WO2017022587A1 - Lipid production method - Google Patents

Lipid production method Download PDF

Info

Publication number
WO2017022587A1
WO2017022587A1 PCT/JP2016/072007 JP2016072007W WO2017022587A1 WO 2017022587 A1 WO2017022587 A1 WO 2017022587A1 JP 2016072007 W JP2016072007 W JP 2016072007W WO 2017022587 A1 WO2017022587 A1 WO 2017022587A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
gene
amino acid
acid sequence
transformant
Prior art date
Application number
PCT/JP2016/072007
Other languages
French (fr)
Japanese (ja)
Inventor
慎二 杉原
達郎 尾崎
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Publication of WO2017022587A1 publication Critical patent/WO2017022587A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats

Definitions

  • the present invention relates to a method for producing lipids.
  • the present invention also relates to ⁇ -ketoacyl-ACP synthase used in the method, a gene encoding the same, and a transformant that promotes the expression of the gene.
  • Fatty acids are one of the main constituents of lipids and constitute lipids (oils and fats) such as triacylglycerol produced by ester bonds with glycerin in vivo. In many animals and plants, fatty acids are also stored and used as energy sources. Fatty acids and lipids stored in animals and plants are widely used for food or industry. For example, derivatives of higher alcohols obtained by reducing higher fatty acids having about 12 to 18 carbon atoms are used as surfactants. Alkyl sulfate esters and alkylbenzene sulfonates are used as anionic surfactants. Polyoxyalkylene alkyl ethers, alkyl polyglycosides, and the like are used as nonionic surfactants.
  • surfactants are used as cleaning agents, disinfectants, and the like.
  • Cationic surfactants such as alkylamine salts and mono- or dialkyl quaternary amine salts, which are derivatives of the same higher alcohol, are routinely used for fiber treatment agents, hair rinse agents, disinfectants, and the like.
  • Benzalkonium-type quaternary ammonium salts are routinely used for bactericides and preservatives.
  • vegetable oils and fats are also used as raw materials for biodiesel fuel. As described above, fatty acids and lipids are widely used, and therefore, attempts have been made to improve the productivity of fatty acids and lipids in vivo in plants and the like.
  • Plant fatty acid synthesis pathway is localized in chloroplasts.
  • acetyl-ACP acyl carrier protein
  • acyl-ACP acyl which is a fatty acid residue
  • a complex comprising a group and an ACP
  • KAS ⁇ -ketoacyl-acyl-carrier-protein synthase
  • KAS III works at the initiation stage of the chain length extension reaction and extends acetyl-ACP (or acetyl-CoA) having 2 carbon atoms to ⁇ -ketoacyl-ACP having 4 carbon atoms.
  • KAS II is mainly involved in the elongation reaction up to 16 carbon atoms palmitoyl-ACP
  • KAS II is mainly involved in the elongation reaction up to 18 carbon atoms stearoyl-ACP.
  • KAS IV is said to be involved in the elongation reaction up to medium chain acyl-ACP having 6 to 14 carbon atoms.
  • a method of accumulating short-chain or medium-chain fatty acids by enhancing or modifying KAS III in plants or Escherichia coli has been proposed (see Patent Document 2, and Non-Patent Documents 2 and 3).
  • algae has attracted attention as being useful for biofuel production.
  • Algae are attracting attention as next-generation biomass resources because they can produce lipids that can be used as biodiesel fuel by photosynthesis and do not compete with food.
  • algae have a higher ability to produce and accumulate lipids than plants.
  • the present invention relates to a method for producing a lipid, in which a transformant in which expression of a gene encoding the following protein (A) or (B) is promoted is cultured to produce a fatty acid or a lipid comprising the same.
  • a protein comprising the amino acid sequence represented by SEQ ID NO: 1.
  • B A protein comprising an amino acid sequence having 67% or more identity with the amino acid sequence of the protein (A) and having ⁇ -ketoacyl-ACP synthase activity (hereinafter also referred to as “KAS activity”).
  • the present invention also relates to the protein (A) or (B).
  • the present invention also relates to a gene encoding the protein (A) or (B). Furthermore, this invention relates to the transformant which promoted the expression of the gene which codes the said protein (A) or (B).
  • the present invention relates to a method for producing a lipid, which improves the productivity of a medium chain fatty acid or a lipid comprising the same.
  • the present invention also relates to a transformant having improved productivity of medium-chain fatty acids or lipids comprising the same.
  • the present inventors newly identified KAS of algae belonging to the genus Nannochloropsis, which is a kind of algae, as an enzyme involved in the synthesis of medium chain fatty acids. As a result of accelerating the expression of KAS in microorganisms, the present inventors have found that the productivity of produced medium chain fatty acids or lipids containing them as a constituent component is significantly improved. The present invention has been completed based on these findings.
  • the productivity of a medium chain fatty acid or a lipid containing this as a constituent can be improved.
  • the transformant of the present invention is excellent in productivity of medium chain fatty acids or lipids containing the same as a constituent component.
  • lipid refers to simple lipids such as neutral fats (such as triacylglycerol), waxes, and ceramides; complex lipids such as phospholipids, glycolipids, and sulfolipids; and fatty acids derived from these lipids And derived lipids such as alcohols and hydrocarbons.
  • Cx: y in the notation of fatty acids and acyl groups constituting fatty acids means that the number of carbon atoms is x and the number of double bonds is y.
  • “Cx” represents a fatty acid or acyl group having x carbon atoms.
  • the identity of a base sequence and an amino acid sequence is calculated by the Lipman-Pearson method (Science, 1985, vol. 227, p. 1435-1441). Specifically, it is calculated by performing an analysis assuming that Unit size to compare (ktup) is 2 using the homology analysis (Search homology) program of genetic information processing software Genetyx-Win.
  • “stringent conditions” include, for example, Molecular Cloning-A LABORATORY MANUAL THIRD EDITION [Joseph Sambrook, David W., et al. Russell., Cold Spring Harbor Laboratory Press].
  • upstream of a gene indicates not a position from the translation start point but a region continuing on the 5 ′ side of the gene or region regarded as a target.
  • downstream of a gene indicates a region continuing 3 ′ side of the gene or region captured as a target.
  • the proteins (A) and (B) are one type of KAS, from acetyl-ACP (or acetyl-CoA) having 2 carbon atoms to ⁇ -ketoacyl- having 4 carbon atoms. It is a protein involved in the elongation reaction to ACP.
  • the protein consisting of the amino acid sequence of SEQ ID NO: 1 is one of KAS derived from Nannochloropsis oculata NIES2145 strain, which is an algae belonging to the genus Nannochloropsis .
  • KAS is an enzyme involved in the control of acyl chain length in the fatty acid synthesis pathway.
  • Plant fatty acid synthesis pathways are generally located in the chloroplast.
  • acetyl-ACP or acetyl-CoA
  • the carbon chain elongation reaction is repeated to finally synthesize acyl-ACP having 16 or 18 carbon atoms.
  • acyl-ACP thioesterase acts to hydrolyze the thioester bond of acyl-ACP to produce a free fatty acid.
  • acetoacetyl ACP is produced by a condensation reaction of acetyl-ACP (or acetyl-CoA) and malonyl ACP. This reaction is catalyzed by KAS. Subsequently, the keto group of acetoacetyl ACP is reduced by ⁇ -ketoacyl-ACP reductase to produce hydroxybutyryl ACP. Subsequently, hydroxybutyryl ACP is dehydrated by ⁇ -hydroxyacyl-ACP dehydrase to produce crotonyl ACP. Finally, crotonyl ACP is reduced by enoyl-ACP reductase to produce butyryl ACP.
  • butyryl ACP in which two carbon chains of the acyl group are extended from acetyl-ACP is generated. Thereafter, by repeating the same reaction, the carbon chain of acyl-ACP is extended, and finally acyl-ACP having 16 or 18 carbon atoms is synthesized.
  • KAS activity means an activity that catalyzes the condensation reaction of acetyl-ACP (or acetyl-CoA) or acyl-ACP with malonyl ACP.
  • the fact that a protein has KAS activity means that, for example, a DNA in which a gene encoding the protein is linked downstream of a promoter that functions in the host cell is introduced into a host cell lacking the fatty acid degradation system, and the introduced gene is expressed.
  • the cells can be cultured under such conditions, and changes in fatty acid composition in the host cells or in the culture medium can be confirmed by a conventional method.
  • a DNA ligated with the gene encoding the protein downstream of a promoter that functions in the host cell into the host cell and culturing the cell under conditions in which the introduced gene is expressed, It can be confirmed by performing a chain length extension reaction using various acyl-ACPs as substrates.
  • KAS is classified as KAS I, KAS II, KAS III, or KAS IV depending on its substrate specificity.
  • KAS III uses acetyl-ACP (or acetyl-CoA) having 2 carbon atoms as a substrate and catalyzes an elongation reaction having 2 to 4 carbon atoms.
  • KAS I mainly catalyzes the elongation reaction of 4 to 16 carbon atoms and synthesizes palmitoyl-ACP having 16 carbon atoms.
  • KAS II mainly synthesizes long-chain acyl-ACPs by catalyzing the elongation reaction to long-chain acyl groups having 18 or more carbon atoms.
  • KAS IV mainly catalyzes the elongation reaction of 6 to 14 carbon atoms to synthesize medium chain acyl-ACP.
  • KAS I to IV are known to have different sensitivities to the inhibitor cerulenin.
  • KAS I and KAS II are sensitive to cerulenin, and KAS III and KAS IV are not sensitive to cerulenin.
  • the proteins (A) and (B) were extended from acetyl-ACP having 2 carbon atoms (or acetyl-CoA) to ⁇ -ketoacyl-ACP having 4 carbon atoms. It is thought to be KAS type III KAS, which is a protein involved in the reaction. As shown in Examples described later, in the transformant in which the expression of the gene encoding the protein (A) is promoted, productivity of medium chain fatty acids having 12 or 14 carbon atoms is improved.
  • the amount of acyl-ACP of each chain length is increased by increasing the amount of short-chain acyl-ACP and increasing the chain-length elongation substrate by the protein (A) which is KASIII type KAS.
  • the protein (A) which is KASIII type KAS.
  • the amount of the substrate increases due to the action of the protein (A)
  • the amount of fatty acid cut out due to the action of TE also increases, so it is considered that the medium chain fatty acid increased.
  • “medium chain” means that the acyl group has 6 to 14 carbon atoms, preferably 8 to 14 carbon atoms, more preferably 10 to 14 carbon atoms, and still more preferably. Means that the number of carbon atoms is 12 or more and 14 or less.
  • a DNA linking a gene encoding a protein downstream of a promoter that functions in the host cell is introduced into a host cell lacking the fatty acid degradation system, It can be confirmed by culturing cells under conditions where the introduced gene is expressed, and analyzing changes in the fatty acid composition in the host cells or culture medium by a conventional method. Moreover, it can confirm by co-expressing TE mentioned later to said system, and comparing with the fatty acid composition at the time of expressing only TE.
  • the identity with the amino acid sequence of the protein (A) is preferably 70% or more, more preferably 74% or more, more preferably 80% or more, more preferably 85% or more. More preferably, 90% or more is more preferable, 92% or more is more preferable, 93% or more is more preferable, 94% or more is more preferable, 95% or more is more preferable, 96% or more is more preferable, and 97% or more is more Preferably, 98% or more is more preferable, and 99% or more is more preferable. Further, as the protein (B), one or more (for example, 1 to 138, preferably 1 to 126, more preferably 1 to 109) amino acid sequences of the protein (A).
  • Examples of the method for introducing a mutation into an amino acid sequence include a method for introducing a mutation into a base sequence encoding an amino acid sequence. Examples of the method for introducing mutation include site-specific mutagenesis.
  • Specific methods for introducing site-specific mutations include a method using SOE-PCR, an ODA method, a Kunkel method, and the like. Also, commercially available kits such as Site-Directed Mutagenesis System Mutan-SuperExpress Km Kit (Takara Bio), Transformer TM Site-Directed Mutagenesis Kit (Clonetech), KOD-Plus-Mutagenesis Kit (Toyobo) may be used. it can. Moreover, after giving a random gene mutation, the target gene can also be obtained by performing enzyme activity evaluation and gene analysis by an appropriate method.
  • the proteins (A) and (B) can be obtained by ordinary chemical techniques, genetic engineering techniques, and the like.
  • a protein derived from a natural product can be obtained by isolation, purification or the like from Nannochloropsis oculata.
  • the proteins (A) and (B) can be obtained by artificial chemical synthesis based on the amino acid sequence information shown in SEQ ID NO: 1.
  • the proteins (A) and (B) may be prepared as recombinant proteins by genetic recombination techniques.
  • the ⁇ -ketoacyl-ACP synthase gene described later can be used.
  • Nannochloropsis oculata can be obtained from a preservation organization such as a private or public laboratory.
  • Nannochloropsis oculata strain NIES-2145 can be obtained from the National Institute for Environmental Studies (NIES).
  • a gene encoding the protein (A) or (B) (hereinafter also referred to as “KAS gene”), a gene comprising the following DNA (a) or (b) (hereinafter also referred to as “NoKASIII gene”).
  • A DNA consisting of the base sequence represented by SEQ ID NO: 2.
  • B DNA encoding the protein (A) or (B) having a base sequence having 62% or more identity with the base sequence of the DNA (a) and having KAS activity.
  • the base sequence of SEQ ID NO: 2 is the base sequence of a gene encoding a protein consisting of the amino acid sequence of SEQ ID NO: 1 (KAS derived from Nannochloropsis oculata strain NIES2145).
  • the identity with the base sequence of the DNA (a) is preferably 70% or more, more preferably 74% or more, more preferably 80% or more, more preferably 85% or more. More preferably, 90% or more is more preferable, 92% or more is more preferable, 93% or more is more preferable, 94% or more is more preferable, 95% or more is more preferable, 96% or more is more preferable, and 97% or more is more Preferably, 98% or more is more preferable, and 99% or more is more preferable.
  • the DNA (b) one or more (for example, 1 or more and 481 or less, preferably 1 or more and 379 or less, more preferably 1 or more and 329 or less) in the base sequence represented by SEQ ID NO: 2, More preferably 1 to 253, more preferably 1 to 189, more preferably 1 to 126, more preferably 1 to 101, more preferably 1 to 88, More preferably 1 or more and 75 or less, more preferably 1 or more and 63 or less, more preferably 1 or more and 50 or less, more preferably 1 or more and 37 or less, more preferably 1 or more and 25 or less, More preferably, DNA encoding a protein having 1 to 12 bases) deleted, substituted, inserted or added, and having KAS activity.
  • the DNA (b) is also preferably a DNA that hybridizes with a DNA comprising a base sequence complementary to the DNA (a) under a stringent condition and encodes a protein having KAS activity.
  • the method for promoting the expression of the KAS gene can be appropriately selected from conventional methods. For example, a method of introducing the KAS gene into a host, a method of modifying an expression regulatory region (promoter, terminator, etc.) of the gene in a host having the KAS gene on the genome, and the like can be mentioned.
  • a method of introducing the KAS gene into a host a method of modifying an expression regulatory region (promoter, terminator, etc.) of the gene in a host having the KAS gene on the genome, and the like can be mentioned.
  • one that promotes the expression of a gene encoding the target protein is also referred to as a “transformant”, and one that does not promote the expression of the gene encoding the target protein is referred to as “host” or “ Also referred to as “wild strain”.
  • the transformant used in the present invention compared to the host itself, is a medium-chain fatty acid or lipid productivity comprising this (the production amount of the medium-chain fatty acid or lipid comprising this component, the total fatty acid produced Or the ratio (ratio) of the medium chain fatty acid in the total lipid or the lipid containing this as a constituent component is significantly improved.
  • the fatty acid composition in the lipid is modified. Therefore, the present invention using the transformant is a lipid having a specific number of carbon atoms, particularly a medium chain fatty acid or a lipid comprising this, preferably a fatty acid having 6 to 14 carbon atoms or a constituent thereof.
  • a fatty acid having 8 to 14 carbon atoms or a lipid comprising this more preferably a fatty acid having 10 to 14 carbon atoms or a lipid comprising this, more preferably Can be suitably used for the production of fatty acids having 12 to 14 carbon atoms or lipids comprising these.
  • the productivity of fatty acids and lipids in the host and transformant can be measured by the method used in the examples.
  • the KAS gene can be obtained by ordinary genetic engineering techniques.
  • the KAS gene can be artificially synthesized based on the amino acid sequence shown in SEQ ID NO: 1 or the base sequence shown in SEQ ID NO: 2.
  • services such as Invitrogen can be used.
  • It can also be obtained by cloning from Nannochloropsis oculata.
  • Nannochloropsis oculata NIES-2145 used in the examples can be obtained from the National Institute for Environmental Studies (NIES).
  • a transformant that can be preferably used in the present invention can be obtained by introducing the KAS gene into the host by a conventional method. Specifically, it can be prepared by preparing a recombinant vector or gene expression cassette capable of expressing the KAS gene in a host cell, introducing it into the host cell, and transforming the host cell.
  • the host for the transformant can be appropriately selected from those usually used.
  • hosts that can be used in the present invention include microorganisms (including algae and microalgae), plants, and animals. From the viewpoint of production efficiency and availability of the obtained lipid, the host is preferably a microorganism or a plant, more preferably a microorganism, and even more preferably a microalgae.
  • the microorganism may be either prokaryotic, eukaryotic, Escherichia (Escherichia) genus microorganisms or Bacillus (Bacillus) genus microorganisms, Synechocystis (Synechocystis) microorganism of the genus, Synechococcus (Synechococcus) genus microorganism of Prokaryotes or eukaryotic microorganisms such as yeast and filamentous fungi can be used.
  • Escherichia coli Escherichia coli
  • Bacillus subtilis Bacillus subtilis
  • red yeast Rhodosporidium toruloides
  • Mortierella sp Mortierella sp.
  • Chlamydomonas Chlamydomonas
  • Chlorella Chlorella
  • Faye Oda Kuti ram Phaeodactylum
  • Nan'nokuroro Algae of the genus Psis are preferred, and algae of the genus Nannochloropsis are more preferred.
  • Nannochloropsis gaditana examples include Nannochloropsis gaditana , Nannochloropsis salina , Nannochloropsis oceanica , Nannochloropsis oceanica , Nannochloropsis oceanica Examples thereof include Nannochloropsis atomus , Nannochloropsis maculata , Nannochloropsis granulata , Nannochloropsis sp.
  • Nannochloropsis oculata or Nannochloropsis gaditana is preferable, and Nannochloropsis oculata is more preferable.
  • Arabidopsis thaliana As the plant body, Arabidopsis thaliana , Brassica napus , Brassica rapa , Cocos nucifera , Palm ( Elaeis guineensis ), caffe, soybean, from the viewpoint of high lipid content in seeds ( Glycine max ), corn ( Zea mays ), rice ( Oryza sativa ), sunflower ( Helianthus annuus ), camphor ( Cinnamomum camphora ), or jatropha ( Jatropha curcas ) are preferable, and Arabidopsis is more preferable.
  • a gene capable of introducing a gene encoding a target protein into a host and expressing the gene in a host cell I just need it.
  • a vector having an expression regulatory region such as a promoter or terminator according to the type of host to be introduced, and a vector having a replication origin or a selection marker can be used.
  • it may be a vector that autonomously grows and replicates outside the chromosome, such as a plasmid, or a vector that is integrated into the chromosome.
  • an expression vector that can be preferably used in the present invention, when a microorganism is used as a host, for example, pBluescript (pBS) II SK (-) (Stratagene), pSTV vector (Takara Bio), pUC vector (Takara Shuzo), pET vector (Takara Bio), pGEX vector (GE Healthcare), pCold vector (Takara Bio), pHY300PLK (Takara Bio), pUB110 ( Mckenzie, T. et al., 1986, Plasmid 15 (2), p.
  • pBR322 (Takara Bio), pRS403 (Stratagene), and pMW218 / 219 (Nippon Gene) It is done.
  • pBluescript II SK ( ⁇ ) or pMW218 / 219 is preferably used.
  • pUC19 manufactured by Takara Bio Inc.
  • P66 Cholamydomonas Center
  • P-322 Cholamydomonas Center
  • pPha-T1 Yangmin Gong, et al., Journal of Basic Microbiology, 2011, vol.
  • pJET1 manufactured by Cosmo Bio
  • the host is an algae belonging to the genus Nannochloropsis
  • pUC19, pPha-T1, or pJET1 is preferably used.
  • pJET1 is an algae belonging to the genus Nannochloropsis, Oliver Kilian, et al., Proceedings of the National Academy of Sciences of the United States of America, 2011, vol.
  • a host can also be transformed with a DNA fragment (gene expression cassette) comprising a target gene, a promoter and a terminator.
  • Examples of the DNA fragment include a DNA fragment amplified by PCR and a DNA fragment cleaved with a restriction enzyme.
  • pRI vectors manufactured by Takara Bio Inc.
  • pBI vectors manufactured by Clontech
  • IN3 vectors manufactured by Implanta Innovations
  • the host is Arabidopsis thaliana
  • pRI vectors or pBI vectors are preferably used.
  • promoter that regulates the expression of the gene encoding the target protein incorporated in the expression vector
  • Promoters that can be preferably used in the present invention can be induced by the addition of lac promoter, trp promoter, tac promoter, trc promoter, T7 promoter, SpoVG promoter, isopropyl ⁇ -D-1-thiogalactopyranoside (IPTG).
  • Promoters related to various derivatives Rubisco operon (rbc), PSI reaction center protein (psaAB), PSII D1 protein (psbA), cauliflower mosil virus 35SRNA promoter, housekeeping gene promoter (eg, tubulin promoter, actin promoter, ubiquitin promoter) etc.), rape or oilseed rape derived Napin gene promoter, a plant-derived Rubisco promoters, Nannochloropsis from the genus violaxanthin / chlorophyll a binding protein gene promoter VCP1 promoter, VCP2 promoter) (Oliver Kilian, et al., Proceedings of the National Academy of Sciences of the United States of America, 2011, vol.
  • Nannochloropsis lipid droplet surface protein gene promoter
  • the promoter of a violaxanthin / chlorophyll a binding protein gene or the promoter of an oleosin-like protein LDSP gene derived from the genus Nannochloropsis can be preferably used.
  • the type of selectable marker for confirming that the gene encoding the target protein has been incorporated can be appropriately selected according to the type of host used.
  • Selectable markers that can be preferably used in the present invention include ampicillin resistance gene, chloramphenicol resistance gene, erythromycin resistance gene, neomycin resistance gene, kanamycin resistance gene, spectinomycin resistance gene, tetracycline resistance gene, blasticidin S Drug resistance genes such as resistance genes, bialaphos resistance genes, zeocin resistance genes, paromomycin resistance genes, and hygromycin resistance genes. Furthermore, a gene deficiency associated with auxotrophy can be used as a selectable marker gene.
  • transformation method can be appropriately selected from conventional methods according to the type of host used. For example, transformation methods using calcium ions, general competent cell transformation methods, protoplast transformation methods, electroporation methods, LP transformation methods, methods using Agrobacterium, particle gun methods, etc. .
  • transformation methods using calcium ions For example, transformation methods using calcium ions, general competent cell transformation methods, protoplast transformation methods, electroporation methods, LP transformation methods, methods using Agrobacterium, particle gun methods, etc.
  • transformation can also be performed using the electroporation method described in Randor Radakovits, et al., Nature Communications, DOI: 10.1038 / ncomms1688, 2012, or the like.
  • ⁇ Selection of transformant introduced with target gene fragment> can be performed by using a selection marker or the like.
  • a drug resistance gene acquired by a transformant as a result of introduction of a drug resistance gene into a host cell together with a target DNA fragment at the time of transformation can be used as an indicator.
  • the introduction of the target DNA fragment can be confirmed by a PCR method using a genome as a template.
  • “Expression regulatory region” refers to a promoter or terminator, and these sequences are generally involved in regulating the expression level (transcription level, translation level) of adjacent genes.
  • the expression regulatory region of the gene is modified to promote the expression of the KAS gene, thereby improving the productivity of medium-chain fatty acids or lipids composed thereof. be able to.
  • Examples of the method for modifying the expression regulatory region include promoter replacement.
  • the expression of the KAS gene can be promoted by replacing the promoter of the gene (hereinafter also referred to as “KAS promoter”) with a promoter having higher transcriptional activity.
  • KAS promoter the promoter of the gene
  • the NoKASIII gene is present immediately below the DNA sequence consisting of the base sequence shown in SEQ ID NO: 50.
  • a promoter region is present in the DNA sequence consisting of the base sequence shown in SEQ ID NO: 50.
  • the promoter used for replacement of the KAS promoter is not particularly limited, and can be appropriately selected from those having higher transcriptional activity than the KAS promoter and suitable for the production of medium chain fatty acids or lipids comprising them.
  • a tubulin promoter a heat shock protein promoter, a promoter of the above-mentioned violaxanthin / chlorophyll a binding protein gene (VCP1 promoter (SEQ ID NO: 22), VCP2 promoter), or Nannochloropsis genus
  • the promoter (SEQ ID NO: 49) of the derived oleosin-like protein LDSP gene can be preferably used.
  • the promoter of the violaxanthin / chlorophyll a-binding protein gene or the promoter of the LDSP gene is more preferable.
  • the above-described promoter modification can be performed according to a conventional method such as homologous recombination. Specifically, a linear DNA fragment containing upstream and downstream regions of the target promoter and containing another promoter instead of the target promoter is constructed and incorporated into the host cell, and the target promoter of the host genome Two homologous recombination occurs at the upstream and downstream side of. As a result, the target promoter on the genome is replaced with another promoter fragment, and the promoter can be modified.
  • a method for modifying a target promoter by homologous recombination is described in, for example, Besher et al., Methods in molecular biology, 1995, vol. 47, p. Reference can be made to documents such as 291-302.
  • the transformant of the present invention preferably promotes expression of a gene encoding TE (hereinafter also referred to as “TE gene”) in addition to the gene encoding the protein (A) or (B).
  • TE is an enzyme that hydrolyzes the thioester bond of acyl-ACP synthesized by a fatty acid synthase such as KAS to produce free fatty acid.
  • the fatty acid synthesis on the ACP is completed by the action of TE, and the cut fatty acid is used for synthesis of polyunsaturated fatty acid, triacylglycerol (hereinafter also referred to as “TAG”) and the like.
  • TAG triacylglycerol
  • the TE that can be used in the present invention may be a protein having acyl-ACP thioesterase activity (hereinafter also referred to as “TE activity”).
  • TE activity refers to an activity of hydrolyzing the thioester bond of acyl-ACP.
  • TE has a plurality of TEs having different reaction specificities depending on the number of carbon atoms and the number of unsaturated bonds of the acyl group (fatty acid residue) constituting the substrate acyl-ACP.
  • TE is considered to be an important factor that determines the fatty acid composition in vivo.
  • it is preferable to promote the expression of the gene encoding TE.
  • the productivity of medium chain fatty acids is improved. Therefore, it is preferable to promote the expression of a gene encoding TE having substrate specificity for medium chain acyl-ACP. By introducing such a gene, the productivity of medium chain fatty acids can be further improved.
  • TE that can be used in the present invention can be appropriately selected from normal TE and functionally equivalent proteins according to the type of host.
  • TE (GenBank ABB71581) from Cuphea calophylla subsp. Mesostemon; TE from Cinnamomum camphora (GenBank AAC49151.1); TE from Myristica fragrans (GenBank AAB71729); TE from Myristica fragrans (GenBank AAB71730); Cuphea lanceolata TE (GenBank CAA54060); TE from Cuphea hookeriana (GenBank Q39513); TE from Ulumus americana (GenBank AAB71731); TE from Sorghum bicolor (GenBank EER87824); TE from Sorghum bicolor (GenBank EER88593); Cocos nucifera TE from CnFatB1 (see Jing et al.
  • the identity with any of the above-described TE amino acid sequences is 50% or more (preferably 70% or more, more preferably 80% or more, and further preferably 90% or more).
  • a protein having the amino acid sequence and having TE activity can also be used.
  • CTE (SEQ ID NO: 7, nucleotide sequence of the gene encoding the same: SEQ ID NO: 8), NoTE (SEQ ID NO: 34, the gene encoding the same) from the viewpoint of substrate specificity for medium chain acyl-ACP Nucleotide sequence: SEQ ID NO: 35), bay-derived TE (SEQ ID NO: 51, nucleotide sequence of the gene encoding the same: SEQ ID NO: 52), TE derived from Nannochloropsis gaditana (SEQ ID NO: 53, the gene encoding the same) Nucleotide sequence: SEQ ID NO: 54), TE derived from Nannochloropsis granulata (SEQ ID NO: 55, nucleotide sequence of the gene encoding this: SEQ ID NO: 56), TE derived from symbiodinium microadriaticum (sequence) No.
  • nucleotide sequence of the gene encoding it SEQ ID NO: 58
  • identity of these TE amino acid sequences of 50% or more preferably Or a protein having a TE activity against medium-chain acyl-ACP (for example, the base sequence shown in SEQ ID NO: 40).
  • a protein encoded by DNA is preferred.
  • sequence information of these TEs and the genes encoding them can be obtained from, for example, the National Center for Biotechnology Information (NCBI).
  • the protein has TE activity, for example, by introducing DNA linked to an acyl-ACP thioesterase gene downstream of a promoter that functions in a host cell such as E. coli into a host cell lacking the fatty acid degradation system, It can be confirmed by culturing under conditions where the gene is expressed, and analyzing changes in the fatty acid composition in the host cell or culture solution using a method such as gas chromatography analysis.
  • Reactions using various acyl-ACPs prepared by the method of Yuan et al. (Yuan L. et al., Proc. Natl. Acad. Sci. USA, 1995, vol. 92 (23), p. 10639-10643) as substrates. By doing so, TE activity can be measured.
  • a transformant that promotes the expression of the TE gene can be prepared by a conventional method.
  • a transformant is obtained by a method of introducing a TE gene into a host, a method of modifying an expression regulatory region of the gene in a host having the TE gene on the genome, etc. Can be produced.
  • KAS I mainly catalyzes an elongation reaction having 4 to 16 carbon atoms to synthesize palmitoyl-ACP having 16 carbon atoms.
  • KAS IV catalyzes an extension reaction mainly having 6 to 14 carbon atoms to synthesize medium chain acyl-ACP. Therefore, by promoting the expression of the gene encoding KAS IV, the productivity of medium chain fatty acids can be further improved.
  • acyltransferase is an enzyme that performs acylation necessary for the biosynthesis of TAG. Therefore, by promoting the expression of a gene encoding a medium chain fatty acid-specific acyltransferase such as a medium chain fatty acid specific diacylglycerol acyltransferase, the productivity of the medium chain fatty acid can be further improved.
  • the KAS and acyltransferase that can be used in the present invention can be appropriately selected from ordinary KAS, acyltransferase, and proteins functionally equivalent to them according to the type of host. Moreover, the transformant which promoted the expression of these genes can be produced by a conventional method.
  • a transformant can be produced by a method of modifying an expression control region of a gene.
  • productivity of medium-chain fatty acids or lipids comprising the same is improved as compared to a host in which expression of the gene encoding the protein (A) or (B) is not promoted. is doing. Therefore, if the transformant of the present invention is cultured under appropriate conditions, and then the medium chain fatty acid or the lipid containing it as a constituent component is recovered from the obtained culture or growth product, the medium chain fatty acid or the constituent component thereof is recovered. Can be produced efficiently.
  • “culture” refers to the culture solution and transformant after culturing
  • “growth” refers to the transformant after growth.
  • the culture conditions of the transformant of the present invention can be appropriately selected depending on the host, and culture conditions usually used for the host can be used. From the viewpoint of fatty acid production efficiency, for example, glycerol, acetic acid, glucose or the like may be added to the medium as a precursor involved in the fatty acid biosynthesis system.
  • the Escherichia coli When Escherichia coli is used as a host, the Escherichia coli can be cultured, for example, in LB medium or Overnight Express Instant TB Medium (Novagen) at 30 to 37 ° C. for 0.5 to 1 day.
  • the medium when E. coli is used as a host, the medium preferably contains cerulenin in order to improve the productivity of medium chain fatty acids. As shown in Examples described later, medium chain fatty acid productivity can be further improved by culturing the transformant in a medium containing cerulenin.
  • the concentration of cerulenin in the medium is preferably a concentration that does not adversely affect the growth of the transformant.
  • the cerulenin concentration is preferably 1 ⁇ M or more, more preferably 10 ⁇ M or more, preferably 50 ⁇ M or less, and more preferably 25 ⁇ M or less.
  • 1 to 50 ⁇ M is preferable, 10 to 50 ⁇ M is more preferable, and 10 to 25 ⁇ M is more preferable.
  • the culture of Arabidopsis thaliana can be performed, for example, at a temperature of 20 to 25 ° C. in soil, continuously irradiated with white light, or under light conditions such as 16 hours of light and 8 hours of dark. Can be cultivated monthly.
  • the culture medium may be based on natural seawater or artificial seawater, or a commercially available culture medium may be used.
  • the medium include f / 2 medium, ESM medium, Daigo IMK medium, L1 medium, and MNK medium.
  • f / 2 medium, ESM medium, or Daigo IMK medium is preferable, f / 2 medium or Daigo IMK medium is more preferable, and f / 2 medium is further included. preferable.
  • nitrogen sources, phosphorus sources, metal salts, vitamins, trace metals, and the like can be appropriately added to the medium.
  • the amount of transformant to be inoculated into the medium can be appropriately selected, and is preferably 1 to 50% (vol / vol), more preferably 1 to 10% (vol / vol) per medium from the viewpoint of growth.
  • the culture temperature is not particularly limited as long as it does not adversely affect the growth of algae, but it is usually in the range of 5 to 40 ° C. From the viewpoint of promoting the growth of algae, improving the productivity of fatty acids, and reducing the production cost, the temperature is preferably 10 to 35 ° C, more preferably 15 to 30 ° C.
  • the algae is preferably cultured under light irradiation so that photosynthesis is possible. The light irradiation may be performed under conditions that allow photosynthesis, and may be artificial light or sunlight.
  • the illuminance during light irradiation is preferably in the range of 100 to 50000 lux, more preferably in the range of 300 to 10000 lux, and still more preferably in the range of 1000 to 6000 lux, from the viewpoint of promoting the growth of algae and improving the productivity of fatty acids. It is. Further, the light irradiation interval is not particularly limited, but from the same viewpoint as described above, it is preferably performed in a light / dark cycle, and the light period in 24 hours is preferably 8 to 24 hours, more preferably 10 to 18 hours, More preferably, it is 12 hours.
  • the culture of algae is preferably performed in the presence of a gas containing carbon dioxide or a medium containing a carbonate such as sodium bicarbonate so that photosynthesis is possible.
  • concentration of carbon dioxide in the gas is not particularly limited, but is preferably 0.03 (similar to atmospheric conditions) to 10%, more preferably 0.05 to 5%, from the viewpoint of promoting growth and improving the productivity of fatty acids. More preferably, it is 0.1 to 3%, and still more preferably 0.3 to 1%.
  • the concentration of the carbonate is not particularly limited.
  • sodium bicarbonate it is preferably 0.01 to 5% by mass, more preferably 0.05 to 2% by mass, from the viewpoint of promoting growth and improving the productivity of fatty acids.
  • the content is 0.1 to 1% by mass.
  • the culture time is not particularly limited, and may be performed for a long period of time (for example, about 150 days) so that algal bodies that accumulate lipids at high concentrations can grow at high concentrations. From the viewpoint of promoting the growth of algae, improving the productivity of fatty acids, and reducing the production cost, the culture period is preferably 3 to 90 days, more preferably 3 to 30 days, and even more preferably 7 to 30 days.
  • the culture may be any of aeration and agitation culture, shaking culture or stationary culture. From the viewpoint of improving aeration, aeration and agitation culture or shaking culture is preferable, and aeration and agitation culture is more preferable.
  • the method for collecting lipid from the culture or growth can be appropriately selected from conventional methods.
  • lipid components can be isolated from the aforementioned culture or growth by filtration, centrifugation, cell disruption, gel filtration chromatography, ion exchange chromatography, chloroform / methanol extraction method, hexane extraction method, ethanol extraction method, or the like. Can be separated and recovered.
  • oil is recovered from the culture or growth by pressing or extraction, and then general purification such as degumming, deoxidation, decolorization, dewaxing, deodorization, etc. is performed to obtain lipids. be able to.
  • a fatty acid can be obtained by hydrolyzing the isolated lipid.
  • Examples of the method for isolating the fatty acid from the lipid component include a method of treating at a high temperature of about 70 ° C. in an alkaline solution, a method of treating with lipase, a method of decomposing using high-pressure hot water, and the like.
  • the lipid produced in the production method of the present invention preferably contains a fatty acid or a fatty acid compound, and more preferably contains a fatty acid or a fatty acid ester compound, from the viewpoint of its availability.
  • the fatty acid or fatty acid ester compound contained in the lipid is preferably a medium chain fatty acid or an ester compound thereof, more preferably a fatty acid having 6 to 14 carbon atoms or an ester compound thereof, from the viewpoint of availability to a surfactant or the like.
  • a fatty acid having 8 to 14 carbon atoms or an ester compound thereof is more preferable, a fatty acid having 10 to 14 carbon atoms or an ester compound thereof is more preferable, and a fatty acid having 12 to 14 carbon atoms or a fatty acid thereof. More preferred are ester compounds.
  • the fatty acid ester compound is preferably a simple lipid or a complex lipid, more preferably a simple lipid, and even more preferably triacylglycerol.
  • Lipids obtained by the production method of the present invention are used as edible, plasticizers, emulsifiers such as cosmetics, detergents such as soaps and detergents, fiber treatment agents, hair rinse agents, or bactericides and preservatives. Can do.
  • the present invention further relates to the embodiments described above, and the following methods for producing lipids, methods for improving lipid productivity, methods for modifying the composition of fatty acids produced, proteins, genes, recombinant vectors, organisms, transformants, and A method for producing a transformant is disclosed.
  • a method for producing a lipid comprising culturing a transformant in which expression of a gene encoding the following protein (A) or (B) is promoted to produce a fatty acid or a lipid comprising the same.
  • a protein comprising the amino acid sequence represented by SEQ ID NO: 1.
  • B) The identity with the amino acid sequence of the protein (A) is 67% or more, preferably 70% or more, more preferably 74% or more, more preferably 80% or more, more preferably 85% or more, more preferably 90%.
  • % Or more more preferably 92% or more, preferably 93% or more, more preferably 94% or more, more preferably 95% or more, more preferably 96% or more, more preferably 97% or more, more preferably 98% or more. More preferably, a protein comprising 99% or more amino acid sequence and having KAS activity.
  • ⁇ 2> Promote the expression of the gene encoding the protein (A) or (B), and improve the productivity of medium-chain fatty acids produced in the cells of the transformant or lipids comprising this as a constituent component, Method for improving lipid productivity.
  • ⁇ 3> Promoting the expression of the gene encoding the protein (A) or (B) to improve the productivity of medium-chain fatty acids produced in the cells of the transformant or lipids comprising this A method for modifying the composition of lipids, which modifies the composition of fatty acids or lipids in total fatty acids or total lipids produced.
  • ⁇ 4> The gene according to ⁇ 1> to ⁇ 3>, wherein the gene encoding the protein (A) or (B) is introduced into a host to promote the expression of the gene encoding the protein (A) or (B).
  • ⁇ 5> A method for producing a lipid, comprising culturing a transformant into which a gene encoding the protein (A) or (B) has been introduced, and producing a fatty acid or a lipid comprising the same.
  • Transformants are produced by introducing a gene encoding the protein (A) or (B), and medium-chain fatty acids produced in the cells of the transformants or lipid production comprising them To improve lipid productivity.
  • Transformants are produced by introducing a gene encoding the protein (A) or (B), and medium-chain fatty acids produced in the cells of the transformants or lipid production comprising them A method for modifying the composition of lipids, which improves the properties and modifies the composition of fatty acids or lipids in total fatty acids or total lipids produced.
  • the protein (B) has one or more, preferably 1 or more and 138 or less, more preferably 1 or more and 126 or less, more preferably 1 or more amino acid sequences in the protein (A). 109 or less, more preferably 1 or more and 84 or less, more preferably 1 or more and 63 or less, more preferably 1 or more and 42 or less, more preferably 1 or more and 33 or less, more preferably 1 or more 29 or less, more preferably 1 or more and 25 or less, more preferably 1 or more and 21 or less, more preferably 1 or more and 16 or less, more preferably 1 or more and 12 or less, more preferably 1 or more 8.
  • the protein is a protein in which 8 or less, more preferably 1 to 4 amino acids are deleted, substituted, inserted or added.
  • the gene encoding the protein (A) or (B) is a gene consisting of the following DNA (a) or (b).
  • (B) 62% or more identity with the base sequence of the DNA (a), preferably 70% or more, more preferably 74% or more, more preferably 80% or more, more preferably 85% or more, more preferably 90% % Or more, more preferably 92% or more, preferably 93% or more, more preferably 94% or more, more preferably 95% or more, more preferably 96% or more, more preferably 97% or more, more preferably 98% or more. More preferably, the DNA encoding the protein (A) or (B) having a nucleotide sequence of 99% or more and having KAS activity.
  • the DNA (b) has one or more, preferably 1 or more and 481 or less, more preferably 1 or more and 379 or less, more preferably 1 or more, in the base sequence of the DNA (a). 329 or less, more preferably 1 or more and 253 or less, more preferably 1 or more and 189 or less, more preferably 1 or more and 126 or less, more preferably 1 or more and 101 or less, more preferably 1 or more 88 or less, more preferably 1 or more and 75 or less, more preferably 1 or more and 63 or less, more preferably 1 or more and 50 or less, more preferably 1 or more and 37 or less, more preferably 1 or more 25 or less, more preferably 1 or more and 12 or less base sequences having a deleted, substituted, inserted, or added base sequence and having the KAS activity (A) or It encodes the protein (A) or (B) that hybridizes under stringent conditions with the DNA encoding (B) or the DNA comprising a base sequence complementary to the DNA (a)
  • the method according to any one of ⁇ 1> to ⁇ 9>, wherein ⁇ 11> The method according to any one of ⁇ 1> to ⁇ 10>, wherein the proteins (A) and (B) are KAS type KAS.
  • ⁇ 12> The method according to any one of ⁇ 1> to ⁇ 11>, wherein expression of a gene encoding TE is promoted in the transformant.
  • ⁇ 13> The method according to ⁇ 12>, wherein the gene encoding TE is introduced into a transformant to promote the expression of the gene encoding TE.
  • ⁇ 14> The method according to ⁇ 12> or ⁇ 13>, wherein the TE is TE having substrate specificity for medium chain acyl-ACP.
  • the protein having the amino acid sequence shown in SEQ ID NO: 7, SEQ ID NO: 34, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, or SEQ ID NO: 57, or the amino acid sequence of the protein has 50 identity % Or more (preferably 70% or more, more preferably 80% or more, and still more preferably 90% or more), and a protein having TE activity against medium chain acyl-ACP.
  • ⁇ 16> The method according to any one of ⁇ 1> to ⁇ 12>, wherein the transformant is a microorganism or a plant.
  • ⁇ 17> The method according to ⁇ 16>, wherein the microorganism is a microalgae.
  • microalgae are algae belonging to the genus Nannochloropsis, preferably Nannochloropsis oculata.
  • micro19> The method according to ⁇ 16>, wherein the microorganism is Escherichia coli.
  • the plant is Arabidopsis thaliana.
  • the lipid is a medium chain fatty acid or an ester compound thereof, preferably a fatty acid having 6 to 14 carbon atoms or an ester compound thereof, more preferably a fatty acid having 8 to 14 carbon atoms or an ester compound thereof, Any of the above ⁇ 1> to ⁇ 20>, more preferably containing a fatty acid having 10 to 14 carbon atoms or an ester compound thereof, more preferably a fatty acid having 12 to 14 carbon atoms or an ester compound thereof.
  • ⁇ 22> The protein (A) or (B) defined in any one of ⁇ 1> to ⁇ 21>.
  • ⁇ 23> A gene encoding the protein according to ⁇ 22>.
  • ⁇ 24> A gene comprising the DNA (a) or (b) defined in any one of ⁇ 1> to ⁇ 21>.
  • ⁇ 25> A recombinant vector containing the gene according to ⁇ 23> or ⁇ 24>.
  • ⁇ 26> A transformant that promotes the expression of the gene according to ⁇ 23> or ⁇ 24>.
  • ⁇ 27> A transformant obtained by introducing the gene according to ⁇ 23> or ⁇ 24> or the recombinant vector according to ⁇ 25> into a host.
  • ⁇ 28> A method for producing a transformant, wherein the gene according to ⁇ 23> or ⁇ 24> or the recombinant vector according to ⁇ 25> is introduced into a host.
  • ⁇ 29> The transformant according to any one of ⁇ 26> to ⁇ 28> or a method for producing the same, wherein expression of a gene encoding TE is promoted.
  • ⁇ 30> The transformant according to ⁇ 29> or a method for producing the same, wherein a gene encoding TE is introduced into a host to promote expression of the gene encoding TE.
  • ⁇ 31> The transformant according to ⁇ 29> or ⁇ 30> or a method for producing the same, wherein the TE is TE having substrate specificity for medium-chain acyl-ACP.
  • the protein having the amino acid sequence shown in SEQ ID NO: 7, SEQ ID NO: 34, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55 or SEQ ID NO: 57, or the amino acid sequence of the protein has 50 identity % Or more (preferably 70% or more, more preferably 80% or more, and still more preferably 90% or more), and a protein having TE activity against medium chain acyl-ACP, ⁇ 29> to ⁇ 31>
  • ⁇ 33> The transformant according to any one of ⁇ 26> to ⁇ 32> or the method for producing the transformant, wherein the transformant or host is a microorganism or a plant.
  • ⁇ 34> The transformant according to ⁇ 33> or the production method thereof, wherein the microorganism is a microalgae.
  • ⁇ 35> The transformant according to ⁇ 34> or the method for producing the same, wherein the microalga is an algae belonging to the genus Nannochloropsis, preferably Nannochloropsis oculata.
  • ⁇ 36> The transformant according to ⁇ 33> or the method for producing the same, wherein the microorganism is Escherichia coli.
  • ⁇ 37> The transformant according to ⁇ 33> or the method for producing the same, wherein the plant is Arabidopsis thaliana.
  • the lipid is a medium chain fatty acid or an ester compound thereof, preferably a fatty acid having 6 to 14 carbon atoms or an ester compound thereof, more preferably a fatty acid having 8 to 14 carbon atoms or an ester compound thereof,
  • Example 1 Production of Transformant Introducing NoKASIII Gene into Escherichia coli and Production of Fatty Acid Using Transformant (1) Construction of Plasmid for Expression of NoKASIII Gene Nannochloropsis Oculata NIES-2145 from National Institute for Environmental Studies (NIES) Stocks were purchased and used.
  • Nannochloropsis oculata strain NIES-2145 is f / 2 liquid medium (NaNO 3 75 mg, NaH 2 PO 4 ⁇ 2H 2 O 6 mg, vitamin B12 0.5 ⁇ g, biotin 0.5 ⁇ g, thiamine 100 ⁇ g, Na 2 SiO 3 ⁇ 9H 2 O 10mg, Na 2 EDTA ⁇ 2H 2 O 4.4mg, FeCl 3 ⁇ 6H 2 O 3.16mg, FeCl 3 ⁇ 6H 2 O 12 ⁇ g, ZnSO 4 ⁇ 7H 2 O 21 ⁇ g, MnCl 2 ⁇ 4H 2 O 180 ⁇ g, CuSO 4 ⁇ 5H 2 O 7 ⁇ g, Na 2 MoO 4 ⁇ 2H 2 O 7 ⁇ g / artificial seawater 1L), inoculate 10% in 50mL f / 2 medium, and at 25 ° C, carbon dioxide 0.3% in an artificial weather machine Cultured for 6 days.
  • RNA was purified using RNeasy Plant Mini Kit (Qiagen). From the obtained total RNA, a cDNA library was prepared using SuperScript III First-Strand Synthesis System for RT-PCR (manufactured by Invitrogen). Using this cDNA as a template, a DNA fragment of NoKASIII gene was obtained by PCR using the primer pair of primer number 3 and primer number 4 shown in Table 1.
  • pSTV28 was amplified by PCR using the plasmid vector pSTV28 (Takara Bio) as a template and the primer pair of primer number 5 and primer number 6 shown in Table 1, and the template was treated by restriction enzyme Dpn I (manufactured by Toyobo). Digestion was performed. These two fragments were purified using the High Pure PCR Product Purification Kit (Roche Applied Science) and then fused using the In-Fusion HD Cloning Kit (Clontech) to construct a NoKASIII gene expression plasmid. did.
  • NoKASIII gene expression plasmid into Escherichia coli
  • E. coli mutant K27 strain (fadD88) (Overath et al, Eur. J. Biochem., 7, p. 559-574, 1969) were transformed by the competent cell transformation method.
  • the transformed K27 strain (pSTV :: NoKASIII) was allowed to stand at 37 ° C overnight, and colonies were obtained from LBCm liquid medium (Bacto Trypton 1%, Yeast Extract 0.5%, NaCl 1%, chloramphenicol) 30 ⁇ g / mL) was inoculated into 1 mL and cultured at 30 ° C. overnight.
  • Nitrogen gas was blown onto the resulting chloroform layer to dry it, 0.7 mL of 0.5N potassium hydroxide / methanol solution was added, and the temperature was kept constant at 80 ° C. for 30 minutes. Subsequently, 1 mL of 14% boron trifluoride-methanol solution (manufactured by SIGMA) was added, and the temperature was kept constant at 80 ° C. for 10 minutes. Thereafter, 1 mL each of hexane and saturated saline was added and stirred vigorously, and allowed to stand at room temperature for 30 minutes. The upper hexane layer was recovered to obtain a fatty acid methyl ester.
  • the fatty acid methyl ester was identified by subjecting the sample to gas chromatograph mass spectrometry analysis under the same conditions.
  • the amount of methyl ester of each fatty acid was quantified from the peak area of the waveform data obtained by gas chromatography analysis. Each peak area was compared with the peak area of 7-pentadecanone, which is an internal standard, to correct between samples, and the amount of each fatty acid per liter of culture solution was calculated. Furthermore, the sum total of each fatty acid amount was made into the total fatty acid amount (FA), and the ratio of each fatty acid amount which occupies for the total fatty acid amount was computed. The results are shown in Table 2.
  • “Fatty acid composition (% TFA)” indicates the ratio (weight percent) of each fatty acid to the total fatty acid.
  • “N” represents an integer of 0 to 5, for example, when “C18: n” is described, C18: 0, C18: 1, C18: 2, C18: 3, C18: 4, and C18: 5 Represents a fatty acid.
  • Example 2 Production of Fatty Acid by Transformant Introduced NoKASIII Gene into Escherichia coli in the Presence of Cerrenin K27 Strain (pSTV :: NoKASIII) Introduced in Example 1 and Introduced with NoKASIII Gene was LBCm Liquid Medium (Bacto Trypton) 1%, Yeast Extract 0.5%, NaCl 1%, chloramphenicol 30 ⁇ g / mL) was inoculated into 1 mL and cultured at 30 ° C. overnight. 20 ⁇ L of the culture solution was inoculated into 2 mL of Overnight Express Instant TB Medium (Novagen) and cultured with shaking at 30 ° C.
  • Example 3 Production of Transformant Introducing NoKASIII Gene and CTE Gene into Escherichia coli, and Production of Fatty Acid Using Transformant
  • the gene to be encoded (base sequence: SEQ ID NO: 8) was introduced into the K27 strain (fadD88) to prepare a transformant (pMW :: CTE).
  • the transformant pMW :: CTE was further transformed by the competent cell transformation method using the NoKASIII gene expression plasmid prepared in Example 1.
  • the CTE gene was cloned into the plasmid vector pMW219 (Nippon Gene).
  • the K27 strain (CTE + pSTV :: KASIII) transformed with the NoKASIII gene and CTE gene was allowed to stand at 37 ° C. overnight, and colonies were obtained from the LBCmKm liquid medium (Bacto Trypton 1%, Yeast Extract 0.5%, NaCl 1%, chloramphenicol 30 ⁇ g / mL, kanamycin sulfate 50 ⁇ g / mL) was inoculated into 1 mL, and cultured at 30 ° C. overnight. 20 ⁇ L of the culture solution was inoculated into 2 mL of Overnight Express Instant TB Medium (Novagen) and cultured with shaking at 30 ° C.
  • Example 4 Production of Fatty Acid by Transformant Introduced NoKASIII Gene and CTE Gene into Escherichia coli in the Presence of Cerrenin K27 Strain (CTE + pSTV :: KASIII) Introduced with NoKASIII Gene and CTE Gene Prepared in Example 3 ) was inoculated into 1 mL of LBCmKm liquid medium (Bacto Trypton 1%, Yeast Extract 0.5%, NaCl 1%, chloramphenicol 30 ⁇ g / mL, kanamycin sulfate 50 ⁇ g / mL) and cultured at 30 ° C. overnight.
  • LBCmKm liquid medium Bostrehalose 1%, Yeast Extract 0.5%, NaCl 1%, chloramphenicol 30 ⁇ g / mL, kanamycin sulfate 50 ⁇ g / mL
  • Example 5 Production of transformant in which NoKASIII gene was introduced into Nannochloropsis oculata, and production of fatty acid by transformant
  • PCR was performed using the primer pair of primer number 11 and primer number 12 and the primer pair of primer number 13 and primer number 14 shown in Table 1, respectively, and the zeocin resistance gene and tubulin promoter sequence Each was amplified. Further, PCR was performed using the genome of Nannochloropsis oculata NIES2145 strain as a template and the primer pair of primer number 15 and primer number 16 shown in Table 1 to amplify the heat shock protein terminator sequence (SEQ ID NO: 17).
  • PCR was carried out using the plasmid vector pUC19 (manufactured by Takara Bio Inc.) as a template and the primer pair of primer number 18 and primer number 19 shown in Table 1 to amplify the plasmid vector pUC19.
  • This expression plasmid consists of an insert sequence linked in the order of a tubulin promoter sequence, a zeocin resistance gene, a heat shock protein terminator sequence, and a pUC19 vector sequence.
  • VCP1 violaxanthin / chlorophyll a binding protein gene of Nannochloropsis sp. W2J3B strain registered in GenBank
  • VCP1 promoter sequence SEQ ID NO: 22
  • VCP1 terminator sequence SEQ ID NO: 23
  • PCR was performed using the primer pair of primer number 24 and primer number 25 shown in Table 1, and the primer pair of primer number 26 and primer number 27, respectively, and the VCP1 promoter sequence and VCP1 terminator sequence were determined. Acquired each.
  • zeocin resistance gene expression plasmid as a template, PCR was performed using the primer pair of primer number 28 and primer number 19 shown in Table 1, and a zeocin resistance gene expression cassette (tubulin promoter sequence, zeocin resistance gene, A fragment consisting of a heat shock protein terminator sequence) and a pUC19 sequence was amplified.
  • This expression plasmid comprises a VUC1 promoter sequence, a NoKASIII gene, a VCP1 terminator sequence, a tubulin promoter sequence, a zeocin resistance gene, and a heat shock protein terminator sequence in that order and a pUC19 vector sequence.
  • NoKASIII gene expression fragment into Nannochloropsis Using the NoKASIII gene expression plasmid as a template, PCR was performed using the primer pair of primer number 16 and primer number 24 shown in Table 1, for NoKASIII gene expression.
  • the fragment (DNA fragment consisting of VCP1 promoter sequence, NoKASIII gene, VCP1 terminator sequence, tubulin promoter sequence, zeocin resistance gene, heat shock protein terminator sequence) was amplified.
  • the amplified DNA fragment was purified using High Pure PCR Product Purification Kit (Roche Applied Science). Note that sterilized water was used for elution during purification, not the elution buffer included in the kit.
  • Nannochloropsis oculata strain NIES2145 obtained from the National Institute for Environmental Studies (NIES)
  • NIES2145 obtained from the National Institute for Environmental Studies (NIES)
  • 384 mM sorbitol solution to completely remove salts, and transformed host cells Used as.
  • About 500 ng of the NoKASIII gene expression fragment amplified above was mixed with host cells, and electroporation was performed under the conditions of 50 ⁇ F, 500 ⁇ , and 2,200 v / 2 mm.
  • N15P5 medium a medium in which the nitrogen concentration of f / 2 medium is increased 15-fold and the phosphorus concentration is increased 5-fold. ° C., under 0.3% CO 2 atmosphere, for 4 weeks shaking culture at 12h / 12h light-dark conditions to the preculture. 10 mL of the preculture was transferred to 40 mL of N15P5 medium, and cultured under shaking in a 12 h / 12 h light / dark condition at 25 ° C. in a 0.3% CO 2 atmosphere. After 3 weeks of culture, the lipid components contained in the culture solution were analyzed by the same method as in Example 1. As a negative control, the same experiment was performed on the Nannochloropsis oculata strain (control) into which only the zeocin resistance gene was introduced. The results are shown in Table 6.
  • Example 6 Production of Transformant Introducing NoKASIII Gene and NoTE Gene into Nannochloropsis Oculata, and Production of Fatty Acid by Transformant
  • Paromomycin Resistance Gene (SEQ ID NO: 29) was artificially synthesized. PCR was performed using the synthesized DNA fragment as a template and the primer pair of primer number 30 and primer number 31 shown in Table 1 to amplify the paromomycin resistance gene. Using the zeocin resistance gene expression plasmid constructed in Example 5 as a template, PCR was performed using the primer pair of primer number 14 and primer number 15 shown in Table 1, tubulin promoter sequence, heat shock protein terminator sequence and pUC19. A gene fragment consisting of a vector was amplified.
  • This expression plasmid consists of an insert sequence in the order of a tubulin promoter sequence, a paromomycin resistance gene, a heat shock protein terminator sequence, and a pUC19 vector sequence.
  • pBluescriptII SK (-) was amplified by PCR using the plasmid vector pBluescriptII SK (-) (Stratagene) as a template and the primer pair of primer number 36 and primer number 37 shown in Table 1, and the restriction enzyme Dpn I
  • the mold was digested by treatment (manufactured by Toyobo Co., Ltd.). These two fragments were purified using High Pure PCR Product Purification Kit (Roche Applied Science) and then fused using In-Fusion HD Cloning Kit (Clontech) to construct NoTE gene plasmid NoTE. .
  • This plasmid NoTE_262 is obtained by removing amino acid residues 1 to 87 from the N-terminal side of the amino acid sequence shown in SEQ ID NO: 34, and upstream of it from the N-terminal side of the LacZ protein derived from the plasmid vector pBluescriptII SK (-) It was constructed to express a protein in which amino acid residues 1 to 29 were fused.
  • “NoTE” is the nucleotide sequence encoding the polypeptide consisting of the amino acid sequence of positions 88 to 287 of SEQ ID NO: 34, and the nucleotide sequence of positions 262 to 864 of SEQ ID NO: 35 is the plasmid.
  • a gene obtained by mutating a part of bases at positions 262 to 864 in the base sequence shown in SEQ ID NO: 35 by PCR using the plasmid NoTE as a template and the primer pair of primer No. 38 and primer No. 39 shown in Table 1 A fragment (SEQ ID NO: 40) was obtained. Using this gene fragment, a NoTE variant expression plasmid NoTE_262 (V204W) was constructed in the same manner as described above.
  • a codon encoding valine at position 204 in the amino acid sequence shown in SEQ ID NO: 34 is replaced with a codon (TGG) encoding tryptophan.
  • PCR was performed using the plasmid NoTE_262 (V204W) as a template and the primer pair of primer number 41 and primer number 42 shown in Table 1 to obtain a NoTE variant gene fragment consisting of the base sequence shown in SEQ ID NO: 40.
  • VCP1 chloroplast transition signal sequence SEQ ID NO: 43
  • complete cds sequence accesion number: JF957601.1
  • VCP1 chloroplast translocation signal sequence Using the DNA fragment of this VCP1 chloroplast translocation signal sequence and the DNA fragment of the VCP1 promoter sequence and VCP1 terminator sequence synthesized in Example 5 as a template, the primer pair of primer number 24 and primer number 25 shown in Table 1, primer number PCR was performed using the primer pair of 44 and primer number 45, and the primer pair of primer number 26 and primer number 27, respectively, and a VCP1 promoter sequence, a VCP1 chloroplast transfer signal sequence, and a VCP1 terminator sequence were obtained.
  • PCR was carried out using the plasmid vector pUC19 (manufactured by Takara Bio Inc.) as a template and the primer pair of primer number 18 and primer number 19 shown in Table 1 to amplify the plasmid vector pUC19.
  • the NoTE variant gene fragment, VCP1 promoter sequence, VCP1 chloroplast translocation signal sequence, and VCP1 terminator sequence obtained above were fused to the plasmid vector pUC19 in the same manner as in Example 5 for expression of the NoTE variant gene.
  • Plasmid NoTE_262 (V204W) _Nanno was constructed. This plasmid consists of a NoTE gene expression sequence linked in the order of a VCP1 promoter sequence, a VCP1 chloroplast transfer signal sequence, a NoTE variant gene fragment, and a VCP1 terminator sequence, and a pUC19 vector sequence.
  • PCR was performed using the plasmid NoTE_262 (V204W) _Nanno as a template and the primer pair of primer number 46 and primer number 28 to obtain a gene fragment consisting of a VCP1 chloroplast transfer signal, a NoTE variant gene, and a VCP1 terminator sequence. . Moreover, PCR was performed using the genome of Nannochloropsis oculata NIES2145 strain as a template and the primer pair of primer number 47 and primer number 48 shown in Table 1 to amplify the LDSP promoter sequence (SEQ ID NO: 49).
  • PCR was performed using the above-mentioned plasmid for paromomycin resistance gene expression as a template and the primer pair of primer number 28 and primer number 19 shown in Table 1, and a cassette for paromomycin resistance gene expression (tubulin promoter sequence, paromomycin resistance gene, A fragment consisting of a heat shock protein terminator sequence) and a pUC19 sequence was amplified.
  • This expression plasmid consists of an LDSP promoter sequence, a VCP1 chloroplast transfer signal sequence, a NoTE variant gene sequence, a VCP1 terminator sequence, a tubulin promoter sequence, a paromomycin resistance gene, and a heat shock protein terminator sequence in that order.
  • PUC19 vector sequence PUC19 vector sequence.
  • NoTE variant gene expression fragment and NoKASIII gene expression fragment were introduced into Nannochloropsis Using the NoTE variant gene expression plasmid as a template, primer pairs of primer numbers 16 and 24 shown in Table 1 were used. PCR was performed to amplify a NoTE variant gene expression fragment (DNA fragment consisting of LDSP promoter sequence, NoTE variant gene, VCP1 terminator sequence, tubulin promoter sequence, paromomycin resistance gene, and heat shock protein terminator sequence). The amplified DNA fragment was purified using High Pure PCR Product Purification Kit (Roche Applied Science). Note that sterilized water was used for elution during purification, not the elution buffer included in the kit.
  • Example 5 the NoTE variant gene expression fragment was introduced into Nannochloropsis oculata strain NIES2145, cultured using paromomycin-containing f / 2 medium, and the resulting colony was transformed into the NoTE variant gene. Selected as an introduced strain (NoTE). Furthermore, using the obtained NoTE variant gene introduction strain (NoTE) as a host, a NoKASIII gene expression fragment was introduced in the same manner as in Example 5, and the obtained colonies were introduced with a NoTE variant gene and a NokASIII gene. Selected as a strain (NoTE + NoKASIII).
  • a transformant with improved productivity of medium chain fatty acids can be produced by promoting the expression of the KAS gene defined in the present invention. By culturing this transformant, the productivity of medium chain fatty acids can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

A lipid production method for cultivating a transformant having enhanced expression of a gene encoding protein (A) or (B) below and producing fatty acids or a lipid having the same as structural components. (A) Protein comprising an amino acid sequence represented by SEQ ID NO: 1. (B) Protein comprising an amino acid sequence having 67% or greater identity with the amino acid sequence of protein (A) and having β-ketoacyl-ACP synthase activity.

Description

脂質の製造方法Method for producing lipid
 本発明は、脂質の製造方法に関する。また、本発明は当該方法に用いるβ-ケトアシル-ACPシンターゼ、これをコードする遺伝子、及び当該遺伝子の発現を促進させた形質転換体に関する。 The present invention relates to a method for producing lipids. The present invention also relates to β-ketoacyl-ACP synthase used in the method, a gene encoding the same, and a transformant that promotes the expression of the gene.
 脂肪酸は脂質の主要構成成分の1つであり、生体内においてグリセリンとのエステル結合により生成するトリアシルグリセロール等の脂質(油脂)を構成する。また、多くの動植物において脂肪酸はエネルギー源として貯蔵され利用される物質でもある。動植物内に蓄えられた脂肪酸や脂質は、食用又は工業用として広く利用されている。
 例えば、炭素原子数12~18前後の高級脂肪酸を還元して得られる高級アルコールの誘導体は、界面活性剤として用いられている。アルキル硫酸エステル塩やアルキルベンゼンスルホン酸塩等は陰イオン性界面活性剤として利用されている。また、ポリオキシアルキレンアルキルエーテルやアルキルポリグリコシド等は非イオン性界面活性剤として利用されている。そしてこれらの界面活性剤は、いずれも洗浄剤や殺菌剤等に利用されている。同じ高級アルコールの誘導体であるアルキルアミン塩やモノ又はジアルキル4級アミン塩等のカチオン性界面活性剤は、繊維処理剤、毛髪リンス剤、殺菌剤等に日常的に利用されている。また、ベンザルコニウム型4級アンモニウム塩は殺菌剤や防腐剤等に日常的に利用されている。さらに、植物油脂はバイオディーゼル燃料の原料としても利用されている。
 このように脂肪酸や脂質の利用は多岐にわたり、そのため植物等において生体内での脂肪酸や脂質の生産性を向上させる試みが行われている。さらに、脂肪酸の用途や有用性はその炭素原子数に依存するため、脂肪酸の炭素原子数、即ち鎖長を制御する試みも行われている。例えば、ゲッケイジュ(Umbellularia californica(California bay))由来のアシル-ACP(acyl-carrier-protein)チオエステラーゼの導入により炭素原子数12の脂肪酸を蓄積させる方法(特許文献1、非特許文献1)等が提案されている。
Fatty acids are one of the main constituents of lipids and constitute lipids (oils and fats) such as triacylglycerol produced by ester bonds with glycerin in vivo. In many animals and plants, fatty acids are also stored and used as energy sources. Fatty acids and lipids stored in animals and plants are widely used for food or industry.
For example, derivatives of higher alcohols obtained by reducing higher fatty acids having about 12 to 18 carbon atoms are used as surfactants. Alkyl sulfate esters and alkylbenzene sulfonates are used as anionic surfactants. Polyoxyalkylene alkyl ethers, alkyl polyglycosides, and the like are used as nonionic surfactants. All of these surfactants are used as cleaning agents, disinfectants, and the like. Cationic surfactants such as alkylamine salts and mono- or dialkyl quaternary amine salts, which are derivatives of the same higher alcohol, are routinely used for fiber treatment agents, hair rinse agents, disinfectants, and the like. Benzalkonium-type quaternary ammonium salts are routinely used for bactericides and preservatives. Furthermore, vegetable oils and fats are also used as raw materials for biodiesel fuel.
As described above, fatty acids and lipids are widely used, and therefore, attempts have been made to improve the productivity of fatty acids and lipids in vivo in plants and the like. Furthermore, since the use and usefulness of fatty acids depend on the number of carbon atoms, attempts have been made to control the number of carbon atoms of fatty acids, that is, the chain length. For example, a method of accumulating fatty acid having 12 carbon atoms by introduction of acyl-ACP (acyl-carrier-protein) thioesterase derived from bay ( Umbellularia californica (California bay)) (Patent Document 1, Non-Patent Document 1), etc. Proposed.
 植物の脂肪酸合成経路は葉緑体に局在する。葉緑体ではアセチル-ACP(アシルキャリアプロテイン、acyl carrier protein)を出発物質とし、炭素鎖の伸長反応が繰り返され、最終的に炭素原子数16又は18のアシル-ACP(脂肪酸残基であるアシル基とACPとからなる複合体)が合成される。この脂肪酸合成経路に関与する酵素のうち、β-ケトアシル-ACPシンターゼ(β-Ketoacyl-acyl-carrier-protein synthase、以下「KAS」ともいう)はアシル基の鎖長制御に関与する酵素である。植物では、KAS I、KAS II、KAS III、KAS IV、のそれぞれ機能が異なる4種のKASが存在することが知られている。このうち、KAS IIIは鎖長伸長反応の開始段階で働き、炭素原子数2のアセチル-ACP(又はアセチル-CoA)を炭素原子数4のβ-ケトアシル-ACPに伸長する。それ以降の伸長反応には、KAS I、KAS II、及びKAS IVが関与する。KAS Iは主に炭素原子数16のパルミトイル-ACPまでの伸長反応に関与し、KAS IIは主に炭素原子数18のステアロイル-ACPまでの伸長反応に関与する。一方、KAS IVは炭素原子数6~14の中鎖アシル-ACPまでの伸長反応に関与するといわれている。
 植物や大腸菌において、KAS IIIを強化あるいは改変することで、短鎖又は中鎖の脂肪酸を蓄積させる方法等が提案されている(特許文献2、並びに非特許文献2及び3参照)。
Plant fatty acid synthesis pathway is localized in chloroplasts. In chloroplasts, acetyl-ACP (acyl carrier protein) is used as a starting material, and the carbon chain elongation reaction is repeated. Finally, acyl-ACP (acyl which is a fatty acid residue) having 16 or 18 carbon atoms is used. A complex comprising a group and an ACP) is synthesized. Among enzymes involved in this fatty acid synthesis pathway, β-ketoacyl-acyl-carrier-protein synthase (hereinafter also referred to as “KAS”) is an enzyme involved in the control of the acyl group chain length. In plants, it is known that there are four types of KAS having different functions of KAS I, KAS II, KAS III, and KAS IV. Among these, KAS III works at the initiation stage of the chain length extension reaction and extends acetyl-ACP (or acetyl-CoA) having 2 carbon atoms to β-ketoacyl-ACP having 4 carbon atoms. Subsequent elongation reactions involve KAS I, KAS II, and KAS IV. KAS I is mainly involved in the elongation reaction up to 16 carbon atoms palmitoyl-ACP, and KAS II is mainly involved in the elongation reaction up to 18 carbon atoms stearoyl-ACP. On the other hand, KAS IV is said to be involved in the elongation reaction up to medium chain acyl-ACP having 6 to 14 carbon atoms.
A method of accumulating short-chain or medium-chain fatty acids by enhancing or modifying KAS III in plants or Escherichia coli has been proposed (see Patent Document 2, and Non-Patent Documents 2 and 3).
 近年、バイオ燃料生産に有用であるとして、藻類が注目を集めている。藻類は、バイオディーゼル燃料として利用可能な脂質を光合成によって生産でき、しかも食料と競合しないことから、次世代のバイオマス資源として注目されている。また、藻類は、植物に比べ、高い脂質生産・蓄積能力を有するとの報告もある。藻類の脂質合成メカニズムやそれを応用した生産技術について研究が始まってはいるが、未解明な部分も多い。 In recent years, algae has attracted attention as being useful for biofuel production. Algae are attracting attention as next-generation biomass resources because they can produce lipids that can be used as biodiesel fuel by photosynthesis and do not compete with food. There are also reports that algae have a higher ability to produce and accumulate lipids than plants. Although research has begun on the algae lipid synthesis mechanism and production technology using it, there are many unexplained parts.
国際公開第92/20236号International Publication No. 92/20236 国際公開第2001/051647号International Publication No. 2001/051647
 本発明は、下記タンパク質(A)又は(B)をコードする遺伝子の発現を促進させた形質転換体を培養して脂肪酸又はこれを構成成分とする脂質を生産させる、脂質の製造方法に関する。
(A)配列番号1で表されるアミノ酸配列からなるタンパク質。
(B)前記タンパク質(A)のアミノ酸配列と同一性が67%以上のアミノ酸配列からなり、かつβ-ケトアシル-ACPシンターゼ活性(以下、「KAS活性」ともいう)を有するタンパク質。
The present invention relates to a method for producing a lipid, in which a transformant in which expression of a gene encoding the following protein (A) or (B) is promoted is cultured to produce a fatty acid or a lipid comprising the same.
(A) A protein comprising the amino acid sequence represented by SEQ ID NO: 1.
(B) A protein comprising an amino acid sequence having 67% or more identity with the amino acid sequence of the protein (A) and having β-ketoacyl-ACP synthase activity (hereinafter also referred to as “KAS activity”).
 また本発明は、前記タンパク質(A)又は(B)に関する。
 また本発明は、前記タンパク質(A)又は(B)をコードする遺伝子に関する。
 さらに本発明は、前記タンパク質(A)又は(B)をコードする遺伝子の発現を促進させた形質転換体に関する。
The present invention also relates to the protein (A) or (B).
The present invention also relates to a gene encoding the protein (A) or (B).
Furthermore, this invention relates to the transformant which promoted the expression of the gene which codes the said protein (A) or (B).
 本発明は、中鎖脂肪酸又はこれを構成成分とする脂質の生産性を向上させる、脂質の製造方法に関する。
 また本発明は、中鎖脂肪酸又はこれを構成成分とする脂質の生産性を向上させた形質転換体に関する。
The present invention relates to a method for producing a lipid, which improves the productivity of a medium chain fatty acid or a lipid comprising the same.
The present invention also relates to a transformant having improved productivity of medium-chain fatty acids or lipids comprising the same.
 本発明者らは、中鎖脂肪酸の合成に関与する酵素として、藻類の1種であるナンノクロロプシス属の藻類のKASを新たに同定した。そして、このKASの微生物内での発現を促進させた結果、生産される中鎖脂肪酸又はこれを構成成分とする脂質の生産性が有意に向上することを見出した。
 本発明はこれらの知見に基づいて完成するに至ったものである。
The present inventors newly identified KAS of algae belonging to the genus Nannochloropsis, which is a kind of algae, as an enzyme involved in the synthesis of medium chain fatty acids. As a result of accelerating the expression of KAS in microorganisms, the present inventors have found that the productivity of produced medium chain fatty acids or lipids containing them as a constituent component is significantly improved.
The present invention has been completed based on these findings.
 本発明の脂質の製造方法によれば、中鎖脂肪酸又はこれを構成成分とする脂質の生産性を向上させることができる。
 また本発明の形質転換体は、中鎖脂肪酸又はこれを構成成分とする脂質の生産性に優れる。
 本発明の上記及び他の特徴及び利点は、下記の記載からより明らかになるであろう。
According to the method for producing a lipid of the present invention, the productivity of a medium chain fatty acid or a lipid containing this as a constituent can be improved.
Moreover, the transformant of the present invention is excellent in productivity of medium chain fatty acids or lipids containing the same as a constituent component.
These and other features and advantages of the present invention will become more apparent from the following description.
 本明細書における「脂質」は、中性脂肪(トリアシルグリセロール等)、ろう、セラミド等の単純脂質;リン脂質、糖脂質、スルホ脂質等の複合脂質;及びこれらの脂質から誘導される、脂肪酸、アルコール類、炭化水素類等の誘導脂質を包含するものである。
 また本明細書において、脂肪酸や、脂肪酸を構成するアシル基の表記において「Cx:y」とあるのは、炭素原子数xで二重結合の数がyであることを表す。「Cx」は炭素原子数xの脂肪酸やアシル基を表す。
 さらに本明細書において、塩基配列及びアミノ酸配列の同一性は、Lipman-Pearson法(Science,1985,vol.227,p.1435-1441)によって計算される。具体的には、遺伝情報処理ソフトウェアGenetyx-Winのホモロジー解析(Search homology)プログラムを用いて、Unit size to compare(ktup)を2として解析を行うことにより算出される。
 また本明細書において「ストリンジェントな条件」としては、例えばMolecular Cloning-A LABORATORY MANUAL THIRD EDITION[Joseph Sambrook,David W.Russell.,Cold Spring Harbor Laboratory Press]記載の方法が挙げられる。例えば、6×SSC(1×SSCの組成:0.15M塩化ナトリウム、0.015Mクエン酸ナトリウム、pH7.0)、0.5%SDS、5×デンハート及び100mg/mLニシン精子DNAを含む溶液にプローブとともに65℃で8~16時間恒温し、ハイブリダイズさせる条件が挙げられる。
 さらに明細書において、遺伝子の「上流」とは、翻訳開始点からの位置ではなく、対象として捉えている遺伝子又は領域の5'側に続く領域を示す。一方、遺伝子の「下流」とは、対象として捉えている遺伝子又は領域の3'側に続く領域を示す。
As used herein, “lipid” refers to simple lipids such as neutral fats (such as triacylglycerol), waxes, and ceramides; complex lipids such as phospholipids, glycolipids, and sulfolipids; and fatty acids derived from these lipids And derived lipids such as alcohols and hydrocarbons.
In this specification, “Cx: y” in the notation of fatty acids and acyl groups constituting fatty acids means that the number of carbon atoms is x and the number of double bonds is y. “Cx” represents a fatty acid or acyl group having x carbon atoms.
Furthermore, in this specification, the identity of a base sequence and an amino acid sequence is calculated by the Lipman-Pearson method (Science, 1985, vol. 227, p. 1435-1441). Specifically, it is calculated by performing an analysis assuming that Unit size to compare (ktup) is 2 using the homology analysis (Search homology) program of genetic information processing software Genetyx-Win.
In this specification, “stringent conditions” include, for example, Molecular Cloning-A LABORATORY MANUAL THIRD EDITION [Joseph Sambrook, David W., et al. Russell., Cold Spring Harbor Laboratory Press]. For example, in a solution containing 6 × SSC (composition of 1 × SSC: 0.15M sodium chloride, 0.015M sodium citrate, pH 7.0), 0.5% SDS, 5 × Denhart and 100 mg / mL herring sperm DNA Examples of the conditions include hybridization with the probe at 65 ° C. for 8 to 16 hours.
Furthermore, in the specification, “upstream” of a gene indicates not a position from the translation start point but a region continuing on the 5 ′ side of the gene or region regarded as a target. On the other hand, the “downstream” of a gene indicates a region continuing 3 ′ side of the gene or region captured as a target.
 前記タンパク質(A)及び(B)(以下、「NoKASIII」ともいう)はKASの1種であり、炭素原子数2のアセチル-ACP(又はアセチル-CoA)から炭素原子数4のβ-ケトアシル-ACPへの伸長反応に関与するタンパク質である。配列番号1のアミノ酸配列からなるタンパク質は、ナンノクロロプシス属に属する藻類であるナンノクロロプシス・オキュラータ(Nannochloropsis oculata)NIES2145株由来のKASの1つである。 The proteins (A) and (B) (hereinafter, also referred to as “NoKASIII”) are one type of KAS, from acetyl-ACP (or acetyl-CoA) having 2 carbon atoms to β-ketoacyl- having 4 carbon atoms. It is a protein involved in the elongation reaction to ACP. The protein consisting of the amino acid sequence of SEQ ID NO: 1 is one of KAS derived from Nannochloropsis oculata NIES2145 strain, which is an algae belonging to the genus Nannochloropsis .
 KASは、脂肪酸合成経路においてアシル基の鎖長制御に関与する酵素である。植物の脂肪酸合成経路は一般的に葉緑体に局在する。葉緑体では、アセチル-ACP(又はアセチル-CoA)を出発物質とし、炭素鎖の伸長反応が繰り返され、最終的に炭素原子数16又は18のアシル-ACPが合成される。次いで、アシル-ACPチオエステラーゼ(以下、単に「TE」ともいう)の作用によってアシル-ACPのチオエステル結合が加水分解され、遊離の脂肪酸が生成する。
 脂肪酸合成の第一段階では、アセチル-ACP(又はアセチル-CoA)とマロニルACPとの縮合反応により、アセトアセチルACPが生成する。この反応をKASが触媒する。次いで、β-ケトアシル-ACPレダクターゼによりアセトアセチルACPのケト基が還元されてヒドロキシブチリルACPが生成する。続いて、β-ヒドロキシアシル-ACPデヒドラーゼによりヒドロキシブチリルACPが脱水され、クロトニルACPが生成する。最後に、エノイル-ACPレダクターゼによりクロトニルACPが還元されて、ブチリルACPが生成する。これら一連の反応により、アセチル-ACPからアシル基の炭素鎖が2個伸長されたブチリルACPが生成する。以下、同様の反応を繰り返すことで、アシル-ACPの炭素鎖が伸長し、最終的に炭素原子数16又は18のアシル-ACPが合成される。
KAS is an enzyme involved in the control of acyl chain length in the fatty acid synthesis pathway. Plant fatty acid synthesis pathways are generally located in the chloroplast. In the chloroplast, acetyl-ACP (or acetyl-CoA) is used as a starting material, and the carbon chain elongation reaction is repeated to finally synthesize acyl-ACP having 16 or 18 carbon atoms. Next, acyl-ACP thioesterase (hereinafter, also simply referred to as “TE”) acts to hydrolyze the thioester bond of acyl-ACP to produce a free fatty acid.
In the first step of fatty acid synthesis, acetoacetyl ACP is produced by a condensation reaction of acetyl-ACP (or acetyl-CoA) and malonyl ACP. This reaction is catalyzed by KAS. Subsequently, the keto group of acetoacetyl ACP is reduced by β-ketoacyl-ACP reductase to produce hydroxybutyryl ACP. Subsequently, hydroxybutyryl ACP is dehydrated by β-hydroxyacyl-ACP dehydrase to produce crotonyl ACP. Finally, crotonyl ACP is reduced by enoyl-ACP reductase to produce butyryl ACP. By a series of these reactions, butyryl ACP in which two carbon chains of the acyl group are extended from acetyl-ACP is generated. Thereafter, by repeating the same reaction, the carbon chain of acyl-ACP is extended, and finally acyl-ACP having 16 or 18 carbon atoms is synthesized.
 前記タンパク質(A)及び(B)はいずれも、β-ケトアシル-ACPシンターゼ活性(以下、「KAS活性」ともいう)を有する。本明細書において「KAS活性」とは、アセチル-ACP(又はアセチル-CoA)やアシル-ACPと、マロニルACPとの縮合反応を触媒する活性を意味する。
 タンパク質がKAS活性を有することは、例えば、宿主細胞内で機能するプロモーターの下流に前記タンパク質をコードする遺伝子を連結したDNAを、脂肪酸分解系が欠損した宿主細胞へ導入し、導入した遺伝子が発現する条件下で細胞を培養し、宿主細胞内又は培養液中の脂肪酸組成の変化を常法により分析することで確認できる。あるいは、宿主細胞内で機能するプロモーターの下流に前記タンパク質をコードする遺伝子を連結したDNAを宿主細胞へ導入し、導入した遺伝子が発現する条件下で細胞を培養した後、細胞の破砕液に対し、各種アシル-ACPを基質とした鎖長伸長反応を行うことにより確認できる。
Both the proteins (A) and (B) have β-ketoacyl-ACP synthase activity (hereinafter also referred to as “KAS activity”). As used herein, “KAS activity” means an activity that catalyzes the condensation reaction of acetyl-ACP (or acetyl-CoA) or acyl-ACP with malonyl ACP.
The fact that a protein has KAS activity means that, for example, a DNA in which a gene encoding the protein is linked downstream of a promoter that functions in the host cell is introduced into a host cell lacking the fatty acid degradation system, and the introduced gene is expressed. The cells can be cultured under such conditions, and changes in fatty acid composition in the host cells or in the culture medium can be confirmed by a conventional method. Alternatively, after introducing a DNA ligated with the gene encoding the protein downstream of a promoter that functions in the host cell into the host cell and culturing the cell under conditions in which the introduced gene is expressed, It can be confirmed by performing a chain length extension reaction using various acyl-ACPs as substrates.
 KASはその基質特異性によってKAS I、KAS II、KAS III、又はKAS IVに分類される。KAS IIIは、炭素原子数2のアセチル-ACP(又はアセチル-CoA)を基質とし、炭素原子数2から4の伸長反応を触媒する。KAS Iは、主に炭素原子数4から16の伸長反応を触媒し、炭素原子数16のパルミトイル-ACPを合成する。KAS IIは、主に炭素原子数18以上の長鎖アシル基への伸長反応を触媒し、長鎖アシル-ACPを合成する。KAS IVは主に炭素原子数6から14の伸長反応を触媒し、中鎖アシル-ACPを合成する。KAS I~IVは、阻害剤であるセルレニンに対する感受性が異なることが知られている。KAS I及びKAS IIはセルレニンに対して感受性を有し、KAS III及びKAS IVはセルレニンに対して感受性を有さない。 KAS is classified as KAS I, KAS II, KAS III, or KAS IV depending on its substrate specificity. KAS III uses acetyl-ACP (or acetyl-CoA) having 2 carbon atoms as a substrate and catalyzes an elongation reaction having 2 to 4 carbon atoms. KAS I mainly catalyzes the elongation reaction of 4 to 16 carbon atoms and synthesizes palmitoyl-ACP having 16 carbon atoms. KAS II mainly synthesizes long-chain acyl-ACPs by catalyzing the elongation reaction to long-chain acyl groups having 18 or more carbon atoms. KAS IV mainly catalyzes the elongation reaction of 6 to 14 carbon atoms to synthesize medium chain acyl-ACP. KAS I to IV are known to have different sensitivities to the inhibitor cerulenin. KAS I and KAS II are sensitive to cerulenin, and KAS III and KAS IV are not sensitive to cerulenin.
 アミノ酸配列及び塩基配列のBlastの結果から、前記タンパク質(A)及び(B)は、炭素原子数2のアセチル-ACP(又はアセチル-CoA)から炭素原子数4のβ-ケトアシル-ACPへの伸長反応に関与するタンパク質である、KAS III型のKASであると考えられる。
 後述の実施例で示すように、前記タンパク質(A)をコードする遺伝子の発現を促進した形質転換体では、炭素原子数12や14等の中鎖脂肪酸の生産性が向上する。KASIII型のKASである前記タンパク質(A)により短鎖のアシル-ACP量が増加し、鎖長伸長の基質が増加することで、各鎖長のアシル-ACPが増加したものと考えられる。また、前記タンパク質(A)の作用により基質が増えるので、TEの作用により切り出される脂肪酸量も増加するため、中鎖脂肪酸が増加したと考えられる。
 なお本明細書において「中鎖」とは、アシル基の炭素原子数が6以上14以下、好ましくは炭素原子数が8以上14以下、より好ましくは炭素原子数が10以上14以下、よりさらに好ましくは炭素原子数が12以上14以下、であることをいう。
From the results of Blast of the amino acid sequence and the base sequence, the proteins (A) and (B) were extended from acetyl-ACP having 2 carbon atoms (or acetyl-CoA) to β-ketoacyl-ACP having 4 carbon atoms. It is thought to be KAS type III KAS, which is a protein involved in the reaction.
As shown in Examples described later, in the transformant in which the expression of the gene encoding the protein (A) is promoted, productivity of medium chain fatty acids having 12 or 14 carbon atoms is improved. It is considered that the amount of acyl-ACP of each chain length is increased by increasing the amount of short-chain acyl-ACP and increasing the chain-length elongation substrate by the protein (A) which is KASIII type KAS. In addition, since the amount of the substrate increases due to the action of the protein (A), the amount of fatty acid cut out due to the action of TE also increases, so it is considered that the medium chain fatty acid increased.
In the present specification, “medium chain” means that the acyl group has 6 to 14 carbon atoms, preferably 8 to 14 carbon atoms, more preferably 10 to 14 carbon atoms, and still more preferably. Means that the number of carbon atoms is 12 or more and 14 or less.
 前記タンパク質(A)及び(B)のKAS活性については、例えば、宿主細胞内で機能するプロモーターの下流にタンパク質をコードする遺伝子を連結したDNAを、脂肪酸分解系が欠損した宿主細胞へ導入し、導入した遺伝子が発現する条件下で細胞を培養して、宿主細胞又は培養液中の脂肪酸組成の変化を常法により分析することで確認できる。また、上記の系に後述するTEを共発現させ、TEのみを発現させた場合の脂肪酸組成と比較することにより確認できる。また、宿主細胞内で機能するプロモーターの下流にタンパク質をコードする遺伝子を連結したDNAを、宿主細胞へ導入し、導入した遺伝子が発現する条件下で細胞を培養した後、細胞の破砕液に対し鎖長伸長反応を行うことにより確認できる。 Regarding the KAS activity of the proteins (A) and (B), for example, a DNA linking a gene encoding a protein downstream of a promoter that functions in the host cell is introduced into a host cell lacking the fatty acid degradation system, It can be confirmed by culturing cells under conditions where the introduced gene is expressed, and analyzing changes in the fatty acid composition in the host cells or culture medium by a conventional method. Moreover, it can confirm by co-expressing TE mentioned later to said system, and comparing with the fatty acid composition at the time of expressing only TE. In addition, after introducing a DNA linking a gene encoding a protein downstream of a promoter that functions in the host cell into the host cell and culturing the cell under conditions in which the introduced gene is expressed, This can be confirmed by performing a chain extension reaction.
 前記タンパク質(B)において、KAS活性の点から、前記タンパク質(A)のアミノ酸配列との同一性は70%以上が好ましく、74%以上がより好ましく、80%以上がより好ましく、85%以上がより好ましく、90%以上がより好ましく、92%以上がさらに好ましく、93%以上がより好ましく、94%以上がより好ましく、95%以上がより好ましく、96%以上がより好ましく、97%以上がより好ましく、98%以上がより好ましく、99%以上がさらに好ましい。また、前記タンパク質(B)として、前記タンパク質(A)のアミノ酸配列に、1又は複数個(例えば1個以上138個以下、好ましくは1個以上126個以下、より好ましくは1個以上109個以下、より好ましくは1個以上84個以下、より好ましくは1個以上63個以下、より好ましくは1個以上42個以下、より好ましくは1個以上33個以下、より好ましくは1個以上29個以下、より好ましくは1個以上25個以下、より好ましくは1個以上21個以下、より好ましくは1個以上16個以下、より好ましくは1個以上12個以下、より好ましくは1個以上8個以下、さらに好ましくは1個以上4個以下)のアミノ酸を欠失、置換、挿入又は付加したタンパク質が挙げられる。
 アミノ酸配列に変異を導入する方法としては、例えば、アミノ酸配列をコードする塩基配列に変異を導入する方法が挙げられる。変異を導入する方法としては、部位特異的な変異導入法が挙げられる。具体的な部位特異的変異の導入方法としては、SOE-PCRを利用した方法、ODA法、Kunkel法等が挙げられる。また、Site-Directed Mutagenesis System Mutan-SuperExpress Kmキット(タカラバイオ社)、Transformer TM Site-Directed Mutagenesisキット(Clonetech社)、KOD-Plus-Mutagenesis Kit(東洋紡社)等の市販のキットを利用することもできる。また、ランダムな遺伝子変異を与えた後、適当な方法により酵素活性の評価及び遺伝子解析を行うことにより目的遺伝子を取得することもできる。
In the protein (B), from the viewpoint of KAS activity, the identity with the amino acid sequence of the protein (A) is preferably 70% or more, more preferably 74% or more, more preferably 80% or more, more preferably 85% or more. More preferably, 90% or more is more preferable, 92% or more is more preferable, 93% or more is more preferable, 94% or more is more preferable, 95% or more is more preferable, 96% or more is more preferable, and 97% or more is more Preferably, 98% or more is more preferable, and 99% or more is more preferable. Further, as the protein (B), one or more (for example, 1 to 138, preferably 1 to 126, more preferably 1 to 109) amino acid sequences of the protein (A). , More preferably 1 to 84, more preferably 1 to 63, more preferably 1 to 42, more preferably 1 to 33, and more preferably 1 to 29 1 or more, 25 or less, more preferably 1 or more and 21 or less, more preferably 1 or more and 16 or less, more preferably 1 or more and 12 or less, more preferably 1 or more and 8 or less. And, more preferably, a protein in which 1 to 4 amino acids are deleted, substituted, inserted or added.
Examples of the method for introducing a mutation into an amino acid sequence include a method for introducing a mutation into a base sequence encoding an amino acid sequence. Examples of the method for introducing mutation include site-specific mutagenesis. Specific methods for introducing site-specific mutations include a method using SOE-PCR, an ODA method, a Kunkel method, and the like. Also, commercially available kits such as Site-Directed Mutagenesis System Mutan-SuperExpress Km Kit (Takara Bio), Transformer TM Site-Directed Mutagenesis Kit (Clonetech), KOD-Plus-Mutagenesis Kit (Toyobo) may be used. it can. Moreover, after giving a random gene mutation, the target gene can also be obtained by performing enzyme activity evaluation and gene analysis by an appropriate method.
 前記タンパク質(A)及び(B)は、通常の化学的手法、遺伝子工学的手法等により得ることができる。例えば、ナンノクロロプシス・オキュラータから単離、精製等することで天然物由来のタンパク質を取得することができる。また、配列番号1に示すアミノ酸配列情報をもとに人工的に化学合成することで、前記タンパク質(A)及び(B)を得ることができる。あるいは、遺伝子組み換え技術により、組換えタンパク質として前記タンパク質(A)及び(B)を作製してもよい。組換えタンパク質を作製する場合には、後述するβ-ケトアシル-ACPシンターゼ遺伝子を用いることができる。
 なお、ナンノクロロプシス・オキュラータ等の藻類は、私的又は公的な研究所等の保存機関より入手することができる。例えば、ナンノクロロプシス・オキュラータNIES-2145株は、国立環境研究所(NIES)から入手することができる。
The proteins (A) and (B) can be obtained by ordinary chemical techniques, genetic engineering techniques, and the like. For example, a protein derived from a natural product can be obtained by isolation, purification or the like from Nannochloropsis oculata. Further, the proteins (A) and (B) can be obtained by artificial chemical synthesis based on the amino acid sequence information shown in SEQ ID NO: 1. Alternatively, the proteins (A) and (B) may be prepared as recombinant proteins by genetic recombination techniques. When producing a recombinant protein, the β-ketoacyl-ACP synthase gene described later can be used.
In addition, algae such as Nannochloropsis oculata can be obtained from a preservation organization such as a private or public laboratory. For example, Nannochloropsis oculata strain NIES-2145 can be obtained from the National Institute for Environmental Studies (NIES).
 前記タンパク質(A)又は(B)をコードする遺伝子(以下、「KAS遺伝子」ともいう)の一例として、下記DNA(a)又は(b)からなる遺伝子(以下、「NoKASIII遺伝子」ともいう)が挙げられる。
 
(a)配列番号2で表される塩基配列からなるDNA。
(b)前記DNA(a)の塩基配列と同一性が62%以上の塩基配列からなり、かつKAS活性を有する前記タンパク質(A)又は(B)をコードするDNA。
 
 配列番号2の塩基配列は、配列番号1のアミノ酸配列からなるタンパク質(ナンノクロロプシス・オキュラータNIES2145株由来のKAS)をコードする遺伝子の塩基配列である。
As an example of a gene encoding the protein (A) or (B) (hereinafter also referred to as “KAS gene”), a gene comprising the following DNA (a) or (b) (hereinafter also referred to as “NoKASIII gene”). Can be mentioned.

(A) DNA consisting of the base sequence represented by SEQ ID NO: 2.
(B) DNA encoding the protein (A) or (B) having a base sequence having 62% or more identity with the base sequence of the DNA (a) and having KAS activity.

The base sequence of SEQ ID NO: 2 is the base sequence of a gene encoding a protein consisting of the amino acid sequence of SEQ ID NO: 1 (KAS derived from Nannochloropsis oculata strain NIES2145).
 前記DNA(b)において、KAS活性の点から、前記DNA(a)の塩基配列との同一性は70%以上が好ましく、74%以上がより好ましく、80%以上がより好ましく、85%以上がより好ましく、90%以上がより好ましく、92%以上がより好ましく、93%以上がより好ましく、94%以上がより好ましく、95%以上がより好ましく、96%以上がより好ましく、97%以上がより好ましく、98%以上がより好ましく、99%以上がさらに好ましい。
 また前記DNA(b)として、配列番号2で表される塩基配列において1又は複数個(例えば1個以上481個以下、好ましくは1個以上379個以下、より好ましくは1個以上329個以下、より好ましくは1個以上253個以下、より好ましくは1個以上189個以下、より好ましくは1個以上126個以下、より好ましくは1個以上101個以下、より好ましくは1個以上88個以下、より好ましくは1個以上75個以下、より好ましくは1個以上63個以下、より好ましくは1個以上50個以下、より好ましくは1個以上37個以下、より好ましくは1個以上25個以下、さらに好ましくは1個以上12個以下)の塩基が欠失、置換、挿入、又は付加されており、かつKAS活性を有するタンパク質をコードするDNAも好ましい。
 さらに前記DNA(b)として、前記DNA(a)と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつKAS活性を有するタンパク質をコードするDNAも好ましい。
In the DNA (b), from the viewpoint of KAS activity, the identity with the base sequence of the DNA (a) is preferably 70% or more, more preferably 74% or more, more preferably 80% or more, more preferably 85% or more. More preferably, 90% or more is more preferable, 92% or more is more preferable, 93% or more is more preferable, 94% or more is more preferable, 95% or more is more preferable, 96% or more is more preferable, and 97% or more is more Preferably, 98% or more is more preferable, and 99% or more is more preferable.
In addition, as the DNA (b), one or more (for example, 1 or more and 481 or less, preferably 1 or more and 379 or less, more preferably 1 or more and 329 or less) in the base sequence represented by SEQ ID NO: 2, More preferably 1 to 253, more preferably 1 to 189, more preferably 1 to 126, more preferably 1 to 101, more preferably 1 to 88, More preferably 1 or more and 75 or less, more preferably 1 or more and 63 or less, more preferably 1 or more and 50 or less, more preferably 1 or more and 37 or less, more preferably 1 or more and 25 or less, More preferably, DNA encoding a protein having 1 to 12 bases) deleted, substituted, inserted or added, and having KAS activity.
Furthermore, the DNA (b) is also preferably a DNA that hybridizes with a DNA comprising a base sequence complementary to the DNA (a) under a stringent condition and encodes a protein having KAS activity.
 前記KAS遺伝子の発現を促進させる方法としては、常法より適宜選択することができる。例えば、前記KAS遺伝子を宿主に導入する方法、前記KAS遺伝子をゲノム上に有する宿主において、当該遺伝子の発現調節領域(プロモーター、ターミネーター等)を改変する方法、などが挙げられる。
 以下本明細書において、目的のタンパク質をコードする遺伝子の発現を促進させたものを「形質転換体」ともいい、目的のタンパク質をコードする遺伝子の発現を促進させていないものを「宿主」又は「野生株」ともいう。
 本発明で用いる形質転換体は、宿主自体に比べ、中鎖脂肪酸又はこれを構成成分とする脂質の生産性(中鎖脂肪酸又はこれを構成成分とする脂質の生産量、生産される全脂肪酸中又は全脂質中に占める中鎖脂肪酸又はこれを構成成分とする脂質の割合(比率))が有意に向上する。またその結果、当該形質転換体では、脂質中の脂肪酸組成が改変される。そのため、当該形質転換体を用いた本発明は、特定の炭素原子数の脂質、特に中鎖脂肪酸又はこれを構成成分とする脂質、好ましくは炭素原子数6以上14以下の脂肪酸又はこれを構成成分とする脂質、より好ましくは炭素原子数8以上14以下の脂肪酸又はこれを構成成分とする脂質、より好ましくは炭素原子数が10以上14以下の脂肪酸又はこれを構成成分とする脂質、よりさらに好ましくは炭素原子数が12以上14以下の脂肪酸又はこれを構成成分とする脂質、の生産に好適に用いることができる。
 なお、宿主や形質転換体の脂肪酸及び脂質の生産性については、実施例で用いた方法により測定することができる。
The method for promoting the expression of the KAS gene can be appropriately selected from conventional methods. For example, a method of introducing the KAS gene into a host, a method of modifying an expression regulatory region (promoter, terminator, etc.) of the gene in a host having the KAS gene on the genome, and the like can be mentioned.
Hereinafter, in the present specification, one that promotes the expression of a gene encoding the target protein is also referred to as a “transformant”, and one that does not promote the expression of the gene encoding the target protein is referred to as “host” or “ Also referred to as “wild strain”.
The transformant used in the present invention, compared to the host itself, is a medium-chain fatty acid or lipid productivity comprising this (the production amount of the medium-chain fatty acid or lipid comprising this component, the total fatty acid produced Or the ratio (ratio) of the medium chain fatty acid in the total lipid or the lipid containing this as a constituent component is significantly improved. As a result, in the transformant, the fatty acid composition in the lipid is modified. Therefore, the present invention using the transformant is a lipid having a specific number of carbon atoms, particularly a medium chain fatty acid or a lipid comprising this, preferably a fatty acid having 6 to 14 carbon atoms or a constituent thereof. More preferably, a fatty acid having 8 to 14 carbon atoms or a lipid comprising this, more preferably a fatty acid having 10 to 14 carbon atoms or a lipid comprising this, more preferably Can be suitably used for the production of fatty acids having 12 to 14 carbon atoms or lipids comprising these.
The productivity of fatty acids and lipids in the host and transformant can be measured by the method used in the examples.
 前記KAS遺伝子を宿主に導入して前記遺伝子の発現を促進させる方法について説明する。
 前記KAS遺伝子は、通常の遺伝子工学的手法により得ることができる。例えば、配列番号1に示すアミノ酸配列又は配列番号2に示す塩基配列に基づいて、KAS遺伝子を人工的に合成できる。KAS遺伝子の合成は、例えば、インビトロジェン社等のサービスを利用することができる。また、ナンノクロロプシス・オキュラータからクローニングによって取得することもできる。例えば、Molecular Cloning-A LABORATORY MANUAL THIRD EDITION[Joseph Sambrook,David W.Russell,Cold Spring Harbor Laboratory Press(2001)]記載の方法等により行うことができる。また、実施例で用いたナンノクロロプシス・オキュラータNIES-2145は、国立環境研究所(NIES)より入手することができる。
A method for introducing the KAS gene into a host to promote the expression of the gene will be described.
The KAS gene can be obtained by ordinary genetic engineering techniques. For example, the KAS gene can be artificially synthesized based on the amino acid sequence shown in SEQ ID NO: 1 or the base sequence shown in SEQ ID NO: 2. For the synthesis of the KAS gene, for example, services such as Invitrogen can be used. It can also be obtained by cloning from Nannochloropsis oculata. For example, Molecular Cloning-A LABORATORY MANUAL THIRD EDITION [Joseph Sambrook, David W. Russell, Cold Spring Harbor Laboratory Press (2001)]. In addition, Nannochloropsis oculata NIES-2145 used in the examples can be obtained from the National Institute for Environmental Studies (NIES).
 本発明で好ましく用いることができる形質転換体は、前記KAS遺伝子を常法により前記宿主に導入することで得られる。具体的には、前記KAS遺伝子を宿主細胞中で発現させることのできる組換えベクターや遺伝子発現カセットを調製し、これを宿主細胞に導入して宿主細胞を形質転換させることにより作製できる。 A transformant that can be preferably used in the present invention can be obtained by introducing the KAS gene into the host by a conventional method. Specifically, it can be prepared by preparing a recombinant vector or gene expression cassette capable of expressing the KAS gene in a host cell, introducing it into the host cell, and transforming the host cell.
 形質転換体の宿主としては通常用いられるものより適宜選択することができる。本発明で用いることができる宿主としては、微生物(藻類や微細藻類を含む)、植物体、及び動物体が挙げられる。製造効率及び得られた脂質の利用性の点から、宿主は微生物又は植物体であることが好ましく、微生物であることがより好ましく、微細藻類であることがさらに好ましい。
 前記微生物は原核生物、真核生物のいずれであってもよく、エシェリキア(Escherichia)属の微生物やバシラス(Bacillus)属の微生物、シネコシスティス(Synechocystis)属の微生物、シネココッカス(Synechococcus)属の微生物等の原核生物、又は酵母や糸状菌等の真核微生物を用いることができる。なかでも、脂質生産性の観点から、大腸菌(Escherichia coli)、枯草菌(Bacillus subtilis)、赤色酵母(Rhodosporidium toruloides)、又はモルチエレラ・エスピー(Mortierella sp.)が好ましく、大腸菌がより好ましい。
 前記藻類や微細藻類としては、遺伝子組換え手法が確立している観点から、クラミドモナス(Chlamydomonas)属の藻類、クロレラ(Chlorella)属の藻類、ファエオダクティラム(Phaeodactylum)属の藻類、又はナンノクロロプシス属の藻類が好ましく、ナンノクロロプシス属の藻類がより好ましい。ナンノクロロプシス属の藻類の具体例としては、ナンノクロロプシス・オキュラータ、ナンノクロロプシス・ガディタナ(Nannochloropsis gaditana)、ナンノクロロプシス・サリナ(Nannochloropsis salina)、ナンノクロロプシス・オセアニカ(Nannochloropsis oceanica)、ナンノクロロプシス・アトムス(Nannochloropsis atomus)、ナンノクロロプシス・マキュラタ(Nannochloropsis maculata)、ナンノクロロプシス・グラニュラータ(Nannochloropsis granulata)、ナンノクロロプシス・エスピー(Nannochloropsis sp.)等が挙げられる。なかでも、脂質生産性の観点から、ナンノクロロプシス・オキュラータ、又はナンノクロロプシス・ガディタナが好ましく、ナンノクロロプシス・オキュラータがより好ましい。
 前記植物体としては、種子に脂質を高含有する観点から、シロイヌナズナ(Arabidopsis thaliana)、西洋アブラナ(Brassica napus)、アブラナ(Brassica rapa)、ココヤシ(Cocos nucifera)、パーム(Elaeis guineensis)、クフェア、ダイズ(Glycine max)、トウモロコシ(Zea mays)、イネ(Oryza sativa)、ヒマワリ(Helianthus annuus)、クスノキ(Cinnamomum camphora)、又はヤトロファ(Jatropha curcas)が好ましく、シロイヌナズナがより好ましい。
The host for the transformant can be appropriately selected from those usually used. Examples of hosts that can be used in the present invention include microorganisms (including algae and microalgae), plants, and animals. From the viewpoint of production efficiency and availability of the obtained lipid, the host is preferably a microorganism or a plant, more preferably a microorganism, and even more preferably a microalgae.
The microorganism may be either prokaryotic, eukaryotic, Escherichia (Escherichia) genus microorganisms or Bacillus (Bacillus) genus microorganisms, Synechocystis (Synechocystis) microorganism of the genus, Synechococcus (Synechococcus) genus microorganism of Prokaryotes or eukaryotic microorganisms such as yeast and filamentous fungi can be used. Among these, Escherichia coli , Bacillus subtilis , red yeast ( Rhodosporidium toruloides ), or Mortierella sp. Is preferred, and Escherichia coli is more preferred from the viewpoint of lipid productivity.
As the algae and micro-algae, from the viewpoint of gene recombination techniques has been established, Chlamydomonas (Chlamydomonas) genus algae, Chlorella (Chlorella) genus algae, Faye Oda Kuti ram (Phaeodactylum) genus algae, or Nan'nokuroro Algae of the genus Psis are preferred, and algae of the genus Nannochloropsis are more preferred. Specific examples of the algae of the genus Nannochloropsis include Nannochloropsis gaditana , Nannochloropsis salina , Nannochloropsis oceanica , Nannochloropsis oceanica , Nannochloropsis oceanica Examples thereof include Nannochloropsis atomus , Nannochloropsis maculata , Nannochloropsis granulata , Nannochloropsis sp. Among these, from the viewpoint of lipid productivity, Nannochloropsis oculata or Nannochloropsis gaditana is preferable, and Nannochloropsis oculata is more preferable.
As the plant body, Arabidopsis thaliana , Brassica napus , Brassica rapa , Cocos nucifera , Palm ( Elaeis guineensis ), caffe, soybean, from the viewpoint of high lipid content in seeds ( Glycine max ), corn ( Zea mays ), rice ( Oryza sativa ), sunflower ( Helianthus annuus ), camphor ( Cinnamomum camphora ), or jatropha ( Jatropha curcas ) are preferable, and Arabidopsis is more preferable.
 遺伝子発現用プラスミドベクター又は遺伝子発現カセットの母体となるベクター(プラスミド)としては、目的のタンパク質をコードする遺伝子を宿主に導入することができ、宿主細胞内で当該遺伝子を発現させることができるベクターであればよい。例えば、導入する宿主の種類に応じたプロモーターやターミネーター等の発現調節領域を有するベクターであって、複製開始点や選択マーカー等を有するベクターを用いることができる。また、プラスミド等の染色体外で自立増殖・複製するベクターであってもよいし、染色体内に組み込まれるベクターであってもよい。
 本発明で好ましく用いることができる発現用ベクターとしては、微生物を宿主とする場合には、例えば、pBluescript(pBS) II SK(-)(Stratagene社製)、pSTV系ベクター(タカラバイオ社製)、pUC系ベクター(宝酒造社製)、pET系ベクター(タカラバイオ社製)、pGEX系ベクター(GEヘルスケア社製)、pCold系ベクター(タカラバイオ社製)、pHY300PLK(タカラバイオ社製)、pUB110(Mckenzie,T.et al.,1986,Plasmid 15(2),p.93-103)、pBR322(タカラバイオ社製)、pRS403(ストラタジーン社製)、及びpMW218/219(ニッポンジーン社製)が挙げられる。特に、宿主が大腸菌の場合は、pBluescript II SK(-)、又はpMW218/219が好ましく用いられる。
 藻類又は微細藻類を宿主とする場合には、例えば、pUC19(タカラバイオ社製)、P66(Chlamydomonas Center)、P-322(Chlamydomonas Center)、pPha-T1(Yangmin Gong,et al.,Journal of Basic Microbiology,2011,vol.51,p.666-672参照)、及びpJET1(コスモ・バイオ社製)が挙げられる。特に、宿主がナンノクロロプシス属に属する藻類の場合は、pUC19、pPha-T1、又はpJET1が好ましく用いられる。また、宿主がナンノクロロプシス属に属する藻類の場合には、Oliver Kilian,et al.,Proceedings of the National Academy of Sciences of the United States of America,2011,vol.108(52)の記載の方法を参考にして、目的の遺伝子、プロモーター及びターミネーターからなるDNA断片(遺伝子発現カセット)を用いて宿主を形質転換することもできる。このDNA断片としては、例えば、PCRにより増幅したDNA断片や制限酵素で切断したDNA断片が挙げられる。
 植物細胞を宿主とする場合には、例えば、pRI系ベクター(タカラバイオ社製)、pBI系ベクター(クロンテック社製)、及びIN3系ベクター(インプランタイノベーションズ社製)が挙げられる。特に、宿主がシロイヌナズナの場合は、pRI系ベクター又はpBI系ベクターが好ましく用いられる。
As a plasmid vector for gene expression or a vector (plasmid) serving as a base of a gene expression cassette, a gene capable of introducing a gene encoding a target protein into a host and expressing the gene in a host cell. I just need it. For example, a vector having an expression regulatory region such as a promoter or terminator according to the type of host to be introduced, and a vector having a replication origin or a selection marker can be used. Further, it may be a vector that autonomously grows and replicates outside the chromosome, such as a plasmid, or a vector that is integrated into the chromosome.
As an expression vector that can be preferably used in the present invention, when a microorganism is used as a host, for example, pBluescript (pBS) II SK (-) (Stratagene), pSTV vector (Takara Bio), pUC vector (Takara Shuzo), pET vector (Takara Bio), pGEX vector (GE Healthcare), pCold vector (Takara Bio), pHY300PLK (Takara Bio), pUB110 ( Mckenzie, T. et al., 1986, Plasmid 15 (2), p. 93-103), pBR322 (Takara Bio), pRS403 (Stratagene), and pMW218 / 219 (Nippon Gene) It is done. In particular, when the host is Escherichia coli, pBluescript II SK (−) or pMW218 / 219 is preferably used.
When using algae or microalgae as a host, for example, pUC19 (manufactured by Takara Bio Inc.), P66 (Chlamydomonas Center), P-322 (Chlamydomonas Center), pPha-T1 (Yangmin Gong, et al., Journal of Basic Microbiology, 2011, vol. 51, p.666-672), and pJET1 (manufactured by Cosmo Bio). In particular, when the host is an algae belonging to the genus Nannochloropsis, pUC19, pPha-T1, or pJET1 is preferably used. When the host is an algae belonging to the genus Nannochloropsis, Oliver Kilian, et al., Proceedings of the National Academy of Sciences of the United States of America, 2011, vol. With reference to the method described in 108 (52), a host can also be transformed with a DNA fragment (gene expression cassette) comprising a target gene, a promoter and a terminator. Examples of the DNA fragment include a DNA fragment amplified by PCR and a DNA fragment cleaved with a restriction enzyme.
When plant cells are used as hosts, for example, pRI vectors (manufactured by Takara Bio Inc.), pBI vectors (manufactured by Clontech), and IN3 vectors (manufactured by Implanta Innovations) can be mentioned. In particular, when the host is Arabidopsis thaliana, pRI vectors or pBI vectors are preferably used.
 また、前記発現ベクターに組み込んだ目的のタンパク質をコードする遺伝子の発現を調整するプロモーターの種類も、使用する宿主の種類に応じて適宜選択することができる。本発明で好ましく用いることができるプロモーターとしては、lacプロモーター、trpプロモーター、tacプロモーター、trcプロモーター、T7プロモーター、SpoVGプロモーター、イソプロピルβ-D-1-チオガラクトピラノシド(IPTG)の添加によって誘導可能な誘導体に関するプロモーター、Rubiscoオペロン(rbc)、PSI反応中心タンパク質(psaAB)、PSIIのD1タンパク質(psbA)、カリフラワーモザイルウイルス35SRNAプロモーター、ハウスキーピング遺伝子プロモーター(例えば、チューブリンプロモーター、アクチンプロモーター、ユビキチンプロモーター等)、西洋アブラナ又はアブラナ由来Napin遺伝子プロモーター、植物由来Rubiscoプロモーター、ナンノクロロプシス属由来のビオラキサンチン/クロロフィルa結合タンパク質遺伝子のプロモーター(VCP1プロモーター、VCP2プロモーター)(Oliver Kilian,et al.,Proceedings of the National Academy of Sciences of the United States of America,2011,vol.108(52))、及びナンノクロロプシス属由来のオレオシン様タンパクLDSP(lipid droplet surface protein)遺伝子のプロモーター(Astrid Vieler, et al., PLOS Genetics, 2012;8(11):e1003064. doi: 10.1371)が挙げられる。本発明で宿主としてナンノクロロプシスを用いる場合、ビオラキサンチン/クロロフィルa結合タンパク質遺伝子のプロモーターや、ナンノクロロプシス属由来のオレオシン様タンパクLDSP遺伝子のプロモーターを好ましく用いることができる。
 また、目的のタンパク質をコードする遺伝子が組み込まれたことを確認するための選択マーカーの種類も、使用する宿主の種類に応じて適宜選択することができる。本発明で好ましく用いることができる選択マーカーとしては、アンピシリン耐性遺伝子、クロラムフェニコール耐性遺伝子、エリスロマイシン耐性遺伝子、ネオマイシン耐性遺伝子、カナマイシン耐性遺伝子、スペクチノマイシン耐性遺伝子、テトラサイクリン耐性遺伝子、ブラストサイジンS耐性遺伝子、ビアラフォス耐性遺伝子、ゼオシン耐性遺伝子、パロモマイシン耐性遺伝子、及びハイグロマイシン耐性遺伝子等の薬剤耐性遺伝子が挙げられる。さらに、栄養要求性に関連する遺伝子の欠損等を選択マーカー遺伝子として使用することもできる。
In addition, the type of promoter that regulates the expression of the gene encoding the target protein incorporated in the expression vector can be appropriately selected according to the type of host used. Promoters that can be preferably used in the present invention can be induced by the addition of lac promoter, trp promoter, tac promoter, trc promoter, T7 promoter, SpoVG promoter, isopropyl β-D-1-thiogalactopyranoside (IPTG). Promoters related to various derivatives, Rubisco operon (rbc), PSI reaction center protein (psaAB), PSII D1 protein (psbA), cauliflower mosil virus 35SRNA promoter, housekeeping gene promoter (eg, tubulin promoter, actin promoter, ubiquitin promoter) etc.), rape or oilseed rape derived Napin gene promoter, a plant-derived Rubisco promoters, Nannochloropsis from the genus violaxanthin / chlorophyll a binding protein gene promoter VCP1 promoter, VCP2 promoter) (Oliver Kilian, et al., Proceedings of the National Academy of Sciences of the United States of America, 2011, vol. 108 (52)), and an oleosin-like protein LDSP from the genus Nannochloropsis ( lipid droplet surface protein) gene promoter (Astrid Vieler, et al., PLOS Genetics, 2012; 8 (11): e1003064. doi: 10.1371). When Nannochloropsis is used as a host in the present invention, the promoter of a violaxanthin / chlorophyll a binding protein gene or the promoter of an oleosin-like protein LDSP gene derived from the genus Nannochloropsis can be preferably used.
In addition, the type of selectable marker for confirming that the gene encoding the target protein has been incorporated can be appropriately selected according to the type of host used. Selectable markers that can be preferably used in the present invention include ampicillin resistance gene, chloramphenicol resistance gene, erythromycin resistance gene, neomycin resistance gene, kanamycin resistance gene, spectinomycin resistance gene, tetracycline resistance gene, blasticidin S Drug resistance genes such as resistance genes, bialaphos resistance genes, zeocin resistance genes, paromomycin resistance genes, and hygromycin resistance genes. Furthermore, a gene deficiency associated with auxotrophy can be used as a selectable marker gene.
 目的のタンパク質をコードする遺伝子の前記ベクターへの導入は、制限酵素処理やライゲーション等の常法により行うことができる。
 また、形質転換方法は、使用する宿主の種類に応じて常法より適宜選択することができる。例えば、カルシウムイオンを用いる形質転換方法、一般的なコンピテントセル形質転換方法、プロトプラスト形質転換法、エレクトロポレーション法、LP形質転換方法、アグロバクテリウムを用いた方法、パーティクルガン法等が挙げられる。宿主としてナンノクロロプシス属の藻類を用いる場合、Randor Radakovits, et al.,Nature Communications,DOI:10.1038/ncomms1688,2012等に記載のエレクトロポレーション法を用いて形質転換を行うこともできる。
Introduction of a gene encoding the target protein into the vector can be performed by a conventional method such as restriction enzyme treatment or ligation.
The transformation method can be appropriately selected from conventional methods according to the type of host used. For example, transformation methods using calcium ions, general competent cell transformation methods, protoplast transformation methods, electroporation methods, LP transformation methods, methods using Agrobacterium, particle gun methods, etc. . When an algae belonging to the genus Nannochloropsis is used as a host, transformation can also be performed using the electroporation method described in Randor Radakovits, et al., Nature Communications, DOI: 10.1038 / ncomms1688, 2012, or the like.
 目的遺伝子断片が導入された形質転換体の選択は、選択マーカー等を利用することで行うことができる。例えば、薬剤耐性遺伝子が、形質転換時に目的DNA断片とともに宿主細胞中に導入された結果、形質転換体が獲得する薬剤耐性を指標に行うことができる。また、ゲノムを鋳型としたPCR法等によって、目的DNA断片の導入を確認することもできる。 <Selection of transformant introduced with target gene fragment> can be performed by using a selection marker or the like. For example, a drug resistance gene acquired by a transformant as a result of introduction of a drug resistance gene into a host cell together with a target DNA fragment at the time of transformation can be used as an indicator. In addition, the introduction of the target DNA fragment can be confirmed by a PCR method using a genome as a template.
 前記KAS遺伝子をゲノム上に有する宿主において、当該遺伝子の発現調節領域を改変して、前記遺伝子の発現を促進させる方法について説明する。
 「発現調節領域」とは、プロモーターやターミネーターを示し、これらの配列は一般に隣接する遺伝子の発現量(転写量、翻訳量)の調節に関与している。ゲノム上に前記KAS遺伝子を有する宿主においては、当該遺伝子の発現調節領域を改変して前記KAS遺伝子の発現を促進させることで、中鎖脂肪酸又はこれを構成成分とする脂質の生産性を向上させることができる。
A method for promoting expression of the gene by modifying the expression regulatory region of the gene in a host having the KAS gene on the genome will be described.
“Expression regulatory region” refers to a promoter or terminator, and these sequences are generally involved in regulating the expression level (transcription level, translation level) of adjacent genes. In a host having the KAS gene on the genome, the expression regulatory region of the gene is modified to promote the expression of the KAS gene, thereby improving the productivity of medium-chain fatty acids or lipids composed thereof. be able to.
 発現調節領域の改変方法としては、例えばプロモーターの入れ替えが挙げられる。ゲノム上に前記KAS遺伝子を有する宿主において、当該遺伝子のプロモーター(以下、「KASプロモーター」ともいう)を、より転写活性の高いプロモーターに入れ替えることで、前記KAS遺伝子の発現を促進させることができる。例えば、ゲノム上に前記KAS遺伝子を有する宿主の1つであるナンノクロロプシス・オキュラータNIES-2145株においては、配列番号50に示す塩基配列からなるDNA配列の直下にNoKASIII遺伝子が存在しており、配列番号50に示す塩基配列からなるDNA配列中にプロモーター領域が存在している。この配列番号50に示す塩基配列からなるDNA配列の一部又は全部をより転写活性の高いプロモーターに入れ替えることで、前記KAS遺伝子の発現を促進させることができる。 Examples of the method for modifying the expression regulatory region include promoter replacement. In a host having the KAS gene on the genome, the expression of the KAS gene can be promoted by replacing the promoter of the gene (hereinafter also referred to as “KAS promoter”) with a promoter having higher transcriptional activity. For example, in Nannochloropsis oculata strain NIES-2145, which is one of the hosts having the KAS gene on the genome, the NoKASIII gene is present immediately below the DNA sequence consisting of the base sequence shown in SEQ ID NO: 50. A promoter region is present in the DNA sequence consisting of the base sequence shown in SEQ ID NO: 50. By replacing part or all of the DNA sequence consisting of the base sequence shown in SEQ ID NO: 50 with a promoter having higher transcriptional activity, the expression of the KAS gene can be promoted.
 KASプロモーターの入れ替えに用いるプロモーターとしては特に限定されず、KASプロモーターよりも転写活性が高く、中鎖脂肪酸又はこれを構成成分とする脂質の生産に適したものから適宜選択することができる。
 宿主としてナンノクロロプシスを用いる場合には、チューブリンプロモーター、ヒートショックプロテインプロモーター、上述のビオラキサンチン/クロロフィルa結合タンパク質遺伝子のプロモーター(VCP1プロモーター(配列番号22)、VCP2プロモーター)、又はナンノクロロプシス属由来のオレオシン様タンパクLDSP遺伝子のプロモーター(配列番号49)を好ましく用いることができる。中鎖脂肪酸又はこれを構成成分とする脂質の生産性向上の観点から、ビオラキサンチン/クロロフィルa結合タンパク質遺伝子のプロモーター又はLDSP遺伝子のプロモーターがより好ましい。
The promoter used for replacement of the KAS promoter is not particularly limited, and can be appropriately selected from those having higher transcriptional activity than the KAS promoter and suitable for the production of medium chain fatty acids or lipids comprising them.
When Nannochloropsis is used as a host, a tubulin promoter, a heat shock protein promoter, a promoter of the above-mentioned violaxanthin / chlorophyll a binding protein gene (VCP1 promoter (SEQ ID NO: 22), VCP2 promoter), or Nannochloropsis genus The promoter (SEQ ID NO: 49) of the derived oleosin-like protein LDSP gene can be preferably used. From the viewpoint of improving the productivity of medium-chain fatty acids or lipids containing these as constituents, the promoter of the violaxanthin / chlorophyll a-binding protein gene or the promoter of the LDSP gene is more preferable.
 前述のプロモーターの改変は、相同組換えなどの常法に従い行うことができる。具体的には、標的とするプロモーターの上流、下流領域を含み、標的プロモーターに代えて別のプロモーターを含む直鎖状のDNA断片を構築し、これを宿主細胞に取り込ませ、宿主ゲノムの標的プロモーターの上流側と下流側とで2回交差の相同組換えを起こす。その結果、ゲノム上の標的プロモーターが別のプロモーター断片と置換され、プロモーターを改変することができる。
 このような相同組換えによる標的プロモーターの改変方法は、例えば、Besher et al.,Methods in molecular biology,1995,vol.47,p.291-302等の文献を参考に行うことができる。特に、宿主がナンノクロロプシス属に属する藻類の場合、Oliver Kilian,et al.,Proceedings of the National Academy of Sciences of the United States of America,2011,vol.108(52)等の文献を参考にして、相同組換え法によりゲノム中の特定の領域を改変することができる。
The above-described promoter modification can be performed according to a conventional method such as homologous recombination. Specifically, a linear DNA fragment containing upstream and downstream regions of the target promoter and containing another promoter instead of the target promoter is constructed and incorporated into the host cell, and the target promoter of the host genome Two homologous recombination occurs at the upstream and downstream side of. As a result, the target promoter on the genome is replaced with another promoter fragment, and the promoter can be modified.
Such a method for modifying a target promoter by homologous recombination is described in, for example, Besher et al., Methods in molecular biology, 1995, vol. 47, p. Reference can be made to documents such as 291-302. In particular, when the host is an algae belonging to the genus Nannochloropsis, Oliver Kilian, et al., Proceedings of the National Academy of Sciences of the United States of America, 2011, vol. A specific region in the genome can be modified by homologous recombination with reference to literature such as 108 (52).
 本発明の形質転換体は、前記タンパク質(A)又は(B)をコードする遺伝子に加えて、TEをコードする遺伝子(以下、「TE遺伝子」ともいう)の発現も促進されていることが好ましい。
 前述したように、TEは、KAS等の脂肪酸合成酵素によって合成されたアシル-ACPのチオエステル結合を加水分解し、遊離の脂肪酸を生成する酵素である。TEの作用によってACP上での脂肪酸合成が終了し、切り出された脂肪酸は多価不飽和脂肪酸の合成やトリアシルグリセロール(以下、「TAG」ともいう)等の合成に供される。そのため、KAS遺伝子に加えてTE遺伝子の発現を促進することで、脂質の製造に用いる形質転換体の脂質の生産性、特に脂肪酸の生産性を一層向上させることができる。さらに、後述の実施例でも示すように、KAS遺伝子に加えてTE遺伝子の発現を促進することで、各脂肪酸量の総和(総脂肪酸量)も向上させることができる。
 本発明で用いることができるTEは、アシル-ACPチオエステラーゼ活性(以下、「TE活性」ともいう)を有するタンパク質であればよい。ここで「TE活性」とは、アシル-ACPのチオエステル結合を加水分解する活性をいう。
The transformant of the present invention preferably promotes expression of a gene encoding TE (hereinafter also referred to as “TE gene”) in addition to the gene encoding the protein (A) or (B). .
As described above, TE is an enzyme that hydrolyzes the thioester bond of acyl-ACP synthesized by a fatty acid synthase such as KAS to produce free fatty acid. The fatty acid synthesis on the ACP is completed by the action of TE, and the cut fatty acid is used for synthesis of polyunsaturated fatty acid, triacylglycerol (hereinafter also referred to as “TAG”) and the like. Therefore, by promoting the expression of the TE gene in addition to the KAS gene, it is possible to further improve the lipid productivity, particularly the fatty acid productivity, of the transformant used for lipid production. Furthermore, as shown also in the below-mentioned Example, the sum total of each fatty acid amount (total fatty acid amount) can also be improved by promoting the expression of TE gene in addition to KAS gene.
The TE that can be used in the present invention may be a protein having acyl-ACP thioesterase activity (hereinafter also referred to as “TE activity”). Here, “TE activity” refers to an activity of hydrolyzing the thioester bond of acyl-ACP.
 TEは、基質であるアシル-ACPを構成するアシル基(脂肪酸残基)の炭素原子数や不飽和結合数によって異なる反応特異性を示す複数のTEが存在していることが知られている。よってTEはKASと同様、生体内での脂肪酸組成を決定する重要なファクターであると考えられている。また、TEをコードする遺伝子を元来有していない宿主を用いる場合、TEをコードする遺伝子の発現を促進させることが好ましい。また、前記KAS遺伝子の発現を促進させることにより、中鎖脂肪酸の生産性が向上する。よって、中鎖アシル-ACPに対する基質特異性を有するTEをコードする遺伝子の発現を促進させることが好ましい。このような遺伝子を導入することで、中鎖脂肪酸の生産性を一層向上させることができる。 It is known that TE has a plurality of TEs having different reaction specificities depending on the number of carbon atoms and the number of unsaturated bonds of the acyl group (fatty acid residue) constituting the substrate acyl-ACP. Thus, like KAS, TE is considered to be an important factor that determines the fatty acid composition in vivo. In addition, when a host that originally does not have a gene encoding TE is used, it is preferable to promote the expression of the gene encoding TE. Moreover, by promoting the expression of the KAS gene, the productivity of medium chain fatty acids is improved. Therefore, it is preferable to promote the expression of a gene encoding TE having substrate specificity for medium chain acyl-ACP. By introducing such a gene, the productivity of medium chain fatty acids can be further improved.
 本発明で用いることができるTEは、通常のTEや、それらと機能的に均等なタンパク質から、宿主の種類等に応じて適宜選択することができる。
 例えば、Cuphea calophylla subsp. mesostemon由来のTE(GenBank ABB71581);Cinnamomum camphora由来のTE(GenBank AAC49151.1);Myristica fragrans由来のTE(GenBank AAB71729);Myristica fragrans由来のTE(GenBank AAB71730);Cuphea lanceolata由来のTE(GenBank CAA54060);Cuphea hookeriana由来のTE(GenBank Q39513);Ulumus americana由来のTE(GenBank AAB71731);Sorghum bicolor由来のTE(GenBank EER87824);Sorghum bicolor由来のTE(GenBank EER88593);Cocos nucifera由来のTE(CnFatB1:Jing et al. BMC Biochemistry 2011, 12:44参照);Cocos nucifera由来のTE(CnFatB2:Jing et al.,BMC Biochemistry,2011,12:44参照);Cuphea viscosissima由来のTE(CvFatB1:Jing et al.,BMC Biochemistry,2011,12:44参照);Cuphea viscosissima由来のTE(CvFatB2:Jing et al.,BMC Biochemistry 2011,12:44参照);Cuphea viscosissima由来のTE(CvFatB3:Jing et al.,BMC Biochemistry,2011,12:44参照);Elaeis guineensis由来のTE(GenBank AAD42220);Desulfovibrio vulgaris由来のTE(GenBank ACL08376);Bacteriodes fragilis由来のTE(GenBank CAH09236);Parabacteriodes distasonis由来のTE(GenBank ABR43801);Bacteroides thetaiotaomicron由来のTE(GenBank AAO77182);Clostridium asparagiforme由来のTE(GenBank EEG55387);Bryanthella formatexigens由来のTE(GenBank EET61113);Geobacillus sp.由来のTE(GenBank EDV77528);Streptococcus dysgalactiae由来のTE(GenBank BAH81730);Lactobacillus brevis由来のTE(GenBank ABJ63754);Lactobacillus plantarum由来のTE(GenBank CAD63310);Anaerococcus tetradius由来のTE(GenBank EEI82564);Bdellovibrio bacteriovorus由来のTE(GenBank CAE80300);Clostridium thermocellum由来のTE(GenBank ABN54268);ココヤシ由来のTE(以下、「CTE」ともいう)(配列番号7、これをコードする遺伝子の塩基配列:配列番号8);ナンノクロロプシス・オキュラータ由来のTE(以下、「NoTE」ともいう)(配列番号34、これをコードする遺伝子の塩基配列:配列番号35);ゲッケイジュ由来のTE(GenBank AAA34215.1、配列番号51、これをコードする遺伝子の塩基配列:配列番号52);ナンノクロロプシス・ガディタナ由来のTE(配列番号53、これをコードする遺伝子の塩基配列:配列番号54);ナンノクロロプシス・グラニュラータ由来のTE(配列番号55、これをコードする遺伝子の塩基配列:配列番号56);シンビオディニウム・ミクロアドリアチカム(Symbiodinium microadriaticum)由来のTE(配列番号57、これをコードする遺伝子の塩基配列:配列番号58)、等が挙げられる。
 また、これらと機能的に均等なタンパク質として、上述したいずれかのTEのアミノ酸配列との同一性が50%以上(好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上)のアミノ酸配列からなり、かつTE活性を有するタンパク質も用いることができる。
TE that can be used in the present invention can be appropriately selected from normal TE and functionally equivalent proteins according to the type of host.
For example, TE (GenBank ABB71581) from Cuphea calophylla subsp. Mesostemon; TE from Cinnamomum camphora (GenBank AAC49151.1); TE from Myristica fragrans (GenBank AAB71729); TE from Myristica fragrans (GenBank AAB71730); Cuphea lanceolata TE (GenBank CAA54060); TE from Cuphea hookeriana (GenBank Q39513); TE from Ulumus americana (GenBank AAB71731); TE from Sorghum bicolor (GenBank EER87824); TE from Sorghum bicolor (GenBank EER88593); Cocos nucifera TE from CnFatB1 (see Jing et al. BMC Biochemistry 2011, 12:44); TE from Cocos nucifera (see CnFatB2: Jing et al., BMC Biochemistry, 2011, 12:44); TE from Cuphea viscosissima (CvFatB1 : Jing et al., BMC Biochemistry, 2011, 12:44); TE from Cuphea viscosissima (see CvFatB2: Jing et al., BMC Biochemistry 2011, 12:44); TE from Cuphea viscosissima (CvFatB3: Jing et al., BMC Biochemistry, 2011, 12:44); El TE from aeis guineensis (GenBank AAD42220); TE from Desulfovibrio vulgaris (GenBank ACL08376); TE from Bacteriodes fragilis (GenBank CAH09236); TE from Parabacteriodes distasonis (GenBank ABR43801); O from Bacteroides thetaiotaomicron ; TE derived from Clostridium asparagiforme (GenBank EEG55387); TE derived from Bryanthella formatexigens (GenBank EET61113); Geobacillus sp. Derived TE (GenBank EDV77528); Streptococcus dysgalactiae derived TE (GenBank BAH81730); Lactobacillus brevis derived TE (GenBank ABJ63754); Lactobacillus plantarum derived TE (GenBank CAD63310); Anaerococcus tetradius derived TE (GenBank EEI82564); Bdellovibrio bacteriovorus TE derived from (GenBank CAE80300); TE derived from Clostridium thermocellum (GenBank ABN54268); TE derived from coconut (hereinafter also referred to as “CTE”) (SEQ ID NO: 7, nucleotide sequence of the gene encoding it: SEQ ID NO: 8); TE derived from Nannochloropsis oculata (hereinafter also referred to as “NoTE”) (SEQ ID NO: 34, nucleotide sequence of gene encoding the same: SEQ ID NO: 35); TE derived from bay (GenBank AAA34215.1, SEQ ID NO: 51, Nucleotide sequence of the gene encoding this: SEQ ID NO: 52); TE derived from Nannochloropsis gaditana (SEQ ID NO: 53, encoding this) Gene base sequence: SEQ ID NO: 54); Nannochloropsis-Guranyurata derived TE (SEQ ID NO: 55, the gene of the nucleotide sequence encoding it: SEQ ID NO: 56); Simbionix Oddi iodonium Micro Adria Chi cam (Symbiodinium microadriaticum ) Derived TE (SEQ ID NO: 57, base sequence of gene encoding the same: SEQ ID NO: 58), and the like.
In addition, as functionally equivalent proteins, the identity with any of the above-described TE amino acid sequences is 50% or more (preferably 70% or more, more preferably 80% or more, and further preferably 90% or more). A protein having the amino acid sequence and having TE activity can also be used.
 上述したTEの中でも、中鎖アシル-ACPに対する基質特異性の観点から、CTE(配列番号7、これをコードする遺伝子の塩基配列:配列番号8)、NoTE(配列番号34、これをコードする遺伝子の塩基配列:配列番号35)、ゲッケイジュ由来のTE(配列番号51、これをコードする遺伝子の塩基配列:配列番号52)、ナンノクロロプシス・ガディタナ由来のTE(配列番号53、これをコードする遺伝子の塩基配列:配列番号54)、ナンノクロロプシス・グラニュラータ由来のTE(配列番号55、これをコードする遺伝子の塩基配列:配列番号56)、シンビオディニウム・ミクロアドリアチカム由来のTE(配列番号57、これをコードする遺伝子の塩基配列:配列番号58)、又はこれらのTEのアミノ酸配列との同一性が50%以上(好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上)のアミノ酸配列からなり、かつ中鎖アシル-ACPに対するTE活性を有するタンパク質(例えば、配列番号40に示す塩基配列からなるDNAがコードするタンパク質)が好ましい。
 これらのTE及びそれらをコードする遺伝子の配列情報等は、例えば、国立生物工学情報センター(National Center for Biotechnology Information, NCBI)などから入手することができる。
Among the above-mentioned TEs, CTE (SEQ ID NO: 7, nucleotide sequence of the gene encoding the same: SEQ ID NO: 8), NoTE (SEQ ID NO: 34, the gene encoding the same) from the viewpoint of substrate specificity for medium chain acyl-ACP Nucleotide sequence: SEQ ID NO: 35), bay-derived TE (SEQ ID NO: 51, nucleotide sequence of the gene encoding the same: SEQ ID NO: 52), TE derived from Nannochloropsis gaditana (SEQ ID NO: 53, the gene encoding the same) Nucleotide sequence: SEQ ID NO: 54), TE derived from Nannochloropsis granulata (SEQ ID NO: 55, nucleotide sequence of the gene encoding this: SEQ ID NO: 56), TE derived from symbiodinium microadriaticum (sequence) No. 57, nucleotide sequence of the gene encoding it: SEQ ID NO: 58), or identity of these TE amino acid sequences of 50% or more (preferably Or a protein having a TE activity against medium-chain acyl-ACP (for example, the base sequence shown in SEQ ID NO: 40). A protein encoded by DNA) is preferred.
The sequence information of these TEs and the genes encoding them can be obtained from, for example, the National Center for Biotechnology Information (NCBI).
 タンパク質がTE活性を有することは、例えば、大腸菌等の宿主細胞内で機能するプロモーターの下流にアシル-ACPチオエステラーゼ遺伝子を連結したDNAを脂肪酸分解系が欠損した宿主細胞へ導入し、導入したTE遺伝子が発現する条件で培養して、宿主細胞又は培養液中の脂肪酸組成の変化をガスクロマトグラフィー解析等の方法を用いて分析することにより、確認することができる。
 また、大腸菌等の宿主細胞内で機能するプロモーターの下流にTE遺伝子を連結したDNAを宿主細胞へ導入し、導入したTE遺伝子が発現する条件で細胞を培養した後、細胞の破砕液に対し、Yuanらの方法(Yuan L.et al.,Proc.Natl.Acad.Sci.USA,1995,vol.92(23),p.10639-10643)によって調製した各種アシル-ACPを基質とした反応を行うことにより、TE活性を測定することができる。
The protein has TE activity, for example, by introducing DNA linked to an acyl-ACP thioesterase gene downstream of a promoter that functions in a host cell such as E. coli into a host cell lacking the fatty acid degradation system, It can be confirmed by culturing under conditions where the gene is expressed, and analyzing changes in the fatty acid composition in the host cell or culture solution using a method such as gas chromatography analysis.
In addition, after introducing the DNA linked to the TE gene downstream of a promoter that functions in a host cell such as E. coli into the host cell and culturing the cell under conditions where the introduced TE gene is expressed, Reactions using various acyl-ACPs prepared by the method of Yuan et al. (Yuan L. et al., Proc. Natl. Acad. Sci. USA, 1995, vol. 92 (23), p. 10639-10643) as substrates. By doing so, TE activity can be measured.
 TE遺伝子の発現を促進させた形質転換体は、常法により作製できる。例えば、前述のKAS遺伝子の発現を促進させる方法と同様、TE遺伝子を宿主に導入する方法、TE遺伝子をゲノム上に有する宿主において当該遺伝子の発現調節領域を改変する方法、などにより形質転換体を作製することができる。 A transformant that promotes the expression of the TE gene can be prepared by a conventional method. For example, in the same manner as the method for promoting the expression of the KAS gene described above, a transformant is obtained by a method of introducing a TE gene into a host, a method of modifying an expression regulatory region of the gene in a host having the TE gene on the genome, etc. Can be produced.
 さらに本発明の形質転換体は、前記タンパク質(A)又は(B)をコードする遺伝子に加えて、KASをコードする遺伝子、アシル基転移酵素をコードする遺伝子、などの発現も促進されていることが好ましい。
 前述したように、KAS Iは、主に炭素原子数4から16の伸長反応を触媒し、炭素原子数16のパルミトイル-ACPを合成する。また、KAS IVは主に炭素原子数6から14の伸長反応を触媒し、中鎖アシル-ACPを合成する。そのため、KAS IVをコードする遺伝子の発現を促進することで、中鎖脂肪酸の生産性を一層向上させることができる。
 さらに、アシル基転移酵素は、TAGの生合成に必要なアシル化を行う酵素である。そのため、中鎖脂肪酸特異的なジアシルグリセロールアシルトランスフェラーゼなどの中鎖脂肪酸特異的なアシル基転移酵素をコードする遺伝子の発現を促進することで、中鎖脂肪酸の生産性を一層向上させることができる。
 本発明で用いることができるKASやアシル基転移酵素は、通常のKASやアシル基転移酵素、それらと機能的に均等なタンパク質から、宿主の種類等に応じて適宜選択することができる。
 また、これら遺伝子の発現を促進させた形質転換体は、常法により作製できる。例えば、前述のKAS遺伝子の発現を促進させる方法と同様、KASやアシル基転移酵素をコードする遺伝子を宿主に導入する方法、KASやアシル基転移酵素をコードする遺伝子をゲノム上に有する宿主において当該遺伝子の発現調節領域を改変する方法、などにより形質転換体を作製することができる。
Furthermore, in the transformant of the present invention, in addition to the gene encoding the protein (A) or (B), the expression of a gene encoding KAS, a gene encoding acyltransferase, etc. is also promoted. Is preferred.
As described above, KAS I mainly catalyzes an elongation reaction having 4 to 16 carbon atoms to synthesize palmitoyl-ACP having 16 carbon atoms. KAS IV catalyzes an extension reaction mainly having 6 to 14 carbon atoms to synthesize medium chain acyl-ACP. Therefore, by promoting the expression of the gene encoding KAS IV, the productivity of medium chain fatty acids can be further improved.
Furthermore, acyltransferase is an enzyme that performs acylation necessary for the biosynthesis of TAG. Therefore, by promoting the expression of a gene encoding a medium chain fatty acid-specific acyltransferase such as a medium chain fatty acid specific diacylglycerol acyltransferase, the productivity of the medium chain fatty acid can be further improved.
The KAS and acyltransferase that can be used in the present invention can be appropriately selected from ordinary KAS, acyltransferase, and proteins functionally equivalent to them according to the type of host.
Moreover, the transformant which promoted the expression of these genes can be produced by a conventional method. For example, in the same manner as the method for promoting the expression of the KAS gene described above, a method for introducing a gene encoding KAS or acyltransferase into the host, or a method for the host having a gene encoding KAS or acyltransferase on the genome. A transformant can be produced by a method of modifying an expression control region of a gene.
 本発明の形質転換体は、中鎖脂肪酸又はこれを構成成分とする脂質の生産性が、前記タンパク質(A)又は(B)をコードする遺伝子の発現が促進されていない宿主と比較して向上している。したがって、本発明の形質転換体を適切な条件で培養し、次いで得られた培養物又は生育物から中鎖脂肪酸又はこれを構成成分とする脂質を回収すれば、中鎖脂肪酸又はこれを構成成分とする脂質を効率のよく製造することができる。ここで「培養物」とは培養した後の培養液及び形質転換体をいい、「生育物」とは生育した後の形質転換体をいう。 In the transformant of the present invention, productivity of medium-chain fatty acids or lipids comprising the same is improved as compared to a host in which expression of the gene encoding the protein (A) or (B) is not promoted. is doing. Therefore, if the transformant of the present invention is cultured under appropriate conditions, and then the medium chain fatty acid or the lipid containing it as a constituent component is recovered from the obtained culture or growth product, the medium chain fatty acid or the constituent component thereof is recovered. Can be produced efficiently. Here, “culture” refers to the culture solution and transformant after culturing, and “growth” refers to the transformant after growth.
 本発明の形質転換体の培養条件は、宿主に応じて適宜選択することができ、その宿主に対して通常用いられる培養条件を使用できる。また脂肪酸の生産効率の点から、培地中に、例えば脂肪酸生合成系に関与する前駆物質としてグリセロール、酢酸、又はグルコース等を添加してもよい。 The culture conditions of the transformant of the present invention can be appropriately selected depending on the host, and culture conditions usually used for the host can be used. From the viewpoint of fatty acid production efficiency, for example, glycerol, acetic acid, glucose or the like may be added to the medium as a precursor involved in the fatty acid biosynthesis system.
 宿主として大腸菌を用いる場合、大腸菌の培養は、例えば、LB培地又はOvernight Express Instant TB Medium(Novagen社)で、30~37℃、0.5~1日間培養することができる。
 また、宿主として大腸菌を用いる場合、中鎖脂肪酸の生産性を向上させるため、培地はセルレニンを含有することが好ましい。後述の実施例で示すように、セルレニンを含有させた培地で形質転換体を培養することで、中鎖脂肪酸の生産性をさらに向上させることができる。培地中のセルレニン濃度は、形質転換体の生育に悪影響を与えない濃度であることが好ましい。具体的には、セルレニン濃度は、1μM以上が好ましく、10μM以上がより好ましく、50μM以下が好ましく、25μM以下がより好ましい。あるいは、1~50μMが好ましく、10~50μMがより好ましく、10~25μMがさらに好ましい。
When Escherichia coli is used as a host, the Escherichia coli can be cultured, for example, in LB medium or Overnight Express Instant TB Medium (Novagen) at 30 to 37 ° C. for 0.5 to 1 day.
In addition, when E. coli is used as a host, the medium preferably contains cerulenin in order to improve the productivity of medium chain fatty acids. As shown in Examples described later, medium chain fatty acid productivity can be further improved by culturing the transformant in a medium containing cerulenin. The concentration of cerulenin in the medium is preferably a concentration that does not adversely affect the growth of the transformant. Specifically, the cerulenin concentration is preferably 1 μM or more, more preferably 10 μM or more, preferably 50 μM or less, and more preferably 25 μM or less. Alternatively, 1 to 50 μM is preferable, 10 to 50 μM is more preferable, and 10 to 25 μM is more preferable.
 また、宿主としてシロイヌナズナを用いる場合、シロイヌナズナの培養は、例えば、土壌で温度条件20~25℃、白色光を連続照射又は明期16時間・暗期8時間等の光条件下で1~2か月間栽培することができる。 When Arabidopsis thaliana is used as a host, the culture of Arabidopsis thaliana can be performed, for example, at a temperature of 20 to 25 ° C. in soil, continuously irradiated with white light, or under light conditions such as 16 hours of light and 8 hours of dark. Can be cultivated monthly.
 宿主として藻類を用いる場合、培地は天然海水又は人工海水をベースにしたものを使用してもよいし、市販の培養培地を使用してもよい。具体的な培地としては、f/2培地、ESM培地、ダイゴIMK培地、L1培地、MNK培地、等を挙げることができる。なかでも、脂質の生産性向上及び栄養成分濃度の観点から、f/2培地、ESM培地、又はダイゴIMK培地が好ましく、f/2培地、又はダイゴIMK培地がより好ましく、f/2培地がさらに好ましい。藻類の生育促進、脂肪酸の生産性向上のため、培地に、窒素源、リン源、金属塩、ビタミン類、微量金属等を適宜添加することができる。
 培地に接種する形質転換体の量は適宜選択することができ、生育性の点から培地当り1~50%(vol/vol)が好ましく、1~10%(vol/vol)がより好ましい。培養温度は、藻類の増殖に悪影響を与えない範囲であれば特に制限されないが、通常、5~40℃の範囲である。藻類の生育促進、脂肪酸の生産性向上、及び生産コストの低減の観点から、好ましくは10~35℃であり、より好ましくは15~30℃である。
 また藻類の培養は、光合成ができるよう光照射下で行うことが好ましい。光照射は、光合成が可能な条件であればよく、人工光でも太陽光でもよい。光照射時の照度としては、藻類の生育促進、脂肪酸の生産性向上の観点から、好ましくは100~50000ルクスの範囲、より好ましくは300~10000ルクスの範囲、さらに好ましくは1000~6000ルクスの範囲である。また、光照射の間隔は、特に制限されないが、前記と同様の観点から、明暗周期で行うことが好ましく、24時間のうち明期が好ましくは8~24時間、より好ましくは10~18時間、さらに好ましくは12時間である。
 また藻類の培養は、光合成ができるように二酸化炭素を含む気体の存在下、又は炭酸水素ナトリウムなどの炭酸塩を含む培地で行うことが好ましい。気体中の二酸化炭素の濃度は特に限定されないが、生育促進、脂肪酸の生産性向上の観点から0.03(大気条件と同程度)~10%が好ましく、より好ましくは0.05~5%、さらに好ましくは0.1~3%、よりさらに好ましくは0.3~1%である。炭酸塩の濃度は特に限定されないが、例えば炭酸水素ナトリウムを用いる場合、生育促進、脂肪酸の生産性向上の観点から0.01~5質量%が好ましく、より好ましくは0.05~2質量%、さらに好ましくは0.1~1質量%である。
 培養時間は特に限定されず、脂質を高濃度に蓄積する藻体が高い濃度で増殖できるように、長期間(例えば150日程度)行なってもよい。藻類の生育促進、脂肪酸の生産性向上、及び生産コストの低減の観点から、培養期間は、好ましくは3~90日間、より好ましくは3~30日間、さらに好ましくは7~30日間である。なお、培養は、通気攪拌培養、振とう培養又は静置培養のいずれでもよく、通気性の向上の観点から、通気撹拌培養又は振とう培養が好ましく、通気撹拌培養がより好ましい。
When using algae as a host, the culture medium may be based on natural seawater or artificial seawater, or a commercially available culture medium may be used. Specific examples of the medium include f / 2 medium, ESM medium, Daigo IMK medium, L1 medium, and MNK medium. Among these, from the viewpoint of improving lipid productivity and nutrient concentration, f / 2 medium, ESM medium, or Daigo IMK medium is preferable, f / 2 medium or Daigo IMK medium is more preferable, and f / 2 medium is further included. preferable. In order to promote the growth of algae and improve the productivity of fatty acids, nitrogen sources, phosphorus sources, metal salts, vitamins, trace metals, and the like can be appropriately added to the medium.
The amount of transformant to be inoculated into the medium can be appropriately selected, and is preferably 1 to 50% (vol / vol), more preferably 1 to 10% (vol / vol) per medium from the viewpoint of growth. The culture temperature is not particularly limited as long as it does not adversely affect the growth of algae, but it is usually in the range of 5 to 40 ° C. From the viewpoint of promoting the growth of algae, improving the productivity of fatty acids, and reducing the production cost, the temperature is preferably 10 to 35 ° C, more preferably 15 to 30 ° C.
The algae is preferably cultured under light irradiation so that photosynthesis is possible. The light irradiation may be performed under conditions that allow photosynthesis, and may be artificial light or sunlight. The illuminance during light irradiation is preferably in the range of 100 to 50000 lux, more preferably in the range of 300 to 10000 lux, and still more preferably in the range of 1000 to 6000 lux, from the viewpoint of promoting the growth of algae and improving the productivity of fatty acids. It is. Further, the light irradiation interval is not particularly limited, but from the same viewpoint as described above, it is preferably performed in a light / dark cycle, and the light period in 24 hours is preferably 8 to 24 hours, more preferably 10 to 18 hours, More preferably, it is 12 hours.
In addition, the culture of algae is preferably performed in the presence of a gas containing carbon dioxide or a medium containing a carbonate such as sodium bicarbonate so that photosynthesis is possible. The concentration of carbon dioxide in the gas is not particularly limited, but is preferably 0.03 (similar to atmospheric conditions) to 10%, more preferably 0.05 to 5%, from the viewpoint of promoting growth and improving the productivity of fatty acids. More preferably, it is 0.1 to 3%, and still more preferably 0.3 to 1%. The concentration of the carbonate is not particularly limited. For example, when sodium bicarbonate is used, it is preferably 0.01 to 5% by mass, more preferably 0.05 to 2% by mass, from the viewpoint of promoting growth and improving the productivity of fatty acids. More preferably, the content is 0.1 to 1% by mass.
The culture time is not particularly limited, and may be performed for a long period of time (for example, about 150 days) so that algal bodies that accumulate lipids at high concentrations can grow at high concentrations. From the viewpoint of promoting the growth of algae, improving the productivity of fatty acids, and reducing the production cost, the culture period is preferably 3 to 90 days, more preferably 3 to 30 days, and even more preferably 7 to 30 days. The culture may be any of aeration and agitation culture, shaking culture or stationary culture. From the viewpoint of improving aeration, aeration and agitation culture or shaking culture is preferable, and aeration and agitation culture is more preferable.
 培養物又は生育物から脂質を採取する方法としては、常法から適宜選択することができる。例えば、前述の培養物又は生育物から、ろ過、遠心分離、細胞の破砕、ゲルろ過クロマトグラフィー、イオン交換クロマトグラフィー、クロロホルム/メタノール抽出法、ヘキサン抽出法、又はエタノール抽出法等により脂質成分を単離、回収することができる。より大規模な培養を行った場合は、培養物又は生育物より油分を圧搾又は抽出により回収後、脱ガム、脱酸、脱色、脱蝋、脱臭等の一般的な精製を行い、脂質を得ることができる。このように脂質成分を単離した後、単離した脂質を加水分解することで脂肪酸を得ることができる。脂質成分から脂肪酸を単離する方法としては、例えば、アルカリ溶液中で70℃程度の高温で処理をする方法、リパーゼ処理をする方法、又は高圧熱水を用いて分解する方法等が挙げられる。 The method for collecting lipid from the culture or growth can be appropriately selected from conventional methods. For example, lipid components can be isolated from the aforementioned culture or growth by filtration, centrifugation, cell disruption, gel filtration chromatography, ion exchange chromatography, chloroform / methanol extraction method, hexane extraction method, ethanol extraction method, or the like. Can be separated and recovered. When larger-scale cultivation is performed, oil is recovered from the culture or growth by pressing or extraction, and then general purification such as degumming, deoxidation, decolorization, dewaxing, deodorization, etc. is performed to obtain lipids. be able to. Thus, after isolating a lipid component, a fatty acid can be obtained by hydrolyzing the isolated lipid. Examples of the method for isolating the fatty acid from the lipid component include a method of treating at a high temperature of about 70 ° C. in an alkaline solution, a method of treating with lipase, a method of decomposing using high-pressure hot water, and the like.
 本発明の製造方法において製造される脂質は、その利用性の点から、脂肪酸又は脂肪酸化合物を含んでいることが好ましく、脂肪酸又は脂肪酸エステル化合物を含んでいることがさらに好ましい。
 脂質中に含まれる脂肪酸又は脂肪酸エステル化合物は、界面活性剤等への利用性の観点から、中鎖脂肪酸又はそのエステル化合物が好ましく、炭素原子数が6以上14以下の脂肪酸又はそのエステル化合物がより好ましく、炭素原子数が8以上14以下の脂肪酸又はそのエステル化合物がさらに好ましく、炭素原子数が10以上14以下の脂肪酸又はそのエステル化合物がさらに好ましく、炭素原子数が12以上14以下の脂肪酸又はそのエステル化合物がさらに好ましい。
 脂肪酸エステル化合物は、生産性の点から、単純脂質又は複合脂質が好ましく、単純脂質がさらに好ましく、トリアシルグリセロールがさらにより好ましい。
The lipid produced in the production method of the present invention preferably contains a fatty acid or a fatty acid compound, and more preferably contains a fatty acid or a fatty acid ester compound, from the viewpoint of its availability.
The fatty acid or fatty acid ester compound contained in the lipid is preferably a medium chain fatty acid or an ester compound thereof, more preferably a fatty acid having 6 to 14 carbon atoms or an ester compound thereof, from the viewpoint of availability to a surfactant or the like. Preferably, a fatty acid having 8 to 14 carbon atoms or an ester compound thereof is more preferable, a fatty acid having 10 to 14 carbon atoms or an ester compound thereof is more preferable, and a fatty acid having 12 to 14 carbon atoms or a fatty acid thereof. More preferred are ester compounds.
From the viewpoint of productivity, the fatty acid ester compound is preferably a simple lipid or a complex lipid, more preferably a simple lipid, and even more preferably triacylglycerol.
 本発明の製造方法により得られる脂質は、食用として用いる他、可塑剤、化粧品等の乳化剤、石鹸や洗剤等の洗浄剤、繊維処理剤、毛髪リンス剤、又は殺菌剤や防腐剤として利用することができる。 Lipids obtained by the production method of the present invention are used as edible, plasticizers, emulsifiers such as cosmetics, detergents such as soaps and detergents, fiber treatment agents, hair rinse agents, or bactericides and preservatives. Can do.
 上述した実施形態に関し、本発明はさらに以下の脂質の製造方法、脂質生産性の向上方法、生産される脂肪酸の組成を改変する方法、タンパク質、遺伝子、組換えベクター、生物、形質転換体、及び形質転換体の作製方法を開示する。 The present invention further relates to the embodiments described above, and the following methods for producing lipids, methods for improving lipid productivity, methods for modifying the composition of fatty acids produced, proteins, genes, recombinant vectors, organisms, transformants, and A method for producing a transformant is disclosed.
<1>下記タンパク質(A)又は(B)をコードする遺伝子の発現を促進させた形質転換体を培養し、脂肪酸又はこれを構成成分とする脂質を生産させる、脂質の製造方法。
(A)配列番号1で表されるアミノ酸配列からなるタンパク質。
(B)前記タンパク質(A)のアミノ酸配列と同一性が67%以上、好ましくは70%以上、より好ましくは74%以上、より好ましくは80%以上、より好ましくは85%以上、より好ましくは90%以上、より好ましくは92%以上、好ましくは93%以上、より好ましくは94%以上、より好ましくは95%以上、より好ましくは96%以上、より好ましくは97%以上、より好ましくは98%以上、さらに好ましくは99%以上、のアミノ酸配列からなり、かつKAS活性を有するタンパク質。
<1> A method for producing a lipid, comprising culturing a transformant in which expression of a gene encoding the following protein (A) or (B) is promoted to produce a fatty acid or a lipid comprising the same.
(A) A protein comprising the amino acid sequence represented by SEQ ID NO: 1.
(B) The identity with the amino acid sequence of the protein (A) is 67% or more, preferably 70% or more, more preferably 74% or more, more preferably 80% or more, more preferably 85% or more, more preferably 90%. % Or more, more preferably 92% or more, preferably 93% or more, more preferably 94% or more, more preferably 95% or more, more preferably 96% or more, more preferably 97% or more, more preferably 98% or more. More preferably, a protein comprising 99% or more amino acid sequence and having KAS activity.
<2>前記タンパク質(A)又は(B)をコードする遺伝子の発現を促進させ、形質転換体の細胞内で生産される中鎖脂肪酸又はこれを構成成分とする脂質の生産性を向上させる、脂質生産性の向上方法。
<3>前記タンパク質(A)又は(B)をコードする遺伝子の発現を促進させて、形質転換体の細胞内で生産される中鎖脂肪酸又はこれを構成成分とする脂質の生産性を向上させ、生産される全脂肪酸又は全脂質中の脂肪酸又は脂質の組成を改変する、脂質の組成の改変方法。
<4>前記タンパク質(A)又は(B)をコードする遺伝子を宿主に導入して前記タンパク質(A)又は(B)をコードする遺伝子の発現を促進させる、前記<1>~<3>のいずれか1項記載の方法。
<2> Promote the expression of the gene encoding the protein (A) or (B), and improve the productivity of medium-chain fatty acids produced in the cells of the transformant or lipids comprising this as a constituent component, Method for improving lipid productivity.
<3> Promoting the expression of the gene encoding the protein (A) or (B) to improve the productivity of medium-chain fatty acids produced in the cells of the transformant or lipids comprising this A method for modifying the composition of lipids, which modifies the composition of fatty acids or lipids in total fatty acids or total lipids produced.
<4> The gene according to <1> to <3>, wherein the gene encoding the protein (A) or (B) is introduced into a host to promote the expression of the gene encoding the protein (A) or (B). The method of any one of Claims.
<5>前記タンパク質(A)又は(B)をコードする遺伝子を導入した形質転換体を培養し、脂肪酸又はこれを構成成分とする脂質を生産させる、脂質の製造方法。
<6>前記タンパク質(A)又は(B)をコードする遺伝子を導入して形質転換体を作製し、形質転換体の細胞内で生産される中鎖脂肪酸又はこれを構成成分とする脂質の生産性を向上させる、脂質生産性の向上方法。
<7>前記タンパク質(A)又は(B)をコードする遺伝子を導入して形質転換体を作製し、形質転換体の細胞内で生産される中鎖脂肪酸又はこれを構成成分とする脂質の生産性を向上させ、生産される全脂肪酸中又は全脂質中の脂肪酸又は脂質の組成を改変する、脂質の組成の改変方法。
<5> A method for producing a lipid, comprising culturing a transformant into which a gene encoding the protein (A) or (B) has been introduced, and producing a fatty acid or a lipid comprising the same.
<6> Transformants are produced by introducing a gene encoding the protein (A) or (B), and medium-chain fatty acids produced in the cells of the transformants or lipid production comprising them To improve lipid productivity.
<7> Transformants are produced by introducing a gene encoding the protein (A) or (B), and medium-chain fatty acids produced in the cells of the transformants or lipid production comprising them A method for modifying the composition of lipids, which improves the properties and modifies the composition of fatty acids or lipids in total fatty acids or total lipids produced.
<8>前記タンパク質(B)が、前記タンパク質(A)のアミノ酸配列に、1又は複数個、好ましくは1個以上138個以下、より好ましくは1個以上126個以下、より好ましくは1個以上109個以下、より好ましくは1個以上84個以下、より好ましくは1個以上63個以下、より好ましくは1個以上42個以下、より好ましくは1個以上33個以下、より好ましくは1個以上29個以下、より好ましくは1個以上25個以下、より好ましくは1個以上21個以下、より好ましくは1個以上16個以下、より好ましくは1個以上12個以下、より好ましくは1個以上8個以下、さらに好ましくは1個以上4個以下、のアミノ酸が欠失、置換、挿入又は付加されたタンパク質である、前記<1>~<7>のいずれか1項記載の方法。
<9>前記タンパク質(A)又は(B)をコードする遺伝子が、下記DNA(a)又は(b)からなる遺伝子である、前記<1>~<8>のいずれか1項記載の方法。
(a)配列番号2で表される塩基配列からなるDNA。
(b)前記DNA(a)の塩基配列と同一性が62%以上、好ましくは70%以上、より好ましくは74%以上、より好ましくは80%以上、より好ましくは85%以上、より好ましくは90%以上、より好ましくは92%以上、好ましくは93%以上、より好ましくは94%以上、より好ましくは95%以上、より好ましくは96%以上、より好ましくは97%以上、より好ましくは98%以上、さらに好ましくは99%以上、の塩基配列からなり、かつKAS活性を有する前記タンパク質(A)又は(B)をコードするDNA。
<10>前記DNA(b)が、前記DNA(a)の塩基配列に、1若しくは複数個、好ましくは1個以上481個以下、より好ましくは1個以上379個以下、より好ましくは1個以上329個以下、より好ましくは1個以上253個以下、より好ましくは1個以上189個以下、より好ましくは1個以上126個以下、より好ましくは1個以上101個以下、より好ましくは1個以上88個以下、より好ましくは1個以上75個以下、より好ましくは1個以上63個以下、より好ましくは1個以上50個以下、より好ましくは1個以上37個以下、より好ましくは1個以上25個以下、さらに好ましくは1個以上12個以下、の塩基が欠失、置換、挿入、若しくは付加された塩基配列からなり、かつKAS活性を有する前記タンパク質(A)又は(B)をコードするDNA、又は前記DNA(a)と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつKAS活性を有する前記タンパク質(A)又は(B)をコードするDNAである、前記<1>~<9>のいずれか1項記載の方法。
<11>前記タンパク質(A)及び(B)がKAS III型のKASである、前記<1>~<10>のいずれか1項記載の方法。
<12>前記形質転換体において、TEをコードする遺伝子の発現を促進させた、前記<1>~<11>のいずれか1項記載の方法。
<13>前記TEをコードする遺伝子を形質転換体に導入し、TEをコードする遺伝子の発現を促進させる、前記<12>項記載の方法。
<14>前記TEが、中鎖アシル-ACPに対する基質特異性を有するTEである、前記<12>又は<13>項記載の方法。
<15>前記TEが、配列番号7、配列番号34、配列番号51、配列番号53、配列番号55若しくは配列番号57に示すアミノ酸配列からなるタンパク質、又は当該タンパク質のアミノ酸配列との同一性が50%以上(好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上)のアミノ酸配列からなり、かつ中鎖アシル-ACPに対するTE活性を有するタンパク質、である、前記<12>~<14>のいずれか1項記載の方法。
<16>前記形質転換体が微生物又は植物である、前記<1>~<12>のいずれか1項記載の方法。
<17>前記微生物が微細藻類である、前記<16>項記載の方法。
<18>前記微細藻類がナンノクロロプシス属に属する藻類、好ましくはナンノクロロプシス・オキュラータ、である、前記<17>項記載の方法。
<19>前記微生物が大腸菌である、前記<16>項記載の方法。
<20>前記植物がシロイヌナズナである、前記<16>項記載の方法。
<21>前記脂質が、中鎖脂肪酸又はそのエステル化合物、好ましくは炭素原子数が6以上14以下の脂肪酸又はそのエステル化合物、より好ましくは炭素原子数が8以上14以下の脂肪酸又はそのエステル化合物、より好ましくは炭素原子数が10以上14以下の脂肪酸又はそのエステル化合物、よりさらに好ましくは炭素原子数が12以上14以下の脂肪酸又はそのエステル化合物、を含む、前記<1>~<20>のいずれか1項記載の方法。
<8> The protein (B) has one or more, preferably 1 or more and 138 or less, more preferably 1 or more and 126 or less, more preferably 1 or more amino acid sequences in the protein (A). 109 or less, more preferably 1 or more and 84 or less, more preferably 1 or more and 63 or less, more preferably 1 or more and 42 or less, more preferably 1 or more and 33 or less, more preferably 1 or more 29 or less, more preferably 1 or more and 25 or less, more preferably 1 or more and 21 or less, more preferably 1 or more and 16 or less, more preferably 1 or more and 12 or less, more preferably 1 or more 8. The method according to any one of <1> to <7>, wherein the protein is a protein in which 8 or less, more preferably 1 to 4 amino acids are deleted, substituted, inserted or added.
<9> The method according to any one of <1> to <8>, wherein the gene encoding the protein (A) or (B) is a gene consisting of the following DNA (a) or (b).
(A) DNA consisting of the base sequence represented by SEQ ID NO: 2.
(B) 62% or more identity with the base sequence of the DNA (a), preferably 70% or more, more preferably 74% or more, more preferably 80% or more, more preferably 85% or more, more preferably 90% % Or more, more preferably 92% or more, preferably 93% or more, more preferably 94% or more, more preferably 95% or more, more preferably 96% or more, more preferably 97% or more, more preferably 98% or more. More preferably, the DNA encoding the protein (A) or (B) having a nucleotide sequence of 99% or more and having KAS activity.
<10> The DNA (b) has one or more, preferably 1 or more and 481 or less, more preferably 1 or more and 379 or less, more preferably 1 or more, in the base sequence of the DNA (a). 329 or less, more preferably 1 or more and 253 or less, more preferably 1 or more and 189 or less, more preferably 1 or more and 126 or less, more preferably 1 or more and 101 or less, more preferably 1 or more 88 or less, more preferably 1 or more and 75 or less, more preferably 1 or more and 63 or less, more preferably 1 or more and 50 or less, more preferably 1 or more and 37 or less, more preferably 1 or more 25 or less, more preferably 1 or more and 12 or less base sequences having a deleted, substituted, inserted, or added base sequence and having the KAS activity (A) or It encodes the protein (A) or (B) that hybridizes under stringent conditions with the DNA encoding (B) or the DNA comprising a base sequence complementary to the DNA (a) and having KAS activity 10. The method according to any one of <1> to <9>, wherein
<11> The method according to any one of <1> to <10>, wherein the proteins (A) and (B) are KAS type KAS.
<12> The method according to any one of <1> to <11>, wherein expression of a gene encoding TE is promoted in the transformant.
<13> The method according to <12>, wherein the gene encoding TE is introduced into a transformant to promote the expression of the gene encoding TE.
<14> The method according to <12> or <13>, wherein the TE is TE having substrate specificity for medium chain acyl-ACP.
<15> The protein having the amino acid sequence shown in SEQ ID NO: 7, SEQ ID NO: 34, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, or SEQ ID NO: 57, or the amino acid sequence of the protein has 50 identity % Or more (preferably 70% or more, more preferably 80% or more, and still more preferably 90% or more), and a protein having TE activity against medium chain acyl-ACP. The method according to any one of <14>.
<16> The method according to any one of <1> to <12>, wherein the transformant is a microorganism or a plant.
<17> The method according to <16>, wherein the microorganism is a microalgae.
<18> The method according to <17>, wherein the microalgae are algae belonging to the genus Nannochloropsis, preferably Nannochloropsis oculata.
<19> The method according to <16>, wherein the microorganism is Escherichia coli.
<20> The method according to <16>, wherein the plant is Arabidopsis thaliana.
<21> The lipid is a medium chain fatty acid or an ester compound thereof, preferably a fatty acid having 6 to 14 carbon atoms or an ester compound thereof, more preferably a fatty acid having 8 to 14 carbon atoms or an ester compound thereof, Any of the above <1> to <20>, more preferably containing a fatty acid having 10 to 14 carbon atoms or an ester compound thereof, more preferably a fatty acid having 12 to 14 carbon atoms or an ester compound thereof. The method according to claim 1.
<22>前記<1>~<21>のいずれか1項で規定した、前記タンパク質(A)又は(B)。
<23>前記<22>項記載のタンパク質をコードする遺伝子。
<24>前記<1>~<21>のいずれか1項で規定した、前記DNA(a)又は(b)からなる遺伝子。
<25>前記<23>又は<24>項記載の遺伝子を含有する、組換えベクター。
<22> The protein (A) or (B) defined in any one of <1> to <21>.
<23> A gene encoding the protein according to <22>.
<24> A gene comprising the DNA (a) or (b) defined in any one of <1> to <21>.
<25> A recombinant vector containing the gene according to <23> or <24>.
<26>前記<23>又は<24>項記載の遺伝子の発現を促進させた形質転換体。
<27>前記<23>若しくは<24>項記載の遺伝子、又は前記<25>項記載の組換えベクターを宿主に導入してなる、形質転換体。
<28>前記<23>若しくは<24>項記載の遺伝子、又は前記<25>項記載の組換えベクターを宿主に導入する、形質転換体の作製方法。
<29>TEをコードする遺伝子の発現を促進させた、前記<26>~<28>のいずれか1項記載の形質転換体又はその作製方法。
<30>TEをコードする遺伝子を宿主に導入し、TEをコードする遺伝子の発現を促進させる、前記<29>項記載の形質転換体又はその作製方法。
<31>前記TEが、中鎖アシル-ACPに対する基質特異性を有するTEである、前記<29>又は<30>項記載の形質転換体又はその作製方法。
<32>前記TEが、配列番号7、配列番号34、配列番号51、配列番号53、配列番号55若しくは配列番号57に示すアミノ酸配列からなるタンパク質、又は当該タンパク質のアミノ酸配列との同一性が50%以上(好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上)のアミノ酸配列からなり、かつ中鎖アシル-ACPに対するTE活性を有するタンパク質、である、前記<29>~<31>のいずれか1項記載の形質転換体又はその作製方法。
<33>前記形質転換体又は宿主が微生物又は植物である、前記<26>~<32>のいずれか1項記載の形質転換体又はその作製方法。
<34>前記微生物が微細藻類である、前記<33>項記載の形質転換体又はその作製方法。
<35>前記微細藻類がナンノクロロプシス属に属する藻類、好ましくはナンノクロロプシス・オキュラータ、である、前記<34>項記載の形質転換体又はその作製方法。
<36>前記微生物が大腸菌である、前記<33>項記載の形質転換体又はその作製方法。
<37>前記植物がシロイヌナズナである、前記<33>項記載の形質転換体又はその作製方法。
<26> A transformant that promotes the expression of the gene according to <23> or <24>.
<27> A transformant obtained by introducing the gene according to <23> or <24> or the recombinant vector according to <25> into a host.
<28> A method for producing a transformant, wherein the gene according to <23> or <24> or the recombinant vector according to <25> is introduced into a host.
<29> The transformant according to any one of <26> to <28> or a method for producing the same, wherein expression of a gene encoding TE is promoted.
<30> The transformant according to <29> or a method for producing the same, wherein a gene encoding TE is introduced into a host to promote expression of the gene encoding TE.
<31> The transformant according to <29> or <30> or a method for producing the same, wherein the TE is TE having substrate specificity for medium-chain acyl-ACP.
<32> The protein having the amino acid sequence shown in SEQ ID NO: 7, SEQ ID NO: 34, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55 or SEQ ID NO: 57, or the amino acid sequence of the protein has 50 identity % Or more (preferably 70% or more, more preferably 80% or more, and still more preferably 90% or more), and a protein having TE activity against medium chain acyl-ACP, <29> to <31> The transformant according to any one of the above or a method for producing the transformant.
<33> The transformant according to any one of <26> to <32> or the method for producing the transformant, wherein the transformant or host is a microorganism or a plant.
<34> The transformant according to <33> or the production method thereof, wherein the microorganism is a microalgae.
<35> The transformant according to <34> or the method for producing the same, wherein the microalga is an algae belonging to the genus Nannochloropsis, preferably Nannochloropsis oculata.
<36> The transformant according to <33> or the method for producing the same, wherein the microorganism is Escherichia coli.
<37> The transformant according to <33> or the method for producing the same, wherein the plant is Arabidopsis thaliana.
<38>脂質を製造するための、前記<26>~<37>のいずれか1項記載のタンパク質、遺伝子、ベクター、形質転換体、又は形質転換体の作製方法により得られた形質転換体の使用。
<39>前記脂質が、中鎖脂肪酸又はそのエステル化合物、好ましくは炭素原子数が6以上14以下の脂肪酸又はそのエステル化合物、より好ましくは炭素原子数が8以上14以下の脂肪酸又はそのエステル化合物、より好ましくは炭素原子数が10以上14以下の脂肪酸又はそのエステル化合物、よりさらに好ましくは炭素原子数が12以上14以下の脂肪酸又はそのエステル化合物、を含む、前記<38>項記載の使用。
<38> A protein, gene, vector, transformant, or a transformant obtained by the method for producing a transformant according to any one of <26> to <37> for producing a lipid use.
<39> The lipid is a medium chain fatty acid or an ester compound thereof, preferably a fatty acid having 6 to 14 carbon atoms or an ester compound thereof, more preferably a fatty acid having 8 to 14 carbon atoms or an ester compound thereof, The use according to <38> above, more preferably comprising a fatty acid having 10 to 14 carbon atoms or an ester compound thereof, more preferably a fatty acid having 12 to 14 carbon atoms or an ester compound thereof.
 以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれに限定されるものではない。ここで、本実施例で用いるプライマーの塩基配列を表1に示す。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto. Here, the base sequences of the primers used in this example are shown in Table 1.
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000001
実施例1 NoKASIII遺伝子を大腸菌に導入した形質転換体の作製、及び形質転換体による脂肪酸の生産
(1)NoKASIII遺伝子発現用プラスミドの構築
 国立環境研究所(NIES)からナンノクロロプシス・オキュラータNIES-2145株を購入し、使用した。ナンノクロロプシス・オキュラータNIES-2145株をf/2液体培地(NaNO3 75mg、NaH2PO4・2H2O 6mg、ビタミンB12 0.5μg、ビオチン 0.5μg、チアミン 100μg、Na2SiO3・9H2O 10mg、Na2EDTA・2H2O 4.4mg、FeCl3・6H2O 3.16mg、FeCl3・6H2O 12μg、ZnSO4・7H2O 21μg、MnCl2・4H2O 180μg、CuSO4・5H2O 7μg、Na2MoO4・2H2O 7μg/人工海水1L)で十分培養し、50mLのf/2培地に10%植菌し、25℃、二酸化炭素0.3%で人工気象機にて6日間培養した。培養後に回収したサンプルをマルチビーズショッカーにて破砕し、RNeasy Plant Mini Kit(Qiagen社製)を用いてRNAの精製を行った。得られたtotal RNAから、SuperScript III First-Strand Synthesis System for RT-PCR(invitrogen社製)を用いてcDNAライブラリーを作製した。このcDNAを鋳型として、表1に示すプライマー番号3及びプライマー番号4のプライマー対を用いたPCRにより、NoKASIII遺伝子のDNA断片を取得した。
 また、プラスミドベクターpSTV28(タカラバイオ)を鋳型として、表1に示すプライマー番号5及びプライマー番号6のプライマー対を用いたPCRによりpSTV28を増幅し、制限酵素DpnI(東洋紡社製)処理により鋳型の消化を行った。
 これら2つの断片を、High Pure PCR Product Purification Kit(Roche Applied Science社製)を用いて精製した後に、In-Fusion HD Cloning Kit(Clontech社製)を用いて融合し、NoKASIII遺伝子発現用プラスミドを構築した。
Example 1 Production of Transformant Introducing NoKASIII Gene into Escherichia coli and Production of Fatty Acid Using Transformant (1) Construction of Plasmid for Expression of NoKASIII Gene Nannochloropsis Oculata NIES-2145 from National Institute for Environmental Studies (NIES) Stocks were purchased and used. Nannochloropsis oculata strain NIES-2145 is f / 2 liquid medium (NaNO 3 75 mg, NaH 2 PO 4 · 2H 2 O 6 mg, vitamin B12 0.5 μg, biotin 0.5 μg, thiamine 100 μg, Na 2 SiO 3 · 9H 2 O 10mg, Na 2 EDTA · 2H 2 O 4.4mg, FeCl 3 · 6H 2 O 3.16mg, FeCl 3 · 6H 2 O 12μg, ZnSO 4 · 7H 2 O 21μg, MnCl 2 · 4H 2 O 180μg, CuSO 4 · 5H 2 O 7μg, Na 2 MoO 4 · 2H 2 O 7μg / artificial seawater 1L), inoculate 10% in 50mL f / 2 medium, and at 25 ° C, carbon dioxide 0.3% in an artificial weather machine Cultured for 6 days. The sample collected after the culture was crushed with a multi-bead shocker, and RNA was purified using RNeasy Plant Mini Kit (Qiagen). From the obtained total RNA, a cDNA library was prepared using SuperScript III First-Strand Synthesis System for RT-PCR (manufactured by Invitrogen). Using this cDNA as a template, a DNA fragment of NoKASIII gene was obtained by PCR using the primer pair of primer number 3 and primer number 4 shown in Table 1.
Also, pSTV28 was amplified by PCR using the plasmid vector pSTV28 (Takara Bio) as a template and the primer pair of primer number 5 and primer number 6 shown in Table 1, and the template was treated by restriction enzyme Dpn I (manufactured by Toyobo). Digestion was performed.
These two fragments were purified using the High Pure PCR Product Purification Kit (Roche Applied Science) and then fused using the In-Fusion HD Cloning Kit (Clontech) to construct a NoKASIII gene expression plasmid. did.
(2)NoKASIII遺伝子発現用プラスミドの大腸菌への導入
 構築したNoKASIII遺伝子発現用プラスミドを用いて、大腸菌突然変異株であるK27株(fadD88)(Overath et al,Eur.J.Biochem.,7,p.559-574,1969)をコンピテントセル形質転換法により形質転換した。形質転換処理をしたK27株(pSTV::NoKASIII)を37℃で一晩静置して得られたコロニーをLBCm液体培地(Bacto Trypton 1%,Yeast Extract 0.5%,NaCl 1%,クロラムフェニコール30μg/mL)1mLに接種し、30℃で一晩培養した。前記培養液20μLを、2mLのOvernight Express Instant TB Medium(Novagen社)に接種し、30℃で振とう培養した。培養24時間後、培養液に含まれる脂質成分を、下記の方法にて解析した。
 なお、陰性対照として、プラスミドベクターpSTV28で形質転換した大腸菌K27株(control)についても同様に実験を行った。
(2) Introduction of NoKASIII gene expression plasmid into Escherichia coli Using the constructed NoKASIII gene expression plasmid, E. coli mutant K27 strain (fadD88) (Overath et al, Eur. J. Biochem., 7, p. 559-574, 1969) were transformed by the competent cell transformation method. The transformed K27 strain (pSTV :: NoKASIII) was allowed to stand at 37 ° C overnight, and colonies were obtained from LBCm liquid medium (Bacto Trypton 1%, Yeast Extract 0.5%, NaCl 1%, chloramphenicol) 30 μg / mL) was inoculated into 1 mL and cultured at 30 ° C. overnight. 20 μL of the culture solution was inoculated into 2 mL of Overnight Express Instant TB Medium (Novagen) and cultured with shaking at 30 ° C. After 24 hours of culture, lipid components contained in the culture solution were analyzed by the following method.
As a negative control, E. coli K27 strain (control) transformed with plasmid vector pSTV28 was also tested in the same manner.
(3)脂質の抽出及び構成脂肪酸の分析
 培養液1mLに、内部標準として1mg/mLの7-ペンタデカノン50μLを添加後、クロロホルム0.5mL、メタノール1mL、及び2N塩酸10μLを培養液に添加して激しく攪拌し、30分間放置した。その後さらに、クロロホルム0.5mL及び1.5%KCl 0.5mLを添加して攪拌し、3,000rpmにて15分間遠心分離を行い、パスツールピペットにてクロロホルム層(下層)を回収した。
 得られたクロロホルム層に窒素ガスを吹き付けて乾固し、0.5N水酸化カリウム/メタノール溶液0.7mLを添加し、80℃で30分間恒温した。続いて14%三フッ化ホウ素-メタノール溶液(SIGMA社製)1mLを添加し、80℃にて10分間恒温した。その後、ヘキサン及び飽和食塩水を各1mL添加して激しく撹拌し、室温にて30分放置し、上層であるヘキサン層を回収して脂肪酸メチルエステルを得た。
(3) Extraction of lipids and analysis of constituent fatty acids After adding 50 μL of 1 mg / mL 7-pentadecanone as an internal standard to 1 mL of culture solution, add 0.5 mL of chloroform, 1 mL of methanol, and 10 μL of 2N hydrochloric acid to the culture solution, and vigorously Stir and let stand for 30 minutes. Thereafter, 0.5 mL of chloroform and 0.5 mL of 1.5% KCl were further added and stirred. Centrifugation was performed at 3,000 rpm for 15 minutes, and a chloroform layer (lower layer) was recovered with a Pasteur pipette.
Nitrogen gas was blown onto the resulting chloroform layer to dry it, 0.7 mL of 0.5N potassium hydroxide / methanol solution was added, and the temperature was kept constant at 80 ° C. for 30 minutes. Subsequently, 1 mL of 14% boron trifluoride-methanol solution (manufactured by SIGMA) was added, and the temperature was kept constant at 80 ° C. for 10 minutes. Thereafter, 1 mL each of hexane and saturated saline was added and stirred vigorously, and allowed to stand at room temperature for 30 minutes. The upper hexane layer was recovered to obtain a fatty acid methyl ester.
 下記に示す測定条件下で、得られた脂肪酸メチルエステルをガスクロマトグラフィー解析に供した。
<ガスクロマトグラフィー条件>
キャピラリーカラム:DB-1 MS(30m×200μm×0.25μm、J&W Scientific社製)
移動層:高純度ヘリウム
カラム内流量:1.0mL/min
昇温プログラム:100℃(1分間)→10℃/min→300℃(5分間)
平衡化時間:1分間
注入口:スプリット注入(スプリット比:100:1),圧力14.49psi,104mL/min
注入量:1μL
洗浄バイアル:メタノール・クロロホルム
検出器温度:300℃
The obtained fatty acid methyl ester was subjected to gas chromatography analysis under the measurement conditions shown below.
<Gas chromatography conditions>
Capillary column: DB-1 MS (30m × 200μm × 0.25μm, manufactured by J & W Scientific)
Moving bed: High purity helium column flow rate: 1.0 mL / min
Temperature rising program: 100 ° C (1 minute) → 10 ° C / min → 300 ° C (5 minutes)
Equilibration time: 1 minute Inlet: Split injection (split ratio: 100: 1), pressure 14.49psi, 104mL / min
Injection volume: 1μL
Washing vial: Methanol / chloroform Detector temperature: 300 ° C
 脂肪酸メチルエステルの同定は、同サンプルを同条件でガスクロマトグラフ質量分析解析に供することにより行った。
 ガスクロマトグラフィー解析により得られた波形データのピーク面積より、各脂肪酸のメチルエステル量を定量した。各ピーク面積を、内部標準である7-ペンタデカノンのピーク面積と比較することで試料間の補正を行い、培養液1Lあたりの各脂肪酸量を算出した。さらに、各脂肪酸量の総和を総脂肪酸量(FA)とし、総脂肪酸量に占める各脂肪酸量の割合を算出した。
 その結果を表2に示す。なお、以下の表において、以下の表において、「脂肪酸組成(%TFA)」は総脂肪酸の重量に対する各脂肪酸量の割合(重量パーセント)を示す。また「n」は0~5の整数を表し、例えば「C18:n」と記載した場合には、C18:0、C18:1、C18:2、C18:3、C18:4及びC18:5の脂肪酸を表す。
The fatty acid methyl ester was identified by subjecting the sample to gas chromatograph mass spectrometry analysis under the same conditions.
The amount of methyl ester of each fatty acid was quantified from the peak area of the waveform data obtained by gas chromatography analysis. Each peak area was compared with the peak area of 7-pentadecanone, which is an internal standard, to correct between samples, and the amount of each fatty acid per liter of culture solution was calculated. Furthermore, the sum total of each fatty acid amount was made into the total fatty acid amount (FA), and the ratio of each fatty acid amount which occupies for the total fatty acid amount was computed.
The results are shown in Table 2. In the following table, “Fatty acid composition (% TFA)” indicates the ratio (weight percent) of each fatty acid to the total fatty acid. “N” represents an integer of 0 to 5, for example, when “C18: n” is described, C18: 0, C18: 1, C18: 2, C18: 3, C18: 4, and C18: 5 Represents a fatty acid.
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000002
 表2に示すように、NoKASIII遺伝子を導入することで、C14:0脂肪酸の含有率と、総脂肪酸量が有意に増加した。 As shown in Table 2, introduction of the NoKASIII gene significantly increased the content of C14: 0 fatty acids and the total amount of fatty acids.
実施例2 セルレニン存在下での、NoKASIII遺伝子を大腸菌に導入した形質転換体による脂肪酸の生産
 実施例1で作製した、NoKASIII遺伝子を導入したK27株(pSTV::NoKASIII)をLBCm液体培地(Bacto Trypton 1%,Yeast Extract 0.5%,NaCl 1%,クロラムフェニコール30μg/mL)1mLに接種し、30℃で一晩培養した。前記培養液20μLを、2mLのOvernight Express Instant TB Medium(Novagen社)に接種し、30℃で振とう培養した。このとき、Overnight Express Instant TB Mediumにセルレニン(和光純薬工業社製)を終濃度10μMとなるように添加した。培養24時間後、培養液に含まれる脂質成分を、実施例1と同様の方法にて解析した。
 なお、陰性対照として、プラスミドベクターpSTV28で形質転換した大腸菌K27株(control)についても同様に実験を行った。
 その結果を表3に示す。
Example 2 Production of Fatty Acid by Transformant Introduced NoKASIII Gene into Escherichia coli in the Presence of Cerrenin K27 Strain (pSTV :: NoKASIII) Introduced in Example 1 and Introduced with NoKASIII Gene was LBCm Liquid Medium (Bacto Trypton) 1%, Yeast Extract 0.5%, NaCl 1%, chloramphenicol 30 μg / mL) was inoculated into 1 mL and cultured at 30 ° C. overnight. 20 μL of the culture solution was inoculated into 2 mL of Overnight Express Instant TB Medium (Novagen) and cultured with shaking at 30 ° C. At this time, cerulenin (manufactured by Wako Pure Chemical Industries, Ltd.) was added to Overnight Express Instant TB Medium to a final concentration of 10 μM. After 24 hours of culture, lipid components contained in the culture solution were analyzed by the same method as in Example 1.
As a negative control, E. coli K27 strain (control) transformed with plasmid vector pSTV28 was also tested in the same manner.
The results are shown in Table 3.
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000003
 表3に示すように、培地にセルレニンを含有する系においても、NoKASIII遺伝子を導入することで、C14:0脂肪酸の含有率と総脂肪酸量が増加した。 As shown in Table 3, even in the system containing cerulenin in the medium, introduction of the NoKASIII gene increased the content of C14: 0 fatty acids and the total amount of fatty acids.
実施例3 NoKASIII遺伝子及びCTE遺伝子を大腸菌に導入した形質転換体の作製、及び形質転換体による脂肪酸の生産
 特開2011-250781号公報に記載の方法に従い、CTE(アミノ酸配列:配列番号7)をコードする遺伝子(塩基配列:配列番号8)をK27株(fadD88)に導入し、形質転換体(pMW::CTE)を作製した。そして、実施例1で作製したNoKASIII遺伝子発現用プラスミドを用いて、コンピテントセル形質転換法により、形質転換体pMW::CTEをさらに形質転換した。
 なおCTE遺伝子は、プラスミドベクターpMW219(ニッポンジーン製)にクローニングされたものを使用した。
Example 3 Production of Transformant Introducing NoKASIII Gene and CTE Gene into Escherichia coli, and Production of Fatty Acid Using Transformant According to the method described in JP2011-250781CTE (amino acid sequence: SEQ ID NO: 7) The gene to be encoded (base sequence: SEQ ID NO: 8) was introduced into the K27 strain (fadD88) to prepare a transformant (pMW :: CTE). Then, the transformant pMW :: CTE was further transformed by the competent cell transformation method using the NoKASIII gene expression plasmid prepared in Example 1.
The CTE gene was cloned into the plasmid vector pMW219 (Nippon Gene).
 NoKASIII遺伝子及びCTE遺伝子で形質転換処理をしたK27株(CTE+pSTV::KASIII)を37℃で一晩静置して得られたコロニーをLBCmKm液体培地(Bacto Trypton 1%,Yeast Extract 0.5%,NaCl 1%,クロラムフェニコール30μg/mL、カナマイシン硫酸塩50μg/mL)1mLに接種し、30℃で一晩培養した。前記培養液20μLを、2mLのOvernight Express Instant TB Medium(Novagen社)に接種し、30℃で振とう培養した。培養24時間後、培養液に含まれる脂質成分を、実施例1と同様の方法にて解析した。
 なお、陰性対照として、プラスミドベクターpSTV28にて形質転換した株(pMW::CTE+pSTV28)についても同様に実験を行った。
 その結果を表4に示す。
The K27 strain (CTE + pSTV :: KASIII) transformed with the NoKASIII gene and CTE gene was allowed to stand at 37 ° C. overnight, and colonies were obtained from the LBCmKm liquid medium (Bacto Trypton 1%, Yeast Extract 0.5%, NaCl 1%, chloramphenicol 30 μg / mL, kanamycin sulfate 50 μg / mL) was inoculated into 1 mL, and cultured at 30 ° C. overnight. 20 μL of the culture solution was inoculated into 2 mL of Overnight Express Instant TB Medium (Novagen) and cultured with shaking at 30 ° C. After 24 hours of culture, lipid components contained in the culture solution were analyzed by the same method as in Example 1.
As a negative control, an experiment was similarly performed on a strain transformed with the plasmid vector pSTV28 (pMW :: CTE + pSTV28).
The results are shown in Table 4.
 表4に示すように、CTE遺伝子を導入した菌株にNoKASIII遺伝子をさらに導入することで、C12:0脂肪酸及びC14:1脂肪酸の含有率と、総脂肪酸量が有意に増加した。 As shown in Table 4, the content of C12: 0 fatty acid and C14: 1 fatty acid and the total fatty acid amount were significantly increased by further introducing the NoKASIII gene into the strain into which the CTE gene was introduced.
実施例4 セルレニン存在下での、NoKASIII遺伝子及びCTE遺伝子を大腸菌に導入した形質転換体による脂肪酸の生産
 実施例3で作製した、NoKASIII遺伝子及びCTE遺伝子を導入したK27株(CTE+pSTV::KASIII)をLBCmKm液体培地(Bacto Trypton 1%,Yeast Extract 0.5%,NaCl 1%,クロラムフェニコール30μg/mL、カナマイシン硫酸塩50μg/mL)1mLに接種し、30℃で一晩培養した。前記培養液20μLを、2mLのOvernight Express Instant TB Medium(Novagen社)に接種し、30℃で振とう培養した。このとき、Overnight Express Instant TB Mediumにセルレニン(和光純薬工業社製)を終濃度10μMとなるように添加した。培養24時間後、培養液に含まれる脂質成分を、実施例1と同様の方法にて解析した。
 なお、陰性対照として、プラスミドベクターpSTV28にて形質転換した株(pMW::CTE+pSTV28)についても同様に実験を行った。
 その結果を表5に示す。
Example 4 Production of Fatty Acid by Transformant Introduced NoKASIII Gene and CTE Gene into Escherichia coli in the Presence of Cerrenin K27 Strain (CTE + pSTV :: KASIII) Introduced with NoKASIII Gene and CTE Gene Prepared in Example 3 ) Was inoculated into 1 mL of LBCmKm liquid medium (Bacto Trypton 1%, Yeast Extract 0.5%, NaCl 1%, chloramphenicol 30 μg / mL, kanamycin sulfate 50 μg / mL) and cultured at 30 ° C. overnight. 20 μL of the culture solution was inoculated into 2 mL of Overnight Express Instant TB Medium (Novagen) and cultured with shaking at 30 ° C. At this time, cerulenin (manufactured by Wako Pure Chemical Industries, Ltd.) was added to Overnight Express Instant TB Medium to a final concentration of 10 μM. After 24 hours of culture, lipid components contained in the culture solution were analyzed by the same method as in Example 1.
As a negative control, an experiment was similarly performed on a strain transformed with the plasmid vector pSTV28 (pMW :: CTE + pSTV28).
The results are shown in Table 5.
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000005
 表5に示すように、培地にセルレニンを含有する系において、CTE遺伝子を導入した菌株にNoKASIII遺伝子をさらに導入することで、C12:0脂肪酸の含有率と、総脂肪酸量が有意に増加した。 As shown in Table 5, in the system containing cerulenin in the culture medium, the content of C12: 0 fatty acid and the total amount of fatty acids were significantly increased by further introducing the NoKASIII gene into the strain into which the CTE gene was introduced.
実施例5 NoKASIII遺伝子をナンノクロロプシス・オキュラータに導入した形質転換体の作製、及び形質転換体による脂肪酸の生産
(1)ゼオシン耐性遺伝子発現用プラスミドの構築
 ゼオシン耐性遺伝子(配列番号9)、及び文献(Randor Radakovits,et al.,Nature Communications,DOI:10.1038/ncomms1688,2012)に記載されている、ナンノクロロプシス・ガディタナCCMP526株由来のチューブリンプロモーター配列(配列番号10)を人工合成した。
 合成したDNA断片を鋳型として、表1に示すプライマー番号11及びプライマー番号12のプライマー対、並びにプライマー番号13及びプライマー番号14のプライマー対をそれぞれ用いてPCRを行い、ゼオシン耐性遺伝子及びチューブリンプロモーター配列をそれぞれ増幅した。
 また、ナンノクロロプシス・オキュラータNIES2145株のゲノムを鋳型として、表1に示すプライマー番号15及びプライマー番号16のプライマー対を用いてPCRを行い、ヒートショックプロテインターミネーター配列(配列番号17)を増幅した。
 さらに、プラスミドベクターpUC19(タカラバイオ社製)を鋳型として、表1に示すプライマー番号18及びプライマー番号19のプライマー対を用いたPCRを行い、プラスミドベクターpUC19を増幅した。
Example 5 Production of transformant in which NoKASIII gene was introduced into Nannochloropsis oculata, and production of fatty acid by transformant (1) Construction of plasmid for expression of zeocin resistance gene Zeocin resistance gene (SEQ ID NO: 9), and literature (Randor Radakovits, et al., Nature Communications, DOI: 10.1038 / ncomms1688, 2012), a tubulin promoter sequence (SEQ ID NO: 10) derived from Nannochloropsis gaditana strain CCMP526 was artificially synthesized.
Using the synthesized DNA fragment as a template, PCR was performed using the primer pair of primer number 11 and primer number 12 and the primer pair of primer number 13 and primer number 14 shown in Table 1, respectively, and the zeocin resistance gene and tubulin promoter sequence Each was amplified.
Further, PCR was performed using the genome of Nannochloropsis oculata NIES2145 strain as a template and the primer pair of primer number 15 and primer number 16 shown in Table 1 to amplify the heat shock protein terminator sequence (SEQ ID NO: 17).
Furthermore, PCR was carried out using the plasmid vector pUC19 (manufactured by Takara Bio Inc.) as a template and the primer pair of primer number 18 and primer number 19 shown in Table 1 to amplify the plasmid vector pUC19.
 これら4つの増幅断片をそれぞれ制限酵素DpnI(東洋紡株式会社製)にて処理し、High Pure PCR Product Purification Kit(Roche Applied Science社製)を用いて精製した。その後、得られた4つの断片をIn-Fusion HD Cloning Kit(Clontech社製)を用いて融合し、ゼオシン耐性遺伝子発現用プラスミドを構築した。
 なお、本発現プラスミドは、チューブリンプロモーター配列、ゼオシン耐性遺伝子、ヒートショックプロテインターミネーター配列の順に連結したインサート配列と、pUC19ベクター配列からなる。
These four amplified fragments were each treated with a restriction enzyme Dpn I (manufactured by Toyobo Co., Ltd.) and purified using a High Pure PCR Product Purification Kit (manufactured by Roche Applied Science). Thereafter, the four fragments obtained were fused using an In-Fusion HD Cloning Kit (Clontech) to construct a plasmid for expression of a zeocin resistant gene.
This expression plasmid consists of an insert sequence linked in the order of a tubulin promoter sequence, a zeocin resistance gene, a heat shock protein terminator sequence, and a pUC19 vector sequence.
(2)NoKASIII遺伝子の取得、及びNoKASIII遺伝子発現用プラスミドの構築
 ナンノクロロプシス・オキュラータNIES2145株(独立行政法人国立環境研究所(NIES)より入手)の全RNAを抽出し、SuperScript(商標)III First-Strand Synthesis SuperMix for qRT-PCR(invitrogen社製)を用いて逆転写を行ってcDNAを得た。このcDNAを鋳型として、表1に示すプライマー番号20及びプライマー番号21のプライマー対を用いたPCRにより、NoKASIII遺伝子断片を取得した。
 また、GenBankに登録されているナンノクロロプシス・エスピー(Nannochloropsis sp.)W2J3B株のVCP1(ビオラキサンチン/クロロフィルa結合タンパク質)遺伝子のcomplete cds 配列(Accession number:JF957601.1)より、VCP1プロモーター配列(配列番号22)及びVCP1ターミネーター配列(配列番号23)をそれぞれ人工合成した。合成したDNA断片を鋳型として、表1に示すプライマー番号24及びプライマー番号25のプライマー対、並びにプライマー番号26及びプライマー番号27のプライマー対をそれぞれ用いたPCRを行い、VCP1プロモーター配列及びVCP1ターミネーター配列をそれぞれ取得した。
 さらに、前述のゼオシン耐性遺伝子発現用プラスミドを鋳型として、表1に示すプライマー番号28及びプライマー番号19のプライマー対を用いたPCRを行い、ゼオシン耐性遺伝子発現カセット(チューブリンプロモーター配列、ゼオシン耐性遺伝子、ヒートショックプロテインターミネーター配列)及びpUC19配列からなる断片を増幅した。
(2) Acquisition of NoKASIII gene and construction of NoKASIII gene expression plasmid Total RNA of Nannochloropsis oculata NIES2145 strain (obtained from National Institute for Environmental Studies (NIES)) was extracted, and SuperScript ™ III First -Strand Synthesis cDNA was obtained by reverse transcription using SuperMix for qRT-PCR (manufactured by Invitrogen). Using this cDNA as a template, a NoKASIII gene fragment was obtained by PCR using the primer pair of primer number 20 and primer number 21 shown in Table 1.
Furthermore, from the complete cds sequence (Accession number: JF957601.1) of the VCP1 (violaxanthin / chlorophyll a binding protein) gene of Nannochloropsis sp. W2J3B strain registered in GenBank, the VCP1 promoter sequence ( SEQ ID NO: 22) and VCP1 terminator sequence (SEQ ID NO: 23) were artificially synthesized. Using the synthesized DNA fragment as a template, PCR was performed using the primer pair of primer number 24 and primer number 25 shown in Table 1, and the primer pair of primer number 26 and primer number 27, respectively, and the VCP1 promoter sequence and VCP1 terminator sequence were determined. Acquired each.
Further, using the above-mentioned zeocin resistance gene expression plasmid as a template, PCR was performed using the primer pair of primer number 28 and primer number 19 shown in Table 1, and a zeocin resistance gene expression cassette (tubulin promoter sequence, zeocin resistance gene, A fragment consisting of a heat shock protein terminator sequence) and a pUC19 sequence was amplified.
 これら4つの増幅断片を、前述の方法と同様の方法にて融合し、NoKASIII遺伝子発現用プラスミドを構築した。
 なお、本発現プラスミドはVCP1プロモーター配列、NoKASIII遺伝子、VCP1ターミネーター配列、チューブリンプロモーター配列、ゼオシン耐性遺伝子、ヒートショックプロテインターミネーター配列の順で連結したインサート配列と、pUC19ベクター配列からなる。
These four amplified fragments were fused in the same manner as described above to construct a NoKASIII gene expression plasmid.
This expression plasmid comprises a VUC1 promoter sequence, a NoKASIII gene, a VCP1 terminator sequence, a tubulin promoter sequence, a zeocin resistance gene, and a heat shock protein terminator sequence in that order and a pUC19 vector sequence.
(3)NoKASIII遺伝子発現用断片のナンノクロロプシスへの導入
 前記NoKASIII遺伝子発現用プラスミドを鋳型として、表1に示すプライマー番号16及びプライマー番号24のプライマー対を用いてPCRを行い、NoKASIII遺伝子発現用断片(VCP1プロモーター配列、NoKASIII遺伝子、VCP1ターミネーター配列、チューブリンプロモーター配列、ゼオシン耐性遺伝子、ヒートショックプロテインターミネーター配列からなるDNA断片)を増幅した。
 増幅したDNA断片を、High Pure PCR Product Purification Kit(Roche Applied Science社製)を用いて精製した。なお、精製の際の溶出には、キットに含まれる溶出バッファーではなく、滅菌水を用いた。
(3) Introduction of NoKASIII gene expression fragment into Nannochloropsis Using the NoKASIII gene expression plasmid as a template, PCR was performed using the primer pair of primer number 16 and primer number 24 shown in Table 1, for NoKASIII gene expression. The fragment (DNA fragment consisting of VCP1 promoter sequence, NoKASIII gene, VCP1 terminator sequence, tubulin promoter sequence, zeocin resistance gene, heat shock protein terminator sequence) was amplified.
The amplified DNA fragment was purified using High Pure PCR Product Purification Kit (Roche Applied Science). Note that sterilized water was used for elution during purification, not the elution buffer included in the kit.
 約1×109細胞のナンノクロロプシス・オキュラータNIES2145株(独立行政法人国立環境研究所(NIES)より入手)を、384mMのソルビトール溶液で洗浄して塩を完全に除去し、形質転換の宿主細胞として用いた。上記で増幅したNoKASIII遺伝子発現用断片を、約500ngずつ宿主細胞に混和し、50μF、500Ω、2,200v/2mmの条件でエレクトロポレーションを行った。
 f/2液体培地(NaNO3 75mg、NaH2PO4・2H2O 6mg、ビタミンB12 0.5μg、ビオチン 0.5μg、チアミン 100μg、Na2SiO3・9H2O 10mg、Na2EDTA・2H2O 4.4mg、FeCl3・6H2O 3.16mg、FeCl3・6H2O 12μg、ZnSO4・7H2O 21μg、MnCl2・4H2O 180μg、CuSO4・5H2O 7μg、Na2MoO4・2H2O 7μg/人工海水1L)にて1日間回復培養を行った。その後に、2μg/mLのゼオシン含有f/2寒天培地に塗布し、25℃、0.3%CO2雰囲気下、12h/12h明暗条件にて2~3週間培養した。得られたコロニーの中から、NoKASIII遺伝子発現用断片を含むナンノクロロプシス・オキュラータ株(NoKASIII)をPCR法により選抜した。
Approximately 1 × 10 9 cells of Nannochloropsis oculata strain NIES2145 (obtained from the National Institute for Environmental Studies (NIES)) were washed with a 384 mM sorbitol solution to completely remove salts, and transformed host cells Used as. About 500 ng of the NoKASIII gene expression fragment amplified above was mixed with host cells, and electroporation was performed under the conditions of 50 μF, 500Ω, and 2,200 v / 2 mm.
f / 2 liquid medium (NaNO 3 75 mg, NaH 2 PO 4 · 2H 2 O 6 mg, vitamin B12 0.5 μg, biotin 0.5 μg, thiamine 100 μg, Na 2 SiO 3 · 9H 2 O 10 mg, Na 2 EDTA · 2H 2 O 4.4 mg, FeCl 3 · 6H 2 O 3.16mg, FeCl 3 · 6H 2 O 12μg, ZnSO 4 · 7H 2 O 21μg, MnCl 2 · 4H 2 O 180μg, CuSO 4 · 5H 2 O 7μg, Na 2 MoO 4 · 2H 2 O 7 μg / artificial seawater 1 L) for 1 day. Thereafter, the mixture was applied to a 2 μg / mL zeocin-containing f / 2 agar medium, and cultured at 25 ° C. in a 0.3% CO 2 atmosphere under 12 h / 12 h light / dark conditions for 2 to 3 weeks. From the obtained colonies, a Nannochloropsis oculata strain (NoKASIII) containing a NoKASIII gene expression fragment was selected by PCR.
(4)形質転換体による脂肪酸の生産
 選抜した株を、f/2培地の窒素濃度を15倍、リン濃度を5倍に増強した培地(以下、「N15P5培地」という)50mLに播種し、25℃、0.3%CO2雰囲気下、12h/12h明暗条件にて4週間振盪培養し、前培養液とした。前培養液10mLを、N15P5培地40mLに植継ぎ、25℃、0.3%CO2雰囲気下、12h/12h明暗条件にて振盪培養した。培養3週間後、培養液に含まれる脂質成分を、実施例1と同様の方法にて解析した。
 なお、陰性対照として、ゼオシン耐性遺伝子のみを導入したナンノクロロプシス・オキュラータ株(control)についても同様に実験を行った。
 その結果を表6に示す。
(4) Production of fatty acid by transformant The selected strain is seeded in 50 mL of a medium (hereinafter referred to as “N15P5 medium”) in which the nitrogen concentration of f / 2 medium is increased 15-fold and the phosphorus concentration is increased 5-fold. ° C., under 0.3% CO 2 atmosphere, for 4 weeks shaking culture at 12h / 12h light-dark conditions to the preculture. 10 mL of the preculture was transferred to 40 mL of N15P5 medium, and cultured under shaking in a 12 h / 12 h light / dark condition at 25 ° C. in a 0.3% CO 2 atmosphere. After 3 weeks of culture, the lipid components contained in the culture solution were analyzed by the same method as in Example 1.
As a negative control, the same experiment was performed on the Nannochloropsis oculata strain (control) into which only the zeocin resistance gene was introduced.
The results are shown in Table 6.
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000006
 表6に示すように、NoKASIII遺伝子を導入することで、C14:0脂肪酸の含有率が有意に増加した。 As shown in Table 6, the C14: 0 fatty acid content was significantly increased by introducing the NoKASIII gene.
実施例6 NoKASIII遺伝子及びNoTE遺伝子をナンノクロロプシス・オキュラータに導入した形質転換体の作製、及び形質転換体による脂肪酸の生産
(1)パロモマイシン耐性遺伝子発現用プラスミドの構築
 パロモマイシン耐性遺伝子(配列番号29)を人工合成した。合成したDNA断片を鋳型として、表1に示すプライマー番号30及びプライマー番号31のプライマー対を用いてPCRを行い、パロモマイシン耐性遺伝子を増幅した。
 実施例5にて構築したゼオシン耐性遺伝子発現用プラスミドを鋳型に、表1に示すプライマー番号14及びプライマー番号15のプライマー対を用いてPCRを行い、チューブリンプロモーター配列、ヒートショックプロテインターミネーター配列及びpUC19ベクターからなる遺伝子断片を増幅した。
Example 6 Production of Transformant Introducing NoKASIII Gene and NoTE Gene into Nannochloropsis Oculata, and Production of Fatty Acid by Transformant (1) Construction of Plasmid for Expression of Paromomycin Resistance Gene Paromomycin Resistance Gene (SEQ ID NO: 29) Was artificially synthesized. PCR was performed using the synthesized DNA fragment as a template and the primer pair of primer number 30 and primer number 31 shown in Table 1 to amplify the paromomycin resistance gene.
Using the zeocin resistance gene expression plasmid constructed in Example 5 as a template, PCR was performed using the primer pair of primer number 14 and primer number 15 shown in Table 1, tubulin promoter sequence, heat shock protein terminator sequence and pUC19. A gene fragment consisting of a vector was amplified.
 これら2つの遺伝子断片を実施例5と同様の方法にて融合し、パロモマイシン耐性遺伝子発現用プラスミドを構築した。
 なお、本発現プラスミドは、チューブリンプロモーター配列、パロモマイシン耐性遺伝子、ヒートショックプロテインターミネーター配列の順に連結したインサート配列と、pUC19ベクター配列からなる。
These two gene fragments were fused in the same manner as in Example 5 to construct a paromomycin resistance gene expression plasmid.
This expression plasmid consists of an insert sequence in the order of a tubulin promoter sequence, a paromomycin resistance gene, a heat shock protein terminator sequence, and a pUC19 vector sequence.
(2)NoTE遺伝子の取得、及びNoTE遺伝子発現用プラスミドの構築
 実施例1で作製したナンノクロロプシス・オキュラータNIES2145株のcDNAを鋳型として、表1に示すプライマー番号32及びプライマー番号33のプライマー対を用いたPCRにより、配列番号35の262位~864位の塩基配列からなる遺伝子断片を取得した。
また、プラスミドベクターpBluescriptII SK(-)(Stratagene社製)を鋳型として、表1に示すプライマー番号36及びプライマー番号37のプライマー対を用いたPCRによりpBluescriptII SK(-)を増幅し、制限酵素DpnI(東洋紡社製)処理により鋳型の消化を行った。
 これら2つの断片を、High Pure PCR Product Purification Kit(Roche Applied Science社製)を用いて精製した後に、In-Fusion HD Cloning Kit(Clontech社製)を用いて融合し、NoTE遺伝子プラスミドNoTEを構築した。このプラスミドNoTE_262この遺伝子断片は、配列番号34に示すアミノ酸配列のN末端側1位~87位のアミノ酸残基を除去し、その上流にプラスミドベクターpBluescriptII SK(-)由来のLacZタンパク質のN末端側1位~29位のアミノ酸残基が融合したタンパク質を発現させるように構築した。
 なお、以下のプラスミド表記において、「NoTE」は、配列番号34の88位~287位のアミノ酸配列からなるポリペプチドをコードする塩基配列として、配列番号35の262位~864位の塩基配列をプラスミドが有することを意味する。
(2) Acquisition of NoTE gene and construction of NoTE gene expression plasmid Using the Nannochloropsis oculata strain NIES2145 prepared in Example 1 as a template, the primer pairs of primer numbers 32 and 33 shown in Table 1 were used. A gene fragment consisting of the nucleotide sequence from position 262 to position 864 of SEQ ID NO: 35 was obtained by PCR used.
Further, pBluescriptII SK (-) was amplified by PCR using the plasmid vector pBluescriptII SK (-) (Stratagene) as a template and the primer pair of primer number 36 and primer number 37 shown in Table 1, and the restriction enzyme Dpn I The mold was digested by treatment (manufactured by Toyobo Co., Ltd.).
These two fragments were purified using High Pure PCR Product Purification Kit (Roche Applied Science) and then fused using In-Fusion HD Cloning Kit (Clontech) to construct NoTE gene plasmid NoTE. . This plasmid NoTE_262 is obtained by removing amino acid residues 1 to 87 from the N-terminal side of the amino acid sequence shown in SEQ ID NO: 34, and upstream of it from the N-terminal side of the LacZ protein derived from the plasmid vector pBluescriptII SK (-) It was constructed to express a protein in which amino acid residues 1 to 29 were fused.
In the following plasmid notation, “NoTE” is the nucleotide sequence encoding the polypeptide consisting of the amino acid sequence of positions 88 to 287 of SEQ ID NO: 34, and the nucleotide sequence of positions 262 to 864 of SEQ ID NO: 35 is the plasmid. Means that
 前記プラスミドNoTEを鋳型として、表1に示すプライマー番号38及びプライマー番号39のプライマー対を用いたPCRにより、配列番号35に示す塩基配列の262位~864位の塩基の一部を変異させた遺伝子断片(配列番号40)を取得した。この遺伝子断片を用いて、前記手法と同様の手法により、NoTE改変体発現プラスミドNoTE_262(V204W)を構築した。ここで、配列番号40に示す塩基配列は、配列番号34に示すアミノ酸配列の204位のバリンをコードするコドンがトリプトファンをコードするコドン(TGG)に置換されている。
 前記プラスミドNoTE_262(V204W)を鋳型として、表1に示すプライマー番号41及びプライマー番号42のプライマー対を用いてPCRを行い、配列番号40に示す塩基配列からなる、NoTE改変体遺伝子断片を取得した。
A gene obtained by mutating a part of bases at positions 262 to 864 in the base sequence shown in SEQ ID NO: 35 by PCR using the plasmid NoTE as a template and the primer pair of primer No. 38 and primer No. 39 shown in Table 1 A fragment (SEQ ID NO: 40) was obtained. Using this gene fragment, a NoTE variant expression plasmid NoTE_262 (V204W) was constructed in the same manner as described above. Here, in the base sequence shown in SEQ ID NO: 40, a codon encoding valine at position 204 in the amino acid sequence shown in SEQ ID NO: 34 is replaced with a codon (TGG) encoding tryptophan.
PCR was performed using the plasmid NoTE_262 (V204W) as a template and the primer pair of primer number 41 and primer number 42 shown in Table 1 to obtain a NoTE variant gene fragment consisting of the base sequence shown in SEQ ID NO: 40.
 GenBankに登録されているナンノクロロプシス・エスピー(Nannochloropsis sp.)W2J3B株のVCP1遺伝子のcomplete cds配列(Accession number:JF957601.1)より、VCP1葉緑体移行シグナル配列(配列番号43)を人工合成した。このVCP1葉緑体移行シグナル配列のDNA断片と、実施例5で合成したVCP1プロモーター配列及びVCP1ターミネーター配列のDNA断片を鋳型として、表1に示すプライマー番号24及びプライマー番号25のプライマー対、プライマー番号44及びプライマー番号45のプライマー対、並びにプライマー番号26及びプライマー番号27のプライマー対をそれぞれ用いてPCRを行い、VCP1プロモーター配列、VCP1葉緑体移行シグナル配列、及びVCP1ターミネーター配列をそれぞれ取得した。
 さらに、プラスミドベクターpUC19(タカラバイオ社製)を鋳型として、表1に示すプライマー番号18及びプライマー番号19のプライマー対を用いたPCRを行い、プラスミドベクターpUC19を増幅した。
An artificially synthesized VCP1 chloroplast transition signal sequence (SEQ ID NO: 43) from the complete cds sequence (Accession number: JF957601.1) of the VCP1 gene of Nannochloropsis sp. W2J3B strain registered in GenBank did. Using the DNA fragment of this VCP1 chloroplast translocation signal sequence and the DNA fragment of the VCP1 promoter sequence and VCP1 terminator sequence synthesized in Example 5 as a template, the primer pair of primer number 24 and primer number 25 shown in Table 1, primer number PCR was performed using the primer pair of 44 and primer number 45, and the primer pair of primer number 26 and primer number 27, respectively, and a VCP1 promoter sequence, a VCP1 chloroplast transfer signal sequence, and a VCP1 terminator sequence were obtained.
Furthermore, PCR was carried out using the plasmid vector pUC19 (manufactured by Takara Bio Inc.) as a template and the primer pair of primer number 18 and primer number 19 shown in Table 1 to amplify the plasmid vector pUC19.
 上記により得られたNoTE改変体遺伝子断片、VCP1プロモーター配列、VCP1葉緑体移行シグナル配列、及びVCP1ターミネーター配列を、実施例5と同様の方法でプラスミドベクターpUC19に融合し、NoTE改変体遺伝子発現用プラスミドNoTE_262(V204W)_Nannoを構築した。なおこのプラスミドは、VCP1プロモーター配列、VCP1葉緑体移行シグナル配列、NoTE改変体遺伝子断片、及びVCP1ターミネーター配列の順に連結したNoTE遺伝子発現用配列と、pUC19ベクター配列からなる。 The NoTE variant gene fragment, VCP1 promoter sequence, VCP1 chloroplast translocation signal sequence, and VCP1 terminator sequence obtained above were fused to the plasmid vector pUC19 in the same manner as in Example 5 for expression of the NoTE variant gene. Plasmid NoTE_262 (V204W) _Nanno was constructed. This plasmid consists of a NoTE gene expression sequence linked in the order of a VCP1 promoter sequence, a VCP1 chloroplast transfer signal sequence, a NoTE variant gene fragment, and a VCP1 terminator sequence, and a pUC19 vector sequence.
 前記プラスミドNoTE_262(V204W)_Nannoを鋳型に、プライマー番号46及びプライマー番号28のプライマー対を用いてPCRを行い、VCP1葉緑体移行シグナル、NoTE改変体遺伝子、VCP1ターミネーター配列からなる遺伝子断片を取得した。
 また、ナンノクロロプシス・オキュラータNIES2145株のゲノムを鋳型として、表1に示すプライマー番号47及びプライマー番号48のプライマー対を用いてPCRを行い、LDSPプロモーター配列(配列番号49)を増幅した。
 さらに、前記パロモマイシン耐性遺伝子発現用プラスミドを鋳型に、表1に示すプライマー番号28及びプライマー番号19のプライマー対を用いてPCRを行い、パロモマイシン耐性遺伝子発現用カセット(チューブリンプロモーター配列、パロモマイシン耐性遺伝子、ヒートショックプロテインターミネーター配列)及びpUC19配列からなる断片を増幅した。
PCR was performed using the plasmid NoTE_262 (V204W) _Nanno as a template and the primer pair of primer number 46 and primer number 28 to obtain a gene fragment consisting of a VCP1 chloroplast transfer signal, a NoTE variant gene, and a VCP1 terminator sequence. .
Moreover, PCR was performed using the genome of Nannochloropsis oculata NIES2145 strain as a template and the primer pair of primer number 47 and primer number 48 shown in Table 1 to amplify the LDSP promoter sequence (SEQ ID NO: 49).
Furthermore, PCR was performed using the above-mentioned plasmid for paromomycin resistance gene expression as a template and the primer pair of primer number 28 and primer number 19 shown in Table 1, and a cassette for paromomycin resistance gene expression (tubulin promoter sequence, paromomycin resistance gene, A fragment consisting of a heat shock protein terminator sequence) and a pUC19 sequence was amplified.
 これら3つの遺伝子断片を実施例5と同様の方法にて融合し、NoTE改変体遺伝子発現用プラスミドを構築した。
 なお、本発現プラスミドは、LDSPプロモーター配列、VCP1葉緑体移行シグナル配列、NoTE改変体遺伝子配列、VCP1ターミネーター配列、チューブリンプロモーター配列、パロモマイシン耐性遺伝子、ヒートショックプロテインターミネーター配列の順に連結したインサート配列と、pUC19ベクター配列からなる。
These three gene fragments were fused in the same manner as in Example 5 to construct a NoTE variant gene expression plasmid.
This expression plasmid consists of an LDSP promoter sequence, a VCP1 chloroplast transfer signal sequence, a NoTE variant gene sequence, a VCP1 terminator sequence, a tubulin promoter sequence, a paromomycin resistance gene, and a heat shock protein terminator sequence in that order. PUC19 vector sequence.
(3)NoTE改変体遺伝子発現用断片及びNoKASIII遺伝子発現用断片のナンノクロロプシスへの導入
 前記NoTE改変体遺伝子発現用プラスミドを鋳型として、表1に示すプライマー番号16及びプライマー番号24のプライマー対を用いてPCRを行い、NoTE改変体遺伝子発現用断片(LDSPプロモーター配列、NoTE改変体遺伝子、VCP1ターミネーター配列、チューブリンプロモーター配列、パロモマイシン耐性遺伝子、ヒートショックプロテインターミネーター配列からなるDNA断片)を増幅した。
 増幅したDNA断片を、High Pure PCR Product Purification Kit(Roche Applied Science社製)を用いて精製した。なお、精製の際の溶出には、キットに含まれる溶出バッファーではなく、滅菌水を用いた。
(3) Introduction of NoTE variant gene expression fragment and NoKASIII gene expression fragment into Nannochloropsis Using the NoTE variant gene expression plasmid as a template, primer pairs of primer numbers 16 and 24 shown in Table 1 were used. PCR was performed to amplify a NoTE variant gene expression fragment (DNA fragment consisting of LDSP promoter sequence, NoTE variant gene, VCP1 terminator sequence, tubulin promoter sequence, paromomycin resistance gene, and heat shock protein terminator sequence).
The amplified DNA fragment was purified using High Pure PCR Product Purification Kit (Roche Applied Science). Note that sterilized water was used for elution during purification, not the elution buffer included in the kit.
 実施例5と同様の方法にてNoTE改変体遺伝子発現用断片をナンノクロロプシス・オキュラータNIES2145株に導入し、パロモマイシン含有f/2培地を用いて培養を行い、得られたコロニーをNoTE改変体遺伝子導入株(NoTE)として選抜した。
 さらに、得られたNoTE改変体遺伝子導入株(NoTE)を宿主として、実施例5と同様の方法にてNoKASIII遺伝子発現用断片を導入し、得られたコロニーを、NoTE改変体遺伝子及びNokASIII遺伝子導入株(NoTE+NoKASIII)として選抜した。
In the same manner as in Example 5, the NoTE variant gene expression fragment was introduced into Nannochloropsis oculata strain NIES2145, cultured using paromomycin-containing f / 2 medium, and the resulting colony was transformed into the NoTE variant gene. Selected as an introduced strain (NoTE).
Furthermore, using the obtained NoTE variant gene introduction strain (NoTE) as a host, a NoKASIII gene expression fragment was introduced in the same manner as in Example 5, and the obtained colonies were introduced with a NoTE variant gene and a NokASIII gene. Selected as a strain (NoTE + NoKASIII).
(4)形質転換体による脂肪酸の生産
 選抜した株それぞれに対して、実施例5と同様の方法により培養を行い、培養液に含まれる脂質成分を解析した。その結果を表7に示す。
(4) Production of fatty acid by transformant Each selected strain was cultured by the same method as in Example 5, and lipid components contained in the culture solution were analyzed. The results are shown in Table 7.
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000007
 表7に示すように、NoTE遺伝子を導入した菌株にNoKASIII遺伝子をさらに導入することで、C12:0脂肪酸及びC14:0脂肪酸の含有率が有意に増加した。 As shown in Table 7, the content of C12: 0 fatty acid and C14: 0 fatty acid was significantly increased by further introducing the NoKASIII gene into the strain into which the NoTE gene was introduced.
 以上のように、本発明で規定するKAS遺伝子の発現を促進させることで、中鎖脂肪酸の生産性を向上させた形質転換体を作製することができる。そしてこの形質転換体を培養することで、中鎖脂肪酸の生産性を向上させることができる。 As described above, a transformant with improved productivity of medium chain fatty acids can be produced by promoting the expression of the KAS gene defined in the present invention. By culturing this transformant, the productivity of medium chain fatty acids can be improved.
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.
 本願は、2015年8月6日に日本国で特許出願された特願2015-155865に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。 This application claims priority based on Japanese Patent Application No. 2015-155865 filed in Japan on August 6, 2015, which is hereby incorporated herein by reference. Capture as part.

Claims (23)

  1.  下記タンパク質(A)若しくは(B)をコードする遺伝子、及びアシル-ACPチオエステラーゼをコードする遺伝子の発現を促進させた形質転換体を培養し、脂肪酸又はこれを構成成分とする脂質を生産させる、脂質の製造方法。
    (A)配列番号1で表されるアミノ酸配列からなるタンパク質。
    (B)前記タンパク質(A)のアミノ酸配列と同一性が67%以上のアミノ酸配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有するタンパク質。
    Culturing a transformant in which expression of the gene encoding the following protein (A) or (B) and the gene encoding acyl-ACP thioesterase is promoted to produce a fatty acid or a lipid comprising the same. A method for producing lipids.
    (A) A protein comprising the amino acid sequence represented by SEQ ID NO: 1.
    (B) A protein comprising an amino acid sequence having 67% or more identity with the amino acid sequence of the protein (A) and having β-ketoacyl-ACP synthase activity.
  2.  下記タンパク質(A)若しくは(B)をコードする遺伝子、及びアシル-ACPチオエステラーゼをコードする遺伝子の発現を促進させ、形質転換体の細胞内で生産される中鎖脂肪酸又はこれを構成成分とする脂質の生産性を向上させる、脂質生産性の向上方法。
    (A)配列番号1で表されるアミノ酸配列からなるタンパク質。
    (B)前記タンパク質(A)のアミノ酸配列と同一性が67%以上のアミノ酸配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有するタンパク質。
    Medium chain fatty acids produced in the cells of the transformant, or components thereof, that promote the expression of the genes encoding the following proteins (A) or (B) and the genes encoding acyl-ACP thioesterase A method for improving lipid productivity, which improves lipid productivity.
    (A) A protein comprising the amino acid sequence represented by SEQ ID NO: 1.
    (B) A protein comprising an amino acid sequence having 67% or more identity with the amino acid sequence of the protein (A) and having β-ketoacyl-ACP synthase activity.
  3.  下記タンパク質(A)若しくは(B)をコードする遺伝子、及びアシル-ACPチオエステラーゼをコードする遺伝子の発現を促進させて、形質転換体の細胞内で生産される中鎖脂肪酸又はこれを構成成分とする脂質の生産性を向上させ、生産される全脂肪酸又は全脂質中の脂肪酸又は脂質の組成を改変する、脂質の組成の改変方法。
    (A)配列番号1で表されるアミノ酸配列からなるタンパク質。
    (B)前記タンパク質(A)のアミノ酸配列と同一性が67%以上のアミノ酸配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有するタンパク質。
    The medium chain fatty acid produced in the cells of the transformant by promoting the expression of the gene encoding the following protein (A) or (B) and the gene encoding acyl-ACP thioesterase The lipid composition modification method for improving the productivity of lipids to be produced and modifying the composition of fatty acids or lipids in total fatty acids or total lipids produced.
    (A) A protein comprising the amino acid sequence represented by SEQ ID NO: 1.
    (B) A protein comprising an amino acid sequence having 67% or more identity with the amino acid sequence of the protein (A) and having β-ketoacyl-ACP synthase activity.
  4.  前記タンパク質(A)若しくは(B)をコードする遺伝子及びアシル-ACPチオエステラーゼをコードする遺伝子を宿主に導入して前記遺伝子の発現を促進させる、請求項1~3のいずれか1項に記載の方法。 The gene according to any one of claims 1 to 3, wherein a gene encoding the protein (A) or (B) and a gene encoding an acyl-ACP thioesterase are introduced into a host to promote expression of the gene. Method.
  5.  下記タンパク質(A)若しくは(B)をコードする遺伝子、及びアシル-ACPチオエステラーゼをコードする遺伝子を導入した形質転換体を培養し、脂肪酸又はこれを構成成分とする脂質を生産させる、脂質の製造方法。
    (A)配列番号1で表されるアミノ酸配列からなるタンパク質。
    (B)前記タンパク質(A)のアミノ酸配列と同一性が67%以上のアミノ酸配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有するタンパク質。
    Production of lipid by culturing a transformant introduced with a gene encoding the following protein (A) or (B) and a gene encoding acyl-ACP thioesterase to produce fatty acid or a lipid comprising the same. Method.
    (A) A protein comprising the amino acid sequence represented by SEQ ID NO: 1.
    (B) A protein comprising an amino acid sequence having 67% or more identity with the amino acid sequence of the protein (A) and having β-ketoacyl-ACP synthase activity.
  6.  下記タンパク質(A)若しくは(B)をコードする遺伝子、及びアシル-ACPチオエステラーゼをコードする遺伝子を導入して形質転換体を作製し、形質転換体の細胞内で生産される中鎖脂肪酸又はこれを構成成分とする脂質の生産性を向上させる、脂質生産性の向上方法。
    (A)配列番号1で表されるアミノ酸配列からなるタンパク質。
    (B)前記タンパク質(A)のアミノ酸配列と同一性が67%以上のアミノ酸配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有するタンパク質。
    A medium chain fatty acid produced in the transformant cell by introducing a gene encoding the following protein (A) or (B) and a gene encoding acyl-ACP thioesterase, or this A method for improving lipid productivity, which improves the productivity of lipids comprising a component.
    (A) A protein comprising the amino acid sequence represented by SEQ ID NO: 1.
    (B) A protein comprising an amino acid sequence having 67% or more identity with the amino acid sequence of the protein (A) and having β-ketoacyl-ACP synthase activity.
  7.  下記タンパク質(A)若しくは(B)をコードする遺伝子、及びアシル-ACPチオエステラーゼをコードする遺伝子を導入して形質転換体を作製し、形質転換体の細胞内で生産される中鎖脂肪酸又はこれを構成成分とする脂質の生産性を向上させ、生産される全脂肪酸又は全脂質中の脂肪酸又は脂質の組成を改変する、脂質の組成の改変方法。
    (A)配列番号1で表されるアミノ酸配列からなるタンパク質。
    (B)前記タンパク質(A)のアミノ酸配列と同一性が67%以上のアミノ酸配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有するタンパク質。
    A medium chain fatty acid produced in the transformant cell by introducing a gene encoding the following protein (A) or (B) and a gene encoding acyl-ACP thioesterase, or this A method for modifying a lipid composition, which improves the productivity of lipids comprising a component and modifies the total fatty acids produced or the composition of fatty acids or lipids in the total lipids.
    (A) A protein comprising the amino acid sequence represented by SEQ ID NO: 1.
    (B) A protein comprising an amino acid sequence having 67% or more identity with the amino acid sequence of the protein (A) and having β-ketoacyl-ACP synthase activity.
  8.  前記タンパク質(A)又は(B)をコードする遺伝子が、下記DNA(a)又は(b)からなる遺伝子である、請求項1~7のいずれか1項記載の方法。
    (a)配列番号2で表される塩基配列からなるDNA。
    (b)前記DNA(a)の塩基配列と同一性が62%以上の塩基配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有する前記タンパク質(A)又は(B)をコードするDNA。
    The method according to any one of claims 1 to 7, wherein the gene encoding the protein (A) or (B) is a gene comprising the following DNA (a) or (b).
    (A) DNA consisting of the base sequence represented by SEQ ID NO: 2.
    (B) A DNA encoding the protein (A) or (B), which has a base sequence having 62% or more identity with the base sequence of the DNA (a) and has β-ketoacyl-ACP synthase activity.
  9.  前記形質転換体が微生物又は植物である、請求項1~8のいずれか1項記載の方法。 The method according to any one of claims 1 to 8, wherein the transformant is a microorganism or a plant.
  10.  前記微生物が微細藻類である、請求項9記載の方法。 The method according to claim 9, wherein the microorganism is a microalgae.
  11.  前記微細藻類がナンノクロロプシス(Nannochloropsis)属に属する藻類である、請求項10記載の方法。 The method according to claim 10, wherein the microalgae are algae belonging to the genus Nannochloropsis .
  12.  前記微生物が大腸菌である、請求項9記載の方法。 The method according to claim 9, wherein the microorganism is Escherichia coli.
  13.  前記脂質が中鎖脂肪酸又はそのエステル化合物を含む、請求項1~12のいずれか1項記載の方法。 The method according to any one of claims 1 to 12, wherein the lipid comprises a medium chain fatty acid or an ester compound thereof.
  14.  下記タンパク質(A)又は(B)。
    (A)配列番号1で表されるアミノ酸配列からなるタンパク質。
    (B)前記タンパク質(A)のアミノ酸配列と同一性が92%以上のアミノ酸配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有するタンパク質。
    The following protein (A) or (B).
    (A) A protein comprising the amino acid sequence represented by SEQ ID NO: 1.
    (B) A protein comprising an amino acid sequence having 92% or more identity with the amino acid sequence of the protein (A) and having β-ketoacyl-ACP synthase activity.
  15.  請求項14記載のタンパク質をコードする遺伝子。 A gene encoding the protein according to claim 14.
  16.  下記DNA(a)又は(b)からなる遺伝子。
    (a)配列番号2で表される塩基配列からなるDNA。
    (b)前記DNA(a)の塩基配列と同一性が74%以上の塩基配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有する下記タンパク質(A)又は(B)をコードするDNA。
    (A)配列番号1で表されるアミノ酸配列からなるタンパク質。
    (B)前記タンパク質(A)のアミノ酸配列と同一性が92%以上のアミノ酸配列からなり、かつβ-ケトアシル-ACPシンターゼ活性を有するタンパク質。
    A gene comprising the following DNA (a) or (b).
    (A) DNA consisting of the base sequence represented by SEQ ID NO: 2.
    (B) A DNA encoding the following protein (A) or (B) having a base sequence having an identity of 74% or more with the base sequence of the DNA (a) and having β-ketoacyl-ACP synthase activity.
    (A) A protein comprising the amino acid sequence represented by SEQ ID NO: 1.
    (B) A protein comprising an amino acid sequence having 92% or more identity with the amino acid sequence of the protein (A) and having β-ketoacyl-ACP synthase activity.
  17.  請求項15又は16記載の遺伝子を含有する組換えベクター。 A recombinant vector containing the gene according to claim 15 or 16.
  18.  請求項15若しくは16記載の遺伝子、及びアシル-ACPチオエステラーゼをコードする遺伝子の発現を促進させた形質転換体。 A transformant in which expression of the gene according to claim 15 or 16 and the gene encoding acyl-ACP thioesterase is promoted.
  19.  請求項15若しくは16記載の遺伝子、及びアシル-ACPチオエステラーゼをコードする遺伝子を宿主に導入してなる、請求項18記載の形質転換体。 19. The transformant according to claim 18, wherein the gene according to claim 15 or 16 and the gene encoding acyl-ACP thioesterase are introduced into a host.
  20.  前記形質転換体が微生物又は植物である、請求項18又は19記載の形質転換体。 20. The transformant according to claim 18 or 19, wherein the transformant is a microorganism or a plant.
  21.  前記微生物が微細藻類である、請求項20記載の形質転換体。 The transformant according to claim 20, wherein the microorganism is a microalgae.
  22.  前記微細藻類がナンノクロロプシス(Nannochloropsis)属に属する藻類である、請求項21記載の形質転換体。 The transformant according to claim 21, wherein the microalgae are algae belonging to the genus Nannochloropsis .
  23.  前記微生物が大腸菌である、請求項20記載の形質転換体。
     
     
     
     
    The transformant according to claim 20, wherein the microorganism is Escherichia coli.



PCT/JP2016/072007 2015-08-06 2016-07-27 Lipid production method WO2017022587A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015155865A JP2017029122A (en) 2015-08-06 2015-08-06 Method for producing lipid
JP2015-155865 2015-08-06

Publications (1)

Publication Number Publication Date
WO2017022587A1 true WO2017022587A1 (en) 2017-02-09

Family

ID=57944203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072007 WO2017022587A1 (en) 2015-08-06 2016-07-27 Lipid production method

Country Status (2)

Country Link
JP (1) JP2017029122A (en)
WO (1) WO2017022587A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7025154B2 (en) * 2017-09-11 2022-02-24 花王株式会社 Lipid manufacturing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05507199A (en) * 1990-04-26 1993-10-21 カルジーン,インコーポレイティド plant thioesterase
JP2002515761A (en) * 1997-04-11 2002-05-28 カルジーン エルエルシー Use in improved methods for the production of plant fatty acid synthases and medium chain fatty acids
US20030145350A1 (en) * 2000-01-12 2003-07-31 Friedrich Spener Method for increasing the content of fatty acids in plants and micro-organisms
WO2009150435A1 (en) * 2008-06-13 2009-12-17 University Of Stavanger Plastid transformation vectors allowing excision of marker genes
JP2011250781A (en) * 2010-05-06 2011-12-15 Kao Corp Thioesterase and method for producing fatty acid or lipid using the same
US20130102040A1 (en) * 2011-10-17 2013-04-25 Colorado School Of Mines Use of endogenous promoters in genetic engineering of nannochloropsis gaditana
WO2013082186A2 (en) * 2011-11-28 2013-06-06 Solazyme, Inc. Genetically engineered microbial strains including prototheca lipid pathway genes
WO2015005139A1 (en) * 2013-07-12 2015-01-15 花王株式会社 Acyl-acp thioesterase

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05507199A (en) * 1990-04-26 1993-10-21 カルジーン,インコーポレイティド plant thioesterase
JP2002515761A (en) * 1997-04-11 2002-05-28 カルジーン エルエルシー Use in improved methods for the production of plant fatty acid synthases and medium chain fatty acids
US20030145350A1 (en) * 2000-01-12 2003-07-31 Friedrich Spener Method for increasing the content of fatty acids in plants and micro-organisms
WO2009150435A1 (en) * 2008-06-13 2009-12-17 University Of Stavanger Plastid transformation vectors allowing excision of marker genes
JP2011250781A (en) * 2010-05-06 2011-12-15 Kao Corp Thioesterase and method for producing fatty acid or lipid using the same
US20130102040A1 (en) * 2011-10-17 2013-04-25 Colorado School Of Mines Use of endogenous promoters in genetic engineering of nannochloropsis gaditana
WO2013082186A2 (en) * 2011-11-28 2013-06-06 Solazyme, Inc. Genetically engineered microbial strains including prototheca lipid pathway genes
WO2015005139A1 (en) * 2013-07-12 2015-01-15 花王株式会社 Acyl-acp thioesterase

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANDERSON DAVID J. ET AL.: "Synthesis of Short-Chain-Length/Medium-Chain Length Polyhydroxyalkanoate (PHA) Copolymers in Peroxisomes of Transgenic Sugarcane Plants", TROPICAL PLANT BIOL., vol. 4, 2011, pages 170 - 184, XP019985067 *
LEONARD JEFFREY M . ET AL.: "A Cuphea beta- ketoacyl-ACP synthase shifts the synthesis of fatty acids towards shorter chains in Arabidopsis seeds expressing Cuphea FatB thioesterases", PLANT J., vol. 13, no. 5, 1998, pages 621 - 628, XP002081429 *
RADAKOVITS RANDOR ET AL.: "Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana", NAT. COMMUN., vol. 3, 2012, pages 686, XP055138208 *
TSAY JIU-TSAIR ET AL.: "Isolation and Characterization of the beta-Ketoacyl-acyl Carrier Protein Synthase III Gene (fabH) from Escherichia coli K-12", J. BIOL. CHEM., vol. 267, no. 10, 1992, pages 6807 - 6814, XP002931345 *

Also Published As

Publication number Publication date
JP2017029122A (en) 2017-02-09

Similar Documents

Publication Publication Date Title
JP6310544B2 (en) Method for producing lipid using β-ketoacyl-ACP synthase
JP6491881B2 (en) Acyl-ACP thioesterase
US10844409B2 (en) Method of producing lipid
JP6629749B2 (en) Method for producing lipid using acyl-ACP thioesterase
JP6381139B2 (en) Acyl-ACP thioesterase
WO2016021481A1 (en) METHOD FOR PRODUCING MEDIUM-CHAIN FATTY ACID USING β-KETOACYL-ACP SYNTHASE
US10337037B2 (en) Method of producing lipid
JP6779664B2 (en) Lipid production method
JP6580912B2 (en) Method for producing lipid
JP6709169B2 (en) Method for producing lipid using acyl-ACP thioesterase
JP6587468B2 (en) Method for producing lipid
JP2019050750A (en) Method for producing lipid
WO2017022587A1 (en) Lipid production method
WO2020071265A1 (en) Lipid production method
WO2018062015A1 (en) Lipid manufacturing method
WO2016190239A1 (en) Lipid production method
JP2019216643A (en) Method for producing lipid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832866

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16832866

Country of ref document: EP

Kind code of ref document: A1