WO2016189829A1 - Conductive paste for mounting - Google Patents

Conductive paste for mounting Download PDF

Info

Publication number
WO2016189829A1
WO2016189829A1 PCT/JP2016/002411 JP2016002411W WO2016189829A1 WO 2016189829 A1 WO2016189829 A1 WO 2016189829A1 JP 2016002411 W JP2016002411 W JP 2016002411W WO 2016189829 A1 WO2016189829 A1 WO 2016189829A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
mass
parts
mounting
conductive paste
Prior art date
Application number
PCT/JP2016/002411
Other languages
French (fr)
Japanese (ja)
Inventor
梅田 裕明
和大 松田
健 湯川
Original Assignee
タツタ電線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タツタ電線株式会社 filed Critical タツタ電線株式会社
Priority to JP2017520223A priority Critical patent/JP6632618B2/en
Publication of WO2016189829A1 publication Critical patent/WO2016189829A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods

Definitions

  • the present invention relates to a conductive paste for mounting, and more particularly to a conductive paste for mounting suitable for a flip chip mounting method.
  • the chip As the electronic devices become lighter, thinner and smaller, the chip is also required to be smaller and thinner. However, if the chip is thinned, there is a problem that the chip is deformed by heat during mounting. Therefore, there is a demand for a technology that enables mounting at a low temperature.
  • Patent Document 1 discloses a flip chip mounting method using a microcapsule in which a conductive filler is coated with an insulating material.
  • the flip chip mounting method is a mounting technique in which a small amount of conductive paste applied on a transfer table is attached to bumps (electrode portions) of a semiconductor element by transfer, and fixed to a printed circuit board.
  • the flip-chip mounting method disclosed in Patent Document 1 is a method in which a resin is attached to a bump by dipping and then a microcapsule is further attached by dipping, which has a problem that the operation is complicated and the efficiency is low. Therefore, a technique for efficiently attaching a conductive paste to the bump is required.
  • the bump size and the pitch between the bumps are further miniaturized. Therefore, when transferring the conductive paste by dipping, it is difficult to transfer an appropriate amount of the conductive paste for mounting on the small bumps of the miniaturized chip, and the reliability of the joint Is required.
  • the present invention has been made in view of the above, and is a conductive paste for mounting that can be mounted at a low temperature and can ensure the reliability of the joint between the miniaturized chip and the substrate,
  • an object is to provide a conductive paste for mounting suitable for a flip chip mounting method.
  • the conductive paste for mounting according to the present invention is 10 to 50 parts by mass of a solid epoxy resin, 10 to 40 parts by mass of an acrylate monomer, and 100 parts by mass of a resin component with the balance being a liquid epoxy resin.
  • the curing agent is contained in a proportion of 0.5 to 30 parts by mass and the conductive filler is contained in a proportion of 400 to 1200 parts by mass.
  • the solid epoxy resin one or more selected from the group consisting of bisphenol A type epoxy resin, trisphenol methane type epoxy resin, and phenol novolac type epoxy resin can be used.
  • the liquid epoxy resin 1 type (s) or 2 or more types selected from the group which consists of a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a glycidyl amine type epoxy resin, and a glycidyl ether type epoxy resin can be used.
  • one or more selected from the group consisting of imidazole, imidazole derivatives, and modified amines can be used.
  • the conductive filler one or more selected from the group consisting of gold, silver, and copper can be used.
  • the mounting conductive paste of the present invention mounting at a low temperature is possible, and it is possible to further improve the adhesion, conductivity and reliability of the joint portion between the chip and the substrate that have been refined in recent years. it can. Therefore, it is possible to cope with further downsizing and thinning of the chip.
  • the curing agent is 0 5 to 30 parts by mass and a conductive filler in a proportion of 400 to 1200 parts by mass.
  • solid epoxy resin refers to an epoxy resin that is solid at room temperature (25 ° C.).
  • the solid epoxy resin contains an epoxy group in the molecule and is not particularly limited as long as it is solid at room temperature. Specific examples include bisphenol A type epoxy resin, trisphenol methane type epoxy resin, phenol novolac type. An epoxy resin etc. are mentioned.
  • a solid epoxy resin can also be used individually by 1 type, and can also be used by blending 2 or more types.
  • the blending amount of the solid epoxy resin is 10 to 50 parts by mass, preferably 15 to 40 parts by mass, and more preferably 20 to 40 parts by mass. Adhesiveness and electroconductivity with a chip
  • substrate are acquired as it is 10 mass parts or more. Moreover, when it is 50 parts by mass or less, the viscosity of the conductive paste does not become too high, and the chip can be mounted without being in close contact with the transfer table during transfer.
  • acrylate monomer one having one or more reactive groups represented by the following structural formula (I) in the molecule can be used.
  • R represents H or an alkyl group, and the number of carbon atoms of the alkyl group is not particularly limited, but is usually 1 to 3.
  • acrylate monomer examples include, but are not limited to, isoamyl acrylate, neopentyl glycol diacrylate, trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, bisphenol A diglycidyl ether acrylic acid adduct, ethylene glycol dimethacrylate, 2 -Hydroxy-3-acryloyloxypropyl methacrylate, diethylene glycol dimethacrylate and the like.
  • Two or more acrylate monomers can be used in combination.
  • the total amount of the acrylate monomer is 10 to 40 parts by mass, preferably 15 to 35 parts by mass, and more preferably 20 to 30 parts by mass.
  • liquid epoxy resin refers to an epoxy resin that is liquid at room temperature (25 ° C.).
  • the liquid epoxy resin contains an epoxy group in the molecule and is not particularly limited as long as it is liquid at room temperature.
  • Specific examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, and glycidylamine epoxy. Examples thereof include resins and glycidyl ether epoxy resins.
  • a liquid epoxy resin can also be used individually by 1 type, and can also be used by blending 2 or more types.
  • the blending amount of the liquid epoxy resin is blended so that the resin component is 100 parts by mass in consideration of the blending amount of the solid epoxy resin and the acrylate monomer.
  • the curing agent used in the present invention is not particularly limited, but imidazole-based curing agents such as imidazole and imidazole derivatives, or modified amines are preferably used.
  • imidazole curing agents include imidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecyl.
  • Examples include imidazole and 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine.
  • the modified amine include epoxy adducts of various polyamines, Mannich reactants, Michael reactants, thiourea reactants, and the like.
  • the blending amount of the curing agent is 0.5 to 30 parts by mass, preferably 1 to 20 parts by mass, more preferably 3 to 15 parts by mass with respect to 100 parts by mass of the resin component.
  • the blending amount of the curing agent is 0.5 to 30 parts by mass, preferably 1 to 20 parts by mass, more preferably 3 to 15 parts by mass with respect to 100 parts by mass of the resin component.
  • the conductive filler used in the present invention is preferably one type selected from gold, silver, or copper, or two or more types, and the shape and manufacturing method are not limited.
  • metal powders made of a single metal metal powders made of two or more alloys, and those coated with these kinds of metal powders can also be used.
  • Preferred examples include silver-coated copper powder. Is mentioned.
  • the particle size of the conductive filler is not particularly limited, but the average particle size is preferably 0.5 ⁇ m to 20 ⁇ m.
  • the blending amount of the conductive filler is 400 to 1200 parts by mass, preferably 500 to 1000 parts by mass, and more preferably 600 to 800 parts by mass with respect to 100 parts by mass of the resin component. Sufficient electroconductivity is acquired as it is 400 mass parts or more. When the amount is 1200 parts by mass or less, the viscosity does not become too high, and an appropriate amount of the conductive paste for mounting can be transferred at the time of transfer, and the chip can be mounted without being in close contact with the transfer table at the time of transfer. Is possible.
  • the mounting conductive paste of the present invention can be obtained by mixing a predetermined amount of each of the above components and mixing them sufficiently.
  • additives that have been conventionally added to the same type of conductive paste can be added within a range not departing from the object of the present invention.
  • the conductive paste for mounting obtained as described above can be suitably used for flip chip mounting methods, and since it has a solid epoxy resin, it has high viscosity at low temperature, enabling mounting at low temperature, miniaturization of the chip, And it becomes possible to cope with thinning. That is, in the flip chip mounting method, when the mounting conductive paste is transferred to the bumps of the chip by dipping, it is suitable for mounting on the fine bumps of the miniaturized chip without being in close contact with the transfer stand. A sufficient amount of the conductive paste for mounting can be transferred. Therefore, it is possible to improve the adhesiveness and conductivity of a fine junction between the chip and the substrate and the reliability thereof.
  • a solid epoxy resin, a liquid epoxy resin, an acrylate monomer, a curing agent, and silver-coated copper powder were mixed to prepare a conductive paste for mounting.
  • the obtained conductive paste for mounting is thinly applied on a transfer table (not shown), and the bumps 2 of the chip 1 are dipped thereon, so that the conductive paste 3 for mounting is applied to the chip 1 as shown in FIG. Transcribed to.
  • the chip 1 was mounted on a substrate, heated at 80 ° C. for 60 minutes, further heated at 160 ° C. for 60 minutes and cured to obtain a mounting substrate.
  • Solid epoxy resin “JER157S70” manufactured by Mitsubishi Chemical Corporation ⁇ Liquid epoxy resin: Blend of “EP-4901” (80 wt%) manufactured by ADEKA Corporation and “ED502” (20 wt%) manufactured by ADEKA Corporation ⁇ Acrylate monomer: 2-hydroxy-3-acryloyloxypropyl methacrylate Curing agent A (imidazole-based curing agent): 2-ethylimidazole / curing agent B (modified amine): “Fujicure FXR-1030” manufactured by T & K TOKA CORPORATION ⁇ Silver-coated copper powder: average particle size 3 ⁇ m, spherical
  • the obtained mounting board was measured for conductivity evaluation, push strength (slip stress), and viscosity change after 24 hours by the following methods.
  • Comparative Example 1 in which the solid epoxy resin is less than 10 parts by mass, sufficient adhesion and conductivity between the substrate and the chip cannot be obtained, and in Comparative Example 2 in which the solid epoxy resin is more than 50 parts by mass, mounting is performed.
  • the conductive paste for use had a high viscosity, and the chip was in close contact with the transfer table during transfer, and could not be mounted.
  • Comparative Example 3 in which the curing agent is less than 0.5 parts by mass with respect to 100 parts by mass of the resin component, sufficient adhesion and conductivity cannot be obtained due to insufficient curing, and the Comparative Example in which more than 30 parts by mass is obtained In 4 and 5, the pot life was shortened and workability was impaired.
  • Comparative Example 6 in which the conductive filler is less than 400 parts by mass with respect to 100 parts by mass of the resin component, sufficient conductivity cannot be obtained, and in Comparative Example 7 in which the conductive filler is more than 1200 parts by mass, the mounting conductive paste Since the viscosity was high, an appropriate amount of the conductive paste for mounting could not be transferred at the time of transfer, and the chip was in close contact with the transfer table at the time of transfer and could not be mounted.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Provided is a conductive paste for mounting, which enables mounting at low temperatures and is capable of ensuring the reliability of the bonded part of a miniaturized chip and a substrate. The present invention uses a conductive paste for mounting, which contains 0.5-30 parts by mass of a curing agent and 400-1,200 parts by mass of a conductive filler per 100 parts by mass of a resin component that is composed of 10-50 parts by mass of a solid epoxy resin, 10-40 parts by mass of an acrylate monomer and the balance made up of a liquid epoxy resin.

Description

実装用導電性ペーストConductive paste for mounting
 本発明は、実装用導電性ペーストに関するものであり、より詳細にはフリップチップ実装方法に適した実装用導電性ペーストに関するものである。 The present invention relates to a conductive paste for mounting, and more particularly to a conductive paste for mounting suitable for a flip chip mounting method.
 電子機器の軽薄短小化に伴い、チップも小型化や薄肉化が求められているが、チップを薄肉化すると、実装する際の熱によりチップが変形するという問題がある。そのため、低温での実装を可能とする技術が求められている。 As the electronic devices become lighter, thinner and smaller, the chip is also required to be smaller and thinner. However, if the chip is thinned, there is a problem that the chip is deformed by heat during mounting. Therefore, there is a demand for a technology that enables mounting at a low temperature.
 低温での実装を可能とする技術としては、例えば特許文献1のように導電性フィラーを絶縁体材料でコーティングしたマイクロカプセルを用いたフリップチップ実装方法が開示されている。フリップチップ実装方法とは、半導体素子のバンプ(電極部分)に、転写台上に塗布された導電性ペーストを転写により微量付着させ、プリント基板へ固定させる実装技術である。しかし、特許文献1のフリップチップ実装方法は、バンプにディッピングにより樹脂を付着させた後、さらにディッピングによりマイクロカプセルを付着させる方法であり、操作が煩雑で、効率が低いという問題点を有する。そのため、バンプに導電性ペーストを、効率よく付着させる技術が求められている。 As a technique that enables mounting at a low temperature, for example, Patent Document 1 discloses a flip chip mounting method using a microcapsule in which a conductive filler is coated with an insulating material. The flip chip mounting method is a mounting technique in which a small amount of conductive paste applied on a transfer table is attached to bumps (electrode portions) of a semiconductor element by transfer, and fixed to a printed circuit board. However, the flip-chip mounting method disclosed in Patent Document 1 is a method in which a resin is attached to a bump by dipping and then a microcapsule is further attached by dipping, which has a problem that the operation is complicated and the efficiency is low. Therefore, a technique for efficiently attaching a conductive paste to the bump is required.
 また、チップの小型化に伴い、バンプのサイズ及びバンプ間のピッチのさらなる微細化が進んでいる。そのため、ディッピングにより導電性ペーストを転写する際、小型化したチップの微細なバンプに対して、実装するために適切な量の導電性ペーストを転写することが難しくなっており、接合部の信頼性の確保が求められている。 Also, with the miniaturization of the chip, the bump size and the pitch between the bumps are further miniaturized. Therefore, when transferring the conductive paste by dipping, it is difficult to transfer an appropriate amount of the conductive paste for mounting on the small bumps of the miniaturized chip, and the reliability of the joint Is required.
特開平9-246326号公報JP-A-9-246326
 本発明は上記に鑑みてなされたものであり、低温での実装が可能であり、かつ微細化したチップと基板との接合部の信頼性を確保することができる実装用導電性ペーストであり、特にフリップチップ実装方法に適した実装用導電性ペーストを提供することを目的とする。 The present invention has been made in view of the above, and is a conductive paste for mounting that can be mounted at a low temperature and can ensure the reliability of the joint between the miniaturized chip and the substrate, In particular, an object is to provide a conductive paste for mounting suitable for a flip chip mounting method.
 本発明に係る実装用導電性ペーストは、上記課題を解決するために、固形エポキシ樹脂を10~50質量部、アクリレートモノマーを10~40質量部、残部が液状エポキシ樹脂である樹脂成分100質量部に対し、硬化剤を0.5~30質量部、導電性フィラーを400~1200質量部の割合で含有してなるものとする。 In order to solve the above problems, the conductive paste for mounting according to the present invention is 10 to 50 parts by mass of a solid epoxy resin, 10 to 40 parts by mass of an acrylate monomer, and 100 parts by mass of a resin component with the balance being a liquid epoxy resin. In contrast, the curing agent is contained in a proportion of 0.5 to 30 parts by mass and the conductive filler is contained in a proportion of 400 to 1200 parts by mass.
 固形エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、トリスフェノールメタン型エポキシ樹脂、及びフェノールノボラック型エポキシ樹脂からなる群から選択された1種又は2種以上を用いることができ、液状エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、グリシジルアミン系エポキシ樹脂、及びグリシジルエーテル系エポキシ樹脂からなる群から選択された1種又は2種以上を用いることができる。 As the solid epoxy resin, one or more selected from the group consisting of bisphenol A type epoxy resin, trisphenol methane type epoxy resin, and phenol novolac type epoxy resin can be used. As the liquid epoxy resin, 1 type (s) or 2 or more types selected from the group which consists of a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a glycidyl amine type epoxy resin, and a glycidyl ether type epoxy resin can be used.
 硬化剤としては、イミダゾール、イミダゾール誘導体、及び変性アミンからなる群から選択された1種又は2種以上を用いることができる。 As the curing agent, one or more selected from the group consisting of imidazole, imidazole derivatives, and modified amines can be used.
 導電性フィラーとしては、金、銀、及び銅からなる群から選択された1種又は2種以上を用いることができる。 As the conductive filler, one or more selected from the group consisting of gold, silver, and copper can be used.
 本発明の実装用導電性ペーストによれば、低温での実装が可能であり、近年のより微細化したチップと基板との接合部の接着性や導電性及びその信頼性をより向上させることができる。従って、チップのさらなる小型化、薄肉化に対応することが可能となる。 According to the mounting conductive paste of the present invention, mounting at a low temperature is possible, and it is possible to further improve the adhesion, conductivity and reliability of the joint portion between the chip and the substrate that have been refined in recent years. it can. Therefore, it is possible to cope with further downsizing and thinning of the chip.
チップのバンプに、実装用導電性ペーストをディッピングにより転写した状態を表す模式断面図である。It is a schematic cross section showing the state which transferred the conductive paste for mounting to the bump of the chip by dipping. 導電性評価パターンを表すプリント配線板の拡大図である。It is an enlarged view of the printed wiring board showing an electroconductive evaluation pattern.
 以下、本発明の実施の形態を、より具体的に説明する。 Hereinafter, embodiments of the present invention will be described more specifically.
 本実施形態に係る実装用導電性ペーストは、固形エポキシ樹脂を10~50質量部、アクリレートモノマーを10~40質量部、残部が液状エポキシ樹脂である樹脂成分100質量部に対し、硬化剤を0.5~30質量部、導電性フィラーを400~1200質量部の割合で含有してなるものである。 In the conductive paste for mounting according to this embodiment, 10 to 50 parts by mass of a solid epoxy resin, 10 to 40 parts by mass of an acrylate monomer, and 100 parts by mass of a resin component in which the balance is a liquid epoxy resin, the curing agent is 0 5 to 30 parts by mass and a conductive filler in a proportion of 400 to 1200 parts by mass.
 ここで、「固形エポキシ樹脂」とは、常温(25℃)において固体であるエポキシ樹脂をいうものとする。当該固形エポキシ樹脂としては、分子内にエポキシ基を含有するもので、常温で固体であれば特に限定されないが、具体例としては、ビスフェノールA型エポキシ樹脂、トリスフェノールメタン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂などが挙げられる。固形エポキシ樹脂は、1種を単独で用いることもでき、2種以上をブレンドして用いることもできる。 Here, “solid epoxy resin” refers to an epoxy resin that is solid at room temperature (25 ° C.). The solid epoxy resin contains an epoxy group in the molecule and is not particularly limited as long as it is solid at room temperature. Specific examples include bisphenol A type epoxy resin, trisphenol methane type epoxy resin, phenol novolac type. An epoxy resin etc. are mentioned. A solid epoxy resin can also be used individually by 1 type, and can also be used by blending 2 or more types.
 上記固形エポキシ樹脂の配合量は、10~50質量部であり、好ましくは15~40質量部、より好ましくは20~40質量部である。10質量部以上であると、チップと基板との十分な接着性及び導電性が得られる。また、50質量部以下であると、導電性ペーストの粘度が高くなり過ぎず、転写時にチップが転写台に密着することなく、実装することが可能である。 The blending amount of the solid epoxy resin is 10 to 50 parts by mass, preferably 15 to 40 parts by mass, and more preferably 20 to 40 parts by mass. Adhesiveness and electroconductivity with a chip | tip and a board | substrate are acquired as it is 10 mass parts or more. Moreover, when it is 50 parts by mass or less, the viscosity of the conductive paste does not become too high, and the chip can be mounted without being in close contact with the transfer table during transfer.
 また、アクリレートモノマーとしては、分子内に次の構造式(I)で示される反応基を1又は2個以上有するものを用いることができる。 As the acrylate monomer, one having one or more reactive groups represented by the following structural formula (I) in the molecule can be used.
Figure JPOXMLDOC01-appb-C000001
 式(I)中、RはH又はアルキル基を示し、アルキル基の炭素数は特に限定されないが、通常は1~3個である。
Figure JPOXMLDOC01-appb-C000001
In the formula (I), R represents H or an alkyl group, and the number of carbon atoms of the alkyl group is not particularly limited, but is usually 1 to 3.
 アクリレートモノマーの具体例としては、特に限定されないが、イソアミルアクリレート、ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ビスフェノールAジグリシジルエーテルアクリル酸付加物、エチレングリコールジメタクリレート、2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート、及びジエチレングリコールジメタクリレート等が挙げられる。 Specific examples of the acrylate monomer include, but are not limited to, isoamyl acrylate, neopentyl glycol diacrylate, trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, bisphenol A diglycidyl ether acrylic acid adduct, ethylene glycol dimethacrylate, 2 -Hydroxy-3-acryloyloxypropyl methacrylate, diethylene glycol dimethacrylate and the like.
 なお、アクリレートモノマーは2種以上を併用することもできる。 Two or more acrylate monomers can be used in combination.
 上記アクリレートモノマーの配合量は総量で、10~40質量部であり、好ましくは15~35質量部、より好ましくは20~30質量部である。 The total amount of the acrylate monomer is 10 to 40 parts by mass, preferably 15 to 35 parts by mass, and more preferably 20 to 30 parts by mass.
 次に、「液状エポキシ樹脂」とは、常温(25℃)において液体であるエポキシ樹脂をいうものとする。当該液状エポキシ樹脂としては、分子内にエポキシ基を含有するもので、常温で液体であれば特に限定されないが、具体例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、グリシジルアミン系エポキシ樹脂、グリシジルエーテル系エポキシ樹脂等が挙げられる。液状エポキシ樹脂は、1種を単独で用いることもでき、2種以上ブレンドして用いることもできる。 Next, “liquid epoxy resin” refers to an epoxy resin that is liquid at room temperature (25 ° C.). The liquid epoxy resin contains an epoxy group in the molecule and is not particularly limited as long as it is liquid at room temperature. Specific examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, and glycidylamine epoxy. Examples thereof include resins and glycidyl ether epoxy resins. A liquid epoxy resin can also be used individually by 1 type, and can also be used by blending 2 or more types.
 液状エポキシ樹脂の配合量は、上記固形エポキシ樹脂、アクリレートモノマーの配合量を考慮し、樹脂成分が100質量部となるように配合する。 The blending amount of the liquid epoxy resin is blended so that the resin component is 100 parts by mass in consideration of the blending amount of the solid epoxy resin and the acrylate monomer.
 本発明で用いる硬化剤は、特に限定されないが、イミダゾール、イミダゾール誘導体等のイミダゾール系硬化剤、又は変性アミンが好適に用いられる。イミダゾール系硬化剤の具体例として、イミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-エチルイミダゾール、2-フェニルイミダゾール、2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、及び2,4-ジアミノ-6-〔2’-メチルイミダゾリル-(1’)〕-エチル-s-トリアジン等が挙げられる。変性アミンの具体例としては、各種ポリアミンのエポキシ付加物、マンニッヒ反応物、ミカエル反応物、チオ尿素反応物等が挙げられる。 The curing agent used in the present invention is not particularly limited, but imidazole-based curing agents such as imidazole and imidazole derivatives, or modified amines are preferably used. Specific examples of imidazole curing agents include imidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecyl. Examples include imidazole and 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine. Specific examples of the modified amine include epoxy adducts of various polyamines, Mannich reactants, Michael reactants, thiourea reactants, and the like.
 上記硬化剤の配合量は、樹脂成分100質量部に対して、0.5~30質量部であり、好ましくは1~20質量部、より好ましくは3~15質量部である。0.5質量部以上であると、接着性及び導電性を得るために十分な硬化が得られ、30質量部以下であると、作業性を損なわない範囲でポットライフを確保できる。 The blending amount of the curing agent is 0.5 to 30 parts by mass, preferably 1 to 20 parts by mass, more preferably 3 to 15 parts by mass with respect to 100 parts by mass of the resin component. When it is 0.5 parts by mass or more, sufficient curing is obtained to obtain adhesiveness and conductivity, and when it is 30 parts by mass or less, pot life can be ensured within a range that does not impair workability.
 本発明で用いる導電性フィラーは、金、銀、又は銅から選ばれる1種、又は2種以上であることが好ましく、形状や製法は問わない。また、単一の金属からなる金属粉のほか、2種以上の合金からなる金属粉や、これらの金属粉を他種の金属でコートしたものも使用でき、好ましい例としては、銀コート銅粉が挙げられる。導電性フィラーの粒径は特に限定されないが、平均粒径は、0.5μm~20μmであることが好ましい。 The conductive filler used in the present invention is preferably one type selected from gold, silver, or copper, or two or more types, and the shape and manufacturing method are not limited. In addition to metal powders made of a single metal, metal powders made of two or more alloys, and those coated with these kinds of metal powders can also be used. Preferred examples include silver-coated copper powder. Is mentioned. The particle size of the conductive filler is not particularly limited, but the average particle size is preferably 0.5 μm to 20 μm.
 上記導電性フィラーの配合量は、樹脂成分100質量部に対して、400~1200質量部であり、好ましくは500~1000質量部、より好ましくは600~800質量部である。400質量部以上であると、十分な導電性が得られる。また1200質量部以下であると、粘度が高くなり過ぎず、転写時に適切な量の実装用導電性ペーストを転写することが可能となり、転写時にチップが転写台に密着することなく、実装することが可能である。 The blending amount of the conductive filler is 400 to 1200 parts by mass, preferably 500 to 1000 parts by mass, and more preferably 600 to 800 parts by mass with respect to 100 parts by mass of the resin component. Sufficient electroconductivity is acquired as it is 400 mass parts or more. When the amount is 1200 parts by mass or less, the viscosity does not become too high, and an appropriate amount of the conductive paste for mounting can be transferred at the time of transfer, and the chip can be mounted without being in close contact with the transfer table at the time of transfer. Is possible.
 本発明の実装用導電性ペーストは、上記した各成分を所定量配合して十分に混合することにより得られる。なお、本発明の実装用導電性ペーストには、従来から同種の導電性ペーストに添加されることのあった添加剤を、本発明の目的から外れない範囲内で添加することもできる。 The mounting conductive paste of the present invention can be obtained by mixing a predetermined amount of each of the above components and mixing them sufficiently. In addition, to the conductive paste for mounting of the present invention, additives that have been conventionally added to the same type of conductive paste can be added within a range not departing from the object of the present invention.
 上記により得られる実装用導電性ペーストは、フリップチップ実装方法に好適に用いることができ、固形エポキシ樹脂を有することから低温での粘性が高く、低温での実装が可能となり、チップの小型化、及び薄肉化に対応できるものとなる。すなわち、フリップチップ実装法において、チップのバンプに、該実装用導電性ペーストをディッピングにより転写する際、転写台に密着せず、小型化したチップの微細なバンプに対して、実装するために適切な量の実装用導電性ペーストを転写することができる。従って、チップと基板との微細な接合部の接着性や導電性及びその信頼性の向上が可能となる。 The conductive paste for mounting obtained as described above can be suitably used for flip chip mounting methods, and since it has a solid epoxy resin, it has high viscosity at low temperature, enabling mounting at low temperature, miniaturization of the chip, And it becomes possible to cope with thinning. That is, in the flip chip mounting method, when the mounting conductive paste is transferred to the bumps of the chip by dipping, it is suitable for mounting on the fine bumps of the miniaturized chip without being in close contact with the transfer stand. A sufficient amount of the conductive paste for mounting can be transferred. Therefore, it is possible to improve the adhesiveness and conductivity of a fine junction between the chip and the substrate and the reliability thereof.
 以下に本発明の実施例を示すが、本発明は以下の実施例によって限定されるものではない。なお、以下に示す配合量等は特に規定しない限り、質量基準とする。 Examples of the present invention are shown below, but the present invention is not limited to the following examples. In addition, unless otherwise specified, the blending amounts shown below are based on mass.
 下記表1に示す配合に従い、固形エポキシ樹脂、液状エポキシ樹脂、アクリレートモノマー、硬化剤、及び銀コート銅粉を混合し、実装用導電性ペーストを調製した。 According to the composition shown in Table 1 below, a solid epoxy resin, a liquid epoxy resin, an acrylate monomer, a curing agent, and silver-coated copper powder were mixed to prepare a conductive paste for mounting.
 得られた実装用導電性ペーストを転写台(図示せず)上に薄く塗布し、これにチップ1のバンプ2をディッピングすることにより、図1に示すように実装用導電性ペースト3をチップ1に転写した。このチップ1を、基板に実装し、80℃で60分間加熱後、160℃で60分間さらに加熱し、硬化させ、実装基板を得た。 The obtained conductive paste for mounting is thinly applied on a transfer table (not shown), and the bumps 2 of the chip 1 are dipped thereon, so that the conductive paste 3 for mounting is applied to the chip 1 as shown in FIG. Transcribed to. The chip 1 was mounted on a substrate, heated at 80 ° C. for 60 minutes, further heated at 160 ° C. for 60 minutes and cured to obtain a mounting substrate.
 表1中の各成分の詳細及び評価に用いた基板、チップ、フリップチップボンダーの詳細は以下の通りである。 Details of each component in Table 1 and details of the substrate, chip, and flip chip bonder used for evaluation are as follows.
・固形エポキシ樹脂:三菱化学株式会社製「JER157S70」
・液状エポキシ樹脂:株式会社ADEKA製「EP-4901」(80重量%)と株式会社ADEKA製「ED502」(20重量%)のブレンド
・アクリレートモノマー:2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート
・硬化剤A(イミダゾール系硬化剤):2-エチルイミダゾール
・硬化剤B(変性アミン):株式会社T&K TOKA製「フジキュアー FXR-1030」
・銀コート銅粉:平均粒径3μm、球状
Solid epoxy resin: “JER157S70” manufactured by Mitsubishi Chemical Corporation
・ Liquid epoxy resin: Blend of “EP-4901” (80 wt%) manufactured by ADEKA Corporation and “ED502” (20 wt%) manufactured by ADEKA Corporation ・ Acrylate monomer: 2-hydroxy-3-acryloyloxypropyl methacrylate Curing agent A (imidazole-based curing agent): 2-ethylimidazole / curing agent B (modified amine): “Fujicure FXR-1030” manufactured by T & K TOKA CORPORATION
・ Silver-coated copper powder: average particle size 3μm, spherical
・基板:株式会社ウォルツ製「WALTS-KIT 01A150P-10」
  基板サイズ:30.0mm×30.0mm×(0.8~1.0mmt)
  パッド数:61×61=3721
  パッドピッチ:0.15mm
  パッドサイズ:φ0.12mm(SRオープニングφ0.08mm)
・チップ:株式会社ウォルツ製「WALTS-TEG FC150JY(P1)」
  バンプ数:61×61=3721
  バンプピッチ:0.15mm
  バンプサイズ:φ0.085mm
  バンプ材質:Sn/Ag3/Cu0.5
  ウエハー厚み:500μm±25μm
・フリップチップボンダー:パナソニック株式会社製「FCB3 フリップチップボンダー」
  ペースト転写条件…回数:1回、荷重:200N
  実装条件…コンタクト荷重:400N
・ Substrate: “WALTS-KIT 01A150P-10” manufactured by Waltz
Substrate size: 30.0 mm x 30.0 mm x (0.8 to 1.0 mmt)
Number of pads: 61 × 61 = 3721
Pad pitch: 0.15mm
Pad size: φ0.12mm (SR opening φ0.08mm)
・ Chip: “WALTS-TEG FC150JY (P1)” manufactured by Waltz
Number of bumps: 61 × 61 = 3721
Bump pitch: 0.15mm
Bump size: φ0.085mm
Bump material: Sn / Ag3 / Cu0.5
Wafer thickness: 500 μm ± 25 μm
・ Flip chip bonder: “FCB3 flip chip bonder” manufactured by Panasonic Corporation
Paste transfer conditions: Number of times: 1 time, load: 200 N
Mounting conditions: Contact load: 400N
 得られた実装基板について、導電性評価、プッシュ強度(ズリ応力)、及び24時間経過後の粘度変化を以下の方法により測定した。 The obtained mounting board was measured for conductivity evaluation, push strength (slip stress), and viscosity change after 24 hours by the following methods.
・導電性評価:図2に示すようにプリント配線板4の四隅、及び中央部分に設けた240連結デイジーパターンA~Eにより実装後の抵抗値を、室温(25℃)において、テスター(日置電機製 HIOKI3540 HiTESTER)を用いて測定し評価を行った。 Conductivity evaluation: As shown in FIG. 2, the resistance value after mounting by 240 connection daisy patterns A to E provided at the four corners and the central portion of the printed wiring board 4 is measured at a room temperature (25 ° C.). Measurement and evaluation were performed using HIOKI3540 (HiTESTER).
・プッシュ強度:実装、硬化後のチップを、金属製の治具を用いて、20mm/minで水平方向(横方向)に押し、チップが外れるまでの最大荷重を、室温(25℃)において、SHIMADZU AUTOGRAPH AGS-Xを用いて測定した。 -Push strength: The chip after mounting and curing is pushed in the horizontal direction (lateral direction) at 20 mm / min using a metal jig, and the maximum load until the chip comes off is at room temperature (25 ° C). Measured using SHIMADZU AUTOGRAPH AGS-X.
・24時間経過後の粘度変化:BH型粘度計を用いて、ローターNo7,10rpmでの粘度について、常温(25℃)で24時間経過後の粘度変化を求めた。
 なお、上記測定方法により測定した導電性、及び接着性が共に優れているものについては、チップと基板との接合部の信頼性を確保することができたものと評価できる。
-Change in viscosity after 24 hours: Using a BH viscometer, the change in viscosity after 24 hours at room temperature (25 ° C) was determined for the viscosity at rotor No. 7, 10 rpm.
In addition, about what was excellent in the electroconductivity measured by the said measuring method and adhesiveness, it can be evaluated that the reliability of the junction part of a chip | tip and a board | substrate was able to be ensured.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 結果は表1に示す通りであり、固形エポキシ樹脂を10~50質量部、アクリレートモノマーを10~40質量部、残部が液状エポキシ樹脂である樹脂成分100質量部に対し、硬化剤を0.5~30質量部、導電性フィラーを400~1200質量部の割合で含有する実装用導電性ペーストである実施例1~6においては、十分な接着性、導電性及びその信頼性が得られた。 The results are as shown in Table 1. 10 to 50 parts by mass of the solid epoxy resin, 10 to 40 parts by mass of the acrylate monomer, and 100 parts by mass of the resin component that is a liquid epoxy resin with respect to 0.5 parts of the curing agent. In Examples 1 to 6 which are conductive pastes for mounting containing ˜30 parts by mass and 400 to 1,200 parts by mass of conductive filler, sufficient adhesion, conductivity and reliability thereof were obtained.
 一方、固形エポキシ樹脂が、10質量部より少ない比較例1では、基板とチップとの十分な接着性及び導電性が得られず、固形エポキシ樹脂が、50質量部より多い比較例2では、実装用導電性ペーストの粘度が高く、転写時にチップが転写台に密着し、実装することができなかった。また、硬化剤が樹脂成分100質量部に対して、0.5質量部より少ない比較例3では、硬化不足のため、十分な接着性及び導電性が得られず、30質量部より多い比較例4、5では、ポットライフが短くなり、作業性が損なわれた。さらに、導電性フィラーが樹脂成分100質量部に対して、400質量部より少ない比較例6では、十分な導電性が得られず、1200質量部より多い比較例7では、実装用導電性ペーストの粘度が高く、転写時に適切な量の実装用導電性ペーストを転写できず、また、転写時にチップが転写台に密着し、実装することができなかった。 On the other hand, in Comparative Example 1 in which the solid epoxy resin is less than 10 parts by mass, sufficient adhesion and conductivity between the substrate and the chip cannot be obtained, and in Comparative Example 2 in which the solid epoxy resin is more than 50 parts by mass, mounting is performed. The conductive paste for use had a high viscosity, and the chip was in close contact with the transfer table during transfer, and could not be mounted. Further, in Comparative Example 3 in which the curing agent is less than 0.5 parts by mass with respect to 100 parts by mass of the resin component, sufficient adhesion and conductivity cannot be obtained due to insufficient curing, and the Comparative Example in which more than 30 parts by mass is obtained In 4 and 5, the pot life was shortened and workability was impaired. Furthermore, in Comparative Example 6 in which the conductive filler is less than 400 parts by mass with respect to 100 parts by mass of the resin component, sufficient conductivity cannot be obtained, and in Comparative Example 7 in which the conductive filler is more than 1200 parts by mass, the mounting conductive paste Since the viscosity was high, an appropriate amount of the conductive paste for mounting could not be transferred at the time of transfer, and the chip was in close contact with the transfer table at the time of transfer and could not be mounted.
1……チップ
2……ハンダバンプ
3……実装用導電性ペースト
4……プリント配線板
A……240連結デイジーパターン左上
B……240連結デイジーパターン右上
C……240連結デイジーパターン左下
D……240連結デイジーパターン右下
E……240連結デイジーパターン中央
DESCRIPTION OF SYMBOLS 1 ... Chip 2 ... Solder bump 3 ... Mounting conductive paste 4 ... Printed wiring board A ... 240 connection daisy pattern upper left B ... 240 connection daisy pattern upper right C ... 240 connection daisy pattern lower left D ... 240 Linked daisy pattern lower right E …… 240 linked daisy pattern center

Claims (5)

  1.  固形エポキシ樹脂を10~50質量部、アクリレートモノマーを10~40質量部、残部が液状エポキシ樹脂である樹脂成分100質量部に対し、
     硬化剤を0.5~30質量部、導電性フィラーを400~1200質量部の割合で含有する実装用導電性ペースト。
    10 to 50 parts by mass of the solid epoxy resin, 10 to 40 parts by mass of the acrylate monomer, and 100 parts by mass of the resin component in which the balance is a liquid epoxy resin,
    A conductive paste for mounting containing 0.5 to 30 parts by mass of a curing agent and 400 to 1200 parts by mass of a conductive filler.
  2.  前記固形エポキシ樹脂が、ビスフェノールA型エポキシ樹脂、トリスフェノールメタン型エポキシ樹脂、及びフェノールノボラック型エポキシ樹脂からなる群から選択された1種又は2種以上であることを特徴とする、請求項1に記載の実装用導電性ペースト。 The solid epoxy resin may be one or more selected from the group consisting of a bisphenol A type epoxy resin, a trisphenol methane type epoxy resin, and a phenol novolac type epoxy resin. The conductive paste for mounting as described.
  3.  前記液状エポキシ樹脂が、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、グリシジルアミン系エポキシ樹脂、及びグリシジルエーテル系エポキシ樹脂からなる群から選択された1種又は2種以上であることを特徴とする、請求項1又は2に記載の実装用導電性ペースト。 The liquid epoxy resin is one or more selected from the group consisting of bisphenol A type epoxy resin, bisphenol F type epoxy resin, glycidylamine type epoxy resin, and glycidyl ether type epoxy resin. The conductive paste for mounting according to claim 1 or 2.
  4.  前記硬化剤が、イミダゾール、イミダゾール誘導体、及び変性アミンからなる群から選択された1種又は2種以上であることを特徴とする、請求項1~3のいずれか1項に記載の実装用導電性ペースト。 4. The mounting conductive material according to claim 1, wherein the curing agent is one or more selected from the group consisting of imidazole, imidazole derivatives, and modified amines. Sex paste.
  5.  前記導電性フィラーが、金、銀、及び銅からなる群から選択された1種又は2種以上であることを特徴とする、請求項1~4のいずれか1項に記載の実装用導電性ペースト。 5. The mounting conductive material according to claim 1, wherein the conductive filler is one or more selected from the group consisting of gold, silver, and copper. paste.
PCT/JP2016/002411 2015-05-28 2016-05-17 Conductive paste for mounting WO2016189829A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017520223A JP6632618B2 (en) 2015-05-28 2016-05-17 Conductive paste for mounting

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015108872 2015-05-28
JP2015-108872 2015-05-28

Publications (1)

Publication Number Publication Date
WO2016189829A1 true WO2016189829A1 (en) 2016-12-01

Family

ID=57392699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002411 WO2016189829A1 (en) 2015-05-28 2016-05-17 Conductive paste for mounting

Country Status (3)

Country Link
JP (1) JP6632618B2 (en)
TW (1) TWI666657B (en)
WO (1) WO2016189829A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6705568B1 (en) * 2019-02-13 2020-06-03 横浜ゴム株式会社 Conductive composition
WO2020166137A1 (en) * 2019-02-13 2020-08-20 横浜ゴム株式会社 Electroconductive composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117106398B (en) * 2023-08-22 2024-04-16 湖北三选科技有限公司 Liquid mold sealing adhesive for printing, chip and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000143776A (en) * 1998-11-12 2000-05-26 Toshiba Chem Corp Electroconductive paste
JP2001291431A (en) * 2000-04-10 2001-10-19 Jsr Corp Composition for anisotropic conductive sheet, anisotropic conductive sheet, its production and contact structure using anisotropic conductive sheet
JP2002128866A (en) * 2000-10-20 2002-05-09 Toshiba Chem Corp Conductive paste
JP2002184793A (en) * 2000-04-10 2002-06-28 Sumitomo Bakelite Co Ltd Die attachment paste and semiconductor device
JP2002368043A (en) * 2001-06-12 2002-12-20 Matsushita Electric Ind Co Ltd Conductive paste, conductive bump using it, its forming method, method for connecting conductive bump, circuit board and its producing method
JP2004186525A (en) * 2002-12-05 2004-07-02 Sumitomo Bakelite Co Ltd Area package type semiconductor device
JP2008007558A (en) * 2006-06-27 2008-01-17 Sumitomo Bakelite Co Ltd Liquid resin composition and semiconductor device prepared using the same
JP2010070605A (en) * 2008-09-17 2010-04-02 Dic Corp Liquid epoxy resin composition, cured product, method for manufacturing the same and resin composition for printed wiring board
WO2013035685A1 (en) * 2011-09-05 2013-03-14 ナミックス株式会社 Conductive resin composition and cured object using same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2514973B2 (en) * 1987-05-28 1996-07-10 日東電工株式会社 Semiconductor device
JP4967482B2 (en) * 2006-02-27 2012-07-04 日立化成工業株式会社 Conductive particles, adhesive composition and circuit connecting material
WO2007099965A1 (en) * 2006-02-27 2007-09-07 Hitachi Chemical Company, Ltd. Circuit connecting material, connection structure for circuit member using the same, and method for producing such connection structure
WO2007123003A1 (en) * 2006-04-12 2007-11-01 Hitachi Chemical Company, Ltd. Circuit connecting adhesive film, circuit member connecting structure and circuit member connecting method
WO2009117345A2 (en) * 2008-03-17 2009-09-24 Henkel Corporation Adhesive compositions for use in die attach applications
JP5650611B2 (en) * 2011-08-23 2015-01-07 デクセリアルズ株式会社 Anisotropic conductive film, method for manufacturing anisotropic conductive film, connection method, and joined body

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000143776A (en) * 1998-11-12 2000-05-26 Toshiba Chem Corp Electroconductive paste
JP2001291431A (en) * 2000-04-10 2001-10-19 Jsr Corp Composition for anisotropic conductive sheet, anisotropic conductive sheet, its production and contact structure using anisotropic conductive sheet
JP2002184793A (en) * 2000-04-10 2002-06-28 Sumitomo Bakelite Co Ltd Die attachment paste and semiconductor device
JP2002128866A (en) * 2000-10-20 2002-05-09 Toshiba Chem Corp Conductive paste
JP2002368043A (en) * 2001-06-12 2002-12-20 Matsushita Electric Ind Co Ltd Conductive paste, conductive bump using it, its forming method, method for connecting conductive bump, circuit board and its producing method
JP2004186525A (en) * 2002-12-05 2004-07-02 Sumitomo Bakelite Co Ltd Area package type semiconductor device
JP2008007558A (en) * 2006-06-27 2008-01-17 Sumitomo Bakelite Co Ltd Liquid resin composition and semiconductor device prepared using the same
JP2010070605A (en) * 2008-09-17 2010-04-02 Dic Corp Liquid epoxy resin composition, cured product, method for manufacturing the same and resin composition for printed wiring board
WO2013035685A1 (en) * 2011-09-05 2013-03-14 ナミックス株式会社 Conductive resin composition and cured object using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6705568B1 (en) * 2019-02-13 2020-06-03 横浜ゴム株式会社 Conductive composition
WO2020166137A1 (en) * 2019-02-13 2020-08-20 横浜ゴム株式会社 Electroconductive composition

Also Published As

Publication number Publication date
TWI666657B (en) 2019-07-21
JPWO2016189829A1 (en) 2018-03-15
JP6632618B2 (en) 2020-01-22
TW201711057A (en) 2017-03-16

Similar Documents

Publication Publication Date Title
US20190232438A1 (en) Solder paste and mount structure
JP6310954B2 (en) Conductive adhesive and method for manufacturing electronic substrate
JP6632618B2 (en) Conductive paste for mounting
JPH1166953A (en) Conductive adhesive and usage thereof
JP5842084B2 (en) Semiconductor component mounting board
US20160066421A1 (en) Solder paste and electronic part
JPH07126489A (en) Electrically conductive resin paste
JP2006012734A (en) Conductive paste and multilayer substrate using the same
JP2006265484A (en) Adhesive resin composition and electronic apparatus
JP6383183B2 (en) Conductive adhesive and electronic component using the same
JP2014209624A (en) Joint structure between circuit board and semiconductor component
CN110692126B (en) Resin composition for bonding electronic component, method for bonding small chip component, electronic circuit board, and method for manufacturing electronic circuit board
KR101035873B1 (en) Fast curable adhesive film composition at high temperature and adhesive film using it
WO2020095634A1 (en) Curable resin composition and mounting structure
WO2023013732A1 (en) Resin composition for fluxes, solder paste and package structure
KR101545962B1 (en) Solder ball having adhesion coating layer
JP2009185112A (en) Conductive adhesive and semiconductor device having the same
JP5047632B2 (en) Mounting method using hot-pressure adhesive for flip chip connection
JP2014077122A (en) Adhesive for electronic component and method for manufacturing semiconductor chip package
JP2005317491A (en) Conductive paste and electronic component mounting substrate using it
JP6126834B2 (en) Pre-feed type liquid resin composition for semiconductor encapsulation and semiconductor device
JP6013406B2 (en) Adhesive composition and method for joining electronic parts
JP2004090021A (en) Hardenable flux
JP2012216831A (en) Semiconductor chip packaging body manufacturing method
JP5861600B2 (en) Conductive adhesive composition and electronic device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799543

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017520223

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16799543

Country of ref document: EP

Kind code of ref document: A1