JP2011133239A - Light intensity measuring device and method of manufacturing the same - Google Patents
Light intensity measuring device and method of manufacturing the same Download PDFInfo
- Publication number
- JP2011133239A JP2011133239A JP2009290344A JP2009290344A JP2011133239A JP 2011133239 A JP2011133239 A JP 2011133239A JP 2009290344 A JP2009290344 A JP 2009290344A JP 2009290344 A JP2009290344 A JP 2009290344A JP 2011133239 A JP2011133239 A JP 2011133239A
- Authority
- JP
- Japan
- Prior art keywords
- light intensity
- intensity measuring
- light
- uneven structure
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Diffracting Gratings Or Hologram Optical Elements (AREA)
- Surface Treatment Of Optical Elements (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
Description
本発明は光強度測定装置及びその製造方法に関する。 The present invention relates to a light intensity measuring device and a manufacturing method thereof.
光強度測定装置はたとえば遠赤外光検出器、レーザパワーメータ、照度計、輝度計等として用いられる。 The light intensity measuring device is used as, for example, a far-infrared light detector, a laser power meter, an illuminometer, a luminance meter, and the like.
第1の従来の光強度測定装置として、測定波長が広帯域のサーモパイルボロメータ、サーミスタボロメータ、焦電型ボロメータがある。この光強度測定装置は、測定したい波長の光が照射される受光面を有する光吸収体と、光吸収によって生じる光吸収体の温度上昇を電気信号に変換する熱電対、サーミスタ、焦電センサ等の感熱素子とを備え、この電気信号を測定することにより光強度を測定する(参照:特許文献1)。光吸収体たとえば感熱素子の表面にカーボンブラックの微粒子を塗布することにより形成される。 As a first conventional light intensity measuring device, there are a thermopile bolometer, a thermistor bolometer, and a pyroelectric bolometer having a wide measurement wavelength. This light intensity measuring apparatus includes a light absorber having a light receiving surface irradiated with light of a wavelength to be measured, a thermocouple, a thermistor, a pyroelectric sensor, etc. that converts a temperature rise of the light absorber caused by light absorption into an electric signal. The light intensity is measured by measuring this electric signal (refer to Patent Document 1). It is formed by coating fine particles of carbon black on the surface of a light absorber, for example, a thermal element.
他方、第2の従来の光強度測定装置として、フォトダイオードと呼ばれる半導体光検出器がある。たとえば、0.2-1.1μmの光に対してはSi半導体を用い、1-10μmの光に対してはHgCdTe半導体を用い、バンドギャップ以上のエネルギーを有する光照射により発生する光起電力を測定することにより光強度を測定する。 On the other hand, as a second conventional light intensity measuring device, there is a semiconductor photodetector called a photodiode. For example, use a Si semiconductor for 0.2-1.1 μm light and a HgCdTe semiconductor for 1-10 μm light, and measure the photovoltaic power generated by light irradiation with energy above the band gap. To measure the light intensity.
しかしながら、上述の第1の従来の光強度測定装置においては、カーボンブラックの光吸収率はそれほど高くなく、つまり反射率は低くない。たとえば、可視光を含む領域の波長0.3-2μmの反射率は5%程度であり、遠赤外領域の波長10-20μmの反射率は20-30%と高い。従って、光強度測定装置の能力が低いという課題がある。また、カーボンブラックと感熱素子との間での熱伝導が悪いので、光強度測定装置の応答速度がたとえば0.1s程度低く、また、感熱素子の温度も十分に上がらず、μW領域の低強度光を測定することは困難であるという課題もある。さらに、カーボンブラックと感熱素子との密着性が悪いので、高強度光を照射すると、カーボンブラックの温度が上昇し、カーボンブラックが燃焼消失してしまうという課題もある。 However, in the above-described first conventional light intensity measuring device, the light absorption rate of carbon black is not so high, that is, the reflectance is not low. For example, the reflectance at a wavelength of 0.3-2 μm in the region including visible light is about 5%, and the reflectance at a wavelength of 10-20 μm in the far infrared region is as high as 20-30%. Therefore, there is a problem that the capability of the light intensity measuring device is low. In addition, since the heat conduction between the carbon black and the heat sensitive element is poor, the response speed of the light intensity measuring device is low, for example, by about 0.1 s, and the temperature of the heat sensitive element does not rise sufficiently. There is also a problem that it is difficult to measure. Furthermore, since the adhesion between the carbon black and the thermal element is poor, there is also a problem that when the high intensity light is irradiated, the temperature of the carbon black rises and the carbon black burns and disappears.
他方、上述の第2の従来の光強度測定装置においては、上述の第1の従来の光強度測定装置に比較して感度及び応答速度の点で優れているが、測定波長に応じて複数の半導体検出器たとえば0.2-1.1μmの光に対してSi半導体検出器、1-10μmの光に対してはHgCdTe半導体検出器を必要とし、たとえば太陽光のような広帯域の波長の光強度測定は困難であるという課題がある。また、遠赤外領域の長波長の光を測定するたとえばHgCdTe半導体の狭ギャップ半導体検出器はペルチェ素子等の冷却を必要とするので、装置コストが高くなるという課題もある。さらに、上述の第1の従来の光強度測定装置に比較して高強度光を照射すると、半導体が破壊されるという課題もある。 On the other hand, the second conventional light intensity measuring device is superior in terms of sensitivity and response speed as compared with the first conventional light intensity measuring device described above. Semiconductor detector For example, Si semiconductor detector is required for 0.2-1.1μm light, and HgCdTe semiconductor detector is required for 1-10μm light. For example, it is difficult to measure the light intensity of broadband wavelength such as sunlight. There is a problem of being. In addition, a narrow gap semiconductor detector of, for example, an HgCdTe semiconductor that measures long-wavelength light in the far infrared region requires cooling of the Peltier device and the like, which causes a problem that the apparatus cost increases. Furthermore, there is also a problem that the semiconductor is destroyed when high intensity light is irradiated as compared with the first conventional light intensity measuring apparatus.
上述の課題を解決するために、本発明に係る光強度測定装置は、表面にナノオーダの凹凸構造を形成した炭素系基板を光吸収体として具備する。これにより、可視光を含む領域の波長0.3-2μmの反射率を低くすると共に、遠赤外領域の例えば波長2-50μmの反射率も低くする。 In order to solve the above-described problems, a light intensity measurement device according to the present invention includes a carbon-based substrate having a nano-order uneven structure formed on a surface as a light absorber. As a result, the reflectance of the wavelength range of 0.3-2 μm in the region including visible light is lowered, and the reflectance of the far-infrared region of, for example, the wavelength of 2-50 μm is also lowered.
また、本発明に係る光強度測定装置の製造方法は、光吸収体としての炭素系基板の表面にナノオーダの凹凸構造を加工する工程を具備する。 Moreover, the manufacturing method of the light intensity measuring device according to the present invention includes a step of processing a nano-order uneven structure on the surface of a carbon-based substrate as a light absorber.
本発明によれば、可視光を含む領域及び遠赤外領域の反射率が低くなるので、光吸収体の理想的な吸収スペクトルを実現できる。従って、光強度測定装置の測定波長範囲及びダイナミックレンジを広くすることができる。 According to the present invention, the reflectance of the region including the visible light and the far infrared region is low, so that an ideal absorption spectrum of the light absorber can be realized. Therefore, the measurement wavelength range and dynamic range of the light intensity measurement device can be widened.
本発明に係る光吸収体の動作原理は完全黒体効果を利用した吸収エネルギーの光吸収作用を利用する。すなわち、光の平均反射率が高い時には、光吸収効率が低い。他方、光の平均反射率が低い時には、光吸収効率が高い。つまり、反射率Rが低下すると、放射率Iが上昇し、逆に、反射率Rが上昇すると、放射率Iが低下するという関係が成立する。この場合、光放熱つまり光放射能力を示す指数として放射率を用いるが、光の透過率がほぼ0の場合、放射率I≒1-R(反射率)で表わされる。 The principle of operation of the light absorber according to the present invention utilizes the light absorption action of the absorbed energy using the complete black body effect. That is, when the average reflectance of light is high, the light absorption efficiency is low. On the other hand, when the average reflectance of light is low, the light absorption efficiency is high. That is, when the reflectance R decreases, the emissivity I increases, and conversely, when the reflectance R increases, the emissivity I decreases. In this case, the emissivity is used as an index indicating the light radiation, that is, the light emission ability. When the light transmittance is almost zero, the emissivity is expressed as I≈1-R (reflectance).
従って、理想的には、光吸収体としてたとえば波長0.3-50μmの反射率Rができるだけ0に近いものを用いると、光吸収効率が大きくなることが分かる。 Therefore, ideally, it is understood that the light absorption efficiency increases when, for example, a light absorber having a reflectance R of wavelength 0.3-50 μm is as close to 0 as possible.
図1は本発明に係る光吸収体としてのグラファイト基板のナノ凹凸構造の加工フローを示すフローチャートである。 FIG. 1 is a flowchart showing a processing flow of a nano uneven structure of a graphite substrate as a light absorber according to the present invention.
図1のステップ101において、図1の(A)に示す鏡面状表面を有するグラファイト基板を水素ガスを用いたプラズマエッチング法によってエッチングして図1の(B)に示すナノオーダの凹凸構造のグラファイト基板を得る。このプラズマエッチング条件は、たとえば、次のごとくである。
RFパワー:100-1000W
圧力:133-13300Pa (1-100Torr)
水素流量:5-500sccm
エッチング時間:1-100分
In
RF power: 100-1000W
Pressure: 133-13300Pa (1-100Torr)
Hydrogen flow rate: 5-500sccm
Etching time: 1-100 minutes
尚、図1のステップ101でのプラズマエッチング法は、電子サイクロトロン共鳴(ECR)エッチング法、反応性イオンエッチング(RIE)法、大気圧プラズマエッチング法等のいずれでもよく、また、処理ガスは、H2ガス以外のArガス、N2ガス、O2ガス、CF4ガス等のいずれでもよい。
The plasma etching method in
従って、図3に示すように、可視光を含む領域の波長0.3-2μmの平均反射率はプラズマエッチング前の20-30%からプラズマエッチング後の1%以下と低くなる。この結果、可視光を含む領域の吸収は最高となる。しかも、図4に示すように、遠赤外領域のたとえば波長2-15μmの平均反射率もプラズマエッチング前の50%からプラズマエッチング後の3%以下と低くなる。この結果、このプラズマエッチングされたグラファイト基板をそのまま光吸収体として用いることができる。 Therefore, as shown in FIG. 3, the average reflectance of the region containing visible light at a wavelength of 0.3-2 μm is as low as 20-30% before plasma etching to 1% or less after plasma etching. As a result, the absorption of the region including visible light is the highest. Moreover, as shown in FIG. 4, the average reflectance in the far-infrared region, for example, at a wavelength of 2-15 μm, also decreases from 50% before plasma etching to 3% or less after plasma etching. As a result, the plasma-etched graphite substrate can be used as a light absorber as it is.
図5は図1のフローの変更例を示し、図1のプラズマエッチングステップ101の前にステップ501において、サンドブラスト等の機械的表面研磨による不規則的周期のミクロン(サブミクロン)機械的凹凸構造加工を行う。また、図1のプラズマエッチングステップ101の後にステップ502において、CO2レーザ、YAGレーザ、エキシマレーザ等のハイパワーレーザ照射による表面研磨による不規則的周期のミクロン(サブミクロン)レーザ照射凹凸構造加工を行う。尚、ステップ501、502は両方を行ってもよいが、いずれか一方のみを行えばよい。この場合、小さいナノオーダの凹凸のほうが壊れやすいためにステップ501を行うことが好ましい。これにより、不規則的周期のたとえばミクロンオーダ、サブミクロンオーダの凹凸構造を形成する。従って、グラファイト基板の表面積が増大して光吸収率が高くなる。
FIG. 5 shows a modified example of the flow of FIG. 1. In
また、図5の不規則的周期のミクロン(サブミクロン)機械的凹凸構造加工ステップ501において、グラファイト基板の表面に不規則的周期のミクロンオーダもしくはサブミクロンオーダの凹構造を多数形成して表面積を増大させてもよい。たとえば、レジスト層を塗布し、次いで、不規則的周期パターンを有するフォトマスクを用いたフォトリソグラフィによりレジスト層のパターンを形成し、このレジスト層のパターンを用いてグラファイト基板をH2ガス及びO2ガスを用いたプラズマエッチングたとえばRIEを行い、その後、レジスト層のパターンを除去する。また、機械的ルーリングエンジン等を用いた切削方法によって不規則的周期のミクロンオーダあるいはサブミクロンオーダの剣山型凹凸構造を形成して表面積を増大させることもできる。この剣山型凹凸構造はエッチングで逆剣山型の金型を形成し、これに液体状のグラファイト材料、例えばカーボンブラック等を流し込んでも形成できる。
Further, in the irregular periodic micron (submicron) mechanical unevenness
ここで、規則的周期のミクロンオーダあるいはサブミクロンオーダの凹凸構造は2次元フォトニック結晶的効果を起こし、遠赤外領域の反射率を高めるので、放熱率が低くなる逆効果となり、反射分布特性に干渉パターンを生じるようになり、光吸収率の波長に対する平坦性が損なわれるようになるので、好ましくない。 Here, the irregular periodic structure of micron order or submicron order with a regular period causes a two-dimensional photonic crystal effect and increases the reflectivity in the far-infrared region. This is not preferable because an interference pattern is generated in the light and the flatness of the light absorption rate with respect to the wavelength is impaired.
また、図3における波長0.3-2μmの反射率の測定はBaSO4粒子等を内面にコートした積分球を有する分光光度計によって行われ、他方、図4におけるたとえば波長2-15μmの反射率の測定は遠赤外反射光をすべて集光するために金を内面にコートした積分球を有するフーリエ変換赤外(FTIR)分光器によって行われる。 3 is measured by a spectrophotometer having an integrating sphere whose inner surface is coated with BaSO 4 particles or the like, while the reflectance of a wavelength of 2-15 μm in FIG. 4 is measured. Is performed by a Fourier Transform Infrared (FTIR) spectrometer having an integrating sphere coated with gold on the inner surface to collect all far-infrared reflected light.
尚、上述のグラファイト基板に金属を混ぜて稠密グラファイト基板とすることができる。これにより、稠密グラファイト基板の靭性は大きいので、光吸収体としての加工性、感熱素子との密着性が向上し、感熱素子と光吸収体との間の空隙がなくなる。また、感熱素子と光吸収体との間で絶縁性が要求される場合には、光吸収体として絶縁性グラファイト、またはグラファイトと絶縁性セラミックスの複合材料を用いる。 A dense graphite substrate can be obtained by mixing a metal with the above graphite substrate. Thereby, since the toughness of the dense graphite substrate is large, the workability as a light absorber and the adhesion to the heat sensitive element are improved, and the gap between the heat sensitive element and the light absorber is eliminated. When insulation is required between the thermal element and the light absorber, insulating graphite or a composite material of graphite and insulating ceramic is used as the light absorber.
また、上述の実施の形態では、グラファイト基板を用いたが、グラファイト基板以外の炭素系基板たとえば、ダイヤモンド基板表面をプラズマエッチングして反射率を低減させた基板を用いてもよい。 In the above-described embodiment, the graphite substrate is used. However, a carbon-based substrate other than the graphite substrate, for example, a substrate in which the surface of the diamond substrate is plasma etched to reduce the reflectance may be used.
図6は図1もしくは図5のフローチャートにより加工された炭素系基板を光吸収体として用いた本発明に係る光強度測定装置の実施の形態を示す図である。図6の光強度測定装置は、光吸収面が炭素系基板と一体に形成された光吸収体601と、光吸収体601の光吸収面と反対面に耐熱性接着剤(図示せず)によって結合されたBaTiO3、LiNbO3等の焦電素子よりなり、光起電力Evを発生する感熱素子602とから構成されている。この場合、光吸収体601の光吸収面と感熱素子602との間の熱伝導が良く、応答速度が0.01s以下と速いので、光吸収体601から感熱素子602への温度伝達が十分に行えるので、パルス尖頭値においてnW領域からGW領域の低強度から高強度の光の拾出を行うことができる。また、高強度の光照射によっても光吸収体601の燃焼、消失は起こらない。 FIG. 6 is a diagram showing an embodiment of a light intensity measuring apparatus according to the present invention using a carbon-based substrate processed according to the flowchart of FIG. 1 or FIG. 5 as a light absorber. The light intensity measuring device of FIG. 6 includes a light absorber 601 whose light absorption surface is integrally formed with a carbon-based substrate, and a heat resistant adhesive (not shown) on the surface opposite to the light absorption surface of the light absorber 601. It is composed of a pyroelectric element such as BaTiO 3 and LiNbO 3 that are combined, and a thermal element 602 that generates a photovoltaic power Ev. In this case, heat conduction between the light absorbing surface of the light absorber 601 and the heat sensitive element 602 is good, and the response speed is as fast as 0.01 s or less, so that temperature transfer from the light absorber 601 to the heat sensitive element 602 can be sufficiently performed. Therefore, it is possible to pick up light of low to high intensity from the nW region to the GW region at the pulse peak value. Further, the light absorber 601 does not burn or disappear even by high intensity light irradiation.
次に、図6の光強度測定装置の熱プロセスについて考察する。図6において、単位時間当りのエネルギーWinが光吸収体601に入射されると、次の関係が生ずる。
Win = E1 + E2 + E3 (1)
但し、E1は空気中の対流により単位時間当り失う対流エネルギーであって、
E1 = ηA(T-T0)
で表わされ、E2は輻射により単位時間当り失う輻射エネルギーであって、
E2 = σA(T4-T0 4)
で表わされ、E3は感熱素子602に伝達される単位時間当りの伝達エネルギーであって、
E3 = κA∂T/∂x
で表わされる。ここで、
T0は室温で300K
κは光吸収体601の熱伝導率で230W/mK
Aは光吸収体601の面積で1×10-4m2
ηは対流による熱伝達係数で、たとえば約1W/m2K
σはステファンボルツマン定数で5.67×10-8W/K4m2
dは光吸収体601の厚さで1×10-3m
Tは光吸収体601の表面温度
とする。従って、(1)式は(2)式となる。
-κA∂T/∂x = ηA(T-T0) + σA(T4-T0 4) - Win (2)
光吸収体601の厚さdは1mmと小さく、また、感熱素子602の温度TDは室温T0とすれば、(2)式は次の4次方程式の(3)式となる。
-κA(T-T0)/d = ηA(T-T0) + σA(T4-T0 4) - Win (3)
(3)式において、各項の熱損失を評価してみると、
κA(T-T0)/d ≫ ηA(T-T0) + σA(T4-T0 4)
となるので、(3)式は(4)式で表わせる。
κA(T-T0)/d = Win (4)
つまり、入射エネルギーWinのほとんどは感熱素子602に運び込まれることになる。ところで、感熱素子602の感度は約104V/Wであり、一般的なS/N比より読み取り可能な電圧値を1μVとすると、これに対応する光強度は100pW(10-10W)という、非常に低強度となる。従って、非常に低強度の光を測定することが可能となる。
Next, the thermal process of the light intensity measuring device in FIG. 6 will be considered. 6, when the energy W in per unit time is incident on the light absorber 601, the following relationship occurs.
W in = E 1 + E 2 + E 3 (1)
Where E 1 is the convective energy lost per unit time by convection in the air,
E 1 = ηA (TT 0 )
E 2 is the radiation energy lost per unit time due to radiation,
E 2 = σA (T 4 -T 0 4 )
E 3 is the transmitted energy per unit time transmitted to the thermal element 602, and
E 3 = κA∂T / ∂x
It is represented by here,
T 0 is 300K at room temperature
κ is the thermal conductivity of the light absorber 601 and is 230 W / mK
A is the area of the light absorber 601 1 × 10 −4 m 2
η is the heat transfer coefficient due to convection, for example about 1 W / m 2 K
σ is the Stefan-Boltzmann constant, 5.67 × 10 -8 W / K 4 m 2
d is the thickness of the light absorber 601 1 × 10 −3 m
T is the surface temperature of the light absorber 601. Therefore, equation (1) becomes equation (2).
-κA∂T / ∂x = ηA (TT 0 ) + σA (T 4 -T 0 4 )-W in (2)
The thickness d of the light absorber 601 is as small as 1 mm, also, if the temperature T D at room temperature T 0 of the thermal element 602, (2) becomes (3) of the following four equations.
-κA (TT 0 ) / d = ηA (TT 0 ) + σA (T 4 -T 0 4 )-W in (3)
In equation (3), when evaluating the heat loss of each term,
κA (TT 0 ) / d ≫ ηA (TT 0 ) + σA (T 4 -T 0 4 )
Therefore, Equation (3) can be expressed by Equation (4).
κA (TT 0 ) / d = W in (4)
That is, most of the incident energy W in would be carried into the thermal element 602. By the way, the sensitivity of the thermosensitive element 602 is about 10 4 V / W. If the voltage value readable from a general S / N ratio is 1 μV, the corresponding light intensity is 100 pW (10 −10 W). It becomes very low strength. Therefore, it becomes possible to measure very low intensity light.
尚、本発明においては、ナノオーダは10〜500nm、サブミクロンオーダは0.2〜1μm程度を想定している。 In the present invention, the nano-order is assumed to be about 10 to 500 nm, and the sub-micron order is assumed to be about 0.2 to 1 μm.
101:ナノ凹凸構造加工ステップ
501:不規則的周期のミクロン(サブミクロン)機械的凹凸構造加工ステップ
502:不規則的周期のミクロン(サブミクロン)レーザ照射凹凸構造加工ステップ
601:光吸収体(炭素系基板)
602:感熱素子
101: Nano uneven structure processing step 501: Irregular period micron (submicron) mechanical uneven structure processing step 502: Irregular period micron (submicron) laser irradiation uneven structure processing step 601: Light absorber (carbon) System board)
602: Thermal element
Claims (11)
前記炭素系基板の前記第1の凹凸構造の反対面に結合された感熱素子を具備する請求項1に記載の光強度測定装置。 further,
The light intensity measuring apparatus according to claim 1, further comprising a thermosensitive element coupled to an opposite surface of the first concavo-convex structure of the carbon-based substrate.
前記不規則的周期のパターンを有するフォトレジスト層を形成するフォトリソグラフィ工程と、
該フォトレジスト層を用いて前記炭素系基板の表面に前記凹みを形成するエッチング工程と、
該凹みの形成後に前記フォトレジスト層を除去する工程と
を具備する請求項7に記載の光強度測定装置の製造方法。 The second concavo-convex structure processing step includes:
A photolithography process for forming a photoresist layer having the irregular periodic pattern;
An etching step of forming the recess on the surface of the carbon-based substrate using the photoresist layer;
The method for manufacturing a light intensity measuring device according to claim 7, further comprising: removing the photoresist layer after forming the recess.
The method for manufacturing a light intensity measuring device according to claim 7, wherein the second uneven structure is a sword mountain structure provided on a surface of the carbon-based substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009290344A JP5536437B2 (en) | 2009-12-22 | 2009-12-22 | Light intensity measuring device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009290344A JP5536437B2 (en) | 2009-12-22 | 2009-12-22 | Light intensity measuring device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011133239A true JP2011133239A (en) | 2011-07-07 |
JP5536437B2 JP5536437B2 (en) | 2014-07-02 |
Family
ID=44346156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009290344A Expired - Fee Related JP5536437B2 (en) | 2009-12-22 | 2009-12-22 | Light intensity measuring device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5536437B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016190259A1 (en) * | 2015-05-22 | 2016-12-01 | 尾池工業株式会社 | Low-reflection graphene and low-reflection graphene for optical member use |
KR20200054257A (en) * | 2017-11-02 | 2020-05-19 | 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 | Method for manufacturing light absorber |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5979128A (en) * | 1982-10-27 | 1984-05-08 | Horiba Ltd | Measuring device of optical radiation power |
JPH0280582A (en) * | 1988-09-16 | 1990-03-20 | Anritsu Corp | Base material having black body film and production of base material fitted with black body film thereof |
JP2005175069A (en) * | 2003-12-09 | 2005-06-30 | Denso Corp | Infrared absorbing film |
JP2006226891A (en) * | 2005-02-18 | 2006-08-31 | Nec Corp | Thermal infrared detection element |
-
2009
- 2009-12-22 JP JP2009290344A patent/JP5536437B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5979128A (en) * | 1982-10-27 | 1984-05-08 | Horiba Ltd | Measuring device of optical radiation power |
JPH0280582A (en) * | 1988-09-16 | 1990-03-20 | Anritsu Corp | Base material having black body film and production of base material fitted with black body film thereof |
JP2005175069A (en) * | 2003-12-09 | 2005-06-30 | Denso Corp | Infrared absorbing film |
JP2006226891A (en) * | 2005-02-18 | 2006-08-31 | Nec Corp | Thermal infrared detection element |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016190259A1 (en) * | 2015-05-22 | 2016-12-01 | 尾池工業株式会社 | Low-reflection graphene and low-reflection graphene for optical member use |
KR20200054257A (en) * | 2017-11-02 | 2020-05-19 | 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 | Method for manufacturing light absorber |
KR102376865B1 (en) | 2017-11-02 | 2022-03-18 | 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 | Manufacturing method of light absorber |
Also Published As
Publication number | Publication date |
---|---|
JP5536437B2 (en) | 2014-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6380899B2 (en) | Electromagnetic wave absorption and radiation material, method for producing the same, and infrared source | |
US9059346B2 (en) | Laser power and energy sensor utilizing anisotropic thermoelectric material | |
USRE48028E1 (en) | Laser power and energy sensor utilizing anisotropic thermoelectric material | |
US20090126783A1 (en) | Use of vertical aligned carbon nanotube as a super dark absorber for pv, tpv, radar and infrared absorber application | |
JP5385054B2 (en) | Heat dissipation material and manufacturing method thereof | |
JP5506514B2 (en) | Infrared light source | |
Ruan et al. | Ultrathin, broadband, omnidirectional, and polarization-independent infrared absorber using all-dielectric refractory materials | |
US10054489B2 (en) | Infrared radiation emission surface having a high thermal emissivity and a long life time and its manufacturing method | |
Iqbal et al. | Measuring Near-Field Radiative Heat Transfer in a Graphene-Si C Heterostructure | |
JP5536437B2 (en) | Light intensity measuring device and manufacturing method thereof | |
JP2003282924A (en) | Photo detector and method of manufacturing the same | |
Lin et al. | High performance broadband full linear polarimeter based on ReS2 nanobelts | |
EP3290966A1 (en) | Anti-reflective optical surface, structured and with long durability, and method for manufacturing same | |
JP5536436B2 (en) | Black body radiation light source and manufacturing method thereof | |
Svatoš et al. | In situ observation of carbon nanotube layer growth on microbolometers with substrates at ambient temperature | |
Liu et al. | Annealing-induced one order of magnitude enhancement in heat dissipation at graphene/SiO2 interface | |
JP5344393B2 (en) | Mounting method of superconducting single photon detector components | |
JP2012174743A (en) | Heat radiation material and semiconductor unit | |
GB2554672A (en) | Infrared device | |
US20210389183A1 (en) | High-speed ultrathin silicon-on-insulator infrared bolometers and imagers | |
Hwang et al. | Silicon Phononic Nanowires Enable Ultra-Low Thermal Conductivity Measured by Raman Spectroscopy | |
Zhu et al. | Analysis of cross talk in high density mesa linear InGaAs detector arrays using tiny light dot | |
Park et al. | Fabrication and characterization of wavelength selective microbolometers using a planar self-aligned process for low deformation membranes | |
Cammi et al. | Toward a metrological calibration of the conversion efficiency in GaAs nanowire-based photodetectors | |
Smedley et al. | Laser patterning of diamond. Part II. Surface nondiamond carbon formation and its removal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121214 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130820 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131022 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131210 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140408 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140424 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5536437 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |