JP2012058584A - Substrate with antireflection optical structure and method of manufacturing substrate with antireflection optical structure - Google Patents

Substrate with antireflection optical structure and method of manufacturing substrate with antireflection optical structure Download PDF

Info

Publication number
JP2012058584A
JP2012058584A JP2010203141A JP2010203141A JP2012058584A JP 2012058584 A JP2012058584 A JP 2012058584A JP 2010203141 A JP2010203141 A JP 2010203141A JP 2010203141 A JP2010203141 A JP 2010203141A JP 2012058584 A JP2012058584 A JP 2012058584A
Authority
JP
Japan
Prior art keywords
substrate
optical structure
antireflection optical
antireflection
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010203141A
Other languages
Japanese (ja)
Inventor
Rikizo Hatakeyama
力三 畠山
Toshiro Kaneko
俊郎 金子
Toshiaki Kato
俊顕 加藤
Chiharu Takahashi
千春 高橋
Masahiro Yamazaki
雅博 山崎
Akira Ueda
亮 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
NTT Advanced Technology Corp
Original Assignee
Tohoku University NUC
NTT Advanced Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, NTT Advanced Technology Corp filed Critical Tohoku University NUC
Priority to JP2010203141A priority Critical patent/JP2012058584A/en
Publication of JP2012058584A publication Critical patent/JP2012058584A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a substrate with an antireflection optical structure having an antireflection surface composed of a fine structure having superior durability, and to provide a method of manufacturing the substrate with the antireflection optical structure.SOLUTION: When projections having a fine conical shape or a fine pyramidal shape are arranged on a substrate surface, the damage caused by the surface contact or the like can be reduced, and the mechanical strength can be improved by connecting apexes of their fine projections in an arc shape. Moreover, a substrate having such continuous projections can be manufactured by growing carbon nano-walls formed on the substrate surface by decomposing hydrocarbon gas such as methane gas in plasma and by transferring their shapes onto the substrate surface through the etching processing or the like.

Description

本発明は、基板表面上に微細な突起が配置された反射防止光学構造付き基板および反射防止光学構造付き基板の製造方法に関するもので、反射防止光学構造付き基板としての利用に好適なものである。   The present invention relates to a substrate with an antireflection optical structure in which fine protrusions are arranged on the surface of the substrate and a method for manufacturing the substrate with an antireflection optical structure, and is suitable for use as a substrate with an antireflection optical structure. .

従来、反射防止光学構造体としては、基板表面に円錐形状やピラミッド状の突起が2次元に周期的に配列した構造が知られている(例えば、非特許文献1参照)。例えば、図8に示すように、円錐突起41が等周期Pで2次元的に配列されている。この周期Pは、可視光線の波長よりも小さく設定されている。このような波長以下の微細構造が形成された基板40では、外部媒質と基板40との間に中間の屈折率を持つ薄膜層が存在することと等価となり、基板表面での反射率が減少する(例えば、非特許文献2参照)。また、図8(B)に示すように、円錐形状の断面が三角形の場合、深さ方向に屈折率が変化することになり、広い波長領域に亘り反射率を低くすることができる。   Conventionally, as an antireflection optical structure, a structure in which conical or pyramidal protrusions are periodically arranged in a two-dimensional manner on a substrate surface is known (see, for example, Non-Patent Document 1). For example, as shown in FIG. 8, the conical protrusions 41 are two-dimensionally arranged with an equal period P. This period P is set smaller than the wavelength of visible light. In the substrate 40 on which such a fine structure of a wavelength or less is formed, this is equivalent to the presence of a thin film layer having an intermediate refractive index between the external medium and the substrate 40, and the reflectance on the substrate surface is reduced. (For example, refer nonpatent literature 2). As shown in FIG. 8B, when the conical cross section is a triangle, the refractive index changes in the depth direction, and the reflectance can be lowered over a wide wavelength region.

また、このような微細な構造体の作製には、微細パタン形成によく用いられる電子ビーム露光装置が使用される。電子ビーム露光装置により、周期的なドット状のレジストパタンを形成する。このレジストパターンをマスクとして、基板を円錐形状やピラミッド状にエッチングして所望の構造の反射防止光学構造を基板に形成することができる。   Further, for the production of such a fine structure, an electron beam exposure apparatus often used for forming a fine pattern is used. A periodic dot-shaped resist pattern is formed by an electron beam exposure apparatus. Using this resist pattern as a mask, the substrate can be etched into a conical shape or a pyramid shape to form an antireflection optical structure having a desired structure on the substrate.

E.B.Grann, M.G.Moharam, and D.A.Pommet, “Optimal design for antireflective taperd two-dimensionalsubwavelength grating structures”, Journal of OpticalSociety of America A, 1995年, Vol.12, No.2, p333-339E.B.Grann, M.G.Moharam, and D.A.Pommet, “Optimal design for antireflective taperd two-dimensionalsubwavelength grating structures”, Journal of OpticalSociety of America A, 1995, Vol.12, No.2, p333-339 菊田久雄、岩田耕一、「波長より細かな格子構造による光制御」、光学、1998年、27巻、1号、頁12-17Hisao Kikuta, Koichi Iwata, "Optical control by grating structure finer than wavelength", Optics, 1998, Vol. 27, No. 1, pp. 12-17

しかし、非特許文献1に記載のような、円錐形状やピラミッド状の突起の頂部は、十分な反射防止効果を得るために細いパタン形状となっている。例えば、可視光領域を対象とする反射防止光学構造で、突起頂部の寸法は50nm程度とする必要がある。このような微細な突起は、表面接触等により容易に破損し、その結果、反射防止機能が低下する。特に、カメラレンズ等の基板のように、反射防止光学構造が機器内部に配置されるのではなく、外界の様々な環境の中で使用される場合には、表面接触等による破損のリスクは大幅に増大する。このように、円錐形状やピラミッド状の単純な突起を配置する反射防止光学構造付き基板は、基板表面に多層膜を成膜する反射防止光学構造付き基板と比較して、機械的強度が十分ではないため実用上、大きな課題があった。   However, as described in Non-Patent Document 1, the tops of the conical and pyramidal protrusions have a thin pattern shape in order to obtain a sufficient antireflection effect. For example, in the antireflection optical structure for the visible light region, the size of the top of the protrusion needs to be about 50 nm. Such fine protrusions are easily damaged by surface contact or the like, and as a result, the antireflection function is lowered. In particular, the risk of damage due to surface contact is significant when anti-reflection optical structures are used in various external environments, such as camera lenses. To increase. Thus, a substrate with an antireflection optical structure in which simple conical or pyramid-shaped protrusions are arranged does not have sufficient mechanical strength compared to a substrate with an antireflection optical structure in which a multilayer film is formed on the substrate surface. There was a big problem in practical use.

一方、反射防止光学構造付き基板の作製工程の一部として、電子ビーム露光装置を用いる作製方法においては、周期的なドット状のレジストパターンを形成するための作業時間が、面積の増大とともに大幅に増大し、50mm以上の大面積基板では1日単位の作業時間を要し、製造コスト面で大きな負担となる。これに対して、作製工程の一部として、半導体LSI製造で広く使用されている紫外光露光装置を用いる作製方法においては、周期的なドット状のレジストパタンは20mm程度の面積領域を単位として形成されることに伴い、反射防止構造が形成されない“つなぎ”部分の発生を十分に抑制することが出来ないために、基板全体でのパタン品質が低下する。このように、実用面で重要な面積の大きい反射防止光学構造付き基板の作製においては、製造コストとパタン品質との両立が困難であり、大きな課題であった。   On the other hand, in the manufacturing method using an electron beam exposure apparatus as part of the manufacturing process of a substrate with an antireflection optical structure, the work time for forming a periodic dot-like resist pattern is greatly increased as the area increases. Increasingly, a large-area substrate of 50 mm or more requires a work time in units of one day, which is a heavy burden in terms of manufacturing cost. On the other hand, as a part of the manufacturing process, in a manufacturing method using an ultraviolet light exposure apparatus widely used in semiconductor LSI manufacturing, a periodic dot-shaped resist pattern is formed with an area region of about 20 mm as a unit. As a result, it is not possible to sufficiently suppress the occurrence of the “connecting” portion where the antireflection structure is not formed, so that the pattern quality of the entire substrate deteriorates. Thus, in the production of a substrate with an antireflection optical structure having a large area which is important for practical use, it is difficult to achieve both the manufacturing cost and the pattern quality, which is a big problem.

本発明は、このような課題に着目してなされたもので、機械的強度を向上させて表面接触等による破損を低減できる反射防止光学構造付き基板、および、反射防止光学構造付き基板を低製造コストで高品質に製造することができる反射防止光学構造付き基板の製造方法を提供することを目的としている。   The present invention has been made by paying attention to such a problem, and it is possible to reduce the production of a substrate with an antireflection optical structure that can improve mechanical strength and reduce damage due to surface contact, and a substrate with an antireflection optical structure. An object of the present invention is to provide a method of manufacturing a substrate with an antireflection optical structure that can be manufactured with high quality at low cost.

そこで、上記の課題を解決するために、本発明に係る反射防止光学構造付き基板は、基板表面上に円錐形状やピラミッド状を有する微細な突起が配置された反射防止光学構造付き基板であって、前記微細な突起の頂部が円弧状に繋がった連続突起を配置して成ることを、特徴とする。   Therefore, in order to solve the above-described problems, the substrate with an antireflection optical structure according to the present invention is a substrate with an antireflection optical structure in which fine protrusions having a cone shape or a pyramid shape are arranged on the substrate surface. The top of the fine protrusions is formed by arranging continuous protrusions connected in an arc shape.

本発明に係る反射防止光学構造付き基板は、機械的強度を向上させることができ、表面接触等による破損を低減することが可能となる。   The substrate with an antireflection optical structure according to the present invention can improve mechanical strength and can reduce damage due to surface contact or the like.

本発明に係る反射防止光学構造付き基板で、前記微細な突起の頂部が円弧状に繋がった前記連続突起の下部に、それらの連続突起を重畳させる凹凸構造を配置して成ることが好ましい。この場合、機械的強度を向上させること、および微細な連続突起の接触個数を減少させることにより、表面接触等による破損を低減することが可能となる。   In the substrate with an antireflection optical structure according to the present invention, it is preferable that a concavo-convex structure for superimposing the continuous protrusions is arranged below the continuous protrusions in which the tops of the fine protrusions are connected in an arc shape. In this case, it is possible to reduce damage due to surface contact or the like by improving the mechanical strength and reducing the number of contacts of fine continuous protrusions.

本発明に係る反射防止光学構造付き基板の製造方法は、電子ビーム露光法などのレジストパタン形成方法の代わりとして、表面加工の前に、基板表面にメタンガスなどの炭化水素ガスをプラズマ中で分解して形成されるカーボンナノウオール(CNW:Carbon Nanowalls)を成長させる工程を含むことを、特徴とする。   The method of manufacturing a substrate with an antireflection optical structure according to the present invention is a method of decomposing hydrocarbon gas such as methane gas on the substrate surface in plasma before surface processing, instead of resist pattern forming method such as electron beam exposure. Characterized in that it includes a step of growing carbon nanowalls (CNW) formed in this way.

本発明に係る反射防止光学構造付き基板の製造方法は、カーボンナノウオールとして成長する円弧状の炭素パタンをマスクとして基板をエッチング加工することにより、微細な突起の頂部が円弧状に繋がった、連続突起が配置された反射防止光学構造付き基板を作製することができる。   The method for manufacturing a substrate with an antireflection optical structure according to the present invention is a continuous process in which the tops of fine protrusions are connected in an arc shape by etching the substrate using an arc-shaped carbon pattern that grows as carbon nanowalls as a mask. A substrate with an antireflection optical structure in which protrusions are arranged can be manufactured.

メタンガスプラズマは、ガス圧力、高周波電力を調整することにより、密度およびエネルギーを気相中で制御できるため、基板表面での温度制御と組み合わせることにより、大面積基板、さらに凹凸のある基板の上での製作が可能となる。   Since methane gas plasma can control the density and energy in the gas phase by adjusting the gas pressure and high-frequency power, it can be combined with temperature control on the substrate surface to create a large area substrate and a substrate with irregularities. Can be produced.

本発明によれば、基板表面上に円錐形状やピラミッド状を有する突起が配置された反射防止光学構造付き基板において、それらの微細な突起の頂部が円弧状に繋がった連続突起とすることにより、機械的強度を向上させて表面接触等による破損を低減できる。したがって、実際の反射防止光学構造付き基板の使用において、使用効率や取り付け・取り外しの利便性の改善効果が期待できる。   According to the present invention, in the substrate with an antireflection optical structure in which projections having a conical shape or a pyramid shape are arranged on the substrate surface, the tops of those fine projections are continuous projections connected in an arc shape, It is possible to improve mechanical strength and reduce damage due to surface contact. Therefore, in the actual use of the substrate with an antireflection optical structure, it is possible to expect an effect of improving the use efficiency and the convenience of attachment / detachment.

また、微細な突起の頂部が円弧状に繋がった連続突起の下部に、それらの微細な連続突起を重畳させる寸法の大きな凹凸構造を設けることにより、機械的強度を向上させる効果がある。もし円弧形状突起が破損する危険性がある場合でも大きな凹凸構造の上部の凸部のみに限定され、下部の凹部での破損は防止できる。したがって、実際の反射防止光学構造付き基板の使用において、使用効率や取り付け・取り外しの利便性の改善効果が期待できる。   In addition, by providing an uneven structure having a large dimension for superimposing the fine continuous protrusions below the continuous protrusions in which the tops of the fine protrusions are connected in an arc shape, there is an effect of improving the mechanical strength. Even if there is a risk that the arc-shaped protrusion is damaged, it is limited to only the upper convex portion of the large concavo-convex structure, and the damage at the lower concave portion can be prevented. Therefore, in the actual use of the substrate with an antireflection optical structure, it is possible to expect an effect of improving the use efficiency and the convenience of attachment / detachment.

また、円錐形状やピラミッド状を有する突起を配置する方法として、その作製工程の一部に、基板表面にメタンガスなどの炭化水素ガスをプラズマ中で分解して形成されるカーボンナノウオールを成長させる工程を採用することにより、微細な突起の頂部が近似的に円弧状に繋がった連続突起を、平均寸法を確保してランダムに配置することができる。したがって、電子ビーム露光装置や紫外露光装置を使用しない作製工程のため、大面積の反射防止光学構造付き基板を低製造コストで高品質に作製できる効果が期待できる。さらに、凹凸がある基板にも適用できるため、各種光学素子に広く適用して反射率の低減効果が期待できる。   In addition, as a method of arranging protrusions having a cone shape or a pyramid shape, a step of growing carbon nanowalls formed by decomposing hydrocarbon gas such as methane gas in plasma on the substrate surface as part of the production process By adopting, the continuous protrusions in which the tops of the fine protrusions are approximately connected in an arc shape can be randomly arranged with an average dimension secured. Therefore, since the manufacturing process does not use an electron beam exposure apparatus or an ultraviolet exposure apparatus, an effect of manufacturing a large-area substrate with an antireflection optical structure with high quality at a low manufacturing cost can be expected. Furthermore, since it can also be applied to a substrate with irregularities, it can be widely applied to various optical elements and expected to reduce the reflectance.

本発明の第1の実施例としての反射防止光学構造付き基板を示す(A)平面図、(B)格子点を通るX方向断面図、(C)格子点を通るY方向断面である。BRIEF DESCRIPTION OF THE DRAWINGS (A) Top view which shows the board | substrate with an antireflection optical structure as 1st Example of this invention, (B) X direction sectional drawing which passes along a lattice point, (C) Y direction cross section which passes along a lattice point. 本発明の第2の実施例としての反射防止光学構造付き基板を示す(A)平面図、(B)X方向断面図、(C)Y方向断面である。It is (A) top view, (B) X direction sectional view, and (C) Y direction cross section which show the board | substrate with an antireflection optical structure as 2nd Example of this invention. 本発明の第2の実施例としての別の反射防止光学構造付き基板を示す(A)平面図、(B)X方向断面図、(C)Y方向断面である。It is (A) top view, (B) X direction sectional view, and (C) Y direction cross section which show another board | substrate with an antireflection optical structure as a 2nd Example of this invention. 本発明の第3の実施例としての反射防止光学構造付き基板の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the board | substrate with an antireflection optical structure as 3rd Example of this invention. 本発明の第3の実施例としての反射防止光学構造付き基板を示す(A)平面図、(B)X方向断面図、(C)Y方向断面である。It is (A) top view, (B) X direction sectional view, (C) Y direction cross section which shows the board | substrate with an antireflection optical structure as 3rd Example of this invention. 図4に示す反射防止光学構造付き基板の製造方法で、CNW成長に使用するヘリコンプラズマ装置を示す構成図である。It is a block diagram which shows the helicon plasma apparatus used for CNW growth with the manufacturing method of the board | substrate with an antireflection optical structure shown in FIG. 本発明の第3の実施例としての反射防止光学構造付き基板の製造方法を、(A)回折格子、(B)光学レンズ、(C)マイクロレンズへ応用する実施例を示す断面図である。It is sectional drawing which shows the Example which applies the manufacturing method of the board | substrate with an antireflection optical structure as 3rd Example of this invention to (A) diffraction grating, (B) optical lens, and (C) micro lens. 基板表面上に微細な円錐形状やピラミッド状を有する突起を配置する、従来の反射防止光学構造付き基板を示す(A)平面図、(B)X方向断面図である。It is (A) top view and (B) X direction sectional drawing which show the board | substrate with the conventional antireflection optical structure which arrange | positions the processus | protrusion which has a fine cone shape and pyramid shape on the substrate surface.

本発明の上記および他の目的、特徴および利点を明確にすべく、添付した図面を参照しながら、本発明の実施の形態を以下に詳述する。   In order to clarify the above and other objects, features and advantages of the present invention, embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

本発明の第1の実施例としての反射防止光学構造付き基板を、図1に示す。図1(A)に示すように、本実施例の反射防止光学構造付き基板10は、この連続突起12(図1(A)中の実線が頂部、点線が裾部)が周期300nmの正方格子の格子点11上に配置されている。この連続突起12の周期的な配置方法は、それら突起の方向を組み合わせることによりいくつかの方法がある。図1(B)および(C)から分かるように、この連続突起12は三角形状、またはこれに類似する裾引き形状を有する突起が円弧状に連続的に繋がった微細な構造体である。さらに、頂部の平坦面を50nm以下とすれば、可視光領域(波長400nm〜900nm)の反射防止光学構造付き基板10として好適である。   A substrate with an antireflection optical structure as a first embodiment of the present invention is shown in FIG. As shown in FIG. 1 (A), the substrate 10 with antireflection optical structure of this example is a square lattice with a continuous projection 12 (the solid line in FIG. 1 (A) is the top and the dotted line is the skirt) with a period of 300 nm. Are arranged on the grid points 11. There are several methods for periodically arranging the continuous protrusions 12 by combining the directions of the protrusions. As can be seen from FIGS. 1B and 1C, the continuous protrusion 12 is a fine structure in which protrusions having a triangular shape or a skirt shape similar to this are continuously connected in an arc shape. Furthermore, if the top flat surface is 50 nm or less, it is suitable as the substrate 10 with an antireflection optical structure in the visible light region (wavelength 400 nm to 900 nm).

本実施例の反射防止光学構造付き基板10は微細な連続突起12より構成されるが、円弧状突起であるため、実際の使用時に発生する表面接触等による外力を分散させることが出来る。このため、従来の単純な円錐状突起などに比べて強度が大幅に増大し、実際に使用において好適である。   Although the substrate 10 with an antireflection optical structure of the present embodiment is composed of fine continuous protrusions 12, since it is an arc-shaped protrusion, it is possible to disperse an external force due to surface contact or the like generated during actual use. For this reason, compared with the conventional simple conical protrusion etc., intensity | strength increases significantly and it is suitable in use actually.

本発明の第2の実施例としての反射防止光学構造付き基板を、図2に示す。図2に示すように、本実施例の反射防止光学構造付き基板20では、下部凹凸構造22としては逆ピラミッド形状ホールである。図2(A)に示すように、この逆ピラミッド形状ホールは、周期2μmの正方格子上に配置されている。ここでは4個の正方格子が示されている。頂部が円弧状に繋がった連続突起21(図2(A)中の実線が頂部、点線が裾部)は、周期300nmの小さい正方格子上に配置されている。円弧形状の連続突起21は、ピラミッド形状ホールとは特に配置の相関はなく、ピラミッド形状ホールの斜面に配置されている。   FIG. 2 shows a substrate with an antireflection optical structure as a second embodiment of the present invention. As shown in FIG. 2, in the board | substrate 20 with an antireflection optical structure of a present Example, the lower concavo-convex structure 22 is an inverted pyramid shape hole. As shown in FIG. 2A, the inverted pyramid-shaped holes are arranged on a square lattice having a period of 2 μm. Here, four square lattices are shown. The continuous protrusions 21 whose tops are connected in an arc shape (the solid line in FIG. 2A is the top and the dotted line is the skirt) are arranged on a small square lattice with a period of 300 nm. The arc-shaped continuous protrusion 21 has no particular correlation with the pyramid-shaped hole, and is disposed on the slope of the pyramid-shaped hole.

本実施例の反射防止光学構造付き基板20は、微細な突起より構成されるが、微細な突起の頂部が円弧状に繋がった連続突起21の下部に、寸法のより大きな凹凸構造22を配置することにより、強度をさらに増大し、かつ、もし円弧形状の連続突起21が破損する危険性がある場合でも、大きな微細凹凸構造22の上部のみに限定し、反射防止光学構造付き基板20としての全体の反射防止性能は確保できる。   The substrate 20 with an antireflection optical structure of the present embodiment is composed of fine protrusions, and a concavo-convex structure 22 having a larger size is disposed below a continuous protrusion 21 in which the tops of the fine protrusions are connected in an arc shape. Therefore, even if the strength is further increased and there is a risk that the arc-shaped continuous protrusion 21 may be damaged, the entire structure as the substrate 20 with the antireflection optical structure is limited to the upper portion of the large fine uneven structure 22. Antireflection performance can be secured.

図3は、下層の凹凸構造27として、寸法のより大きな円弧状に繋がった連続突起を配置する実施例である。寸法のより大きな円弧状に繋がった連続突起ついては4個が示されている。このように大小2種類の連続突起を上下2段に配置することにより、強度とともに、反射防止性能が得られる光波長の領域を広く出来る。たとえば、円弧状に繋がった連続突起26を周期300nmで配置すると、反射防止性能は波長400nm〜1000nmの光波長領域であるが、円弧状に繋がった大きな連続突起を下層に周期2μmで配置すると、3μmから7μmの赤外線波長領域が追加されて、広い波長範囲で使用できる反射防止光学構造付き基板25となる。   FIG. 3 shows an example in which continuous protrusions connected in a larger arc shape are arranged as the concavo-convex structure 27 in the lower layer. Four continuous protrusions connected in a larger arc shape are shown. Thus, by arranging two types of large and small continuous protrusions in the upper and lower stages, it is possible to widen the light wavelength region in which the antireflection performance can be obtained along with the strength. For example, when the continuous protrusions 26 connected in an arc shape are arranged with a period of 300 nm, the antireflection performance is an optical wavelength region of a wavelength of 400 nm to 1000 nm, but when a large continuous protrusion connected in an arc shape is arranged in the lower layer with a period of 2 μm, An infrared wavelength region of 3 μm to 7 μm is added to form a substrate 25 with an antireflection optical structure that can be used in a wide wavelength range.

本発明の第3の実施例としての反射防止光学構造付き基板について、その製造方法の実施例を、図4に示す。基板31−fは、基板準備工程31−aで洗浄を行ったあと、CNW成長工程31−bを実施する。基板31−fをヘリコンプラズマ装置の加熱試料台にセットして真空排気を十分に行った後、試料台ヒーターを加熱して基板温度を所定温度まで上昇させる。その後、メタンガスを装置内に導入して所定の圧力とした後、アンテナに所定の高周波電力を投入して高密度ヘリコンプラズマ(メタンガスプラズマ31−g)を形成する。ガス圧力、高周波電力を最適化して、プラズマの密度とイオンエネルギーとを制御することにより、近似的に円弧形状のCNWを所望の平均寸法および平均間隔で所定の厚さまで成長させる。ここまでがCNW成長工程31−bである。   FIG. 4 shows an embodiment of a manufacturing method of a substrate with an antireflection optical structure as a third embodiment of the present invention. After the substrate 31-f is cleaned in the substrate preparation step 31-a, a CNW growth step 31-b is performed. After the substrate 31-f is set on the heated sample stage of the helicon plasma apparatus and sufficiently evacuated, the sample stage heater is heated to raise the substrate temperature to a predetermined temperature. Thereafter, methane gas is introduced into the apparatus to obtain a predetermined pressure, and then predetermined high-frequency power is applied to the antenna to form high-density helicon plasma (methane gas plasma 31-g). By optimizing the gas pressure and high-frequency power and controlling the plasma density and ion energy, an approximately arc-shaped CNW is grown to a predetermined thickness at a desired average dimension and average interval. This is the CNW growth step 31-b.

次に、CNWを成長させた基板31−fを室温まで温度降下させてヘリコンプラズマ装置から取り出し、RIE装置などのエッチング装置にセットして真空排気を十分に行う。O単体ガスまたはNガスなどとの混合ガスをエッチング装置内に導入して所定の圧力とした後、試料台電極に高周波電力を投入して高周波プラズマ(酸素ガスプラズマ31−h)を形成し、CNWの整形加工を実施する(CNW整形加工工程31−c)。この整形加工では、CNW成長時に基板31−fとの界面近くの下部に形成されるアモルファスカーボン層に対して、垂直エッチングを行うことにより、この後基板31−fをエッチングするエッチングマスクとして幅が狭く、かつ基板31−fに垂直なCNWパタンを形成することが出来る。このCNWパタンは正方格子などの明確な周期性は無く、ランダム配置である。しかし、CNWパタンの長さ、および相互間隔などの寸法はCNWの成長条件によって近似的に決まり、平均寸法として定義できる。CNWパタンの寸法としては、例えば、可視光の波長帯(400nm〜800nm)では、長さと相互間隔の平均寸法は300nm程度、幅は50nm程度とすることにより、良好な反射防止機能を実現できる。 Next, the substrate 31-f on which the CNW has been grown is cooled to room temperature, taken out from the helicon plasma apparatus, set in an etching apparatus such as an RIE apparatus, and sufficiently evacuated. A gas mixture with O 2 single gas or N 2 gas is introduced into the etching apparatus to obtain a predetermined pressure, and then high frequency power is supplied to the sample stage electrode to form high frequency plasma (oxygen gas plasma 31-h). Then, the CNW shaping process is performed (CNW shaping process 31-c). In this shaping process, by performing vertical etching on the amorphous carbon layer formed near the interface with the substrate 31-f during CNW growth, the width becomes an etching mask for subsequently etching the substrate 31-f. A CNW pattern that is narrow and perpendicular to the substrate 31-f can be formed. This CNW pattern does not have a clear periodicity such as a square lattice and is randomly arranged. However, the length of the CNW pattern and the dimensions such as the mutual interval are approximately determined by the growth condition of the CNW and can be defined as an average dimension. As the dimensions of the CNW pattern, for example, in the wavelength band of visible light (400 nm to 800 nm), a good antireflection function can be realized by setting the average dimension of the length and the mutual interval to about 300 nm and the width to about 50 nm.

次に、基板表面洗浄工程31−dで基板31−fの洗浄を行う。
最後の基板エッチング工程において、洗浄後基板31−iの整形されたCNWパタンをエッチングマスクとして、エッチングガスプラズマ31−jにより、基板材料に適したドライエッチングを実施することにより、三角形状、またはこれに類似する裾引き形状を有し、その頂部で円弧状に繋がった連続突起が形成されて、反射防止光学構造付き基板が完成する。この基板のエッチングとしては、例えばSi基板に対しては、塩素ガスを用いたECRエッチングを用いることができる。
Next, the substrate 31-f is cleaned in the substrate surface cleaning step 31-d.
In the final substrate etching process, by performing dry etching suitable for the substrate material with the etching gas plasma 31-j using the shaped CNW pattern of the substrate 31-i after cleaning as an etching mask, a triangular shape or this Are formed, and a continuous projection connected in an arc shape at the top is formed, whereby the substrate with an antireflection optical structure is completed. As this substrate etching, for example, ECR etching using chlorine gas can be used for a Si substrate.

上記の製造工程を用いて作製される反射防止光学構造付き基板としての実施例を、図5に示す。CNWはすでに説明したように、円弧形状、向き、寸法が異なるランダム配置であり、近似的な円弧形状の連続突起32−b,32−cの配置は明確な周期性を持たない。近似的な円弧については、方向が4方向、寸法が2種類あり、それらを組み合わせた円弧状の連続突起32−b,32−cは、周期的な配置から変動して配置されている。ランダムな配置を持つ反射防止光学構造付き基板32−aでは、特定の波長における回折効果を回避できるため、基板に色が付いて見えることがなく、広い波長領域に亘って反射率が一定となる。   FIG. 5 shows an embodiment as a substrate with an antireflection optical structure manufactured using the above manufacturing process. As described above, the CNW has a random arrangement with different arc shapes, orientations, and dimensions, and the arrangement of the approximate arc-shaped continuous protrusions 32-b and 32-c does not have a clear periodicity. As for the approximate arc, there are four directions and two types of dimensions, and the arc-shaped continuous protrusions 32-b and 32-c, which are a combination of these, are arranged with a variation from a periodic arrangement. In the substrate 32-a with antireflection optical structure having a random arrangement, the diffraction effect at a specific wavelength can be avoided, so that the substrate does not appear to be colored, and the reflectance is constant over a wide wavelength region. .

図6には、上記実施例において重要な装置であるヘリコンプラズマ装置の構成図を示す。図6に示すように、メタンガスプラズマ33−fは、所定のガス圧力において、外部印加磁場33−hと高周波発信器33−dによる高周波電力との相互作用により高密度で形成される。メタンガスの分解が十分に進み、試料台の加熱作用と合わせてCNWを効率的に成長させることが出来る。   FIG. 6 shows a configuration diagram of a helicon plasma apparatus which is an important apparatus in the above embodiment. As shown in FIG. 6, the methane gas plasma 33-f is formed with high density by the interaction between the externally applied magnetic field 33-h and the high frequency power generated by the high frequency transmitter 33-d at a predetermined gas pressure. The decomposition of methane gas is sufficiently advanced, and CNW can be efficiently grown together with the heating action of the sample stage.

図4に示す実施例においては、CNWの成長、その整形加工、さらに基板のエッチングまでの全作製工程において、各工程での所望のガスを高周波電力により分解して得られるガスプラズマ用いる。ガスプラズマによる成膜およびエッチング等の処理技術は、半導体電子デバイスの製造において広く使用されている。特に、半導体Si−LSIの製造においては、ガスプラズマによる大面積処理に多くの改良が加えられ、直径300mmのウエハ基板で均一な処理技術が確立されている。このように、ガスプラズマでは均一な大面積処理が可能であり、図6の実施例に示すCNW成長を利用する反射防止光学構造付き基板の作製においても、50mm程度の大面積基板に対して、所望の平均寸法の連続突起を均一に作製することが可能である。   In the embodiment shown in FIG. 4, gas plasma obtained by decomposing a desired gas in each step with high-frequency power is used in all manufacturing steps from CNW growth, shaping, and substrate etching. Processing techniques such as gas plasma deposition and etching are widely used in the manufacture of semiconductor electronic devices. In particular, in the manufacture of semiconductor Si-LSI, many improvements have been made to large area processing by gas plasma, and a uniform processing technique has been established for a wafer substrate having a diameter of 300 mm. Thus, uniform large area processing is possible with gas plasma, and even in the production of a substrate with an antireflection optical structure using CNW growth shown in the embodiment of FIG. It is possible to uniformly produce a continuous protrusion having a desired average dimension.

さらに、CNWの成長を含むガスプラズマを用いる処理では、CNWの成長は、基板に10μm程度のまでの深さの凹凸がある場合、また、それ以上でも緩やかに変化する凹凸がある場合も、平坦面とほぼ同様な処理が可能であるため、図4に示す実施例は、図7に示すような様々な光学素子に適用でき、素子表面での反射を抑制することにより性能向上に貢献できる。   Further, in the process using gas plasma including CNW growth, the CNW growth is flat even when the substrate has unevenness with a depth of up to about 10 μm, or when there is unevenness that changes more slowly than that. 4 can be applied to various optical elements as shown in FIG. 7, and can contribute to performance improvement by suppressing reflection on the element surface.

また、図4に示す実施例では、図3に示した大小2種類の円弧形状連続突起が上下2段に配置された反射防止光学構造付き基板を、作製工程を大幅に増やすことなく製造することが出来る。   Further, in the embodiment shown in FIG. 4, the substrate with the antireflection optical structure in which the two kinds of large and small arc-shaped continuous protrusions shown in FIG. 3 are arranged in two upper and lower stages is manufactured without significantly increasing the production process. I can do it.

10 反射防止光学構造付き基板
11 格子点
12 連続突起
20 反射防止光学構造付き基板
21 連続突起
22 下部凹凸構造
23 X方向断面位置
24 Y方向断面位置
25 反射防止光学構造付き基板
26 連続突起
27 下部凹凸構造
28 X方向断面位置
29 Y方向断面位置
31−a 基板準備工程
31−b CNW成長工程
31−c CNW整形加工工程
31−d 基板表面洗浄工程
31−e 基板エッチング工程
31−f 基板
31−g メタンガスプラズマ
31−h 酸素ガスプラズマ
31−i 洗浄済基板
31−j エッチングガスプラズマ
32−a 反射防止光学構造付き基板
32−b (平均寸法の大きな)連続突起
32−c (平均寸法の小さな)連続突起
32−d X方向断面位置
32−e Y方向断面位置
33−a ガラスチューブ
33−b メタンガス導入部
33−c ヘリカルアンテナ
33−d 高周波発信器
33−e 整合器
33−f メタン(CH4)ガスプラズマ
33−g 加熱試料台
33−h 外部印加磁場
33−i 真空排気
34−a 回折格子基板
34−b 回折格子パタン
34−c 円弧形状連続突起
34−d レンズ基板
34−e 円弧形状連続突起
34−f マクロレンズ基板
34−g マイクロレンズ
34−h 円弧形状連続突起
40 基板
41 円錐突起
42 円錐突起の頂部
43 円錐突起の配置周期(P)
DESCRIPTION OF SYMBOLS 10 Substrate with antireflection optical structure 11 Lattice point 12 Continuous protrusion 20 Substrate with antireflection optical structure 21 Continuous protrusion 22 Lower uneven structure 23 X direction cross section position 24 Y direction cross section position 25 Substrate with antireflection optical structure 26 Continuous protrusion 27 Lower unevenness Structure 28 X-direction sectional position 29 Y-direction sectional position 31-a Substrate preparation step 31-b CNW growth step 31-c CNW shaping step 31-d Substrate surface cleaning step 31-e Substrate etching step 31-f Substrate 31-g Methane gas plasma 31-h Oxygen gas plasma 31-i Cleaned substrate 31-j Etching gas plasma 32-a Substrate with antireflection optical structure 32-b (large average dimension) continuous protrusion 32-c (small average dimension) continuous Protrusion 32-d X-direction cross-section position 32-e Y-direction cross-section position 33-a 33-b Methane gas introduction part 33-c Helical antenna 33-d High frequency transmitter 33-e Matching device 33-f Methane (CH4) gas plasma 33-g Heated sample stage 33-h Externally applied magnetic field 33-i Vacuum exhaust 34 -A diffraction grating substrate 34-b diffraction grating pattern 34-c arc-shaped continuous protrusion 34-d lens substrate 34-e arc-shaped continuous protrusion 34-f macro lens substrate 34-g microlens 34-h arc-shaped continuous protrusion 40 substrate 41 Conical protrusion 42 Conical protrusion top 43 Conical protrusion arrangement period (P)

Claims (3)

基板表面上に円錐形状やピラミッド状を有する微細な突起が配置された反射防止光学構造付き基板であって、前記微細な突起の頂部が円弧状に繋がった連続突起を配置して成ることを、特徴とする反射防止光学構造付き基板。   A substrate with an antireflection optical structure in which fine projections having a conical shape or a pyramid shape are arranged on the surface of the substrate, wherein the continuous projections in which the tops of the fine projections are connected in an arc shape are arranged, A substrate with an antireflection optical structure. 前記微細な突起の頂部が円弧状に繋がった前記連続突起の下部に、それらの連続突起を重畳させる凹凸構造を配置して成ることを、特徴とする請求項1記載の反射防止光学構造付き基板。   2. The substrate with an antireflection optical structure according to claim 1, wherein an uneven structure for superimposing the continuous protrusions is arranged below the continuous protrusions in which the tops of the fine protrusions are connected in an arc shape. . 表面加工の前に、基板表面にメタンガスなどの炭化水素ガスをプラズマ中で分解して形成されるカーボンナノウオールを成長させる工程を含むことを、特徴とする反射防止光学構造付き基板の製造方法。
A method for producing a substrate with an antireflection optical structure, comprising a step of growing carbon nanowalls formed by decomposing hydrocarbon gas such as methane gas in plasma on a substrate surface before surface processing.
JP2010203141A 2010-09-10 2010-09-10 Substrate with antireflection optical structure and method of manufacturing substrate with antireflection optical structure Pending JP2012058584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010203141A JP2012058584A (en) 2010-09-10 2010-09-10 Substrate with antireflection optical structure and method of manufacturing substrate with antireflection optical structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010203141A JP2012058584A (en) 2010-09-10 2010-09-10 Substrate with antireflection optical structure and method of manufacturing substrate with antireflection optical structure

Publications (1)

Publication Number Publication Date
JP2012058584A true JP2012058584A (en) 2012-03-22

Family

ID=46055727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010203141A Pending JP2012058584A (en) 2010-09-10 2010-09-10 Substrate with antireflection optical structure and method of manufacturing substrate with antireflection optical structure

Country Status (1)

Country Link
JP (1) JP2012058584A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6032446B1 (en) * 2015-05-22 2016-11-30 尾池工業株式会社 Low reflection graphene, low reflection graphene for optical components

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307352A (en) * 2004-03-25 2005-11-04 Dialight Japan Co Ltd Apparatus for producing carbon film and production method therefor
WO2005109042A1 (en) * 2004-05-12 2005-11-17 Matsushita Electric Industrial Co., Ltd. Optical element and manufacturing method thereof
JP2006004814A (en) * 2004-06-18 2006-01-05 Ishikawajima Harima Heavy Ind Co Ltd Collector and collector manufacturing method
JP2008500560A (en) * 2004-05-27 2008-01-10 松下電器産業株式会社 Light absorbing member
JP2008209867A (en) * 2007-02-28 2008-09-11 Mitsubishi Rayon Co Ltd Stamper, glare-proof antireflection article, and its manufacturing method
JP2008255467A (en) * 2007-03-12 2008-10-23 Kochi Prefecture Sangyo Shinko Center Plasma cvd apparatus and film deposition method
JP2008293967A (en) * 2007-04-27 2008-12-04 Nhv Corporation Electron source and method of manufacturing electron source
JP2009034630A (en) * 2007-08-03 2009-02-19 Oji Paper Co Ltd Method of manufacturing mono-particle membrane on non-flat surface, method of manufacturing fine structure using mono-particle membrane etching mask, and fine structure formed by the method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307352A (en) * 2004-03-25 2005-11-04 Dialight Japan Co Ltd Apparatus for producing carbon film and production method therefor
WO2005109042A1 (en) * 2004-05-12 2005-11-17 Matsushita Electric Industrial Co., Ltd. Optical element and manufacturing method thereof
JP2008500560A (en) * 2004-05-27 2008-01-10 松下電器産業株式会社 Light absorbing member
JP2006004814A (en) * 2004-06-18 2006-01-05 Ishikawajima Harima Heavy Ind Co Ltd Collector and collector manufacturing method
JP2008209867A (en) * 2007-02-28 2008-09-11 Mitsubishi Rayon Co Ltd Stamper, glare-proof antireflection article, and its manufacturing method
JP2008255467A (en) * 2007-03-12 2008-10-23 Kochi Prefecture Sangyo Shinko Center Plasma cvd apparatus and film deposition method
JP2008293967A (en) * 2007-04-27 2008-12-04 Nhv Corporation Electron source and method of manufacturing electron source
JP2009034630A (en) * 2007-08-03 2009-02-19 Oji Paper Co Ltd Method of manufacturing mono-particle membrane on non-flat surface, method of manufacturing fine structure using mono-particle membrane etching mask, and fine structure formed by the method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014030703; T.Sato et al.: 'Realization of an extremely low reflectance surface based on InP porous nanostructures for applicati' Thin Solid Films 518(15), 20100531, 4399-4402 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6032446B1 (en) * 2015-05-22 2016-11-30 尾池工業株式会社 Low reflection graphene, low reflection graphene for optical components

Similar Documents

Publication Publication Date Title
TWI635624B (en) Semiconductor light emitting element and method of manufacturing same
JP5721545B2 (en) Device having group III nitride and method of manufacturing device having group III nitride
TWI476812B (en) Method for making light-emitting diode
JP4550089B2 (en) Antireflection structure, manufacturing method thereof, and manufacturing method of optical member
TWI466326B (en) Light-emitting diode
WO2010109750A1 (en) Method for manufacturing sapphire substrate, and semiconductor device
KR20120051047A (en) Method for texturing the surface of a silicon substrate, and textured silicon substrate for a solar cell
CN110797442A (en) Patterned substrate, LED epitaxial wafer and patterned substrate preparation method
TW201411692A (en) Method for production of selective growth masks using imprint lithography
CN110862088A (en) Preparation method of silicon nanoneedle array with ultra-high depth-to-width ratio
WO2012032803A1 (en) Method for etching sapphire substrate
JP5045057B2 (en) Plasma processing method
JP2012058584A (en) Substrate with antireflection optical structure and method of manufacturing substrate with antireflection optical structure
KR101548849B1 (en) Method for producing molds
TWI438144B (en) A method for making a substrate with micro-structure
CN202797054U (en) Lithium niobate substrate of patterned structure and used for manufacturing LED chip
CN115494568B (en) Preparation method of micro-lens array, micro-lens array and application thereof
JP4908913B2 (en) Mold manufacturing method
Li et al. Diamond micro-lenses with variable height using self-assembly silica-microsphere-monolayer as etching mask
KR101150446B1 (en) Fabrication Method of Vertically Aligned Carbon Nanotube
JP6277643B2 (en) Manufacturing method of mold for nanoimprint
CN114203875A (en) Graphical composite substrate, preparation method and LED epitaxial wafer
JP3721815B2 (en) Optical element manufacturing method
JP2004107765A (en) Method for treating silicon surface and metal surface
CN115369386B (en) Method for depositing diamond on microstructure substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130725

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140922

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150413

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150502

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150825