WO2016190239A1 - Lipid production method - Google Patents

Lipid production method Download PDF

Info

Publication number
WO2016190239A1
WO2016190239A1 PCT/JP2016/065006 JP2016065006W WO2016190239A1 WO 2016190239 A1 WO2016190239 A1 WO 2016190239A1 JP 2016065006 W JP2016065006 W JP 2016065006W WO 2016190239 A1 WO2016190239 A1 WO 2016190239A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
dna
amino acid
acid sequence
ketoacyl
Prior art date
Application number
PCT/JP2016/065006
Other languages
French (fr)
Japanese (ja)
Inventor
卓人 東條
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Publication of WO2016190239A1 publication Critical patent/WO2016190239A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats

Definitions

  • the present invention relates to a method for producing a fatty acid or a lipid comprising the same, and a transformant and ⁇ -ketoacyl-ACP synthase used therefor.
  • Fatty acids are one of the major constituents of lipids, and constitute lipids such as triacylglycerol produced by ester bonds with glycerin in vivo. In many animals and plants, fatty acids are also stored and used as energy sources. Fatty acids and lipids (oils and fats) stored in animals and plants are widely used for food or industry. For example, derivatives of higher alcohols obtained by reducing higher fatty acids having about 12 to 18 carbon atoms are used as surfactants. Alkyl sulfate esters and alkylbenzene sulfonates are used as anionic surfactants. Polyoxyalkylene alkyl ethers, alkyl polyglycosides, and the like are used as nonionic surfactants.
  • surfactants are used as cleaning agents or disinfectants.
  • cationic surfactants such as alkylamine salts and mono- or dialkyl quaternary ammonium salts are routinely used as fiber treatment agents, hair rinse agents, or bactericides as higher alcohol derivatives.
  • Benzalkonium-type quaternary ammonium salts are routinely used as bactericides and preservatives.
  • vegetable oils and fats are also used as raw materials for biodiesel fuel.
  • Plant fatty acid synthesis pathway is localized in chloroplasts.
  • acetyl-ACP acyl-carrier-protein
  • acyl-ACP having 16 or 18 carbon atoms acyl group and acyl which are fatty acid residues
  • a complex consisting of a carrier protein is synthesized.
  • ⁇ -ketoacyl-acyl-carrier-protein synthase (hereinafter also referred to as “KAS”) is an enzyme involved in the control of the acyl group chain length.
  • KAS III works at the initiation stage of the chain extension reaction, and extends acetyl-ACP having 2 carbon atoms to acyl-ACP having 4 carbon atoms.
  • KAS II is mainly involved in the elongation reaction up to C18 stearoyl ACP.
  • KAS IV is said to be involved in the elongation reaction up to medium chain acyl-ACP having 6 to 14 carbon atoms.
  • KAS IV not much knowledge has been obtained in plants, and KAS IV is regarded as a KAS unique to plants that accumulate medium chain fatty acids such as cuphea (see Patent Document 1 and Non-Patent Document 1).
  • a transformant obtained by introducing a gene encoding any of the following proteins (a) to (f) into a host is cultured to produce a fatty acid or a lipid comprising this as a constituent. It relates to a manufacturing method.
  • A a protein comprising the amino acid sequence represented by SEQ ID NO: 1
  • B an amino acid sequence having 85% or more identity with the amino acid sequence of the protein (a)
  • C a protein having the amino acid sequence represented by SEQ ID NO: 3
  • D a protein having the identity of 85% or more with the protein
  • E a protein having the KAS activity
  • e a protein comprising the amino acid sequence represented by SEQ ID NO: 5
  • e an amino acid sequence having 85% or more identity with the amino acid sequence of the protein (e)
  • a KAS activity Protein with
  • the present invention also relates to a transformant obtained by introducing a gene encoding any of the proteins (a) to (f) into a host.
  • the present invention also relates to the proteins (a) to (f).
  • the present invention relates to a gene encoding any one of the proteins (a) to (f).
  • the present invention relates to a method for producing a lipid, which improves the productivity of a fatty acid having a specific carbon number, or a lipid comprising this fatty acid. Moreover, this invention relates to the transformant which improved the productivity of the fatty acid of a specific carbon number, or the lipid which uses this as a structural component.
  • the method for producing a lipid of the present invention it is possible to improve the productivity of a fatty acid having a specific carbon number or a lipid comprising this as a constituent. Moreover, the transformant of the present invention is excellent in the productivity of a fatty acid having a specific carbon number, or a lipid comprising this as a constituent.
  • lipid refers to simple lipids such as neutral fats, waxes, and ceramides; complex lipids such as phospholipids, glycolipids, and sulfolipids; and fatty acids, alcohols, and hydrocarbons derived from these lipids And other derived lipids.
  • Cx: y in the notation of fatty acids and acyl groups constituting fatty acids means that the number of carbon atoms is x and the number of double bonds is y.
  • Cx represents a fatty acid or acyl group having x carbon atoms.
  • the identity of a base sequence and an amino acid sequence is calculated by the Lipman-Pearson method (Science, 1985, vol.
  • composition of 1 ⁇ SSC 0.15M sodium chloride, 0.015M sodium citrate, pH 7.0
  • 0.5% SDS 0.5% SDS
  • 5 ⁇ Denhart 100 mg / mL herring sperm DNA
  • hybridization with the probe at 65 ° C. for 8 to 16 hours.
  • the transformant of the present invention is transformed with a gene encoding any of the following proteins (a) to (f) (hereinafter also referred to as “KAS gene”).
  • KAS gene a gene encoding any of the following proteins (a) to (f) (hereinafter also referred to as “KAS gene”).
  • A a protein comprising the amino acid sequence represented by SEQ ID NO: 1
  • B a protein comprising an amino acid sequence having 85% or more identity with the amino acid sequence of the protein (a) and having KAS activity
  • C a protein comprising the amino acid sequence represented by SEQ ID NO: 3
  • D a protein comprising the amino acid sequence having 85% or more identity with the protein (c) and having KAS activity
  • E a protein comprising the amino acid sequence represented by SEQ ID NO: 5
  • f a protein comprising the amino acid sequence having 85% or more identity with the amino acid sequence of the protein (e
  • the protein comprising the amino acid sequence of SEQ ID NO: 1 is KAS derived from California Bay seeds (hereinafter also referred to as “BKAS431”) obtained from Sierra Seed Supply, USA.
  • the protein consisting of the amino acid sequence of SEQ ID NO: 3 is KAS derived from California Bay seeds (hereinafter also referred to as “BKAS1082”) obtained from Sierra Seed Supply, USA.
  • the protein consisting of the amino acid sequence of SEQ ID NO: 5 is KAS (hereinafter also referred to as “KKAS250”) derived from camphor seeds collected from the Kao Wakayama Factory.
  • KAS is an enzyme involved in the control of acyl chain length in the fatty acid synthesis pathway. Plant fatty acid synthesis pathway is localized in chloroplasts.
  • acetyl-ACP is used as a starting material, and the carbon chain elongation reaction is repeated to finally synthesize acyl-ACP having 16 or 18 carbon atoms. Subsequently, acyl-ACP thioester bond is hydrolyzed by the action of acyl-ACP thioesterase (hereinafter also referred to as “TE”) to produce free fatty acid.
  • TE acyl-ACP thioesterase
  • acetoacetyl ACP is produced by the condensation reaction of acetyl-ACP and malonyl ACP. This reaction is catalyzed by KAS.
  • acetoacetyl ACP is reduced by ⁇ -ketoacyl-ACP reductase to produce hydroxybutyryl ACP.
  • hydroxybutyryl ACP is dehydrated by ⁇ -hydroxyacyl-ACP dehydrase to produce crotonyl ACP.
  • crotonyl ACP is reduced by enoyl-ACP reductase to produce butyryl ACP.
  • KAS activity means an activity of catalyzing the condensation reaction of acetyl-ACP or acyl-ACP with malonyl ACP.
  • the fact that a protein has KAS activity means that, for example, a fusion gene in which a gene encoding the protein is linked downstream of a promoter that functions in the host cell is introduced into a host cell lacking the fatty acid degradation system, and the introduced gene is It can be confirmed by culturing the cells under the expressing condition and analyzing the change of the fatty acid composition in the host cell or in the culture solution by a conventional method.
  • a fusion gene in which a gene encoding the protein is linked downstream of a promoter that functions in the host cell is introduced into the host cell, and the cell is cultured under conditions where the introduced gene is expressed.
  • it can be confirmed by performing a chain extension reaction using various acyl-ACPs as substrates.
  • KAS is classified as KAS I, KAS II, KAS III, or KAS IV depending on its substrate specificity.
  • KAS III uses acetyl-ACP having 2 carbons as a substrate and catalyzes an elongation reaction having 2 to 4 carbons.
  • KAS I mainly catalyzes an elongation reaction having 4 to 16 carbon atoms to synthesize palmitoyl-ACP having 16 carbon atoms.
  • KAS II mainly catalyzes an elongation reaction having 16 to 18 carbon atoms to synthesize stearoyl ACP having 18 carbon atoms.
  • KAS IV catalyzes the elongation reaction of 6 to 14 carbon atoms to synthesize medium chain acyl-ACP.
  • the protein (a) (BKAS431) has substrate specificity for fatty acids having 16 carbon atoms and selectively synthesizes them. Therefore, it is considered that the proteins (a) and (b) are KAS I.
  • the protein (c) (BKAS1082) and the protein (e) (KKAS250) have substrate specificity for medium chain acyl-ACP as shown in the Examples described later. Therefore, the proteins (c) to (f) are considered to be KAS IV.
  • the amino acid sequence of the protein (c) has 98.7% identity with the amino acid sequence of the protein (e).
  • substrate specificity for medium chain acyl-ACP means that KAS mainly uses an acyl ACP having 4 to 12 carbon atoms as a substrate and an elongation reaction of synthesis of medium chain acyl ACP up to 14 carbon atoms. It means to catalyze.
  • medium chain means that the acyl group has 6 to 14 carbon atoms.
  • a fusion gene in which a gene encoding a protein is linked downstream of a promoter that functions in the host cell is introduced into a host cell lacking the fatty acid degradation system, and the introduced gene is expressed.
  • a fusion gene in which a gene encoding a protein is linked downstream of a promoter that functions in the host cell is introduced into the host cell, and the cell is cultured under conditions where the introduced gene is expressed. This can be confirmed by performing a chain length extension reaction.
  • the identity with the amino acid sequence of the protein (a) is preferably 90% or more, more preferably 95% or more, and further preferably 98% or more.
  • the protein (b) one or several (for example, 1 to 73, preferably 1 to 49, more preferably 1 to 25) amino acid sequences of the protein (a) And, more preferably, a protein in which 1 to 10 amino acids are deleted, substituted, inserted or added.
  • the identity with the amino acid sequence of the protein (c) is preferably 90% or more, more preferably 95% or more, and further preferably 98% or more.
  • the protein (d) one or several (for example, 1 to 86, preferably 1 to 57, more preferably 1 to 29) amino acid sequences of the protein (c) And, more preferably, a protein in which 1 to 12 amino acids are deleted, substituted, inserted or added.
  • the identity with the amino acid sequence of the protein (e) is preferably 90% or more, more preferably 95% or more, and further preferably 98% or more.
  • the protein (f) one or several (for example, 1 to 86, preferably 1 to 57, more preferably 1 to 29) amino acid sequences of the protein (e) And, more preferably, a protein in which 1 to 12 amino acids are deleted, substituted, inserted or added.
  • the method for introducing a mutation into an amino acid sequence include a method for introducing a mutation into a base sequence encoding an amino acid sequence.
  • the method for introducing mutation include site-specific mutagenesis. Specific methods for introducing site-specific mutations include a method using Splicing overlap extension (SOE) -PCR reaction, ODA method, Kunkel method and the like.
  • SOE Splicing overlap extension
  • the target gene can also be obtained by performing enzyme activity evaluation and gene analysis by an appropriate method.
  • KAS gene is a gene consisting of any of the following DNA (g) to (l).
  • G DNA comprising the base sequence represented by SEQ ID NO: 2
  • H DNA comprising a base sequence having 85% or more identity with the base sequence of DNA (g) and encoding a protein having KAS activity
  • I DNA comprising the base sequence represented by SEQ ID NO: 4
  • J DNA comprising a base sequence having 85% or more identity with the base sequence of DNA (i) and encoding a protein having KAS activity
  • K DNA comprising the base sequence represented by SEQ ID NO: 6
  • L DNA comprising a base sequence having 85% or more identity with the base sequence of DNA (k) and encoding a protein having KAS activity
  • the base sequence of SEQ ID NO: 2 is a base sequence of a gene encoding a protein consisting of the amino acid sequence of SEQ ID NO: 1.
  • the base sequence of SEQ ID NO: 4 is a base sequence of a gene encoding a protein consisting of the amino acid sequence of SEQ ID NO: 3.
  • the base sequence of SEQ ID NO: 6 is a base sequence of a gene encoding a protein consisting of the amino acid sequence of SEQ ID NO: 5.
  • the identity with the base sequence of the DNA (g) is preferably 90% or more, and more preferably 95% or more.
  • the DNA (h) is one or several in the nucleotide sequence represented by SEQ ID NO: 2 (for example, 1 to 218, preferably 1 to 145, more preferably 1 to 73)
  • a DNA encoding a protein having the above-mentioned base deleted, substituted, inserted or added and having KAS activity is also preferred.
  • the identity with the base sequence of the DNA (i) is preferably 90% or more, and more preferably 95% or more.
  • the DNA (j) is one or several (for example, 1 to 256, preferably 1 to 171 and more preferably 1 to 86) in the base sequence represented by SEQ ID NO: 4.
  • the DNA (j) encodes the protein (c) or (d) which hybridizes with a DNA having a base sequence complementary to the DNA (i) under stringent conditions and has KAS activity. DNA is also preferred.
  • the identity with the base sequence of the DNA (k) is preferably 90% or more, and more preferably 95% or more.
  • the DNA (l) is one or several in the nucleotide sequence represented by SEQ ID NO: 6 (for example, 1 to 256, preferably 1 to 171 and more preferably 1 to 86)
  • a DNA encoding a protein having the above-mentioned base deleted, substituted, inserted or added and having KAS activity is encoded.
  • DNA is also preferred.
  • the KAS gene can be obtained by ordinary genetic engineering techniques.
  • the KAS gene can be artificially synthesized based on the amino acid sequence shown in SEQ ID NO: 1, 3 or 5 or the base sequence shown in SEQ ID NO: 2, 4 or 6.
  • services such as Invitrogen can be used. It can also be obtained by cloning from California Bay or camphor genomes.
  • Molecular Cloning-A LABORATORY MANUAL THIRD EDITION can be used.
  • the transformant of the present invention is preferably one obtained by introducing a gene encoding TE (hereinafter also referred to as “TE gene”) into the host in addition to the KAS gene.
  • TE is an enzyme that hydrolyzes the acyl-ACP thioester bond synthesized by a fatty acid synthase such as KAS to produce a free fatty acid.
  • the fatty acid synthesis on the ACP is terminated by the action of TE, and the cut fatty acid is used for synthesis of triacylglycerol and the like. Therefore, by co-introducing the KAS gene and the TE gene into the host, the lipid productivity of the transformant, particularly the fatty acid productivity, can be further improved.
  • the TE that can be used in the present invention may be a protein having acyl-ACP thioesterase activity (hereinafter also referred to as “TE activity”).
  • TE activity refers to an activity of hydrolyzing the thioester bond of acyl-ACP.
  • TE has a plurality of TEs having different reaction specificities depending on the number of carbon atoms and the number of unsaturated bonds of the acyl group (fatty acid residue) constituting the substrate acyl-ACP.
  • TE is considered to be an important factor that determines the fatty acid composition in vivo.
  • co-introduction of a gene encoding TE preferably a gene encoding TE having substrate specificity for medium chain acyl-ACP, may be performed. It is effective. By co-introducing such a gene, the productivity of fatty acids can be further improved.
  • TE that can be used in the present invention can be appropriately selected from normal TE and functionally equivalent proteins according to the type of host. Specifically, Umbellularia californica TE (GenBank AAA34215.1); Cuphea calophylla subsp.
  • mesostemon TE (GenBank ABB71581); Cinnamomum camphora TE (GenBank AAC49151.1); Myristica fragrans TE (GenBank AAB71729); Myristica fragrans TE (GenBank AAB71730); Cuphea lanceolata TE (GenBank CAA54060); Cuphea hookeriana TE (GenBank Q39513); Ulumus americana TE (GenBank AAB71731); Sorghum bicolor TE (GenBank EER87824); Sorghum bicolor TE (GenBank EER88593); Cocos nucifera TE (CnFatB1: Jing et al.
  • Streptococcus dysgalactiae of TE (GenBank BAH81730); Lactobacillus brevis of TE (GenBank ABJ63754); Lactobacillus plantarum in TE (GenBank CAD63310); Anaerococcus tetradius of TE (GenBank EEI82564); Bdellovibrio bacteriovorus of TE (GenBank CAE80300); Clostridium thermocellum of TE (GenBank ABN54268); Cocos nucifera TE (CnFatB3: Jing et al.
  • a protein functionally equivalent to these has 50% or more (preferably 70% or more, more preferably 80% or more, further preferably 90% or more) identity with any of the TE amino acid sequences described above.
  • a protein having an amino acid sequence having TE activity can also be used.
  • one or several (for example, 1 or more and 147 or less, preferably 1 or more and 119 or less, more preferably 1 or more and 59 or less, more preferably 1 or more) in any of the above-described amino acid sequences of TE Proteins having 30 or less amino acids deleted, substituted, inserted or added and having TE activity can also be used.
  • a protein comprising an amino acid sequence having 50% or more identity with these TE amino acid sequences (preferably 70% or more, more preferably 80% or more, more preferably 90% or more) and having TE activity, or these 1 or several (for example, 1 or more and 147 or less, preferably 1 or more and 119 or less, more preferably 1 or more and 59 or less, and further preferably 1 or more and 30 or less) amino acid sequences of TE are preferably deleted, substituted, inserted or added and have TE activity.
  • the sequence information of these TEs and the genes encoding them can be obtained from, for
  • TE has specificity for the fatty acid chain length and the degree of unsaturation of acyl-ACP as a substrate. Therefore, by changing the type of TE to be introduced, it is possible to cause cyanobacteria to produce free fatty acids having a desired chain length and degree of unsaturation.
  • TE derived from Umbellularia californica has substrate specificity for an acyl group having 12 carbon atoms, and the generated free fatty acids are mainly free fatty acids having 12 carbon atoms such as lauric acid (C12: 0).
  • TE of Cinnamonum camphorum and Cocos nucifera has substrate specificity for an acyl group having 14 carbon atoms, and the free fatty acids to be produced are mainly 14 free fatty acids such as myristic acid (C14: 0).
  • Escherichia coli K-12 strain TE has substrate specificity for an acyl group having 16 or 18 carbon atoms, and the free fatty acids produced are mainly palmitic acid (C16: 0) and palmitoleic acid (C16: 1).
  • Free fatty acids having 16 or 18 carbon atoms such as stearic acid (C18: 0), oleic acid (C18: 1), linoleic acid (C18: 2), and linolenic acid (C18: 3).
  • the TE activity can be achieved, for example, by introducing a fusion gene in which a TE gene is linked downstream of a promoter that functions in the host cell into a host cell that lacks the fatty acid degradation system, and under conditions where the introduced TE gene is expressed. It can be confirmed by culturing the cells and analyzing changes in the fatty acid composition in the host cells or culture medium by conventional methods. Alternatively, a fusion gene in which a TE gene is linked downstream of a promoter that functions in the host cell is introduced into the host cell, and the cell is cultured under conditions in which the introduced TE gene is expressed. By carrying out reactions using various acyl-ACPs as substrates according to these methods (Yuan L. et al., Proc. Natl. Acad. Sci. USA, 1995, vol. 92 (23), p. 10639-10643). I can confirm.
  • the transformant of the present invention can be obtained by introducing the KAS gene into a host.
  • the transformant significantly improves the productivity of a fatty acid having a specific carbon number and a lipid containing this fatty acid as a constituent component, as compared with the host itself.
  • the fatty acid composition in the lipid is modified as compared with the host.
  • the productivity of fatty acids and lipids in the host and transformant can be measured by the method used in the examples.
  • the transformant of the present invention can be obtained by introducing the KAS gene into the host by a conventional method. Specifically, it can be prepared by preparing an expression vector capable of expressing the KAS gene in a host cell, introducing the vector into the host cell, and transforming the host cell. A transformant in which the TE gene is introduced in addition to the KAS gene can also be prepared by a conventional method.
  • the host for the transformant can be appropriately selected from those usually used.
  • hosts that can be used in the present invention include microorganisms, algae, microalgae, plants, and animals. From the viewpoint of production efficiency and availability of the obtained lipid, the host is preferably a microorganism or a plant, more preferably a plant.
  • the microorganism may be either a prokaryote or a eukaryote, and a prokaryote such as a microorganism belonging to the genus Escherichia or a genus Bacillus, or a eukaryotic microorganism such as a yeast or filamentous fungus is used. it can.
  • Escherichia coli Bacillus subtilis , red yeast ( Rhodosporidium toruloides ), or Mortierella sp. Is preferred, and Escherichia coli is more preferred from the viewpoint of fatty acid productivity.
  • the microalgae include algae of the genus Chlamydomonas , algae of the genus Chlorella , algae of the genus Phaeodactylum , or Nannochloropsis ( Algae of the genus Nannochloropsis ) are preferred, and algae of the genus Nannochloropsis are more preferred.
  • Arabidopsis thaliana As the plant body, Arabidopsis thaliana , Brassica napus , Brassica rapa , Cocos nucifera , Palm ( Elaeis guineensis ), caffe, soybean, from the viewpoint of high lipid content in seeds ( Glycine max ), corn ( Zea mays ), rice ( Oryza sativa ), sunflower ( Helianthus annuus ), camphor ( Cinnamomum camphora ), or jatropha ( Jatropha curcas ) are preferable, and Arabidopsis is more preferable.
  • the vector (plasmid) serving as the parent of the plasmid vector for gene expression may be any vector as long as it can introduce a gene encoding the target protein into the host and can express the gene in the host cell.
  • a vector having an expression regulatory region such as a promoter or terminator according to the type of host to be introduced, and a vector having a replication origin or a selection marker can be used.
  • it may be a vector that autonomously grows and replicates outside the chromosome, such as a plasmid, or a vector that is integrated into the chromosome.
  • Expression vectors that can be preferably used in the present invention include pUC vectors (Takara Bio), pBluescript (pBS) II SK (-) (Stratagene), pSTV vectors (Takara Bio), pET. Vector (Takara Bio), pGEX vector (GE Healthcare), pCold vector (Takara Bio), pHY300PLK (Takara Bio), pUB110 (Mckenzie, T.
  • promoter that regulates the expression of the gene encoding the target protein incorporated in the expression vector
  • Promoters that can be preferably used in the present invention can be induced by the addition of lac promoter, trp promoter, tac promoter, trc promoter, T7 promoter, SpoVG promoter, isopropyl ⁇ -D-1-thiogalactopyranoside (IPTG).
  • Promoters related to various derivatives Rubisco operon (rbc), PSI reaction center protein (psaAB), PSII D1 protein (psbA), cauliflower mosil virus 35SRNA promoter, housekeeping gene promoter (eg, tubulin promoter, actin promoter, ubiquitin promoter) etc.), rape or oilseed rape derived Napin gene promoter, a plant-derived Rubisco promoters, and violaxanthin / chlorophyll a binding protein gene from Nannochloropsis genus promoter Chromatography, and the like.
  • Western rape or rape-derived Napin gene promoter can be preferably used.
  • selectable marker for confirming that the gene encoding the target protein has been incorporated can be appropriately selected according to the type of host used.
  • Selectable markers that can be preferably used in the present invention include ampicillin resistance gene, chloramphenicol resistance gene, erythromycin resistance gene, neomycin resistance gene, kanamycin resistance gene, spectinomycin resistance gene, tetracycline resistance gene, blasticidin S Drug resistance genes such as resistance genes, bialaphos resistance genes, zeocin resistance genes, paromomycin resistance genes, and hygromycin resistance genes.
  • a gene deficiency associated with auxotrophy can be used as a selectable marker gene.
  • Transformation methods include calcium ion transformation method, general competent cell transformation method, protoplast transformation method, electroporation method, LP transformation method, method using Agrobacterium, particle gun method Etc.
  • the productivity of fatty acids having a specific carbon number and lipids comprising the same is improved as compared with the host. Therefore, the lipid can be efficiently produced by culturing the transformant of the present invention under appropriate conditions, and then recovering the lipid from the obtained culture or growth.
  • culture refers to the culture solution and transformant after culturing
  • growth refers to the transformant after growth.
  • the culture conditions of the transformant of the present invention can be appropriately selected according to the host of the transformant, and culture conditions usually used for the host can be used. From the viewpoint of fatty acid production efficiency, for example, glycerol, acetic acid, or malonic acid may be added to the medium as a precursor involved in the fatty acid biosynthesis system.
  • Escherichia coli is used as a host, the transformant can be cultured, for example, in LB medium or Overnight Express Instant TB Medium (Novagen) at 30 to 37 ° C. for 0.5 to 1 day.
  • Arabidopsis thaliana is used as a host, the transformant can be cultured, for example, in soil at a temperature of 20 to 25 ° C.
  • the amount of transformant inoculated into the medium can be appropriately selected, and is preferably 1 to 50% (vol / vol) per medium from the viewpoint of growth.
  • the culture temperature is not particularly limited as long as it does not adversely affect the growth of algae, but it is usually in the range of 5 to 40 ° C.
  • the algae is preferably cultured under light irradiation so that photosynthesis is possible.
  • the culture of algae is preferably performed in the presence of a gas containing carbon dioxide or a medium containing a carbonate such as sodium bicarbonate so that photosynthesis is possible.
  • the transformant may be cultured by aeration and agitation culture, shaking culture or stationary culture, and shaking culture is preferred from the viewpoint of improving aeration.
  • the method for recovering the lipid produced by the transformant can be appropriately selected from conventional methods. For example, by filtration, centrifugation, cell disruption, gel filtration chromatography, ion exchange chromatography, chloroform / methanol extraction method, hexane extraction method, ethanol extraction method, etc. from the aforementioned culture, growth product or transformant
  • the lipid component can be isolated and recovered.
  • oil is recovered from the culture, growth, or transformant by pressing or extraction, and then general purification such as degumming, deoxidation, decolorization, dewaxing, deodorization, etc. is performed. , Lipids can be obtained.
  • a fatty acid can be obtained by hydrolyzing the isolated lipid.
  • the method for isolating the fatty acid from the lipid component include a method of treating at a high temperature of about 70 ° C. in an alkaline solution, a method of treating with lipase, a method of decomposing using high-pressure hot water, and the like.
  • the lipid obtained by the production method of the present invention preferably contains one or more selected from simple lipids and derived lipids, more preferably contains derived lipids, fatty acids or It is more preferable that it contains the ester, and it is still more preferable that it is a fatty acid or its ester.
  • the lipid obtained by the production method of the present invention can be used as an edible material, as an emulsifier for cosmetics and the like, a detergent such as soap and detergent, a fiber treatment agent, a hair rinse agent, or a bactericide and preservative.
  • the present invention further discloses the following lipid production method, transformant, transformant production method, protein, gene, and lipid productivity improvement method.
  • lipids by culturing a transformant obtained by introducing a gene encoding any of the following proteins (a) to (f) into a host to produce fatty acids or lipids comprising the same Method.
  • A a protein comprising the amino acid sequence represented by SEQ ID NO: 1
  • B 85% or more, preferably 90% or more, more preferably 95% or more, and even more preferably 98% or more with the amino acid sequence of the protein
  • C a protein consisting of the amino acid sequence represented by SEQ ID NO: 3 and (d) an amino acid sequence of the protein (c) of 85% or more, preferably A protein comprising an amino acid sequence having 90% or more, more preferably 95% or more, and even more preferably 98% or more identity, and having KAS activity
  • e a protein comprising an amino acid sequence represented by SEQ ID NO: 5 ( f) 85% or more, preferably 90% or more, more preferably 95% or more, with the amino acid sequence of the protein
  • the protein (b) has one or several, preferably 1 to 73, more preferably 1 to 49, still more preferably 1 or more amino acid sequences in the protein (a).
  • the gene encoding the protein (a) or (b) is a gene consisting of the following DNA (g) or (h).
  • the DNA (h) has one or more, preferably 1 or more and 218 or less, more preferably 1 or more and 145 or less, more preferably 1 or more, in the base sequence of the DNA (g).
  • ⁇ 5> The method according to any one of ⁇ 1> to ⁇ 4>, wherein the proteins (a) and (b) are KAS I.
  • the protein (d) has one or several, preferably 1 to 86, more preferably 1 to 57, and still more preferably 1 or more amino acid sequences in the protein (c). 29.
  • DNA comprising the base sequence represented by SEQ ID NO: 4
  • J a DNA comprising a base sequence having 85% or more, preferably 90% or more, more preferably 95% or more identity with the DNA (i) base sequence, and encoding a protein having KAS activity ⁇ 8>
  • the DNA (j) has one or more, preferably 1 to 256, more preferably 1 to 171 and even more preferably 1 or more nucleotide sequences in the DNA (i).
  • a DNA encoding a protein (c) or (d) having a KAS activity comprising a nucleotide sequence with 86 or fewer bases deleted, substituted, inserted, or added, or complementary to the DNA (i)
  • the method according to ⁇ 7> above which is a DNA that hybridizes under stringent conditions with a DNA comprising a basic nucleotide sequence and encodes the protein (c) or (d) having KAS activity.
  • ⁇ 9> The method according to any one of ⁇ 1> and ⁇ 6> to ⁇ 8>, wherein the proteins (c) and (d) are KAS IV.
  • the protein (f) has one or several, preferably 1 to 86, more preferably 1 to 57, and still more preferably 1 or more amino acid sequences in the protein (e). 29.
  • the gene encoding the protein (e) or (f) is a gene consisting of the following DNA (k) or (l).
  • (K) DNA comprising the base sequence represented by SEQ ID NO: 6
  • the DNA (l) has one or more, preferably 1 to 256, more preferably 1 to 171 and still more preferably 1 or more nucleotide sequences in the DNA (k).
  • ⁇ 13> The method according to any one of ⁇ 1> and ⁇ 10> to ⁇ 12>, wherein the proteins (e) and (f) are KAS IV.
  • ⁇ 14> The method according to any one of ⁇ 1> to ⁇ 13>, wherein the host is a microorganism or a plant.
  • ⁇ 15> The method according to ⁇ 14>, wherein the plant is Arabidopsis thaliana.
  • ⁇ 16> The method according to ⁇ 15>, wherein the transformant is produced by introducing a gene encoding any of the proteins (a) to (f) into Arabidopsis as a host using Agrobacterium. .
  • ⁇ 17> The method according to ⁇ 15> or ⁇ 16> above, wherein the fatty acid produced by the transformant or a lipid comprising the fatty acid is collected from Arabidopsis seeds.
  • ⁇ 18> Any one of ⁇ 1> to ⁇ 17>, wherein a gene encoding TE, preferably a gene encoding TE having substrate specificity for medium chain acyl-ACP, has been introduced into the host.
  • the method described. ⁇ 19> the TE is, Umbellularia californica the TE, Cocos nucifera of TE, TE of Cinnamonum camphorum, TE of Elaeis guineensis, Cuphea species TE, Nannochloropsis oculata of TE, TE of Nannochloropsis gaditana, Nannochloropsis granulata of TE, and Symbiodinium Microadriaticum ⁇ 18> The method according to ⁇ 18>, wherein the method is at least one TE selected from the group consisting of:
  • ⁇ 20> A transformant obtained by introducing a gene encoding any of the proteins (a) to (f) into a host.
  • ⁇ 21> A method for producing a transformant, wherein a gene encoding any of the proteins (a) to (f) is introduced into a host.
  • ⁇ 22> A method for improving the lipid productivity of a host, wherein a gene encoding any of the proteins (a) to (f) is introduced into a host, and the lipid productivity of the obtained transformant is improved.
  • a gene encoding any one of the proteins (a) to (f) is introduced into a host, the fatty acid composition in the lipid produced by the obtained transformant is modified, and in the lipid produced by the host A method of modifying the fatty acid composition.
  • the protein (b) has one or several, preferably 1 to 73, more preferably 1 to 49, and still more preferably 1 or more amino acid sequences of the protein (a).
  • ⁇ 25> The transformation according to any one of ⁇ 20> to ⁇ 24>, wherein the gene encoding the protein (a) or (b) is a gene comprising the DNA (g) or (h) Body or method.
  • the DNA (h) has one or more, preferably 1 or more and 218 or less, more preferably 1 or more and 145 or less, more preferably 1 or more, in the base sequence of the DNA (g).
  • a DNA encoding the protein (a) or (b) having a KAS activity consisting of a base sequence in which 73 or fewer bases are deleted, substituted, inserted or added, or complementary to the DNA (g)
  • the transformant according to ⁇ 25>, wherein the transformant is a DNA that hybridizes with a DNA comprising a basic nucleotide sequence under stringent conditions and encodes the protein (a) or (b) having KAS activity. Or method.
  • the protein (d) has one or several, preferably 1 to 86, more preferably 1 to 57, more preferably 1 or more amino acid sequences in the protein (c).
  • ⁇ 29> Any one of the above ⁇ 20> to ⁇ 23> and ⁇ 28>, wherein the gene encoding the protein (c) or (d) is the gene consisting of the DNA (i) or (j) The transformant or method as described.
  • the DNA (j) has one or more, preferably 1 to 256, more preferably 1 to 171 and even more preferably 1 or more nucleotide sequences in the DNA (i).
  • a DNA encoding a protein (c) or (d) having a KAS activity comprising a nucleotide sequence with 86 or fewer bases deleted, substituted, inserted, or added, or complementary to the DNA (i) ⁇ 29>
  • Method. ⁇ 31> The transformant or method according to any one of ⁇ 20> to ⁇ 23> and ⁇ 28> to ⁇ 30>, wherein the proteins (c) and (d) are KAS IV.
  • the protein (f) has one or several, preferably 1 to 86, more preferably 1 to 57, still more preferably 1 or more amino acid sequences of the protein (e).
  • ⁇ 33> Any one of the above ⁇ 20> to ⁇ 23> and ⁇ 32>, wherein the gene encoding the protein (e) or (f) is the gene consisting of the DNA (k) or (l) The transformant or method as described.
  • ⁇ 34> One or more, preferably 1 to 256, more preferably 1 to 171 and even more preferably 1 or more of the DNA (l) in the base sequence of the DNA (k)
  • ⁇ 35> The transformant or method according to any one of ⁇ 20> to ⁇ 23> and ⁇ 32> to ⁇ 34>, wherein the proteins (e) and (f) are KAS IV.
  • ⁇ 36> The transformant or method according to any one of ⁇ 20> to ⁇ 35>, wherein the host is a microorganism or a plant.
  • ⁇ 37> The transformant or method according to ⁇ 36>, wherein the plant is Arabidopsis thaliana.
  • ⁇ 38> The gene according to ⁇ 37>, wherein the gene encoding any one of the proteins (a) to (f) is introduced into Arabidopsis thaliana as a host using Agrobacterium, and the transformant is produced. Converter or method.
  • ⁇ 39> Any one of ⁇ 20> to ⁇ 38>, wherein a gene encoding TE, preferably a gene encoding TE having substrate specificity for medium chain acyl-ACP, has been introduced into the host.
  • a gene encoding TE preferably a gene encoding TE having substrate specificity for medium chain acyl-ACP, has been introduced into the host.
  • the TE is, Umbellularia californica the TE, TE of Cocos nucifera, TE of Cinnamonum camphorum, TE of Elaeis guineensis, Cuphea species TE, TE of Nannochloropsis oculata, Nannochloropsis gaditana of TE, Nannochloropsis granulata of TE, and Symbiodinium Microadriaticum
  • ⁇ 41> The protein (a) to (f).
  • ⁇ 42> A gene encoding any one of the proteins according to ⁇ 41>.
  • ⁇ 43> A gene comprising any one of the DNAs (g) to (l).
  • Preparation Example 1 Preparation of coconut cDNA After coconut solid endosperm was frozen in liquid nitrogen, it was crushed using a multi-bead shocker (manufactured by Yasui Kikai). To the crushed solid endosperm, phenol / chloroform and 50 mM Tris-HCl (pH 9) were added and mixed, and centrifuged at 7500 rpm for 10 minutes, and the supernatant was collected. The recovered supernatant was again subjected to the same phenol / chloroform treatment. The upper layer was collected, ethanol precipitation operation was performed on this, and the nucleic acid component contained therein was purified.
  • a multi-bead shocker manufactured by Yasui Kikai
  • RNA components For purification of RNA components, RNeasy Plant Mini Kit (Qiagen, Valencia, California) was used. The nucleic acid pellet after ethanol precipitation was vortexed by adding RLT Buffer supplemented with 1/100 volume of 1M DTT, and applied to a QIA shredder spin column. Thereafter, the operation was performed according to the manual attached to the kit, and finally the total RNA derived from coconut was eluted with deionized water (dH 2 O). DNase I (manufactured by Thermo Scientific) was added to the obtained RNA solution together with a buffer, and the mixture was treated at 37 ° C. for 1 hour.
  • DNase I manufactured by Thermo Scientific
  • coconut cDNA was prepared from the obtained RNA using PrimeScript II 1st strand cDNA Synthesis Kit (trade name, manufactured by Takara Bio Inc.).
  • Preparation Example 2 Preparation of California Bay cDNA California Bay seeds obtained from Sierra Seed Supply, USA were frozen in liquid nitrogen and then crushed using a mortar and breast. RNA was extracted from the crushed tissue using Fruit Mate (trade name, manufactured by Takara Bio Inc.) and NucleoSpin RNA plant (trade name, manufactured by Takara Bio Inc.). Subsequently, a California Bay cDNA was prepared from the obtained RNA using PrimeScript II 1st strand cDNA Synthesis Kit (trade name, manufactured by Takara Bio Inc.).
  • PCR was performed again using 7 (SEQ ID NO: 28).
  • a Napin gene promoter sequence fragment SEQ ID NO: 17
  • a Napin gene terminator sequence fragment SEQ ID NO: 18
  • These amplified gene fragments were each treated with Mighty TA-cloning Kit (trade name, manufactured by Takara Bio Inc.) and then inserted into a pMD20-T vector (trade name, manufactured by Takara Bio Inc.) by a ligation reaction.
  • plasmid pPNapin1 into which the Napin gene promoter region was introduced and pTNapin1 into which the Napin gene terminator region was introduced were constructed.
  • the amplified PCR product was treated with Mighty TA-cloning Kit (trade name, manufactured by Takara Bio Inc.) and then inserted into the pMD20-T vector by ligation reaction to construct plasmid pPNapin2 and plasmid pTNapin2.
  • Plasmid pPNapin2 was treated with restriction enzymes Sal I and Not I
  • plasmid pTNapin2 was treated with restriction enzymes Sma I and Not I, respectively, and ligated to pRI909 vector (Takara Bio) treated with Sal I and Sma I
  • Plasmid p909PTnapin was constructed.
  • a gene (SEQ ID NO: 19) encoding a chloroplast translocation signal peptide derived from California Bay (hereinafter also abbreviated as BTE) gene is provided by a contract synthesis service provided by Invitrogen (Carlsbad, California). Acquired using. Using the obtained plasmid containing the gene sequence as a template, PrimeSTAR and the primer Nos. Shown in Table 1 were used. 12 (SEQ ID NO: 33) and primer no. PCR was performed using 13 (SEQ ID NO: 34) to amplify a gene fragment encoding a signal peptide.
  • BTE chloroplast translocation signal peptide derived from California Bay
  • deoxyadenine (dA) was added to both ends of the amplified gene fragment, and then ligated to pMD20-T vector (Takara Bio Inc.).
  • the plasmid pSignal was constructed by insertion.
  • the constructed plasmid pSignal was treated with the restriction enzyme Not I and ligated to the Not I site of the plasmid p909PTnapin by a ligation reaction to obtain a plasmid p909PTnapin-S.
  • the CTE gene fragment and the linear p909PTnapin-S fragment were ligated by In-fusion reaction using In-Fusion Advantage PCR Cloning Kit (trade name, manufactured by Clontech) to construct plasmid p909CTE.
  • the plasmid p909CTE is designed such that the expression of the CTE gene is controlled by the promoter of the Napin gene derived from rape, and the expressed CTE gene is transferred to the chloroplast by the chloroplast transfer signal peptide derived from the BTE gene.
  • pRI909 As a template, PrimeSTAR and the primer numbers shown in Table 1 were used. 20 (SEQ ID NO: 41) and primer no. A PCR reaction was performed using 21 (SEQ ID NO: 42) to amplify a region excluding the kanamycin resistance gene from the pRI909 vector. These gene fragments fragment was treated with Nde I and Spe I, and ligated in ligation reaction, the kanamycin resistance gene vector pRI909 held originally to construct a plasmid pRI909Bar substituted on Bar gene.
  • PCR was performed using 25 (SEQ ID NO: 46) to amplify a linear fragment of pRI909Bar. Furthermore, using the plasmid p909CTE as a template, the primer numbers shown in Table 1 were used. 26 (SEQ ID NO: 47) and primer no. PCR was performed using 27 (SEQ ID NO: 48) to amplify the CTE-Tnapin sequence. These gene fragments were subjected to In-fusion reaction in the same manner as in Preparation Example 4 to construct plasmid p909Pnapus-CTE-Tnapin.
  • the primer numbers shown in Table 1 were used. 28 (SEQ ID NO: 49) and primer no. PCR was performed using 29 (SEQ ID NO: 50) to amplify the gene fragment. In addition, using primer derived from California Bay seed as a template, primer Nos. Shown in Table 1 were used. 30 (SEQ ID NO: 51) and primer no. PCR was performed using 31 (SEQ ID NO: 52) to amplify a gene fragment (SEQ ID NO: 2) encoding BKAS431. These gene fragments were ligated by In-fusion reaction to construct p909Pnapus-BKAS431-Tnapin.
  • primer Nos. Shown in Table 1 were used.
  • 32 (SEQ ID NO: 53) and primer no. 33 (SEQ ID NO: 54) was used to amplify a gene fragment (SEQ ID NO: 4) encoding BKAS1082, and the BKAS431 gene of p909Pnapus-BKAS431-Tnapin was replaced with the BKAS1082 gene, and p909Pnapus-BKAS1082-Tnapin was subjected to In-fusion reaction. It was constructed. Furthermore, using the camphor seed-derived cDNA as a template, primer Nos. Shown in Table 1 were used. 34 (SEQ ID NO: 55) and primer no.
  • PCR was performed using 35 (SEQ ID NO: 56) to amplify a gene fragment (SEQ ID NO: 6) encoding KKAS250. Then, p909Pnapus-KKAS250-Tnapin was constructed by replacing the BKAS431 gene of p909Pnapus-BKAS431-Tnapin with the KKAS250 gene by In-fusion reaction.
  • the inflorescences of Arabidopsis grown about 1.5 months after sowing were grown for 6-7 days after excision and infected with Agrobacterium into which each plasmid was introduced. Seeds grown for about 1-2 months after treatment with Agrobacterium were sown on MS agar medium (containing 100 ⁇ g / mL kraforan and 7 ⁇ g / mL bialaphos) and transformed (WT :: CTE: : BKAS431, WT :: CTE :: BKAS1082, WT :: CTE :: KKAS250) were selected. The selected transformant was grown at 22 ° C. under fluorescent light illumination under the condition of a light period of 24 hours, and seeds were harvested after cultivation for about 2 months.
  • Triacylglycerol was hydrolyzed by adding 100 ⁇ L of 0.5N potassium hydroxide-methanol solution to the dried sample and incubating at 70 ° C. for 30 minutes. Furthermore, 0.3 mL of 3-boron fluoride methanol complex solution was added to dissolve the dried product, and the mixture was incubated at 80 ° C. for 10 minutes to carry out methyl esterification of fatty acid.
  • the C12: 0 fatty acid content was about 3% and the C14: 0 fatty acid content was about 13% in the seed of the transformant WT :: CTE into which only the CTE gene was introduced, compared to the wild type seed.
  • the amount of C16: 0 fatty acid increased by about 15%.
  • the transformant WT :: CTE :: BKAS431 into which the CTE gene and the BKAS431 gene were introduced the amount of C16: 0 fatty acid and the amount of C18: n fatty acid increased compared to the transformant WT :: CTE.
  • the amount of C12: 0 fatty acid and the amount of C14: 0 fatty acid decreased.
  • the transformant WT :: CTE :: BKAS1082 introduced with the CTE gene and the BKAS1082 gene and the transformant WT :: CTE :: KKAS250 introduced with the CTE gene and the KKAS250 gene, the transformant WT :: CTE and In comparison, the amount of C12: 0 fatty acid increased and the amount of C16: 0 fatty acid decreased.
  • a transformant with improved productivity of a fatty acid having a specific carbon number can be produced. And the productivity of a specific fatty acid can be improved by culturing this transformant.
  • BKAS431, BKAS1082 and KKAS250 were identified using a homology search by the BLAST program (http://blast.ncbi.nlm.nih.gov/Blast.cgi). It was. As a result, BKAS431 was annotated as KAS I. As mentioned above, KAS I extends acyl-ACP to 16 carbon atoms. This is consistent with the result shown in Table 2 in which the amount of C16: 0 fatty acid was increased by introducing the BKAS431 gene. On the other hand, BKAS1082 and KKAS250 were annotated as KAS II.
  • KAS II is an enzyme that catalyzes the reaction of converting acyl-ACP having 16 carbon atoms into acyl-ACP having 18 carbon atoms.
  • the result of this annotation does not agree with the result shown in Table 2 above, in which the amount of medium chain fatty acids such as C12: 0 is increased by introducing the BKAS1082 gene or the KKAS250 gene.

Abstract

A lipid production method comprising culturing a transformant that is produced by introducing a gene encoding any one of proteins (a) to (f) as mentioned below into a host, thereby producing a fatty acid or a lipid containing the fatty acid as a constituent. (a) A protein comprising the amino acid sequence represented by SEQ ID NO: 1; (b) a protein which comprises an amino acid sequence having 85% or more identity to the amino acid sequence for the protein (a) and has a β-ketoacyl-ACP synthase activity; (c) a protein comprising the amino acid sequence represented by SEQ ID NO: 3; (d) a protein which comprises an amino acid sequence having 85% or more identity to the amino acid sequence for the protein (c) and has a β-ketoacyl-ACP synthase activity; (e) a protein comprising the amino acid sequence represented by SEQ ID NO: 5; and (f) a protein which comprises an amino acid sequence having 85% or more identity to the amino acid sequence for the protein (e) and has a β-ketoacyl-ACP synthase activity.

Description

脂質の製造方法Method for producing lipid
 本発明は、脂肪酸又はこれを構成成分とする脂質の製造方法、並びにこれに用いる形質転換体及びβ-ケトアシル-ACPシンターゼに関する。 The present invention relates to a method for producing a fatty acid or a lipid comprising the same, and a transformant and β-ketoacyl-ACP synthase used therefor.
 脂肪酸は脂質の主要構成成分の1種であり、生体内においてグリセリンとのエステル結合により生成するトリアシルグリセロール等の脂質を構成する。また、多くの動植物において脂肪酸はエネルギー源として貯蔵され利用される物質でもある。動植物内に蓄えられた脂肪酸や脂質(油脂)は、食用又は工業用として広く利用されている。
 例えば、炭素数12~18前後の高級脂肪酸を還元して得られる高級アルコールの誘導体は、界面活性剤として用いられている。アルキル硫酸エステル塩やアルキルベンゼンスルホン酸塩等は陰イオン性界面活性剤として利用されている。また、ポリオキシアルキレンアルキルエーテルやアルキルポリグリコシド等は非イオン性界面活性剤として利用されている。そしてこれらの界面活性剤は、いずれも洗浄剤又は殺菌剤に利用されている。同じく高級アルコールの誘導体としてアルキルアミン塩やモノ又はジアルキル4級アンモニウム塩等のカチオン性界面活性剤は、繊維処理剤や毛髪リンス剤又は殺菌剤に日常的に利用されている。また、ベンザルコニウム型4級アンモニウム塩は殺菌剤や防腐剤に日常的に利用されている。さらに、植物油脂はバイオディーゼル燃料の原料としても利用されている。
Fatty acids are one of the major constituents of lipids, and constitute lipids such as triacylglycerol produced by ester bonds with glycerin in vivo. In many animals and plants, fatty acids are also stored and used as energy sources. Fatty acids and lipids (oils and fats) stored in animals and plants are widely used for food or industry.
For example, derivatives of higher alcohols obtained by reducing higher fatty acids having about 12 to 18 carbon atoms are used as surfactants. Alkyl sulfate esters and alkylbenzene sulfonates are used as anionic surfactants. Polyoxyalkylene alkyl ethers, alkyl polyglycosides, and the like are used as nonionic surfactants. All of these surfactants are used as cleaning agents or disinfectants. Similarly, cationic surfactants such as alkylamine salts and mono- or dialkyl quaternary ammonium salts are routinely used as fiber treatment agents, hair rinse agents, or bactericides as higher alcohol derivatives. Benzalkonium-type quaternary ammonium salts are routinely used as bactericides and preservatives. Furthermore, vegetable oils and fats are also used as raw materials for biodiesel fuel.
 植物の脂肪酸合成経路は葉緑体に局在する。葉緑体ではアセチル-ACP(acyl-carrier-protein)を出発物質とし、炭素鎖の伸長反応が繰り返され、最終的に炭素数16又は18のアシル-ACP(脂肪酸残基であるアシル基とアシルキャリアプロテインとからなる複合体)が合成される。この脂肪酸合成経路に関与する酵素のうち、β-ケトアシル-ACPシンターゼ(β-Ketoacyl-acyl-carrier-protein synthase、以下「KAS」ともいう)はアシル基の鎖長制御に関与する酵素である。植物では、KAS I、KAS II、KAS III、KAS IV、のそれぞれ機能が異なる4種のKASが存在することが知られている。このうち、KAS IIIは鎖長伸長反応の開始段階で働き、炭素数2のアセチル-ACPを炭素数4のアシル-ACPに伸長する。それ以降の伸長反応には、KAS I、KAS II、及びKAS IVが関与する。KAS Iは主に炭素数16のパルミトイル-ACPまでの伸長反応に関与し、KAS IIは主に炭素数18のステアロイルACPまでの伸長反応に関与する。一方、KAS IVは炭素数6~14の中鎖アシル-ACPまでの伸長反応に関与するといわれている。KAS IVについては、植物でもあまり知見が得られておらず、クフェア(Cuphea)などの中鎖脂肪酸を蓄積する植物に特有のKASとされている(特許文献1、及び非特許文献1参照)。 Plant fatty acid synthesis pathway is localized in chloroplasts. In chloroplasts, acetyl-ACP (acyl-carrier-protein) is used as a starting material, and the carbon chain elongation reaction is repeated. Finally, acyl-ACP having 16 or 18 carbon atoms (acyl group and acyl which are fatty acid residues) A complex consisting of a carrier protein) is synthesized. Among enzymes involved in this fatty acid synthesis pathway, β-ketoacyl-acyl-carrier-protein synthase (hereinafter also referred to as “KAS”) is an enzyme involved in the control of the acyl group chain length. In plants, it is known that there are four types of KAS having different functions of KAS I, KAS II, KAS III, and KAS IV. Among these, KAS III works at the initiation stage of the chain extension reaction, and extends acetyl-ACP having 2 carbon atoms to acyl-ACP having 4 carbon atoms. Subsequent elongation reactions involve KAS I, KAS II, and KAS IV. KAS I is mainly involved in the elongation reaction up to C16 palmitoyl-ACP, and KAS II is mainly involved in the elongation reaction up to C18 stearoyl ACP. On the other hand, KAS IV is said to be involved in the elongation reaction up to medium chain acyl-ACP having 6 to 14 carbon atoms. As for KAS IV, not much knowledge has been obtained in plants, and KAS IV is regarded as a KAS unique to plants that accumulate medium chain fatty acids such as cuphea (see Patent Document 1 and Non-Patent Document 1).
国際公開第98/46776号パンフレットInternational Publication No. 98/46776 Pamphlet
 本発明は、下記タンパク質(a)~(f)のいずれかをコードする遺伝子を宿主に導入して得た形質転換体を培養して脂肪酸又はこれを構成成分とする脂質を生産させる、脂質の製造方法に関する。
(a)配列番号1で表されるアミノ酸配列からなるタンパク質
(b)前記タンパク質(a)のアミノ酸配列と85%以上の同一性を有するアミノ酸配列からなり、かつβ-ケトアシル-ACPシンターゼ活性(以下、「KAS活性」ともいう)を有するタンパク質
(c)配列番号3で表されるアミノ酸配列からなるタンパク質
(d)前記タンパク質(c)のアミノ酸配列と85%以上の同一性を有するアミノ酸配列からなり、かつKAS活性を有するタンパク質
(e)配列番号5で表されるアミノ酸配列からなるタンパク質
(f)前記タンパク質(e)のアミノ酸配列と85%以上の同一性を有するアミノ酸配列からなり、かつKAS活性を有するタンパク質
In the present invention, a transformant obtained by introducing a gene encoding any of the following proteins (a) to (f) into a host is cultured to produce a fatty acid or a lipid comprising this as a constituent. It relates to a manufacturing method.
(A) a protein comprising the amino acid sequence represented by SEQ ID NO: 1 (b) an amino acid sequence having 85% or more identity with the amino acid sequence of the protein (a), and β-ketoacyl-ACP synthase activity (C) a protein having the amino acid sequence represented by SEQ ID NO: 3 (d) a protein having the identity of 85% or more with the protein (c) (E) a protein having the KAS activity (e) a protein comprising the amino acid sequence represented by SEQ ID NO: 5 (f) an amino acid sequence having 85% or more identity with the amino acid sequence of the protein (e), and a KAS activity Protein with
 また本発明は、宿主に前記タンパク質(a)~(f)のいずれかをコードする遺伝子を導入して得られた形質転換体に関する。
 また本発明は、前記タンパク質(a)~(f)に関する。
 さらに本発明は、前記タンパク質(a)~(f)のいずれか1つをコードする遺伝子に関する。
The present invention also relates to a transformant obtained by introducing a gene encoding any of the proteins (a) to (f) into a host.
The present invention also relates to the proteins (a) to (f).
Furthermore, the present invention relates to a gene encoding any one of the proteins (a) to (f).
 本発明は、特定の炭素数の脂肪酸、又はこれを構成成分とする脂質の生産性を向上させる、脂質の製造方法に関する。
 また本発明は、特定の炭素数の脂肪酸、又はこれを構成成分とする脂質の生産性を向上させた形質転換体に関する。
The present invention relates to a method for producing a lipid, which improves the productivity of a fatty acid having a specific carbon number, or a lipid comprising this fatty acid.
Moreover, this invention relates to the transformant which improved the productivity of the fatty acid of a specific carbon number, or the lipid which uses this as a structural component.
 本発明者は鋭意検討を行った結果、カリフォルニアベイ(Umbellularia californica)及びクスノキ(Cinnamomum camphora)からそれぞれ新たな、植物由来のKASを同定した。そして、これらをコードする遺伝子を用いて宿主を形質転換したところ、形質転換体では特定の炭素数の脂肪酸の生産性が向上することを見出した。本発明はこれらの知見に基づいて完成するに至ったものである。 As a result of intensive studies, the present inventors have identified new plant-derived KAS from California Bay ( Umbellularia californica ) and camphor ( Cinnamomum camphora ). And when the host was transformed using the gene which codes these, it discovered that productivity of the fatty acid of a specific carbon number improved in a transformant. The present invention has been completed based on these findings.
 本発明の脂質の製造方法によれば、特定の炭素数の脂肪酸、又はこれを構成成分とする脂質の生産性を向上させることができる。
 また本発明の形質転換体は、特定の炭素数の脂肪酸、又はこれを構成成分とする脂質の生産性に優れる。
 本発明の上記及び他の特徴及び利点は、下記の記載からより明らかになるであろう。
According to the method for producing a lipid of the present invention, it is possible to improve the productivity of a fatty acid having a specific carbon number or a lipid comprising this as a constituent.
Moreover, the transformant of the present invention is excellent in the productivity of a fatty acid having a specific carbon number, or a lipid comprising this as a constituent.
These and other features and advantages of the present invention will become more apparent from the following description.
 本明細書における「脂質」は、中性脂肪、ろう、セラミド等の単純脂質;リン脂質、糖脂質、スルホ脂質等の複合脂質;及びこれらの脂質から誘導される、脂肪酸、アルコール類、炭化水素類等の誘導脂質を包含するものである。
 また本明細書において、脂肪酸や脂肪酸を構成するアシル基の表記において「Cx:y」とあるのは、炭素原子数xで二重結合の数がyであることを表す。「Cx」は炭素原子数xの脂肪酸やアシル基を表す。
 さらに本明細書において、塩基配列及びアミノ酸配列の同一性は、Lipman-Pearson法(Science,1985,vol.227,p.1435-1441)によって計算される。具体的には、遺伝情報処理ソフトウェアGenetyx-Winのホモロジー解析(Search homology)プログラムを用いて、Unit size to compare(ktup)を2として解析を行うことにより算出される。
 また本明細書において「ストリンジェントな条件」としては、例えばMolecular Cloning-A LABORATORY MANUAL THIRD EDITION[Joseph Sambrook,David W.Russell.,Cold Spring Harbor Laboratory Press]記載の方法が挙げられる。例えば、6×SSC(1×SSCの組成:0.15M塩化ナトリウム、0.015Mクエン酸ナトリウム、pH7.0)、0.5%SDS、5×デンハート及び100mg/mLニシン精子DNAを含む溶液にプローブとともに65℃で8~16時間恒温し、ハイブリダイズさせる条件が挙げられる。
As used herein, “lipid” refers to simple lipids such as neutral fats, waxes, and ceramides; complex lipids such as phospholipids, glycolipids, and sulfolipids; and fatty acids, alcohols, and hydrocarbons derived from these lipids And other derived lipids.
In this specification, “Cx: y” in the notation of fatty acids and acyl groups constituting fatty acids means that the number of carbon atoms is x and the number of double bonds is y. “Cx” represents a fatty acid or acyl group having x carbon atoms.
Furthermore, in this specification, the identity of a base sequence and an amino acid sequence is calculated by the Lipman-Pearson method (Science, 1985, vol. 227, p. 1435-1441). Specifically, it is calculated by performing an analysis assuming that Unit size to compare (ktup) is 2 using the homology analysis (Search homology) program of genetic information processing software Genetyx-Win.
In this specification, “stringent conditions” include, for example, Molecular Cloning-A LABORATORY MANUAL THIRD EDITION [Joseph Sambrook, David W., et al. Russell., Cold Spring Harbor Laboratory Press]. For example, in a solution containing 6 × SSC (composition of 1 × SSC: 0.15M sodium chloride, 0.015M sodium citrate, pH 7.0), 0.5% SDS, 5 × Denhart and 100 mg / mL herring sperm DNA Examples of the conditions include hybridization with the probe at 65 ° C. for 8 to 16 hours.
 本発明の形質転換体は、下記タンパク質(a)~(f)のいずれかをコードする遺伝子(以下、「KAS遺伝子」ともいう)で形質転換されている。
(a)配列番号1で表されるアミノ酸配列からなるタンパク質
(b)前記タンパク質(a)のアミノ酸配列と85%以上の同一性を有するアミノ酸配列からなり、かつKAS活性を有するタンパク質(前記タンパク質(a)と機能的に均等なタンパク質)
(c)配列番号3で表されるアミノ酸配列からなるタンパク質
(d)前記タンパク質(c)のアミノ酸配列と85%以上の同一性を有するアミノ酸配列からなり、かつKAS活性を有するタンパク質(前記タンパク質(c)と機能的に均等なタンパク質)
(e)配列番号5で表されるアミノ酸配列からなるタンパク質
(f)前記タンパク質(e)のアミノ酸配列と85%以上の同一性を有するアミノ酸配列からなり、かつKAS活性を有するタンパク質(前記タンパク質(e)と機能的に均等なタンパク質)
The transformant of the present invention is transformed with a gene encoding any of the following proteins (a) to (f) (hereinafter also referred to as “KAS gene”).
(A) a protein comprising the amino acid sequence represented by SEQ ID NO: 1 (b) a protein comprising an amino acid sequence having 85% or more identity with the amino acid sequence of the protein (a) and having KAS activity (the protein ( a) Functionally equivalent protein)
(C) a protein comprising the amino acid sequence represented by SEQ ID NO: 3 (d) a protein comprising the amino acid sequence having 85% or more identity with the protein (c) and having KAS activity (the protein ( c) Functionally equivalent protein)
(E) a protein comprising the amino acid sequence represented by SEQ ID NO: 5 (f) a protein comprising the amino acid sequence having 85% or more identity with the amino acid sequence of the protein (e) and having KAS activity (the protein ( e) Functionally equivalent protein)
 配列番号1のアミノ酸配列からなるタンパク質は、アメリカのSierra Seed Supply社より入手したカリフォルニアベイの種子由来のKAS(以下、「BKAS431」ともいう)である。配列番号3のアミノ酸配列からなるタンパク質は、アメリカのSierra Seed Supply社より入手したカリフォルニアベイの種子由来のKAS(以下、「BKAS1082」ともいう)である。配列番号5のアミノ酸配列からなるタンパク質は、花王和歌山工場内より採取したクスノキの種子由来のKAS(以下、「KKAS250」ともいう)である。
 KASは、脂肪酸合成経路においてアシル基の鎖長制御に関与する酵素である。植物の脂肪酸合成経路は葉緑体に局在する。葉緑体では、アセチル-ACPを出発物質とし、炭素鎖の伸長反応が繰り返され、最終的に炭素数16又は18のアシル-ACPが合成される。次いで、アシル-ACPチオエステラーゼ(以下、「TE」ともいう)の作用によってアシル-ACPのチオエステル結合が加水分解され、遊離の脂肪酸が生成する。
 脂肪酸合成の第一段階では、アセチル-ACPとマロニルACPとの縮合反応により、アセトアセチルACPが生成する。この反応をKASが触媒する。次いで、β-ケトアシル-ACPレダクターゼによりアセトアセチルACPのケト基が還元されてヒドロキシブチリルACPが生成する。続いて、β-ヒドロキシアシル-ACPデヒドラーゼによりヒドロキシブチリルACPが脱水され、クロトニルACPが生成する。最後に、エノイル-ACPレダクターゼによりクロトニルACPが還元されて、ブチリルACPが生成する。これら一連の反応により、アセチル-ACPからアシル基の炭素鎖が2個伸長されたブチリルACPが生成する。以下、同様の反応を繰り返すことで、アシル-ACPの炭素鎖が伸長し、最終的に炭素数16又は18のアシル-ACPが合成される。
The protein comprising the amino acid sequence of SEQ ID NO: 1 is KAS derived from California Bay seeds (hereinafter also referred to as “BKAS431”) obtained from Sierra Seed Supply, USA. The protein consisting of the amino acid sequence of SEQ ID NO: 3 is KAS derived from California Bay seeds (hereinafter also referred to as “BKAS1082”) obtained from Sierra Seed Supply, USA. The protein consisting of the amino acid sequence of SEQ ID NO: 5 is KAS (hereinafter also referred to as “KKAS250”) derived from camphor seeds collected from the Kao Wakayama Factory.
KAS is an enzyme involved in the control of acyl chain length in the fatty acid synthesis pathway. Plant fatty acid synthesis pathway is localized in chloroplasts. In the chloroplast, acetyl-ACP is used as a starting material, and the carbon chain elongation reaction is repeated to finally synthesize acyl-ACP having 16 or 18 carbon atoms. Subsequently, acyl-ACP thioester bond is hydrolyzed by the action of acyl-ACP thioesterase (hereinafter also referred to as “TE”) to produce free fatty acid.
In the first step of fatty acid synthesis, acetoacetyl ACP is produced by the condensation reaction of acetyl-ACP and malonyl ACP. This reaction is catalyzed by KAS. Subsequently, the keto group of acetoacetyl ACP is reduced by β-ketoacyl-ACP reductase to produce hydroxybutyryl ACP. Subsequently, hydroxybutyryl ACP is dehydrated by β-hydroxyacyl-ACP dehydrase to produce crotonyl ACP. Finally, crotonyl ACP is reduced by enoyl-ACP reductase to produce butyryl ACP. By a series of these reactions, butyryl ACP in which two carbon chains of the acyl group are extended from acetyl-ACP is generated. Thereafter, by repeating the same reaction, the carbon chain of acyl-ACP is extended, and finally acyl-ACP having 16 or 18 carbon atoms is synthesized.
 本明細書において「KAS活性」とは、アセチル-ACPやアシル-ACPと、マロニルACPとの縮合反応を触媒する活性を意味する。
 タンパク質がKAS活性を有することは、例えば、宿主細胞内で機能するプロモーターの下流に前記タンパク質をコードする遺伝子を連結した融合遺伝子を、脂肪酸分解系が欠損した宿主細胞へ導入し、導入した遺伝子が発現する条件下で細胞を培養し、宿主細胞内又は培養液中の脂肪酸組成の変化を常法により分析することで確認できる。あるいは、宿主細胞内で機能するプロモーターの下流に前記タンパク質をコードする遺伝子を連結した融合遺伝子を宿主細胞へ導入し、導入した遺伝子が発現する条件下で細胞を培養した後、細胞の破砕液に対し、各種アシル-ACPを基質とした鎖長伸長反応を行うことにより確認できる。
As used herein, “KAS activity” means an activity of catalyzing the condensation reaction of acetyl-ACP or acyl-ACP with malonyl ACP.
The fact that a protein has KAS activity means that, for example, a fusion gene in which a gene encoding the protein is linked downstream of a promoter that functions in the host cell is introduced into a host cell lacking the fatty acid degradation system, and the introduced gene is It can be confirmed by culturing the cells under the expressing condition and analyzing the change of the fatty acid composition in the host cell or in the culture solution by a conventional method. Alternatively, a fusion gene in which a gene encoding the protein is linked downstream of a promoter that functions in the host cell is introduced into the host cell, and the cell is cultured under conditions where the introduced gene is expressed. On the other hand, it can be confirmed by performing a chain extension reaction using various acyl-ACPs as substrates.
 KASはその基質特異性によってKAS I、KAS II、KAS III、又はKAS IVに分類される。KAS IIIは、炭素数2のアセチル-ACPを基質とし、炭素数2から4の伸長反応を触媒する。KAS Iは、主に炭素数4から16の伸長反応を触媒し、炭素数16のパルミトイル-ACPを合成する。KAS IIは、主に炭素数16から18の伸長反応を触媒し、炭素数18のステアロイルACPを合成する。KAS IVは炭素数6から14の伸長反応を触媒し、中鎖アシル-ACPを合成する。
 後述の実施例で示すように、前記タンパク質(a)(BKAS431)は、炭素数16の脂肪酸に対する基質特異性を有し、これを選択的に合成する。よって前記タンパク質(a)及び(b)は、KAS Iであると考えられる。
 また、前記タンパク質(c)(BKAS1082)及びタンパク質(e)(KKAS250)は後述の実施例で示すように、中鎖アシル-ACPに対する基質特異性を有する。よって前記タンパク質(c)~(f)は、KAS IVであると考えられる。ここで前記タンパク質(c)のアミノ酸配列は、前記タンパク質(e)のアミノ酸配列と98.7%の同一性を有する。なお本明細書において「中鎖アシル-ACPに対する基質特異性」とは、KASが、主に炭素数4~12のアシルACPを基質とし、炭素数14までの中鎖アシルACP合成の伸長反応を触媒することをいう。また本明細書において「中鎖」とは、アシル基の炭素数が6以上14以下であることをいう。
 KASの基質特異性については、例えば、宿主細胞内で機能するプロモーターの下流にタンパク質をコードする遺伝子を連結した融合遺伝子を、脂肪酸分解系が欠損した宿主細胞へ導入し、導入した遺伝子が発現する条件下で細胞を培養して、宿主細胞又は培養液中の脂肪酸組成の変化を常法により分析することで確認できる。また、上記の系に後述するTEを共発現させ、TE単独を発現させた場合の脂肪酸組成と比較することにより確認できる。また、宿主細胞内で機能するプロモーターの下流にタンパク質をコードする遺伝子を連結した融合遺伝子を、宿主細胞へ導入し、導入した遺伝子が発現する条件下で細胞を培養した後、細胞の破砕液に対し鎖長伸長反応を行うことにより確認できる。
KAS is classified as KAS I, KAS II, KAS III, or KAS IV depending on its substrate specificity. KAS III uses acetyl-ACP having 2 carbons as a substrate and catalyzes an elongation reaction having 2 to 4 carbons. KAS I mainly catalyzes an elongation reaction having 4 to 16 carbon atoms to synthesize palmitoyl-ACP having 16 carbon atoms. KAS II mainly catalyzes an elongation reaction having 16 to 18 carbon atoms to synthesize stearoyl ACP having 18 carbon atoms. KAS IV catalyzes the elongation reaction of 6 to 14 carbon atoms to synthesize medium chain acyl-ACP.
As shown in Examples described later, the protein (a) (BKAS431) has substrate specificity for fatty acids having 16 carbon atoms and selectively synthesizes them. Therefore, it is considered that the proteins (a) and (b) are KAS I.
In addition, the protein (c) (BKAS1082) and the protein (e) (KKAS250) have substrate specificity for medium chain acyl-ACP as shown in the Examples described later. Therefore, the proteins (c) to (f) are considered to be KAS IV. Here, the amino acid sequence of the protein (c) has 98.7% identity with the amino acid sequence of the protein (e). In the present specification, “substrate specificity for medium chain acyl-ACP” means that KAS mainly uses an acyl ACP having 4 to 12 carbon atoms as a substrate and an elongation reaction of synthesis of medium chain acyl ACP up to 14 carbon atoms. It means to catalyze. In this specification, “medium chain” means that the acyl group has 6 to 14 carbon atoms.
Regarding the substrate specificity of KAS, for example, a fusion gene in which a gene encoding a protein is linked downstream of a promoter that functions in the host cell is introduced into a host cell lacking the fatty acid degradation system, and the introduced gene is expressed. It can be confirmed by culturing the cells under the conditions and analyzing the changes in the fatty acid composition in the host cells or culture medium by a conventional method. Moreover, it can confirm by co-expressing TE mentioned later to said system, and comparing with the fatty acid composition at the time of expressing TE alone. In addition, a fusion gene in which a gene encoding a protein is linked downstream of a promoter that functions in the host cell is introduced into the host cell, and the cell is cultured under conditions where the introduced gene is expressed. This can be confirmed by performing a chain length extension reaction.
 前記タンパク質(b)において、KAS活性の点から、前記タンパク質(a)のアミノ酸配列との同一性は90%以上が好ましく、95%以上がより好ましく、98%以上がさらに好ましい。また、前記タンパク質(b)として、前記タンパク質(a)のアミノ酸配列に、1又は数個(例えば1個以上73個以下、好ましくは1個以上49個以下、より好ましくは1個以上25個以下、さらに好ましくは1個以上10個以下)のアミノ酸を欠失、置換、挿入又は付加したタンパク質が挙げられる。
 前記タンパク質(d)において、KAS活性の点から、前記タンパク質(c)のアミノ酸配列との同一性は90%以上が好ましく、95%以上がより好ましく、98%以上がさらに好ましい。また、前記タンパク質(d)として、前記タンパク質(c)のアミノ酸配列に、1又は数個(例えば1個以上86個以下、好ましくは1個以上57個以下、より好ましくは1個以上29個以下、さらに好ましくは1個以上12個以下)のアミノ酸を欠失、置換、挿入又は付加したタンパク質が挙げられる。
 前記タンパク質(f)において、KAS活性の点から、前記タンパク質(e)のアミノ酸配列との同一性は90%以上が好ましく、95%以上がより好ましく、98%以上がさらに好ましい。また、前記タンパク質(f)として、前記タンパク質(e)のアミノ酸配列に、1又は数個(例えば1個以上86個以下、好ましくは1個以上57個以下、より好ましくは1個以上29個以下、さらに好ましくは1個以上12個以下)のアミノ酸を欠失、置換、挿入又は付加したタンパク質が挙げられる。
 アミノ酸配列に変異を導入する方法としては、例えば、アミノ酸配列をコードする塩基配列に変異を導入する方法が挙げられる。変異を導入する方法としては、部位特異的な変異導入法が挙げられる。具体的な部位特異的変異の導入方法としては、Splicing overlap extension(SOE)-PCR反応を利用した方法、ODA法、Kunkel法等が挙げられる。また、Site-Directed Mutagenesis System Mutan-SuperExpress Kmキット(商品名、タカラバイオ社)、Transformer TM Site-Directed Mutagenesisキット(商品名、Clonetech社)、KOD-Plus-Mutagenesis Kit(商品名、東洋紡社)等の市販のキットを利用することもできる。また、ランダムな遺伝子変異を与えた後、適当な方法により酵素活性の評価及び遺伝子解析を行うことにより目的遺伝子を取得することもできる。
In the protein (b), from the viewpoint of KAS activity, the identity with the amino acid sequence of the protein (a) is preferably 90% or more, more preferably 95% or more, and further preferably 98% or more. In addition, as the protein (b), one or several (for example, 1 to 73, preferably 1 to 49, more preferably 1 to 25) amino acid sequences of the protein (a) And, more preferably, a protein in which 1 to 10 amino acids are deleted, substituted, inserted or added.
In the protein (d), from the viewpoint of KAS activity, the identity with the amino acid sequence of the protein (c) is preferably 90% or more, more preferably 95% or more, and further preferably 98% or more. In addition, as the protein (d), one or several (for example, 1 to 86, preferably 1 to 57, more preferably 1 to 29) amino acid sequences of the protein (c) And, more preferably, a protein in which 1 to 12 amino acids are deleted, substituted, inserted or added.
In the protein (f), from the viewpoint of KAS activity, the identity with the amino acid sequence of the protein (e) is preferably 90% or more, more preferably 95% or more, and further preferably 98% or more. Further, as the protein (f), one or several (for example, 1 to 86, preferably 1 to 57, more preferably 1 to 29) amino acid sequences of the protein (e) And, more preferably, a protein in which 1 to 12 amino acids are deleted, substituted, inserted or added.
Examples of the method for introducing a mutation into an amino acid sequence include a method for introducing a mutation into a base sequence encoding an amino acid sequence. Examples of the method for introducing mutation include site-specific mutagenesis. Specific methods for introducing site-specific mutations include a method using Splicing overlap extension (SOE) -PCR reaction, ODA method, Kunkel method and the like. Site-Directed Mutagenesis System Mutan-SuperExpress Km kit (trade name, Takara Bio), Transformer TM Site-Directed Mutagenesis kit (trade name, Clonetech), KOD-Plus-Mutagenesis Kit (trade name, Toyobo) A commercially available kit can also be used. Moreover, after giving a random gene mutation, the target gene can also be obtained by performing enzyme activity evaluation and gene analysis by an appropriate method.
 前記KAS遺伝子の一例として、下記DNA(g)~(l)のいずれかからなる遺伝子が挙げられる。
 
(g)配列番号2で表される塩基配列からなるDNA
(h)前記DNA(g)の塩基配列と85%以上の同一性を有する塩基配列からなり、かつKAS活性を有するタンパク質をコードするDNA
(i)配列番号4で表される塩基配列からなるDNA
(j)前記DNA(i)の塩基配列と85%以上の同一性を有する塩基配列からなり、かつKAS活性を有するタンパク質をコードするDNA
(k)配列番号6で表される塩基配列からなるDNA
(l)前記DNA(k)の塩基配列と85%以上の同一性を有する塩基配列からなり、かつKAS活性を有するタンパク質をコードするDNA
An example of the KAS gene is a gene consisting of any of the following DNA (g) to (l).

(G) DNA comprising the base sequence represented by SEQ ID NO: 2
(H) DNA comprising a base sequence having 85% or more identity with the base sequence of DNA (g) and encoding a protein having KAS activity
(I) DNA comprising the base sequence represented by SEQ ID NO: 4
(J) DNA comprising a base sequence having 85% or more identity with the base sequence of DNA (i) and encoding a protein having KAS activity
(K) DNA comprising the base sequence represented by SEQ ID NO: 6
(L) DNA comprising a base sequence having 85% or more identity with the base sequence of DNA (k) and encoding a protein having KAS activity
 配列番号2の塩基配列は、配列番号1のアミノ酸配列からなるタンパク質をコードする遺伝子の塩基配列である。配列番号4の塩基配列は、配列番号3のアミノ酸配列からなるタンパク質をコードする遺伝子の塩基配列である。配列番号6の塩基配列は、配列番号5のアミノ酸配列からなるタンパク質をコードする遺伝子の塩基配列である。 The base sequence of SEQ ID NO: 2 is a base sequence of a gene encoding a protein consisting of the amino acid sequence of SEQ ID NO: 1. The base sequence of SEQ ID NO: 4 is a base sequence of a gene encoding a protein consisting of the amino acid sequence of SEQ ID NO: 3. The base sequence of SEQ ID NO: 6 is a base sequence of a gene encoding a protein consisting of the amino acid sequence of SEQ ID NO: 5.
 前記DNA(h)において、KAS活性の点から、前記DNA(g)の塩基配列との同一性は90%以上が好ましく、95%以上がより好ましい。また前記DNA(h)として、配列番号2で表される塩基配列において1又は数個(例えば1個以上218個以下、好ましくは1個以上145個以下、より好ましくは1個以上73個以下)の塩基が欠失、置換、挿入、又は付加されており、かつKAS活性を有するタンパク質をコードするDNAも好ましい。さらに前記DNA(h)として、前記DNA(g)と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつKAS活性を有する前記タンパク質(a)又は(b)をコードするDNAも好ましい。
 前記DNA(j)において、KAS活性の点から、前記DNA(i)の塩基配列との同一性は90%以上が好ましく、95%以上がより好ましい。また前記DNA(j)として、配列番号4で表される塩基配列において1又は数個(例えば1個以上256個以下、好ましくは1個以上171個以下、より好ましくは1個以上86個以下)の塩基が欠失、置換、挿入、又は付加されており、かつKAS活性を有するタンパク質をコードするDNAも好ましい。さらに前記DNA(j)として、前記DNA(i)と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつKAS活性を有する前記タンパク質(c)又は(d)をコードするDNAも好ましい。
 前記DNA(l)において、KAS活性の点から、前記DNA(k)の塩基配列との同一性は90%以上が好ましく、95%以上がより好ましい。また前記DNA(l)として、配列番号6で表される塩基配列において1又は数個(例えば1個以上256個以下、好ましくは1個以上171個以下、より好ましくは1個以上86個以下)の塩基が欠失、置換、挿入、又は付加されており、かつKAS活性を有するタンパク質をコードするDNAも好ましい。さらに前記DNA(l)として、前記DNA(k)と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつKAS活性を有する前記タンパク質(e)又は(f)をコードするDNAも好ましい。
In the DNA (h), from the viewpoint of KAS activity, the identity with the base sequence of the DNA (g) is preferably 90% or more, and more preferably 95% or more. In addition, the DNA (h) is one or several in the nucleotide sequence represented by SEQ ID NO: 2 (for example, 1 to 218, preferably 1 to 145, more preferably 1 to 73) Also preferred is a DNA encoding a protein having the above-mentioned base deleted, substituted, inserted or added and having KAS activity. Furthermore, as the DNA (h), it encodes the protein (a) or (b) which hybridizes with a DNA having a base sequence complementary to the DNA (g) under stringent conditions and has KAS activity. DNA is also preferred.
In the DNA (j), from the viewpoint of KAS activity, the identity with the base sequence of the DNA (i) is preferably 90% or more, and more preferably 95% or more. In addition, the DNA (j) is one or several (for example, 1 to 256, preferably 1 to 171 and more preferably 1 to 86) in the base sequence represented by SEQ ID NO: 4. Also preferred is a DNA encoding a protein having the above-mentioned base deleted, substituted, inserted or added and having KAS activity. Furthermore, the DNA (j) encodes the protein (c) or (d) which hybridizes with a DNA having a base sequence complementary to the DNA (i) under stringent conditions and has KAS activity. DNA is also preferred.
In the DNA (l), from the viewpoint of KAS activity, the identity with the base sequence of the DNA (k) is preferably 90% or more, and more preferably 95% or more. In addition, the DNA (l) is one or several in the nucleotide sequence represented by SEQ ID NO: 6 (for example, 1 to 256, preferably 1 to 171 and more preferably 1 to 86) Also preferred is a DNA encoding a protein having the above-mentioned base deleted, substituted, inserted or added and having KAS activity. Furthermore, as the DNA (l), the protein (e) or (f) that hybridizes under stringent conditions with DNA comprising a base sequence complementary to the DNA (k) and has KAS activity is encoded. DNA is also preferred.
 KAS遺伝子は、通常の遺伝子工学的手法により得ることができる。例えば、配列番号1、3又は5に示すアミノ酸配列又は配列番号2、4又は6に示す塩基配列に基づいて、KAS遺伝子を人工的に合成できる。KAS遺伝子の合成は、例えば、インビトロジェン社等のサービスを利用することができる。また、カリフォルニアベイやクスノキのゲノムからクローニングによって取得することもできる。例えば、Molecular Cloning-A LABORATORY MANUAL THIRD EDITION[Joseph Sambrook,David W.Russell,Cold Spring Harbor Laboratory Press(2001)]記載の方法等により行うことができる。 The KAS gene can be obtained by ordinary genetic engineering techniques. For example, the KAS gene can be artificially synthesized based on the amino acid sequence shown in SEQ ID NO: 1, 3 or 5 or the base sequence shown in SEQ ID NO: 2, 4 or 6. For the synthesis of the KAS gene, for example, services such as Invitrogen can be used. It can also be obtained by cloning from California Bay or camphor genomes. For example, Molecular Cloning-A LABORATORY MANUAL THIRD EDITION [Joseph Sambrook, David W. Russell, Cold Spring Harbor Laboratory Press (2001)] can be used.
 本発明の形質転換体は、前記KAS遺伝子に加えて、TEをコードする遺伝子(以下、「TE遺伝子」ともいう)を宿主に導入してなるものが好ましい。
 TEは、KAS等の脂肪酸合成酵素によって合成されたアシル-ACPのチオエステル結合を加水分解し、遊離の脂肪酸を生成する酵素である。TEの作用によってACP上での脂肪酸合成が終了し、切り出された脂肪酸はトリアシルグリセロール等の合成に供される。そのため、宿主にKAS遺伝子とTE遺伝子を共導入することで、形質転換体の脂質の生産性、特に脂肪酸の生産性を一層向上させることができる。
 本発明で用いることができるTEは、アシル-ACPチオエステラーゼ活性(以下、「TE活性」ともいう)を有するタンパク質であればよい。ここで「TE活性」とは、アシル-ACPのチオエステル結合を加水分解する活性をいう。
The transformant of the present invention is preferably one obtained by introducing a gene encoding TE (hereinafter also referred to as “TE gene”) into the host in addition to the KAS gene.
TE is an enzyme that hydrolyzes the acyl-ACP thioester bond synthesized by a fatty acid synthase such as KAS to produce a free fatty acid. The fatty acid synthesis on the ACP is terminated by the action of TE, and the cut fatty acid is used for synthesis of triacylglycerol and the like. Therefore, by co-introducing the KAS gene and the TE gene into the host, the lipid productivity of the transformant, particularly the fatty acid productivity, can be further improved.
The TE that can be used in the present invention may be a protein having acyl-ACP thioesterase activity (hereinafter also referred to as “TE activity”). Here, “TE activity” refers to an activity of hydrolyzing the thioester bond of acyl-ACP.
 TEは、基質であるアシル-ACPを構成するアシル基(脂肪酸残基)の炭素原子数や不飽和結合数によって異なる反応特異性を示す複数のTEが存在していることが知られている。よってTEは、生体内での脂肪酸組成を決定する重要なファクターであると考えられている。また、TEをコードする遺伝子を元来有していない宿主を形質転換に用いる場合、TEをコードする遺伝子、好ましくは中鎖アシル-ACPに対する基質特異性を有するTEをコードする遺伝子の共導入が効果的である。このような遺伝子を共導入することで、脂肪酸の生産性を一層向上させることができる。 It is known that TE has a plurality of TEs having different reaction specificities depending on the number of carbon atoms and the number of unsaturated bonds of the acyl group (fatty acid residue) constituting the substrate acyl-ACP. Thus, TE is considered to be an important factor that determines the fatty acid composition in vivo. When a host that originally does not have a gene encoding TE is used for transformation, co-introduction of a gene encoding TE, preferably a gene encoding TE having substrate specificity for medium chain acyl-ACP, may be performed. It is effective. By co-introducing such a gene, the productivity of fatty acids can be further improved.
 本発明で用いることができるTEは、通常のTEや、それらと機能的に均等なタンパク質から、宿主の種類等に応じて適宜選択することができる。
 具体的には、Umbellularia californicaのTE(GenBank AAA34215.1);Cuphea calophylla subsp.mesostemonのTE(GenBank ABB71581);Cinnamomum camphoraのTE(GenBank AAC49151.1);Myristica fragransのTE(GenBank AAB71729);Myristica fragransのTE(GenBank AAB71730);Cuphea lanceolataのTE(GenBank CAA54060);Cuphea hookerianaのTE(GenBank Q39513);Ulumus americanaのTE(GenBank AAB71731);Sorghum bicolorのTE(GenBank EER87824);Sorghum bicolorのTE(GenBank EER88593);Cocos nuciferaのTE(CnFatB1:Jing et al.BMC Biochemistry 2011,12:44参照);Cocos nuciferaのTE(CnFatB2:Jing et al.BMC Biochemistry 2011,12:44参照);Cuphea viscosissimaのTE(CvFatB1:Jing et al.BMC Biochemistry 2011,12:44参照);Cuphea viscosissimaのTE(CvFatB2:Jing et al.BMC Biochemistry 2011,12:44参照);Cuphea viscosissimaのTE(CvFatB3:Jing et al.BMC Biochemistry 2011,12:44参照);Elaeis guineensisのTE(GenBank AAD42220);Desulfovibrio vulgarisのTE(GenBank ACL08376);Bacteriodes fragilisのTE(GenBank CAH09236);Parabacteriodes distasonisのTE(GenBank ABR43801);Bacteroides thetaiotaomicronのTE(GenBank AAO77182);Clostridium asparagiformeのTE(GenBank EEG55387);Bryanthella formatexigensのTE(GenBank EET61113);Geobacillus sp.のTE(GenBank EDV77528);Streptococcus dysgalactiaeのTE(GenBank BAH81730);Lactobacillus brevisのTE(GenBank ABJ63754);Lactobacillus plantarumのTE(GenBank CAD63310);Anaerococcus tetradiusのTE(GenBank EEI82564);Bdellovibrio bacteriovorusのTE(GenBank CAE80300);Clostridium thermocellumのTE(GenBank ABN54268);Cocos nuciferaのTE(CnFatB3:Jing et al.BMC Biochemistry 2011,12:44参照、配列番号7、これをコードする遺伝子の塩基配列:配列番号8);Nannochloropsis oculataのTE(配列番号9、これをコードする遺伝子の塩基配列:配列番号10);Nannochloropsis gaditanaのTE(配列番号11、これをコードする遺伝子の塩基配列:配列番号12);Nannochloropsis granulataのTE(配列番号13、これをコードする遺伝子の塩基配列:配列番号14);Symbiodinium microadriaticumのTE(配列番号15、これをコードする遺伝子の塩基配列:配列番号16)、等が挙げられる。また、これらと機能的に均等なタンパク質として、上述したいずれかのTEのアミノ酸配列と50%以上(好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上)の同一性を有するアミノ酸配列からなり、かつTE活性を有するタンパク質も用いることができる。あるいは、上述したいずれかのTEのアミノ酸配列に1又は数個(例えば1個以上147個以下、好ましくは1個以上119個以下、より好ましくは1個以上59個以下、さらに好ましくは1個以上30個以下)のアミノ酸が欠失、置換、挿入又は付加され、かつTE活性を有するたタンパク質も用いることができる。
 前記TEの中でも、Umbellularia californicaのTE、Cocos nuciferaのTE、Cinnamonum camphorumのTE、Elaeis guineensisのTE、Cuphea種のTE、Nannochloropsis oculataのTE、Nannochloropsis gaditanaのTE、Nannochloropsis granulataのTE、Symbiodinium microadriaticumのTE、これらのTEのアミノ酸配列と50%以上(好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上)の同一性を有するアミノ酸配列からなり、かつTE活性を有するタンパク質、又はこれらのTEのアミノ酸配列に1又は数個(例えば1個以上147個以下、好ましくは1個以上119個以下、より好ましくは1個以上59個以下、さらに好ましくは1個以上30個以下)のアミノ酸が欠失、置換、挿入又は付加され、かつTE活性を有するタンパク質が好ましい。
 これらのTE及びそれらをコードする遺伝子の配列情報等は、例えば、国立生物工学情報センター(National Center for Biotechnology Information,NCBI)などから入手することができる。
TE that can be used in the present invention can be appropriately selected from normal TE and functionally equivalent proteins according to the type of host.
Specifically, Umbellularia californica TE (GenBank AAA34215.1); Cuphea calophylla subsp. mesostemon TE (GenBank ABB71581); Cinnamomum camphora TE (GenBank AAC49151.1); Myristica fragrans TE (GenBank AAB71729); Myristica fragrans TE (GenBank AAB71730); Cuphea lanceolata TE (GenBank CAA54060); Cuphea hookeriana TE (GenBank Q39513); Ulumus americana TE (GenBank AAB71731); Sorghum bicolor TE (GenBank EER87824); Sorghum bicolor TE (GenBank EER88593); Cocos nucifera TE (CnFatB1: Jing et al. BMC Biochemistry 2011, 12:44 Cocos nucifera TE (CnFatB2: Jing et al. BMC Biochemistry 2011, 12:44); Cuphea viscosissima TE (CvFatB1: Jing et al. BMC Biochemistry 2011, 12:44); Cuphea viscosissima TE ( CvFatB2: Jing et al. BMC Biochemistry 2011, 12:44); Cuphea viscosissima TE (CvFatB3: Jing et al. BMC Biochemistry 2011, 12:44); Elaeis guineensis TE (GenBank AAD42220); Desulfovibrio vulgaris TE (GenBank ACL08376); Bacteriodes fragilis TE (GenBank CAH09236); Parabacteriodes distasonis TE (GenBank ABR43801); Bacteroides thetaiotaomicron TE (GenBank AAO77182); Clostridium asparagiforme TE (GenBank EEG55387); Bryanthella formatexigens TE (GenBank EET61113); Geobacillus sp. ; Streptococcus dysgalactiae of TE (GenBank BAH81730); Lactobacillus brevis of TE (GenBank ABJ63754); Lactobacillus plantarum in TE (GenBank CAD63310); Anaerococcus tetradius of TE (GenBank EEI82564); Bdellovibrio bacteriovorus of TE (GenBank CAE80300); Clostridium thermocellum of TE (GenBank ABN54268); Cocos nucifera TE (CnFatB3: Jing et al. BMC Biochemistry 2011, 12:44, SEQ ID NO: 7, nucleotide sequence of the gene encoding it: SEQ ID NO: 8); TE of Nannochloropsis oculata (SEQ ID NO: 9, nucleotide sequence of the gene encoding it: SEQ ID NO: 10); Nannochloropsis gaditana TE (SEQ ID NO: 11, nucleotide sequence of the gene encoding it: SEQ ID NO: 12); Nannochloropsis granulata TE (SEQ ID NO: 13, nucleotide sequence of the gene encoding it: SEQ ID NO: 14); Symbiodinium microadriaticum TE (SEQ ID NO: 15, nucleotide sequence of gene encoding the same: SEQ ID NO: 16), and the like. Moreover, as a protein functionally equivalent to these, it has 50% or more (preferably 70% or more, more preferably 80% or more, further preferably 90% or more) identity with any of the TE amino acid sequences described above. A protein having an amino acid sequence having TE activity can also be used. Alternatively, one or several (for example, 1 or more and 147 or less, preferably 1 or more and 119 or less, more preferably 1 or more and 59 or less, more preferably 1 or more) in any of the above-described amino acid sequences of TE Proteins having 30 or less amino acids deleted, substituted, inserted or added and having TE activity can also be used.
Among these TEs, Umbellularia californica TE, Cocos nucifera TE, Cinnamonum camphorum TE, Elaeis guineensis TE, Cuphea TE, Nannochloropsis oculata TE, Nannochloropsis gaditana TE, Nannochloropsis granulata TE, Symbiodinium microadriatic , A protein comprising an amino acid sequence having 50% or more identity with these TE amino acid sequences (preferably 70% or more, more preferably 80% or more, more preferably 90% or more) and having TE activity, or these 1 or several (for example, 1 or more and 147 or less, preferably 1 or more and 119 or less, more preferably 1 or more and 59 or less, and further preferably 1 or more and 30 or less) amino acid sequences of TE Are preferably deleted, substituted, inserted or added and have TE activity.
The sequence information of these TEs and the genes encoding them can be obtained from, for example, the National Center for Biotechnology Information (NCBI).
 TEは、基質となるアシル-ACPの脂肪酸鎖長及び不飽和度に対して特異性を有する。したがって、導入するTEの種類を変えることによって、シアノバクテリアに所望の鎖長や不飽和度の遊離脂肪酸を生産させることができる。
 例えば、Umbellularia californica由来のTEは炭素数12のアシル基に基質特異性を有し、生成する遊離脂肪酸は主にラウリン酸(C12:0)などの炭素数12の遊離脂肪酸である。また、Cinnamonum camphorum及びCocos nuciferaのTEは炭素数14のアシル基に基質特異性を有し、生成する遊離脂肪酸は主にミリスチン酸(C14:0)などの炭素数14の遊離脂肪酸である。また、Escherichia coli K-12株のTEは、炭素数16又は18のアシル基に基質特異性を有し、生成する遊離脂肪酸は主にパルミチン酸(C16:0)、パルミトレイン酸(C16:1)、ステアリン酸(C18:0)、オレイン酸(C18:1)、リノール酸(C18:2)、リノレン酸(C18:3)などの炭素数16又は18の遊離脂肪酸である。
TE has specificity for the fatty acid chain length and the degree of unsaturation of acyl-ACP as a substrate. Therefore, by changing the type of TE to be introduced, it is possible to cause cyanobacteria to produce free fatty acids having a desired chain length and degree of unsaturation.
For example, TE derived from Umbellularia californica has substrate specificity for an acyl group having 12 carbon atoms, and the generated free fatty acids are mainly free fatty acids having 12 carbon atoms such as lauric acid (C12: 0). Moreover, TE of Cinnamonum camphorum and Cocos nucifera has substrate specificity for an acyl group having 14 carbon atoms, and the free fatty acids to be produced are mainly 14 free fatty acids such as myristic acid (C14: 0). Moreover, Escherichia coli K-12 strain TE has substrate specificity for an acyl group having 16 or 18 carbon atoms, and the free fatty acids produced are mainly palmitic acid (C16: 0) and palmitoleic acid (C16: 1). , Free fatty acids having 16 or 18 carbon atoms such as stearic acid (C18: 0), oleic acid (C18: 1), linoleic acid (C18: 2), and linolenic acid (C18: 3).
 本発明においてTE活性は、例えば、宿主細胞内で機能するプロモーターの下流にTE遺伝子を連結した融合遺伝子を、脂肪酸分解系が欠損した宿主細胞へ導入し、導入したTE遺伝子が発現する条件下で細胞を培養して、宿主細胞又は培養液中の脂肪酸組成の変化を常法により分析することで確認できる。あるいは、宿主細胞内で機能するプロモーターの下流にTE遺伝子を連結した融合遺伝子を宿主細胞へ導入し、導入したTE遺伝子が発現する条件下で細胞を培養した後、細胞の破砕液に対し、Yuanらの方法(Yuan L.et al.,Proc.Natl.Acad.Sci.USA,1995,vol.92(23),p.10639-10643)に従い各種アシル-ACPを基質とした反応を行うことにより確認できる。 In the present invention, the TE activity can be achieved, for example, by introducing a fusion gene in which a TE gene is linked downstream of a promoter that functions in the host cell into a host cell that lacks the fatty acid degradation system, and under conditions where the introduced TE gene is expressed. It can be confirmed by culturing the cells and analyzing changes in the fatty acid composition in the host cells or culture medium by conventional methods. Alternatively, a fusion gene in which a TE gene is linked downstream of a promoter that functions in the host cell is introduced into the host cell, and the cell is cultured under conditions in which the introduced TE gene is expressed. By carrying out reactions using various acyl-ACPs as substrates according to these methods (Yuan L. et al., Proc. Natl. Acad. Sci. USA, 1995, vol. 92 (23), p. 10639-10643). I can confirm.
 本発明の形質転換体は、宿主に前記KAS遺伝子を導入して得られる。当該形質転換体は、宿主自体に比べ、特定の炭素数の脂肪酸及びこれを構成成分とする脂質の生産性が有意に向上する。また、当該形質転換体では、脂質中の脂肪酸組成が宿主に比べ改変される。なお、宿主や形質転換体の脂肪酸及び脂質の生産性については、実施例で用いた方法により測定することができる。 The transformant of the present invention can be obtained by introducing the KAS gene into a host. The transformant significantly improves the productivity of a fatty acid having a specific carbon number and a lipid containing this fatty acid as a constituent component, as compared with the host itself. In the transformant, the fatty acid composition in the lipid is modified as compared with the host. The productivity of fatty acids and lipids in the host and transformant can be measured by the method used in the examples.
 本発明の形質転換体は、前記KAS遺伝子を常法により前記宿主に導入することで得られる。具体的には、前記KAS遺伝子を宿主細胞中で発現させることのできる発現用ベクターを調製し、これを宿主細胞に導入して宿主細胞を形質転換させることにより作製できる。
 前記KAS遺伝子に加えて前記TE遺伝子も導入した形質転換体も、常法により作製できる。
The transformant of the present invention can be obtained by introducing the KAS gene into the host by a conventional method. Specifically, it can be prepared by preparing an expression vector capable of expressing the KAS gene in a host cell, introducing the vector into the host cell, and transforming the host cell.
A transformant in which the TE gene is introduced in addition to the KAS gene can also be prepared by a conventional method.
 形質転換体の宿主としては通常用いられるものより適宜選択することができる。本発明で用いることができる宿主としては、微生物、藻類、微細藻類、植物体、及び動物体が挙げられる。製造効率及び得られた脂質の利用性の点から、宿主は微生物又は植物体であることが好ましく、植物であることがより好ましい。
 前記微生物は原核生物、真核生物のいずれであってもよく、エシェリキア(Escherichia)属の微生物やバシラス(Bacillus)属の微生物等の原核生物、酵母や糸状菌等の真核微生物を用いることができる。なかでも、脂肪酸の生産性の観点から、大腸菌(Escherichia coli)、枯草菌(Bacillus subtilis)、赤色酵母(Rhodosporidium toruloides)、又はモルチエレラ・エスピー(Mortierella sp.)が好ましく、大腸菌がより好ましい。
 前記微細藻類としては、遺伝子組換え手法が確立している観点から、クラミドモナス(Chlamydomonas)属の藻類、クロレラ(Chlorella)属の藻類、ファエオダクティラム(Phaeodactylum)属の藻類、又はナンノクロロプシス(Nannochloropsis)属の藻類が好ましく、ナンノクロロプシス属の藻類がより好ましい。
 前記植物体としては、種子に脂質を高含有する観点から、シロイヌナズナ(Arabidopsis thaliana)、西洋アブラナ(Brassica napus)、アブラナ(Brassica rapa)、ココヤシ(Cocos nucifera)、パーム(Elaeis guineensis)、クフェア、ダイズ(Glycine max)、トウモロコシ(Zea mays)、イネ(Oryza sativa)、ヒマワリ(Helianthus annuus)、クスノキ(Cinnamomum camphora)、又はヤトロファ(Jatropha curcas)が好ましく、シロイヌナズナがより好ましい。
The host for the transformant can be appropriately selected from those usually used. Examples of hosts that can be used in the present invention include microorganisms, algae, microalgae, plants, and animals. From the viewpoint of production efficiency and availability of the obtained lipid, the host is preferably a microorganism or a plant, more preferably a plant.
The microorganism may be either a prokaryote or a eukaryote, and a prokaryote such as a microorganism belonging to the genus Escherichia or a genus Bacillus, or a eukaryotic microorganism such as a yeast or filamentous fungus is used. it can. Of these, Escherichia coli , Bacillus subtilis , red yeast ( Rhodosporidium toruloides ), or Mortierella sp. Is preferred, and Escherichia coli is more preferred from the viewpoint of fatty acid productivity.
From the viewpoint of establishing a genetic recombination technique, the microalgae include algae of the genus Chlamydomonas , algae of the genus Chlorella , algae of the genus Phaeodactylum , or Nannochloropsis ( Algae of the genus Nannochloropsis ) are preferred, and algae of the genus Nannochloropsis are more preferred.
As the plant body, Arabidopsis thaliana , Brassica napus , Brassica rapa , Cocos nucifera , Palm ( Elaeis guineensis ), caffe, soybean, from the viewpoint of high lipid content in seeds ( Glycine max ), corn ( Zea mays ), rice ( Oryza sativa ), sunflower ( Helianthus annuus ), camphor ( Cinnamomum camphora ), or jatropha ( Jatropha curcas ) are preferable, and Arabidopsis is more preferable.
 遺伝子発現用プラスミドベクターの母体となるベクター(プラスミド)としては、目的のタンパク質をコードする遺伝子を宿主に導入することができ、宿主細胞内で当該遺伝子を発現させることができるベクターであればよい。例えば、導入する宿主の種類に応じたプロモーターやターミネーター等の発現調節領域を有するベクターであって、複製開始点や選択マーカー等を有するベクターを用いることができる。また、プラスミド等の染色体外で自立増殖・複製するベクターであってもよいし、染色体内に組み込まれるベクターであってもよい。
 本発明で好ましく用いることができる発現用ベクターとしては、pUC系ベクター(タカラバイオ社製)、pBluescript(pBS) II SK(-)(Stratagene社製)、pSTV系ベクター(タカラバイオ社製)、pET系ベクター(タカラバイオ社製)、pGEX系ベクター(GEヘルスケア社製)、pCold系ベクター(タカラバイオ社製)、pHY300PLK(タカラバイオ社製)、pUB110(Mckenzie,T.et al.,(1986),Plasmid 15(2);p.93-103)、pBR322(タカラバイオ社製)、pRS403(ストラタジーン社製)、pMW218/219(ニッポンジーン社製)、pRI系ベクター(タカラバイオ社製)、pBI系ベクター(クロンテック社製)、IN3系ベクター(インプランタイノベーションズ社製)、pUC19(タカラバイオ社製)、P66(Chlamydomonas Center)、P-322(Chlamydomonas Center)、pPha-T1(Yangmin Gong,Xiaojing Guo,Xia Wan,Zhuo Liang,Mulan Jiang,“Characterization of a novel thioesterase(PtTE)from Phaeodactylum tricornutum”,Journal of Basic Microbiology,2011 December,Volume 51,p.666-672.参照)、及びpJET1(コスモ・バイオ社製)が挙げられる。本発明において、宿主としてシロイヌナズナを用いる場合、pRI系ベクター又はpBI系ベクターが好ましく用いられる。
The vector (plasmid) serving as the parent of the plasmid vector for gene expression may be any vector as long as it can introduce a gene encoding the target protein into the host and can express the gene in the host cell. For example, a vector having an expression regulatory region such as a promoter or terminator according to the type of host to be introduced, and a vector having a replication origin or a selection marker can be used. Further, it may be a vector that autonomously grows and replicates outside the chromosome, such as a plasmid, or a vector that is integrated into the chromosome.
Expression vectors that can be preferably used in the present invention include pUC vectors (Takara Bio), pBluescript (pBS) II SK (-) (Stratagene), pSTV vectors (Takara Bio), pET. Vector (Takara Bio), pGEX vector (GE Healthcare), pCold vector (Takara Bio), pHY300PLK (Takara Bio), pUB110 (Mckenzie, T. et al., (1986) ), Plasmid 15 (2); p.93-103), pBR322 (Takara Bio), pRS403 (Stratagene), pMW218 / 219 (Nippon Gene), pRI vector (Takara Bio), pBI vectors (Clontech), IN3 vectors (Implanta Innovations), pUC19 (Takara Bio), P66 (Chlamydomonas Center), P-322 (Chlamydomonas Center), pPha-T1 (Yangmin Gong, Xiaojing) Guo, Xia Wan, Zhuo Liang, Mulan Jiang "Characterization of a novel thioesterase (PtTE) from Phaeodactylum tricornutum", Journal of Basic Microbiology, 2011 December, Volume 51, p.666-672. Reference), and pJET1 (manufactured by Cosmo Bio Co., Ltd.). In the present invention, when Arabidopsis thaliana is used as a host, a pRI vector or a pBI vector is preferably used.
 また、前記発現ベクターに組み込んだ目的のタンパク質をコードする遺伝子の発現を調整するプロモーターの種類も、使用する宿主の種類に応じて適宜選択することができる。本発明で好ましく用いることができるプロモーターとしては、lacプロモーター、trpプロモーター、tacプロモーター、trcプロモーター、T7プロモーター、SpoVGプロモーター、イソプロピルβ-D-1-チオガラクトピラノシド(IPTG)の添加によって誘導可能な誘導体に関するプロモーター、Rubiscoオペロン(rbc)、PSI反応中心タンパク質(psaAB)、PSIIのD1タンパク質(psbA)、カリフラワーモザイルウイルス35SRNAプロモーター、ハウスキーピング遺伝子プロモーター(例えば、チューブリンプロモーター、アクチンプロモーター、ユビキチンプロモーター等)、西洋アブラナ又はアブラナ由来Napin遺伝子プロモーター、植物由来Rubiscoプロモーター、及びナンノクロロプシス属由来のビオラキサンチン/クロロフィルa結合タンパク質遺伝子のプロモーターが挙げられる。本発明で宿主としてシロイヌナズナを用いる場合、西洋アブラナ又はアブラナ由来Napin遺伝子プロモーターを好ましく用いることができる。
 また、目的のタンパク質をコードする遺伝子が組み込まれたことを確認するための選択マーカーの種類も、使用する宿主の種類に応じて適宜選択することができる。本発明で好ましく用いることができる選択マーカーとしては、アンピシリン耐性遺伝子、クロラムフェニコール耐性遺伝子、エリスロマイシン耐性遺伝子、ネオマイシン耐性遺伝子、カナマイシン耐性遺伝子、スペクチノマイシン耐性遺伝子、テトラサイクリン耐性遺伝子、ブラストサイジンS耐性遺伝子、ビアラフォス耐性遺伝子、ゼオシン耐性遺伝子、パロモマイシン耐性遺伝子、及びハイグロマイシン耐性遺伝子等の薬剤耐性遺伝子が挙げられる。さらに、栄養要求性に関連する遺伝子の欠損等を選択マーカー遺伝子として使用することもできる。
In addition, the type of promoter that regulates the expression of the gene encoding the target protein incorporated in the expression vector can be appropriately selected according to the type of host used. Promoters that can be preferably used in the present invention can be induced by the addition of lac promoter, trp promoter, tac promoter, trc promoter, T7 promoter, SpoVG promoter, isopropyl β-D-1-thiogalactopyranoside (IPTG). Promoters related to various derivatives, Rubisco operon (rbc), PSI reaction center protein (psaAB), PSII D1 protein (psbA), cauliflower mosil virus 35SRNA promoter, housekeeping gene promoter (eg, tubulin promoter, actin promoter, ubiquitin promoter) etc.), rape or oilseed rape derived Napin gene promoter, a plant-derived Rubisco promoters, and violaxanthin / chlorophyll a binding protein gene from Nannochloropsis genus promoter Chromatography, and the like. In the present invention, when Arabidopsis thaliana is used as a host, Western rape or rape-derived Napin gene promoter can be preferably used.
In addition, the type of selectable marker for confirming that the gene encoding the target protein has been incorporated can be appropriately selected according to the type of host used. Selectable markers that can be preferably used in the present invention include ampicillin resistance gene, chloramphenicol resistance gene, erythromycin resistance gene, neomycin resistance gene, kanamycin resistance gene, spectinomycin resistance gene, tetracycline resistance gene, blasticidin S Drug resistance genes such as resistance genes, bialaphos resistance genes, zeocin resistance genes, paromomycin resistance genes, and hygromycin resistance genes. Furthermore, a gene deficiency associated with auxotrophy can be used as a selectable marker gene.
 目的のタンパク質をコードする遺伝子の前記ベクターへの導入は、制限酵素処理やライゲーション等の常法により行うことができる。
 また、形質転換方法は、使用する宿主の種類に応じて常法より適宜選択することができる。形質転換方法としては、カルシウムイオンを用いる形質転換方法、一般的なコンピテントセル形質転換方法、プロトプラスト形質転換法、エレクトロポレーション法、LP形質転換方法、アグロバクテリウムを用いた方法、パーティクルガン法等が挙げられる。
Introduction of a gene encoding the target protein into the vector can be performed by a conventional method such as restriction enzyme treatment or ligation.
The transformation method can be appropriately selected from conventional methods according to the type of host used. Transformation methods include calcium ion transformation method, general competent cell transformation method, protoplast transformation method, electroporation method, LP transformation method, method using Agrobacterium, particle gun method Etc.
 本発明の形質転換体は、特定の炭素数の脂肪酸及びこれを構成成分とする脂質の生産性が宿主と比較して向上している。したがって、本発明の形質転換体を適切な条件で培養し、次いで得られた培養物又は生育物から脂質を回収すれば、効率のよく脂質を製造することができる。ここで「培養物」とは培養した後の培養液及び形質転換体をいい、「生育物」とは生育した後の形質転換体をいう。 In the transformant of the present invention, the productivity of fatty acids having a specific carbon number and lipids comprising the same is improved as compared with the host. Therefore, the lipid can be efficiently produced by culturing the transformant of the present invention under appropriate conditions, and then recovering the lipid from the obtained culture or growth. Here, “culture” refers to the culture solution and transformant after culturing, and “growth” refers to the transformant after growth.
 本発明の形質転換体の培養条件は、形質転換体の宿主に応じて適宜選択することができ、その宿主に対して通常用いられる培養条件を使用できる。また脂肪酸の生産効率の点から、培地中に、例えば脂肪酸生合成系に関与する前駆物質としてグリセロール、酢酸、又はマロン酸等を添加してもよい。
 大腸菌を宿主として用いる場合、形質転換体の培養は、例えば、LB培地又はOvernight Express Instant TB Medium(Novagen社)で、30~37℃、0.5~1日間培養することができる。
 また、シロイヌナズナを宿主として用いる場合、形質転換体の培養は、例えば、土壌で温度条件20~25℃、白色光を連続照射又は明期16時間・暗期8時間等の光条件下で1~2か月間栽培することができる。
 藻類を宿主として用いる場合、培地は天然海水又は人工海水をベースにしたものを使用してもよいし、市販の培養培地を使用してもよい。藻類の生育促進、脂肪酸の生産性向上のため、培地に、窒素源、リン源、金属塩、ビタミン類、微量金属等を適宜添加することができる。培地に接種する形質転換体の量は適宜選択することができ、生育性の点から培地当り1~50%(vol/vol)が好ましい。培養温度は、藻類の増殖に悪影響を与えない範囲であれば特に制限されないが、通常、5~40℃の範囲である。また藻類の培養は、光合成ができるよう光照射下で行うことが好ましい。また藻類の培養は、光合成ができるように二酸化炭素を含む気体の存在下、又は炭酸水素ナトリウムなどの炭酸塩を含む培地で行うことが好ましい。なお形質転換体の培養は、通気攪拌培養、振とう培養又は静置培養のいずれでもよく、通気性の向上の観点から、振とう培養が好ましい。
The culture conditions of the transformant of the present invention can be appropriately selected according to the host of the transformant, and culture conditions usually used for the host can be used. From the viewpoint of fatty acid production efficiency, for example, glycerol, acetic acid, or malonic acid may be added to the medium as a precursor involved in the fatty acid biosynthesis system.
When Escherichia coli is used as a host, the transformant can be cultured, for example, in LB medium or Overnight Express Instant TB Medium (Novagen) at 30 to 37 ° C. for 0.5 to 1 day.
When Arabidopsis thaliana is used as a host, the transformant can be cultured, for example, in soil at a temperature of 20 to 25 ° C. under continuous irradiation with white light or light conditions such as 16 hours of light and 8 hours of dark. Can be cultivated for 2 months.
When using algae as a host, a medium based on natural seawater or artificial seawater may be used, or a commercially available culture medium may be used. In order to promote the growth of algae and improve the productivity of fatty acids, nitrogen sources, phosphorus sources, metal salts, vitamins, trace metals, and the like can be appropriately added to the medium. The amount of transformant inoculated into the medium can be appropriately selected, and is preferably 1 to 50% (vol / vol) per medium from the viewpoint of growth. The culture temperature is not particularly limited as long as it does not adversely affect the growth of algae, but it is usually in the range of 5 to 40 ° C. The algae is preferably cultured under light irradiation so that photosynthesis is possible. In addition, the culture of algae is preferably performed in the presence of a gas containing carbon dioxide or a medium containing a carbonate such as sodium bicarbonate so that photosynthesis is possible. The transformant may be cultured by aeration and agitation culture, shaking culture or stationary culture, and shaking culture is preferred from the viewpoint of improving aeration.
 形質転換体が生産した脂質を回収する方法としては、常法から適宜選択することができる。例えば、前述の培養物、生育物又は形質転換体から、ろ過、遠心分離、細胞の破砕、ゲルろ過クロマトグラフィー、イオン交換クロマトグラフィー、クロロホルム/メタノール抽出法、ヘキサン抽出法、又はエタノール抽出法等により脂質成分を単離、回収することができる。より大規模な培養を行った場合は、培養物、生育物又は形質転換体より油分を圧搾又は抽出により回収後、脱ガム、脱酸、脱色、脱蝋、脱臭等の一般的な精製を行い、脂質を得ることができる。このように脂質成分を単離した後、単離した脂質を加水分解することで脂肪酸を得ることができる。脂質成分から脂肪酸を単離する方法としては、例えば、アルカリ溶液中で70℃程度の高温で処理をする方法、リパーゼ処理をする方法、又は高圧熱水を用いて分解する方法等が挙げられる。 The method for recovering the lipid produced by the transformant can be appropriately selected from conventional methods. For example, by filtration, centrifugation, cell disruption, gel filtration chromatography, ion exchange chromatography, chloroform / methanol extraction method, hexane extraction method, ethanol extraction method, etc. from the aforementioned culture, growth product or transformant The lipid component can be isolated and recovered. In the case of larger-scale culture, oil is recovered from the culture, growth, or transformant by pressing or extraction, and then general purification such as degumming, deoxidation, decolorization, dewaxing, deodorization, etc. is performed. , Lipids can be obtained. Thus, after isolating a lipid component, a fatty acid can be obtained by hydrolyzing the isolated lipid. Examples of the method for isolating the fatty acid from the lipid component include a method of treating at a high temperature of about 70 ° C. in an alkaline solution, a method of treating with lipase, a method of decomposing using high-pressure hot water, and the like.
 本発明の製造方法により得られる脂質は、その利用性の点から、単純脂質及び誘導脂質から選ばれる1種以上を含んでいることが好ましく、誘導脂質を含んでいることがより好ましく、脂肪酸又はそのエステルを含んでいることがさらに好ましく、脂肪酸又はそのエステルであることがよりさらに好ましい。 The lipid obtained by the production method of the present invention preferably contains one or more selected from simple lipids and derived lipids, more preferably contains derived lipids, fatty acids or It is more preferable that it contains the ester, and it is still more preferable that it is a fatty acid or its ester.
 本発明の製造方法により得られる脂質は、食用として用いる他、化粧品等の乳化剤、石鹸や洗剤等の洗浄剤、繊維処理剤、毛髪リンス剤、又は殺菌剤や防腐剤として利用することができる。 The lipid obtained by the production method of the present invention can be used as an edible material, as an emulsifier for cosmetics and the like, a detergent such as soap and detergent, a fiber treatment agent, a hair rinse agent, or a bactericide and preservative.
 上述した実施形態に関し、本発明はさらに以下の脂質の製造方法、形質転換体、形質転換体の製造方法、タンパク質、遺伝子、及び脂質生産性の向上方法を開示する。 Regarding the above-described embodiments, the present invention further discloses the following lipid production method, transformant, transformant production method, protein, gene, and lipid productivity improvement method.
<1>下記タンパク質(a)~(f)のいずれかをコードする遺伝子を宿主に導入して得た形質転換体を培養して脂肪酸又はこれを構成成分とする脂質を生産させる、脂質の製造方法。
(a)配列番号1で表されるアミノ酸配列からなるタンパク質
(b)前記タンパク質(a)のアミノ酸配列と85%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上、の同一性を有するアミノ酸配列からなり、かつKAS活性を有するタンパク質
(c)配列番号3で表されるアミノ酸配列からなるタンパク質
(d)前記タンパク質(c)のアミノ酸配列と85%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上、の同一性を有するアミノ酸配列からなり、かつKAS活性を有するタンパク質
(e)配列番号5で表されるアミノ酸配列からなるタンパク質
(f)前記タンパク質(e)のアミノ酸配列と85%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上、の同一性を有するアミノ酸配列からなり、かつKAS活性を有するタンパク質
<1> Manufacture of lipids by culturing a transformant obtained by introducing a gene encoding any of the following proteins (a) to (f) into a host to produce fatty acids or lipids comprising the same Method.
(A) a protein comprising the amino acid sequence represented by SEQ ID NO: 1 (b) 85% or more, preferably 90% or more, more preferably 95% or more, and even more preferably 98% or more with the amino acid sequence of the protein (a) (C) a protein consisting of the amino acid sequence represented by SEQ ID NO: 3 and (d) an amino acid sequence of the protein (c) of 85% or more, preferably A protein comprising an amino acid sequence having 90% or more, more preferably 95% or more, and even more preferably 98% or more identity, and having KAS activity (e) a protein comprising an amino acid sequence represented by SEQ ID NO: 5 ( f) 85% or more, preferably 90% or more, more preferably 95% or more, with the amino acid sequence of the protein (e) Preferably of an amino acid sequence having 98% or more, identity and protein having KAS activity
<2>前記タンパク質(b)が、前記タンパク質(a)のアミノ酸配列に、1又は数個、好ましくは1個以上73個以下、より好ましくは1個以上49個以下、さらに好ましくは1個以上25個以下、さらに好ましくは1個以上10個以下、のアミノ酸が欠失、置換、挿入又は付加されたタンパク質である、前記<1>項記載の方法。
<3>前記タンパク質(a)又は(b)をコードする遺伝子が、下記DNA(g)又は(h)からなる遺伝子である、前記<1>又は<2>項記載の方法。
(g)配列番号2で表される塩基配列からなるDNA
(h)前記DNA(g)の塩基配列と85%以上、好ましくは90%以上、より好ましくは95%以上、の同一性を有する塩基配列からなり、かつKAS活性を有するタンパク質をコードするDNA
<4>前記DNA(h)が、前記DNA(g)の塩基配列に、1若しくは複数個、好ましくは1個以上218個以下、より好ましくは1個以上145個以下、さらに好ましくは1個以上73個以下、の塩基が欠失、置換、挿入、若しくは付加された塩基配列からなり、かつKAS活性を有する前記タンパク質(a)若しくは(b)をコードするDNA、又は前記DNA(g)と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつKAS活性を有する前記タンパク質(a)若しくは(b)をコードするDNA、である、前記<3>項記載の方法。
<5>前記タンパク質(a)及び(b)がKAS Iである、前記<1>~<4>のいずれか1項記載の方法。
<6>前記タンパク質(d)が、前記タンパク質(c)のアミノ酸配列に、1又は数個、好ましくは1個以上86個以下、より好ましくは1個以上57個以下、さらに好ましくは1個以上29個以下、さらに好ましくは1個以上12個以下、のアミノ酸が欠失、置換、挿入又は付加されたタンパク質である、前記<1>項記載の方法。
<7>前記タンパク質(c)又は(d)をコードする遺伝子が、下記DNA(i)又は(j)からなる遺伝子である、前記<1>又は<6>項記載の方法。
(i)配列番号4で表される塩基配列からなるDNA
(j)前記DNA(i)の塩基配列と85%以上、好ましくは90%以上、より好ましくは95%以上、の同一性を有する塩基配列からなり、かつKAS活性を有するタンパク質をコードするDNA
<8>前記DNA(j)が、前記DNA(i)の塩基配列に、1若しくは複数個、好ましくは1個以上256個以下、より好ましくは1個以上171個以下、さらに好ましくは1個以上86個以下、の塩基が欠失、置換、挿入、若しくは付加された塩基配列からなり、かつKAS活性を有する前記タンパク質(c)若しくは(d)をコードするDNA、又は前記DNA(i)と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつKAS活性を有する前記タンパク質(c)若しくは(d)をコードするDNA、である、前記<7>項記載の方法。
<9>前記タンパク質(c)及び(d)がKAS IVである、前記<1>及び<6>~<8>のいずれか1項記載の方法。
<10>前記タンパク質(f)が、前記タンパク質(e)のアミノ酸配列に、1又は数個、好ましくは1個以上86個以下、より好ましくは1個以上57個以下、さらに好ましくは1個以上29個以下、さらに好ましくは1個以上12個以下、のアミノ酸が欠失、置換、挿入又は付加されたタンパク質である、前記<1>項記載の方法。
<11>前記タンパク質(e)又は(f)をコードする遺伝子が、下記DNA(k)又は(l)からなる遺伝子である、前記<1>又は<10>項記載の方法。
(k)配列番号6で表される塩基配列からなるDNA
(l)前記DNA(i)の塩基配列と85%以上、好ましくは90%以上、より好ましくは95%以上、の同一性を有する塩基配列からなり、かつKAS活性を有するタンパク質をコードするDNA
<12>前記DNA(l)が、前記DNA(k)の塩基配列に、1若しくは複数個、好ましくは1個以上256個以下、より好ましくは1個以上171個以下、さらに好ましくは1個以上86個以下、の塩基が欠失、置換、挿入、若しくは付加された塩基配列からなり、かつKAS活性を有する前記タンパク質(e)若しくは(f)をコードするDNA、又は前記DNA(k)と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつKAS活性を有する前記タンパク質(e)若しくは(f)をコードするDNA、である、前記<11>項記載の方法。
<13>前記タンパク質(e)及び(f)がKAS IVである、前記<1>及び<10>~<12>のいずれか1項記載の方法。
<14>前記宿主が微生物又は植物である、前記<1>~<13>のいずれか1項記載の方法。
<15>前記植物がシロイヌナズナである、前記<14>項記載の方法。
<16>アグロバクテリウムを用いて前記タンパク質(a)~(f)のいずれかをコードする遺伝子を宿主としてのシロイヌナズナに導入し、前記形質転換体を作製した、前記<15>項記載の方法。
<17>形質転換体が生産した脂肪酸又はこれを構成成分とする脂質をシロイヌナズナの種子から採取する、前記<15>又は<16>項記載の方法。
<18>TEをコードする遺伝子、好ましくは中鎖アシル-ACPに対する基質特異性を有するTEをコードする遺伝子、が前記宿主に導入されている、前記<1>~<17>のいずれか1項記載の方法。
<19>前記TEが、Umbellularia californicaのTE、Cocos nuciferaのTE、Cinnamonum camphorumのTE、Elaeis guineensisのTE、Cuphea種のTE、Nannochloropsis oculataのTE、Nannochloropsis gaditanaのTE、Nannochloropsis granulataのTE、及びSymbiodinium microadriaticumのTEからなる群より選ばれる少なくとも1種のTEである、前記<18>項記載の方法。
<2> The protein (b) has one or several, preferably 1 to 73, more preferably 1 to 49, still more preferably 1 or more amino acid sequences in the protein (a). The method according to <1> above, wherein the protein is a protein in which 25 or less, more preferably 1 or more and 10 or less amino acids are deleted, substituted, inserted or added.
<3> The method according to <1> or <2> above, wherein the gene encoding the protein (a) or (b) is a gene consisting of the following DNA (g) or (h).
(G) DNA comprising the base sequence represented by SEQ ID NO: 2
(H) a DNA comprising a base sequence having 85% or more, preferably 90% or more, more preferably 95% or more identity with the DNA (g) base sequence, and encoding a protein having KAS activity
<4> The DNA (h) has one or more, preferably 1 or more and 218 or less, more preferably 1 or more and 145 or less, more preferably 1 or more, in the base sequence of the DNA (g). A DNA encoding the protein (a) or (b) having a KAS activity consisting of a base sequence in which 73 or fewer bases are deleted, substituted, inserted or added, or complementary to the DNA (g) <3> The method according to <3>, wherein the DNA is a DNA that hybridizes with a DNA comprising a basic sequence under stringent conditions and encodes the protein (a) or (b) having KAS activity.
<5> The method according to any one of <1> to <4>, wherein the proteins (a) and (b) are KAS I.
<6> The protein (d) has one or several, preferably 1 to 86, more preferably 1 to 57, and still more preferably 1 or more amino acid sequences in the protein (c). 29. The method according to <1> above, wherein the protein is a protein in which 29 or less, more preferably 1 or more and 12 or less amino acids are deleted, substituted, inserted or added.
<7> The method according to <1> or <6> above, wherein the gene encoding the protein (c) or (d) is a gene consisting of the following DNA (i) or (j).
(I) DNA comprising the base sequence represented by SEQ ID NO: 4
(J) a DNA comprising a base sequence having 85% or more, preferably 90% or more, more preferably 95% or more identity with the DNA (i) base sequence, and encoding a protein having KAS activity
<8> The DNA (j) has one or more, preferably 1 to 256, more preferably 1 to 171 and even more preferably 1 or more nucleotide sequences in the DNA (i). A DNA encoding a protein (c) or (d) having a KAS activity, comprising a nucleotide sequence with 86 or fewer bases deleted, substituted, inserted, or added, or complementary to the DNA (i) The method according to <7> above, which is a DNA that hybridizes under stringent conditions with a DNA comprising a basic nucleotide sequence and encodes the protein (c) or (d) having KAS activity.
<9> The method according to any one of <1> and <6> to <8>, wherein the proteins (c) and (d) are KAS IV.
<10> The protein (f) has one or several, preferably 1 to 86, more preferably 1 to 57, and still more preferably 1 or more amino acid sequences in the protein (e). 29. The method according to <1> above, wherein the protein is a protein in which 29 or less, more preferably 1 or more and 12 or less amino acids are deleted, substituted, inserted or added.
<11> The method according to <1> or <10> above, wherein the gene encoding the protein (e) or (f) is a gene consisting of the following DNA (k) or (l).
(K) DNA comprising the base sequence represented by SEQ ID NO: 6
(L) a DNA encoding a protein having a KAS activity and comprising a base sequence having 85% or more, preferably 90% or more, more preferably 95% or more identity with the base sequence of DNA (i)
<12> The DNA (l) has one or more, preferably 1 to 256, more preferably 1 to 171 and still more preferably 1 or more nucleotide sequences in the DNA (k). A DNA encoding a protein (e) or (f) having a KAS activity consisting of a base sequence in which 86 or fewer bases are deleted, substituted, inserted, or added, or complementary to the DNA (k) <11> The method according to <11> above, which is a DNA that hybridizes under stringent conditions with a DNA comprising a basic nucleotide sequence and encodes the protein (e) or (f) having KAS activity.
<13> The method according to any one of <1> and <10> to <12>, wherein the proteins (e) and (f) are KAS IV.
<14> The method according to any one of <1> to <13>, wherein the host is a microorganism or a plant.
<15> The method according to <14>, wherein the plant is Arabidopsis thaliana.
<16> The method according to <15>, wherein the transformant is produced by introducing a gene encoding any of the proteins (a) to (f) into Arabidopsis as a host using Agrobacterium. .
<17> The method according to <15> or <16> above, wherein the fatty acid produced by the transformant or a lipid comprising the fatty acid is collected from Arabidopsis seeds.
<18> Any one of <1> to <17>, wherein a gene encoding TE, preferably a gene encoding TE having substrate specificity for medium chain acyl-ACP, has been introduced into the host. The method described.
<19> the TE is, Umbellularia californica the TE, Cocos nucifera of TE, TE of Cinnamonum camphorum, TE of Elaeis guineensis, Cuphea species TE, Nannochloropsis oculata of TE, TE of Nannochloropsis gaditana, Nannochloropsis granulata of TE, and Symbiodinium Microadriaticum <18> The method according to <18>, wherein the method is at least one TE selected from the group consisting of:
<20>宿主に前記タンパク質(a)~(f)のいずれかをコードする遺伝子を導入して得られた形質転換体。
<21>宿主に前記タンパク質(a)~(f)のいずれかをコードする遺伝子を導入する、形質転換体の製造方法。
<22>前記タンパク質(a)~(f)のいずれかをコードする遺伝子を宿主に導入し、得られた形質転換体の脂質の生産性を向上させる、宿主の脂質生産性の向上方法。
<23>前記タンパク質(a)~(f)のいずれかをコードする遺伝子を宿主に導入し、得られた形質転換体が生産する脂質中の脂肪酸組成を改変する、宿主が生産する脂質中の脂肪酸組成を改変する方法。
<20> A transformant obtained by introducing a gene encoding any of the proteins (a) to (f) into a host.
<21> A method for producing a transformant, wherein a gene encoding any of the proteins (a) to (f) is introduced into a host.
<22> A method for improving the lipid productivity of a host, wherein a gene encoding any of the proteins (a) to (f) is introduced into a host, and the lipid productivity of the obtained transformant is improved.
<23> A gene encoding any one of the proteins (a) to (f) is introduced into a host, the fatty acid composition in the lipid produced by the obtained transformant is modified, and in the lipid produced by the host A method of modifying the fatty acid composition.
<24>前記タンパク質(b)が、前記タンパク質(a)のアミノ酸配列に、1又は数個、好ましくは1個以上73個以下、より好ましくは1個以上49個以下、さらに好ましくは1個以上25個以下、さらに好ましくは1個以上10個以下、のアミノ酸が欠失、置換、挿入又は付加されたタンパク質である、前記<20>~<23>のいずれか1項記載の形質転換体又は方法。
<25>前記タンパク質(a)又は(b)をコードする遺伝子が、前記DNA(g)又は(h)からなる遺伝子である、前記<20>~<24>のいずれか1項記載の形質転換体又は方法。
<26>前記DNA(h)が、前記DNA(g)の塩基配列に、1若しくは複数個、好ましくは1個以上218個以下、より好ましくは1個以上145個以下、さらに好ましくは1個以上73個以下、の塩基が欠失、置換、挿入、若しくは付加された塩基配列からなり、かつKAS活性を有する前記タンパク質(a)若しくは(b)をコードするDNA、又は前記DNA(g)と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつKAS活性を有する前記タンパク質(a)若しくは(b)をコードするDNA、である、前記<25>項記載の形質転換体又は方法。
<27>前記タンパク質(a)及び(b)がKAS Iである、前記<20>~<26>のいずれか1項記載の形質転換体又は方法。
<28>前記タンパク質(d)が、前記タンパク質(c)のアミノ酸配列に、1又は数個、好ましくは1個以上86個以下、より好ましくは1個以上57個以下、さらに好ましくは1個以上29個以下、さらに好ましくは1個以上12個以下、のアミノ酸が欠失、置換、挿入又は付加されたタンパク質である、前記<20>~<23>のいずれか1項記載の形質転換体又は方法。
<29>前記タンパク質(c)又は(d)をコードする遺伝子が、前記DNA(i)又は(j)からなる遺伝子である、前記<20>~<23>及び<28>のいずれか1項記載の形質転換体又は方法。
<30>前記DNA(j)が、前記DNA(i)の塩基配列に、1若しくは複数個、好ましくは1個以上256個以下、より好ましくは1個以上171個以下、さらに好ましくは1個以上86個以下、の塩基が欠失、置換、挿入、若しくは付加された塩基配列からなり、かつKAS活性を有する前記タンパク質(c)若しくは(d)をコードするDNA、又は前記DNA(i)と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつKAS活性を有する前記タンパク質(c)若しくは(d)をコードするDNA、である、前記<29>項記載の形質転換体又は方法。
<31>前記タンパク質(c)及び(d)がKAS IVである、前記<20>~<23>及び<28>~<30>のいずれか1項記載の形質転換体又は方法。
<32>前記タンパク質(f)が、前記タンパク質(e)のアミノ酸配列に、1又は数個、好ましくは1個以上86個以下、より好ましくは1個以上57個以下、さらに好ましくは1個以上29個以下、さらに好ましくは1個以上12個以下、のアミノ酸が欠失、置換、挿入又は付加されたタンパク質である、前記<20>~<23>のいずれか1項記載の形質転換体又は方法。
<33>前記タンパク質(e)又は(f)をコードする遺伝子が、前記DNA(k)又は(l)からなる遺伝子である、前記<20>~<23>及び<32>のいずれか1項記載の形質転換体又は方法。
<34>前記DNA(l)が、前記DNA(k)の塩基配列に、1若しくは複数個、好ましくは1個以上256個以下、より好ましくは1個以上171個以下、さらに好ましくは1個以上86個以下、の塩基が欠失、置換、挿入、若しくは付加された塩基配列からなり、かつKAS活性を有する前記タンパク質(e)若しくは(f)をコードするDNA、又は前記DNA(k)と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつKAS活性を有する前記タンパク質(e)若しくは(f)をコードするDNA、である、前記<33>項記載の形質転換体又は方法。
<35>前記タンパク質(e)及び(f)がKAS IVである、前記<20>~<23>及び<32>~<34>のいずれか1項記載の形質転換体又は方法。
<36>前記宿主が微生物又は植物である、前記<20>~<35>のいずれか1項記載の形質転換体又は方法。
<37>前記植物がシロイヌナズナである、前記<36>項記載の形質転換体又は方法。
<38>アグロバクテリウムを用いて前記タンパク質(a)~(f)のいずれかをコードする遺伝子を宿主としてのシロイヌナズナに導入し、前記形質転換体を作製した、前記<37>項記載の形質転換体又は方法。
<39>TEをコードする遺伝子、好ましくは中鎖アシル-ACPに対する基質特異性を有するTEをコードする遺伝子、が前記宿主に導入されている、前記<20>~<38>のいずれか1項記載の形質転換体又は方法。
<40>前記TEが、Umbellularia californicaのTE、Cocos nuciferaのTE、Cinnamonum camphorumのTE、Elaeis guineensisのTE、Cuphea種のTE、Nannochloropsis oculataのTE、Nannochloropsis gaditanaのTE、Nannochloropsis granulataのTE、及びSymbiodinium microadriaticumのTEからなる群より選ばれる少なくとも1種のTEである、前記<39>項記載の形質転換体又は方法。
<24> The protein (b) has one or several, preferably 1 to 73, more preferably 1 to 49, and still more preferably 1 or more amino acid sequences of the protein (a). The transformant according to any one of the above <20> to <23>, which is a protein in which 25 or less, more preferably 1 or more and 10 or less amino acids are deleted, substituted, inserted or added Method.
<25> The transformation according to any one of <20> to <24>, wherein the gene encoding the protein (a) or (b) is a gene comprising the DNA (g) or (h) Body or method.
<26> The DNA (h) has one or more, preferably 1 or more and 218 or less, more preferably 1 or more and 145 or less, more preferably 1 or more, in the base sequence of the DNA (g). A DNA encoding the protein (a) or (b) having a KAS activity consisting of a base sequence in which 73 or fewer bases are deleted, substituted, inserted or added, or complementary to the DNA (g) The transformant according to <25>, wherein the transformant is a DNA that hybridizes with a DNA comprising a basic nucleotide sequence under stringent conditions and encodes the protein (a) or (b) having KAS activity. Or method.
<27> The transformant or method according to any one of <20> to <26>, wherein the proteins (a) and (b) are KAS I.
<28> The protein (d) has one or several, preferably 1 to 86, more preferably 1 to 57, more preferably 1 or more amino acid sequences in the protein (c). The transformant according to any one of the above <20> to <23>, which is a protein having 29 or less, more preferably 1 to 12 amino acids deleted, substituted, inserted or added, or Method.
<29> Any one of the above <20> to <23> and <28>, wherein the gene encoding the protein (c) or (d) is the gene consisting of the DNA (i) or (j) The transformant or method as described.
<30> The DNA (j) has one or more, preferably 1 to 256, more preferably 1 to 171 and even more preferably 1 or more nucleotide sequences in the DNA (i). A DNA encoding a protein (c) or (d) having a KAS activity, comprising a nucleotide sequence with 86 or fewer bases deleted, substituted, inserted, or added, or complementary to the DNA (i) <29> The transformant according to <29>, wherein the transformant is a DNA that hybridizes with a DNA having a basic nucleotide sequence under stringent conditions and encodes the protein (c) or (d) having KAS activity. Or method.
<31> The transformant or method according to any one of <20> to <23> and <28> to <30>, wherein the proteins (c) and (d) are KAS IV.
<32> The protein (f) has one or several, preferably 1 to 86, more preferably 1 to 57, still more preferably 1 or more amino acid sequences of the protein (e). The transformant according to any one of the above <20> to <23>, which is a protein having 29 or less, more preferably 1 to 12 amino acids deleted, substituted, inserted or added, or Method.
<33> Any one of the above <20> to <23> and <32>, wherein the gene encoding the protein (e) or (f) is the gene consisting of the DNA (k) or (l) The transformant or method as described.
<34> One or more, preferably 1 to 256, more preferably 1 to 171 and even more preferably 1 or more of the DNA (l) in the base sequence of the DNA (k) A DNA encoding a protein (e) or (f) having a KAS activity consisting of a base sequence in which 86 or fewer bases are deleted, substituted, inserted, or added, or complementary to the DNA (k) The transformant according to <33>, wherein the transformant is a DNA that hybridizes with a DNA comprising a basic sequence under stringent conditions and encodes the protein (e) or (f) having KAS activity. Or method.
<35> The transformant or method according to any one of <20> to <23> and <32> to <34>, wherein the proteins (e) and (f) are KAS IV.
<36> The transformant or method according to any one of <20> to <35>, wherein the host is a microorganism or a plant.
<37> The transformant or method according to <36>, wherein the plant is Arabidopsis thaliana.
<38> The gene according to <37>, wherein the gene encoding any one of the proteins (a) to (f) is introduced into Arabidopsis thaliana as a host using Agrobacterium, and the transformant is produced. Converter or method.
<39> Any one of <20> to <38>, wherein a gene encoding TE, preferably a gene encoding TE having substrate specificity for medium chain acyl-ACP, has been introduced into the host. The transformant or method as described.
<40> the TE is, Umbellularia californica the TE, TE of Cocos nucifera, TE of Cinnamonum camphorum, TE of Elaeis guineensis, Cuphea species TE, TE of Nannochloropsis oculata, Nannochloropsis gaditana of TE, Nannochloropsis granulata of TE, and Symbiodinium Microadriaticum The transformant or method according to <39>, wherein the transformant is the at least one TE selected from the group consisting of TEs.
<41>前記タンパク質(a)~(f)。
<42>前記<41>項記載のタンパク質のいずれか1つをコードする遺伝子。
<43>前記DNA(g)~(l)のいずれか1つからなる遺伝子。
<41> The protein (a) to (f).
<42> A gene encoding any one of the proteins according to <41>.
<43> A gene comprising any one of the DNAs (g) to (l).
 以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれに限定されるものではない。
 ここで、本実施例で用いるプライマーの塩基配列を表1に示す。
EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to this.
Here, the base sequences of the primers used in this example are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(調製例1)ココヤシのcDNAの調製
 ココヤシ固形胚乳を液体窒素で凍結した後、マルチビーズショッカー(安井器械製)を用いて破砕した。破砕した固形胚乳にフェノール/クロロホルム、及び50mM Tris-HCl(pH9)を添加して混合し、7500rpmで10分間遠心操作を行い、上清を回収した。回収した上清に再度同様のフェノール/クロロホルム処理を行った。上層を回収し、これに対してエタノール沈殿操作を行い、そこに含まれる核酸成分を精製した。
 RNA成分の精製のために、RNeasy Plant Mini Kit(Qiagen,Valencia,California製)を用いた。エタノール沈殿後の核酸ペレットに、1M DTTを1/100容量添加したRLT Bufferを加えてボルテックスしたものを、QIA shredder spin columnにアプライした。以降はキット添付のマニュアルに従って操作を行い、最終的に脱イオン水(dH2O)でココヤシ由来のtotal RNAを溶出した。
 得られたRNA溶液に対し、DNaseI(サーモサイエンティフィック社製)をバッファーとともに添加し、1時間37℃にて処理を行った。その後、フェノール/クロロホルム処理及びエタノール沈殿処理を行い、ココヤシ胚乳由来RNA溶液を調製した。
 続いて、PrimeScript II 1st strand cDNA Synthesis Kit(商品名、タカラバイオ社製)を用いて、得られたRNAからココヤシのcDNAを調製した。
(Preparation Example 1) Preparation of coconut cDNA After coconut solid endosperm was frozen in liquid nitrogen, it was crushed using a multi-bead shocker (manufactured by Yasui Kikai). To the crushed solid endosperm, phenol / chloroform and 50 mM Tris-HCl (pH 9) were added and mixed, and centrifuged at 7500 rpm for 10 minutes, and the supernatant was collected. The recovered supernatant was again subjected to the same phenol / chloroform treatment. The upper layer was collected, ethanol precipitation operation was performed on this, and the nucleic acid component contained therein was purified.
For purification of RNA components, RNeasy Plant Mini Kit (Qiagen, Valencia, California) was used. The nucleic acid pellet after ethanol precipitation was vortexed by adding RLT Buffer supplemented with 1/100 volume of 1M DTT, and applied to a QIA shredder spin column. Thereafter, the operation was performed according to the manual attached to the kit, and finally the total RNA derived from coconut was eluted with deionized water (dH 2 O).
DNase I (manufactured by Thermo Scientific) was added to the obtained RNA solution together with a buffer, and the mixture was treated at 37 ° C. for 1 hour. Thereafter, phenol / chloroform treatment and ethanol precipitation treatment were carried out to prepare a coconut endosperm-derived RNA solution.
Subsequently, coconut cDNA was prepared from the obtained RNA using PrimeScript II 1st strand cDNA Synthesis Kit (trade name, manufactured by Takara Bio Inc.).
(調製例2)カリフォルニアベイのcDNAの調製
 アメリカのSierra Seed Supply社より入手したカリフォルニアベイの種子を液体窒素で凍結した後、乳鉢と乳房を用いて破砕した。破砕した組織からFruit Mate(商品名、タカラバイオ社製)及びNucleoSpin RNA plant(商品名、タカラバイオ社製)を用いてRNAを抽出した。
 続いて、PrimeScript II 1st strand cDNA Synthesis Kit(商品名、タカラバイオ社製)を用いて、得られたRNAからカリフォルニアベイのcDNAを調製した。
Preparation Example 2 Preparation of California Bay cDNA California Bay seeds obtained from Sierra Seed Supply, USA were frozen in liquid nitrogen and then crushed using a mortar and breast. RNA was extracted from the crushed tissue using Fruit Mate (trade name, manufactured by Takara Bio Inc.) and NucleoSpin RNA plant (trade name, manufactured by Takara Bio Inc.).
Subsequently, a California Bay cDNA was prepared from the obtained RNA using PrimeScript II 1st strand cDNA Synthesis Kit (trade name, manufactured by Takara Bio Inc.).
(調製例3)クスノキのcDNAの調製
 花王和歌山工場内より採取したクスノキの種子を液体窒素で凍結した後、乳鉢と乳房を用いて破砕した。破砕した組織からFruit Mate(商品名、タカラバイオ社製)及びNucleoSpin RNA plant(商品名、タカラバイオ社製)を用いてRNAを抽出した。
 続いて、PrimeScript II 1st strand cDNA Synthesis Kit(商品名、タカラバイオ社製)を用いて、得られたRNAからクスノキのcDNAを調製した。
(Preparation Example 3) Preparation of camphor tree cDNA The camphor seeds collected from the Kao Wakayama Factory were frozen in liquid nitrogen and then crushed using a mortar and breast. RNA was extracted from the crushed tissue using Fruit Mate (trade name, manufactured by Takara Bio Inc.) and NucleoSpin RNA plant (trade name, manufactured by Takara Bio Inc.).
Subsequently, camphor tree cDNA was prepared from the obtained RNA using PrimeScript II 1st strand cDNA Synthesis Kit (trade name, manufactured by Takara Bio Inc.).
(調製例4)ココヤシ由来のTE遺伝子発現用プラスミドの構築
 PowerPlant DNA Isolation Kit(商品名、MO BIO Laboratories社製,USA)を用いて、茨城県潮来市で採取したアブラナ及び栃木県益子町で採取したアブラナからそれぞれゲノムDNAを抽出した。
 茨城県潮来市で採取したアブラナのゲノムDNAをテンプレートとし、DNAポリメラーゼPrimeSTAR(商品名、タカラバイオ社製)、並びに表1に示すプライマーNo.1(配列番号22)及びプライマーNo.2(配列番号23)を用いてPCRを行い、Napin遺伝子のプロモーターを増幅した。
 また、栃木県益子町で採取したアブラナのゲノムDNAをテンプレートとし、DNAポリメラーゼPrimeSTAR(商品名、タカラバイオ社製)、並びに表1に示すプライマーNo.3(配列番号24)及びプライマーNo.4(配列番号25)を用いてPCRを行い、Napin遺伝子のターミネーターを増幅した。
 増幅を確認したPCR産物をテンプレートとし、Napin遺伝子のプロモーターは表1に示すプライマーNo.5(配列番号26)及びプライマーNo.6(配列番号27)を、Napin遺伝子のターミネーターは表1に示すプライマーNo.3(配列番号24)及びプライマーNo.7(配列番号28)を用いて、それぞれ再度PCRを行った。このようにして、Napin遺伝子のプロモーター配列の断片(配列番号17)と、Napin遺伝子のターミネーター配列の断片(配列番号18)をそれぞれ作製した。
 増幅したこれらの遺伝子断片をそれぞれMighty TA-cloning Kit(商品名、タカラバイオ社製)で処理した後、pMD20-Tベクター(商品名、タカラバイオ社製)にライゲーション反応により挿入した。このようにして、Napin遺伝子のプロモーター領域を導入したプラスミドpPNapin1、及びNapin遺伝子のターミネーター領域を導入したpTNapin1をそれぞれ構築した。
(Preparation Example 4) Construction of TE gene expression plasmid derived from coconut palm Using the PowerPlant DNA Isolation Kit (trade name, manufactured by MO BIO Laboratories, USA), collected in oilseed rape and Mashiko-machi, Tochigi Genomic DNA was extracted from each rape.
Using the rape genomic DNA collected in Itako, Ibaraki Prefecture as a template, DNA polymerase PrimeSTAR (trade name, manufactured by Takara Bio Inc.) and primer Nos. Shown in Table 1 were used. 1 (SEQ ID NO: 22) and primer no. PCR was performed using 2 (SEQ ID NO: 23) to amplify the Napin gene promoter.
Moreover, using the rape genomic DNA collected in Mashiko-machi, Tochigi Prefecture as a template, DNA polymerase PrimeSTAR (trade name, manufactured by Takara Bio Inc.) and primer Nos. Shown in Table 1 were used. 3 (SEQ ID NO: 24) and primer no. PCR was performed using 4 (SEQ ID NO: 25) to amplify the terminator of the Napin gene.
The PCR product confirmed to be amplified was used as a template, and the promoter of Napin gene was the primer No. shown in Table 1. 5 (SEQ ID NO: 26) and primer no. 6 (SEQ ID NO: 27), the terminator of the Napin gene is the primer No. shown in Table 1. 3 (SEQ ID NO: 24) and primer no. PCR was performed again using 7 (SEQ ID NO: 28). In this manner, a Napin gene promoter sequence fragment (SEQ ID NO: 17) and a Napin gene terminator sequence fragment (SEQ ID NO: 18) were prepared, respectively.
These amplified gene fragments were each treated with Mighty TA-cloning Kit (trade name, manufactured by Takara Bio Inc.) and then inserted into a pMD20-T vector (trade name, manufactured by Takara Bio Inc.) by a ligation reaction. Thus, plasmid pPNapin1 into which the Napin gene promoter region was introduced and pTNapin1 into which the Napin gene terminator region was introduced were constructed.
 前記プラスミドpPNapin1をテンプレートとし、PrimeSTAR、並びに表1に示すプライマーNo.8(配列番号29)及びプライマーNo.9(配列番号30)を用いてPCRを行い、両末端に制限酵素認識配列を付加したプロモーター配列を増幅した。また、前記プラスミドpTNapin1をテンプレートとし、PrimeSTAR、並びに表1に示すプライマーNo.10(配列番号31)及びプライマーNo.11(配列番号32)を用いてPCR反応を行い、ターミネーター配列を増幅した。
 増幅したPCR産物は、Mighty TA-cloning Kit(商品名、タカラバイオ社製)を用いて処理した後、pMD20-Tベクターにライゲーション反応により挿入し、プラスミドpPNapin2及びプラスミドpTNapin2をそれぞれ構築した。プラスミドpPNapin2を制限酵素SalIとNotIで、プラスミドpTNapin2を制限酵素SmaIとNotIでそれぞれ処理し、SalIとSmaIで処理したpRI909ベクター(タカラバイオ社製)にライゲーション反応で連結し、プラスミドp909PTnapinを構築した。
Using the plasmid pPNapin1 as a template, PrimeSTAR and the primer Nos. Shown in Table 1 were used. 8 (SEQ ID NO: 29) and primer no. PCR was performed using 9 (SEQ ID NO: 30) to amplify a promoter sequence having restriction enzyme recognition sequences added to both ends. Further, using the plasmid pTNapin1 as a template, PrimeSTAR and the primer Nos. Shown in Table 1 were used. 10 (SEQ ID NO: 31) and primer no. A PCR reaction was performed using 11 (SEQ ID NO: 32) to amplify the terminator sequence.
The amplified PCR product was treated with Mighty TA-cloning Kit (trade name, manufactured by Takara Bio Inc.) and then inserted into the pMD20-T vector by ligation reaction to construct plasmid pPNapin2 and plasmid pTNapin2. Plasmid pPNapin2 was treated with restriction enzymes Sal I and Not I, plasmid pTNapin2 was treated with restriction enzymes Sma I and Not I, respectively, and ligated to pRI909 vector (Takara Bio) treated with Sal I and Sma I, Plasmid p909PTnapin was constructed.
 次に、カリフォルニア・ベイ由来のTE(以下、BTEとも略記する)遺伝子の葉緑体移行シグナルペプチドをコードする遺伝子(配列番号19)を、Invitrogen社(Carlsbad,California)の提供する受託合成サービスを利用して取得した。取得した遺伝子配列を含むプラスミドをテンプレートとし、PrimeSTAR、並びに表1に示すプライマーNo.12(配列番号33)及びプライマーNo.13(配列番号34)を用いてPCRを行い、シグナルペプチドをコードする遺伝子断片を増幅した。Mighty TA-cloning Kit(商品名、タカラバイオ社製)を用いて、増幅した遺伝子断片の両末端にデオキシアデニン(dA)を付加した後、pMD20-Tベクター(タカラバイオ社製)にライゲーション反応により挿入し、プラスミドpSignalを構築した。構築したプラスミドpSignalを制限酵素NotIで処理し、プラスミドp909PTnapinのNotIサイトにライゲーション反応で連結し、プラスミドp909PTnapin-Sを得た。 Next, a gene (SEQ ID NO: 19) encoding a chloroplast translocation signal peptide derived from California Bay (hereinafter also abbreviated as BTE) gene is provided by a contract synthesis service provided by Invitrogen (Carlsbad, California). Acquired using. Using the obtained plasmid containing the gene sequence as a template, PrimeSTAR and the primer Nos. Shown in Table 1 were used. 12 (SEQ ID NO: 33) and primer no. PCR was performed using 13 (SEQ ID NO: 34) to amplify a gene fragment encoding a signal peptide. Using Mighty TA-cloning Kit (trade name, manufactured by Takara Bio Inc.), deoxyadenine (dA) was added to both ends of the amplified gene fragment, and then ligated to pMD20-T vector (Takara Bio Inc.). The plasmid pSignal was constructed by insertion. The constructed plasmid pSignal was treated with the restriction enzyme Not I and ligated to the Not I site of the plasmid p909PTnapin by a ligation reaction to obtain a plasmid p909PTnapin-S.
 調製例1で調製したココヤシ胚乳由来のcDNAをテンプレートとし、制限酵素PrimeSTAR MAX(商品名、タカラバイオ社製)、並びに表1に示すプライマーNo.14(配列番号35)及びプライマーNo.15(配列番号36)を用いてPCRを行い、ココヤシ由来のTE(以下、CTEとも略記する)をコードする遺伝子断片(配列番号8)を増幅した。
 また、前記p909PTnapin-Sをテンプレートとし、表1に示すプライマーNo.16(配列番号37)及びプライマーNo.17(配列番号38)を用いて、p909PTnapin-Sの直鎖状断片を増幅した。
Using the cDNA derived from coconut endosperm prepared in Preparation Example 1 as a template, restriction enzyme PrimeSTAR MAX (trade name, manufactured by Takara Bio Inc.), and primer No. 1 shown in Table 1. 14 (SEQ ID NO: 35) and primer no. PCR was performed using 15 (SEQ ID NO: 36) to amplify a gene fragment (SEQ ID NO: 8) encoding coconut palm-derived TE (hereinafter also abbreviated as CTE).
In addition, using the above-mentioned p909PTnapin-S as a template, the primer numbers shown in Table 1 were used. 16 (SEQ ID NO: 37) and primer no. 17 (SEQ ID NO: 38) was used to amplify a linear fragment of p909PTnapin-S.
 前記CTE遺伝子断片と前記の直鎖状p909PTnapin-S断片とを、In-Fusion Advantage PCR Cloning Kit(商品名、クロンテック社製)を用いてIn-fusion反応により連結し、プラスミドp909CTEを構築した。当該プラスミドp909CTEは、CTE遺伝子の発現がアブラナ由来のNapin遺伝子のプロモーターにより制御され、発現したCTE遺伝子がBTE遺伝子由来の葉緑体移行シグナルペプチドによって葉緑体へと移行するよう設計されている。 The CTE gene fragment and the linear p909PTnapin-S fragment were ligated by In-fusion reaction using In-Fusion Advantage PCR Cloning Kit (trade name, manufactured by Clontech) to construct plasmid p909CTE. The plasmid p909CTE is designed such that the expression of the CTE gene is controlled by the promoter of the Napin gene derived from rape, and the expressed CTE gene is transferred to the chloroplast by the chloroplast transfer signal peptide derived from the BTE gene.
(調製例5)KAS遺伝子発現用プラスミドの構築
 NCBIのGene Bankで開示された形質転換用ベクターpYW310(ACCESSION NO.DQ469641)の配列を参考に、Streptomyces hygroscopicus由来のホスフィノトリシンアセチル転移酵素をコードするビアラフォス耐性遺伝子(Bar遺伝子、配列番号20)をGene Script社の提供する受託合成サービスを利用して取得した。
 合成したBar遺伝子をテンプレートとし、PrimeSTAR、並びに表1に示すプライマーNo.18(配列番号39)及びプライマーNo.19(配列番号40)を用いてPCRを行い、Bar遺伝子を増幅した。一方、pRI909をテンプレートとし、PrimeSTAR、並びに表1に示すプライマーNo.20(配列番号41)及びプライマーNo.21(配列番号42)を用いてPCR反応を行い、pRI909ベクターからカナマイシン耐性遺伝子を除いた領域を増幅した。これらの遺伝子断片断片をNdeI及びSpeIで処理し、ライゲーション反応で連結して、ベクターpRI909が本来保持するカナマイシン耐性遺伝子をBar遺伝子に置換したプラスミドpRI909Barを構築した。
(Preparation Example 5) Construction of plasmid for KAS gene expression Encoding phosphinothricin acetyltransferase derived from Streptomyces hygroscopicus with reference to the sequence of transformation vector pYW310 (ACCESSION NO. DQ469641) disclosed in NCBI Gene Bank The bialaphos resistance gene (Bar gene, SEQ ID NO: 20) was obtained using a commissioned synthesis service provided by Gene Script.
Using the synthesized Bar gene as a template, PrimeSTAR and primer Nos. Shown in Table 1 were used. 18 (SEQ ID NO: 39) and primer no. PCR was performed using 19 (SEQ ID NO: 40) to amplify the Bar gene. On the other hand, using pRI909 as a template, PrimeSTAR and the primer numbers shown in Table 1 were used. 20 (SEQ ID NO: 41) and primer no. A PCR reaction was performed using 21 (SEQ ID NO: 42) to amplify a region excluding the kanamycin resistance gene from the pRI909 vector. These gene fragments fragment was treated with Nde I and Spe I, and ligated in ligation reaction, the kanamycin resistance gene vector pRI909 held originally to construct a plasmid pRI909Bar substituted on Bar gene.
 NCBIのGene Bankに開示されたBrassica napus napin Promoter(ACCESSION NO.EU416279)の配列を参考に、西洋アブラナの種子で発現するNapinプロモーター(配列番号21)をGene Script社の提供する受託合成サービスを利用して取得した。
 合成したNapinプロモーターをテンプレートとし、表1に示すプライマーNo.22(配列番号43)及びプライマーNo.23(配列番号44)を用いてPCRを行い、Napinプロモーターを増幅した。また、プラスミドpRI909Barをテンプレートとし、表1に示すプライマーNo.24(配列番号45)及びプライマーNo.25(配列番号46)を用いてPCRを行い、pRI909Barの直鎖状断片を増幅した。さらに、プラスミドp909CTEをテンプレートとし、表1に示すプライマーNo.26(配列番号47)及びプライマーNo.27(配列番号48)を用いてPCRを行い、CTE-Tnapin配列を増幅した。これらの遺伝子断片を、調製例4と同様にIn-fusion反応を行い、プラスミドp909Pnapus-CTE-Tnapinを構築した。
Reference to the sequence of Brassica napus napin Promoter (ACCESSION NO. EU416279) disclosed in NCBI's Gene Bank, using the contract synthesis service provided by Gene Script for the Napin promoter (SEQ ID NO: 21) expressed in the seeds of rape And acquired.
Using the synthesized Napin promoter as a template, primer Nos. Shown in Table 1 were used. 22 (SEQ ID NO: 43) and primer no. PCR was performed using 23 (SEQ ID NO: 44) to amplify the Napin promoter. In addition, using the plasmid pRI909Bar as a template, the primer Nos. Shown in Table 1 were used. 24 (SEQ ID NO: 45) and primer no. PCR was performed using 25 (SEQ ID NO: 46) to amplify a linear fragment of pRI909Bar. Furthermore, using the plasmid p909CTE as a template, the primer numbers shown in Table 1 were used. 26 (SEQ ID NO: 47) and primer no. PCR was performed using 27 (SEQ ID NO: 48) to amplify the CTE-Tnapin sequence. These gene fragments were subjected to In-fusion reaction in the same manner as in Preparation Example 4 to construct plasmid p909Pnapus-CTE-Tnapin.
 前記プラスミドp909Pnapus-CTE-Tnapinをテンプレートとし、表1に示すプライマーNo.28(配列番号49)及びプライマーNo.29(配列番号50)を用いてPCRを行い、遺伝子断片を増幅した。また、カリフォルニアベイの種子由来cDNAをテンプレートとし、表1に示すプライマーNo.30(配列番号51)及びプライマーNo.31(配列番号52)を用いてPCRを行い、BKAS431をコードする遺伝子断片(配列番号2)を増幅した。これらの遺伝子断片をIn-fusion反応により連結し、p909Pnapus-BKAS431-Tnapinを構築した。
 同様に、表1に示すプライマーNo.32(配列番号53)とプライマーNo.33(配列番号54)を用いてBKAS1082をコードする遺伝子断片(配列番号4)を増幅し、p909Pnapus-BKAS431-TnapinのBKAS431遺伝子をBKAS1082遺伝子に代えた、p909Pnapus-BKAS1082-TnapinをIn-fusion反応により構築した。
 さらに、クスノキ種子由来cDNAをテンプレートとし、表1に示すプライマーNo.34(配列番号55)とプライマーNo.35(配列番号56)を用いてPCRを行い、KKAS250をコードする遺伝子断片(配列番号6)を増幅した。そして、p909Pnapus-BKAS431-TnapinのBKAS431遺伝子をKKAS250遺伝子に代えた、p909Pnapus-KKAS250-TnapinをIn-fusion反応により構築した。
Using the plasmid p909Pnapus-CTE-Tnapin as a template, the primer numbers shown in Table 1 were used. 28 (SEQ ID NO: 49) and primer no. PCR was performed using 29 (SEQ ID NO: 50) to amplify the gene fragment. In addition, using primer derived from California Bay seed as a template, primer Nos. Shown in Table 1 were used. 30 (SEQ ID NO: 51) and primer no. PCR was performed using 31 (SEQ ID NO: 52) to amplify a gene fragment (SEQ ID NO: 2) encoding BKAS431. These gene fragments were ligated by In-fusion reaction to construct p909Pnapus-BKAS431-Tnapin.
Similarly, primer Nos. Shown in Table 1 were used. 32 (SEQ ID NO: 53) and primer no. 33 (SEQ ID NO: 54) was used to amplify a gene fragment (SEQ ID NO: 4) encoding BKAS1082, and the BKAS431 gene of p909Pnapus-BKAS431-Tnapin was replaced with the BKAS1082 gene, and p909Pnapus-BKAS1082-Tnapin was subjected to In-fusion reaction. It was constructed.
Furthermore, using the camphor seed-derived cDNA as a template, primer Nos. Shown in Table 1 were used. 34 (SEQ ID NO: 55) and primer no. PCR was performed using 35 (SEQ ID NO: 56) to amplify a gene fragment (SEQ ID NO: 6) encoding KKAS250. Then, p909Pnapus-KKAS250-Tnapin was constructed by replacing the BKAS431 gene of p909Pnapus-BKAS431-Tnapin with the KKAS250 gene by In-fusion reaction.
(調製例6)形質転換体の作製
 インプランタイノベーションズ社によるシロイヌナズナの形質転換受託サービスにより、前記プラスミドp909CTEを用いて、CTE遺伝子を導入したシロイヌナズナ(Arabidopsis thaliana,Colombia株)の形質転換体を得た。得られたシロイヌナズナの形質転換体(WT::CTE)、及び野生型シロイヌナズナ(WT)を、22℃、蛍光灯照明を用いて明期24時間(約4000ルクス)の条件で育成した。約2ヶ月の栽培の後、種子を収穫した。
(Preparation Example 6) Preparation of transformant Using the plasmid p909CTE, a transformant of Arabidopsis thaliana ( Arabidopsis thaliana , Colombia strain) into which the CTE gene had been introduced was obtained using the Arabidopsis transformation contract service by Implanta Innovations. . The obtained Arabidopsis thaliana transformants (WT :: CTE) and wild-type Arabidopsis thaliana (WT) were grown at 22 ° C. under fluorescent lighting for 24 hours (about 4000 lux). After about 2 months of cultivation, the seeds were harvested.
 このようにして得られたp909CTEを導入したシロイヌナズナWT::CTEを親株として、以降の形質転換実験を行った。
 前記プラスミドp909Pnapus-BKAS431-Tnapin、p909Pnapus-BKAS1082-Tnapin、及びp909Pnapus-KKAS250-Tnapinを導入したアグロバクテリウム・ツメファシエンス(Agrobacterium tumefaciens)GV3101株を用い、p909CTEを導入したシロイヌナズナWT::CTEに対して形質転換操作を行った。播種後1.5ヶ月程度育成したシロイヌナズナの花序を切除後6-7日間育成して再形成された花序に各プラスミドを導入したアグロバクテリウムを感染させた。
 アグロバクテリウム感染処理後1-2か月程度育成して得られた種子を、MS寒天培地(100μg/mLクラフォラン、7μg/mLビアラフォスを含む)に播種し、形質転換体(WT::CTE::BKAS431、WT::CTE::BKAS1082、WT::CTE::KKAS250)を選抜した。選抜した形質転換体を22℃、蛍光灯照明を用いて明期24時間の条件で育成し、約2ヶ月の栽培の後、種子を収穫した。
Using the Arabidopsis thaliana WT :: CTE introduced with p909CTE thus obtained as a parent strain, the following transformation experiments were performed.
The Agrobacterium tumefaciens GV3101 strain into which the plasmids p909Pnapus-BKAS431-Tnapin, p909Pnapus-BKAS1082-Tnapin, and p909Pnapus-KKAS250-Tnapin were introduced were transformed into Arabidopsis thaliana WT :: CTE introduced with p909CTE. A conversion operation was performed. The inflorescences of Arabidopsis grown about 1.5 months after sowing were grown for 6-7 days after excision and infected with Agrobacterium into which each plasmid was introduced.
Seeds grown for about 1-2 months after treatment with Agrobacterium were sown on MS agar medium (containing 100 μg / mL kraforan and 7 μg / mL bialaphos) and transformed (WT :: CTE: : BKAS431, WT :: CTE :: BKAS1082, WT :: CTE :: KKAS250) were selected. The selected transformant was grown at 22 ° C. under fluorescent light illumination under the condition of a light period of 24 hours, and seeds were harvested after cultivation for about 2 months.
(試験例1)シロイヌナズナの種子からの脂質の抽出、及び脂質のメチルエステル化
 得られた各シロイヌナズナ種子を、マルチビーズショッカー(安井器械社製)で粉砕した。この粉砕物に、7-ペンタデカノン(0.5mg/mLメタノール)20μL(内部標準)と酢酸20μLを添加したクロロホルム0.25mL、及びメタノール0.5mlを加え、十分に攪拌し、15分間静置した。さらに、1.5%KCl 0.25mLとクロロホルム0.25mLを添加して十分に攪拌し、15分間静置した。室温、1500rpmで5分間遠心分離を行った後、下層部分を採取し、窒素ガスで乾燥した。
 乾燥したサンプルに、0.5N水酸化カリウム-メタノール溶液100μLを加え、70℃で30分間恒温することによりトリアシルグリセロールを加水分解した。さらに、3‐フッ化ホウ素メタノール錯体溶液を0.3mL添加して乾燥物を溶解し、80℃で10分間恒温することにより脂肪酸のメチルエステル化処理を行った。その後、飽和食塩水0.2mLとヘキサン0.3mLを添加して十分に攪拌し、30分間静置した。脂肪酸のメチルエステルが含まれるヘキサン層(上層部分)を採取し、下記条件のガスクロマトグラフィ(GC)分析に供した。
(Test Example 1) Extraction of lipids from Arabidopsis seeds and methyl esterification of the lipids Each Arabidopsis seed obtained was pulverized with a multi-bead shocker (manufactured by Yasui Kikai Co., Ltd.). To this pulverized product, 20 μL of 7-pentadecanone (0.5 mg / mL methanol) (internal standard) and 0.25 mL of chloroform added with 20 μL of acetic acid and 0.5 mL of methanol were added, and the mixture was sufficiently stirred and allowed to stand for 15 minutes. Further, 0.25 mL of 1.5% KCl and 0.25 mL of chloroform were added and stirred sufficiently, and allowed to stand for 15 minutes. After centrifugation at room temperature and 1500 rpm for 5 minutes, the lower layer portion was collected and dried with nitrogen gas.
Triacylglycerol was hydrolyzed by adding 100 μL of 0.5N potassium hydroxide-methanol solution to the dried sample and incubating at 70 ° C. for 30 minutes. Furthermore, 0.3 mL of 3-boron fluoride methanol complex solution was added to dissolve the dried product, and the mixture was incubated at 80 ° C. for 10 minutes to carry out methyl esterification of fatty acid. Thereafter, 0.2 mL of saturated saline and 0.3 mL of hexane were added, and the mixture was sufficiently stirred and allowed to stand for 30 minutes. A hexane layer (upper layer portion) containing a fatty acid methyl ester was collected and subjected to gas chromatography (GC) analysis under the following conditions.
<ガスクロマトグラフィ(GC)条件>
カラム:DB1-MS(J&W Scientific,Folsom,California)
分析装置:6890(Agilent technology,Santa Clara,California)
カラムオーブン温度:150℃保持0.5分→150~320℃(20℃/分昇温)→320℃保持2分
注入口検出器温度:300℃
注入法:スプリットモード(スプリット比=75:1)
サンプル注入量:5μL
カラム流速:0.3ml/min コンスタント
検出器:FID
キャリアガス:水素
メイクアップガス:ヘリウム
<Gas chromatography (GC) conditions>
Column: DB1-MS (J & W Scientific, Folsom, California)
Analyzer: 6890 (Agilent technology, Santa Clara, California)
Column oven temperature: 150 ° C. holding 0.5 minutes → 150 to 320 ° C. (20 ° C./minute temperature increase) → 320 ° C. holding 2 minutes
Injection method: split mode (split ratio = 75: 1)
Sample injection volume: 5 μL
Column flow rate: 0.3 ml / min Constant detector: FID
Carrier gas: Hydrogen makeup gas: Helium
 GC解析により得られた波形データのピーク面積より、各脂肪酸のメチルエステル量を定量した。なお、種子中の各脂質に対応するGCのピークは、各脂肪酸の標準品のメチルエステルの保持時間により同定した。また、各ピーク面積を内部標準である7-ペンタデカノンのピーク面積と比較することで試料間の補正を行い、解析に供した全種子中に含まれる全脂肪酸量に対する各脂肪酸量の割合を算出した。その結果を表2に示す。なお、表2において、野生型及については1ラインの値を、その他については独立した3ラインの平均値を示した。 From the peak area of the waveform data obtained by GC analysis, the amount of methyl ester of each fatty acid was quantified. The GC peak corresponding to each lipid in the seeds was identified by the retention time of the standard methyl ester of each fatty acid. In addition, each peak area was compared with the peak area of 7-pentadecanone, which is an internal standard, to correct between samples, and the ratio of each fatty acid amount to the total fatty acid amount contained in all seeds subjected to analysis was calculated. . The results are shown in Table 2. In Table 2, the value of one line was shown for the wild type and the average value of three independent lines for the other.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、野生型の種子に比べ、CTE遺伝子のみを導入した形質転換体WT::CTEの種子ではC12:0脂肪酸量が約3%、C14:0脂肪酸量が約13%、C16:0脂肪酸量が約15%増加した。
 一方、CTE遺伝子とBKAS431遺伝子を導入した形質転換体WT::CTE::BKAS431では、形質転換体WT::CTEと比べて、C16:0脂肪酸量とC18:n脂肪酸量が増加した。しかし、C12:0脂肪酸量とC14:0脂肪酸量が減少した。
 さらに、CTE遺伝子とBKAS1082遺伝子を導入した形質転換体WT::CTE::BKAS1082、並びにCTE遺伝子とKKAS250遺伝子を導入した形質転換体WT::CTE::KKAS250では、形質転換体WT::CTEと比べて、C12:0脂肪酸量が増加し、C16:0脂肪酸量が減少した。
As shown in Table 2, the C12: 0 fatty acid content was about 3% and the C14: 0 fatty acid content was about 13% in the seed of the transformant WT :: CTE into which only the CTE gene was introduced, compared to the wild type seed. The amount of C16: 0 fatty acid increased by about 15%.
On the other hand, in the transformant WT :: CTE :: BKAS431 into which the CTE gene and the BKAS431 gene were introduced, the amount of C16: 0 fatty acid and the amount of C18: n fatty acid increased compared to the transformant WT :: CTE. However, the amount of C12: 0 fatty acid and the amount of C14: 0 fatty acid decreased.
Further, in the transformant WT :: CTE :: BKAS1082 introduced with the CTE gene and the BKAS1082 gene, and the transformant WT :: CTE :: KKAS250 introduced with the CTE gene and the KKAS250 gene, the transformant WT :: CTE and In comparison, the amount of C12: 0 fatty acid increased and the amount of C16: 0 fatty acid decreased.
 以上のように、本発明で規定するKAS遺伝子を宿主に導入することで、特定の炭素数の脂肪酸の生産性を向上させた形質転換体を作製することができる。そしてこの形質転換体を培養することで、特定の脂肪酸の生産性を向上させることができる。 As described above, by introducing the KAS gene defined in the present invention into a host, a transformant with improved productivity of a fatty acid having a specific carbon number can be produced. And the productivity of a specific fatty acid can be improved by culturing this transformant.
(試験例2)BKAS431、BKAS1082及びKKAS250の同定
 BLASTプログラム(http://blast.ncbi.nlm.nih.gov/Blast.cgi)によるホモロジーサーチを用いて、前記BKAS431、BKAS1082及びKKAS250の同定を行った。
 その結果、BKAS431はKAS Iとしてアノテーションされた。前述のように、KAS Iはアシル-ACPを炭素数16まで伸長させる。これは、前記表2に示した、BKAS431遺伝子を導入することでC16:0脂肪酸量が増加した結果と一致する。
 一方、BKAS1082及びKKAS250はKAS IIとしてアノテーションされた。なお、前述のように、KAS IIは炭素数16のアシル-ACPを炭素数18のアシル-ACPへ変換する反応を触媒する酵素である。しかしこのアノテーションの結果は、BKAS1082遺伝子又はKKAS250遺伝子を導入することでC12:0などの中鎖脂肪酸量が増加するという、前記表2に示す結果とは一致しない。これらの結果は、植物のKASについての従来の知見が不十分であり、中鎖脂肪酸の生成に関与するKAS IV遺伝子がほとんど同定されていないためと考えられる。
(Test Example 2) Identification of BKAS431, BKAS1082 and KKAS250 The BKAS431, BKAS1082 and KKAS250 were identified using a homology search by the BLAST program (http://blast.ncbi.nlm.nih.gov/Blast.cgi). It was.
As a result, BKAS431 was annotated as KAS I. As mentioned above, KAS I extends acyl-ACP to 16 carbon atoms. This is consistent with the result shown in Table 2 in which the amount of C16: 0 fatty acid was increased by introducing the BKAS431 gene.
On the other hand, BKAS1082 and KKAS250 were annotated as KAS II. As described above, KAS II is an enzyme that catalyzes the reaction of converting acyl-ACP having 16 carbon atoms into acyl-ACP having 18 carbon atoms. However, the result of this annotation does not agree with the result shown in Table 2 above, in which the amount of medium chain fatty acids such as C12: 0 is increased by introducing the BKAS1082 gene or the KKAS250 gene. These results are thought to be because the conventional knowledge about plant KAS is insufficient and the KAS IV gene involved in the production of medium chain fatty acids has hardly been identified.
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.
 本願は、2015年5月22日に日本国で特許出願された特願2015-104992に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。 This application claims priority based on Japanese Patent Application No. 2015-104992 filed in Japan on May 22, 2015, which is hereby incorporated herein by reference. Capture as part.

Claims (43)

  1.  下記タンパク質(a)~(f)のいずれかをコードする遺伝子を宿主に導入して得た形質転換体を培養して脂肪酸又はこれを構成成分とする脂質を生産させる、脂質の製造方法。
    (a)配列番号1で表されるアミノ酸配列からなるタンパク質
    (b)前記タンパク質(a)のアミノ酸配列と85%以上の同一性を有するアミノ酸配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有するタンパク質
    (c)配列番号3で表されるアミノ酸配列からなるタンパク質
    (d)前記タンパク質(c)のアミノ酸配列と85%以上の同一性を有するアミノ酸配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有するタンパク質
    (e)配列番号5で表されるアミノ酸配列からなるタンパク質
    (f)前記タンパク質(e)のアミノ酸配列と85%以上の同一性を有するアミノ酸配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有するタンパク質
    A method for producing a lipid, comprising culturing a transformant obtained by introducing a gene encoding any one of the following proteins (a) to (f) into a host to produce a fatty acid or a lipid comprising this as a constituent.
    (A) a protein comprising the amino acid sequence represented by SEQ ID NO: 1 (b) an amino acid sequence having 85% or more identity with the amino acid sequence of the protein (a) and having β-ketoacyl-ACP synthase activity Protein (c) a protein comprising the amino acid sequence represented by SEQ ID NO: 3 (d) comprising an amino acid sequence having 85% or more identity with the amino acid sequence of the protein (c), and having β-ketoacyl-ACP synthase activity (E) a protein comprising the amino acid sequence represented by SEQ ID NO: 5 (f) an amino acid sequence having 85% or more identity with the amino acid sequence of the protein (e), and β-ketoacyl-ACP synthase activity Protein with
  2.  前記タンパク質(b)が、前記タンパク質(a)のアミノ酸配列に、1個以上73個以下のアミノ酸が欠失、置換、挿入又は付加されたタンパク質である、請求項1記載の方法。 The method according to claim 1, wherein the protein (b) is a protein in which 1 to 73 amino acids are deleted, substituted, inserted or added to the amino acid sequence of the protein (a).
  3.  前記タンパク質(a)又は(b)をコードする遺伝子が、下記DNA(g)又は(h)からなる遺伝子である、請求項1又は2記載の方法。
    (g)配列番号2で表される塩基配列からなるDNA
    (h)前記DNA(g)の塩基配列と85%以上の同一性を有する塩基配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有するタンパク質をコードするDNA
    The method according to claim 1 or 2, wherein the gene encoding the protein (a) or (b) is a gene consisting of the following DNA (g) or (h).
    (G) DNA comprising the base sequence represented by SEQ ID NO: 2
    (H) a DNA encoding a protein comprising a base sequence having 85% or more identity with the base sequence of DNA (g) and having β-ketoacyl-ACP synthase activity
  4.  前記DNA(h)が、前記DNA(g)の塩基配列に、1個以上218個以下の塩基が欠失、置換、挿入、若しくは付加された塩基配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有する前記タンパク質(a)若しくは(b)をコードするDNA、又は前記DNA(g)と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつβ-ケトアシル-ACPシンターゼ活性を有する前記タンパク質(a)若しくは(b)をコードするDNA、である、請求項3記載の方法。 The DNA (h) has a base sequence in which 1 to 218 bases are deleted, substituted, inserted or added to the base sequence of the DNA (g), and has a β-ketoacyl-ACP synthase activity Which hybridizes under stringent conditions with DNA encoding the protein (a) or (b) having the above or a DNA comprising a base sequence complementary to the DNA (g), and β-ketoacyl-ACP synthase activity The method according to claim 3, wherein the DNA encodes the protein (a) or (b).
  5.  前記タンパク質(a)及び(b)がβ-ケトアシル-ACPシンターゼ Iである、請求項1~4のいずれか1項記載の方法。 The method according to any one of claims 1 to 4, wherein the proteins (a) and (b) are β-ketoacyl-ACP synthase I.
  6.  前記タンパク質(d)が、前記タンパク質(c)のアミノ酸配列に、1個以上86個以下のアミノ酸が欠失、置換、挿入又は付加されたタンパク質である、請求項1記載の方法。 The method according to claim 1, wherein the protein (d) is a protein in which 1 to 86 amino acids are deleted, substituted, inserted or added to the amino acid sequence of the protein (c).
  7.  前記タンパク質(c)又は(d)をコードする遺伝子が、下記DNA(i)又は(j)からなる遺伝子である、請求項1又は6記載の方法。
    (i)配列番号4で表される塩基配列からなるDNA
    (j)前記DNA(i)の塩基配列と85%以上の同一性を有する塩基配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有するタンパク質をコードするDNA
    The method according to claim 1 or 6, wherein the gene encoding the protein (c) or (d) is a gene comprising the following DNA (i) or (j).
    (I) DNA comprising the base sequence represented by SEQ ID NO: 4
    (J) DNA encoding a protein comprising a base sequence having 85% or more identity with the base sequence of DNA (i) and having β-ketoacyl-ACP synthase activity
  8.  前記DNA(j)が、前記DNA(i)の塩基配列に、1個以上256個以下の塩基が欠失、置換、挿入、若しくは付加された塩基配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有する前記タンパク質(c)若しくは(d)をコードするDNA、又は前記DNA(i)と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつβ-ケトアシル-ACPシンターゼ活性を有する前記タンパク質(c)若しくは(d)をコードするDNA、である、請求項7記載の方法。 The DNA (j) has a base sequence in which 1 to 256 bases are deleted, substituted, inserted or added to the base sequence of the DNA (i), and has a β-ketoacyl-ACP synthase activity A β-ketoacyl-ACP synthase activity that hybridizes under stringent conditions with a DNA encoding the protein (c) or (d) having the above or a DNA comprising a base sequence complementary to the DNA (i) The method according to claim 7, wherein the protein encodes the protein (c) or (d).
  9.  前記タンパク質(c)及び(d)がβ-ケトアシル-ACPシンターゼ IVである、請求項1及び6~8のいずれか1項記載の方法。 The method according to any one of claims 1 and 6 to 8, wherein the proteins (c) and (d) are β-ketoacyl-ACP synthase IV.
  10.  前記タンパク質(f)が、前記タンパク質(e)のアミノ酸配列に、1個以上86個以下のアミノ酸が欠失、置換、挿入又は付加されたタンパク質である、請求項1記載の方法。 The method according to claim 1, wherein the protein (f) is a protein in which 1 to 86 amino acids are deleted, substituted, inserted or added to the amino acid sequence of the protein (e).
  11.  前記タンパク質(e)又は(f)をコードする遺伝子が、下記DNA(k)又は(l)からなる遺伝子である、請求項1又は10記載の方法。
    (k)配列番号6で表される塩基配列からなるDNA
    (l)前記DNA(k)の塩基配列と85%以上の同一性を有する塩基配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有するタンパク質をコードするDNA
    The method according to claim 1 or 10, wherein the gene encoding the protein (e) or (f) is a gene consisting of the following DNA (k) or (l).
    (K) DNA comprising the base sequence represented by SEQ ID NO: 6
    (L) a DNA encoding a protein comprising a base sequence having 85% or more identity with the base sequence of DNA (k) and having β-ketoacyl-ACP synthase activity
  12.  前記DNA(l)が、前記DNA(k)の塩基配列に、1個以上256個以下の塩基が欠失、置換、挿入、若しくは付加された塩基配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有する前記タンパク質(e)若しくは(f)をコードするDNA、又は前記DNA(k)と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつβ-ケトアシル-ACPシンターゼ活性を有する前記タンパク質(e)若しくは(f)をコードするDNA、である、請求項11記載の方法。 The DNA (l) has a base sequence in which 1 to 256 bases are deleted, substituted, inserted or added to the base sequence of the DNA (k), and has a β-ketoacyl-ACP synthase activity A β-ketoacyl-ACP synthase activity that hybridizes under stringent conditions with a DNA encoding the protein (e) or (f) having the above or a DNA comprising a base sequence complementary to the DNA (k) The method according to claim 11, wherein the DNA encodes the protein (e) or (f).
  13.  前記タンパク質(e)及び(f)がβ-ケトアシル-ACPシンターゼ IVである、請求項1及び10~12のいずれか1項記載の方法。 The method according to any one of claims 1 and 10 to 12, wherein the proteins (e) and (f) are β-ketoacyl-ACP synthase IV.
  14.  前記宿主が微生物又は植物である、請求項1~13のいずれか1項記載の方法。 The method according to any one of claims 1 to 13, wherein the host is a microorganism or a plant.
  15.  前記植物がシロイヌナズナである、請求項14記載の方法。 The method according to claim 14, wherein the plant is Arabidopsis thaliana.
  16.  アグロバクテリウムを用いて前記タンパク質(a)~(f)のいずれかをコードする遺伝子を宿主としてのシロイヌナズナに導入し、前記形質転換体を作製した、請求項15記載の方法。 The method according to claim 15, wherein the transformant is produced by introducing a gene encoding any of the proteins (a) to (f) into Arabidopsis as a host using Agrobacterium.
  17.  形質転換体が生産した脂肪酸又はこれを構成成分とする脂質をシロイヌナズナの種子から採取する、請求項15又は16記載の方法。 The method according to claim 15 or 16, wherein the fatty acid produced by the transformant or a lipid comprising the fatty acid is collected from Arabidopsis seeds.
  18.  アシル-ACPチオエステラーゼをコードする遺伝子が前記宿主に導入されている、請求項1~17のいずれか1項記載の方法。 The method according to any one of claims 1 to 17, wherein a gene encoding acyl-ACP thioesterase is introduced into the host.
  19.  前記アシル-ACPチオエステラーゼが、Umbellularia californicaのアシル-ACPチオエステラーゼ、Cocos nuciferaのアシル-ACPチオエステラーゼ、Cinnamonum camphorumのアシル-ACPチオエステラーゼ、Elaeis guineensisのアシル-ACPチオエステラーゼ、Cuphea種のアシル-ACPチオエステラーゼ、Nannochloropsis oculataのアシル-ACPチオエステラーゼ、Nannochloropsis gaditanaのアシル-ACPチオエステラーゼ、Nannochloropsis granulataのアシル-ACPチオエステラーゼ、及びSymbiodinium microadriaticumのアシル-ACPチオエステラーゼからなる群より選ばれる少なくとも1種のアシル-ACPチオエステラーゼである、請求項18記載の方法。 The acyl-ACP thioesterase comprises Umbellularia californica acyl-ACP thioesterase, Cocos nucifera acyl-ACP thioesterase, Cinnamonum camphorum acyl-ACP thioesterase, Elaeis guineensis acyl-ACP thioesterase, Cuphea species acyl-ACP At least one acyl selected from the group consisting of thioesterase, acyl-ACP thioesterase of Nannochloropsis oculata , acyl-ACP thioesterase of Nannochloropsis gaditana , acyl-ACP thioesterase of Nannochloropsis granulata , and acyl-ACP thioesterase of Symbiodinium microadriaticum The method of claim 18, which is an ACP thioesterase.
  20.  宿主に下記タンパク質(a)~(f)のいずれかをコードする遺伝子を導入して得られた形質転換体。
    (a)配列番号1で表されるアミノ酸配列からなるタンパク質
    (b)前記タンパク質(a)のアミノ酸配列と85%以上の同一性を有するアミノ酸配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有するタンパク質
    (c)配列番号3で表されるアミノ酸配列からなるタンパク質
    (d)前記タンパク質(c)のアミノ酸配列と85%以上の同一性を有するアミノ酸配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有するタンパク質
    (e)配列番号5で表されるアミノ酸配列からなるタンパク質
    (f)前記タンパク質(e)のアミノ酸配列と85%以上の同一性を有するアミノ酸配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有するタンパク質
    A transformant obtained by introducing a gene encoding any of the following proteins (a) to (f) into a host.
    (A) a protein comprising the amino acid sequence represented by SEQ ID NO: 1 (b) an amino acid sequence having 85% or more identity with the amino acid sequence of the protein (a) and having β-ketoacyl-ACP synthase activity Protein (c) a protein comprising the amino acid sequence represented by SEQ ID NO: 3 (d) comprising an amino acid sequence having 85% or more identity with the amino acid sequence of the protein (c), and having β-ketoacyl-ACP synthase activity (E) a protein comprising the amino acid sequence represented by SEQ ID NO: 5 (f) an amino acid sequence having 85% or more identity with the amino acid sequence of the protein (e), and β-ketoacyl-ACP synthase activity Protein with
  21.  宿主に下記タンパク質(a)~(f)のいずれかをコードする遺伝子を導入する、形質転換体の製造方法。
    (a)配列番号1で表されるアミノ酸配列からなるタンパク質
    (b)前記タンパク質(a)のアミノ酸配列と85%以上の同一性を有するアミノ酸配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有するタンパク質
    (c)配列番号3で表されるアミノ酸配列からなるタンパク質
    (d)前記タンパク質(c)のアミノ酸配列と85%以上の同一性を有するアミノ酸配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有するタンパク質
    (e)配列番号5で表されるアミノ酸配列からなるタンパク質
    (f)前記タンパク質(e)のアミノ酸配列と85%以上の同一性を有するアミノ酸配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有するタンパク質
    A method for producing a transformant, wherein a gene encoding any of the following proteins (a) to (f) is introduced into a host.
    (A) a protein comprising the amino acid sequence represented by SEQ ID NO: 1 (b) an amino acid sequence having 85% or more identity with the amino acid sequence of the protein (a) and having β-ketoacyl-ACP synthase activity Protein (c) a protein comprising the amino acid sequence represented by SEQ ID NO: 3 (d) comprising an amino acid sequence having 85% or more identity with the amino acid sequence of the protein (c), and having β-ketoacyl-ACP synthase activity (E) a protein comprising the amino acid sequence represented by SEQ ID NO: 5 (f) an amino acid sequence having 85% or more identity with the amino acid sequence of the protein (e), and β-ketoacyl-ACP synthase activity Protein with
  22.  下記タンパク質(a)~(f)のいずれかをコードする遺伝子を宿主に導入し、得られた形質転換体の脂質の生産性を向上させる、宿主の脂質生産性の向上方法。
    (a)配列番号1で表されるアミノ酸配列からなるタンパク質
    (b)前記タンパク質(a)のアミノ酸配列と85%以上の同一性を有するアミノ酸配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有するタンパク質
    (c)配列番号3で表されるアミノ酸配列からなるタンパク質
    (d)前記タンパク質(c)のアミノ酸配列と85%以上の同一性を有するアミノ酸配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有するタンパク質
    (e)配列番号5で表されるアミノ酸配列からなるタンパク質
    (f)前記タンパク質(e)のアミノ酸配列と85%以上の同一性を有するアミノ酸配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有するタンパク質
    A method for improving lipid productivity of a host, wherein a gene encoding any one of the following proteins (a) to (f) is introduced into a host, and the lipid productivity of the obtained transformant is improved.
    (A) a protein comprising the amino acid sequence represented by SEQ ID NO: 1 (b) an amino acid sequence having 85% or more identity with the amino acid sequence of the protein (a) and having β-ketoacyl-ACP synthase activity Protein (c) a protein comprising the amino acid sequence represented by SEQ ID NO: 3 (d) comprising an amino acid sequence having 85% or more identity with the amino acid sequence of the protein (c), and having β-ketoacyl-ACP synthase activity (E) a protein comprising the amino acid sequence represented by SEQ ID NO: 5 (f) an amino acid sequence having 85% or more identity with the amino acid sequence of the protein (e), and β-ketoacyl-ACP synthase activity Protein with
  23.  下記タンパク質(a)~(f)のいずれかをコードする遺伝子を宿主に導入し、得られた形質転換体が生産する脂質中の脂肪酸組成を改変する、宿主が生産する脂質中の脂肪酸組成を改変する方法。
    (a)配列番号1で表されるアミノ酸配列からなるタンパク質
    (b)前記タンパク質(a)のアミノ酸配列と85%以上の同一性を有するアミノ酸配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有するタンパク質
    (c)配列番号3で表されるアミノ酸配列からなるタンパク質
    (d)前記タンパク質(c)のアミノ酸配列と85%以上の同一性を有するアミノ酸配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有するタンパク質
    (e)配列番号5で表されるアミノ酸配列からなるタンパク質
    (f)前記タンパク質(e)のアミノ酸配列と85%以上の同一性を有するアミノ酸配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有するタンパク質
    A gene encoding any of the following proteins (a) to (f) is introduced into a host, and the fatty acid composition in the lipid produced by the host is modified by modifying the fatty acid composition in the lipid produced by the obtained transformant. How to modify.
    (A) a protein comprising the amino acid sequence represented by SEQ ID NO: 1 (b) an amino acid sequence having 85% or more identity with the amino acid sequence of the protein (a) and having β-ketoacyl-ACP synthase activity Protein (c) a protein comprising the amino acid sequence represented by SEQ ID NO: 3 (d) comprising an amino acid sequence having 85% or more identity with the amino acid sequence of the protein (c), and having β-ketoacyl-ACP synthase activity (E) a protein comprising the amino acid sequence represented by SEQ ID NO: 5 (f) an amino acid sequence having 85% or more identity with the amino acid sequence of the protein (e), and β-ketoacyl-ACP synthase activity Protein with
  24.  前記タンパク質(b)が、前記タンパク質(a)のアミノ酸配列に、1個以上73個以下のアミノ酸が欠失、置換、挿入又は付加されたタンパク質である、請求項20~23のいずれか1項記載の形質転換体又は方法。 The protein (b) is a protein in which 1 to 73 amino acids are deleted, substituted, inserted or added to the amino acid sequence of the protein (a). The transformant or method as described.
  25.  前記タンパク質(a)又は(b)をコードする遺伝子が、下記DNA(g)又は(h)からなる遺伝子である、請求項20~24のいずれか1項記載の形質転換体又は方法。
    (g)配列番号2で表される塩基配列からなるDNA
    (h)前記DNA(g)の塩基配列と85%以上の同一性を有する塩基配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有するタンパク質をコードするDNA
    The transformant or method according to any one of claims 20 to 24, wherein the gene encoding the protein (a) or (b) is a gene comprising the following DNA (g) or (h).
    (G) DNA comprising the base sequence represented by SEQ ID NO: 2
    (H) a DNA encoding a protein comprising a base sequence having 85% or more identity with the base sequence of DNA (g) and having β-ketoacyl-ACP synthase activity
  26.  前記DNA(h)が、前記DNA(g)の塩基配列に、1個以上218個以下の塩基が欠失、置換、挿入、若しくは付加された塩基配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有する前記タンパク質(a)若しくは(b)をコードするDNA、又は前記DNA(g)と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつβ-ケトアシル-ACPシンターゼ活性を有する前記タンパク質(a)若しくは(b)をコードするDNA、である、請求項25記載の形質転換体又は方法。 The DNA (h) has a base sequence in which 1 to 218 bases are deleted, substituted, inserted or added to the base sequence of the DNA (g), and has a β-ketoacyl-ACP synthase activity Which hybridizes under stringent conditions with DNA encoding the protein (a) or (b) having the above or a DNA comprising a base sequence complementary to the DNA (g), and β-ketoacyl-ACP synthase activity The transformant or method according to claim 25, which is a DNA encoding the protein (a) or (b).
  27.  前記タンパク質(a)及び(b)がβ-ケトアシル-ACPシンターゼ Iである、請求項20~26のいずれか1項記載の形質転換体又は方法。 The transformant or method according to any one of claims 20 to 26, wherein the proteins (a) and (b) are β-ketoacyl-ACP synthase I.
  28.  前記タンパク質(d)が、前記タンパク質(c)のアミノ酸配列に、1個以上86個以下のアミノ酸が欠失、置換、挿入又は付加されたタンパク質である、請求項20~23のいずれか1項記載の形質転換体又は方法。 The protein (d) is a protein in which 1 to 86 amino acids are deleted, substituted, inserted or added to the amino acid sequence of the protein (c). The transformant or method as described.
  29.  前記タンパク質(c)又は(d)をコードする遺伝子が、下記DNA(i)又は(j)からなる遺伝子である、請求項20~23及び28のいずれか1項記載の形質転換体又は方法。
    (i)配列番号4で表される塩基配列からなるDNA
    (j)前記DNA(i)の塩基配列と85%以上の同一性を有する塩基配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有するタンパク質をコードするDNA
    The transformant or method according to any one of claims 20 to 23 and 28, wherein the gene encoding the protein (c) or (d) is a gene comprising the following DNA (i) or (j).
    (I) DNA comprising the base sequence represented by SEQ ID NO: 4
    (J) DNA encoding a protein comprising a base sequence having 85% or more identity with the base sequence of DNA (i) and having β-ketoacyl-ACP synthase activity
  30.  前記DNA(j)が、前記DNA(i)の塩基配列に、1個以上256個以下の塩基が欠失、置換、挿入、若しくは付加された塩基配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有する前記タンパク質(c)若しくは(d)をコードするDNA、又は前記DNA(i)と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつβ-ケトアシル-ACPシンターゼ活性を有する前記タンパク質(c)若しくは(d)をコードするDNA、である、請求項29記載の形質転換体又は方法。 The DNA (j) has a base sequence in which 1 to 256 bases are deleted, substituted, inserted or added to the base sequence of the DNA (i), and has a β-ketoacyl-ACP synthase activity A β-ketoacyl-ACP synthase activity that hybridizes under stringent conditions with a DNA encoding the protein (c) or (d) having the above or a DNA comprising a base sequence complementary to the DNA (i) 30. The transformant or method according to claim 29, which is a DNA encoding the protein (c) or (d).
  31.  前記タンパク質(c)及び(d)がβ-ケトアシル-ACPシンターゼ IVである、請求項20~23及び28~30のいずれか1項記載の形質転換体又は方法。 The transformant or method according to any one of claims 20 to 23 and 28 to 30, wherein the proteins (c) and (d) are β-ketoacyl-ACP synthase IV.
  32.  前記タンパク質(f)が、前記タンパク質(e)のアミノ酸配列に、1個以上86個以下のアミノ酸が欠失、置換、挿入又は付加されたタンパク質である、請求項20~23のいずれか1項記載の形質転換体又は方法。 The protein (f) is a protein in which 1 to 86 amino acids are deleted, substituted, inserted or added to the amino acid sequence of the protein (e). The transformant or method as described.
  33.  前記タンパク質(e)又は(f)をコードする遺伝子が、下記DNA(k)又は(l)からなる遺伝子である、請求項20~23及び32のいずれか1項記載の形質転換体又は方法。
    (k)配列番号6で表される塩基配列からなるDNA
    (l)前記DNA(k)の塩基配列と85%以上の同一性を有する塩基配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有するタンパク質をコードするDNA
    The transformant or method according to any one of claims 20 to 23 and 32, wherein the gene encoding the protein (e) or (f) is a gene comprising the following DNA (k) or (l).
    (K) DNA comprising the base sequence represented by SEQ ID NO: 6
    (L) a DNA encoding a protein comprising a base sequence having 85% or more identity with the base sequence of DNA (k) and having β-ketoacyl-ACP synthase activity
  34.  前記DNA(l)が、前記DNA(k)の塩基配列に、1個以上256個以下の塩基が欠失、置換、挿入、若しくは付加された塩基配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有する前記タンパク質(e)若しくは(f)をコードするDNA、又は前記DNA(k)と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつβ-ケトアシル-ACPシンターゼ活性を有する前記タンパク質(e)若しくは(f)をコードするDNA、である、請求項33記載の形質転換体又は方法。 The DNA (l) has a base sequence in which 1 to 256 bases are deleted, substituted, inserted or added to the base sequence of the DNA (k), and has a β-ketoacyl-ACP synthase activity A β-ketoacyl-ACP synthase activity that hybridizes under stringent conditions with a DNA encoding the protein (e) or (f) having the above or a DNA comprising a base sequence complementary to the DNA (k) 34. The transformant or method according to claim 33, which is a DNA encoding the protein (e) or (f).
  35.  前記タンパク質(e)及び(f)がβ-ケトアシル-ACPシンターゼ IVである、請求項20~23及び32~34のいずれか1項記載の形質転換体又は方法。 The transformant or method according to any one of claims 20 to 23 and 32-34, wherein the proteins (e) and (f) are β-ketoacyl-ACP synthase IV.
  36.  前記宿主が微生物又は植物である、請求項20~35のいずれか1項記載の形質転換体又は方法。 The transformant or method according to any one of claims 20 to 35, wherein the host is a microorganism or a plant.
  37.  前記植物がシロイヌナズナである、請求項36記載の形質転換体又は方法。 The transformant or method according to claim 36, wherein the plant is Arabidopsis thaliana.
  38.  アグロバクテリウムを用いて前記タンパク質(a)~(f)のいずれかをコードする遺伝子を宿主としてのシロイヌナズナに導入し、前記形質転換体を作製した、請求項37記載の形質転換体又は方法。 The transformant or method according to claim 37, wherein a gene encoding any of the proteins (a) to (f) is introduced into Arabidopsis thaliana as a host using Agrobacterium to produce the transformant.
  39.  アシル-ACPチオエステラーゼをコードする遺伝子が前記宿主に導入されている、請求項20~38のいずれか1項記載の形質転換体又は方法。 The transformant or method according to any one of claims 20 to 38, wherein a gene encoding acyl-ACP thioesterase is introduced into the host.
  40.  前記アシル-ACPチオエステラーゼが、Umbellularia californicaのアシル-ACPチオエステラーゼ、Cocos nuciferaのアシル-ACPチオエステラーゼ、Cinnamonum camphorumのアシル-ACPチオエステラーゼ、Elaeis guineensisのアシル-ACPチオエステラーゼ、Cuphea種のアシル-ACPチオエステラーゼ、Nannochloropsis oculataのアシル-ACPチオエステラーゼ、Nannochloropsis gaditanaのアシル-ACPチオエステラーゼ、Nannochloropsis granulataのアシル-ACPチオエステラーゼ、及びSymbiodinium microadriaticumのアシル-ACPチオエステラーゼからなる群より選ばれる少なくとも1種のアシル-ACPチオエステラーゼである、請求項39記載の形質転換体又は方法。 The acyl-ACP thioesterase comprises Umbellularia californica acyl-ACP thioesterase, Cocos nucifera acyl-ACP thioesterase, Cinnamonum camphorum acyl-ACP thioesterase, Elaeis guineensis acyl-ACP thioesterase, Cuphea species acyl-ACP At least one acyl selected from the group consisting of thioesterase, acyl-ACP thioesterase of Nannochloropsis oculata , acyl-ACP thioesterase of Nannochloropsis gaditana , acyl-ACP thioesterase of Nannochloropsis granulata , and acyl-ACP thioesterase of Symbiodinium microadriaticum 40. The transformant or method of claim 39, which is an ACP thioesterase.
  41.  下記タンパク質(a)~(f)。
    (a)配列番号1で表されるアミノ酸配列からなるタンパク質
    (b)前記タンパク質(a)のアミノ酸配列と85%以上の同一性を有するアミノ酸配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有するタンパク質
    (c)配列番号3で表されるアミノ酸配列からなるタンパク質
    (d)前記タンパク質(c)のアミノ酸配列と85%以上の同一性を有するアミノ酸配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有するタンパク質
    (e)配列番号5で表されるアミノ酸配列からなるタンパク質
    (f)前記タンパク質(e)のアミノ酸配列と85%以上の同一性を有するアミノ酸配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有するタンパク質
    The following proteins (a) to (f).
    (A) a protein comprising the amino acid sequence represented by SEQ ID NO: 1 (b) an amino acid sequence having 85% or more identity with the amino acid sequence of the protein (a) and having β-ketoacyl-ACP synthase activity Protein (c) a protein comprising the amino acid sequence represented by SEQ ID NO: 3 (d) comprising an amino acid sequence having 85% or more identity with the amino acid sequence of the protein (c), and having β-ketoacyl-ACP synthase activity (E) a protein comprising the amino acid sequence represented by SEQ ID NO: 5 (f) an amino acid sequence having 85% or more identity with the amino acid sequence of the protein (e), and β-ketoacyl-ACP synthase activity Protein with
  42.  請求項41記載のタンパク質のいずれか1つをコードする遺伝子。 A gene encoding any one of the proteins according to claim 41.
  43.  下記DNA(g)~(l)のいずれか1つからなる遺伝子。
    (g)配列番号2で表される塩基配列からなるDNA
    (h)前記DNA(g)の塩基配列と85%以上の同一性を有する塩基配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有するタンパク質をコードするDNA
    (i)配列番号4で表される塩基配列からなるDNA
    (j)前記DNA(i)の塩基配列と85%以上の同一性を有する塩基配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有するタンパク質をコードするDNA
    (k)配列番号6で表される塩基配列からなるDNA
    (l)前記DNA(k)の塩基配列と85%以上の同一性を有する塩基配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有するタンパク質をコードするDNA
     
     
     
     
    A gene comprising any one of the following DNA (g) to (l).
    (G) DNA comprising the base sequence represented by SEQ ID NO: 2
    (H) a DNA encoding a protein comprising a base sequence having 85% or more identity with the base sequence of DNA (g) and having β-ketoacyl-ACP synthase activity
    (I) DNA comprising the base sequence represented by SEQ ID NO: 4
    (J) DNA encoding a protein comprising a base sequence having 85% or more identity with the base sequence of DNA (i) and having β-ketoacyl-ACP synthase activity
    (K) DNA comprising the base sequence represented by SEQ ID NO: 6
    (L) a DNA encoding a protein comprising a base sequence having 85% or more identity with the base sequence of DNA (k) and having β-ketoacyl-ACP synthase activity



PCT/JP2016/065006 2015-05-22 2016-05-20 Lipid production method WO2016190239A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-104992 2015-05-22
JP2015104992A JP2016214183A (en) 2015-05-22 2015-05-22 Method for producing lipid

Publications (1)

Publication Number Publication Date
WO2016190239A1 true WO2016190239A1 (en) 2016-12-01

Family

ID=57393922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065006 WO2016190239A1 (en) 2015-05-22 2016-05-20 Lipid production method

Country Status (2)

Country Link
JP (1) JP2016214183A (en)
WO (1) WO2016190239A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6971607B2 (en) * 2016-12-19 2021-11-24 花王株式会社 Lipid manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003501063A (en) * 1999-06-09 2003-01-14 カルジーン エルエルシー Processing of β-ketoacyl ACP synthase for novel substrate specificity
US20070118916A1 (en) * 2005-10-14 2007-05-24 Metanomics Gmbh Process for the production of fine chemicals
WO2016021481A1 (en) * 2014-08-04 2016-02-11 花王株式会社 METHOD FOR PRODUCING MEDIUM-CHAIN FATTY ACID USING β-KETOACYL-ACP SYNTHASE

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003501063A (en) * 1999-06-09 2003-01-14 カルジーン エルエルシー Processing of β-ketoacyl ACP synthase for novel substrate specificity
US20070118916A1 (en) * 2005-10-14 2007-05-24 Metanomics Gmbh Process for the production of fine chemicals
WO2016021481A1 (en) * 2014-08-04 2016-02-11 花王株式会社 METHOD FOR PRODUCING MEDIUM-CHAIN FATTY ACID USING β-KETOACYL-ACP SYNTHASE

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DEHESH, K. ET AL.: "KAS IV: a 3-ketoacyl-ACP synthase from Cuphea sp. is a medium chain specific condensing enzyme", THE PLANT JOURNAL, vol. 15, no. 3, 1998, pages 383 - 390, XP002081435 *
HU , J. N. ET AL.: "Characterization of medium- chain triacylglycerol(MCT)-enriched seed oil from Cinnamomum camphora(Lauraceae) and its oxidative stability", JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, vol. 59, no. 9, 2011, pages 4771 - 4778, XP055332554 *
POLLARD, M. R. ET AL.: "A Specific Acyl-ACP thioesterase implicated in medium-chain fatty acid production in immature cotyledons of Umbellularia californica", ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, vol. 284, no. 2, 1991, pages 306 - 312, XP024758876 *

Also Published As

Publication number Publication date
JP2016214183A (en) 2016-12-22

Similar Documents

Publication Publication Date Title
JP6646580B2 (en) Method for producing medium-chain fatty acid using β-ketoacyl-ACP synthase
JP6310544B2 (en) Method for producing lipid using β-ketoacyl-ACP synthase
JP6491881B2 (en) Acyl-ACP thioesterase
JP6779652B2 (en) Lipid production method
JP5764339B2 (en) Thiesterase and method for producing fatty acid or lipid using the same
JP6319889B2 (en) Method for producing lipid using modified acyl-ACP thioesterase
JP6381139B2 (en) Acyl-ACP thioesterase
JPWO2017022740A1 (en) Method for producing lipid
WO2016190238A1 (en) Lipid manufacturing method
JP6779664B2 (en) Lipid production method
JP6580912B2 (en) Method for producing lipid
JP6969941B2 (en) Lipid manufacturing method
JP6587468B2 (en) Method for producing lipid
WO2016190239A1 (en) Lipid production method
JP6332855B2 (en) Method for producing lipid using acyl-ACP thioesterase
JP6974333B2 (en) Lipid manufacturing method
JP7025154B2 (en) Lipid manufacturing method
JP6520008B2 (en) Method for producing lipid using diacylglycerol acyltransferase
WO2017022587A1 (en) Lipid production method
JP6971607B2 (en) Lipid manufacturing method
JP6226464B2 (en) Method for producing lipid using modified thioesterase
JP2019216643A (en) Method for producing lipid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16799944

Country of ref document: EP

Kind code of ref document: A1