave plasma CVD
  • International Publication No. 2011/115197 exists as a prior art.
  • the low reflection graphene 1 can be manufactured.
  • the substrate temperature is 500 ° C. or less, preferably 200 ° C. or more and 450 ° C. or less.
  • the pressure is 50 Pa or less.
  • the processing time is not particularly limited, but is about 1 second to 1000 seconds. Preferably, it is about 100 seconds or more and 600 seconds or less.
  • the gas ratio of the additive gas and the carbon-containing gas is necessary to make the gas ratio of the additive gas and the carbon-containing gas substantially the same or to increase the additive gas more than the carbon-containing gas.
  • the carbon-containing gas includes methane, ethylene, acetylene, ethanol, acetone, methanol and the like.
  • Inert gases include helium, neon, argon, and the like.
  • hydrogen gas is preferably used as the additive gas.
  • first graphene film 13 and the second graphene layer 15 may be a film of graphene or a film in which a plurality of layers are stacked. In view of handling the low reflection graphene 1, a graphene film in which a plurality of layers are oriented is preferable.
  • the low-reflection graphene including the first graphene layer 13 and the second graphene layer on the base material 10 By laminating the low-reflection graphene including the first graphene layer 13 and the second graphene layer on the base material 10 as described above, extremely low reflection with respect to light in the wavelength range of 200 nm to 2000 nm. It is possible to produce low reflection graphene that exhibits a rate. This is considered to be a combination of the above-described light confinement effect and the above-described characteristics of high light absorption of graphene, and the above manufacturing method is a technique capable of manufacturing unprecedented graphene. . In the present invention, it is also possible to form a film directly on the above-mentioned metal substrate, glass, polyimide film or the like.
  • Example 1 With a plasma CVD film forming device, a rolled copper foil (33 ⁇ m, Fukuda Metal Foil Powder Industry) is placed in a quartz glass tube, and methane gas, argon gas, and hydrogen gas are introduced at a gas ratio of 6: 1: 6, and a pressure valve The pressure was adjusted so that the internal pressure was 10 Pa. Thereafter, plasma was generated in the chamber to form low reflection graphene 1 on the rolled copper foil. The film formation time was 600 seconds.
  • FIG. 2 shows the reflectance of the low-reflection graphene of Example 1 at a wavelength of 200 nm to 2000 nm. From the results of FIG. 2, it can be seen that the low reflection graphene of Example 1 has a reflectance of less than 1.5% for wavelengths of 200 nm to 2000 nm.
  • FIG. 3 shows a Raman spectrum measured using a 532 nm wavelength laser by a RENISYO Raman apparatus. Peaks due to graphene structure 2550 cm -1 or 2800 cm -1 The following regions were observed. In FIG. 3, the peak is marked with an arrow.
  • Comparative Example 1 Comparative Example 1 was obtained by bonding XGSscience carbon powder (C-750) to an adhesive tape to form a sheet.
  • FIG. 4 shows the reflectance of Comparative Example 1 at a wavelength of 200 nm to 2000 nm. From the result of FIG. 4, the comparative example 1 had a reflectance of 1.5% or more from a wavelength of about 1000 nm to 2000 nm.
  • Comparative Example 2 Comparative Example 2 was made using ACTER MetalVelvet, which is a commercially available low-reflection material. The sample is originally a sheet shape.
  • FIG. 6 shows the reflectance of Comparative Example 2 at a wavelength of 200 nm to 2000 nm. From the results of FIG. 6, although the reflectance is 1.5% or less from the wavelength of 200 nm to 990 nm, the reflection from the wavelength of 990 nm to 2000 nm is 1.5% or more.
  • Example 1 has a total light reflectance of 1.5% or less in the wavelength range of 200 nm to 2000 nm. It can also be seen from the resonance Raman scattering measurement that only Example 1 has a graphene structure. Therefore, it has been clarified that low reflection graphene having a low total light reflectivity can be provided in a region with a wavelength of 200 nm to 2000 nm that covers the ultraviolet region to the infrared region.
  • FIGS. 8 is a transmission electron image obtained by observing the upper part of the graphene of Example 1 at a magnification of 3 million times
  • FIG. 9 is a transmission electron image obtained by observing the lower part of the graphene of Example 1 at a magnification of 3 million times.
  • FIG. 12 reveals that the second graphene layer 15 extends in the second direction and is stacked in the first direction (left-right direction).
  • Example 1 the graphene layer 13 stacked in the first direction L1 and the second graphene layer 15 stacked in the second direction L2 form the above-described recess. I understand.
  • FIG. 10 shows a secondary electron image obtained by observing Example 1 with a scanning electron microscope. Thereby, it can be seen that the second graphene layer 15 extends in the second direction L2 of the first embodiment.
  • it is a low-reflection graphene that synergistically satisfies the relative total light reflectance of 1.5% or less in the wavelength range of 200 nm to 2000 nm. I understood that.
  • the low reflection graphene in the present invention is an effect of not reflecting infrared lasers other than using the low reflection graphene material for stray light countermeasures in the optical member described above, a noise canceller in the field of optical wireless communication, a conductive low reflection film in a display device, etc. It is also possible to use as a low-infrared reflecting member (stealth) using

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Provided is a low-reflection graphene of which the total reflectance is 1.5% or less in the wavelength range of 200-2000 nm, inclusive. Furthermore, the low-reflection graphene has a first graphene layer that has a surface approximately parallel to a first direction and a second graphene layer that is connected to the first graphene layer and is oriented in a second direction that intersects the first direction.

Description

低反射グラフェン、光学部材用低反射グラフェンLow reflection graphene, low reflection graphene for optical components
 本発明は、低反射グラフェン、光学部材用低反射グラフェンに関する。特に、可視光領域および赤外領域で一定以下の低い光反射特性を有する低反射グラフェン、およびそれを利用した光学部材に関する。 The present invention relates to low reflection graphene and low reflection graphene for optical members. In particular, the present invention relates to a low reflection graphene having a low light reflection characteristic below a certain level in the visible light region and the infrared region, and an optical member using the low reflection graphene.
 低反射材料は、従来、各種の光学機器における光反射量の制御に用いられている。例えば、光学顕微鏡、望遠鏡、カメラなどのレンズ光学系においては、低反射材を用いることでノイズを低減させることができる。これは、レンズから入射した光が鏡筒等の中に閉じ込められ内部で反射を繰り返すという迷光現象、を低減させることができるためである。 Low reflection materials are conventionally used for controlling the amount of light reflection in various optical devices. For example, in a lens optical system such as an optical microscope, a telescope, or a camera, noise can be reduced by using a low reflective material. This is because the stray light phenomenon in which light incident from the lens is confined in a lens barrel or the like and repeatedly reflected inside can be reduced.
 たとえば、望遠鏡や顕微鏡のレンズにおいては、前記の迷光がディテクタに検出され、それが観察対象であるのか、それとも、迷光に由来するノイズであるかどうかの判別がつかないことがある。このような迷光減少を低減させるための材料として、より低反射な材料が切望されている。 For example, in a telescope or a microscope lens, the above stray light may be detected by a detector, and it may not be possible to determine whether it is an observation target or noise derived from stray light. As a material for reducing such a decrease in stray light, a material having lower reflection is desired.
 さらに、モバイル端末、テレビ、パソコン等のディスプレーにおいて反射光を低減させてちらつきを抑えたりすることも可能となると考えられる。 Furthermore, it is considered possible to reduce flicker by reducing reflected light on displays such as mobile terminals, televisions, and personal computers.
 各種の低反射材が市販されているが、いずれも可視光領域および赤外領域において反射率が十分に低いとは言えない。また、グラフェンを利用した低反射材は市販されていない。 Various low-reflective materials are commercially available, but none of them has a sufficiently low reflectance in the visible light region and the infrared region. Moreover, the low reflection material using a graphene is not marketed.
特開2002-146533号公報JP 2002-146533 A 特許第4762945号公報Japanese Patent No. 4762945
 本発明は、上述の問題を解決するものであって、とくに、紫外光領域および赤外領域をカバーする、波長200nm以上2000nm以下の領域において、全光線反射率が低い低反射グラフェンおよび、これを利用した光学部材を提供することを目的とする。また、膜厚の薄い低反射グラフェン及びこれを用いた光学部材を提供する。通常、グラフェンは透明導電膜など光を透過する材料や部材としての開発が活発であるが、発明者らは鋭意検討し、従来とは全く異なる概念で、低反射グラフェン及びこれを用いた光学部材を提供することを見出した。 The present invention solves the above-mentioned problem, and particularly, low reflection graphene having a low total light reflectance in a region of a wavelength of 200 nm or more and 2000 nm or less that covers an ultraviolet region and an infrared region, and It is an object to provide a utilized optical member. In addition, a low-reflection graphene with a thin film thickness and an optical member using the same are provided. In general, graphene is actively developed as a transparent conductive film or other material or member that transmits light, but the inventors have intensively studied, and have a completely different concept from the conventional low-reflective graphene and an optical member using the same. Found to provide.
 本発明の一実施形態によると、波長200nm以上2000nm以下の範囲において、全光線反射率が、1.5%以下である低反射グラフェンが提供される。 According to one embodiment of the present invention, there is provided low reflection graphene having a total light reflectance of 1.5% or less in a wavelength range of 200 nm to 2000 nm.
 本発明の一実施形態によると、第1の方向に略平行な面を有する第1のグラフェン層と、前記第1のグラフェン層に接続し、第1の方向と交差する第2の方向に配向した第2のグラフェン層と、を有する、低反射グラフェンが提供される。 According to an embodiment of the present invention, a first graphene layer having a plane substantially parallel to a first direction, and an orientation in a second direction connected to the first graphene layer and intersecting the first direction A low-reflection graphene is provided.
 前記低反射グラフェンにおいて、ラマン共鳴スペクトル測定において、2550cm-1以上2800cm-1以下の波数範囲にピークが観測される低反射グラフェンが提供される。 In the above low reflective graphene, in the Raman resonance spectroscopy, low-reflection graphene is provided a peak in a wave number range 2550 cm -1 or 2800 cm -1 is observed.
 本発明の一実施形態によると、低反射グラフェンを円筒基材に用いた光学部材が提供される。 According to an embodiment of the present invention, an optical member using low-reflection graphene as a cylindrical base material is provided.
 本発明の一実施形態によると、低反射グラフェンを壁面に用いた光無線通信用ノイズ低減壁が提供される。 According to an embodiment of the present invention, a noise reduction wall for optical wireless communication using low reflection graphene as a wall surface is provided.
 本発明の一実施形態によると、低反射グラフェンを導電性低反射膜に用いた表示装置が提供される。 According to an embodiment of the present invention, a display device using low-reflection graphene as a conductive low-reflection film is provided.
 本発明の一実施形態によると、プラズマCVD製膜装置にメタンガス、アルゴンガス、水素ガスを導入し、全光線反射率が、波長200nm以上2000nm以下の範囲において、1.5%以下であるグラフェン膜を基材上に形成する、低反射グラフェンの成膜方法が提供される。 According to one embodiment of the present invention, a graphene film having a total light reflectance of 1.5% or less in a wavelength range of 200 nm to 2000 nm by introducing methane gas, argon gas, and hydrogen gas into a plasma CVD film forming apparatus. Is provided on a substrate, and a method for forming a low reflection graphene is provided.
 本発明によると、反射率の低いグラフェンと、その製造方法が提供される。紫外領域から赤外領域をカバーする、波長200nm以上2000nm以下の領域において、全光線反射率が低い低反射グラフェンおよび、これを利用した光学部材が提供される。 According to the present invention, low-reflectance graphene and a manufacturing method thereof are provided. Provided are a low reflection graphene having a low total light reflectivity and an optical member using the same in a wavelength range of 200 nm or more and 2000 nm or less covering the ultraviolet region to the infrared region.
本発明の一実施形態に係る低反射グラフェンを示す模式図である。It is a schematic diagram which shows the low reflection graphene which concerns on one Embodiment of this invention. 本発明の一実施例に係る低反射グラフェンの波長200nm以上2000nm以下での反射率を示す図である。It is a figure which shows the reflectance in the wavelength of 200 nm or more and 2000 nm or less of the low reflection graphene based on one Example of this invention. 本発明の一実施例に係る低反射グラフェンの532nm波長のレーザーを用いて測定したラマンスペクトルを示す図である。It is a figure which shows the Raman spectrum measured using the 532 nm wavelength laser of the low reflection graphene which concerns on one Example of this invention. 本発明の比較例に係る低反射グラフェンの波長200nm以上2000nm以下での反射率を示す図である。It is a figure which shows the reflectance in wavelength 200nm or more and 2000nm or less of the low reflection graphene which concerns on the comparative example of this invention. 本発明の比較例に係る低反射グラフェンの532nm波長のレーザーを用いて測定したラマンスペクトルを示す図である。It is a figure which shows the Raman spectrum measured using the laser of 532 nm wavelength of the low reflection graphene which concerns on the comparative example of this invention. 本発明の比較例に係る低反射グラフェンの波長200nm以上2000nm以下での反射率を示す図である。It is a figure which shows the reflectance in wavelength 200nm or more and 2000nm or less of the low reflection graphene which concerns on the comparative example of this invention. 本発明の比較例に係る低反射グラフェンの532nm波長のレーザーを用いて測定したラマンスペクトルを示す図である。It is a figure which shows the Raman spectrum measured using the laser of 532 nm wavelength of the low reflection graphene which concerns on the comparative example of this invention. 本発明の一実施例に係る低反射グラフェンの断面の透過電子像(倍率6万倍)である。It is a transmission electron image (magnification 60,000 times) of the cross section of the low reflection graphene based on one Example of this invention. 本発明の一実施例に係る低反射グラフェンの断面の透過電子像(倍率30万倍)である。It is a transmission electron image (magnification 300,000 times) of the cross section of the low reflection graphene based on one Example of this invention. 本発明の一実施例に係る低反射グラフェンの走査型電子顕微鏡による二次電子像である。It is a secondary electron image by the scanning electron microscope of the low reflection graphene based on one Example of this invention.
 本発明者らが、紫外領域から赤外領域をカバーする広範な波長領域において低反射となるグラフェンの探索を行った結果、特定の構造を有するグラフェン膜が広範な波長領域に対して極めて低反射となる特性を備えることを初めて見出した。 As a result of the search for graphene that has low reflection in a wide wavelength range covering the ultraviolet region to the infrared region, the present inventors have found that a graphene film having a specific structure has extremely low reflection in a wide wavelength region. It has been found for the first time that it has the following characteristics.
 ここで、カーボンを積層させることに関しての先行の技術としては、例えば、特許文献1には、簡便な方法により面状電子源を作製することができる構造を有する炭素薄体が記載されている。もっとも、同文献は、反射率に着目した材料ではない。 Here, as a prior art regarding the lamination of carbon, for example, Patent Document 1 describes a carbon thin body having a structure capable of producing a planar electron source by a simple method. However, this document is not a material that focuses on reflectivity.
 また、特許文献2には、金属触媒を有しない基板と、前記基板の表面上に、直接、立設された多数の壁状から成り、厚さ0.05nm~30nm、面の縦横の長さ100nm~10μm、を有した金属触媒を有しない二次元的な広がりをもつ単層又は多重層のカーボンナノウォールとから成り、カーボンナノウォールのそれぞれの長さ方向は所定方向に配向しているカーボンナノウォール構造体、が記載されている。特許文献2には、本明細書で開示される第一のグラフェン層が示されていないことから、本開示の低反射グラフェンとは構造が異なる。もっとも、同文献を見ても、また、同文献の発明者と同一人物が作成したカーボンナノウォールに関する論文(非特許文献1)を見ても、同文献に記載のカーボンナノウォールが反射率に着目した材料であるとはいえない。 Further, Patent Document 2 includes a substrate having no metal catalyst, and a number of wall shapes standing directly on the surface of the substrate. The thickness is 0.05 nm to 30 nm, and the vertical and horizontal lengths of the surface. A carbon nanowall having a two-dimensional extent without a metal catalyst having a metal catalyst having a thickness of 100 nm to 10 μm, and each carbon nanowall having a length direction oriented in a predetermined direction. Nanowall structures are described. Since the first graphene layer disclosed in this specification is not shown in Patent Document 2, the structure is different from the low reflection graphene of the present disclosure. However, even when looking at the same document, and also when looking at a paper (non-patent document 1) on carbon nanowalls created by the same person as the inventor of the same document, the carbon nanowalls described in the same document have a reflectivity. It cannot be said that it is a focused material.
 本発明の一実施形態では、可視光領域および赤外領域をカバーする200nm以上2000nm以下という領域において、相対全反射率が1.5%という極めて低反射となるグラフェンが提供される。また、本発明の一実施形態において、そのような低反射のグラフェンの製造方法が提供される。 In one embodiment of the present invention, there is provided graphene that exhibits extremely low reflection with a relative total reflectance of 1.5% in the region of 200 nm to 2000 nm that covers the visible light region and the infrared region. In one embodiment of the present invention, a method for producing such low reflection graphene is provided.
 以下、図面を参照して本発明に係る低反射グラフェンについて説明する。但し、本発明の低反射グラフェンは、以下に示す実施の形態及び実施例の記載内容に限定して解釈されるものではない。なお、本実施の形態及び実施例で参照する図面において、同一部分又は同様な機能を有する部分には同一の符号を付し、その繰り返しの説明は省略する。 Hereinafter, the low reflection graphene according to the present invention will be described with reference to the drawings. However, the low reflection graphene of the present invention is not construed as being limited to the description of the embodiments and examples shown below. Note that in the drawings referred to in this embodiment mode and examples, the same portions or portions having similar functions are denoted by the same reference numerals, and repetitive description thereof is omitted.
(実施形態1)
 図1は、本発明の一実施形態に係る低反射グラフェン1を示す模式図である。本発明のグラフェンは、基材10に対して略平行に伸びる第1のグラフェン層13と、その上に立設された第2のグラフェン層15とを有する。なお、本明細書では、図面において基材方向を下とした際の方向で上下左右を定義する。また、図1において第1のグラフェン層13がなす面の積層方向が第1の方向L1、第2のグラフェン層15がなす面の配向方向が第2の方向L2と定義される。
(Embodiment 1)
FIG. 1 is a schematic diagram showing a low reflection graphene 1 according to an embodiment of the present invention. The graphene of the present invention has a first graphene layer 13 extending substantially parallel to the base material 10 and a second graphene layer 15 standing on the first graphene layer 13. In the present specification, up, down, left, and right are defined in the direction when the base material direction is down in the drawings. In FIG. 1, the stacking direction of the surface formed by the first graphene layer 13 is defined as the first direction L1, and the orientation direction of the surface formed by the second graphene layer 15 is defined as the second direction L2.
 ここで、基材10は、銅箔を用いることができる。そのほかに、例えば、ニッケル、コバルト、クロム等の触媒機能を有する金属、アルミニウムなどの金属であって良い、シリコン基板、ガラス基板、Ge基板、ZnS基板、フッ化カルシウムなどのフッ化物基板、サファイア等の酸化物基板等の無機系基板でもよいし、有機系基板として、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、PC(ポリカーボネート)、アクリル、ポリイミド等の樹脂基板等を用いることができる。 Here, the base material 10 can use copper foil. In addition, for example, a metal having a catalytic function such as nickel, cobalt, or chromium, or a metal such as aluminum, a silicon substrate, a glass substrate, a Ge substrate, a ZnS substrate, a fluoride substrate such as calcium fluoride, sapphire, or the like An inorganic substrate such as an oxide substrate may be used, and a resin substrate such as PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PC (polycarbonate), acrylic, and polyimide may be used as the organic substrate.
 本実施形態は、第1の方向L1に延在する第1のグラフェン層13を有することから、基材10との接着面が広く、機械的強度が高いことにも特徴がある。また、このように第1の方向L1に延在する第1のグラフェン層13を有することによって基材との密着力が高いために、本実施形態の低反射グラフェン1を、所望の基材に密着させることが可能である。 The present embodiment is characterized in that since it has the first graphene layer 13 extending in the first direction L1, the adhesive surface with the base material 10 is wide and the mechanical strength is high. In addition, since the first graphene layer 13 extending in the first direction L1 as described above has high adhesion to the substrate, the low-reflection graphene 1 of the present embodiment is used as a desired substrate. It is possible to adhere.
 たとえば、顕微鏡、望遠鏡、カメラ等の鏡筒に用いる際においては、銅箔やポリイミド等に低反射グラフェン1を積層させ、これを鏡筒の内側部材に貼り付けることで鏡筒を簡易に組み立てることができる。さらに、本実施形態では、内部部材に直接積層させた場合も、自然に剥離しない程度の密着力を有する。これにより、さらに簡易に鏡筒を作成することが可能である。 For example, when used in a lens barrel of a microscope, a telescope, a camera, etc., the low-reflection graphene 1 is laminated on copper foil, polyimide, etc., and this is attached to the inner member of the lens barrel so that the lens barrel can be easily assembled. Can do. Furthermore, in this embodiment, even when directly laminated on the internal member, the adhesive strength is such that it does not peel naturally. Thereby, it is possible to create a lens barrel more easily.
 なお、図1において、簡単のために基材10を平板構造として示しているが、本発明に係る低反射グラフェン1は、これに限定されるものではなく、球体、レンズ型構造等の曲面を有する構造体、円筒構造、凹凸を有する構造体、粗面を有する構造体、所定のパターン形状を有する構造体等であってもよい。また、図1においては簡単のために第1の方向が、基材の平面方向に平行となっているが、略平行で構わない。とくに、球体、レンズ型構造等の曲面を有する構造体、円筒構造、凹凸を有する構造体、粗面を有する構造体、所定のパターン形状を有する構造体等が基材である場合には、略平行である。また、図1においては簡単のために、第1の方向L1と第2の方向L2とが直交する図面となっている。もっとも、第1の方向L1と第2の方向L2とが直交しなくともよく、たとえば60度程度の角度で交差していてもよい。また、図1に示したように、立設された第2のグラフェン層15は、完全にL2方向でそろって配向していなければならないものでもない。 In FIG. 1, the base material 10 is shown as a flat plate structure for simplicity, but the low reflection graphene 1 according to the present invention is not limited to this, and curved surfaces such as a sphere and a lens-type structure are used. It may be a structure having a cylindrical structure, a structure having irregularities, a structure having a rough surface, a structure having a predetermined pattern shape, or the like. In FIG. 1, the first direction is parallel to the planar direction of the base material for simplicity, but may be substantially parallel. In particular, when a structure having a curved surface, such as a sphere or a lens structure, a cylindrical structure, a structure having irregularities, a structure having a rough surface, a structure having a predetermined pattern shape, or the like is a base material, Parallel. Further, in FIG. 1, for the sake of simplicity, the first direction L1 and the second direction L2 are orthogonal to each other. However, the first direction L1 and the second direction L2 do not have to be orthogonal, and may intersect at an angle of, for example, about 60 degrees. Further, as shown in FIG. 1, the standing second graphene layer 15 does not have to be perfectly aligned in the L2 direction.
 共鳴ラマン散乱測定法によって、グラフェンの振動スペクトルを測定すると、グラフェン由来の2550cm-1以上2800cm-1(2700cm-1付近である)の2Dバンド(Gプライム バンド)が観測される。本実施形態において、低反射グラフェン1は、グラフェン構造を有することから、共鳴ラマン散乱測定法により測定された2550cm-1以上2800cm-1以下の範囲内での、特徴的な前記ピークが存在する。これは、本実施形態での第1のグラフェン層、第2のグラフェン層に由来するものであり、低反射グラフェン1がグラフェンであることの証左である。 By resonance Raman scattering measurement method, measuring the vibrational spectrum of the graphene, 2D band (G prime band) of graphene from the 2550 cm -1 or 2800 cm -1 (2700 cm in the vicinity -1) are observed. In the present embodiment, the low reflective graphene 1, since it has a graphene structure, in the measured 2550 cm -1 or 2800 cm -1 or less range by resonance Raman scattering measurement method, a characteristic the peak exists. This is derived from the first graphene layer and the second graphene layer in the present embodiment, and is proof that the low reflection graphene 1 is graphene.
 低反射グラフェン1が、前述の構造をとり、なおかつ、紫外領域から赤外領域をカバーする200nm以上2000nmという領域において相対全光線反射率の極めて低い特性を有するということを発見した。本発明により実現される反射率は、グラフェンを単に直上に積層させる従来の手法では、なしえなかったものである。 It was discovered that the low-reflection graphene 1 has the above-described structure and has an extremely low relative total light reflectance in a region of 200 nm to 2000 nm covering the ultraviolet region to the infrared region. The reflectivity realized by the present invention cannot be achieved by a conventional method in which graphene is simply laminated immediately above.
 本実施形態と層数が同程度であっても構造が異なる場合には、上記のような特性が出ないことからすると、上記の特性は、第1の方向L1に積層した第1のグラフェン層13と、第2の方向L2に配向した第2のグラフェン層15とが、凹部を形成することによる、光閉じ込め効果と、前述したグラフェンの有する高い光吸収率という特性とが相まって、相乗効果的に生じたものであるということができる。 Even if the number of layers is the same as that of the present embodiment, when the structure is different, the above characteristics do not appear. Therefore, the above characteristics are the first graphene layers stacked in the first direction L1. 13 and the second graphene layer 15 oriented in the second direction L2 combine the light confinement effect due to the formation of the recesses and the above-described characteristics of the high light absorptivity of the graphene, and thus a synergistic effect It can be said that it was generated.
 なお、凹部とは、2つの隣接する第2のグラフェン層15と、これらが接着する第1のグラフェン層13とが成す形状が凹みを有する形状であるという意味である。 In addition, a recessed part means that the shape which the 2nd adjacent 2nd graphene layer 15 and the 1st graphene layer 13 to which these adhere | attach is a shape which has a dent.
 本発明のさらなる実施形態では、上記で作成した低反射グラフェン1を、前述した鏡筒内の迷光対策として、鏡筒の壁面材料として用いることができる。また、鏡筒内の迷光対策以外にも、たとえば光無線通信分野において、ノイズキャンセラとして用いることも可能である。 In a further embodiment of the present invention, the low reflection graphene 1 created as described above can be used as a wall surface material of a lens barrel as a countermeasure against stray light in the lens barrel described above. In addition to the countermeasure against stray light in the lens barrel, it can be used as a noise canceller in the field of optical wireless communication, for example.
 さらに、表示装置における低反射膜として利用することも可能である。たとえば、低反射膜としては、光出射面と反対側の基板に貼り合わせることによって、に貼り合わせることによって、パネル外部からの光の流入をおさえ、ちらつきや光学的混色を低減させる表示装置を提供することが可能である。 Furthermore, it can be used as a low reflection film in a display device. For example, as a low-reflective film, a display device that suppresses flickering and optical color mixing by suppressing the inflow of light from the outside of the panel by bonding to a substrate opposite to the light emitting surface is provided. Is possible.
<製造方法>
 低反射グラフェン1の製造方法について説明する。まず、所定形状の基材10を用意する。低反射グラフェン1は、基材10に直接積層させることもでき、低反射グラフェン1を別の基材に成膜して、基板10に配置してもよい。基材10としては、実施形態1で説明した材質及び形状の基材を任意に選択可能である。本発明ではこの基材の上に、プラズマCVD製膜装置で、基材を石英ガラスチューブ内に設置し、含炭素ガス、不活性ガス、添加ガスを所定のガス比で導入し、プラズマを発生させて、基材上に低反射グラフェン1を形成する。基材として銅箔を選択した場合には、ガラスチューブにヒーターを巻きつけて高温で銅箔を加熱し、銅箔上に低反射グラフェン1を形成することができる。
<Manufacturing method>
A method for manufacturing the low reflection graphene 1 will be described. First, a base material 10 having a predetermined shape is prepared. The low reflection graphene 1 can be directly laminated on the base material 10, and the low reflection graphene 1 may be formed on another base material and disposed on the substrate 10. As the base material 10, the base material having the material and shape described in the first embodiment can be arbitrarily selected. In the present invention, on this base material, a plasma CVD film forming apparatus is used to install the base material in a quartz glass tube and introduce a carbon-containing gas, an inert gas, and an additive gas at a predetermined gas ratio to generate plasma. Thus, the low reflection graphene 1 is formed on the substrate. When copper foil is selected as the substrate, a low reflection graphene 1 can be formed on the copper foil by winding a heater around the glass tube and heating the copper foil at a high temperature.
 プラズマCVDを用いるグラフェンの製造プロセスとして、たとえば、国際公開第2011/115197号に記載されたマイクロ波表面波プラズマ化学気相成長法(マイクロ波表面波プラズマCVD)、が先行技術として存在するが、本発明では、このプロセスとは条件が異なるため、低反射グラフェン1を製造することが可能である。 As a process for producing graphene using plasma CVD, for example, a microwave surface wave plasma chemical vapor deposition method (microwave surface wave plasma CVD) described in International Publication No. 2011/115197 exists as a prior art. In the present invention, since the conditions are different from those of this process, the low reflection graphene 1 can be manufactured.
 本発明で用いるCVD処理の条件としては、基材温度は500度以下であり、好ましくは200℃以上450℃以下である。また圧力は、50Pa以下である。処理時間は特に限定されないが、1秒以上1000秒以下程度である。好ましくは、100秒以上600秒以下程度である。 As conditions for the CVD treatment used in the present invention, the substrate temperature is 500 ° C. or less, preferably 200 ° C. or more and 450 ° C. or less. The pressure is 50 Pa or less. The processing time is not particularly limited, but is about 1 second to 1000 seconds. Preferably, it is about 100 seconds or more and 600 seconds or less.
 本発明の低反射グラフェン1を積層させるためには、添加ガスと含炭素ガスのガス比をほぼ同じとするか、または、添加ガスを含炭素ガスよりも多くする必要がある。ここで、含炭素ガスとしては、メタン、エチレン、アセチレン、エタノール、アセトン、メタノール等が包含される。不活性ガスとしては、ヘリウム、ネオン、アルゴン等が包含される。また、添加ガスとしては、水素ガスが好ましく用いられる。 In order to stack the low reflection graphene 1 of the present invention, it is necessary to make the gas ratio of the additive gas and the carbon-containing gas substantially the same or to increase the additive gas more than the carbon-containing gas. Here, the carbon-containing gas includes methane, ethylene, acetylene, ethanol, acetone, methanol and the like. Inert gases include helium, neon, argon, and the like. Moreover, hydrogen gas is preferably used as the additive gas.
 なお、第1のグラフェン膜13と、第2のグラフェン層15とは、グラフェンが1層の膜であってもよく、複数層が積層した膜であってもよい。低反射グラフェン1の取扱い上、複数層が配向したグラフェン膜であることが好ましい。 Note that the first graphene film 13 and the second graphene layer 15 may be a film of graphene or a film in which a plurality of layers are stacked. In view of handling the low reflection graphene 1, a graphene film in which a plurality of layers are oriented is preferable.
 上記のように基材10上に第1のグラフェン層13と、第2のグラフェン層とを含む低反射グラフェンを積層させることによって、波長200nm以上2000nm以下の範囲の光に対して、極めて低い反射率を示す低反射グラフェンを製造することが可能である。これは、前述の光閉じ込め効果と、前述のグラフェンの有する高い光吸収率という特性とが相まったものであると考えられ、上記製造方法は、従来にないグラフェンを製造することのできる手法である。なお、本発明では、上に挙げた金属基板、ガラス、ポリイミドフィルム等へ直接成膜することも可能である。 By laminating the low-reflection graphene including the first graphene layer 13 and the second graphene layer on the base material 10 as described above, extremely low reflection with respect to light in the wavelength range of 200 nm to 2000 nm. It is possible to produce low reflection graphene that exhibits a rate. This is considered to be a combination of the above-described light confinement effect and the above-described characteristics of high light absorption of graphene, and the above manufacturing method is a technique capable of manufacturing unprecedented graphene. . In the present invention, it is also possible to form a film directly on the above-mentioned metal substrate, glass, polyimide film or the like.
 上述した本発明に係る低反射グラフェンについて、実施例を示してさらに説明する。なお、本明細書の開示する思想は、下記に示す1つの具体例としての実施例に限定して解釈されるべきではない。 The above-described low reflection graphene according to the present invention will be further described with reference to examples. The idea disclosed in the present specification should not be construed as being limited to one specific example shown below.
(実施例1)
 プラズマCVD製膜装置で、圧延銅箔(33μm、福田金属箔粉工業)を石英ガラスチューブ内に設置し、メタンガス、アルゴンガス、水素ガスをガス比6:1:6で導入しながら、圧力バルブで内部気圧が10Paとなるように圧力を調整した。その後、チャンバー内に、プラズマを発生させて、圧延銅箔上に低反射グラフェン1を形成した。製膜時間は600秒であった。
(Example 1)
With a plasma CVD film forming device, a rolled copper foil (33 μm, Fukuda Metal Foil Powder Industry) is placed in a quartz glass tube, and methane gas, argon gas, and hydrogen gas are introduced at a gas ratio of 6: 1: 6, and a pressure valve The pressure was adjusted so that the internal pressure was 10 Pa. Thereafter, plasma was generated in the chamber to form low reflection graphene 1 on the rolled copper foil. The film formation time was 600 seconds.
(実施例1の紫外領域から赤外領域の反射率測定)
 実施例1の低反射グラフェンの紫外領域から赤外領域について紫外可視分光光度計(SolidSpec-3700DUV、島津製作所)を用いて、全光線反射率を測定した。なお、全光線反射率のリファレンス基板としては、ラブスフィア社製のスペクトラロン(登録商標)反射マテリアルを用いた。
(Reflectance measurement from ultraviolet region to infrared region in Example 1)
The total light reflectance was measured using an ultraviolet-visible spectrophotometer (SolidSpec-3700DUV, Shimadzu Corp.) for the ultraviolet region to the infrared region of the low-reflection graphene of Example 1. In addition, Spectralon (registered trademark) reflective material manufactured by Labsphere was used as a reference substrate for total light reflectance.
 図2に実施例1の低反射グラフェンの波長200nm以上2000nm以下での反射率を示す。図2の結果から、実施例1の低反射グラフェンは、波長200nm以上2000nm以下の反射率がすべて1.5%未満であることが分かる。 FIG. 2 shows the reflectance of the low-reflection graphene of Example 1 at a wavelength of 200 nm to 2000 nm. From the results of FIG. 2, it can be seen that the low reflection graphene of Example 1 has a reflectance of less than 1.5% for wavelengths of 200 nm to 2000 nm.
(実施例1の共鳴ラマン散乱測定)
 実施例1の低反射グラフェンについて、共鳴ラマン散乱測定を行った。RENISYOUラマン装置により、532nm波長のレーザーを用いて測定したラマンスペクトルを図3に示す。2550cm-1以上2800cm-1以下の領域にグラフェン構造に起因するピークが観測された。なお、図3においては、該ピークの箇所に矢印でマークをしてある。
(Resonance Raman scattering measurement of Example 1)
The low reflection graphene of Example 1 was subjected to resonance Raman scattering measurement. FIG. 3 shows a Raman spectrum measured using a 532 nm wavelength laser by a RENISYO Raman apparatus. Peaks due to graphene structure 2550 cm -1 or 2800 cm -1 The following regions were observed. In FIG. 3, the peak is marked with an arrow.
(比較例1)
 XGScience社カーボン粉末(C-750)を、粘着テープに接着してシート状にしたものを比較例1とした。
(Comparative Example 1)
Comparative Example 1 was obtained by bonding XGSscience carbon powder (C-750) to an adhesive tape to form a sheet.
(比較例1の紫外領域から赤外領域の反射率測定)
 比較例1の紫外領域から赤外領域の反射率を、実施例1に記載の方法で測定した。図4に比較例1の波長200nm以上2000nm以下での反射率を示す。図4の結果から、比較例1は、波長約1000nm以上2000nm以下までは1.5%以上の反射率であった。
(Reflectance measurement from ultraviolet region to infrared region of Comparative Example 1)
The reflectance from the ultraviolet region to the infrared region of Comparative Example 1 was measured by the method described in Example 1. FIG. 4 shows the reflectance of Comparative Example 1 at a wavelength of 200 nm to 2000 nm. From the result of FIG. 4, the comparative example 1 had a reflectance of 1.5% or more from a wavelength of about 1000 nm to 2000 nm.
(比較例1の共鳴ラマン散乱測定)
 比較例1のラマンスペクトルを、実施例1と同様に測定した。図5に比較例1のラマンスペクトルを示す。2550cm-1以上2800cm-1以下の領域にピークは存在しなかった。
(Resonance Raman scattering measurement of Comparative Example 1)
The Raman spectrum of Comparative Example 1 was measured in the same manner as in Example 1. FIG. 5 shows the Raman spectrum of Comparative Example 1. 2550 cm -1 or 2800 cm -1 peak in a region was present.
(比較例2)
 市販されている低反射材料として存在するACTER社のMetalVelvetを比較例2とした。なお、同試料は、そもそもシート形状である。
(Comparative Example 2)
Comparative Example 2 was made using ACTER MetalVelvet, which is a commercially available low-reflection material. The sample is originally a sheet shape.
(比較例2の紫外領域から赤外領域の反射率測定)
 比較例2の紫外領域から赤外領域の反射率を、実施例1に記載の方法で測定した。図6に比較例2の波長200nm以上2000nm以下での反射率を示す。図6の結果から、波長200nm以上990nm以下までは1.5%以下の反射率であるものの、それ以降の波長990nm以上2000nm以下までの領域では、1.5%以上の反射を示した。
(Reflectance measurement from the ultraviolet region to the infrared region of Comparative Example 2)
The reflectance from the ultraviolet region to the infrared region of Comparative Example 2 was measured by the method described in Example 1. FIG. 6 shows the reflectance of Comparative Example 2 at a wavelength of 200 nm to 2000 nm. From the results of FIG. 6, although the reflectance is 1.5% or less from the wavelength of 200 nm to 990 nm, the reflection from the wavelength of 990 nm to 2000 nm is 1.5% or more.
(比較例2の共鳴ラマン散乱測定)
 比較例2のラマンスペクトルを、実施例1と同様に測定した。図7に比較例2のラマンスペクトルを示す。波長2550-1以上2800cm-1以下の領域にピークは存在しなかった。
(Resonance Raman scattering measurement of Comparative Example 2)
The Raman spectrum of Comparative Example 2 was measured in the same manner as in Example 1. FIG. 7 shows the Raman spectrum of Comparative Example 2. There was no peak in the region of wavelengths from 2550 −1 to 2800 cm −1 .
 以上より、実施例1のみが全光線反射率が、波長200nm以上2000nm以下の範囲において、反射率が1.5%以下であることが分かる。また、共鳴ラマン散乱測定により実施例1のみグラフェン構造を有していることが分かる。したがって、紫外領域から赤外領域をカバーする、波長200nm以上2000nm以下の領域において、全光線反射率が低い低反射グラフェンを提供できることが明らかとなった。 From the above, it can be seen that only Example 1 has a total light reflectance of 1.5% or less in the wavelength range of 200 nm to 2000 nm. It can also be seen from the resonance Raman scattering measurement that only Example 1 has a graphene structure. Therefore, it has been clarified that low reflection graphene having a low total light reflectivity can be provided in a region with a wavelength of 200 nm to 2000 nm that covers the ultraviolet region to the infrared region.
<構造解析>
(実施例1の透過電子像)
 実施例1について、透過型電子顕微鏡(Hitachi製 H9000UHR)により、微細組織を加速電圧300kVで観察した。その結果を、図8及び図9に示す。図8は、実施例1のグラフェンの上部を倍率300万倍で観察した透過電子像であり、図9は、実施例1のグラフェンの下部を300万倍で観察した透過電子像である。
<Structural analysis>
(Transmission electron image of Example 1)
For Example 1, the microstructure was observed at an acceleration voltage of 300 kV using a transmission electron microscope (H9000UHR, manufactured by Hitachi). The results are shown in FIGS. FIG. 8 is a transmission electron image obtained by observing the upper part of the graphene of Example 1 at a magnification of 3 million times, and FIG. 9 is a transmission electron image obtained by observing the lower part of the graphene of Example 1 at a magnification of 3 million times.
 図8の結果から、第2の方向L2(上下方向)に延在する線上の構造物が見え、第2のグラフェン層15が第2の方向に延び、第1の方向(左右方向)に積層していることが分かる。とくに図12から、第2のグラフェン層15が第2の方向に延び、第1の方向(左右方向)に積層していることが明らかとなっている。 From the result of FIG. 8, a structure on a line extending in the second direction L2 (vertical direction) can be seen, the second graphene layer 15 extends in the second direction, and is stacked in the first direction (horizontal direction). You can see that In particular, FIG. 12 reveals that the second graphene layer 15 extends in the second direction and is stacked in the first direction (left-right direction).
 図9の結果から、第1の方向L1に延在する線上の構造物と、その上に第2の方向L2に延在する線上の構造物が見え、第1のグラフェン層13と、第2のグラフェン層15とが、それぞれ第1の方向、第2の方向に延び、なおかつ、それぞれ第2の方向、第1の方向に積層していることが分かる。とくに図18から、第1のグラフェン層13と、第2のグラフェン層15とが、それぞれ第1の方向、第2の方向に延び、なおかつ、それぞれ第2の方向、第1の方向に積層していることが明らかとなっている。 From the result of FIG. 9, the structure on the line extending in the first direction L1 and the structure on the line extending in the second direction L2 can be seen, and the first graphene layer 13 and the second structure It can be seen that the graphene layers 15 extend in the first direction and the second direction, respectively, and are stacked in the second direction and the first direction, respectively. In particular, from FIG. 18, the first graphene layer 13 and the second graphene layer 15 extend in the first direction and the second direction, respectively, and are stacked in the second direction and the first direction, respectively. It is clear that
 このことから、実施例1において、第1の方向L1に積層したグラフェン層13と、第2の方向L2に積層した第2のグラフェン層15と、が、前述の凹部を形成していることが分かる。 Therefore, in Example 1, the graphene layer 13 stacked in the first direction L1 and the second graphene layer 15 stacked in the second direction L2 form the above-described recess. I understand.
 図10に、実施例1を走査型電子顕微鏡によって観察した二次電子像を示す。これにより、実施例1の第2の方向L2に第2のグラフェン層15が延在していることがみえる。 FIG. 10 shows a secondary electron image obtained by observing Example 1 with a scanning electron microscope. Thereby, it can be seen that the second graphene layer 15 extends in the second direction L2 of the first embodiment.
 以上の構造解析の結果、本実施例において、第1の方向L1に積層したグラフェン層13と、第2の方向L2に積層した第2のグラフェン層15と、が、凹部を形成することによる光閉じ込め効果と、前述したグラフェンの有する高い光吸収率という特性とが相まって、波長200nm以上2000nm以下という波長範囲で相乗効果的に相対全光反射率が1.5%以下を満たす低反射グラフェンであることが分かった。 As a result of the structural analysis described above, in this example, the light generated by the formation of the recesses between the graphene layer 13 stacked in the first direction L1 and the second graphene layer 15 stacked in the second direction L2. Combined with the confinement effect and the above-mentioned characteristic of high light absorptivity of graphene, it is a low-reflection graphene that synergistically satisfies the relative total light reflectance of 1.5% or less in the wavelength range of 200 nm to 2000 nm. I understood that.
 本件発明における低反射グラフェンは、上述した光学部材における迷光対策用の低反射グラフェン材料、光無線通信分野等におけるノイズキャンセラ、表示装置における導電性低反射膜として用いる以外にも、赤外線レーザーを反射させない効果を利用した低赤外線反射部材(ステルス)として用いることも可能である。 The low reflection graphene in the present invention is an effect of not reflecting infrared lasers other than using the low reflection graphene material for stray light countermeasures in the optical member described above, a noise canceller in the field of optical wireless communication, a conductive low reflection film in a display device, etc. It is also possible to use as a low-infrared reflecting member (stealth) using
1:低反射グラフェン
10:基材
13:第1のグラフェン層
15:第2のグラフェン層
L1 第1の方向
L2 第2の方向
1: low reflection graphene 10: base material 13: first graphene layer 15: second graphene layer L1 first direction L2 second direction

Claims (7)

  1.  全光線反射率が、波長200nm以上2000nm以下の範囲において、1.5%以下であることを特徴とする低反射グラフェン。 A low reflection graphene having a total light reflectance of 1.5% or less in a wavelength range of 200 nm to 2000 nm.
  2.  第1の方向に略平行な面を有する第1のグラフェン層と、
     前記第1のグラフェン層に接続し、前記第1の方向と交差する第2の方向に配向した第2のグラフェン層と、を有することを特徴とする請求項1に記載の低反射グラフェン。
    A first graphene layer having a surface substantially parallel to the first direction;
    The low-reflection graphene according to claim 1, further comprising: a second graphene layer connected to the first graphene layer and oriented in a second direction intersecting the first direction.
  3.  ラマン共鳴スペクトル測定において、2550cm-1以上2800cm-1以下の波数範囲にピークが観測されることを特徴とする請求項1に記載の低反射グラフェン。 In the Raman resonance spectroscopy, low-reflection graphene according to claim 1, characterized in that the peak wave number range of 2550 cm -1 or 2800 cm -1 or less is observed.
  4.  請求項1に記載の前記低反射グラフェンを円筒基材に用いたことを特徴とする光学部材。 An optical member using the low reflection graphene according to claim 1 as a cylindrical base material.
  5.  請求項1乃至3の何れか一に記載の低反射グラフェンを壁面に用いたことを特徴とする電波通信用ノイズ低減壁。 A noise reduction wall for radio wave communication, characterized in that the low reflection graphene according to any one of claims 1 to 3 is used for a wall surface.
  6.  請求項1に記載の低反射グラフェンを導電性低反射膜に用いたことを特徴とする表示装置。 A display device comprising the low-reflection graphene according to claim 1 as a conductive low-reflection film.
  7.  プラズマCVD製膜装置にメタンガス、アルゴンガス、水素ガスを導入し、
     全光線反射率が、波長200nm以上2000nm以下の範囲において、1.5%以下であるグラフェン膜を基材上に形成することを特徴とする低反射グラフェンの成膜方法。
    Introduce methane gas, argon gas, hydrogen gas into the plasma CVD film forming system,
    A method of forming a low-reflection graphene, comprising forming a graphene film having a total light reflectance of 1.5% or less on a substrate in a wavelength range of 200 nm to 2000 nm.
PCT/JP2016/065082 2015-05-22 2016-05-20 Low-reflection graphene and low-reflection graphene for optical member use WO2016190259A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-104186 2015-05-22
JP2015104186A JP6032446B1 (en) 2015-05-22 2015-05-22 Low reflection graphene, low reflection graphene for optical components

Publications (1)

Publication Number Publication Date
WO2016190259A1 true WO2016190259A1 (en) 2016-12-01

Family

ID=57392815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065082 WO2016190259A1 (en) 2015-05-22 2016-05-20 Low-reflection graphene and low-reflection graphene for optical member use

Country Status (2)

Country Link
JP (1) JP6032446B1 (en)
WO (1) WO2016190259A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020514835A (en) * 2017-03-24 2020-05-21 ソウル大学校産学協力団Seoul National University R&Db Foundation Functional contact lens and manufacturing method thereof
WO2024024753A1 (en) * 2022-07-26 2024-02-01 国立大学法人東海国立大学機構 Electrode for power storage device, secondary battery, and method for manufacturing electrode for power storage device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110615997B (en) * 2019-08-26 2021-11-23 Tcl华星光电技术有限公司 Composite material, preparation method thereof and display panel
JP2021147249A (en) * 2020-03-17 2021-09-27 三恵技研工業株式会社 Light absorption material and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011133239A (en) * 2009-12-22 2011-07-07 Stanley Electric Co Ltd Light intensity measuring device and method of manufacturing the same
JP2013037781A (en) * 2011-08-03 2013-02-21 Panasonic Corp Manufacturing method of transparent conductive member, and intermediate member
US8481153B1 (en) * 2010-05-20 2013-07-09 The United States Of America As Represented By The Secretary Of The Navy Apparatus and method for imparting wide angle low reflection on conductive surfaces

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005116695A1 (en) * 2004-05-27 2005-12-08 Matsushita Electric Industrial Co., Ltd. Light-absorbing member
JP2012058584A (en) * 2010-09-10 2012-03-22 Tohoku Univ Substrate with antireflection optical structure and method of manufacturing substrate with antireflection optical structure
JP5739175B2 (en) * 2011-01-24 2015-06-24 株式会社カネカ Graphene / polymer laminate and use thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011133239A (en) * 2009-12-22 2011-07-07 Stanley Electric Co Ltd Light intensity measuring device and method of manufacturing the same
US8481153B1 (en) * 2010-05-20 2013-07-09 The United States Of America As Represented By The Secretary Of The Navy Apparatus and method for imparting wide angle low reflection on conductive surfaces
JP2013037781A (en) * 2011-08-03 2013-02-21 Panasonic Corp Manufacturing method of transparent conductive member, and intermediate member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020514835A (en) * 2017-03-24 2020-05-21 ソウル大学校産学協力団Seoul National University R&Db Foundation Functional contact lens and manufacturing method thereof
WO2024024753A1 (en) * 2022-07-26 2024-02-01 国立大学法人東海国立大学機構 Electrode for power storage device, secondary battery, and method for manufacturing electrode for power storage device

Also Published As

Publication number Publication date
JP2016218301A (en) 2016-12-22
JP6032446B1 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
WO2016190259A1 (en) Low-reflection graphene and low-reflection graphene for optical member use
Zhu et al. Switchable and tunable terahertz metamaterial absorber with broadband and multi-band absorption
Anguita et al. Ultra-broadband light trapping using nanotextured decoupled graphene multilayers
WO2014034595A1 (en) Organic electroluminescent element and electronic instrument
Ogawa et al. Graphene on metal-insulator-metal-based plasmonic metamaterials at infrared wavelengths
US9891473B2 (en) Laminated film, organic electroluminescence device, photoelectric converter, and liquid crystal display
WO2014136962A1 (en) Laser element and laser device
JP2016159445A (en) Laminate and image display device
Wu et al. Omnidirectional broadband metasurface absorber operating in visible to near-infrared regime
US11067836B2 (en) Multi-stack graphene structure and device including the same
Knopf et al. Integration of atomically thin layers of transition metal dichalcogenides into high-Q, monolithic Bragg-cavities: an experimental platform for the enhancement of the optical interaction in 2D-materials
JP2005289041A (en) Gas barrier film which is prevented from curving
Han et al. Surface antireflection properties of GaN nanostructures with various effective refractive index profiles
US10101505B2 (en) Device and method for generating vortex beam generation
JP2009175729A (en) Antireflection plate and method for manufacturing antireflection structure thereof
Zeng et al. Effects of substrates on the nonlinear optical responses of two-dimensional materials
US10816328B2 (en) Far infrared imaging system
He et al. Coupled Tamm phonon and plasmon polaritons for designer planar multiresonance absorbers
Ayas et al. Rounding corners of nano-square patches for multispectral plasmonic metamaterial absorbers
US9293659B2 (en) Method for fabricating microstructure to generate surface plasmon waves
JP2012042726A (en) Terahertz band optical element
Rybin et al. Enhanced optical absorbance of CVD‐graphene monolayer by combination with photonic crystal slab
Park et al. Size-dependent optical behavior of disordered nanostructures on glass substrates
Lin et al. An ultra-compact blackbody using electrophoretic deposited carbon nanotube films
KR20150085604A (en) organic light emitting diode and manufacturing method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16799964

Country of ref document: EP

Kind code of ref document: A1