WO2016190254A1 - 基地局及び無線端末 - Google Patents

基地局及び無線端末 Download PDF

Info

Publication number
WO2016190254A1
WO2016190254A1 PCT/JP2016/065068 JP2016065068W WO2016190254A1 WO 2016190254 A1 WO2016190254 A1 WO 2016190254A1 JP 2016065068 W JP2016065068 W JP 2016065068W WO 2016190254 A1 WO2016190254 A1 WO 2016190254A1
Authority
WO
WIPO (PCT)
Prior art keywords
enb
wireless lan
identifier
base station
identification information
Prior art date
Application number
PCT/JP2016/065068
Other languages
English (en)
French (fr)
Inventor
勝裕 三井
真人 藤代
憲由 福田
空悟 守田
優志 長坂
顕徳 岩渕
裕之 安達
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US15/575,607 priority Critical patent/US10492177B2/en
Priority to JP2017520687A priority patent/JP6800841B2/ja
Priority to EP16799959.8A priority patent/EP3300429B1/en
Publication of WO2016190254A1 publication Critical patent/WO2016190254A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • H04W36/144Reselecting a network or an air interface over a different radio air interface technology
    • H04W36/1446Reselecting a network or an air interface over a different radio air interface technology wherein at least one of the networks is unlicensed
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to a base station and a wireless terminal used in a communication system.
  • LTE Long Term Evolution
  • 3GPP 3rd Generation Partnership Project
  • a standardization project for cellular communication technology supports cellular / WLAN wireless interworking technology in Release 12 and later (Non-Patent Document 1) And 2).
  • a user terminal in the RRC connected state or the RRC idle state performs bidirectional traffic switching (network selection and traffic steering) between the E-UTRAN and the WLAN.
  • a base station includes a control unit that receives an identifier of a wireless LAN access point added in a wireless LAN termination device from the wireless LAN termination device.
  • a base station includes a control unit that sends a message for requesting setup of an Xw interface between the base station and a wireless LAN terminator to the wireless LAN terminator.
  • the control unit receives a response message to the second message from the wireless LAN termination device.
  • the response message includes a list of identifiers of wireless LAN access points in the wireless LAN termination device.
  • the wireless terminal includes a receiving unit that receives control information for setting a wireless LAN access point to be measured from a base station.
  • the control information includes an identifier for specifying the wireless LAN access point.
  • FIG. 1 is a diagram showing a system configuration.
  • FIG. 2 is a block diagram showing the UE 100.
  • FIG. 3 is a block diagram showing the eNB 200.
  • FIG. 4 is a block diagram showing the AP 300.
  • FIG. 5 is a diagram for explaining an operation according to the first embodiment.
  • FIG. 6 is a diagram illustrating an operation according to another embodiment related to the first embodiment.
  • FIG. 7 is a diagram showing a system configuration.
  • FIG. 8 is a protocol stack diagram of a radio interface in the LTE system.
  • FIG. 9 is a block diagram showing the UE 100.
  • FIG. 10 is a block diagram showing the eNB 200.
  • FIG. 11 is a block diagram showing the AP 300.
  • FIG. 12 is a block diagram showing WT 600.
  • FIG. 13 is a diagram illustrating an operating environment.
  • FIG. 14 is a sequence diagram for explaining an operation according to the second embodiment.
  • FIG. 15 is a diagram illustrating an example of a method for determining an inquiry destination.
  • FIG. 16 is a sequence diagram for explaining an operation according to another embodiment related to the second embodiment.
  • FIG. 17 is a sequence diagram for explaining an operation according to the third embodiment.
  • FIG. 18 is a sequence diagram for explaining an operation according to another embodiment related to the third embodiment.
  • FIG. 19 is a sequence diagram for explaining an operation according to the fourth embodiment.
  • FIG. 20 is a sequence diagram for explaining an operation according to another embodiment related to the fourth embodiment.
  • FIG. 21 is a diagram illustrating an operating environment according to the fifth embodiment.
  • FIG. 22 is a sequence diagram for explaining an operation according to the fifth embodiment.
  • FIG. 23 is an example of a table for explaining the operation according to the fifth embodiment.
  • FIG. 24 is a sequence diagram for explaining an operation according to the sixth embodiment.
  • FIG. 25 is a diagram for explaining the operation of the WT according to the seventh embodiment.
  • FIG. 26 is a sequence diagram for explaining an operation (part 1) according to the seventh embodiment.
  • FIG. 27 is an example of a table for explaining the operation according to the seventh embodiment.
  • FIG. 28 is a sequence diagram for explaining the operation (part 2) according to the seventh embodiment.
  • FIG. 29 is a diagram for explaining an operation according to the seventh embodiment.
  • the base station includes a control unit that receives the identifier of the wireless LAN access point added in the wireless LAN termination device from the wireless LAN termination device.
  • control unit receives a message including a list of identifiers of wireless LAN access points from the wireless LAN termination device via an Xw interface between the base station and the wireless LAN termination device.
  • the list of wireless LAN access points includes an identifier of the added wireless LAN access point.
  • control unit receives the identifier of the wireless LAN access point deleted in the wireless LAN termination device from the wireless LAN termination device.
  • control unit receives a message including a list of identifiers of wireless LAN access points from the wireless LAN termination device via an Xw interface between the base station and the wireless LAN termination device.
  • the list of wireless LAN access points includes an identifier of the deleted wireless LAN access point.
  • the base station includes a control unit that sends a message for requesting setup of an Xw interface between the base station and the wireless LAN termination device to the wireless LAN termination device.
  • the control unit receives a response message to the second message from the wireless LAN termination device.
  • the response message includes a list of identifiers of wireless LAN access points in the wireless LAN termination device.
  • control unit receives a message including a list of identifiers of wireless LAN access points from the wireless LAN terminator via the Xw interface between the base station and the wireless LAN terminator, and
  • the list of LAN access points includes the identifier of the changed wireless LAN access point.
  • the wireless terminal includes a receiving unit that receives control information for setting a wireless LAN access point to be measured from a base station.
  • the control information includes an identifier for specifying the wireless LAN access point.
  • the receiving unit receives a message for setting a measurement report related to a radio signal from a cell from the base station.
  • the message includes the control information.
  • the base station notifies the wireless terminal of (a plurality of) wireless LAN access points that are candidates for traffic switching.
  • the wireless terminal selects a wireless LAN access point as a traffic switching destination from among a plurality of wireless LAN access points notified from the base station.
  • the wireless terminal according to the embodiment is located in a cell managed by a base station operated by a predetermined network operator.
  • the wireless terminal reports the wireless LAN access point only when it is determined that the wireless LAN access point is operated by the receiving unit that receives a wireless signal from the wireless LAN access point and the predetermined network operator.
  • a control unit for transmitting to the base station.
  • operation may include not only that the predetermined network operator directly operates the wireless LAN access point, but also that the predetermined network operator indirectly operates the wireless LAN access point.
  • a predetermined network operator indirectly operates a wireless LAN access point for example, a contract network operator who contracts with a predetermined network operator operates a wireless LAN access point that can be used by a user terminal. .
  • the wireless signal includes identification information of a PLMN to which the wireless LAN access point belongs.
  • the controller determines that the wireless LAN access point is operated by the predetermined network operator when the PLMN indicated by the identification information of the PLMN is the same as the PLMN to which the base station belongs.
  • the control unit determines that the LAN access point is operated by the predetermined network operator.
  • control unit receives control information for specifying a wireless LAN access point to be reported from the base station.
  • the control unit determines whether the wireless LAN access point that is the transmission source of the wireless signal is operated by the predetermined network operator based on the control information.
  • control unit regards the wireless LAN access point as a target of the report when at least one of the reception time and the reception strength of the wireless signal exceeds a threshold value.
  • the control unit when the wireless signal is received from another cell when the wireless signal is received from the wireless LAN access point, the control unit transmits the identification information of the other cell together with the report.
  • the base station is operated by a predetermined network operator.
  • the base station receives a report regarding a wireless LAN access point operated by the predetermined network operator from a wireless terminal located in a cell managed by the base station, and a neighborhood operated by the predetermined network operator A control unit that transfers a report regarding the wireless LAN access point to a base station.
  • the receiving unit receives the identification information of another cell received when the wireless terminal receives a wireless signal from the wireless LAN access point together with a report regarding the wireless LAN access point.
  • the control unit transfers a report related to the wireless LAN access point to the neighboring base station that manages the other cell.
  • the base station further includes a transmission unit that transmits control information for specifying a wireless LAN access point that is a target of the report.
  • an Xw interface is set between a base station and a wireless LAN termination device (WT: Wireless LAN Termination) that is a node in the WLAN.
  • WT Wireless LAN Termination
  • the base station can acquire information on the WLAN (information on the AP in its own cell) from the wireless LAN termination device via the Xw interface.
  • the base station receives a report regarding a wireless LAN access point from a wireless terminal.
  • the base station does not know the wireless LAN termination device that manages the wireless LAN access point.
  • the Xw interface cannot be set.
  • the communication control method is used in a communication system that can set an interface between a base station and a wireless LAN terminator that is a node in a wireless LAN.
  • the wireless terminal reports identification information of a predetermined wireless LAN access point to the base station.
  • the base station sends an inquiry about a predetermined wireless LAN termination device that manages the predetermined wireless LAN access point to the network device based on the identification information of the predetermined wireless LAN access point.
  • the network device sends a response to the inquiry to the base station.
  • the base station holds a table in which the wireless LAN termination device and the wireless LAN access point managed by the wireless LAN termination device are associated with each other.
  • the base station sends the inquiry using the wireless LAN termination device in the table as the network device.
  • the wireless terminal reports identification information of a network to which the predetermined wireless LAN access point belongs in addition to the identification information of the predetermined wireless LAN access point to the base station.
  • the inquiry is sent using a wireless LAN termination device that manages another wireless LAN access point associated with the network identification information as the network device.
  • the network device is an upper node of the base station, and the network device receives identification information of a wireless LAN access point managed by the predetermined wireless LAN termination device from a predetermined wireless LAN termination device, The network device sends a response to the inquiry to the base station based on the identification information of the wireless LAN access point received from the predetermined wireless LAN termination device.
  • the network device is an upper node of the base station, and the network device responds to the inquiry with an instruction for setting an interface between the base station and the predetermined wireless LAN terminator. And send the response to the base station.
  • the base station sets a wireless LAN access point to be reported to the wireless terminal, and the wireless terminal not only identifies identification information of the wireless LAN access point to be reported, but also other wireless The identification information of the LAN access point is also reported to the base station.
  • the wireless terminal when the wireless terminal determines that the other wireless LAN access point is being operated by a network operator that operates the base station, the wireless terminal provides identification information of the other wireless LAN access point to the base station. To report to.
  • the wireless terminal transmits a wireless signal for requesting identification information of a wireless LAN access point, and the wireless terminal identifies the predetermined wireless LAN access point from the predetermined wireless LAN access point. Receive a response containing information.
  • the predetermined wireless LAN access point is a stealth access point that does not transmit a wireless signal including identification information related to itself.
  • the embodiment is used in a communication system that can set an interface between a base station and a wireless LAN terminator that is a node in a wireless LAN.
  • the wireless LAN terminator transmits identification information of a wireless LAN access point managed by the wireless LAN terminator to the base station.
  • the base station associates the wireless LAN access point with the wireless LAN termination device based on the identification information of the wireless LAN access point, and stores the association.
  • the wireless LAN termination device sends identification information of the wireless LAN access point to the base station when the wireless LAN access point is newly registered as a management target of the wireless LAN termination device.
  • a wireless terminal sends identification information related to the base station to the wireless LAN termination device via the wireless LAN access point, and the wireless LAN termination device uses the identification information related to the base station. Based on this, the identification information of the wireless LAN access point is sent to the base station.
  • the embodiment is used in a communication system that can set an interface between a base station and a wireless LAN terminator that is a node in a wireless LAN.
  • the wireless terminal includes: a receiver that receives identification information of the wireless LAN termination device that manages the wireless LAN access point from a wireless LAN access point; and not only identification information of the wireless LAN access point, but also the wireless LAN termination device A controller that also reports identification information to the base station.
  • the receiver receives a wireless signal including identification information of the wireless LAN access point and identification information of the wireless LAN termination device from the wireless LAN access point.
  • the controller transmits a request for identification information of the wireless LAN termination device to the wireless LAN access point, and the receiver sends a response to the request including the identification information of the wireless LAN termination device to the wireless LAN termination point. Receive from the access point.
  • the base station includes a controller that sends a WT identifier for identifying a wireless LAN termination node to an other base station together with an AP identifier for identifying a wireless LAN access point managed by the wireless LAN termination node.
  • the controller sends the WT identifier to the other base station together with the AP identifier when the wireless LAN access point is located within the coverage of the other base station.
  • the controller receives an inquiry about the wireless LAN terminal node including the AP identifier from the other base station.
  • the controller includes the WT identifier and the AP identifier in a response to the inquiry, and sends the response to the other base station.
  • the controller receives an inquiry about the wireless LAN terminal node including the second AP identifier for identifying a predetermined wireless LAN access point from the other base station. If the controller does not know the second WT identifier that identifies the predetermined wireless LAN terminal node that manages the predetermined wireless LAN access point, the controller includes a response including information indicating that the second WT identifier is not known to the other base station send.
  • the controller receives an inquiry about the wireless LAN terminal node including the second AP identifier for identifying a predetermined wireless LAN access point from the other base station.
  • the controller does not know the second WT identifier for identifying the predetermined wireless LAN terminal node that manages the predetermined wireless LAN access point, the controller inquires about the second WT identifier to other nodes.
  • the controller transmits a report including the AP identifier from a wireless terminal that has detected the wireless LAN access point and a cell identifier that is cell identification information detected when the wireless LAN access point is detected. Receive from the terminal. The controller sends the WT identifier together with the AP identifier to the other base station that manages the cell indicated by the cell identifier.
  • the controller receives a report including the AP identifier and the cell identifier recorded when the wireless terminal is in an idle state from the wireless terminal.
  • the controller determines that the other base station knows the wireless LAN termination node that manages the wireless LAN access point, the controller sends the WT identifier and the AP identifier to the other base station. Omit sending to the station.
  • the controller omits sending the WT identifier and the AP identifier to the other base station when the other base station is not a neighboring base station.
  • the controller when the controller does not know the wireless LAN terminal node that manages the wireless LAN access point, the controller sends the report to a node in the core network.
  • the controller receives the WT identifier and the AP identifier from the wireless LAN terminal node.
  • the controller sends the WT identifier and the AP identifier received from the wireless LAN terminal node to the other base station.
  • the controller receives the WT identifier and the AP identifier from the wireless LAN termination node triggered by update of a list related to a wireless LAN access point in the wireless LAN termination node.
  • the base station includes a controller that receives a WT identifier for identifying a wireless LAN terminal node from another base station together with an AP identifier for identifying a wireless LAN access point managed by the wireless LAN terminal node.
  • the controller updates a list of wireless LAN access points managed by a wireless LAN terminal node based on the AP identifier and the WT identifier.
  • the controller updates the list based on a report regarding a wireless LAN access point from at least one of a wireless terminal, the other base station, and a wireless LAN terminal node.
  • FIG. 1 is a diagram showing a system configuration.
  • the LTE system includes a plurality of UEs (User Equipment) 100, an E-UTRAN (Evolved Universal Terrestrial Radio Access Network) 10, and an EPC (Evolved Packet Core) 20.
  • UEs User Equipment
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • EPC Evolved Packet Core
  • E-UTRAN 10 corresponds to cellular RAN.
  • the EPC 20 corresponds to a core network.
  • the E-UTRAN 10 and the EPC 20 constitute an LTE system network.
  • the UE 100 is a mobile radio communication device.
  • the UE 100 corresponds to a user terminal (wireless terminal).
  • the UE 100 is a terminal (dual terminal) that supports both cellular communication and WLAN communication methods. Note that the UE 100 may be a terminal that supports only cellular communication.
  • the E-UTRAN 10 includes a plurality of eNBs 200 (evolved Node-B).
  • the eNB 200 corresponds to a base station.
  • the eNB 200 manages one or a plurality of cells and performs radio communication with the UE 100 located in the own cell.
  • Cell is used as a term indicating a minimum unit of a radio communication area, and is also used as a term indicating a function (resource) for performing radio communication with the UE 100.
  • the eNB 200 has a radio resource management (RRM) function, a user data routing function, a mobility control and a measurement control function for scheduling, and the like.
  • RRM radio resource management
  • the eNB 200 is connected to each other via the X2 interface.
  • the eNB 200 is connected to an MME (Mobility Management Entity) / S-GW (Serving-Gateway) 400 included in the EPC 20 via the S1 interface.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • the EPC 20 includes a plurality of MME / S-GW 400 and AAA server (AAA Server) 500.
  • the MME is a network node that performs various types of mobility control for the UE 100, and corresponds to a control station.
  • the S-GW is a network node that performs transfer control of user data, and corresponds to an exchange.
  • the AAA server 400 is a server device that performs authentication, authorization, and accounting.
  • the WLAN 30 includes a WLAN access point (hereinafter referred to as “AP”) 300.
  • the AP 300 is an AP (Operator controlled AP) managed by an NW operator of the LTE system, for example.
  • the WLAN 30 is configured based on, for example, IEEE 802.11 standards.
  • AP 300 performs WLAN communication with UE 100 in a frequency band different from the cellular frequency band. In general, WLAN communication is performed in an unlicensed band. Cellular communication is performed in a licensed band.
  • the AP 300 is connected to the EPC 20 via a router or the like. Not only when eNB200 and AP300 are separate nodes, eNB200 and AP300 may be integrated (Collocated) as the same node. Alternatively, the eNB 200 and the AP 300 may be interconnected via a direct interface.
  • the EPC 20 may further include an ANDSF (Access Network Discovery and Selection Function) server.
  • the ANDSF server manages ANDSF information related to the WLAN 30.
  • the ANDSF server provides the UE 100 with ANDSF information regarding the WLAN 30.
  • the UE 100 in the RRC connected state or the RRC idle state performs bidirectional traffic switching (network selection and traffic steering) between the E-UTRAN 10 and the WLAN 30.
  • the traffic switching is performed by the UE 100 (UE based) with the assistance of the E-UTRAN 10.
  • the traffic switching is performed in units of APN (Access Point Name).
  • APN Access Point Name
  • switching control is referred to as “UE-driven switching control”.
  • the E-UTRAN 10 transmits auxiliary information (RAN assistance parameters) to the UE 100 by broadcast RRC signaling or dedicated RRC signaling.
  • Broadcast RRC signaling is, for example, SIB (System Information Block).
  • the dedicated RRC signaling is, for example, an RRC Connection Reconfiguration message.
  • the auxiliary information includes an E-UTRAN signal strength (received power) threshold value and quality threshold value, a WLAN channel usage rate threshold value, a WLAN backhaul data rate threshold value, a WLAN signal strength (received power) threshold value, a quality threshold value, and the like.
  • the auxiliary information may include a WLAN identifier that is a target of UE-driven switching control.
  • the WLAN identifier is SSID (Service Set Identifier), BSSID (Basic Service Set Identifier), HESSID (Homogenous Extended Set Identifier), or the like.
  • the auxiliary information may include a parameter that specifies a period during which a threshold value (determination condition) should be satisfied.
  • the UE 100 that supports UE-driven switching control receives the auxiliary information and stores the received auxiliary information.
  • the UE 100 may discard the stored auxiliary information when performing cell reselection or handover.
  • the UE 100 performs UE-driven switching control.
  • the UE 100 determines whether to switch from cellular communication to WLAN communication based on the first determination condition related to cellular and the second determination condition related to WLAN. Specifically, when both the first determination condition and the second determination condition are satisfied, the UE 100 performs switching from cellular communication to WLAN communication.
  • RSRPmeas is the received power of the cellular received signal measured by the UE 100, that is, the reference signal received power (RSRP).
  • RSSmeas is the reception quality of the cellular reception signal measured by the UE 100, that is, the reference signal reception quality (RSRQ).
  • RSRPQ reference signal received power
  • ThreshServingOffloadWLAN, LowP” and “ThreshServingOffloadWLAN, LowQ” are included in the auxiliary information and are threshold values for switching to the WLAN 30.
  • the second determination condition is the following condition for the target WLAN.
  • ChannelUtilizationWLAN ⁇ Thresh ChUtilWLAN, Low ; and BackhaulRateDlWLAN> Thresh BackhRateDLWLAN, High ; and BackhaulRateUlWLAN> Thresh BackhRateULWLAN, High ; and BeaconRSSI> Thresh BeaconRSSIWLAN, High ;
  • ChannelUtilization WLAN is included in the WLAN beacon or probe response and indicates the WLAN channel usage rate, that is, the WLAN radio load level.
  • BackhaulRateDlWLAN and “BackhaulRateUlWLAN” are provided by ANQP (Access Network Query Protocol) and indicate the available transmission rate of the WLAN backhaul, that is, the WLAN backhaul load level.
  • BeaconRSSI indicates the received signal strength of the beacon signal measured by UE 100.
  • Thresh ChUtilWLAN, Low ”,“ Thresh BackhRateDLWLAN, High ”,“ Thresh BackhRateULWLAN, High ”,“ Thresh BeaconRSSIWLAN, High ” are included in the auxiliary information. It is a threshold value for switching to the WLAN 30.
  • the UE 100 controls the upper station (upper layer: high layer / upper layer) that controls bidirectional traffic switching between the E-UTRAN 10 and the WLAN 30.
  • the information (move-traffic-to-WLAN indication) indicating the traffic switching to the WLAN communication is notified together with the identifier (WLAN identifier) of the AP 300 that satisfies the second determination condition (list (list of WLAN identifiers)).
  • the AS layer in the UE 100 notifies the WLAN identifier (and the information) to the NAS layer in the UE 100, and the NAS layer in the UE 100 notifies the upper station (MME) using the NAS procedure.
  • the UE 100 executes control for switching from cellular communication to WLAN communication (switching from a communication path via the eNB 200 to a communication path via the AP 300) based on an instruction from the upper station that has received the notification of the WLAN identifier.
  • the UE 100 determines whether to switch from WLAN communication to cellular communication based on the third determination condition related to cellular and the fourth determination condition related to WLAN. Specifically, when one of the third determination condition and the fourth determination condition is satisfied, the UE 100 performs switching from WLAN communication to cellular communication.
  • the third determination condition is the following condition for the E-UTRAN target cell.
  • Thre ServingOffloadWLAN, HighP and “Thresh ServingOffloadWLAN, HighQ ” are included in the auxiliary information and are threshold values for switching to E-UTRAN10.
  • the fourth determination condition is the following condition for the source WLAN.
  • Thresh ChUtilWLAN, High “Thresh BackhRateDLWLAN, Low ”
  • Thresh BackhRateULWLAN, Low “Thresh BeaconRSSIWLAN, Low ” are included in the auxiliary information and are thresholds for switching to E-UTRAN10. .
  • FIG. 2 is a block diagram illustrating the UE 100 according to the embodiment.
  • the UE 100 includes an LTE radio communication unit 110, a WLAN radio communication unit 120, and a control unit 130.
  • the LTE wireless communication unit 110 has a function of performing wireless communication with the eNB 200.
  • the LTE wireless communication unit 110 is configured by a wireless transceiver, for example.
  • the wireless transceiver may be composed of a transmitter and a receiver.
  • the LTE radio communication unit 110 transmits and receives radio signals (cellular signals) to and from the eNB 200.
  • the LTE wireless communication unit 110 periodically receives a reference signal from the eNB 200, for example.
  • the LTE wireless communication unit 110 can measure the signal level (RSRP) of the reference signal and the signal quality (RSRQ) of the reference signal.
  • the LTE wireless communication unit 110 can receive auxiliary information from the eNB 200.
  • the WLAN wireless communication unit 120 has a function of performing wireless communication with the AP 300.
  • the WLAN wireless communication unit 120 is configured by a wireless transceiver, for example.
  • the wireless transceiver may be composed of a transmitter and a receiver.
  • the WLAN wireless communication unit 120 transmits and receives wireless signals (WLAN signals) to and from the AP 300.
  • WLAN signals wireless signals
  • the WLAN wireless communication unit 120 receives a beacon signal from the AP 300 as a wireless signal.
  • the WLAN wireless communication unit 120 can measure the signal strength (RSSI) of the received signal.
  • RSSI signal strength
  • the control unit 130 includes a CPU (processor), a memory, and the like, and controls the UE 100. Specifically, the control unit 130 controls the LTE wireless communication unit 110 and the WLAN wireless communication unit 120. Note that a memory constituting the control unit 130 may function as a storage unit, or a memory constituting the storage unit may be provided separately from the memory constituting the control unit 130.
  • the control unit 130 may be configured by a controller. In addition, the control unit 130 executes various processes and various communication protocols described later.
  • FIG. 3 is a block diagram illustrating the eNB 200 according to the embodiment.
  • the eNB 200 includes an LTE radio communication unit 210, a control unit 220, and a network interface 230.
  • the LTE wireless communication unit 210 has a function of performing wireless communication with the UE 100.
  • the LTE wireless communication unit 210 is configured by a wireless transceiver, for example.
  • the wireless transceiver may be composed of a transmitter and a receiver.
  • the LTE radio communication unit 210 transmits and receives radio signals (cellular signals) to and from the UE 100.
  • the LTE radio communication unit 210 periodically transmits a reference signal to the UE 100, for example.
  • the LTE wireless communication unit 210 can transmit auxiliary information to the UE 100.
  • the LTE wireless communication unit 210 can transmit a list of WLAN identifiers indicating wireless LAN access points that are candidates for traffic switching.
  • the control unit 220 includes a CPU (processor) and a memory, and controls the eNB 200. Specifically, the control unit 220 controls the LTE wireless communication unit 210 and the network interface 130. Note that a memory constituting the control unit 220 may function as a storage unit, or a memory constituting the storage unit may be provided separately from the memory constituting the control unit 220.
  • the control unit 220 may be configured by a controller. In addition, the control unit 220 executes various processes and various communication protocols described later.
  • the network interface 230 is connected to other base stations (for example, neighboring base stations) via the X2 interface, and is connected to the MME / S-GW via the S1 interface.
  • the network interface 230 is used for communication performed on the X2 interface and communication performed on the S1 interface. Further, the network interface 230 may be connected to the AP 300 via a predetermined interface.
  • the network interface 230 is used for communication with the AP 300.
  • FIG. 4 is a block diagram illustrating the AP 300 according to the embodiment.
  • the AP 300 includes a WLAN wireless communication unit 310, a control unit 320, and a network interface 330.
  • the WLAN wireless communication unit 310 has a function of performing wireless communication with the UE 100.
  • the WLAN wireless communication unit 310 is configured by a wireless transceiver, for example.
  • the wireless transceiver may be composed of a transmitter and a receiver.
  • the WLAN radio communication unit 310 transmits and receives radio signals (WLAN signals) to and from the UE 100.
  • the WLAN radio communication unit 310 transmits and receives radio signals (WLAN signals) to and from the UE 100.
  • the WLAN wireless communication unit 310 transmits a beacon signal as a wireless signal.
  • the control unit 320 includes a CPU (processor) and a memory, and controls the AP 300. Specifically, the control unit 320 controls the WLAN wireless communication unit 310 and the network interface 330. Note that a memory constituting the control unit 220 may function as a storage unit, or a memory constituting the storage unit may be provided separately from the memory constituting the control unit 320.
  • the control unit 320 may be configured by a controller. In addition, the control unit 320 executes various processes and various communication protocols described later.
  • the network interface 330 is connected to the backhaul via a predetermined interface.
  • the network interface 330 is used for communication with the eNB 200.
  • the network interface 330 may be directly connected to the eNB 200 via a predetermined interface.
  • FIG. 5 is a diagram for explaining the operation according to the embodiment.
  • movement) which UE100 demonstrated below performs at least any one of the LTE radio
  • at least one of the LTE wireless communication unit 210, the control unit 220, and the network interface 230 provided in the eNB 200 is executed for the process (operation) executed by the eNB 200 described below. explain.
  • a process (operation) executed by the AP 300 described below is executed by at least one of the WLAN wireless communication unit 310, the control unit 320, and the network interface 330 included in the AP 300.
  • the AP 300 executes the processing (operation). This will be described as processing.
  • the UE 100 In the initial state of FIG. 5, the UE 100 is located in a cell managed by the eNB 200. UE 100 is in an RRC connected state. Alternatively, the UE 100 is in the RRC idle state, and transitions to the RRC connected state before the process of step S110 is executed.
  • the AP 300 is a wireless LAN entity located around the eNB 200.
  • the AP 300 may be located in a cell managed by the eNB 200.
  • the AP 300 has a coverage area.
  • the AP 300 provides a wireless LAN service to the UE 100 located in the coverage area.
  • the coverage area of the AP 300 overlaps at least a part of a coverage area (coverage area included in the eNB 200) configured by cells. In general, the coverage area of the AP 300 is smaller than the coverage area of the cell.
  • the description will be made assuming that the network operator operating the eNB 200 and the network operator operating the AP 300 are the same. Therefore, the eNB 200 and the AP 300 belong to the same PLMN (Public Land Mobile Network).
  • PLMN Public Land Mobile Network
  • the eNB 200 sets the UE 100 to report the AP 300 (WLAN AP).
  • eNB200 transmits the control information for specifying AP300 used as the object of the report regarding AP300.
  • the UE 100 receives the control information.
  • the number of APs 300 to be reported is limited by the control information.
  • ENB 200 can transmit control information by unicast.
  • the eNB 200 includes control information in a message (MeasConfig) for setting a measurement report (Measurement Report) related to a radio signal from the cell, and transmits the message to the UE 100.
  • the eNB 200 may include the control information in “MeasObjectToAddModList” in “MeasConfig”.
  • eNB200 may transmit control information by broadcast.
  • eNB200 may transmit control information to UE100 in a self-cell by SIB (system information block), for example.
  • SIB system information block
  • the control information can include, for example, identification information (PLMN ID, ECGI (E-UTRAN Cell Global ID), etc.) that can identify the PLMN to which the eNB 200 (serving cell) belongs.
  • the control information may include identification information indicating a predetermined network operator.
  • the identification information indicating a predetermined network operator is MNC (Mobile Network Code) indicating a provider code, other identification information (ENUMRATED) assigned to each network operator, and the like.
  • the control information may include an identifier of the AP 300 associated with a predetermined network operator.
  • the identifier of the AP 300 associated with a predetermined network operator is an SSID (Service Set Identifier) that is at least partly configured by a bit string that is commonly set in the AP 300 operated by the predetermined network operator.
  • SSID Service Set Identifier
  • the control information includes at least one of a threshold for receiving a radio signal from the AP 300 (hereinafter referred to as a first threshold) and a threshold for the signal strength (RSSI) of the radio signal from the AP 300 (hereinafter referred to as a second threshold).
  • a threshold for receiving a radio signal from the AP 300 hereinafter referred to as a first threshold
  • a threshold for the signal strength (RSSI) of the radio signal from the AP 300 hereinafter referred to as a second threshold.
  • the first threshold may be a timer.
  • the UE 100 starts a timer.
  • the UE 100 receives a radio signal from the AP 300 until the timer expires, the UE 100 can regard the AP 300 as a report target.
  • the timer may be a timer different from TTT (Time To Trigger). Further, when the signal strength of the radio signal from the AP 300 exceeds the second threshold, the UE 100 regards the AP 300 as a report target. Further, the UE 100 may start measurement related to a radio signal (such as RSSI measurement) when the reception time of the radio signal from the AP 300 exceeds the first threshold.
  • TTT Time To Trigger
  • the UE 100 can start monitoring (reception) of a radio signal from the AP 300 based on the control information.
  • step S120 the AP 300 transmits a wireless signal (WLAN signal) including identification information that can identify the network operator operating the AP 300.
  • UE100 receives the radio signal from AP300.
  • the AP 300 transmits a radio signal including the identifier of the AP 300 associated with a predetermined network operator.
  • AP300 may transmit the beacon signal containing the identification information which can specify the network operator which operates AP300 as a radio signal in the field which a network operator can set arbitrarily.
  • the identification information is, for example, identification information of a PLMN to which the AP 300 belongs, identification information indicating a network operator that operates the AP 300, and the like. These pieces of identification information are the same information as the information included in the above control information.
  • the UE 100 may receive a radio signal from another cell.
  • step S130 the UE 100 that has received the radio signal from the AP 300 determines whether or not the AP 300 that is the transmission source of the radio signal is being operated by a network operator (hereinafter referred to as a specific NW operator) that operates the eNB 200. Specifically, the UE 100 determines by at least one of the following methods.
  • a network operator hereinafter referred to as a specific NW operator
  • the UE 100 determines that the AP 300 is operated by the specific NW operator when the PLMN indicated by the identification information of the PLMN to which the AP 300 belongs is the same as the PLMN to which the eNB 200 (serving cell) belongs.
  • the UE 100 determines that the AP 300 is operated by the specific NW operator. That is, the UE 100 determines that the AP 300 is operated by the specific NW operator when the identification information indicating the specific NW operator is included in the radio signal from the AP 300.
  • the UE 100 determines that the AP 300 is operated by the specific NW operator when the identifier of the AP 300 is associated with the specific NW operator. That is, the UE 100 determines that the AP 300 is operated by the specific NW operator when the identifier of the AP 300 associated with the specific NW operator is included in the radio signal from the AP 300.
  • the UE 100 may start the determination when the reception time of the radio signal from the AP 300 exceeds the first threshold.
  • the UE 100 may start the determination when the signal strength of the radio signal from the AP 300 exceeds the second threshold.
  • the UE 100 After completing the determination, the UE 100 starts measurement (measurement of reception time, RSSI, etc.) related to the radio signal or the measurement result (measurement result of reception time, RSSI, etc.).
  • threshold values are preferably compared.
  • UE100 performs the process of step S140, when it determines with AP300 which is a transmission source of a radio signal being operated by the specific NW operator.
  • UE100 may abbreviate
  • step S140 UE100 transmits the report regarding AP300 to eNB200.
  • eNB200 receives the report regarding AP300.
  • UE100 transmits the report regarding AP300 to eNB200 only when it determines with AP300 being operated by the specific NW operator.
  • UE100 transmits the report containing only the information regarding AP300 currently operate
  • the UE100 transmits the identifier (WLAN identifier) of AP300 to eNB200 as a report regarding AP300.
  • the identifier of the AP 300 is, for example, SSID, BSSID (Basic Service Set Identifier), HESSID (Homogenous Extended Service Set Identifier), or the like.
  • the UE 100 may transmit at least one of the reception time of the radio signal from the AP 300 and the signal strength of the radio signal from the AP 300 to the eNB 200.
  • the UE 100 may transmit identification information (Cell ID) of the other cell to the eNB 200 together with a report related to the AP 300.
  • Cell ID identification information
  • UE100 may include the report regarding AP300 in the measurement report regarding the radio signal from a cell. Note that the measurement report may include identification information of other cells.
  • step S150 the eNB 200 that has received the report from the UE 100 determines whether or not the reported AP 300 is an AP that is a traffic switching destination candidate.
  • the eNB 200 determines whether or not the reported identifier of the AP 300 is included in the table for managing the AP that is a candidate for the traffic switching destination.
  • the table is an AP 300 having a coverage area that overlaps at least a part of a coverage area configured by a cell of the eNB 200, and includes an identifier of the AP 300 operated by a specific NW operator.
  • the eNB 200 ends the process.
  • the eNB 200 determines whether or not to add the reported identifier of the AP 300 to the table. Since the reported AP 300 is operated by the specific NW operator, the eNB 200 may add the identifier of the AP 300 to the table. Alternatively, the eNB 200 may determine whether or not to add the identifier of the AP 300 based on at least one of the reception time of the radio signal from the AP 300 and the signal strength of the radio signal from the AP 300 included in the report. Good. For example, the eNB 200 may add the identifier of the AP 300 to the table when the reception time of the radio signal from the AP 300 exceeds a threshold value.
  • eNB200 may add the identifier of AP300 to a table, when the signal strength of the radio signal from AP300 exceeds a threshold value.
  • the eNB 200 may execute the process of step S160 (based on at least one of the reception time of the radio signal from the AP 300 and the signal strength of the radio signal from the AP 300 included in the report).
  • the eNB 200 may transfer a report related to the AP 300 to another eNB 200 as described later.
  • the eNB 200 transmits the reported identifier (WLAN ID) of the AP 300 to the AAA server 500.
  • the AAA server 500 determines whether or not to authenticate (permit) adding the received identifier of the AP 300 to the table held by the eNB 200. For example, when the AP indicated by the identifier of the AP 300 is an AP operated by a specific NW operator, the AAA server 500 authenticates that the AP 300 identifier is added to the table.
  • step S170 the AAA server 500 transmits an authentication result (authentication result) to the eNB 200.
  • the eNB 200 determines whether or not to add the identifier of the AP 300 to the table based on the authentication result.
  • the eNB 200 can notify the UE 100 of the AP 300 that is a candidate for traffic switching based on the table.
  • the UE 100 can select an appropriate AP 300 from the APs 300 that are traffic switching candidates.
  • UE100 transmits the report regarding AP300 which a specific NW operator operates to eNB200.
  • the eNB 200 receives the report.
  • UE100 can abbreviate
  • signaling can be reduced and signaling overhead can be reduced.
  • eNB200 can grasp
  • FIG. 6 is a diagram for explaining an operation according to another embodiment. Description of parts similar to those of the embodiment is omitted as appropriate.
  • the eNB 200-1 transmits setting information related to MDT (Minimization of Drive Test) to the UE 100.
  • the setting information is setting information related to storage type MDT (Logged MDT).
  • the UE 100 in the RRC idle state measures the wireless environment according to the measurement parameters set from the network (eNB 200-1), and stores the measurement result as measurement data together with the position information and time information.
  • UE100 reports measurement data to a network, after transfering to a RRC connected state.
  • the setting information includes control information for specifying the AP 300 that is a report target for the AP 300.
  • the UE 100 performs measurement based on the setting information and stores the measurement data.
  • Steps S220 and S230 correspond to steps S120 and S130.
  • step S240 the UE 100 shifts to the RRC connected state (RRC connected mode).
  • step S250 the UE 100 transmits a message (RRC connection establishment complete) indicating that the connection between the eNB 200-1 and the RRC connection is completed to the eNB 200-1.
  • the message includes an indicator indicating that the UE 100 has measurement data.
  • step S260 the eNB 200-1 that has received the message transmits a UE information request for requesting measurement data to the UE 100 based on the indicator.
  • step S270 the UE 100 that has received the UE information request transmits a UE information report (UE information report) to the eNB 200.
  • the UE information report includes a measurement result.
  • the measurement result includes the measurement result regarding the radio signal of the AP 300. Therefore, the UE information report includes the report (contents) on the AP 300 in step S140 described above.
  • the eNB 200-1 may execute the process in step S150 described above.
  • step S280 the eNB 200-1 transfers the report on the AP 300 to the eNB 200-2 operated by the specific NW operator via the X2 interface.
  • the eNB 200-1 may transfer a report regarding the AP 300 to the eNB 200 that manages the cells included in the neighbor cell list. Or eNB200-1 may transfer the report regarding AP300 to eNB200 which manages the cell shown by the cell identifier contained in UE information report. Or eNB200-1 may transfer the report regarding AP300 to eNB200 which manages the cell shown by the identifier of the cell received when UE100 received the radio signal from AP300. eNB200-1 can determine eNB200 which transfers the report regarding AP300 based on a cell identifier and the time stamp which shows measurement time, for example. Thereby, it is possible to omit transferring the report on the AP 300 to the eNB 200 that is not close to the AP 300 among the neighboring eNBs 200 of the eNB 200-1.
  • the eNB 200-1 that has received the Logged MDT report transmits the report only to the core network and does not transmit to the neighboring eNB.
  • the eNB 200-2 that has received the report regarding the AP 300 determines whether or not the reported AP 300 is a candidate for a traffic switching destination, as with the eNB 200 in step S150 described above.
  • the eNB 200-1 transfers the report related to the AP 300 to the eNB 200-2.
  • the eNB 200-2 receives the report regarding the AP 300 not only from the UE 100 but also from the eNB 200-1. Therefore, the eNB 200-2 can appropriately grasp the AP 300 that is a candidate for traffic switching as compared to the case where the report regarding the AP 300 is received only from the UE 100.
  • FIG. 7 is a diagram illustrating a system configuration according to the second embodiment.
  • the eNB 200 is connected to a WT 600, which will be described later, via an Xw interface.
  • the EPC 20 may include the P-GW 700.
  • the P-GW 700 performs control to relay user data from the external network (and to the external network).
  • the WLAN 30 may include a WLAN access point (hereinafter referred to as “AP”) 300 and a WLAN termination device (hereinafter referred to as “WT”) 600.
  • the WT 600 is a node in the WLAN, and is connected to the eNB 200 via the Xw interface.
  • the WT 600 manages one or more APs 300.
  • the WT 600 can send information about the AP 300 managed by the WT 600 to the eNB 200. Also, the WT 600 can send the information received from the eNB 200 to the AP 300 that it manages.
  • the Xw interface is a logical interface between 3GPP RAN and WLAN.
  • the Xw interface terminates at the eNB 200 on the LTE (3GPP RAN) side and terminates at the WT 600 on the WLAN side.
  • the Xw interface is an interface that directly connects the eNB 200 and the WT 600, but may be an interface that passes through the MME / S-GW 400 and the P-GW 500.
  • FIG. 8 is a protocol stack diagram of a radio interface in the LTE system. As shown in FIG. 8, the radio interface protocol is divided into the first to third layers of the OSI reference model.
  • the first layer is a physical (PHY) layer.
  • the second layer includes a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer.
  • the third layer includes an RRC (Radio Resource Control) layer.
  • the physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping.
  • Data and control signals are transmitted between the physical layer of the UE 100 and the physical layer of the eNB 200 via a physical channel.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), random access procedure, and the like. Data and control signals are transmitted between the MAC layer of the UE 100 and the MAC layer of the eNB 200 via a transport channel.
  • the MAC layer of the eNB 200 includes a scheduler that determines an uplink / downlink transport format (transport block size, modulation / coding scheme (MCS)) and an allocation resource block to the UE 100.
  • MCS modulation / coding scheme
  • the RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Data and control signals are transmitted between the RLC layer of the UE 100 and the RLC layer of the eNB 200 via a logical channel.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • the RRC layer is defined only in the control plane that handles control signals. Messages for various settings (RRC messages) are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200.
  • the RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer.
  • RRC connection When there is a connection (RRC connection) between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in the RRC connected state (connected state), and otherwise, the UE 100 is in the RRC idle state (idle state).
  • the NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management.
  • FIG. 9 is a block diagram showing the UE 100.
  • the UE 100 includes a receiver (receiver) 101, a transmitter (transmitter) 102, and a controller (controller) 130.
  • the receiver 101 and the transmitter 102 may be an integrated transceiver (transmission / reception unit).
  • the UE 100 may include a receiver 101 and a transmitter 102 that are commonly used for cellular communication and WLAN communication.
  • the UE 100 may include a receiver 101 and a transmitter 102 for cellular communication, and a receiver 101 and a transmitter 102 for WLAN communication, respectively.
  • the cellular communication receiver 101 and transmitter 102 may constitute the LTE wireless communication unit 110 of the first embodiment.
  • the receiver 101 and the transmitter 102 for WLAN communication may constitute the WLAN wireless communication unit 120 of the first embodiment.
  • the controller 130 may correspond to the control unit 130 of the first embodiment.
  • the receiver 101 performs various types of reception under the control of the controller 130.
  • the receiver 101 includes an antenna.
  • the receiver 101 converts a radio signal received by the antenna into a baseband signal (received signal) and outputs it to the controller 130.
  • the transmitter 102 performs various transmissions under the control of the controller 130.
  • the transmitter 102 includes an antenna.
  • the transmitter 102 converts the baseband signal (transmission signal) output from the controller 130 into a radio signal and transmits it from the antenna.
  • the controller 130 performs various controls in the UE 100.
  • the controller 130 can control the receiver 101 and the transceiver 102.
  • the controller 130 includes a processor and a memory.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor includes a baseband processor that performs modulation / demodulation and encoding / decoding of the baseband signal, and a CPU (Central Processing Unit) that executes various processes by executing programs stored in the memory.
  • the controller 130 executes various processes described later and various communication protocols described above.
  • FIG. 10 is a block diagram showing the eNB 200.
  • the eNB 200 includes a receiver (reception unit) 201, a transmitter (transmission unit) 202, a controller (control unit) 220, and a network interface 230.
  • the receiver 201 and the transmitter 202 may be an integrated transceiver (transmission / reception unit).
  • the transceiver (transmission / reception unit) may correspond to the LTE wireless communication unit 210 of the first embodiment.
  • the controller 220 may correspond to the control unit 220 of the first embodiment.
  • the receiver 201 performs various types of reception under the control of the controller 220.
  • the receiver 210 includes an antenna.
  • the receiver 201 converts a radio signal received by the antenna into a baseband signal (received signal) and outputs the baseband signal to the controller 220.
  • the transmitter 202 performs various transmissions under the control of the controller 220.
  • the transmitter 202 includes an antenna.
  • the transmitter 202 converts the baseband signal (transmission signal) output from the controller 220 into a radio signal and transmits it from the antenna.
  • the controller 220 performs various controls in the eNB 200.
  • the controller 220 can control the receiver 201, the transmitter 202, and the network interface 230.
  • the controller 220 includes a processor and a memory.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor includes a baseband processor that performs modulation / demodulation and encoding / decoding of the baseband signal, and a CPU (Central Processing Unit) that executes various processes by executing programs stored in the memory.
  • the controller 220 executes various processes described later and various communication protocols described above.
  • the network interface 230 is connected to the neighboring eNB 200 via the X2 interface, and is connected to the MME / S-GW 400 via the S1 interface.
  • the network interface 230 is used for communication performed on the X2 interface and communication performed on the S1 interface.
  • the network interface 230 is connected to the WT 600 via the Xw interface.
  • the network interface 230 is used for communication performed on the Xw interface.
  • FIG. 11 is a block diagram showing the AP 300.
  • the AP 300 includes a receiver (reception unit) 301, a transmitter (transmission unit) 302, a controller (control unit) 320, and a network interface 330.
  • the receiver 301 and the transmitter 303 may be an integrated transceiver (transmission / reception unit).
  • the transceiver (transmission / reception unit) may correspond to the WLAN wireless communication unit 310 of the first embodiment.
  • the controller 320 may correspond to the control unit 320 of the first embodiment.
  • the receiver 301 performs various types of reception under the control of the controller 320.
  • the receiver 301 includes an antenna.
  • the receiver 301 converts a radio signal received by the antenna into a baseband signal (received signal) and outputs it to the controller 320.
  • the transmitter 302 performs various transmissions under the control of the controller 320.
  • the transmitter 302 includes an antenna.
  • the transmitter 302 converts the baseband signal (transmission signal) output from the controller 320 into a radio signal and transmits it from the antenna.
  • the controller 320 performs various controls in the AP 300.
  • the controller 320 can control the receiver 301, the transmitter 302, and the network interface 330.
  • the controller 320 includes a processor and a memory.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor includes a baseband processor that performs modulation / demodulation and encoding / decoding of the baseband signal, and a CPU (Central Processing Unit) that executes various processes by executing programs stored in the memory.
  • the controller 320 executes various processes described later and the various communication protocols described above.
  • the network interface 330 is connected to the backhaul via a predetermined interface.
  • Network interface 330 is connected to WT 600.
  • Network interface 330 is used for communication with WT 600.
  • FIG. 12 is a block diagram showing WT 600.
  • the WT 600 includes a controller (control unit) 630 and a network interface 640.
  • the controller 630 performs various controls in the WT 600.
  • the controller 630 can control the network interface 640.
  • the controller 630 includes a processor and a memory.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor includes a baseband processor that performs modulation / demodulation and encoding / decoding of the baseband signal, and a CPU (Central Processing Unit) that executes various processes by executing programs stored in the memory.
  • the controller 630 executes various processes described later and various communication protocols described above.
  • the network interface 640 is connected to the backhaul via a predetermined interface.
  • the network interface 640 is connected to the AP 300.
  • the network interface 640 is used for communication with the AP 300 and the like.
  • the network interface 640 is connected to the eNB 200 via the Xw interface.
  • the network interface 640 is used for communication performed on the Xw interface.
  • FIG. 13 is a diagram illustrating an operating environment.
  • UE100 is located in the cell which eNB200 manages.
  • the UE 100 establishes RRC connection with the eNB 200 and is in the RRC connected state.
  • the UE 100 may be in the RRC idle state, and may transition to the RRC connected state when transmitting predetermined information to the eNB 200.
  • a plurality of APs 300 are located around the eNB 200.
  • the AP 300 may be located in a cell managed by the eNB 200.
  • Each AP 300 has a coverage area.
  • Each AP 300 provides a wireless LAN service to the UE 100 located in the coverage area.
  • the coverage area of each AP 300 overlaps at least a part of a coverage area (coverage area included in the eNB 200) configured by cells. In general, the coverage area of each AP 300 is smaller than the coverage area of a cell.
  • the eNB 200 may be configured to have an Xw interface with the WT 600 and be able to communicate with the WT 600 via the Xw interface.
  • the Xw interface may not be set between the eNB 200 and the WT 600.
  • ENB 200 knows that AP 300-1 to AP 300-3 exist as AP 300 having a coverage area overlapping with the coverage area constituted by its own cell. On the other hand, the eNB 200 does not know the AP 300-4.
  • the UE 100 receives the beacon signal from the AP 300-4 and reports the AP 300-4 to the eNB 200.
  • the eNB 200 since the eNB 200 does not know the AP 300-4, the WT that manages the AP 300-4 is not known. Therefore, the eNB 200 may not be able to set an appropriate WT and Xw interface.
  • movement) which UE100 demonstrated below performs at least any one of the receiver 110 with which UE100 is equipped, the transmitter 120, and the controller 130, it demonstrates as a process which UE100 performs for convenience.
  • a process (operation) executed by the eNB 200 described below is executed by at least one of the receiver 210, the transmitter 220, the controller 230, and the network interface 240 included in the eNB 200.
  • the process (operation) is described as a process executed by the eNB 200.
  • a process (operation) executed by the AP 300 described below is executed by at least one of the receiver 310, the transmitter 320, the controller 330, and the network interface 340 included in the AP 300.
  • the process will be described as the process executed by the AP 300. To do. Similarly, a process (operation) executed by the WT 600 described below is executed by at least one of the controller 630 and the network interface 640 included in the WT 600, but will be described as a process executed by the WT 600 for convenience.
  • the second embodiment will be described.
  • a case where the eNB 200 sends an inquiry regarding the WT 600 will be described.
  • FIG. 14 is a sequence diagram for explaining an operation according to the first embodiment.
  • step S1101 the eNB 200 requests the UE 100 to report on the AP 300. Specifically, eNB200 transmits the control information (Measurement request) for specifying AP300 used as the object of report about AP300. The UE 100 receives the control information. The number of APs 300 to be reported can be limited by the control information.
  • ENB 200 can transmit control information by unicast.
  • the eNB 200 includes control information in a message (MeasConfig) for setting a measurement report (Measurement Report) related to a radio signal from the cell, and transmits the message to the UE 100.
  • the eNB 200 may include the control information in “MeasObjectToAddModList” in “MeasConfig”.
  • eNB200 may transmit control information by broadcast.
  • eNB200 may transmit control information to UE100 in a self-cell by SIB (system information block), for example.
  • SIB system information block
  • the control information can include, for example, identification information (PLMN ID, ECGI (E-UTRAN Cell Global ID), etc.) that can identify the PLMN to which the eNB 200 (serving cell) belongs.
  • the control information may include identification information indicating a predetermined network operator.
  • the identification information indicating a predetermined network operator is MNC (Mobile Network Code) indicating a provider code, other identification information (ENUMRATED) assigned to each network operator, and the like.
  • the control information may include an identifier of the AP 300 associated with a predetermined network operator.
  • the identifier of the AP 300 associated with a predetermined network operator is an SSID (Service Set Identifier) that is at least partly configured by a bit string that is commonly set in the AP 300 operated by the predetermined network operator.
  • SSID Service Set Identifier
  • the control information includes at least one of a threshold for receiving a radio signal from the AP 300 (hereinafter referred to as a first threshold) and a threshold for the signal strength (RSSI) of the radio signal from the AP 300 (hereinafter referred to as a second threshold).
  • a threshold for receiving a radio signal from the AP 300 hereinafter referred to as a first threshold
  • a threshold for the signal strength (RSSI) of the radio signal from the AP 300 hereinafter referred to as a second threshold.
  • the first threshold may be a timer.
  • the UE 100 starts a timer.
  • the UE 100 receives a radio signal from the AP 300 until the timer expires, the UE 100 can regard the AP 300 as a report target.
  • the timer may be a timer different from TTT (Time To Trigger). Further, when the signal strength of the radio signal from the AP 300 exceeds the second threshold, the UE 100 regards the AP 300 as a report target. Further, the UE 100 may start measurement related to a radio signal (such as RSSI measurement) when the reception time of the radio signal from the AP 300 exceeds the first threshold.
  • TTT Time To Trigger
  • control information may include information for specifying an AP (so-called stealth AP) that does not transmit a radio signal including identification information related to the AP 300.
  • the stealth AP may be an AP 300 that does not have its own SSID, or may be an AP 300 in which “0” or “00x0” is set as the SSID.
  • the stealth AP may be the AP 300 in which the stealth function is effective.
  • the AP 300 does not transmit a beacon signal including the SSID (or ESSID) while the stealth function is active. That is, the stealth AP omits transmission of a beacon signal including the SSID (or ESSID).
  • the AP 300 can transmit a beacon signal including the SSID (or ESSID) while the stealth function is disabled.
  • the stealth AP can transmit a probe response when receiving a probe request from the UE 100.
  • the probe response may include identification information related to the AP 300 (eg, SSID, ESSID, etc.).
  • the eNB 200 can set the stealth AP in the UE 100, for example, the operator can acquire the coverage information of the AP in the preparation stage (for example, during the placement test) from the UE 100.
  • ENB200 can set AP300 used as a report object to UE100 by the request
  • the AP 300 transmits a radio signal (beacon signal).
  • the wireless signal includes the AP 300 identifier (WLAN identifier).
  • the identifier of the AP 300 is, for example, an SSID, a BSSID (Basic Service Set Identifier), a HESSID (Homogenous Extended Service Set Identifier), or the like.
  • the beacon signal may include an identifier of the network to which the AP 300 belongs.
  • the network identifier is, for example, an ESSID (Extended Service Set Identifier).
  • the AP 300 transmits a radio signal including the identifier of the AP 300 associated with a predetermined network operator.
  • AP300 may transmit the beacon signal containing the identification information which can specify the network operator which operates AP300 as a radio signal in the field which a network operator can set arbitrarily.
  • the identification information is, for example, identification information of a PLMN to which the AP 300 belongs, identification information indicating a network operator that operates the AP 300, and the like. These pieces of identification information are the same information as the information included in the above control information.
  • the UE 100 can start monitoring (reception) of a radio signal from the AP 300 based on the setting (control information). Thereby, UE100 receives the radio signal from AP300. UE100 may perform the measurement regarding the radio signal from AP300 based on a setting. The UE 100 may or may not perform a measurement related to a radio signal from the AP 300 that is not a report target.
  • the UE100 may transmit the request
  • the wireless signal in step S1102 may be a probe response from the AP 300 that is a stealth AP.
  • the UE 100 transmits a report (Measurement report) on the AP 300 to the eNB 200.
  • the report regarding the AP 300 includes the identification information of the AP 300.
  • UE100 can report the identification information of AP300 to eNB200.
  • UE100 may report not only the identifier of AP300 but the identifier (for example, ESSID) of the network to which AP300 belongs to eNB200.
  • the UE 100 may include at least one of the reception time of the radio signal from the AP 300 and the signal strength of the radio signal from the AP 300 in the report related to the AP 300.
  • UE100 may report the identification information of only AP300 used as report object to eNB200 based on a setup.
  • the UE 100 has received a radio signal not only from the AP 300 to be reported but also from another AP 300 (that is, the AP 300 that is not a report target), not only the identification information of the AP 300 to be reported but also other AP 300 May be reported to the eNB 200.
  • Or UE100 may report the identification information of other AP300 to eNB200, when it determines with the other AP300 operating by the network operator (henceforth a specific NW operator) which operates eNB200. That is, the UE 100 may not report the identification information of the other AP 300 that is not operated by the specific NW operator (operated by another NW operator) to the eNB 200.
  • the UE 100 can be determined by, for example, at least one of the following methods.
  • the UE 100 determines that the AP 300 is operated by the specific NW operator when the PLMN indicated by the identification information of the PLMN to which the AP 300 belongs is the same as the PLMN to which the eNB 200 (serving cell) belongs.
  • the UE 100 determines that the AP 300 is operated by the specific NW operator. That is, the UE 100 determines that the AP 300 is operated by the specific NW operator when the identification information indicating the specific NW operator is included in the radio signal from the AP 300.
  • the UE 100 determines that the AP 300 is operated by the specific NW operator when the identifier of the AP 300 is associated with the specific NW operator. That is, the UE 100 determines that the AP 300 is operated by the specific NW operator when the identifier of the AP 300 associated with the specific NW operator is included in the radio signal from the AP 300.
  • the UE 100 may start the determination when the reception time of the radio signal from the AP 300 exceeds the first threshold.
  • the UE 100 may start the determination when the signal strength of the radio signal from the AP 300 exceeds the second threshold.
  • the UE 100 After completing the determination, the UE 100 starts measurement (measurement of reception time, RSSI, etc.) related to the radio signal or the measurement result (measurement result of reception time, RSSI, etc.).
  • threshold values are preferably compared.
  • UE100 may discard the information regarding the received signal of the radio signal from other AP300, when other AP300 is not operated by the specific NW operator. UE100 may abbreviate
  • step S1105 the eNB 200 that has received the report from the UE 100 determines whether or not the reported AP 300 (that is, the AP 300 detected by the UE 100) is included in the WLAN list.
  • the WLAN list is a list of identification information of the AP 300 that the eNB 200 knows.
  • the WLAN list may be a list of identification information of APs that are candidates for traffic switching. That is, the WLAN list is identification information of the AP 300 having a coverage area that overlaps at least a part of the coverage area configured by the cell of the eNB 200, and includes identification information of the AP 300 operated by the specific NW operator.
  • ENB200 performs the process of step S1106, when the reported AP300 is not included in the WLAN list.
  • the eNB 200 executes the process of step S1110 or ends the process.
  • step S1106 the eNB 200 sends an inquiry about the WT to the WT 600 based on the identification information of the AP 300. That is, eNB 200 informs WT 600 of detected AP 300.
  • the inquiry message includes identification information of the AP 300.
  • the eNB 200 can send an inquiry to the WT 600 by a method described later.
  • the eNB 200 may determine the inquiry destination based on the WT-AP table.
  • the WT-AP table is a table in which the WT 600 and the AP 300 managed by the WT 600 are associated with each other.
  • the identification information of the WT 600 and the identification information of the AP 300 are associated with each other.
  • the AP 300 in the WT-AP table is the same as the AP 300 in the WLAN list. Therefore, the WT 600 in the WT-AP table manages the AP 300 having a coverage area that overlaps at least a part of the coverage area configured by the cell of the eNB 200.
  • the eNB 200 may add the identification information of the WT 600 to the WLAN list and hold the WLAN list as a WT-AP table.
  • the eNB 200 can send an inquiry to the WT 600 in the WT-AP table. Thereby, it can reduce sending an inquiry with respect to WT600 which manages AP which has the coverage area which does not overlap with the coverage area which eNB200 has.
  • the eNB 200 may send an inquiry to all WTs 600 in the WT-AP table, or may send an inquiry to some WTs 600 in the WT-AP table. For example, when the identifier of the network to which the AP 300 belongs is reported, the eNB 200 may send an inquiry to the WT 600 that manages another AP 300 associated with the identifier of the network. Since each AP 300 having the same network identifier is likely to be located at a short distance, it is highly likely that these APs 300 are managed by the same WT 600. Accordingly, the eNB 200 can reduce signaling by sending an inquiry to the WT 600 that manages another AP 300 having the same network identifier.
  • step S1107 the WT 600 that has received the inquiry about the WT determines whether or not the AP 300 indicated by the identification information of the AP 300 included in the inquiry message is managed.
  • the WT 600 may send the identification information of the AP 300 to another WT 600 (for example, a neighboring WT) to inquire of the other AP 300 whether or not the AP 300 is managed.
  • another WT 600 for example, a neighboring WT
  • the WT 600 sends a response to the inquiry from the eNB 200 to the eNB 200.
  • the WT 600 may send information (for example, ACK / NACK) indicating whether or not the AP 300 is managed to the eNB 200.
  • the WT 600 may send the identifier of the WT 600 that manages the AP 300 (its own identifier / an identifier of another WT 600) to the eNB 200.
  • the WT 600 may send information indicating that the WT 600 managing the AP 300 is unknown to the eNB 200.
  • the WT 600 may also send the identification information of the AP 300 having the same network identifier as the identifier of the network to the eNB 200. Accordingly, the eNB 200 can notify the UE 100 of identification information of an AP that is a candidate for a traffic switching destination in consideration of wireless LAN roaming.
  • the WT 600 may send the address of the WT 600 instead of the identifier of the WT 600 (or together with the identifier of the WT 600).
  • step S1109 when the eNB 200 that has received the response knows the WT 600 that manages the AP 300, the eNB 200 associates the WT 600 with the AP 300 and stores the association. Specifically, the eNB 200 updates the WT-AP table. If the eNB 200 does not know the WT 600 that manages the AP 300, the eNB 200 may send an inquiry to another WT 600 that has not sent the inquiry (execution of step S1106). Alternatively, other nodes may be inquired by a method described later.
  • the eNB 200 can add the identification information of the AP 300 to the WLAN list.
  • step S1110 when the eNB 200 receives the identifier of the new WT 600, the eNB 200 may start an operation for setting the Xw interface. Or eNB200 may start the operation
  • the eNB 200 may not start the operation for setting the Xw interface even if the Xw interface is not set with the WT 600. That is, the eNB 200 can omit the process of step S1110.
  • ENB 200 can exchange information on cellular / WLAN wireless interworking technology via WT 600 and Xw interface when the Xw interface is set up with WT 600.
  • the eNB 200 can appropriately control traffic switching based on the exchanged information.
  • eNB200 may transmit the instruction
  • indication for carrying out offload to the said AP300 (for example, stealth AP) with respect to UE100 which reported AP300.
  • the eNB 200 can appropriately grasp the WT 600 that manages the AP 300 reported from the UE 100.
  • FIG. 15 is a diagram illustrating an example of a method for determining an inquiry destination.
  • the eNB 200 may determine the destination of the inquiry regarding the WT by the following method.
  • the MME pool area 1 includes an MME 400-1 and an MME 400-2.
  • the MME pool area 2 includes an MME 400-3 and an MME 400-4.
  • WT pool area 1 includes WT 600-1 and WT 600-2.
  • the WT pool area 2 includes WT 600-3, WT 600-4, and WT 600-5.
  • the MME pool area 1 is associated with the WT pool area 1.
  • the MME pool area 2 is associated with the WT pool area 2.
  • the eNB 200-1 is associated with the MME pool area 1
  • the eNB 200-2 is associated with the MME pool area 1 and the MME pool area 2
  • the eNB 200-3 is associated with the MME pool area 2.
  • the UE 100 transmits a report regarding the AP 300 including the MME code to the eNB 200-1.
  • UE100 has acquired the MME code by the NAS message.
  • the UE 100 may transmit an MME code to the eNB 200-1 in advance before transmitting a report regarding the AP 300 to the eNB 200-1.
  • the UE 100 may transmit an MME code to the eNB 200-1 when updating the tracking area.
  • the eNB 200-1 identifies the MME 400-2 based on the MME code included in the report.
  • the eNB 200-1 sends an inquiry about the WT to the MME 400-2.
  • the MME 400-2 selects a WT from the MME pool area 1 based on information included in the inquiry about the WT. For example, the MME 400-2 selects the WT based on the network topology. Specifically, the MME 400-2 is configured based on the location of the UE 100 to select a predetermined condition (a WT that manages the AP 300 that can serve the UE 100, a service area in which the possibility of changing the WT is reduced, from the WT pool area 1. WT that satisfies (for example, WT 600-2) is selected. MME 400-2 forwards the inquiry about WT to WT 600-2. The WT 600-2 may send a response to the inquiry about the WT to the eNB 200-1 via the MME 400-2. If the Xw interface is set, the WT 600-2 sends the response to the eNB 200-1 without going through the MME 400-2. Also good.
  • a predetermined condition a WT that manages the AP 300 that can serve the UE 100, a
  • the MME 400-2 may send an inquiry about WT to all the WTs 600 in the WT pool area 1.
  • the MME 400-2 may specify the WT 600 that manages the AP 300 by receiving a response from the WT 600 regarding whether or not the AP 300 is managed.
  • the eNB 200-1 can send an inquiry about the WT to the WT 600 and receive a response to the inquiry from the WT 600.
  • the eNB 200-2 and the eNB 200-3 can also send an inquiry about the WT to the WT 600 in the same manner as the eNB 200-1.
  • FIG. 16 is a sequence diagram for explaining an operation according to another embodiment related to the second embodiment. Note that description of parts similar to those described above is omitted as appropriate.
  • the eNB 200 has sent an inquiry about the WT to the WT 600.
  • the eNB 200 sends an inquiry regarding the WT to the upper node (MME 400).
  • steps S1201 to S1205 correspond to steps S1101 to S1105.
  • the WT 600 sends the identification information of the AP 300 that it manages to the MME 400.
  • the WT 600 may send the identification information of the AP 300 to the MME 400 when the AP 300 managed by the WT 600 is updated.
  • the WT 600 may periodically send the identification information of the AP 300 to the MME 400.
  • the MME 400 associates the identification information of the AP 300 received from the WT 600 with the identification information of the WT 600 and stores the association. For example, the MME 400 may hold the above WT-AP table and update the WT-AP table based on the identification information of the AP 300 received from the WT 600.
  • Step S1207 corresponds to step S1106.
  • the MME 400 that has received the inquiry about the WT specifies the WT 600 that manages the AP 300 indicated by the identification information of the AP 300 included in the inquiry message. Specifically, MME 400 specifies WT 600 based on the identification information (WT-AP table) of AP 300 received from WT 600. The MME 400 specifies the WT 600 that manages the identification information of the AP 300 that matches the identification information of the AP 300 included in the inquiry message as the WT 600 that manages the AP 300.
  • step S1209 the MME 400 sends a response to the inquiry to the eNB 200, similar to step S1108.
  • the MME 400 may include an instruction for setting the Xw interface between the eNB 200 and the WT 600 in the response, and send the response to the eNB 200.
  • the MME 400 knows whether or not the Xw interface is set between the eNB 200 and the WT 600, and may include the instruction in the response when the Xw interface is not set. Alternatively, the MME 400 may include the instruction in the response regardless of whether the Xw interface is set.
  • the eNB 200 may ignore the instruction of the MME 400 when the Xw interface is already set with the WT 600 indicated by the identification information included in the response.
  • Steps S1210 and S1211 correspond to steps S1109 and S1110.
  • step S1211 the eNB 200 may start an operation for setting the Xw interface when an instruction for setting the Xw interface is included in the response from the MME 400.
  • the eNB 200 can appropriately grasp the WT 600 even when the WT 600 that the eNB 200 does not know is managing the AP 300 by making an inquiry to the MME 400.
  • eNB200 demonstrated the case where the inquiry regarding WT600 was sent.
  • the eNB 200 does not send an inquiry about the WT 600, and the WT 600 sends the AP 300 information to the eNB 200. Note that description of parts similar to those described above is omitted as appropriate.
  • FIG. 17 is a sequence diagram for explaining an operation according to the third embodiment.
  • step S1301 the WT 600 is added with AP 300 (identification information) to be managed by the operator.
  • the WT 600 registers the added AP 300 as a management target.
  • step S1302 when the AP 300 is newly registered as its management target, the WT 600 sends the identification information of the added AP 300 to the eNB 200.
  • WT 600 has a table of all eNBs 200 associated with WT 600, and sends identification information of AP 300 to all eNBs 200 in the table.
  • the WT 600 may send the identification information of the AP 300 to all the eNBs 200 for which the Xw interface is set with the WT 600 via the Xw interface.
  • the WT 600 may send the identification information of the AP 300 to all the MMEs 400 in the MME pool area associated with its own WT pool area.
  • the MME 400 that has received the identification information of the AP 300 may send the identification information of the AP 300 to all of the subordinate eNBs 200.
  • step S1303 the eNB 200 associates the transmission source WT 600 with the AP 300 indicated by the identification information, and stores the association. Specifically, as in step S1109, the eNB 200 updates the WT-AP table based on the added identification information of the AP 300.
  • the eNB 200 stores the identification information of the added P300 even if the added AP 300 is not an AP 300 having a coverage area that overlaps at least a part of the coverage area of the eNB 200 (updates the WT-AP table). .
  • Step S1304 corresponds to step S1110.
  • the eNB 200 can appropriately grasp the WT 600 that manages the AP 300 without sending an inquiry based on the report from the UE 100. That is, the eNB 200 can grasp in advance the WT 600 that manages the AP 300 reported from the UE 100. Therefore, the eNB 200 does not need to perform an operation for specifying an appropriate WT 600 after receiving a report from the UE 100. As a result, the eNB 200 can start control regarding traffic switching earlier.
  • FIG. 18 is a sequence diagram for explaining an operation according to another embodiment related to the third embodiment. Note that description of parts similar to those described above is omitted as appropriate.
  • the WT 600 sends the identification information of the AP 300 to the eNB 200 when the AP 300 is newly registered as its management target. In this other embodiment, the WT 600 sends the identification information of the AP 300 to the eNB 200 based on the signaling from the UE 100.
  • step S1401 the UE 100 requests the WT 600 to send the identification information of the AP 300 to the eNB 200. Specifically, UE100 transmits the request
  • the UE 100 may send the request to the WT 600 using the adaptation layer that exists in the UE 100. Specifically, the request is sent to the WT 600 via a logical connection established between the adaptation layer in the UE and the adaptation layer in the AP 300 or WT 600. The request may be transmitted as a control protocol data unit (Control PDU) in the Adaptation layer.
  • Control PDU control protocol data unit
  • the UE 100 can include identification information related to the eNB 200 in the request.
  • Identification information related to the eNB 200 includes an identifier (eNB ID) of the eNB 200, an identifier of the cell (Cell ID), and the like.
  • the UE 100 may send the request based on an instruction from the eNB 200.
  • the UE 100 may be instructed by the eNB 200 to send the request to the switching destination AP 300 when UE-driven switching control is performed.
  • the WT 600 sends the identification information of the AP 300 that has received the request from the UE 100 to the eNB 200.
  • the WT 600 can send the identification information of the AP 300 to the eNB 200 based on the identification information related to the eNB 200.
  • the WT 600 sends the identification information of the AP 300 to the eNB 200 specified by the identification information.
  • the WT 600 may send identification information related to the eNB 200 together with the identification information of the AP 300 to the MME 400, and may specify the eNB 200 to which the MME 400 is a destination.
  • Steps S1403 to S1405 correspond to steps S1105, S1109, and S1110.
  • the eNB 200 can appropriately grasp the WT 600 that manages the AP 300 even when the inquiry based on the report from the UE 100 is not sent. Moreover, since signaling from UE100 becomes a trigger, eNB200 can receive the identification information of AP300 which has a coverage area which overlaps at least one part of the coverage area of eNB200.
  • FIG. 19 is a sequence diagram for explaining an operation according to the fourth embodiment.
  • step S1501 is the same as step S1101.
  • the AP 300 transmits a radio signal (beacon signal) including the identification information (AP ID: BSSID, etc.) of the AP 300 and the identification information (WT ID) of the WT 600 managing itself.
  • the AP 300 can store the identification information of the WT 600 in a field that can be arbitrarily set by a network operator, for example.
  • the AP 300 may transmit a beacon signal including the identification information of the WT 600.
  • Step S1503 corresponds to step S1103.
  • the UE 100 acquires not only the identification information of the AP 300 but also the identification information of the WT 600 by receiving the radio signal from the AP 300.
  • Step S1504 corresponds to step S1104.
  • UE100 reports not only the identification information of AP300 but the identification information of WT600 to eNB200.
  • Steps S1505 to S1507 correspond to steps S1105, S1109, and S1110.
  • the eNB 200 receives not only a report regarding the AP 300 but also a report regarding the WT 600 that manages the AP 300 from the UE 100. Therefore, the eNB 200 can appropriately grasp the WT 600 that manages the AP 300 reported from the UE 100.
  • FIG. 20 is a sequence diagram for explaining an operation according to another embodiment related to the fourth embodiment. Note that description of parts similar to those described above is omitted as appropriate.
  • step S1601 the UE 100 requests the WT 600 for identification information of the WT 600. Specifically, the UE 100 transmits the request to the AP 300. AP 300 forwards the request to WT 600. Similarly to step S1401, UE 100 may send the request to WT 600 using the Adaptation layer that exists in UE 100. UE 100 may include information for requesting identification information of WT 600 by a probe request.
  • the UE 100 may send the request based on an instruction from the eNB 200.
  • the UE 100 may be instructed by the eNB 200 to send the request to the switching destination AP 300 when UE-driven switching control is performed.
  • the WT 600 sends the identification information of the WT 600 to the UE 100 via the AP 300.
  • the AP 300 includes the identification information of the WT 600 in the response to the request from the UE 100, and transmits the response to the UE 100.
  • the AP 300 may include the identification information of the WT 600 in the probe response, or may include the identification information of the WT 600 in another radio signal (for example, a beacon signal).
  • the WT 600 may send the identification information of the WT 600 to the UE 100 using an adaptation layer existing in the WT 600 (or AP 300).
  • the identification information of the WT 600 may be transmitted as a control protocol data unit (Control PDU) in the adaptation layer.
  • Control PDU control protocol data unit
  • AP300 may respond instead of WT600, when the identification information of WT600 is already known. That is, AP 300 may omit the transfer of the request from UE 100 and transmit the identification information of WT 600 to UE 100.
  • UE100 receives the identification information of WT600 from AP300.
  • Step S1603 corresponds to step S1504.
  • Steps S1604 to S1606 correspond to steps S1105, S1109, and S1110.
  • the eNB 200 receives not only a report regarding the AP 300 but also a report regarding the WT 600 that manages the AP 300 from the UE 100. Therefore, the eNB 200 can appropriately grasp the WT 600 that manages the AP 300 reported from the UE 100.
  • FIG. 21 is a diagram illustrating an operating environment according to the fifth embodiment.
  • the UE 100 is located in a macro cell managed by an eNB (Macro eNB) 200-1 that manages the macro cell. Further, the UE 100 is located in a small cell managed by an eNB (Small cell eNB) 200-2 that manages a small cell having a smaller coverage than the macro cell. The UE 100 has established an RRC connection with the eNB 200-2 and is in an RRC connected state.
  • eNB Micro eNB
  • eNB Small cell eNB
  • AP 300-1 is located in the macro cell and small cell
  • AP 300-2 is located in the macro cell.
  • AP 300-1 and AP 300-2 are managed by WT 600.
  • the UE 100 detects the AP 300-1 by receiving the beacon signal from the AP 300-1. Assume that the UE 100 reports an AP identifier (WLAN identifier), which is identification information of the AP 300-1, to the eNB 200-2. Even if the eNB 200-2 receives the AP identifier of the AP 300-1 from the UE 100, if the eNB 200-2 does not know the WT 600 that manages the AP 300-1, the eNB 200-2 may not be able to set an appropriate WT 600 and Xw interface.
  • WLAN identifier AP identifier
  • the eNB and AP that manage the small cell are often additionally arranged, there is a possibility that the eNB 200-2 does not grasp the WT 600.
  • the operator examines an AP existing in the cell coverage of the eNB 200-2, the burden on the operator increases and the merit of the WLAN that can be easily set is impaired.
  • movement) which UE100 demonstrated below performs at least any one of the receiver 110 with which UE100 is equipped, the transmitter 120, and the controller 130, it demonstrates as a process which UE100 performs for convenience.
  • a process (operation) executed by the eNB 200 described below is executed by at least one of the receiver 210, the transmitter 220, the controller 230, and the network interface 240 included in the eNB 200.
  • the process (operation) is described as a process executed by the eNB 200.
  • a process (operation) executed by the AP 300 described below is executed by at least one of the receiver 310, the transmitter 320, the controller 330, and the network interface 340 included in the AP 300.
  • the process will be described as the process executed by the AP 300. To do. Similarly, a process (operation) executed by the WT 600 described below is executed by at least one of the controller 630 and the network interface 640 included in the WT 600, but will be described as a process executed by the WT 600 for convenience.
  • the fifth embodiment will be described.
  • a case will be described in which the eNB 200-2 sends an inquiry to the eNB 200-1.
  • FIG. 22 is a sequence diagram for explaining an operation according to the fifth embodiment.
  • FIG. 23 is an example of a table for explaining the operation according to the fifth embodiment.
  • the UE 100 is in the RRC connected state with respect to the eNB 200-2.
  • the eNB 200-2 performs setting related to the report regarding the AP 300 with respect to the UE 100. Specifically, when the eNB 200-2 detects the AP 300, the eNB 200-2 transmits to the UE 100 control information requesting to report the detected AP 300 to the eNB 200-2. UE100 performs a setting based on control information.
  • the control information may include an identifier (for example, SSID, BSSID, ESSID, etc.) that identifies the AP 300 to be reported.
  • the AP 300-1 transmits a beacon signal including its own identifier (for example, SSID, BSSID, ESSID, etc.).
  • the UE 100 that performs scanning based on the setting receives the beacon signal from the AP 300-1.
  • the UE 100 reports on the AP 300-1. Specifically, the UE 100 transmits a report including the identifier of the AP 300-1 to the eNB 200-2. Note that the UE 100 can transmit a report including an identifier of the AP 300 other than the AP 300-1 (eg, a report including the identifiers of all detected APs 300) to the eNB 200-2 based on the setting. The eNB 200-2 receives the report including the identifier of the AP 300-1 from the UE 100-2.
  • the UE 100 may report to the eNB 200-2 using as a trigger that the signal strength from the neighboring cell (base station) exceeds the threshold. Specifically, the UE 100 may report to the eNB 200-2 based on an A4 trigger (Neighbor becomes beta tan threshold) or a B1 trigger (Inter RAT neighbor threshold better threshold).
  • A4 trigger Neighbor becomes beta tan threshold
  • B1 trigger Inter RAT neighbor threshold better threshold
  • the eNB 200-2 recognizes that the AP 300-1 detected by the UE 100 is located in the cell coverage based on the report.
  • the eNB 200-2 determines whether or not the WT 600 that manages the AP 300-1 is known. Specifically, the eNB 200-2 makes a determination based on the WLAN list in which the AP and the WT are associated.
  • the eNB 200-2 ends the process.
  • the eNB 200-2 executes the process of step S2104.
  • the eNB 200-2 sends an inquiry (WT information request) regarding the WT 600 to the eNB 200-1 that is a neighboring base station.
  • the inquiry includes the identifier of AP 300-1.
  • the inquiry may include a plurality of AP identifiers.
  • the inquiry may include a plurality of identifiers (BSSID, SSID) indicating the same AP.
  • the eNB 200-2 may send an inquiry only to the target set from the OAM.
  • the eNB 200-2 may send an inquiry to the eNB that has previously been in the relationship between the master eNB and the secondary eNB in the dual connection scheme.
  • the eNB 200-1 is a master eNB and the eNB 200-2 is a secondary eNB
  • the eNB 200-2 may send an inquiry to the eNB 200-1.
  • the eNB 200-1 determines whether or not the WT 600 that manages the AP 300-1 is known based on the WLAN list held by the eNB 200-1. If the eNB 200-1 knows the WT 600, the eNB 200-1 executes the process of step S2105. On the other hand, when the eNB 200-1 does not know the WT 600, the eNB 200-1 may make an inquiry to another node.
  • the eNB 200-1 may further make an inquiry to the neighboring eNB 200.
  • the eNB 200-1 may make an inquiry to the neighboring eNB 200 by transferring the inquiry from the eNB 200-2.
  • the eNB 200-1 executes the process of step S2105.
  • the number of times the eNB 200-1 makes an inquiry to the neighboring eNB 200 may be implementation-dependent or may be set from the OAM.
  • the eNB 200-1 may make an inquiry to the node that manages the WLAN list in which the AP and the WT are associated. For example, the eNB 200-1 may make an inquiry to the OAM, or the eNB 200-1 may make an inquiry to a known WT. The eNB 200-1 may make an inquiry to the OAM that can acquire information on the WT 600 from both the OAM in the cellular network and the OAM in the WLAN.
  • the eNB 200-1 may report the identifier of the AP 300-1 to the OAM.
  • the OAM holds the WLAN list in which the AP and the WT are associated, the OAM can update the WLAN list.
  • the OAM may adjust the parameters included in the auxiliary information based on the updated WLAN list.
  • the eNB 200-1 transmits a response to the inquiry about the WT 600 (WT information response) to the eNB 200-2.
  • WT ID for example, the IP address of the WT
  • AP ID the identifier of the AP 300-1.
  • the eNB 200-1 includes the identifier of the WT 600 and the identifier of the AP 300-1 in the response message, and sends the response message to the eNB 200-2.
  • the response message may include information necessary to set up the Xw interface.
  • the response message may include a list of WTs (WTs List) when the AP 300-1 is managed by a plurality of WTs. Further, the response message may include an identifier of an AP other than the AP 300-1 when the WT 600 manages a plurality of APs.
  • the eNB 200-1 may transmit a response message including information indicating that the WT 600 is not known to the eNB 200-2. Specifically, the eNB 200-1 may send a rejection message (Reject) including a reason (Cause value) indicating that the identifier of the AP 300-1 is not known to the eNB 200-2.
  • a rejection message reject
  • Reason a reason (Cause value) indicating that the identifier of the AP 300-1 is not known to the eNB 200-2.
  • the eNB 200-1 may determine that the AP 300-1 is located in the coverage of the eNB 200-2 and send a response to the inquiry in step S2105 to the eNB 200-2.
  • the eNB 200-2 can update the WLAN list when it knows the WT 600 that manages the AP 300-1. Also, the eNB 200-2 may set an Xw interface with the WT 600.
  • FIG. 24 is a sequence diagram for explaining an operation according to the sixth embodiment.
  • the UE 100 executes AP detection (scanning) in the RRC connected state with respect to the eNB 200-2.
  • the UE 100 performs AP detection (scanning) in the RRC idle state. Note that description of parts similar to those of the fifth embodiment is omitted as appropriate.
  • the eNB 200-1 transmits setting information related to MDT (Minimization of Drive Test) to the UE 100.
  • the setting information is setting information (Config. Of Logged meas.) Regarding storage type MDT (Logged MDT).
  • the setting information is information for performing at least measurement related to the AP.
  • the UE 100 in the RRC idle state measures the wireless environment according to the measurement parameters set from the network (eNB 200-1), and stores the measurement result as measurement data together with the position information and time information.
  • UE100 reports measurement data to a network, after transfering to a RRC connected state.
  • the setting information may include control information for specifying the AP 300 that is a report target for the AP 300.
  • the UE 100 performs measurement based on the setting information and stores measurement data.
  • the UE 100 When the UE 100 detects the AP 300 (that is, receives a beacon signal from the AP 300), the UE 100 stores the cell identifier (Cell ID (for example, ECGI: E-UTRAN Cell Global Identifier)) detected when the AP 300 is detected. May be. Moreover, UE100 may memorize
  • Cell ID for example, ECGI: E-UTRAN Cell Global Identifier
  • step S2202 the UE 100 sends an RRC connection establishment message for establishing an RRC connection to the eNB 200-2.
  • the RRC connection establishment message may include information indicating that measurement data is stored. Thereafter, an RRC connection is established between the UE 100 and the eNB 200-2.
  • the eNB 200-2 sends a UE information request message (UE Information Request).
  • the eNB 200-2 may send a UE information request message when the UE 100 stores the measurement data.
  • step S2204 the UE 100 sends a UE information response message, which is a response to the UE information request message, to the eNB 200-2.
  • the UE information response message includes measurement data (Measurement result).
  • eNB200 receives measurement data (report about AP300) from UE100.
  • the measurement data includes the identifier of the AP 300 and the identifier of the cell recorded when the UE 100 is in an idle state.
  • the eNB 200-2 identifies a cell related to the reported AP. That is, the eNB 200-2 specifies the eNB 200 that manages the cell in which the AP 300 identified by the identifier of the AP 300 included in the measurement data is located. Specifically, the eNB 200-2 identifies the eNB 200 (cell) based on the cell identifier included in the measurement data. The eNB 200-2 may identify the eNB 200 (cell) based on time information indicating the time at which the AP 300 and / or the cell is detected. In the present embodiment, the eNB 200-2 identifies the eNB 200-3. That is, the eNB 200-2 determines that the AP 300 is located in the cell managed by the eNB 200-3.
  • the eNB 200-2 determines whether or not the WT 600 that manages the AP 300 identified by the identifier of the AP 300 included in the report is known. Similar to the first embodiment, the eNB 200-2 determines whether or not the WT 600 is known. When the eNB 200-2 does not know the WT 600, the eNB 200-2 may grasp the WT 600 by inquiring other nodes as in the first embodiment.
  • step S2206 the eNB 200-2 determines whether the eNB 200-3 knows information related to the AP 300 (the identifier of the AP 300 and the identifier of the WT 600). When the eNB 200-3 determines that the information regarding the AP 300 is not known, the eNB 200-2 executes the process of step S2207. Otherwise, the eNB 200-2 ends the process. For example, the eNB 200-2 determines that the eNB 200-3 knows the information related to the AP 300 when there is experience of sending information related to the detected AP 300 to the eNB 200-3.
  • the eNB 200-2 transmits the WLAN list of the eNB 200-3. Based on the above, it may be determined whether the eNB 200-3 knows information about the AP 300.
  • the eNB 200-2 transmits a report related to the AP 300 (Reporting the detected APs) to the eNB 200-3 that manages the target cell.
  • the report regarding the AP 300 can include the same information as in FIG. That is, the eNB 200-2 sends the WT 600 identifier together with the AP 300 identifier to the eNB 200-3.
  • the eNB 200-3 can update the WLAN list based on the report related to the AP 300. Also, the eNB 200-3 may set an Xw interface with the WT 600. Thus, the eNB 200-3 can appropriately grasp the WT 600 that manages the AP 300.
  • the eNB 200-2 may omit the transmission of the report related to the AP 300 (the identifier of the WT 600 and the identifier of the AP 300).
  • the eNB 200-2 may omit the transmission of the report regarding the AP 300. For example, the eNB 200-2 may determine that the eNB 200-3 is not a neighboring eNB when the X2 interface is not set up with the eNB 200-3.
  • the eNB 200-2 has grasped the WT 600 that manages the AP 300 reported from the UE 100. In this other embodiment, the eNB 200-2 does not know the WT 600 that manages the AP 300.
  • the eNB 200-2 can send a report to the OAM.
  • the OAM specifies the eNB 200 that manages the cell in which the AP 300 is located, based on the cell identifier and / or time information included in the report sent from the eNB 200-2. Further, the OAM notifies the identified eNB 200-3 of the identifier of the WT 600 together with the identifier of the AP 300 based on the WLAN list held by itself. Similar to the second embodiment, when the eNB 200-3 already knows the WT 600, the OAM can omit the transmission of the identifier of the WT 600 and the like.
  • the eNB 200-3 can appropriately grasp the WT 600 that manages the AP 300.
  • FIG. 25 is a diagram for explaining the operation of the WT according to the seventh embodiment.
  • FIG. 26 is a sequence diagram for explaining an operation (part 1) according to the seventh embodiment.
  • FIG. 27 is an example of a table for explaining the operation according to the seventh embodiment.
  • FIG. 28 is a sequence diagram for explaining the operation (part 2) according to the seventh embodiment.
  • FIG. 29 is a diagram for explaining an operation according to the seventh embodiment.
  • the eNB 200 sends the WT 600 identifier to the other eNB 200 based on the report from the UE 100.
  • the eNB 200 based on the notification from the WT 600, the eNB 200 sends the identifier of the WT 600 to the other eNB 200.
  • step S2301 the WT 600 detects (recognizes) that an AP 30 managed by itself is added. For example, the WT 600 recognizes that the AP 300 is added when the AP 300 is newly installed by the operator.
  • step S2302 the WT 600 updates (generates) a WLAN-AP ID list that is a list of APs (identifiers) managed by the WT 600.
  • An identifier of WT 600 is associated with the WLAN-AP ID list.
  • step S2303 the WT 600 distributes (transmits) the updated (generated) WLAN-AP ID list to the subordinate eNB 200. That is, the WT 600 can distribute the WLAN-AP ID list to the subordinate eNB 200 using the update of the WLAN-AP ID list as a trigger.
  • the flow of the WLAN-AP ID list will be described with reference to FIG.
  • the Xw setup procedure is executed between the WT 600 and the eNB 200-1. Therefore, an Xw interface is set up between the WT 600 and the eNB 200-1. Further, an X2 setup procedure is executed between the eNB 200-1 and the eNB 200-2. Therefore, an X2 interface is set up between the eNB 200-1 and the eNB 200-2. Note that the X2 setup procedure may be executed before the Xw setup procedure.
  • the WT 600 sends a WT setting update message (WT CONFIGURATION UPDATE) to the eNB 200-1 via the Xw interface.
  • the WT setting update message includes a WLAN-AP ID list.
  • eNB200-1 can grasp
  • the eNB 200-1 may update the WLAN list held by itself based on the WLAN-AP ID list. Further, when the eNB 200-1 has received the WLAN-AP ID list from the WT 600 in the past, the eNB 200-1 may update the WLAN-AP ID list.
  • the eNB 200-1 sends an ENB setting update message (ENB CONFIGURATION UPDATE) to the eNB 200-2 via the X2 interface.
  • the ENB setting update message includes a WLAN-AP ID list. An example of information included in the ENB setting update message is shown in FIG. As shown in FIG. 27, the ENB setting update message includes information (“Served WT information”) necessary for setting up the Xw interface.
  • the ENB setting update message includes not only the identifier of the WT 600 (WT ID) but also the identifier of the AP 300 managed by the WT 600 (BSSID, SSID, ESSID).
  • the ENB setting update message may include a plurality of identifiers indicating the same AP 300.
  • the ENB setting update message may include a plurality of SSIDs when the AP 300 is a multi-SSID device.
  • the ENB setting update message (“frequency information”) may include information such as a used frequency band and a used channel of the AP 300.
  • the field “Served WTs to Modify” is included in the field “Served WTs to Add” instead of “Served WTs to Add”. Also good.
  • the identifier of the deleted AP 300 (BSSID, SSID, ESSID, etc.) is displayed in the field “Served WTs to Delete” instead of “Served WTs to Add”. ) And / or the deleted WT 600 identifier (WT ID).
  • ENB 200-2 receives the identifier of WT 600 together with the identifier of AP 300 based on the ENB setting update message from eNB 200-1. Thereby, eNB200-2 can grasp
  • step S2403 the eNB 200-1 transmits an acknowledgment (WT CONFIGURATION UPDATE ACKNOWLEDGE) to the ENB setting update message to the WT 600 via the Xw interface.
  • WT CONFIGURATION UPDATE ACKNOWLEDGE an acknowledgment
  • step S2404 the eNB 200-2 transmits an affirmative response (ENB CONFIGURATION UPDATE ACKNOWLEDGE) to the ENB setting update message to the eNB 200-1 via the X2 interface.
  • ENB CONFIGURATION UPDATE ACKNOWLEDGE an affirmative response
  • the WT 600 may send the WLAN-AP ID list to the eNB 200-1 using a message other than the WT setting update message (WT CONFIGURATION UPDATE).
  • the eNB 200-1 sends an Xw setup request message (Xw SETUP REQUEST) for setting up the Xw interface to the WT 600.
  • Xw setup request message Xw SETUP REQUEST
  • the WT 600 may send the Xw setup response message to the eNB 200-1 by including the WLAN-AP ID list in the Xw setup response message (Xw SETUP RESPONSE) that is a response to the Xw setup request message.
  • the WT 600 can send the WLAN-AP ID list to the eNB 200-1 even when the Xw interface is not set up.
  • Step S2503 corresponds to step S2402.
  • the eNB 200-2 when the eNB 200-2 receives the WLAN-AP ID list from the eNB 200-1, the eNB 200-2 updates the WLAN list in which the AP and the WT included in the coverage of the eNB 200-2 are associated. Further, the eNB 200-2 can update the WLAN list based on a report regarding the AP 300 from at least one of the UE 100, another eNB 200, and the WT 600. Specifically, the eNB 200-2 can update the WLAN list by at least one of the methods.
  • the eNB 200-2 deletes the identifier of the AP 300 that is not reported from the UE 100 from the WLAN list within a predetermined period.
  • the eNB 200-2 starts the specific timer, for example, triggered by the update of the WLAN list.
  • the eNB 200-2 may determine that the AP 300 that is not reported from the UE 100 is not located in the coverage of the own cell before the specific timer expires, and delete the identifier of the AP 300 from the WLAN list.
  • the eNB 200-2 deletes the identifier of the AP 300 under the control of another eNB from the WLAN list.
  • eNB 200-2 receives an ENB setting update message including an identifier of AP 300 located in the coverage of a cell managed by other eNB 200, for example, as a report on AP 300 from another eNB 200 (for example, neighboring eNB 200) Then, it may be determined that the AP 300 is not located in the coverage of the own cell managed by the eNB 200-2, and the identifier of the AP 300 may be deleted from the WLAN list.
  • the eNB 200-2 deletes the identifier of the AP 300 from the WLAN list based on the report on the AP 300 from the UE 100 and the report on the AP 300 from the eNB 200-1.
  • the eNB 200-2 receives reports on the AP 300-4 and the AP 300-5 from the UE 100-1 and the UE 100-2. Also, the eNB 200-2 receives a report regarding the AP 300-1 from the eNB 200-1. The report for AP 300-1 includes information indicating that AP 300-1 has been discovered and eNB 200-1 has added AP 300-1 to the WLAN list. Similarly, the eNB 200-2 receives a report regarding each of the AP 300-2 and the AP 300-3 from the eNB 200-1.
  • the eNB 200-2 determines that the AP 300 does not exist in an area (overlap area) where the coverage of the eNB 200-1 and the eNB 200-2 overlaps based on the report from the eNB 200-1 and the report from the UE 100. That is, the eNB 200-2 determines that the AP 300 that overlaps the report from the eNB 200-1 and the report from the UE 100-1 is located in the overlap area. When the eNB 200-2 determines that there is no AP in the overlapping area, the eNB 200-2 deletes the identifier of the AP 300 reported from the eNB 200-1 from the WLAN list. On the other hand, even if the AP 300 is reported from the eNB 200-1, the eNB 200-2 does not delete the AP 300 from the WLAN list when determining that the AP 300 exists in the overlapping area.
  • the eNB 200-2 deletes the identifier of the predetermined AP 300 from the WLAN list based on the report regarding the AP 300 from the WT 600 (for example, the WLAN-AP ID list). For example, when the identifier of the predetermined AP 300 is deleted from the WLAN-AP ID list notified from the WT 600, the eNB 200-2 deletes the identifier of the predetermined AP 300 from the WLAN list.
  • the eNB 200-2 updates the list based on the report regarding the AP 300 from at least one of the UE 100, the other eNB 200, and the WT 600. As a result, the eNB 200-2 can appropriately update the WLAN list.
  • the UE 100 determines whether or not the AP 300 that is the transmission source of the radio signal is being operated by the specific NW operator based on the control information from the eNB 200. Not limited.
  • the UE 100 holds in advance identification information that can identify the network operator that operates the eNB 200, and determines whether or not the AP 300 that is the transmission source of the radio signal is operated by the specific NW operator based on the identification information. May be.
  • the said identification information may be memorize
  • UIM User Identity Module
  • the eNB 200 does not have to execute the process of step S160.
  • the eNB 200 can omit the process of step S160 when the identifier of the AP 300 reported from the UE 100 is added to the table before step S160.
  • the eNB 200 may transmit the identifier of the AP 300 not to the AAA server 500 but to another network device included in the core network.
  • the eNB 200 may determine whether or not to add the identifier of the AP 300 to the table based on the authentication result from another network device.
  • Immediate MDT UE 100 in the RRC connection state (connected mode) performs measurement according to parameters set from the network, and reports the measurement result and location information to the network.
  • the MME 400 is described as an upper node of the eNB 200, but the present invention is not limited to this.
  • an OAM Operaation and Maintenance
  • the OAM is a server device that exists in the EPC 20 and is managed by an operator. The OAM can perform maintenance and monitoring of the E-UTRAN 10.
  • the UE 100 may transmit a request for identification information (probe request) related to the stealth AP based on the setting.
  • the UE 100 may transmit a radio signal (probe request) for requesting identification information of the AP 300 from a normal AP.
  • the UE 100 may transmit a radio signal for requesting identification information of the AP 300 when the radio signal (beacon signal) from the AP cannot be received within a predetermined time. Therefore, the UE 100 may transmit a radio signal for requesting the identification information of the AP 300 when performing so-called active scan.
  • the UE 100 may transmit a radio signal for requesting identification information of the AP 300 (stealth AP) even when the stealth AP is not set as the AP 300 to be reported from the eNB 200.
  • the WT 600 has sent the identification information of the AP 300 to the eNB 200 when the AP 300 is newly registered, but is not limited thereto.
  • the WT 600 may send the identification information of the AP 300 excluded from the management target to the eNB 200. For example, when the AP 300 is physically removed, the WT 600 determines that the AP is excluded from the management target. When the AP 300 (identification information) to be managed by the operator is deleted or a response cannot be received from the subordinate AP 300, the WT 600 can determine that the AP is excluded from the management target.
  • the WT 600 can send the identification information of the excluded AP 300 to the eNB 200.
  • the eNB 200 may delete the identification information of the excluded AP 300 from the WT-AP table.
  • the eNB 200 may delete the identification information of the AP 300 excluded from the WLAN list.
  • the WT 600 may send flag information (for example, addition: “0” / deletion: “1”) indicating the added / deleted AP 300 together with the identification information of the AP 300 to the eNB 200.
  • the WT 600 may notify the eNB 200 of the change information of the AP 300 managed by the WT 600 using the first message including the added AP 300 identification information and the second message including the deleted AP 300 identification information. Good.
  • the WT 600 sends the identification information of the corresponding AP 300 to the eNB 200 when the AP 300 is activated (for example, operation start / resumption of operation) or deactivated (for example, operation is stopped due to power saving, failure, inspection, etc.). May be.
  • the WT 600 may notify the eNB 200 of the AP 300 that has been activated (or deactivated) as the AP 300 that has been added (or deleted) from the management target.
  • the WT 600 may send the identification information of the AP 300 to the eNB 200 in order to notify the eNB 200 of the activated or deactivated AP 300.
  • the eNB 200 may exclude the deactivated AP 300 from the WT-AP table (and the WLAN list) and add the activated AP 300 to the WT-AP table (and the WLAN list).
  • an operation status column (for example, availability) is provided in the WT-AP table, and the eNB 200 marks the operation status column in the WT-AP table (ON / OFF, etc.)
  • the WT-AP table may be updated.
  • the eNB 200 may mark the operation state column of the deactivated AP 300 as “OFF” and mark the operation state column of the activated AP 300 as “ON”.
  • the eNB 200-1 is a macro eNB and the eNB 200-2 is a small eNB has been described, but the present invention is not limited to this.
  • the eNB 200-1 may be a macro eNB, and the eNB 200-2 may be a small eNB. Further, the eNB 200-1 and the eNB 200-2 may have an equal relationship (for example, between macro eNBs). Further, the eNB 200-2 may be a HeNB. In this case, the eNB 200-2 may send an inquiry to the eNB 200-1 via the X2-GW connected to the eNB 200-2.
  • the WT 600 may be an AC (access controller) that manages (controls) the AP 300, for example.
  • the WT 600 is an upper node of the AC and may be a network device that manages the AC.
  • a program may be provided that causes a computer to execute each process performed by any of the above-described nodes (UE 100, eNB 200, AP 300, MME 400, WT 600, or the like).
  • the program may be recorded on a computer readable medium. If a computer-readable medium is used, a program can be installed in the computer.
  • the computer-readable medium on which the program is recorded may be a non-transitory recording medium.
  • the non-transitory recording medium is not particularly limited, but may be a recording medium such as a CD-ROM or a DVD-ROM.
  • tip comprised by the memory which memorize
  • the LTE system has been described as an example of a mobile communication system.
  • the present invention is not limited to the LTE system, and the present invention may be applied to a system other than the LTE system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

実施形態に係る基地局は、無線LAN終端装置において追加された無線LANアクセスポイントの識別子を前記無線LAN終端装置から受け取る制御部を備える。

Description

基地局及び無線端末
 本出願は、通信システムにおいて用いられる基地局及び無線端末に関する。
 セルラ通信技術の標準化プロジェクトである3GPP(3rd Generation Partnership Project)で仕様が策定されているLTE(Long Term Evolution)は、リリース12以降において、セルラ・WLAN無線インターワーキング技術をサポートする(非特許文献1及び2参照)。このような技術では、RRCコネクティッド状態又はRRCアイドル状態のユーザ端末は、E-UTRANとWLANとの間で双方向のトラフィック切り替え(ネットワークセレクション及びトラフィック・ステアリング)を行う。
3GPP技術仕様書「TS 36.304 V12.4.0」 2015年3月23日 3GPP技術仕様書「TS 36.300 V13.0.0」 2015年7月8日
 一の実施形態に係る基地局は、無線LAN終端装置において追加された無線LANアクセスポイントの識別子を前記無線LAN終端装置から受け取る制御部を備える。
 一の実施形態に係る基地局は、前記基地局と無線LAN終端装置との間のXwインターフェイスのセットアップを要求するためのメッセージを前記無線LAN終端装置へ送る制御部を備える。前記制御部は、前記第2のメッセージに対する応答メッセージを前記無線LAN終端装置から受け取る。前記応答メッセージは、前記無線LAN終端装置における無線LANアクセスポイントの識別子のリストを含む。
 一の実施形態に係る無線端末は、測定対象の無線LANアクセスポイントを設定するための制御情報を基地局から受信する受信部を含む。前記制御情報は、前記無線LANアクセスポイントを特定するための識別子を含む。
図1は、システム構成を示す図である。 図2は、UE100を示すブロック図である。 図3は、eNB200を示すブロック図である。 図4は、AP300を示すブロック図である。 図5は、第1実施形態に係る動作を説明するための図である。 図6は、第1実施形態に関連する他の実施形態に係る動作を示す図である。 図7は、システム構成を示す図である。 図8は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。 図9は、UE100を示すブロック図である。 図10は、eNB200を示すブロック図である。 図11は、AP300を示すブロック図である。 図12は、WT600を示すブロック図である。 図13は、動作環境を示す図である。 図14は、第2実施形態に係る動作を説明するためのシーケンス図である。 図15は、問い合わせの送り先を決定方法の一例を示す図である。 図16は、第2実施形態に関連する他の実施形態に係る動作を説明するためのシーケンス図である。 図17は、第3実施形態に係る動作を説明するためのシーケンス図である。 図18は、第3実施形態に関連する他の実施形態に係る動作を説明するためのシーケンス図である。 図19は、第4実施形態に係る動作を説明するためのシーケンス図である。 図20は、第4実施形態に関連する他の実施形態に係る動作を説明するためのシーケンス図である。 図21は、第5実施形態に係る動作環境を示す図である。 図22は、第5実施形態に係る動作を説明するためのシーケンス図である。 図23は、第5実施形態に係る動作を説明するためのテーブルの一例である。 図24は、第6実施形態に係る動作を説明するためのシーケンス図である。 図25は、第7実施形態に係るWTの動作を説明するための図である。 図26は、第7実施形態に係る動作(その1)を説明するためのシーケンス図である。 図27は、第7実施形態に係る動作を説明するためのテーブルの一例である。 図28は、第7実施形態に係る動作(その2)を説明するためのシーケンス図である。 図29は、第7実施形態に係る動作を説明するための図である。
 [実施形態の概要]
 実施形態に係る基地局は、無線LAN終端装置において追加された無線LANアクセスポイントの識別子を前記無線LAN終端装置から受け取る制御部を備える。
 実施形態において、前記制御部は、前記基地局と前記無線LAN終端装置との間のXwインターフェイスを介して、無線LANアクセスポイントの識別子のリストを含むメッセージを前記無線LAN終端装置から受け取る。前記無線LANアクセスポイントのリストは、前記追加された無線LANアクセスポイントの識別子を含む。
 実施形態において、前記制御部は、前記無線LAN終端装置において削除された無線LANアクセスポイントの識別子を前記無線LAN終端装置から受け取る。
 実施形態において、前記制御部は、前記基地局と前記無線LAN終端装置との間のXwインターフェイスを介して、無線LANアクセスポイントの識別子のリストを含むメッセージを前記無線LAN終端装置から受け取る。前記無線LANアクセスポイントのリストは、前記削除された無線LANアクセスポイントの識別子を含む。
 実施形態に係る基地局は、前記基地局と無線LAN終端装置との間のXwインターフェイスのセットアップを要求するためのメッセージを前記無線LAN終端装置へ送る制御部を備える。前記制御部は、前記第2のメッセージに対する応答メッセージを前記無線LAN終端装置から受け取る。前記応答メッセージは、前記無線LAN終端装置における無線LANアクセスポイントの識別子のリストを含む。
 実施形態において、前記制御部は、前記基地局と前記無線LAN終端装置との間のXwインターフェイスを介して、無線LANアクセスポイントの識別子のリストを含むメッセージを前記無線LAN終端装置から受け取り、前記無線LANアクセスポイントのリストは、変更された無線LANアクセスポイントの識別子を含む。
 実施形態に係る無線端末は、測定対象の無線LANアクセスポイントを設定するための制御情報を基地局から受信する受信部を含む。前記制御情報は、前記無線LANアクセスポイントを特定するための識別子を含む。
 実施形態において、前記受信部は、セルからの無線信号に関する測定報告を設定するためのメッセージを前記基地局から受信する。前記メッセージは、前記制御情報を含む。
 ところで、基地局は、トラフィック切り替えの候補となる(複数の)無線LANアクセスポイントを無線端末に対して通知することが想定される。無線端末は、基地局から通知された(複数の)無線LANアクセスポイントの中から、トラフィックの切替先となる無線LANアクセスポイントを選択する。
 しかしながら、基地局が、無線LANアクセスポイントの候補を適切に把握できない可能性がある。
 実施形態に係る無線端末は、所定のネットワークオペレータが運用する基地局が管理するセル内に位置する。前記無線端末は、無線LANアクセスポイントから無線信号を受信する受信部と、前記無線LANアクセスポイントが前記所定のネットワークオペレータに運用されていると判定した場合にのみ、前記無線LANアクセスポイントに関する報告を前記基地局に送信する制御部とを有する。
 ここで、「運用」とは、所定のネットワークオペレータが無線LANアクセスポイントを直接的に運用することをだけでなく、所定のネットワークオペレータが無線LANアクセスポイントを間接的に運用することを含んでもよい。所定のネットワークオペレータが無線LANアクセスポイントを間接的に運用するケースとして、例えば、ユーザ端末が利用可能な無線LANアクセスポイントを、所定のネットワークオペレータと契約している契約ネットワークオペレータが運用するケースである。
 実施形態において、前記無線信号は、前記無線LANアクセスポイントが属するPLMNの識別情報を含む。前記制御部は、前記PLMNの識別情報によって示されるPLMNが、前記基地局が属するPLMNと同一である場合に、前記無線LANアクセスポイントが前記所定のネットワークオペレータに運用されていると判定する。
 実施形態において、前記制御部は、前記所定のネットワークオペレータを示す識別情報、及び、前記所定のネットワークオペレータと関連付けられた無線LANアクセスポイントの識別子の少なくとも一方が前記無線信号に含まれる場合、前記無線LANアクセスポイントが前記所定のネットワークオペレータに運用されていると判定する。
 実施形態において、前記制御部は、前記報告の対象となる無線LANアクセスポイントを特定するための制御情報を前記基地局から受信する。前記制御部は、前記制御情報に基づいて、前記無線信号の送信元である前記無線LANアクセスポイントが前記所定のネットワークオペレータに運用されているか否かを判定する。
 実施形態において、前記制御部は、前記無線信号の受信時間及び受信強度の少なくとも一方が閾値を越えた場合に、前記無線LANアクセスポイントを前記報告の対象と見なす。
 実施形態において、前記制御部は、前記無線LANアクセスポイントから無線信号を受信する際に他のセルから無線信号を受信していた場合、前記他のセルの識別情報を前記報告と共に送信する。
 実施形態に係る基地局は、所定のネットワークオペレータが運用する。前記基地局は、前記所定のネットワークオペレータが運用する無線LANアクセスポイントに関する報告を、前記基地局が管理するセル内に位置する無線端末から受信する受信部と、前記所定のネットワークオペレータが運用する近隣基地局に前記無線LANアクセスポイントに関する報告を転送する制御部と、を備える。
 実施形態において、前記受信部は、前記無線端末が前記無線LANアクセスポイントから無線信号を受信する際に受信した他のセルの識別情報を、前記無線LANアクセスポイントに関する報告と共に受信する。前記制御部は、前記他のセルを管理する前記近隣基地局に前記無線LANアクセスポイントに関する報告を転送する。
 実施形態に係る基地局は、前記報告の対象となる無線LANアクセスポイントを特定するための制御情報を送信する送信部をさらに備える。
 ところで、セルラ・WLANインターワーキング技術を有効活用するために、Xwインターフェイスの導入が検討されている(3GPP寄書「R3-150740」参照)。具体的には、基地局と、WLAN内におけるノードである無線LAN終端装置(WT:Wireles LAN Termination)との間にXwインターフェイスが設定される。基地局は、例えば、WLANに関する情報(自セル内のAPに関する情報など)をXwインターフェイスを介して無線LAN終端装置から取得できる。
 ここで、基地局が、無線端末から無線LANアクセスポイントに関する報告を受信したケースを想定する。このケースにおいて、知らない無線LANアクセスポイントを無線端末が基地局へ報告した場合、当該基地局は、当該無線LANアクセスポイントを管理する無線LAN終端装置を知らないため、適切な無線LAN終端装置とXwインターフェイスを設定できない虞がある。
 実施形態に係る通信制御方法は、基地局と無線LANにおけるノードである無線LAN終端装置との間にインターフェイスを設定できる通信システムで用いられる。前記通信制御方法では、無線端末は、所定の無線LANアクセスポイントの識別情報を前記基地局に報告する。前記基地局は、前記所定の無線LANアクセスポイントの識別情報に基づいて、前記所定の無線LANアクセスポイントを管理する所定の無線LAN終端装置に関する問い合わせをネットワーク装置に送る。前記ネットワーク装置は、前記問い合わせに対する応答を前記基地局に送る。
 実施形態では、前記基地局は、前記無線LAN終端装置と前記無線LAN終端装置が管理する無線LANアクセスポイントとが関連付けられたテーブルを保持する。前記基地局は、前記テーブル内の前記無線LAN終端装置を前記ネットワーク装置として、前記問い合わせを送る。
 実施形態において、前記無線端末は、前記所定の無線LANアクセスポイントの識別情報に加えて、前記所定の無線LANアクセスポイントが属するネットワークの識別情報を前記基地局に報告し、前記基地局は、前記ネットワークの識別情報に関連付けられた他の無線LANアクセスポイントを管理する無線LAN終端装置を前記ネットワーク装置として、前記問い合わせを送る。
 実施形態において、前記ネットワーク装置は、前記基地局の上位ノードであり、前記ネットワーク装置は、所定の無線LAN終端装置から前記所定の無線LAN終端装置が管理する無線LANアクセスポイントの識別情報を受け取り、前記ネットワーク装置は、前記所定の無線LAN終端装置から受け取った前記無線LANアクセスポイントの識別情報に基づいて、前記問い合わせに対する応答を前記基地局に送る。
 実施形態において、前記ネットワーク装置は、前記基地局の上位ノードであり、前記ネットワーク装置は、前記基地局と前記所定の無線LAN終端装置との間にインターフェイスを設定するための指示を前記問い合わせに対する応答に含めて、前記応答を前記基地局に送る。
 実施形態において、前記基地局は、報告対象となる無線LANアクセスポイントを前記無線端末に設定し、前記無線端末は、前記報告対象となる前記無線LANアクセスポイントの識別情報だけでなく、他の無線LANアクセスポイントの識別情報も前記基地局に報告する。
 実施形態において、前記無線端末は、前記基地局を運用するネットワークオペレータに前記他の無線LANアクセスポイントが運用されていると判定した場合に、前記他の無線LANアクセスポイントの識別情報を前記基地局に報告する。
 実施形態において、前記無線端末は、無線LANアクセスポイントの識別情報を要求するための無線信号を送信し、前記無線端末は、前記所定の無線LANアクセスポイントから、前記所定の無線LANアクセスポイントの識別情報を含む応答を受信する。
 実施形態では、前記所定の無線LANアクセスポイントは、自身に関連する識別情報を含む無線信号を送信しないステルスアクセスポイントである。
 実施形態では、基地局と無線LANにおけるノードである無線LAN終端装置との間にインターフェイスを設定できる通信システムで用いられる。前記通信制御方法では前記無線LAN終端装置は、前記無線LAN終端装置が管理する無線LANアクセスポイントの識別情報を前記基地局に送る。前記基地局は、前記無線LANアクセスポイントの識別情報に基づいて、前記無線LANアクセスポイントと前記無線LAN終端装置とを関連付けて、当該関連付けを記憶する。
 実施形態において、前記無線LAN終端装置は、前記無線LAN終端装置の管理対象として前記無線LANアクセスポイントが新たに登録された場合に、前記無線LANアクセスポイントの識別情報を前記基地局に送る。
 実施形態において、無線端末が、前記無線LANアクセスポイントを介して、前記基地局に関連する識別情報を前記無線LAN終端装置に送り、前記無線LAN終端装置は、前記基地局に関連する識別情報に基づいて、前記無線LANアクセスポイントの識別情報を前記基地局に送る。
 実施形態では、基地局と無線LANにおけるノードである無線LAN終端装置との間にインターフェイスを設定できる通信システムで用いられる。前記無線端末は、無線LANアクセスポイントから前記無線LANアクセスポイントを管理する前記無線LAN終端装置の識別情報を受信するレシーバと、前記無線LANアクセスポイントの識別情報だけでなく、前記無線LAN終端装置の識別情報も前記基地局に報告するコントローラと、を備える。
 実施形態において、前記レシーバは、前記無線LANアクセスポイントの識別情報と前記無線LAN終端装置の識別情報とを含む無線信号を前記無線LANアクセスポイントから受信する。
 実施形態において、前記コントローラは、前記無線LAN終端装置の識別情報の要求を前記無線LANアクセスポイントに送信し、前記レシーバは、前記無線LAN終端装置の識別情報を含む前記要求に対する応答を前記無線LANアクセスポイントから受信する。
 実施形態に係る基地局は、無線LAN終端ノードを識別するWT識別子を、前記無線LAN終端ノードにより管理される無線LANアクセスポイントを識別するAP識別子と共に、他の基地局に送るコントローラを備える。
 実施形態では、前記コントローラは、前記無線LANアクセスポイントが前記他の基地局のカバレッジ内に位置する場合、前記WT識別子を前記AP識別子と共に前記他の基地局に送る。
 実施形態では、前記コントローラは、前記AP識別子を含む無線LAN終端ノードに関する問い合わせを前記他の基地局から受け取る。前記コントローラは、前記問い合わせに対する応答に前記WT識別子と前記AP識別子とを含めて、前記応答を前記他の基地局に送る。
 実施形態では、前記コントローラは、所定の無線LANアクセスポイントを識別する第2AP識別子を含む無線LAN終端ノードに関する問い合わせを前記他の基地局から受け取る。前記コントローラは、前記所定の無線LANアクセスポイントを管理する所定の無線LAN終端ノードを識別する第2WT識別子を知らない場合、第2WT識別子を知らないことを示す情報を含む応答前記他の基地局に送る。
 実施形態では、前記コントローラは、所定の無線LANアクセスポイントを識別する第2AP識別子を含む無線LAN終端ノードに関する問い合わせを前記他の基地局から受け取る。前記コントローラは、前記所定の無線LANアクセスポイントを管理する所定の無線LAN終端ノードを識別する第2WT識別子を知らない場合、前記第2WT識別子を他のノードに問い合わせる。
 実施形態では、前記コントローラは、前記無線LANアクセスポイントを検出した無線端末から前記AP識別子と前記無線LANアクセスポイントを検出した際に検出したセルの識別情報であるセル識別子とを含む報告を前記無線端末から受け取る。前記コントローラは、前記セル識別子が示す前記セルを管理する前記他の基地局に、前記WT識別子を前記AP識別子と共に送る。
 実施形態では、前記コントローラは、前記無線端末がアイドル状態である場合に記録した前記AP識別子と前記セル識別子とを含む報告を前記無線端末から受け取る。
 実施形態では、前記コントローラは、前記他の基地局が前記無線LANアクセスポイントを管理する前記無線LAN終端ノードを知っていると判断した場合には、前記WT識別子及び前記AP識別子を前記他の基地局へ送ることを省略する。
 実施形態では、前記コントローラは、前記他の基地局が近隣基地局でない場合には、前記WT識別子及び前記AP識別子を前記他の基地局へ送ることを省略する。
 実施形態では、前記コントローラは、前記無線LANアクセスポイントを管理する前記無線LAN終端ノードを知らない場合には、コアネットワーク内のノードに前記報告を送る。
 実施形態では、前記コントローラは、前記無線LAN終端ノードから前記WT識別子及び前記AP識別子を受け取る。前記コントローラは、前記無線LAN終端ノードから受け取った前記WT識別子及び前記AP識別子を前記他の基地局に送る。
 実施形態では、前記コントローラは、前記無線LAN終端ノードにおいて無線LANアクセスポイントに関するリストの更新をトリガとして、前記無線LAN終端ノードから前記WT識別子及び前記AP識別子を受け取る。
 実施形態に係る基地局は、無線LAN終端ノードを識別するWT識別子を、前記無線LAN終端ノードにより管理される無線LANアクセスポイントを識別するAP識別子と共に、他の基地局から受け取るコントローラを備える。
 実施形態では、前記コントローラは、前記AP識別子と前記WT識別子とに基づいて、無線LAN終端ノードが管理する無線LANアクセスポイントのリストを更新する。
 実施形態では、前記コントローラは、無線端末、前記他の基地局、及び無線LAN終端ノードの少なくともいずれかからの無線LANアクセスポイントに関する報告に基づいて、前記リストを更新する。
 [第1実施形態]
 以下、図面を参照して、3GPP規格に準拠して構成されるセルラ通信システムであるLTEシステムと無線LAN(WLAN)システムとが連携可能であるケースを例に挙げて説明する。
 (システム構成)
 図1は、システム構成を示す図である。図1に示すように、LTEシステムは、複数のUE(User Equipment)100と、E-UTRAN(Evolved Universal Terrestrial Radio Access Network)10と、EPC(Evolved Packet Core)20と、を含む。
 E-UTRAN10は、セルラRANに相当する。EPC20は、コアネットワークに相当する。E-UTRAN10及びEPC20は、LTEシステムのネットワークを構成する。
 UE100は、移動型の無線通信装置である。UE100はユーザ端末(無線端末)に相当する。UE100は、セルラ通信及びWLAN通信の両通信方式をサポートする端末(デュアル端末)である。なお、UE100は、セルラ通信のみをサポートする端末であってもよい。
 E-UTRAN10は、複数のeNB200(evolved Node-B)を含む。eNB200は基地局に相当する。eNB200は、1又は複数のセルを管理しており、自セルに在圏するUE100との無線通信を行う。「セル」は、無線通信エリアの最小単位を示す用語として使用される他に、UE100との無線通信を行う機能(リソース)を示す用語としても使用される。eNB200は、無線リソース管理(RRM)機能、ユーザデータのルーティング機能、モビリティ制御及びスケジューリングのための測定制御機能等を有する。
 eNB200は、X2インターフェイスを介して相互に接続される。eNB200は、S1インターフェイスを介して、EPC20に含まれるMME(Mobility Management Entity)/S-GW(Serving-Gateway)400と接続される。
 EPC20は、複数のMME/S-GW400及びAAAサーバ(AAA Server)500を含む。MMEは、UE100に対する各種モビリティ制御等を行うネットワークノードであり、制御局に相当する。S-GWは、ユーザデータの転送制御を行うネットワークノードであり、交換局に相当する。AAAサーバ400は、認証(Authentication)、認可(Authorization)、課金(Accounting)を行うサーバ装置である。
 WLAN30は、WLANアクセスポイント(以下「AP」という)300を含む。AP300は、例えばLTEシステムのNWオペレータにより管理されるAP(Operator controlled AP)である。
 WLAN30は、例えばIEEE 802.11諸規格に準拠して構成される。AP300は、セルラ周波数帯とは異なる周波数帯でUE100とのWLAN通信を行う。一般的に、WLAN通信はアンライセンスドバンドで行われる。セルラ通信は、ライセンスドバンドで行われる。AP300は、ルータ等を介してEPC20に接続される。eNB200及びAP300が個別のノードである場合に限らず、eNB200及びAP300が同一のノードとして一体化(Collocated)されていてもよい。或いは、eNB200及びAP300が直接的なインターフェイスを介して相互接続されていてもよい。
 なお、EPC20は、ANDSF(Access Network Discovery and Selection Function)サーバをさらに含んでもよい。ANDSFサーバは、WLAN30に関するANDSF情報を管理する。ANDSFサーバは、WLAN30に関するANDSF情報をUE100に提供する。
 (端末主導型の切り替え制御の基本動作)
 3GPPのリリース12以降において、セルラ・WLAN無線インターワーキング技術がサポートされている。このような技術では、RRCコネクティッド状態又はRRCアイドル状態のUE100は、E-UTRAN10とWLAN30との間で双方向のトラフィック切り替え(ネットワークセレクション及びトラフィック・ステアリング)を行う。
 当該トラフィック切り替えは、E-UTRAN10の補助により、UE100主導(UE based)で行われる。また、当該トラフィック切り替えは、APN(Access Point Name)単位で行われる。以下において、このような切り替え制御を「UE主導型の切り替え制御」と称する。
 E-UTRAN10は、ブロードキャストRRCシグナリング又は個別(dedicated)RRCシグナリングにより、補助情報(RAN assistance parameters)をUE100に送信する。ブロードキャストRRCシグナリングは、例えばSIB(System Information Block)である。個別RRCシグナリングは、例えばRRC Connection Reconfigurationメッセージである。
 補助情報は、E-UTRAN信号強度(受信電力)閾値及び品質閾値、WLANチャネル使用率閾値、WLANバックホールデータレート閾値、WLAN信号強度(受信電力)閾値及び品質閾値等を含む。補助情報は、UE主導型の切り替え制御の対象となるWLAN識別子を含んでもよい。WLAN識別子は、SSID(Service Set Identifier)、BSSID(Basic Service Set Identifier)、HESSID(Homogenous Extended Service Set Identifier)等である。補助情報は、閾値(判定条件)が満たされるべき期間を指定するパラメータを含んでもよい。
 UE主導型の切り替え制御をサポートするUE100は、補助情報を受信し、受信した補助情報を記憶する。UE100は、セル再選択又はハンドオーバを行う際に、記憶している補助情報を破棄してもよい。
 次に、UE100は、UE主導型の切り替え制御を行う。
 先ず、セルラ通信からWLAN通信への切り替え、すなわち、E-UTRAN10からWLAN30への切り替えの一例について説明する。UE100は、セルラに関する第1の判定条件及びWLANに関する第2の判定条件に基づいて、セルラ通信からWLAN通信に切り替えるか否かの切り替え判定を行う。具体的には、第1の判定条件及び第2の判定条件の両方が満たされた場合、UE100は、セルラ通信からWLAN通信への切り替えを行う。
 RSRPmeas < ThreshServingOffloadWLAN, LowP; or
 RSRQmeas < ThreshServingOffloadWLAN, LowQ; 
 ここで、「RSRPmeas」はUE100で測定するセルラ受信信号の受信電力、すなわち参照信号受信電力(RSRP)である。「RSRQmeas」はUE100で測定するセルラ受信信号の受信品質、すなわち参照信号受信品質(RSRQ)である。「ThreshServingOffloadWLAN,LowP」及び「ThreshServingOffloadWLAN,LowQ」は、補助情報に含まれており、WLAN30に切り替えるための閾値である。
 第2の判定条件は、ターゲットWLANに対する以下の条件である。
 ChannelUtilizationWLAN < ThreshChUtilWLAN, Low; and
 BackhaulRateDlWLAN > ThreshBackhRateDLWLAN, High; and
 BackhaulRateUlWLAN > ThreshBackhRateULWLAN, High; and
 BeaconRSSI > ThreshBeaconRSSIWLAN, High
 ここで、「ChannelUtilizationWLAN」はWLANビーコン又はプローブ応答に含まれており、WLANチャネル使用率、すなわちWLAN無線負荷レベルを示す。「BackhaulRateDlWLAN」及び「BackhaulRateUlWLAN」は、ANQP(Access Network Query Protocol)により提供され、WLANバックホールの利用可能伝送レート、すなわちWLANバックホール負荷レベルを示す。「BeaconRSSIは、UE100で測定するビーコン信号の受信信号強度を示す。「ThreshChUtilWLAN, Low」、「ThreshBackhRateDLWLAN, High」、「ThreshBackhRateULWLAN, High」、「ThreshBeaconRSSIWLAN, High」は、補助情報に含まれており、WLAN30に切り替えるための閾値である。
 なお、UE100は、セルラ通信からWLAN通信への切り替えを行う場合、E-UTRAN10とWLAN30との間で双方向のトラフィック切り替えを制御する上位局(上位層:higher layer/upper layer)に対して、第2の判定条件を満たしたAP300の識別子(WLAN識別子)(のリスト(list of WLAN identifiers))と共に、WLAN通信へのトラフィック切り替えを示す情報(move-traffic-to-WLAN indication)を通知する。具体的には、UE100内のASレイヤが、WLAN識別子(及び当該情報)をUE100内のNASレイヤに通知し、UE100内のNASレイヤが、NASプロシージャを用いて、上位局(MME)に通知する。UE100は、WLAN識別子の通知を受けた上位局からの指示に基づいて、セルラ通信からWLAN通信への切り替え(eNB200を介する通信経路からAP300を介する通信経路への切り替え)を行う制御を実行する。
 次に、WLAN通信からセルラ通信への切り替え、すなわち、WLAN30からE-UTRAN10への切り替えの一例について説明する。UE100は、セルラに関する第3の判定条件及びWLANに関する第4の判定条件に基づいて、WLAN通信からセルラ通信に切り替えるか否かの切り替え判定を行う。具体的には、第3の判定条件又は第4の判定条件の一方が満たされた場合、UE100は、WLAN通信からセルラ通信への切り替えを行う。
 第3の判定条件は、E-UTRANターゲットセルに対する以下の条件である。
 RSRPmeas > ThreshServingOffloadWLAN, HighP; and
 RSRQmeas > ThreshServingOffloadWLAN, HighQ;
 ここで、「ThreshServingOffloadWLAN,HighP」及び「ThreshServingOffloadWLAN,HighQ」は、補助情報に含まれており、E-UTRAN10に切り替えるための閾値である。
 第4の判定条件は、ソースWLANに対する以下の条件である。
 ChannelUtilizationWLAN > ThreshChUtilWLAN, High; or
 BackhaulRateDlWLAN < ThreshBackhRateDLWLAN, Low; or
 BackhaulRateUlWLAN < ThreshBackhRateULWLAN, Low; or
 BeaconRSSI < ThreshBeaconRSSIWLAN, Low;
 ここで、「ThreshChUtilWLAN, High」、「ThreshBackhRateDLWLAN, Low」、「ThreshBackhRateULWLAN, Low」、「ThreshBeaconRSSIWLAN, Low」は、補助情報に含まれており、E-UTRAN10に切り替えるための閾値である。
 (無線端末)
 以下において、実施形態に係る無線端末について説明する。図2は、実施形態に係るUE100を示すブロック図である。
 図2に示すように、UE100は、LTE無線通信部110と、WLAN無線通信部120と、制御部130とを有する。
 LTE無線通信部110は、eNB200と無線通信を行う機能を有する。LTE無線通信部110は、例えば、無線送受信機によって構成される。無線送受信機は、送信機と受信機とによって構成されてもよい。LTE無線通信部110は、eNB200と無線信号(セルラ信号)の送受信を行う。LTE無線通信部110は、例えば、eNB200から参照信号を定期的に受信する。LTE無線通信部110は、参照信号の信号レベル(RSRP)及び参照信号の信号品質(RSRQ)を測定できる。LTE無線通信部110は、補助情報をeNB200から受信できる。
 WLAN無線通信部120は、AP300と無線通信を行う機能を有する。WLAN無線通信部120は、例えば、無線送受信機によって構成される。無線送受信機は、送信機と受信機とによって構成されてもよい。WLAN無線通信部120は、AP300と無線信号(WLAN信号)の送受信を行う。例えば、WLAN無線通信部120は、無線信号としてビーコン信号をAP300から受信する。また、WLAN無線通信部120は、受信信号の信号強度(RSSI)を測定できる。
 制御部130は、CPU(プロセッサ)及びメモリ等によって構成されており、UE100を制御する。具体的には、制御部130は、LTE無線通信部110及びWLAN無線通信部120を制御する。なお、制御部130を構成するメモリが記憶部として機能してもよいし、制御部130を構成するメモリとは別に記憶部を構成するメモリが設けられてもよい。制御部130は、コントローラによって構成されてもよい。また、制御部130は、後述する各種の処理及び各種の通信プロトコルを実行する。
 (無線基地局)
 以下において、実施形態に係る無線基地局について説明する。図3は、実施形態に係るeNB200を示すブロック図である。
 図3に示すように、eNB200は、LTE無線通信部210と、制御部220と、ネットワークインターフェイス230とを有する。
 LTE無線通信部210は、UE100と無線通信を行う機能を有する。LTE無線通信部210は、例えば、無線送受信機によって構成される。無線送受信機は、送信機と受信機とによって構成されてもよい。LTE無線通信部210は、UE100と無線信号(セルラ信号)の送受信を行う。LTE無線通信部210は、例えば、UE100に対して参照信号を定期的に送信する。また、LTE無線通信部210は、補助情報をUE100に送信できる。また、LTE無線通信部210は、トラフィック切り替えの候補となる無線LANアクセスポイントを示すWLAN識別子のリストを送信できる。
 制御部220は、CPU(プロセッサ)及びメモリ等によって構成されており、eNB200を制御する。具体的には、制御部220は、LTE無線通信部210及びネットワークインターフェイス130を制御する。なお、制御部220を構成するメモリが記憶部として機能してもよいし、制御部220を構成するメモリとは別に記憶部を構成するメモリが設けられてもよい。制御部220は、コントローラによって構成されてもよい。また、制御部220は、後述する各種の処理及び各種の通信プロトコルを実行する。
 ネットワークインターフェイス230は、X2インターフェイスを介して他の基地局(例えば、近隣基地局)と接続され、S1インターフェイスを介してMME/S-GWと接続される。ネットワークインターフェイス230は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信に用いられる。また、ネットワークインターフェイス230は、所定のインターフェイスを介してAP300と接続されてもよい。ネットワークインターフェイス230は、AP300との通信に用いられる。
 (アクセスポイント)
 以下において、実施形態に係るAP300について説明する。図4は、実施形態に係るAP300を示すブロック図である。
 図4に示すように、AP300は、WLAN無線通信部310と、制御部320と、ネットワークインターフェイス330とを有する。
 WLAN無線通信部310は、UE100と無線通信を行う機能を有する。WLAN無線通信部310は、例えば、無線送受信機によって構成される。無線送受信機は、送信機と受信機とによって構成されてもよい。WLAN無線通信部310は、UE100と無線信号(WLAN信号)の送受信を行う。WLAN無線通信部310は、例えば、UE100と無線信号(WLAN信号)の送受信を行う。例えば、WLAN無線通信部310は、無線信号としてビーコン信号を送信する。
 制御部320は、CPU(プロセッサ)及びメモリ等によって構成されており、AP300を制御する。具体的には、制御部320は、WLAN無線通信部310及びネットワークインターフェイス330を制御する。なお、制御部220を構成するメモリが記憶部として機能してもよいし、制御部320を構成するメモリとは別に記憶部を構成するメモリが設けられてもよい。制御部320は、コントローラによって構成されてもよい。また、制御部320は、後述する各種の処理及び各種の通信プロトコルを実行する。
 ネットワークインターフェイス330は、所定のインターフェイスを介してバックホールと接続される。ネットワークインターフェイス330は、eNB200との通信に用いられる。ネットワークインターフェイス330は、所定のインターフェイスを介して、eNB200と直接的に接続されてもよい。
 (実施形態に係る動作)
 次に、実施形態に係る動作について、図5を用いて説明する。図5は、実施形態に係る動作を説明するための図である。
 なお、以下で説明するUE100が実行する処理(動作)について、UE100が備えるLTE無線通信部110、WLAN無線通信部120及び制御部130の少なくともいずれかが実行するが、便宜上、UE100が実行する処理として説明する。同様に、以下で説明するeNB200が実行する処理(動作)について、eNB200が備えるLTE無線通信部210、制御部220及びネットワークインターフェイス230の少なくともいずれかが実行するが、便宜上、eNB200が実行する処理として説明する。
 また、同様に、以下で説明するAP300が実行する処理(動作)について、AP300が備えるWLAN無線通信部310、制御部320及びネットワークインターフェイス330の少なくともいずれかが実行するが、便宜上、AP300が実行する処理として説明する。
 図5の初期状態において、UE100は、eNB200が管理するセル内に位置する。UE100は、RRCコネクティッド状態である。或いは、UE100は、RRCアイドル状態であり、ステップS110の処理が実行される前に、RRCコネクティッド状態に移行する。
 AP300は、eNB200の周辺に位置する無線LANのエンティティである。AP300は、eNB200が管理するセル内に位置していてもよい。また、AP300は、カバレッジエリアを有する。AP300は、カバレッジエリア内に位置するUE100に対して、無線LANサービスを提供する。AP300のカバレッジエリアは、セルによって構成されるカバレッジエリア(eNB200が有するカバレッジエリア)の少なくとも一部と重複する。一般的に、AP300のカバレッジエリアは、セルのカバレッジエリアよりも小さい。
 以下において、eNB200を運用するネットワークオペレータと、AP300を運用するネットワークオペレータとが同一であると仮定して説明を進める。従って、eNB200とAP300とは、同一のPLMN(Public Land Mobile Network)に属する。
 図5に示すように、ステップS110において、eNB200は、AP300(WLAN AP)を報告するためにUE100に設定する。eNB200は、AP300に関する報告の対象となるAP300を特定するための制御情報を送信する。UE100は、当該制御情報を受信する。制御情報によって報告の対象となるAP300の数が限定される。
 eNB200は、制御情報をユニキャストで送信できる。例えば、eNB200は、セルからの無線信号に関する測定報告(Measurement Report)を設定するためのメッセージ(MeasConfig)に制御情報を含めて、当該メッセージをUE100に送信する。eNB200は、「MeasConfig」内の「MeasObjectToAddModList」に制御情報を含めてもよい。或いは、eNB200は、制御情報をブロードキャストで送信してもよい。eNB200は、例えば、SIB(システム情報ブロック)により制御情報を自セル内のUE100に送信してもよい。
 制御情報は、例えば、eNB200(サービングセル)が属するPLMNを特定できる識別情報(PLMN ID、ECGI(E-UTRAN Cell Global ID)など)を含むことができる。制御情報は、所定のネットワークオペレータを示す識別情報を含んでもよい。例えば、所定のネットワークオペレータを示す識別情報は、事業者コードを示すMNC(Mobile Network Code)、各ネットワークオペレータに割り当てられたその他の識別情報(ENUMRATED)などである。或いは、制御情報は、所定のネットワークオペレータと関連付けられたAP300の識別子を含んでもよい。例えば、所定のネットワークオペレータと関連付けられたAP300の識別子は、所定のネットワークオペレータが運用するAP300に共通に設定されるビット列によって少なくとも一部が構成されるSSID(Service Set Identifier)である。
 また、制御情報は、AP300からの無線信号の受信時間の閾値(以下、第1閾値)及びAP300からの無線信号の信号強度(RSSI)の閾値(以下、第2閾値)の少なくともいずれかを含んでいてもよい。UE100は、AP300からの無線信号の受信時間が第1閾値を越えた場合に、当該AP300を後述する報告の対象と見なす。第1閾値は、タイマであってもよい。UE100は、AP300からの無線信号を受信した場合に、タイマを開始し、タイマが満了するまでAP300からの無線信号を受信していた場合、AP300を報告の対象とみなすことができる。当該タイマは、TTT(Time To Trigger)とは異なるタイマであってもよい。また、UE100は、AP300からの無線信号の信号強度が第2閾値を越えた場合に、当該AP300を報告の対象と見なす。また、UE100は、AP300からの無線信号の受信時間が第1閾値を越えた場合に無線信号に関する測定(RSSIの測定など)を開始してもよい。
 UE100は、制御情報に基づいて、AP300からの無線信号のモニタ(受信)を開始できる。
 ステップS120において、AP300は、AP300を運用するネットワークオペレータを特定可能な識別情報を含む無線信号(WLAN signal)を送信する。UE100は、AP300からの無線信号を受信する。
 例えば、AP300は、所定のネットワークオペレータと関連付けられたAP300の識別子を含む無線信号を送信する。或いは、AP300は、ネットワークオペレータが任意で設定可能なフィールドに、AP300を運用するネットワークオペレータを特定可能な識別情報を含むビーコン信号を無線信号として送信してもよい。当該識別情報は、例えば、AP300が属するPLMNの識別情報、AP300を運用するネットワークオペレータを示す識別情報などである。これらの識別情報は、上述の制御情報に含まれる情報と同様の情報である。
 UE100は、AP300からの無線信号を受信する際に、他のセルからの無線信号を受信してもよい。
 ステップS130において、AP300からの無線信号を受信したUE100は、無線信号の送信元であるAP300が、eNB200を運用するネットワークオペレータ(以下、特定NWオペレータ)に運用されているか否かを判定する。具体的には、UE100は、以下の少なくともいずれかの方法によって判定する。
 第1の方法では、UE100は、AP300が属するPLMNの識別情報によって示されるPLMNが、eNB200(サービングセル)が属するPLMNと同一である場合に、AP300が特定NWオペレータに運用されていると判定する。
 第2の方法では、UE100は、AP300を運用するネットワークオペレータを示す識別情報によって示されるネットワークオペレータが、特定NWオペレータである場合に、AP300が特定NWオペレータに運用されていると判定する。すなわち、UE100は、特定NWオペレータを示す識別情報がAP300からの無線信号に含まれる場合に、AP300が特定NWオペレータに運用されていると判定する。
 第3の方法では、UE100は、AP300の識別子が特定NWオペレータと関連付けられている場合に、AP300が特定NWオペレータに運用されていると判定する。すなわち、UE100は、特定NWオペレータと関連付けられたAP300の識別子がAP300からの無線信号に含まれる場合に、AP300が特定NWオペレータに運用されていると判定する。
 なお、UE100は、AP300からの無線信号の受信時間が第1閾値を越えた場合に、判定を開始してもよい。或いは、UE100は、AP300からの無線信号の信号強度が第2閾値を越えた場合に、判定を開始してもよい。受信時間及び信号強度の測定負荷を考慮すると、UE100は、判定を終了した後に、無線信号に関する測定(受信時間、RSSIなどの測定)を開始したり、測定結果(受信時間、RSSIなどの測定結果)と閾値(第1閾値、第2閾値)とを比較したりすることが好ましい。
 UE100は、無線信号の送信元であるAP300が特定NWオペレータに運用されていると判定した場合、ステップS140の処理を実行する。UE100は、無線信号の送信元であるAP300が特定NWオペレータに運用されていないと判定した場合、処理を終了する。すなわち、UE100は、AP300に関する報告を送信しない。すなわち、UE100は、AP300に関する報告の送信を省略する。また、UE100は、AP300からの無線信号の受信信号に関する情報を破棄してもよい。UE100は、AP300からの無線信号の受信信号に関する測定を省略してもよい。
 ステップS140において、UE100は、AP300に関する報告をeNB200に送信する。eNB200は、AP300に関する報告を受信する。
 UE100は、AP300が特定NWオペレータに運用されていると判定した場合にのみ、AP300に関する報告をeNB200に送信する。UE100は、特定NWオペレータに運用されているAP300に関する情報のみを含む報告をeNB200に送信する。従って、UE100は、AP300が特定NWオペレータ以外のその他のオペレータが運用されていると判定した場合、AP300に関する報告をeNB200に送信しない。すなわち、UE100は、その他のオペレータが運用するAP300に関する報告の送信をeNB200に省略する。
 UE100は、AP300に関する報告として、AP300の識別子(WLAN識別子)をeNB200に送信する。AP300の識別子は、例えば、SSID、BSSID(Basic Service Set Identifier)、HESSID(Homogenous Extended Service Set Identifier)等である。また、UE100は、AP300からの無線信号の受信時間及びAP300からの無線信号の信号強度の少なくともいずれかの情報をeNB200に送信してもよい。
 また、UE100は、AP300からの無線信号を受信する際に他のセルからの無線信号を受信していた場合、他のセルの識別情報(Cell ID)をAP300に関する報告と共にeNB200に送信してもよい。或いは、UE100は、セルからの無線信号に関する測定報告に、AP300に関する報告を含めてもよい。なお、測定報告は、他のセルの識別情報を含み得る。
 ステップS150において、UE100から報告を受信したeNB200は、報告されたAP300がトラフィック切替先の候補となるAPであるか否かを判定する。
 eNB200は、トラフィック切替先の候補となるAPを管理するテーブルに、報告されたAP300の識別子が含まれるか否かを判定する。テーブルは、eNB200のセルによって構成されるカバレッジエリアの少なくとも一部と重複するカバレッジエリアを有するAP300であり、特定NWオペレータが運用するAP300の識別子を含む。eNB200は、テーブルに報告されたAP300の識別子が含まれる場合、処理を終了する。
 一方、eNB200は、報告されたAP300の識別子がテーブルに含まれない場合、テーブルに報告されたAP300の識別子を追加するか否かを判定する。eNB200は、報告されたAP300は特定NWオペレータによって運用されるため、当該AP300の識別子をテーブルに追加してもよい。或いは、eNB200は、報告に含まれるAP300からの無線信号の受信時間及びAP300からの無線信号の信号強度の少なくともいずれかの情報に基づいて、AP300の識別子を追加するか否かを判定してもよい。例えば、eNB200は、AP300からの無線信号の受信時間が閾値を越える場合に、AP300の識別子をテーブルに追加してもよい。また、eNB200は、AP300からの無線信号の信号強度が閾値を越える場合に、AP300の識別子をテーブルに追加してもよい。或いは、eNB200は、(報告に含まれるAP300からの無線信号の受信時間及びAP300からの無線信号の信号強度の少なくともいずれかの情報に基づいて)、ステップS160の処理を実行してもよい。
 なお、eNB200は、後述するように、他のeNB200にAP300に関する報告を転送してもよい。
 ステップS160において、eNB200は、報告されたAP300の識別子(WLAN ID)をAAAサーバ500に送信する。AAAサーバ500は、受信したAP300の識別子をeNB200が保持するテーブルに追加することを認証(許可)するか否かを判断する。例えば、AAAサーバ500は、AP300の識別子によって示されるAPが特定NWオペレータが運用するAPである場合に、AP300の識別子をテーブルに追加することを認証する。
 ステップS170において、AAAサーバ500は、認証結果(Authentication result)をeNB200に送信する。eNB200は、認証結果に基づいて、AP300の識別子をテーブルに追加するか否かを判定する。
 なお、eNB200は、テーブルに基づいて、トラフィック切り替えの候補となるAP300をUE100に対して通知できる。UE100は、トラフィック切り替えの候補となるAP300の中から適切なAP300を選択できる。
 以上のように、UE100は、特定NWオペレータが運用するAP300に関する報告をeNB200に送信する。eNB200は、当該報告を受信する。これにより、UE100は、特定NWオペレータが運用しない(すなわち、UE100が利用できない)AP300に関する報告を省略できる。その結果、シグナリングを減少したり、シグナリングのオーバヘッドを低減したりできる。また、eNB200は、UE100が無線信号を受信した全てのAP300(特定NWオペレータが関与しないAP300を含む)を報告される場合と比べて、トラフィック切り替えの候補となるAP300を適切に把握できる。
 (他の実施形態)
 次に、第1実施形態に関連する他の実施形態について、図6を用いて説明する。図6は、その他の実施形態に係る動作を説明するための図である。実施形態と同様の部分は、説明を適宜省略する。
 図6に示すように、ステップS210において、eNB200-1は、MDT(Minimization of Drive Test)に関する設定情報をUE100に送信する。例えば、設定情報は、記憶型MDT(Logged MDT)に関する設定情報である。
 なお、Logged MDTでは、RRCアイドル状態のUE100が、ネットワーク(eNB200-1)から設定された測定パラメータに従って無線環境の測定を行い、該測定の結果を位置情報及び時間情報と共に測定データとして記憶する。UE100は、RRCコネクティッド状態に移行した後、測定データをネットワークに報告する。
 設定情報は、AP300に関する報告の対象となるAP300を特定するための制御情報を含む。
 UE100は、設定情報に基づいて、測定を行い、測定データを記憶する。
 ステップS220及びS230は、ステップS120及びS130に対応する。
 ステップS240において、UE100は、RRCコネクティッド状態(RRCコネクティッドモード)に移行する。
 ステップS250において、UE100は、eNB200-1とRRC接続との接続が完了したことを示すメッセージ(RRC connection establishment complete)をeNB200-1に送信する。当該メッセージは、UE100が測定データを有することを示すインジケータを含む。
 ステップS260において、メッセージを受信したeNB200-1は、インジケータに基づいて、測定データを要求するためのUE情報要求(UE information request)をUE100に送信する。
 ステップS270において、UE情報要求を受信したUE100は、UE情報報告(UE information report)をeNB200に送信する。UE情報報告は、測定結果を含む。
 ここで、測定結果は、AP300の無線信号に関する測定結果を含む。従って、UE情報報告は、上述のステップS140におけるAP300に関する報告(の内容)を含む。
 なお、eNB200-1は、上述のステップS150における処理を実行してもよい。
 ステップS280において、eNB200-1において、特定NWオペレータが運用するeNB200-2にAP300に関する報告をX2インターフェイスを介して転送する。
 eNB200-1は、近隣セルリストに含まれるセルを管理するeNB200にAP300に関する報告を転送してもよい。或いは、eNB200-1は、UE情報報告に含まれるセル識別子によって示されるセルを管理するeNB200にAP300に関する報告を転送してもよい。或いは、eNB200-1は、UE100がAP300から無線信号を受信する際に受信したセルの識別子によって示されるセルを管理するeNB200にAP300に関する報告を転送してもよい。eNB200-1は、セル識別子と、例えば、測定時刻を示すタイムスタンプとに基づいて、AP300に関する報告を転送するeNB200を決定できる。これにより、eNB200-1の近隣eNB200のうち、当該AP300に近接しないeNB200へAP300に関する報告を転送することを省略できる。
 なお、既存技術では、Logged MDTの報告を受信したeNB200-1は、当該報告をコアネットワークにのみ送信し、近隣eNBに送信しない。
 AP300に関する報告を受信したeNB200-2は、上述のステップS150のeNB200と同様に、報告されたAP300がトラフィック切替先の候補となるAPであるか否かを判定する。
 以上のように、eNB200-1は、AP300に関する報告をeNB200-2に転送する。eNB200-2は、UE100からだけでなく、eNB200-1からも、AP300に関する報告を受信する。従って、eNB200-2は、UE100からのみAP300に関する報告を受信する場合と比べて、トラフィック切り替えの候補となるAP300を適切に把握できる。
 [第2実施形態]
 次に、第2実施形態について説明する。第1実施形態と同様の部分は説明を適宜省略する。
 (システム構成)
 図7は、第2実施形態に係るシステム構成を示す図である。
 図7に示すように、eNB200は、Xwインターフェイスを介して、後述するWT600と接続される。
 EPC20は、P-GW700を含んでもよい。P-GW700は、外部ネットワークから(及び外部ネットワークに)ユーザデータを中継する制御を行う。
 WLAN30は、WLANアクセスポイント(以下「AP」という)300と、WLAN終端装置(以下、「WT」という)600とを含んでもよい。WT600は、WLANにおけるノードであり、Xwインターフェイスを介してeNB200と接続される。WT600は、1以上のAP300を管理する。WT600は、自身が管理するAP300の情報をeNB200に送ることができる。また、WT600は、eNB200から受け取った情報を自身が管理するAP300に送ることができる。
 なお、Xwインターフェイスは、3GPP RANとWLANとの間の論理インターフェイスである。Xwインターフェイスは、LTE(3GPP RAN)側において、eNB200で終端し、WLAN側において、WT600で終端する。図1において、Xwインターフェイスは、eNB200とWT600とを直接的に結ぶインターフェイスであるが、MME/S-GW400及びP-GW500を経由するインターフェイスであってもよい。
 図8は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。図8に示すように、無線インターフェイスプロトコルは、OSI参照モデルの第1層乃至第3層に区分されている。第1層は、物理(PHY)層である。第2層は、MAC(Medium Access Control)層、RLC(Radio Link Control)層、及びPDCP(Packet Data Convergence Protocol)層を含む。第3層は、RRC(Radio Resource Control)層を含む。
 物理層は、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100の物理層とeNB200の物理層との間では、物理チャネルを介してデータ及び制御信号が伝送される。
 MAC層は、データの優先制御、ハイブリッドARQ(HARQ)による再送処理、及びランダムアクセス手順等を行う。UE100のMAC層とeNB200のMAC層との間では、トランスポートチャネルを介してデータ及び制御信号が伝送される。eNB200のMAC層は、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS))及びUE100への割当リソースブロックを決定するスケジューラを含む。
 RLC層は、MAC層及び物理層の機能を利用してデータを受信側のRLC層に伝送する。UE100のRLC層とeNB200のRLC層との間では、論理チャネルを介してデータ及び制御信号が伝送される。
 PDCP層は、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 RRC層は、制御信号を取り扱う制御プレーンでのみ定義される。UE100のRRC層とeNB200のRRC層との間では、各種設定のためのメッセージ(RRCメッセージ)が伝送される。RRC層は、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとeNB200のRRCとの間に接続(RRC接続)がある場合、UE100はRRCコネクティッド状態(コネクティッド状態)であり、そうでない場合、UE100はRRCアイドル状態(アイドル状態)である。
 RRC層の上位に位置するNAS(Non-Access Stratum)層は、セッション管理及びモビリティ管理等を行う。
 (無線端末)
 以下において、UE100(無線端末)の構成について説明する。図9は、UE100を示すブロック図である。
 図9に示すように、UE100は、レシーバ(Receiver:受信部)101、トランスミッタ(Transmitter:送信部)102、及びコントローラ(Controller:制御部)130を備える。レシーバ101とトランスミッタ102とは、一体化されたトランシーバ(送受信部)であってもよい。また、UE100は、セルラ通信とWLAN通信とで共通に用いられるレシーバ101及びトランスミッタ102を備えてもいてもよい。UE100は、セルラ通信用のレシーバ101及びトランスミッタ102と、WLAN通信用のレシーバ101及びトランスミッタ102とをそれぞれ備えてもよい。この場合、セルラ通信用のレシーバ101及びトランスミッタ102は、第1実施形態のLTE無線通信部110を構成してもよい。WLAN通信用のレシーバ101及びトランスミッタ102は、第1実施形態のWLAN無線通信部120を構成してもよい。なお、コントローラ130は、第1実施形態の制御部130に対応してもよい。
 レシーバ101は、コントローラ130の制御下で各種の受信を行う。レシーバ101は、アンテナを含む。レシーバ101は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換してコントローラ130に出力する。
 トランスミッタ102は、コントローラ130の制御下で各種の送信を行う。トランスミッタ102は、アンテナを含む。トランスミッタ102は、コントローラ130が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
 コントローラ130は、UE100における各種の制御を行う。コントローラ130は、レシーバ101及びトランシーバ102を制御できる。コントローラ130は、プロセッサ及びメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に使用される情報を記憶する。プロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行うベースバンドプロセッサと、メモリに記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)と、を含む。コントローラ130は、後述する各種の処理及び上述した各種の通信プロトコルを実行する。
 (基地局)
 以下において、eNB200(基地局)の構成について説明する。図10は、eNB200を示すブロック図である。
 図10に示すように、eNB200は、レシーバ(受信部)201、トランスミッタ(送信部)202、コントローラ(制御部)220、及びネットワークインターフェイス230を備える。レシーバ201とトランスミッタ202とは、一体化されたトランシーバ(送受信部)であってもよい。当該トランシーバ(送受信部)は、第1実施形態のLTE無線通信部210に対応してもよい。なお、コントローラ220は、第1実施形態の制御部220に対応してもよい。
 レシーバ201は、コントローラ220の制御下で各種の受信を行う。レシーバ210は、アンテナを含む。レシーバ201は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換してコントローラ220に出力する。
 トランスミッタ202は、コントローラ220の制御下で各種の送信を行う。トランスミッタ202は、アンテナを含む。トランスミッタ202は、コントローラ220が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
 コントローラ220は、eNB200における各種の制御を行う。コントローラ220は、レシーバ201、トランスミッタ202及びネットワークインターフェイス230を制御できる。コントローラ220は、プロセッサ及びメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に使用される情報を記憶する。プロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行うベースバンドプロセッサと、メモリに記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)と、を含む。コントローラ220は、後述する各種の処理及び上述した各種の通信プロトコルを実行する。
 ネットワークインターフェイス230は、X2インターフェイスを介して隣接eNB200と接続され、S1インターフェイスを介してMME/S-GW400と接続される。ネットワークインターフェイス230は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信等に使用される。
 また、ネットワークインターフェイス230は、Xwインターフェイスを介してWT600と接続される。ネットワークインターフェイス230は、Xwインターフェイス上で行う通信等に使用される。
 (無線LANアクセスポイント)
 以下において、AP300(無線LANアクセスポイント)の構成について説明する。図11は、AP300を示すブロック図である。
 図11に示すように、AP300は、レシーバ(受信部)301、トランスミッタ(送信部)302、コントローラ(制御部)320、及びネットワークインターフェイス330を備える。レシーバ301とトランスミッタ303とは、一体化されたトランシーバ(送受信部)であってもよい。当該トランシーバ(送受信部)は、第1実施形態のWLAN無線通信部310に対応してもよい。なお、コントローラ320は、第1実施形態の制御部320に対応してもよい。
 レシーバ301は、コントローラ320の制御下で各種の受信を行う。レシーバ301は、アンテナを含む。レシーバ301は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換してコントローラ320に出力する。
 トランスミッタ302は、コントローラ320の制御下で各種の送信を行う。トランスミッタ302は、アンテナを含む。トランスミッタ302は、コントローラ320が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
 コントローラ320は、AP300における各種の制御を行う。コントローラ320は、レシーバ301、トランスミッタ302及びネットワークインターフェイス330を制御できる。コントローラ320は、プロセッサ及びメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に使用される情報を記憶する。プロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行うベースバンドプロセッサと、メモリに記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)と、を含む。コントローラ320は、後述する各種の処理及び上述した各種の通信プロトコルを実行する。
 ネットワークインターフェイス330は、所定のインターフェイスを介してバックホールと接続される。また、ネットワークインターフェイス330は、WT600と接続される。ネットワークインターフェイス330は、WT600との通信等に使用される。
 (無線LAN終端装置)
 以下において、WT600(無線LAN終端装置)の構成について説明する。図12は、WT600を示すブロック図である。
 図12に示すように、WT600は、コントローラ(制御部)630及びネットワークインターフェイス640を備える。
 コントローラ630は、WT600における各種の制御を行う。コントローラ630は、ネットワークインターフェイス640を制御できる。コントローラ630は、プロセッサ及びメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に使用される情報を記憶する。プロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行うベースバンドプロセッサと、メモリに記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)と、を含む。コントローラ630は、後述する各種の処理及び上述した各種の通信プロトコルを実行する。
 ネットワークインターフェイス640は、所定のインターフェイスを介してバックホールと接続される。また、ネットワークインターフェイス640は、AP300と接続される。ネットワークインターフェイス640は、AP300との通信等に使用される。
 また、ネットワークインターフェイス640は、Xwインターフェイスを介してeNB200と接続される。ネットワークインターフェイス640は、Xwインターフェイス上で行う通信等に使用される。
 (動作環境)
 以下において、動作環境について図13を用いて説明する。図13は、動作環境を示す図である。
 図13において、UE100は、eNB200が管理するセル内に位置する。UE100は、eNB200とRRC接続を確立し、RRCコネクティッド状態である。或いは、UE100は、RRCアイドル状態であり、eNB200に所定の情報を送信する場合に、RRCコネクティッド状態に移行してもよい。
 複数のAP300(AP300-1~AP300-4)は、eNB200の周辺に位置する。AP300は、eNB200が管理するセル内に位置していてもよい。また、各AP300は、カバレッジエリアを有する。各AP300は、カバレッジエリア内に位置するUE100に対して、無線LANサービスを提供する。各AP300のカバレッジエリアは、セルによって構成されるカバレッジエリア(eNB200が有するカバレッジエリア)の少なくとも一部と重複する。一般的に、各AP300のカバレッジエリアは、セルのカバレッジエリアよりも小さい。
 eNB200は、WT600との間にXwインターフェイスが設定され、Xwインターフェイスを介してWT600と通信可能であってもよい。或いは、eNB200とWT600との間にXwインターフェイスが設定されていなくてもよい。
 eNB200は、自セルによって構成されるカバレッジエリアと重複するカバレッジエリアを有するAP300として、AP300-1~AP300-3が存在することを知っている。一方、eNB200は、AP300-4を知らない。
 このような状況において、UE100が、AP300-4からのビーコン信号を受信し、AP300-4をeNB200に報告したと仮定する。この場合、eNB200は、AP300-4を知らないため、AP300-4を管理するWTが分からない。従って、eNB200は、適切なWTとXwインターフェイスを設定できない虞がある。
 そこで、以下において、eNB200が、AP300とWT600とを適切に把握できる方法を説明する。
 なお、以下で説明するUE100が実行する処理(動作)について、UE100が備えるレシーバ110、トランスミッタ120及びコントローラ130の少なくともいずれかが実行するが、便宜上、UE100が実行する処理として説明する。同様に、以下で説明するeNB200が実行する処理(動作)について、eNB200が備えるレシーバ210、トランスミッタ220、コントローラ230及びネットワークインターフェイス240の少なくともいずれかが実行するが、便宜上、eNB200が実行する処理として説明する。同様に、以下で説明するAP300が実行する処理(動作)について、AP300が備えるレシーバ310、トランスミッタ320、コントローラ330及びネットワークインターフェイス340の少なくともいずれかが実行するが、便宜上、AP300が実行する処理として説明する。同様に、以下で説明するWT600が実行する処理(動作)について、WT600が備えるコントローラ630及びネットワークインターフェイス640の少なくともいずれかが実行するが、便宜上、WT600が実行する処理として説明する。
 第2実施形態について説明する。第2実施形態では、eNB200がWT600に関する問い合わせを送るケースを説明する。
 (第2実施形態に係る動作)
 第2実施形態に係る動作について、図14を用いて説明する。図14は、第1実施形態に係る動作を説明するためのシーケンス図である。
 図14に示すように、ステップS1101において、eNB200は、AP300に関する報告をUE100に要求する。具体的には、eNB200は、AP300に関する報告の対象となるAP300を特定するための制御情報(Measurement request)を送信する。UE100は、当該制御情報を受信する。制御情報によって報告の対象となるAP300の数を限定できる。
 eNB200は、制御情報をユニキャストで送信できる。例えば、eNB200は、セルからの無線信号に関する測定報告(Measurement Report)を設定するためのメッセージ(MeasConfig)に制御情報を含めて、当該メッセージをUE100に送信する。eNB200は、「MeasConfig」内の「MeasObjectToAddModList」に制御情報を含めてもよい。或いは、eNB200は、制御情報をブロードキャストで送信してもよい。eNB200は、例えば、SIB(システム情報ブロック)により制御情報を自セル内のUE100に送信してもよい。
 制御情報は、例えば、eNB200(サービングセル)が属するPLMNを特定できる識別情報(PLMN ID、ECGI(E-UTRAN Cell Global ID)など)を含むことができる。制御情報は、所定のネットワークオペレータを示す識別情報を含んでもよい。例えば、所定のネットワークオペレータを示す識別情報は、事業者コードを示すMNC(Mobile Network Code)、各ネットワークオペレータに割り当てられたその他の識別情報(ENUMRATED)などである。或いは、制御情報は、所定のネットワークオペレータと関連付けられたAP300の識別子を含んでもよい。例えば、所定のネットワークオペレータと関連付けられたAP300の識別子は、所定のネットワークオペレータが運用するAP300に共通に設定されるビット列によって少なくとも一部が構成されるSSID(Service Set Identifier)である。
 また、制御情報は、AP300からの無線信号の受信時間の閾値(以下、第1閾値)及びAP300からの無線信号の信号強度(RSSI)の閾値(以下、第2閾値)の少なくともいずれかを含んでいてもよい。UE100は、AP300からの無線信号の受信時間が第1閾値を越えた場合に、当該AP300を後述する報告の対象と見なすことができる。第1閾値は、タイマであってもよい。UE100は、AP300からの無線信号を受信した場合に、タイマを開始し、タイマが満了するまでAP300からの無線信号を受信していた場合、AP300を報告の対象とみなすことができる。当該タイマは、TTT(Time To Trigger)とは異なるタイマであってもよい。また、UE100は、AP300からの無線信号の信号強度が第2閾値を越えた場合に、当該AP300を報告の対象と見なす。また、UE100は、AP300からの無線信号の受信時間が第1閾値を越えた場合に無線信号に関する測定(RSSIの測定など)を開始してもよい。
 また、制御情報は、AP300に関連する識別情報を含む無線信号の送信しないAP(いわゆるステルスAP)を特定するための情報を含んでいてもよい。ステルスAPは、自身のSSIDを有さないAP300であってもよいし、SSIDとして「0」又は「00x0」が設定されたAP300であってもよい。或いは、ステルスAPは、ステルス機能が有効であるAP300であってもよい。この場合、AP300は、ステルス機能が有効である間、SSID(又はESSID)を含むビーコン信号を送信しない。すなわち、ステルスAPは、SSID(又はESSID)を含むビーコン信号の送信を省略する。一方、AP300は、ステルス機能が無効である間、SSID(又はESSID)を含むビーコン信号を送信できる。
 ステルスAPは、UE100からプローブ要求(Prove request)を受信した場合に、プローブ応答(Prove response)を送信できる。プローブ応答は、AP300に関連する識別情報(例えば、SSID、ESSIDなど)を含んでもよい。
 なお、eNB200が、UE100にステルスAPに関して設定できるため、例えば、オペレータは、準備段階(例えば、配置テスト中)のAPのカバレッジ情報をUE100から取得できる。
 eNB200は、AP300に関する報告の要求(すなわち、制御情報の送信)により、報告対象となるAP300をUE100に設定できる。
 ステップS1102において、AP300は、無線信号(ビーコン信号)を送信する。無線信号は、AP300の識別子(WLAN識別子)を含む。AP300の識別子は、例えば、SSID、BSSID(Basic Service Set Identifier)、HESSID(Homogenous Extended Service Set Identifier)等である。また、ビーコン信号は、AP300が属するネットワークの識別子を含んでもよい。ネットワークの識別子は、例えば、ESSID(Extended Service Set Identifier)である。
 AP300は、所定のネットワークオペレータと関連付けられたAP300の識別子を含む無線信号を送信する。或いは、AP300は、ネットワークオペレータが任意で設定可能なフィールドに、AP300を運用するネットワークオペレータを特定可能な識別情報を含むビーコン信号を無線信号として送信してもよい。当該識別情報は、例えば、AP300が属するPLMNの識別情報、AP300を運用するネットワークオペレータを示す識別情報などである。これらの識別情報は、上述の制御情報に含まれる情報と同様の情報である。
 ステップS1103において、UE100は、設定(制御情報)に基づいて、AP300からの無線信号のモニタ(受信)を開始できる。これにより、UE100は、AP300からの無線信号を受信する。UE100は、設定に基づいて、AP300からの無線信号に関する測定を行ってもよい。UE100は、報告対象でないAP300からの無線信号に関する測定を行ってもよいし、行わなくてもよい。
 UE100は、報告対象となるAP300としてステルスAPが設定されている場合、設定に基づいて、ステルスAPに関連する識別情報の要求(プローブ要求)を送信してもよい。ステップS1102における無線信号は、ステルスAPであるAP300からのプローブ応答であってもよい。
 ステップS1104において、UE100は、AP300に関する報告(Measurement report)をeNB200に送信する。AP300に関する報告は、AP300の識別情報を含む。これにより、UE100は、AP300の識別情報をeNB200に報告できる。UE100は、AP300の識別子だけでなく、AP300が属するネットワークの識別子(例えば、ESSID)をeNB200に報告してもよい。UE100は、AP300からの無線信号の受信時間及びAP300からの無線信号の信号強度の少なくともいずれかの情報をAP300に関する報告に含めてもよい。
 UE100は、設定に基づいて、報告対象となるAP300のみの識別情報をeNB200に報告してもよい。或いは、UE100は、報告対象となるAP300だけでなく、他のAP300(すなわち、報告対象でないAP300)から無線信号を受信していた場合、報告対象となるAP300の識別情報だけでなく、他のAP300の識別情報をeNB200に報告してもよい。
 或いは、UE100は、他のAP300が、eNB200を運用するネットワークオペレータ(以下、特定NWオペレータ)に運用されていると判定した場合に、他のAP300の識別情報をeNB200に報告してもよい。すなわち、UE100は、特定NWオペレータに運用されていない(他のNWオペレータに運用されている)他のAP300の識別情報をeNB200に報告しなくてもよい。UE100は、例えば、以下の少なくともいずれかの方法によって判定できる。
 第1の方法では、UE100は、AP300が属するPLMNの識別情報によって示されるPLMNが、eNB200(サービングセル)が属するPLMNと同一である場合に、AP300が特定NWオペレータに運用されていると判定する。
 第2の方法では、UE100は、AP300を運用するネットワークオペレータを示す識別情報によって示されるネットワークオペレータが、特定NWオペレータである場合に、AP300が特定NWオペレータに運用されていると判定する。すなわち、UE100は、特定NWオペレータを示す識別情報がAP300からの無線信号に含まれる場合に、AP300が特定NWオペレータに運用されていると判定する。
 第3の方法では、UE100は、AP300の識別子が特定NWオペレータと関連付けられている場合に、AP300が特定NWオペレータに運用されていると判定する。すなわち、UE100は、特定NWオペレータと関連付けられたAP300の識別子がAP300からの無線信号に含まれる場合に、AP300が特定NWオペレータに運用されていると判定する。
 なお、UE100は、AP300からの無線信号の受信時間が第1閾値を越えた場合に、判定を開始してもよい。或いは、UE100は、AP300からの無線信号の信号強度が第2閾値を越えた場合に、判定を開始してもよい。受信時間及び信号強度の測定負荷を考慮すると、UE100は、判定を終了した後に、無線信号に関する測定(受信時間、RSSIなどの測定)を開始したり、測定結果(受信時間、RSSIなどの測定結果)と閾値(第1閾値、第2閾値)とを比較したりすることが好ましい。
 UE100は、他のAP300が特定NWオペレータに運用されていない場合、他のAP300からの無線信号の受信信号に関する情報を破棄してもよい。UE100は、他のAP300からの無線信号の受信信号に関する測定を省略してもよい。
 ステップS1105において、UE100からの報告を受信したeNB200は、報告されたAP300(すなわち、UE100に検出されたAP300)がWLANリストに含まれるか否かを判定する。
 WLANリストは、eNB200が把握しているAP300の識別情報のリストである。WLANリストは、トラフィック切替先の候補となるAPの識別情報のリストであってもよい。すなわち、WLANリストは、eNB200のセルによって構成されるカバレッジエリアの少なくとも一部と重複するカバレッジエリアを有するAP300の識別情報であり、特定NWオペレータが運用するAP300の識別情報を含む。
 eNB200は、報告されたAP300がWLANリストに含まれない場合、ステップS1106の処理を実行する。eNB200は、報告されたAP300がWLANリストに含まれる場合、ステップS1110の処理を実行する、又は、処理を終了する。
 ステップS1106において、eNB200は、AP300の識別情報に基づいて、WTに関する問い合わせをWT600に送る。すなわち、eNB200は、検出されたAP300をWT600に知らせる。問い合わせメッセージには、AP300の識別情報が含まれる。
 eNB200は、後述する方法によって、WT600に問い合わせを送ることができる。eNB200は、WT-APテーブル(表1参照)を保持する場合、WT-APテーブルに基づいて、問い合わせ先を決定してもよい。
Figure JPOXMLDOC01-appb-T000001
 WT-APテーブルは、WT600と、WT600が管理するAP300とが関連付けられたテーブルである。WT-APテーブルでは、WT600の識別情報とAP300の識別情報とが関連付けられている。WT-APテーブル内のAP300は、WLANリスト内のAP300と同じである。従って、WT-APテーブル内のWT600は、eNB200のセルによって構成されるカバレッジエリアの少なくとも一部と重複するカバレッジエリアを有するAP300を管理する。
 なお、eNB200は、WLANリストにWT600の識別情報を追加して、WLANリストをWT-APテーブルとして保持してもよい。
 eNB200は、WT-APテーブル内のWT600に問い合わせを送ることができる。これにより、eNB200が有するカバレッジエリアと重複しないカバレッジエリアを有するAPを管理するWT600に対して問い合わせを送ることを低減できる。
 eNB200は、WT-APテーブル内の全てのWT600に問い合わせを送ってもよいし、WT-APテーブル内の一部のWT600に問い合わせを送ってもよい。例えば、eNB200は、AP300が属するネットワークの識別子を報告された場合、当該ネットワークの識別子に関連付けられた他のAP300を管理するWT600に問い合わせを送ってもよい。同一のネットワークの識別子を有する各AP300は、近い距離に配置される可能性が高いため、これらのAP300は、同一のWT600に管理されている可能性が高い。従って、eNB200は、同一のネットワークの識別子を有する他のAP300を管理するWT600に問い合わせを送ることによって、シグナリングを低減できる。
 ステップS1107において、WTに関する問い合わせを受け取ったWT600は、問い合わせメッセージに含まれるAP300の識別情報によって示されるAP300を管理しているか否かを判断する。
 WT600は、当該AP300を管理していない場合、他のWT600(例えば、近隣WT)にAP300の識別情報を送って、AP300を管理しているか否かを他のAP300に問い合わせてもよい。
 ステップS1108において、WT600は、eNB200からの問い合わせに対する応答をeNB200に送る。例えば、WT600は、AP300を管理しているか否かを示す情報(例えば、ACK/NACK)をeNB200に送ってもよい。或いは、WT600は、AP300を管理しているWT600の識別子(自身の識別子/他のWT600の識別子)をeNB200に送ってもよい。WT600は、AP300を管理しているWT600が分からないことを示す情報をeNB200に送ってもよい。
 また、WT600は、eNB200からの問い合わせにAP300が属するネットワークの識別子が含まれる場合、当該ネットワークの識別子と同一のネットワークの識別子を有するAP300の識別情報もeNB200に送ってもよい。これにより、eNB200は、無線LANローミングを考慮して、トラフィック切替先の候補となるAPの識別情報をUE100に通知可能である。
 なお、WT600は、WT600の識別子の代わりに(或いは、WT600の識別子と共に)WT600のアドレスを送ってもよい。
 ステップS1109において、応答を受け取ったeNB200は、AP300を管理しているWT600が分かった場合、当該WT600とAP300とを関連付けて、関連づけを記憶する。具体的には、eNB200は、WT-APテーブルを更新する。eNB200は、AP300を管理しているWT600が分からなかった場合、問い合わせを送信していない他のWT600に問い合わせを送ってもよい(ステップS1106の実行)。或いは、後述する方法にて、他のノードに問い合わせてもよい。
 また、eNB200は、WLANリストにAP300の識別情報を追加できる。
 ステップS1110において、eNB200は、新たなWT600の識別子を受け取った場合、eNB200は、Xwインターフェイスを設定するための動作を開始してもよい。或いは、eNB200は、AP300を管理するWT600との間でXwインターフェイスが設定されていない場合、Xwインターフェイスを設定するための動作を開始してもよい。eNB200は、Xwインターフェイスを設定するためのメッセージをWT600に送り、Xwインターフェイスの設定を開始する。
 なお、eNB200は、WT600との間でXwインターフェイスが設定されていない場合であっても、eNB200は、Xwインターフェイスを設定するための動作を開始しなくてもよい。すなわち、eNB200は、ステップS1110の処理を省略できる。
 eNB200は、WT600との間でXwインターフェイスが設定された場合、セルラ・WLAN無線インターワーキング技術に関する情報をWT600とXwインターフェイスを介して、交換できる。eNB200は、交換した情報に基づいて、トラフィック切り替えを適切に制御できる。
 なお、eNB200は、AP300を報告したUE100に対して、当該AP300(例えば、ステルスAP)へオフロードさせるための指示(Indicator)を送信してもよい。
 以上のように、eNB200は、UE100から報告されたAP300を管理するWT600を適切に把握することができる。
 (問い合わせの送り先の決定)
 WTに関する問い合わせの送り先の決定方法の一例について、図15を用いて説明する。図15は、問い合わせの送り先を決定方法の一例を示す図である。eNB200は、WTに関する問い合わせの送り先を以下の方法により決定してもよい。
 図15に示すように、MMEプールエリア1は、MME400-1及びMME400-2を含む。MMEプールエリア2は、MME400-3及びMME400-4を含む。また、WTプールエリア1は、WT600-1及びWT600-2を含む。WTプールエリア2は、WT600-3、WT600-4及びWT600-5を含む。MMEプールエリア1は、WTプールエリア1と関連付けられている。MMEプールエリア2は、WTプールエリア2と関連付けられている。eNB200-1は、MMEプールエリア1と関連付けられ、eNB200-2は、MMEプールエリア1及びMMEプールエリア2と関連付けられ、eNB200-3は、MMEプールエリア2と関連付けられている。なお、これらの関連付けは、オペレータによって行われる。
 まず、UE100は、MMEコードを含むAP300に関する報告をeNB200-1に送信する。UE100は、MMEコードをNASメッセージにより取得している。UE100は、AP300に関する報告をeNB200-1に送信する前に、事前にeNB200-1にMMEコードを送信していてもよい。例えば、UE100は、トラッキングエリアを更新する際に、eNB200-1にMMEコードを送信してもよい。
 eNB200-1は、報告に含まれるMMEコードに基づいて、MME400-2を特定したと仮定する。eNB200-1は、MME400-2に対して、WTに関する問い合わせを送る。
 MME400-2は、WTに関する問い合わせに含まれる情報に基づいて、MMEプールエリア1の中からWTを選択する。MME400-2は、例えば、ネットワークトポロジーに基づいて、WTを選択する。具体的には、MME400-2は、UE100の位置に基づいて、WTプールエリア1の中から、所定の条件(UE100をサーブできるAP300を管理するWT、WTの変更の可能性が低減するサービスエリアを持つWTなど)を満たすWT(例えば、WT600-2)を選択する。MME400-2は、WT600-2に対して、WTに関する問い合わせを転送する。WT600-2は、WTに関する問い合わせに対する応答をMME400-2経由でeNB200-1に送ってもよいし、Xwインターフェイスが設定されている場合には、MME400-2を介さずにeNB200-1に送ってもよい。
 或いは、MME400-2は、WTプールエリア1内の全てのWT600に対して、WTに関する問い合わせを送ってもよい。MME400-2は、AP300を管理しているか否かの応答をWT600から受け取ることによって、AP300を管理するWT600を特定してもよい。
 このようにして、eNB200-1は、WTに関する問い合わせをWT600に送り、WT600から問い合わせに対する応答を受け取ることができる。なお、eNB200-2及びeNB200-3も、eNB200-1と同様にして、WTに関する問い合わせをWT600に送ることができる。
 (第2実施形態に関連する他の実施形態係る動作)
 次に、第2実施形態に関連する他の実施形態に係る動作について、図16を用いて説明する。図16は、第2実施形態に関連する他の実施形態に係る動作を説明するためのシーケンス図である。なお、上述の説明と同様の部分は、説明を適宜省略する。
 上述した実施形態では、eNB200は、WTに関する問い合わせをWT600に送っていた。本変更例では、eNB200は、WTに関する問い合わせを上位ノード(MME400)に送る。
 図16に示すように、ステップS1201からS1205は、ステップS1101からS1105に対応する。
 ステップS1206において、WT600は、自身が管理するAP300の識別情報をMME400に送る。WT600は、自身が管理するAP300が更新された場合に、AP300の識別情報をMME400に送ってもよい。或いは、WT600は、周期的に、AP300の識別情報をMME400に送ってもよい。
 MME400は、WT600から受け取ったAP300の識別情報を、WT600の識別情報と関連付けて、関連づけを記憶する。例えば、MME400は、上述のWT-APテーブルを保持しており、WT600から受け取ったAP300の識別情報に基づいて、WT-APテーブルを更新してもよい。
 ステップS1207は、ステップS1106に対応する。
 ステップS1208において、WTに関する問い合わせを受け取ったMME400は、問い合わせメッセージに含まれるAP300の識別情報によって示されるAP300を管理しているWT600を特定する。具体的には、MME400は、WT600から受け取ったAP300の識別情報(WT-APテーブル)に基づいて、WT600を特定する。MME400は、問い合わせメッセージに含まれるAP300の識別情報と一致するAP300の識別情報を管理するWT600を、当該AP300を管理するWT600として特定する。
 ステップS1209において、MME400は、ステップS1108と同様に、問い合わせに対する応答をeNB200に送る。
 ここで、MME400は、eNB200とWT600との間にXwインターフェイスを設定するための指示を当該応答に含めて、当該応答をeNB200に送ってもよい。MME400は、eNB200とWT600との間にXwインターフェイスが設定されているか否かを把握しており、Xwインターフェイスが設定されていない場合に、当該指示を応答に含めてもよい。或いは、MME400は、Xwインターフェイスが設定されているか否かに関係なく、当該指示を応答に含めてもよい。eNB200は、応答に含まれる識別情報によって示されるWT600との間にすでにXwインターフェイスが設定されている場合、MME400の指示を無視してもよい。
 ステップS1210及びS1211は、ステップS1109及びS1110に対応する。
 なお、eNB200は、ステップS1211において、MME400からの応答にXwインターフェイスを設定するための指示が含まれる場合、Xwインターフェイスを設定するための動作を開始してもよい。
 以上のように、eNB200は、MME400に問い合わせることによって、eNB200が知らないWT600がAP300を管理している場合であっても、当該WT600を適切に把握することができる。
 [第3実施形態]
 次に、第3実施形態について説明する。第2実施形態では、eNB200がWT600に関する問い合わせを送るケースを説明した。第3実施形態では、eNB200がWT600に関する問い合わせを送らずに、WT600がAP300の情報をeNB200に送るケースを説明する。なお、上述の説明と同様の部分は、説明を適宜省略する。
 (第3実施形態に係る動作)
 第3実施形態に係る動作について、図17を用いて説明する。図17は、第3実施形態に係る動作を説明するためのシーケンス図である。
 図17に示すように、ステップS1301において、WT600は、オペレータによって管理すべきAP300(の識別情報)が追加される。WT600は、追加されたAP300を管理対象として登録する。
 ステップS1302において、WT600は、自身の管理対象としてAP300が新たに登録された場合に、追加されたAP300の識別情報をeNB200に送る。
 WT600は、WT600と関連付けられた全てのeNB200のテーブルを有し、テーブル内の全てのeNB200にAP300の識別情報をeNB200に送る。例えば、WT600は、自身との間にXwインターフェイスが設定された全てのeNB200に、Xwインターフェイスを介して、AP300の識別情報を送ってもよい。或いは、WT600は、自身のWTプールエリアに関連付けられたMMEプールエリア内の全てのMME400にAP300の識別情報を送ってもよい。AP300の識別情報を受け取ったMME400は、配下の全てのeNB200にAP300の識別情報を送ってもよい。
 ステップS1303において、eNB200は、送信元のWT600と識別情報によって示されるAP300とを関連付けて、関連づけを記憶する。具体的には、ステップS1109と同様に、eNB200は、追加されたAP300の識別情報に基づいて、WT-APテーブルを更新する。
 eNB200は、追加されたAP300がeNB200のカバレッジエリアの少なくとも一部と重複するカバレッジエリアを有するAP300でない場合であっても、追加されたP300の識別情報を記憶する(WT-APテーブルを更新する)。
 ステップS1304は、ステップS1110に対応する。
 以上のように、eNB200は、UE100からの報告に基づく問い合わせを送らなくても、AP300を管理するWT600を適切に把握することができる。すなわち、eNB200は、UE100から報告されるAP300を管理するWT600が予め把握可能である。従って、eNB200は、UE100からの報告を受けてから適切なWT600を特定するための動作が必要なくなる。その結果、eNB200は、トラフィック切り替えに関する制御をより早く開始することができる。
 (第3実施形態に関連する他の実施形態に係る動作)
 次に、第3実施形態に関連する他の実施形態に係る動作について、図18を用いて説明する。図18は、第3実施形態に関連する他の実施形態に係る動作を説明するためのシーケンス図である。なお、上述の説明と同様の部分は、説明を適宜省略する。
 上述した第3実施形態では、WT600は、自身の管理対象としてAP300が新たに登録された場合に、AP300の識別情報をeNB200に送っていた。本他の実施形態では、WT600は、UE100からのシグナリングに基づいて、AP300の識別情報をeNB200に送る。
 図18に示すように、ステップS1401において、UE100は、eNB200へAP300の識別情報を送ることをWT600に要求する。具体的には、UE100は、WT600がeNB200へAP300の識別情報を送るための要求をAP300に送信する。AP300は、当該要求をWT600に転送する。
 UE100は、UE100内に存在するAdaptationレイヤを用いて、WT600に当該要求を送ってもよい。具体的には、当該要求は、UE内のAdaptationレイヤとAP300又はWT600内のAdaptationレイヤとの間に確立された論理接続を経由して、WT600に送られる。当該要求は、Adaptationレイヤにおける制御プロトコルデータユニット(Control PDU)として送信されてもよい。
 UE100は、要求にeNB200に関連する識別情報を含めることができる。eNB200に関連する識別情報は、eNB200の識別子(eNB ID)、セルの識別子(Cell ID)などである。
 なお、UE100は、eNB200からの指示に基づいて、当該要求を送ってもよい。例えば、UE100は、UE主導型の切り替え制御を行った場合に当該要求を切り替え先のAP300に送るようにeNB200から指示されてもよい。
 ステップS1402において、WT600は、UE100から要求を受けたAP300の識別情報をeNB200に送る。WT600は、UE100からの要求にeNB200に関連する識別情報が含まれる場合、eNB200に関連する識別情報に基づいて、eNB200にAP300の識別情報を送ることができる。具体的には、WT600は、当該識別情報によって特定されるeNB200にAP300の識別情報を送る。WT600は、MME400にAP300の識別情報と共にeNB200に関連する識別情報を送り、MME400が送り先となるeNB200を特定してもよい。
 ステップS1403からS1405は、ステップS1105、S1109、S1110に対応する。
 以上のように、eNB200は、UE100からの報告に基づく問い合わせを送らない場合であっても、AP300を管理するWT600を適切に把握することができる。また、UE100からのシグナリングがトリガとなるため、eNB200は、eNB200のカバレッジエリアの少なくとも一部と重複するカバレッジエリアを有するAP300の識別情報を受け取ることができる。
 [第4実施形態]
 次に、第4実施形態について説明する。第3実施形態では、eNB200がWT600に関する問い合わせを送らずに、WT600がAP300の情報をeNB200に送るケースを説明した。第4実施形態では、UE100がAP300及びWT600の情報をeNB200に送るケースを説明する。なお、上述の説明と同様の部分は、説明を適宜省略する。
 (第4実施形態に係る動作)
 第4実施形態に係る動作について、図19を用いて説明する。図19は、第4実施形態に係る動作を説明するためのシーケンス図である。
 図19において、ステップS1501は、ステップS1101と同様である。
 ステップS1502において、AP300は、AP300の識別情報(AP ID:BSSIDなど)と自身を管理するWT600の識別情報(WT ID)とを含む無線信号(ビーコン信号)を送信する。AP300は、例えば、ネットワークオペレータが任意で設定可能なフィールドに、WT600の識別情報を格納することができる。
 AP300は、ステルスAPである場合、UE100からのプローブ要求にWT600の識別情報を要求する情報が含まれる場合、WT600の識別情報を含むビーコン信号を送信してもよい。
 ステップS1503は、ステップS1103に対応する。UE100は、AP300からの無線信号を受信することによって、AP300の識別情報だけでなく、WT600の識別情報も取得する。
 ステップS1504は、ステップS1104に対応する。UE100は、AP300の識別情報だけでなく、WT600の識別情報もeNB200に報告する。
 ステップS1505からS1507は、ステップS1105、S1109、S1110に対応する。
 以上のように、eNB200は、UE100からAP300に関する報告だけでなく、当該AP300を管理するWT600に関する報告も受ける。従って、eNB200は、UE100から報告されたAP300を管理するWT600を適切に把握することができる。
 (第4実施形態に関連する他の実施形態に係る動作)
 次に、第4実施形態に関連する他の実施形態に係る動作について、図20を用いて説明する。図20は、第4実施形態に関連する他の実施形態に係る動作を説明するためのシーケンス図である。なお、上述の説明と同様の部分は、説明を適宜省略する。
 本他の実施形態では、UE100がWT600からWT600の識別情報を受け取るケースについて説明する。
 図20に示すように、ステップS1601において、UE100は、WT600の識別情報をWT600に要求する。具体的には、UE100は、当該要求をAP300に送信する。AP300は、当該要求をWT600に転送する。UE100は、ステップS1401と同様に、UE100内に存在するAdaptationレイヤを用いて、WT600に当該要求を送ってもよい。UE100は、プローブ要求によってWT600の識別情報を要求するための情報を含めてもよい。
 なお、UE100は、eNB200からの指示に基づいて、当該要求を送ってもよい。例えば、UE100は、UE主導型の切り替え制御を行った場合に当該要求を切り替え先のAP300に送るようにeNB200から指示されてもよい。
 ステップS1602において、WT600は、WT600の識別情報をAP300を経由してUE100に送る。AP300は、UE100からの要求に対する応答に、WT600の識別情報を含め、当該応答をUE100に送信する。AP300は、プローブ応答にWT600の識別情報を含めてもよいし、他の無線信号(例えば、ビーコン信号)にWT600の識別情報を含めてもよい。
 なお、WT600は、WT600(又はAP300)内に存在するAdaptationレイヤを用いて、WT600の識別情報をUE100に送ってもよい。WT600の識別情報は、Adaptationレイヤにおける制御プロトコルデータユニット(Control PDU)として送信されてもよい。
 なお、AP300は、WT600の識別情報をすでに知っている場合には、WT600の代わりに、応答してもよい。すなわち、AP300は、UE100からの要求の転送を省略し、WT600の識別情報をUE100に送信してもよい。
 UE100は、AP300からWT600の識別情報を受け取る。
 ステップS1603は、ステップS1504に対応する。ステップS1604からS1606は、ステップS1105、S1109、S1110に対応する。
 以上のように、eNB200は、UE100からAP300に関する報告だけでなく、当該AP300を管理するWT600に関する報告も受ける。従って、eNB200は、UE100から報告されたAP300を管理するWT600を適切に把握することができる。
 [第5実施形態]
 次に、第5実施形態について説明する。上述と同様の部分は説明を適宜省略する。
 (動作環境)
 以下において、第5実施形態に係る動作環境について図21を用いて説明する。図21は、第5実施形態に係る動作環境を示す図である。
 図21において、UE100は、マクロセルを管理するeNB(Macro eNB)200-1が管理するマクロセル内に位置する。また、UE100は、マクロセルよりも小さいカバレッジを有するスモールセルを管理するeNB(Small cell eNB)200-2が管理するスモールセル内に位置する。UE100は、eNB200-2とRRC接続を確立しており、RRCコネクティッド状態である。
 また、AP300-1は、マクロセル及びスモールセル内に位置し、AP300-2は、マクロセル内に位置する。AP300-1及びAP300-2は、WT600に管理されている。
 ここで、UE100が、AP300-1からのビーコン信号を受信することにより、AP300-1を検出する。UE100は、AP300-1の識別情報であるAP識別子(WLAN identifier)をeNB200-2に報告すると仮定する。eNB200-2は、AP300-1のAP識別子をUE100から受信しても、AP300-1を管理するWT600を把握していない場合、適切なWT600とXwインターフェイスを設定できない虞がある。
 特に、スモールセルを管理するeNB及びAPは、追加で配置されることが多いため、eNB200-2がWT600を把握していない可能性がある。ここで、eNB200-2のセルカバレッジ内に存在するAPをオペレータが調べた場合、オペレータの負担が増大すると共に、簡単に設定できるWLANのメリットが損なわれることになる。
 そこで、以下において、eNB200-2が、AP300とWT600とを適切に把握できる方法を説明する。
 なお、以下で説明するUE100が実行する処理(動作)について、UE100が備えるレシーバ110、トランスミッタ120及びコントローラ130の少なくともいずれかが実行するが、便宜上、UE100が実行する処理として説明する。同様に、以下で説明するeNB200が実行する処理(動作)について、eNB200が備えるレシーバ210、トランスミッタ220、コントローラ230及びネットワークインターフェイス240の少なくともいずれかが実行するが、便宜上、eNB200が実行する処理として説明する。同様に、以下で説明するAP300が実行する処理(動作)について、AP300が備えるレシーバ310、トランスミッタ320、コントローラ330及びネットワークインターフェイス340の少なくともいずれかが実行するが、便宜上、AP300が実行する処理として説明する。同様に、以下で説明するWT600が実行する処理(動作)について、WT600が備えるコントローラ630及びネットワークインターフェイス640の少なくともいずれかが実行するが、便宜上、WT600が実行する処理として説明する。
 第5実施形態について説明する。第5実施形態では、eNB200-2がeNB200-1に問い合わせを送るケースを説明する。
 (第5実施形態に係る動作)
 第5実施形態に係る動作について、図22及び図23を用いて説明する。図22は、第5実施形態に係る動作を説明するためのシーケンス図である。図23は、第5実施形態に係る動作を説明するためのテーブルの一例である。
 第5実施形態では、UE100は、eNB200-2に対してRRCコネクティッド状態である。
 図22に示すように、ステップS2101において、eNB200-2は、UE100に対して、AP300に関する報告に関する設定を行う。具体的には、eNB200-2は、AP300を検出した場合にeNB200-2に検出したAP300を報告することを要求する制御情報をUE100へ送信する。UE100は、制御情報に基づいて設定を行う。制御情報は、報告の対象となるAP300を識別する識別子(例えば、SSID、BSSID、ESSIDなど)を含んでいてもよい。
 ステップS2102において、AP300-1は、自身の識別子(例えば、SSID、BSSID、ESSIDなど)を含むビーコン信号を送信する。設定に基づいてスキャンを行うUE100は、AP300-1からのビーコン信号を受信する。
 ステップS2103において、UE100は、AP300-1に関する報告を行う。具体的には、UE100は、AP300-1の識別子を含む報告をeNB200-2へ送信する。なお、UE100は、設定に基づいて、AP300-1以外のAP300の識別子も含む報告(例えば、検出した全てのAP300の識別子を含む報告)をeNB200-2へ送信できる。eNB200-2は、AP300-1の識別子を含む報告をUE100-2から受信する。
 UE100は、近隣セル(基地局)からのシグナル強度が閾値を上回ったことをトリガとして、eNB200-2へ報告してもよい。具体的には、UE100は、A4トリガ(Neighbour becomes better than threshold)又はB1トリガ(Inter RAT neighbour becomes better than threshold)に基づいて、eNB200-2へ報告してもよい。
 eNB200-2は、当該報告に基づいて、UE100が検出したAP300-1がセルカバレッジ内に位置することを把握する。eNB200-2は、AP300-1を管理するWT600を知っているか否かを判断する。具体的には、eNB200-2は、APとWTとが関連付けられたWLANリストに基づいて、判断する。eNB200-2は、AP300-1を管理するWT600を知っている場合、処理を終了する。一方で、eNB200-2は、当該WT600を知らない場合、ステップS2104の処理を実行する。
 ステップS2104において、eNB200-2は、WT600に関する問い合わせ(WT information request)を近隣基地局であるeNB200-1に送る。図23(A)に示すように、問い合わせは、AP300-1の識別子を含む。図23(A)に示すように、問い合わせは、複数のAPの識別子を含んでもよい。また、問い合わせは、同一のAPを示す複数の識別子(BSSID、SSID)が含まれていてもよい。
 eNB200-2は、OAMから設定された対象に対してのみ、問い合わせを送ってもよい。eNB200-2は、過去に二重接続方式におけるマスタeNBとセカンダリeNBとの関係であったeNBに対して問い合わせを送ってもよい。具体的には、eNB200-1がマスタeNBであり、eNB200-2がセカンダリeNBである場合に、eNB200-2は、eNB200-1に問い合わせを送ってもよい。
 eNB200-1は、自身が保持するWLANリストに基づいて、AP300-1を管理するWT600を知っているか否かを判断する。eNB200-1は、当該WT600を知っている場合、ステップS2105の処理を実行する。一方、eNB200-1は、当該WT600を知らない場合、他のノードに問い合わせてもよい。
 例えば、eNB200-1は、近隣eNB200にさらに問い合わせてもよい。eNB200-1は、eNB200-2からの問い合わせを転送することによって、近隣eNB200に問い合わせてもよい。eNB200-1は、近隣eNB200からの応答に基づいて、ステップS2105の処理を実行する。eNB200-1が、近隣eNB200に問い合わせる回数は、実装依存であってもよいし、OAMから設定されていてもよい。
 また、eNB200-1は、APとWTとが関連付けられたWLANリストを管理しているノードに問い合わせてもよい。例えば、eNB200-1は、OAMに問い合わせてもよいし、eNB200-1が既知のWTに問い合わせてもよい。eNB200-1は、セルラネットワーク内のOAMとWLAN内のOAMとの両方からWT600に関する情報を取得可能なOAMに問い合わせてもよい。
 なお、eNB200-1は、AP300-1の識別子をOAMに報告してもよい。OAMは、APとWTとが関連付けられたWLANリストを保持している場合、当該WLANリストを更新できる。OAMは、更新されたWLANリストに基づいて、補助情報に含まれるパラメータを調整してもよい。
 ステップS2105において、eNB200-1は、WT600に関する問い合わせに対する応答(WT information respone)をeNB200-2に送る。具体的には、eNB200-1は、AP300-1を管理するWT600を知っている場合、WT600を識別する識別子(WT ID(例えば、WTのIPアドレス))をAP300-1の識別子(AP ID)と共にeNB200-2に送る。図23(B)に示すように、eNB200-1は、WT600の識別子とAP300-1の識別子とを応答メッセージに含めて、当該応答メッセージをeNB200-2に送る。応答メッセージは、Xwインターフェイスをセットアップするために必要な情報を含んでもよい。また、応答メッセージは、AP300-1が複数のWTに管理されている場合には、WTのリスト(WTs List)を含んでもよい。また、応答メッセージは、WT600が複数のAPを管理する場合には、AP300-1以外のAPの識別子を含んでもよい。
 eNB200-1は、WT600を知らない場合には、WT600を知らないことを示す情報を含む応答メッセージをeNB200-2に送信してもよい。具体的には、eNB200-1は、AP300-1の識別子を知らないことを示す理由(Cause value)を含む拒絶メッセージ(Reject)をeNB200-2に送ってもよい。
 eNB200-1は、ステップS2104の問い合わせを受けた場合に、AP300-1がeNB200-2のカバレッジ内に位置すると判断して、ステップS2105の問い合わせに対する応答をeNB200-2へ送ってもよい。
 eNB200-2は、AP300-1を管理するWT600を把握した場合、WLANリストを更新できる。また、eNB200-2は、WT600とのXwインターフェイスを設定してもよい。
 [第6実施形態]
 次に、第6実施形態について、図24を用いて説明する。図24は、第6実施形態に係る動作を説明するためのシーケンス図である。
 第5実施形態では、UE100は、eNB200-2に対してRRCコネクティッド状態でAPの検出(スキャン)を実行していた。第6実施形態では、UE100は、RRCアイドル状態で、APの検出(スキャン)を実行する。なお、第5実施形態と同様の部分は、説明を適宜省略する。
 図24に示すように、ステップS2201において、eNB200-1は、MDT(Minimization of Drive Test)に関する設定情報をUE100に送信する。例えば、設定情報は、記憶型MDT(Logged MDT)に関する設定情報(Config. of Logged meas.)である。なお、設定情報は、少なくともAPに関する測定を行うための情報である。
 なお、Logged MDTでは、RRCアイドル状態のUE100が、ネットワーク(eNB200-1)から設定された測定パラメータに従って無線環境の測定を行い、該測定の結果を位置情報及び時間情報と共に測定データとして記憶する。UE100は、RRCコネクティッド状態に移行した後、測定データをネットワークに報告する。
 設定情報は、AP300に関する報告の対象となるAP300を特定するための制御情報を含んでもよい。UE100は、設定情報に基づいて、測定を行い、測定データを記憶する。
 UE100は、AP300を検出した(すなわち、AP300からのビーコン信号を受信した)場合、AP300を検出した際に検出したセルの識別子(Cell ID(例えば、ECGI:E-UTRAN Cell Global Identifier))を記憶してもよい。また、UE100は、AP300を検出した時刻を記憶してもよく、セルを検出した時刻を記憶してもよい。
 ステップS2202において、UE100は、RRC接続を確立するためのRRC接続確立メッセージをeNB200-2に送る。RRC接続確立メッセージは、測定データが記憶されていることを示す情報を含んでいてもよい。その後、UE100とeNB200-2との間でRRC接続が確立される。
 ステップS2203において、eNB200-2は、UE情報要求メッセージ(UE Information Request)を送る。eNB200-2は、UE100が測定データを記憶している場合に、UE情報要求メッセージを送ってもよい。
 ステップS2204において、UE100は、UE情報要求メッセージに対する応答であるUE情報応答メッセージをeNB200-2に送る。UE情報応答メッセージは、測定データ(Measurement result)を含む。これにより、eNB200は、測定データ(AP300に関する報告)をUE100から受け取る。なお、測定データは、UE100がアイドル状態である場合に記録したAP300の識別子とセルの識別子とを含む。
 ステップS2205において、eNB200-2は、報告されたAPに関連があるセルを特定する。すなわち、eNB200-2は、測定データに含まれるAP300の識別子によって識別されるAP300が位置するセルを管理するeNB200を特定する。具体的には、eNB200-2は、測定データに含まれるセルの識別子によってeNB200(セル)を特定する。eNB200-2は、AP300及び/又はセルを検出した時刻を示す時刻情報に基づいて、eNB200(セル)を特定してもよい。本実施形態において、eNB200-2は、eNB200-3を特定する。すなわち、eNB200-2は、eNB200-3が管理するセル内にAP300が位置すると判断する。
 また、eNB200-2は、報告に含まれるAP300の識別子により識別されるAP300を管理するWT600を知っているか否かを判断する。eNB200-2は、第1実施形態と同様に、当該WT600を知っているか否かを判断する。eNB200-2は、当該WT600を知らない場合、第1実施形態と同様に、他のノードに問い合わせることによって、WT600を把握してもよい。
 ステップS2206において、eNB200-2は、AP300に関する情報(AP300の識別子及びWT600の識別子)をeNB200-3が知っているか否かを判断する。AP300に関する情報をeNB200-3が知らないと判断した場合には、eNB200-2は、ステップS2207の処理を実行する。そうでない場合は、eNB200-2は、処理を終了する。例えば、eNB200-2は、検出されたAP300に関する情報をeNB200-3に対して送った経験がある場合、AP300に関する情報をeNB200-3が知っていると判断する。また、eNB200間で、カバレッジ内のAP(配下のAP)と当該APが関連するWTの情報(例えば、WLANリスト)が共有されている場合には、eNB200-2は、eNB200-3のWLANリストに基づいて、AP300に関する情報をeNB200-3が知っているか否かを判断してもよい。
 ステップS2207において、eNB200-2は、AP300に関する報告(Reporting the detected APs)を、対象セルを管理するeNB200-3に送信する。AP300に関する報告は、図23(B)と同様の情報を含むことができる。すなわち、eNB200-2は、WT600の識別子をAP300の識別子と共にeNB200-3に送る。
 eNB200-3は、AP300に関する報告に基づいて、WLANリストを更新できる。また、eNB200-3は、WT600とのXwインターフェイスを設定してもよい。このように、eNB200-3は、AP300を管理するWT600を適切に把握することができる。
 なお、eNB200-2は、AP300に関する情報をeNB200-3が知っている場合には、AP300に関する報告(WT600の識別子及びAP300の識別子)の送信を省略してもよい。
 また、eNB200-2は、eNB200-3が近隣eNBでない場合には、AP300に関する報告の送信を省略してもよい。eNB200-2は、例えば、eNB200-3との間にX2インターフェイスがセットアップされていない場合に、eNB200-3が近隣eNBでないと判断してもよい。
 [第6実施形態に関連する他の実施形態]
 次に、第6実施形態に関連する他の実施形態について説明する。上述した第6実施形態では、eNB200-2が、UE100から報告されたAP300を管理するWT600を把握しているケースであった。本他の実施形態では、eNB200-2が、AP300を管理するWT600を把握していないケースである。
 eNB200-2は、UE100から測定データ(報告)を受信した後、UE100から報告されたAP300を管理するWT600を知らない場合には、OAMに報告を送ることができる。
 OAMは、eNB200-2から送られた報告に含まれるセルの識別子及び/又は時刻情報に基づいて、AP300が位置するセルを管理するeNB200を特定する。また、OAMは、自身が保持するWLANリストに基づいて、特定したeNB200-3に対して、WT600の識別子をAP300の識別子と共に通知する。なお、第2実施形態と同様に、OAMは、eNB200-3がWT600をすでに知っている場合には、WT600の識別子などの送信を省略できる。
 以上により、eNB200-3は、AP300を管理するWT600を適切に把握することができる。
 [第7実施形態]
 次に、第7実施形態について、図25から図29を用いて説明する。図25は、第7実施形態に係るWTの動作を説明するための図である。図26は、第7実施形態に係る動作(その1)を説明するためのシーケンス図である。図27は、第7実施形態に係る動作を説明するためのテーブルの一例である。図28は、第7実施形態に係る動作(その2)を説明するためのシーケンス図である。図29は、第7実施形態に係る動作を説明するための図である。
 第5及び第6実施形態では、UE100からの報告に基づいて、eNB200が他のeNB200にWT600の識別子を送っていた。第7実施形態では、WT600からの通知に基づいて、eNB200が他のeNB200にWT600の識別子を送る。
 図25に示すように、ステップS2301において、WT600は、自身が管理するAP30が追加されたことを検出(認識)する。例えば、WT600は、オペレータにより新たにAP300が設置されたことに伴って、AP300が追加されたと認識する。
 ステップS2302において、WT600は、自身が管理するAP(の識別子)のリストであるWLAN-AP IDリストを更新(生成)する。WLAN-AP IDリストには、WT600の識別子が対応付けられている。
 ステップS2303において、WT600は、更新(生成)されたWLAN-AP IDリストを配下のeNB200に配布(送信)する。すなわち、WT600は、WLAN-AP IDリストの更新をトリガとして、配下のeNB200にWLAN-AP IDリストを配信できる。以下に、WLAN-AP IDリストの流れについて、図26を用いて説明する。
 図26に示すように、WT600とeNB200-1との間で、Xwセットアップ手順が実行される。従って、WT600とeNB200-1との間には、Xwインターフェイスがセットアップされている。また、eNB200-1とeNB200-2との間には、X2セットアップ手順が実行される。従って、eNB200-1とeNB200-2との間には、X2インターフェイスがセットアップされている。なお、Xwセットアップ手順よりも前にX2セットアップ手順が実行されてもよい。
 ステップS2401に示すように、WT600は、Xwインターフェイスを介して、WT設定更新メッセージ(WT CONFIGURATION UPDATE)をeNB200-1に送る。WT設定更新メッセージは、WLAN-AP IDリストを含む。これにより、eNB200-1は、WT600が管理するAP300を把握することができる。eNB200-1は、WLAN-AP IDリストに基づいて、自身が保持するWLANリストを更新してもよい。また、eNB200-1は、過去にWLAN-AP IDリストをWT600から受け取っていた場合には、WLAN-AP IDリストを更新してもよい。
 ステップS2402において、eNB200-1は、X2インターフェイスを介して、ENB設定更新メッセージ(ENB CONFIGURATION UPDATE)をeNB200-2に送る。ENB設定更新メッセージは、WLAN-AP IDリストを含む。ENB設定更新メッセージに含まれる情報の一例を、図27に示す。図27に示すように、ENB設定更新メッセージは、Xwインターフェイスをセットアップするために必要な情報(「Served WT information」)を含む。ENB設定更新メッセージは、WT600の識別子(WT ID)だけでなく、WT600が管理するAP300の識別子(BSSID、SSID、ESSID)を含む。ENB設定更新メッセージは、同一のAP300を示す複数の識別子を含んでもよい。また、ENB設定更新メッセージは、AP300がマルチSSID機器である場合には、複数のSSIDを含んでもよい。ENB設定更新メッセージ(「frequency information」)は、AP300の使用周波数帯、使用チャネルなどの情報が含まれてもよい。
 また、WT600において、WLAN-AP IDリスト内で変更が生じた場合には、「Served WTs to Add」の代わりに、「Served WTs to Modify」というフィールドに、変更されたAP300に関する情報が含まれてもよい。また、WLAN-AP IDリスト内で変更が生じた場合には、「Served WTs to Add」の代わりに、「Served WTs to Delete」というフィールドに、削除されたAP300の識別子(BSSID、SSID、ESSIDなど)及び/又は削除されたWT600の識別子(WT ID)が含まれてもよい。
 eNB200-2は、eNB200-1からのENB設定更新メッセージに基づいて、WT600の識別子をAP300の識別子と共に受け取る。これにより、eNB200-2は、AP300を管理するWT600を把握できる。
 ステップS2403において、eNB200-1は、Xwインターフェイスを介して、ENB設定更新メッセージに対する肯定応答(WT CONFIGURATION UPDATE ACKNOWLEDGE)をWT600に送信する。
 ステップS2404において、eNB200-2は、X2インターフェイスを介して、ENB設定更新メッセージに対する肯定応答(ENB CONFIGURATION UPDATE ACKNOWLEDGE)をeNB200-1に送信する。
 なお、図28に示すように、WT600は、WT設定更新メッセージ(WT CONFIGURATION UPDATE)以外のメッセージにより、WLAN-AP IDリストをeNB200-1に送ってもよい。
 図28において、ステップS2501に示すように、eNB200-1は、XwインターフェイスをセットアップするためのXwセットアップ要求メッセージ(Xw SETUP REQUEST)をWT600に送る。
 ステップS2502において、WT600は、Xwセットアップ要求メッセージに対する応答であるXwセットアップ応答メッセージ(Xw SETUP RESPONSE)にWLAN-AP IDリストを含めて、Xwセットアップ応答メッセージをeNB200-1に送ってもよい。これにより、WT600は、Xwインターフェイスがセットアップされていない場合であっても、WLAN-AP IDリストをeNB200-1に送ることができる。
 ステップS2503は、ステップS2402に対応する。
 なお、eNB200-2は、eNB200-1からWLAN-AP IDリストを受け取った場合、eNB200-2のカバレッジ内に含まれるAPとWTとが関連付けられたWLANリストを更新する。また、eNB200-2は、UE100、他のeNB200、及びWT600の少なくともいずれかからのAP300に関する報告に基づいて、WLANリストを更新できる。具体的には、eNB200-2は、少なくともいずれかの方法により、WLANリストを更新できる。
 第1の方法では、eNB200-2は、所定期間内において、UE100から報告されないAP300の識別子をWLANリストから削除する。eNB200-2は、例えば、WLANリストの更新をトリガとして、特定タイマを開始する。eNB200-2は、特定タイマが満了するまでに、UE100から報告されないAP300を自セルのカバレッジ内に位置しないと判断して、当該AP300の識別子をWLANリストから削除してもよい。
 第2の方法では、eNB200-2は、他のeNBの配下のAP300の識別子をWLANリストから削除する。eNB200-2は、例えば、他のeNB200(例えば、隣接eNB200)からのAP300に関する報告として、他のeNB200が管理するセルのカバレッジ内に位置するAP300の識別子が含まれるENB設定更新メッセージを受け取った場合、eNB200-2が管理する自セルのカバレッジに当該AP300が位置しないと判断して、当該AP300の識別子をWLANリストから削除してもよい。
 第3の方法では、eNB200-2は、UE100からのAP300に関する報告及びeNB200-1からのAP300に関する報告に基づいて、AP300の識別子をWLANリストから削除する。
 例えば、図29に示すように、eNB200-2は、UE100-1及びUE100-2からAP300-4及びAP300-5に関する報告を受け取る。また、eNB200-2は、eNB200-1からAP300-1に関する報告を受け取る。AP300-1に関する報告は、AP300-1が発見され、eNB200-1がAP300-1をWLANリストに追加したことを示す情報を含む。同様に、eNB200-2は、eNB200-1からAP300-2及びAP300-3のそれぞれに関する報告を受け取る。
 eNB200-2は、eNB200-1からの報告及びUE100からの報告に基づいて、eNB200-1とeNB200-2とのカバレッジが重複するエリア(重複エリア)にAP300が存在しないと判断する。すなわち、eNB200-2は、eNB200-1からの報告とUE100-1からの報告とに重複するAP300は、重複エリアに位置すると判断する。eNB200-2は、重複エリアにAPが存在しないと判断した場合、eNB200-1から報告されるAP300の識別子をWLANリストから削除する。一方で、eNB200-2は、eNB200-1から報告されるAP300であっても、重複エリアに存在するAP300と判断した場合には、WLANリストから削除しない。
 第4の方法では、eNB200-2は、WT600からのAP300に関する報告(例えば、WLAN-AP IDリスト)に基づいて、所定のAP300の識別子をWLANリストから削除する。例えば、eNB200-2は、WT600から通知されたWLAN-AP IDリストから所定のAP300の識別子が削除されている場合、所定のAP300の識別子をWLANリストから削除する。
 以上のように、eNB200-2は、UE100、他のeNB200、及びWT600の少なくともいずれかからのAP300に関する報告に基づいて、リストを更新する。これにより、eNB200-2は、WLANリストを適切に更新することができる。
 [その他の実施形態]
 上述した各実施形態によって、本出願の内容を説明したが、この開示の一部をなす論述及び図面は、本出願の内容を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
 上述した第1実施形態において、UE100は、eNB200からの制御情報に基づいて、UE100は、無線信号の送信元であるAP300が、特定NWオペレータに運用されているか否かを判定したが、これに限られない。UE100は、eNB200を運用するネットワークオペレータを特定可能な識別情報を予め保持し、当該識別情報に基づいて、無線信号の送信元であるAP300が、特定NWオペレータに運用されているか否かを判定してもよい。当該識別情報は、UE100を構成する端末装置に装着されるICカードであるUIM(User Identity Module)内のメモリに記憶されていてもよい。
 上述した第1実施形態において、eNB200は、ステップS160の処理を実行しなくてもよい。例えば、eNB200は、ステップS160の前に、UE100から報告されたAP300の識別子をテーブルに追加した場合、ステップS160の処理を省略できる。
 上述した第1実施形態において、eNB200は、AAAサーバ500ではなく、コアネットワークに含まれる他のネットワーク装置にAP300の識別子を送信してもよい。eNB200は、他のネットワーク装置からの認証結果に基づいて、AP300の識別子をテーブルに追加するか否かを判定してもよい。
 上述した第1実施形態の変更例では、Logged MDTのケースを説明したが、上述した技術が即座報告型のMDT(Immediate MDT)に適用されてもよい。なお、Immediate MDTでは、RRC接続状態(コネクテッドモード)のUE100が、ネットワークから設定されたパラメータに従って、測定を行い、測定結果及び位置情報をネットワークに報告する。
 上述した第2実施形態において、eNB200の上位ノードとしてMME400を挙げて説明したが、これに限られない。例えば、MME400の代わりに、OAM(Operation and Maintenance)が同様の動作を実行してもよい。なお、OAMは、EPC20内に存在し、オペレータによって管理されるサーバ装置である。OAMは、E-UTRAN10の保守及び監視等を行うことができる。
 上述した第2実施形態において、UE100は、報告対象となるAP300としてステルスAPが設定されている場合、設定に基づいて、ステルスAPに関連する識別情報の要求(プローブ要求)を送信してもよかったが、これに限られない。UE100は、通常のAPからAP300の識別情報を要求するための無線信号(プローブ要求)を送信してもよい。例えば、UE100は、所定時間内にAPからの無線信号(ビーコン信号)を受信できない場合に、AP300の識別情報を要求するための無線信号を送信してもよい。従って、UE100は、いわゆる、アクティブスキャンを行う場合に、AP300の識別情報を要求するための無線信号を送信してもよい。また、UE100は、eNB200から報告対象となるAP300としてステルスAPが設定されていない場合であっても、AP300(ステルスAP)の識別情報を要求するための無線信号を送信してもよい。
 上述した第3実施形態において、WT600は、AP300が新たに登録された場合に、当該AP300の識別情報をeNB200に送っていたが、これに限られない。WT600は、管理対象から除外されたAP300の識別情報をeNB200に送ってもよい。
WT600は、例えば、AP300が物理的に撤去された場合に、当該APが管理対象から除外されたと判断する。WT600は、オペレータによって管理すべきAP300(の識別情報)が削除されたり、配下のAP300から応答を受け取れなかったりした場合に、当該APが管理対象から除外されたと判断できる。
 WT600は、APが管理対象から除外されたと判定した場合、除外されたAP300の識別情報をeNB200に送ることができる。eNB200は、除外されたAP300の識別情報をWT-APテーブルから削除してもよい。eNB200は、WLANリストから除外されたAP300の識別情報を削除してもよい。
 また、WT600は、追加/削除されたAP300を示すフラグ情報(例えば、追加:「0」/削除:「1」)をAP300の識別情報と共にeNB200に送ってもよい。或いは、WT600は、追加されたAP300の識別情報を含む第1メッセージと、削除されたAP300の識別情報を含む第2メッセージとを用いて、WT600が管理するAP300の変更情報をeNB200に知らせてもよい。
 WT600は、AP300がアクティベート(例えば、運用開始/運用再開)又はディアクティベート(例えば、省電力、故障、点検等のために運用停止)になった場合に、該当するAP300の識別情報をeNB200に送ってもよい。WT600は、アクティベート(又はディアクティベート)になったAP300を、管理対象から追加(又は削除)されたAP300として、eNB200に知らせてもよい。
 或いは、WT600は、アクティベート又はディアクティベートになったAP300をeNB200に知らせるために、AP300の識別情報をeNB200に送ってもよい。
この場合、eNB200は、ディアクティベートになったAP300をWT-APテーブル(及びWLANリスト)から除外し、アクティベートになったAP300をWT-APテーブル(及びWLANリスト)に追加してもよい。或いは、WT-APテーブル内に運用状態欄(例えば、有効性(Availability))が設けられており、eNB200は、WT-APテーブル内の運用状態欄をマーク(ON/OFF等)することによって、WT-APテーブルを更新してもよい。eNB200は、例えば、ディアクティベートになったAP300の運用状態欄を「OFF」とマークし、アクティベートになったAP300の運用状態欄を「ON」とマーキングしてもよい。
 上述した第5実施形態において、eNB200-1がマクロeNBであり、eNB200-2がスモールeNBであるケースについて説明したが、これに限られない。eNB200-1がマクロeNBであり、eNB200-2がスモールeNBであってもよい。また、eNB200-1とeNB200-2とが対等な関係(例えば、マクロeNBどうし)であってもよい。また、eNB200-2は、HeNBであってもよい。この場合、eNB200-2は、自身と接続されているX2-GW経由で、eNB200-1に問い合わせを送ってもよい。
 上述において、WT600は、例えば、AP300を管理(制御)するAC(アクセスコントローラ)であってもよい。WT600は、ACの上位ノードであり、ACを管理するネットワーク装置であってもよい。
 また、上述した各実施形態及び各変更例に係る動作は、適宜組み合わせて実行されてもよい。例えば、第1実施形態における動作が第2実施形態で説明したシステムにおいて、実行されてもよい。
 上述した各実施形態では特に触れていないが、上述した各ノード(UE100、eNB200、AP300、MME400、WT600など)のいずれかが行う各処理をコンピュータに実行させるプログラムが提供されてもよい。また、プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROMやDVD-ROM等の記録媒体であってもよい。
 或いは、UE100、eNB200及びAP300のいずれかが行う各処理を実行するためのプログラムを記憶するメモリ及びメモリに記憶されたプログラムを実行するプロセッサ)によって構成されるチップが提供されてもよい。
 上述した各実施形態では、移動通信システムの一例としてLTEシステムを説明したが、LTEシステムに限定されるものではなく、LTEシステム以外のシステムに本発明を適用してもよい。
 なお、米国仮出願第62/165315号(2015年5月22日出願)、日本国特許出願第2015-115163号(2015年6月5日出願)、及び日本国特許出願第2015-150173号(2015年7月29日出願)の全内容が、参照により、本願明細書に組み込まれている。

Claims (8)

  1.  基地局であって、
     無線LAN終端装置において追加された無線LANアクセスポイントの識別子を前記無線LAN終端装置から受け取る制御部を備える基地局。
  2.  前記制御部は、前記基地局と前記無線LAN終端装置との間のXwインターフェイスを介して、無線LANアクセスポイントの識別子のリストを含むメッセージを前記無線LAN終端装置から受け取り、
     前記無線LANアクセスポイントのリストは、前記追加された無線LANアクセスポイントの識別子を含む請求項1に記載の基地局。
  3.  前記制御部は、前記無線LAN終端装置において削除された無線LANアクセスポイントの識別子を前記無線LAN終端装置から受け取る請求項1に記載の基地局。
  4.  前記制御部は、前記基地局と前記無線LAN終端装置との間のXwインターフェイスを介して、無線LANアクセスポイントの識別子のリストを含むメッセージを前記無線LAN終端装置から受け取り、
     前記無線LANアクセスポイントのリストは、前記削除された無線LANアクセスポイントの識別子を含む請求項3に記載の基地局。
  5.  基地局であって、
     前記基地局と無線LAN終端装置との間のXwインターフェイスのセットアップを要求するためのメッセージを前記無線LAN終端装置へ送る制御部を備え、
     前記制御部は、前記第2のメッセージに対する応答メッセージを前記無線LAN終端装置から受け取り、
     前記応答メッセージは、前記無線LAN終端装置における無線LANアクセスポイントの識別子のリストを含む基地局。
  6.  前記制御部は、前記基地局と前記無線LAN終端装置との間のXwインターフェイスを介して、無線LANアクセスポイントの識別子のリストを含むメッセージを前記無線LAN終端装置から受け取り、
     前記無線LANアクセスポイントのリストは、変更された無線LANアクセスポイントの識別子を含む請求項5に記載の基地局。
  7.  無線端末であって、
     測定対象の無線LANアクセスポイントを設定するための制御情報を基地局から受信する受信部を含み、
     前記制御情報は、前記無線LANアクセスポイントを特定するための識別子を含む無線端末。
  8.  前記受信部は、セルからの無線信号に関する測定報告を設定するためのメッセージを前記基地局から受信し、
     前記メッセージは、前記制御情報を含む請求項7に記載の無線端末。
PCT/JP2016/065068 2015-05-22 2016-05-20 基地局及び無線端末 WO2016190254A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/575,607 US10492177B2 (en) 2015-05-22 2016-05-20 Base station and radio terminal
JP2017520687A JP6800841B2 (ja) 2015-05-22 2016-05-20 基地局及び無線端末
EP16799959.8A EP3300429B1 (en) 2015-05-22 2016-05-20 Base station

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201562165315P 2015-05-22 2015-05-22
US62/165,315 2015-05-22
JP2015-115163 2015-06-05
JP2015115163 2015-06-05
JP2015150173 2015-07-29
JP2015-150173 2015-07-29

Publications (1)

Publication Number Publication Date
WO2016190254A1 true WO2016190254A1 (ja) 2016-12-01

Family

ID=57392790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065068 WO2016190254A1 (ja) 2015-05-22 2016-05-20 基地局及び無線端末

Country Status (4)

Country Link
US (1) US10492177B2 (ja)
EP (1) EP3300429B1 (ja)
JP (1) JP6800841B2 (ja)
WO (1) WO2016190254A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019160083A1 (ja) * 2018-02-15 2019-08-22 京セラ株式会社 ユーザ装置
US20200351696A1 (en) 2018-01-22 2020-11-05 Beijing Xiaomi Mobile Software Co., Ltd. Method, device and system for minimization of drive test
KR20200143732A (ko) * 2018-04-23 2020-12-24 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 측정 구성, 보고 방법 및 장치, 기지국 및 사용자 기기
US11317302B2 (en) 2018-02-08 2022-04-26 Beijing Xiaomi Mobile Software Co., Ltd. Minimization of drive test configuration method and apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3372000B1 (en) * 2015-11-06 2023-07-26 IPCom GmbH & Co. KG Enhancement of mdt services
JP6801713B2 (ja) * 2016-08-29 2020-12-16 日本電気株式会社 基地局装置、基地局管理装置、通信制御方法及び通信制御システム
JP7310265B2 (ja) * 2019-04-22 2023-07-19 日本電信電話株式会社 無線通信方法、基地局及び無線通信システム
JP7418114B2 (ja) * 2019-11-27 2024-01-19 キヤノン株式会社 通信装置、その制御方法、およびそのプログラム
US20230071803A1 (en) * 2020-02-15 2023-03-09 Qualcomm Incorporated Radio access network (ran)-centric data collection for dual connectivity (dc)/carrier aggregation (ca)
KR20210125865A (ko) * 2020-04-09 2021-10-19 삼성전자주식회사 이동통신 시스템에서 정보를 기록하는 방법 및 장치
EP4020853A1 (en) * 2020-12-24 2022-06-29 INTEL Corporation A distributed radiohead system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060109820A1 (en) * 2004-11-25 2006-05-25 Casio Hitachi Mobile Communications Co. Handoff control method and mobile station
US20140199994A1 (en) * 2013-01-15 2014-07-17 Telefonaktiebolaget L M Ericsson (Publ) REPORTING WiFi CHANNEL MEASUREMENTS TO A CELLULAR RADIO NETWORK

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2896247B1 (en) 2012-09-14 2020-02-19 Interdigital Patent Holdings, Inc. Methods for mobility control for wi-fi offloading in wireless systems
US10356640B2 (en) * 2012-11-01 2019-07-16 Intel Corporation Apparatus, system and method of cellular network communications corresponding to a non-cellular network
WO2014098531A1 (ko) * 2012-12-20 2014-06-26 엘지전자 주식회사 무선 통신 시스템에서 이동 방법 및 이를 지원하는 장치
US9253717B2 (en) * 2013-01-18 2016-02-02 Lg Electronics Inc. Method and terminal for selecting AP
CN105519167B (zh) * 2013-07-04 2020-01-14 韩国电子通信研究院 移动通信系统中用于支持多连接的控制方法和用于支持多连接的设备
US9788242B2 (en) * 2015-02-05 2017-10-10 Mediatek Inc. Network selection and data aggregation with LTE-WLAN aggregation
US10869344B2 (en) * 2015-03-19 2020-12-15 Acer Incorporated Method of radio bearer transmission in dual connectivity
CN107466481B (zh) * 2015-03-25 2021-03-02 Lg 电子株式会社 在无线通信系统中执行用于wlan-lte集成和互通的卸载过程的方法和装置
CN107690828B (zh) * 2015-04-10 2021-04-20 瑞典爱立信有限公司 自主lte-wlan接口设置和信息交换

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060109820A1 (en) * 2004-11-25 2006-05-25 Casio Hitachi Mobile Communications Co. Handoff control method and mobile station
US20140199994A1 (en) * 2013-01-15 2014-07-17 Telefonaktiebolaget L M Ericsson (Publ) REPORTING WiFi CHANNEL MEASUREMENTS TO A CELLULAR RADIO NETWORK

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CMCC: "TR 37.870 update", 3GPP TSG- RAN WG3 MEETING #88 R3-151163, 16 May 2015 (2015-05-16), XP050972042 *
ERICSSON: "Setting UP the Xw", 3GPP TSG-RAN WG3 #87BIS R3-150740, 20 April 2015 (2015-04-20), XP050937351 *
HUAWEI: "Further clarification on the identified parameters for UE throughput estimation in WLAN", 3GPP TSG-RAN3 MEETING #87BIS R3-150575, 20 April 2015 (2015-04-20), XP050937193 *
See also references of EP3300429A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200351696A1 (en) 2018-01-22 2020-11-05 Beijing Xiaomi Mobile Software Co., Ltd. Method, device and system for minimization of drive test
EP3742790A4 (en) * 2018-01-22 2021-09-15 Beijing Xiaomi Mobile Software Co., Ltd. PROCESS, DEVICE, AND SYSTEM FOR EXECUTING MEASURES ASSOCIATED WITH THE MINIMIZATION OF DRIVING TESTS
US11765611B2 (en) 2018-01-22 2023-09-19 Beijing Xiaomi Mobile Software Co., Ltd. Method, device and system for minimization of drive test
US11317302B2 (en) 2018-02-08 2022-04-26 Beijing Xiaomi Mobile Software Co., Ltd. Minimization of drive test configuration method and apparatus
WO2019160083A1 (ja) * 2018-02-15 2019-08-22 京セラ株式会社 ユーザ装置
JPWO2019160083A1 (ja) * 2018-02-15 2020-12-03 京セラ株式会社 ユーザ装置
JP7058716B2 (ja) 2018-02-15 2022-04-22 京セラ株式会社 ユーザ装置
US11470494B2 (en) 2018-02-15 2022-10-11 Kyocera Corporation User equipment
KR20200143732A (ko) * 2018-04-23 2020-12-24 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 측정 구성, 보고 방법 및 장치, 기지국 및 사용자 기기
KR102460858B1 (ko) 2018-04-23 2022-10-31 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 측정 구성, 보고 방법 및 장치, 기지국 및 사용자 기기

Also Published As

Publication number Publication date
EP3300429A1 (en) 2018-03-28
US20180160416A1 (en) 2018-06-07
JPWO2016190254A1 (ja) 2018-03-08
US10492177B2 (en) 2019-11-26
EP3300429A4 (en) 2019-01-02
EP3300429B1 (en) 2020-01-15
JP6800841B2 (ja) 2020-12-16

Similar Documents

Publication Publication Date Title
JP6800841B2 (ja) 基地局及び無線端末
US10743229B2 (en) Communication control method
CN112312503B (zh) 具有lte-wlan聚合的网络选择及数据聚合
CN105101320B (zh) 一种建立基站间连接的方法
US10674415B2 (en) Split of control- and user-plan during LTE-WLAN aggregation handovers
US20170289950A1 (en) Communication control method and user terminal
WO2017018539A1 (ja) 基地局及び無線端末
JP6423107B2 (ja) 基地局、プロセッサ、及び終端装置
JPWO2015141849A1 (ja) 通信システム、セルラ基地局及びwlan管理装置
JP2016502376A (ja) セルラー無線ネットワークに対するWiFiチャネルの測定結果の報告
JP6467543B2 (ja) 通信システム、ユーザ端末、プロセッサ及び通信制御方法
WO2013189310A1 (zh) 认知无线电系统、基站及邻区关系的控制方法
WO2017018460A1 (ja) 基地局
US10893432B2 (en) Communication method, cellular base station and wireless LAN termination node
US20170339613A1 (en) Base station, apparatus, and radio terminal
WO2016072465A1 (ja) 基地局及びプロセッサ
KR101587416B1 (ko) Lte 펨토셀에서 이동통신 단말기의 ip 주소 획득 방법
CN106455131B (zh) 一种wlan承载控制的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799959

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017520687

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15575607

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016799959

Country of ref document: EP