JP6632618B2 - Conductive paste for mounting - Google Patents

Conductive paste for mounting Download PDF

Info

Publication number
JP6632618B2
JP6632618B2 JP2017520223A JP2017520223A JP6632618B2 JP 6632618 B2 JP6632618 B2 JP 6632618B2 JP 2017520223 A JP2017520223 A JP 2017520223A JP 2017520223 A JP2017520223 A JP 2017520223A JP 6632618 B2 JP6632618 B2 JP 6632618B2
Authority
JP
Japan
Prior art keywords
epoxy resin
mass
parts
mounting
conductive paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017520223A
Other languages
Japanese (ja)
Other versions
JPWO2016189829A1 (en
Inventor
梅田 裕明
裕明 梅田
和大 松田
和大 松田
健 湯川
健 湯川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuta Electric Wire and Cable Co Ltd
Original Assignee
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsuta Electric Wire and Cable Co Ltd filed Critical Tatsuta Electric Wire and Cable Co Ltd
Publication of JPWO2016189829A1 publication Critical patent/JPWO2016189829A1/en
Application granted granted Critical
Publication of JP6632618B2 publication Critical patent/JP6632618B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

本発明は、実装用導電性ペーストに関するものであり、より詳細にはフリップチップ実装方法に適した実装用導電性ペーストに関するものである。   The present invention relates to a conductive paste for mounting, and more particularly, to a conductive paste for mounting suitable for a flip chip mounting method.

電子機器の軽薄短小化に伴い、チップも小型化や薄肉化が求められているが、チップを薄肉化すると、実装する際の熱によりチップが変形するという問題がある。そのため、低温での実装を可能とする技術が求められている。   As electronic devices have become lighter and thinner, there has been a demand for smaller and thinner chips. However, when chips are made thinner, there is a problem in that chips are deformed by heat during mounting. Therefore, there is a demand for a technology that enables mounting at a low temperature.

低温での実装を可能とする技術としては、例えば特許文献1のように導電性フィラーを絶縁体材料でコーティングしたマイクロカプセルを用いたフリップチップ実装方法が開示されている。フリップチップ実装方法とは、半導体素子のバンプ(電極部分)に、転写台上に塗布された導電性ペーストを転写により微量付着させ、プリント基板へ固定させる実装技術である。しかし、特許文献1のフリップチップ実装方法は、バンプにディッピングにより樹脂を付着させた後、さらにディッピングによりマイクロカプセルを付着させる方法であり、操作が煩雑で、効率が低いという問題点を有する。そのため、バンプに導電性ペーストを、効率よく付着させる技術が求められている。   As a technology enabling mounting at a low temperature, for example, a flip chip mounting method using a microcapsule in which a conductive filler is coated with an insulating material as disclosed in Patent Document 1 is disclosed. The flip-chip mounting method is a mounting technique in which a small amount of conductive paste applied on a transfer table is adhered to a bump (electrode portion) of a semiconductor element by transfer and fixed to a printed circuit board. However, the flip chip mounting method disclosed in Patent Document 1 is a method in which a resin is attached to bumps by dipping, and then microcapsules are attached by dipping, and has a problem that the operation is complicated and the efficiency is low. Therefore, a technique for efficiently attaching a conductive paste to bumps is required.

また、チップの小型化に伴い、バンプのサイズ及びバンプ間のピッチのさらなる微細化が進んでいる。そのため、ディッピングにより導電性ペーストを転写する際、小型化したチップの微細なバンプに対して、実装するために適切な量の導電性ペーストを転写することが難しくなっており、接合部の信頼性の確保が求められている。   Further, with the miniaturization of chips, the size of bumps and the pitch between bumps have been further miniaturized. Therefore, when transferring the conductive paste by dipping, it is difficult to transfer an appropriate amount of the conductive paste for mounting on the fine bumps of the miniaturized chip, and the reliability of the bonding portion is reduced. Is required.

特開平9−246326号公報JP-A-9-246326

本発明は上記に鑑みてなされたものであり、低温での実装が可能であり、かつ微細化したチップと基板との接合部の信頼性を確保することができる実装用導電性ペーストであり、特にフリップチップ実装方法に適した実装用導電性ペーストを提供することを目的とする。   The present invention has been made in view of the above, is a mounting conductive paste that can be mounted at a low temperature, and that can ensure the reliability of the junction between the miniaturized chip and the substrate, In particular, it is an object of the present invention to provide a mounting conductive paste suitable for a flip chip mounting method.

本発明に係る実装用導電性ペーストは、上記課題を解決するために、固形エポキシ樹脂を10〜50質量部、アクリレートモノマーを10〜40質量部、残部が液状エポキシ樹脂である樹脂成分100質量部に対し、硬化剤を0.5〜30質量部、導電性フィラーを400〜1200質量部の割合で含有し、固形エポキシ樹脂が、ビスフェノールA型エポキシ樹脂、トリスフェノールメタン型エポキシ樹脂、及びフェノールノボラック型エポキシ樹脂からなる群から選択された1種又は2種以上であるものとする。
The conductive paste for mounting according to the present invention, in order to solve the above problems, 10 to 50 parts by mass of a solid epoxy resin, 10 to 40 parts by mass of an acrylate monomer, and 100 parts by mass of a resin component whose balance is a liquid epoxy resin. to, 0.5 to 30 parts by weight of the curing agent, a conductive filler in a proportion of 400 to 1200 parts by weight, the solid epoxy resin, bisphenol a type epoxy resin, trisphenolmethane type epoxy resin, and phenol novolac One or two or more types selected from the group consisting of type epoxy resins .

状エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、グリシジルアミン系エポキシ樹脂、及びグリシジルエーテル系エポキシ樹脂からなる群から選択された1種又は2種以上を用いることができる。 As the liquid-like epoxy resin can be used bisphenol A type epoxy resin, bisphenol F type epoxy resin, glycidyl amine-based epoxy resin, and one or more selected from the group consisting of glycidyl ether type epoxy resin.

硬化剤としては、イミダゾール、イミダゾール誘導体、及び変性アミンからなる群から選択された1種又は2種以上を用いることができる。   As the curing agent, one or more selected from the group consisting of imidazole, imidazole derivatives, and modified amines can be used.

導電性フィラーとしては、金、銀、及び銅からなる群から選択された1種又は2種以上を用いることができる。   As the conductive filler, one or more selected from the group consisting of gold, silver, and copper can be used.

本発明の実装用導電性ペーストによれば、低温での実装が可能であり、近年のより微細化したチップと基板との接合部の接着性や導電性及びその信頼性をより向上させることができる。従って、チップのさらなる小型化、薄肉化に対応することが可能となる。   ADVANTAGE OF THE INVENTION According to the conductive paste for mounting of this invention, mounting at low temperature is possible and it can improve the adhesiveness of the joining part of recent finer chip and board | substrate, conductivity, and its reliability. it can. Therefore, it is possible to cope with further downsizing and thinning of the chip.

チップのバンプに、実装用導電性ペーストをディッピングにより転写した状態を表す模式断面図である。It is a schematic cross section showing the state where the conductive paste for mounting was transferred to the bump of the chip by dipping. 導電性評価パターンを表すプリント配線板の拡大図である。It is an enlarged view of the printed wiring board showing the conductivity evaluation pattern.

以下、本発明の実施の形態を、より具体的に説明する。   Hereinafter, embodiments of the present invention will be described more specifically.

本実施形態に係る実装用導電性ペーストは、固形エポキシ樹脂を10〜50質量部、アクリレートモノマーを10〜40質量部、残部が液状エポキシ樹脂である樹脂成分100質量部に対し、硬化剤を0.5〜30質量部、導電性フィラーを400〜1200質量部の割合で含有してなるものである。   The conductive paste for mounting according to the present embodiment contains 10 to 50 parts by mass of a solid epoxy resin, 10 to 40 parts by mass of an acrylate monomer, and 100 parts by mass of a resin component whose balance is a liquid epoxy resin. 0.5 to 30 parts by mass and a conductive filler in a ratio of 400 to 1200 parts by mass.

ここで、「固形エポキシ樹脂」とは、常温(25℃)において固体であるエポキシ樹脂をいうものとする。当該固形エポキシ樹脂としては、分子内にエポキシ基を含有するもので、常温で固体であれば特に限定されないが、具体例としては、ビスフェノールA型エポキシ樹脂、トリスフェノールメタン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂などが挙げられる。固形エポキシ樹脂は、1種を単独で用いることもでき、2種以上をブレンドして用いることもできる。   Here, the “solid epoxy resin” refers to an epoxy resin that is solid at normal temperature (25 ° C.). The solid epoxy resin contains an epoxy group in the molecule, and is not particularly limited as long as it is solid at ordinary temperature. Specific examples thereof include a bisphenol A epoxy resin, a trisphenolmethane epoxy resin, and a phenol novolak epoxy resin. Epoxy resins and the like can be mentioned. One type of solid epoxy resin can be used alone, or two or more types can be blended and used.

上記固形エポキシ樹脂の配合量は、10〜50質量部であり、好ましくは15〜40質量部、より好ましくは20〜40質量部である。10質量部以上であると、チップと基板との十分な接着性及び導電性が得られる。また、50質量部以下であると、導電性ペーストの粘度が高くなり過ぎず、転写時にチップが転写台に密着することなく、実装することが可能である。   The compounding amount of the solid epoxy resin is 10 to 50 parts by mass, preferably 15 to 40 parts by mass, and more preferably 20 to 40 parts by mass. When the amount is 10 parts by mass or more, sufficient adhesiveness and conductivity between the chip and the substrate can be obtained. When the amount is 50 parts by mass or less, the viscosity of the conductive paste does not become too high, and the chip can be mounted without being in close contact with the transfer table during transfer.

また、アクリレートモノマーとしては、分子内に次の構造式(I)で示される反応基を1又は2個以上有するものを用いることができる。   As the acrylate monomer, those having one or more reactive groups represented by the following structural formula (I) in the molecule can be used.

Figure 0006632618
式(I)中、RはH又はアルキル基を示し、アルキル基の炭素数は特に限定されないが、通常は1〜3個である。
Figure 0006632618
In the formula (I), R represents H or an alkyl group, and the number of carbon atoms of the alkyl group is not particularly limited, but is usually 1 to 3.

アクリレートモノマーの具体例としては、特に限定されないが、イソアミルアクリレート、ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ビスフェノールAジグリシジルエーテルアクリル酸付加物、エチレングリコールジメタクリレート、2−ヒドロキシ−3−アクリロイロキシプロピルメタクリレート、及びジエチレングリコールジメタクリレート等が挙げられる。   Specific examples of the acrylate monomer include, but are not particularly limited to, isoamyl acrylate, neopentyl glycol diacrylate, trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, bisphenol A diglycidyl ether acrylic acid adduct, ethylene glycol dimethacrylate, -Hydroxy-3-acryloyloxypropyl methacrylate, diethylene glycol dimethacrylate and the like.

なお、アクリレートモノマーは2種以上を併用することもできる。   In addition, two or more acrylate monomers can be used in combination.

上記アクリレートモノマーの配合量は総量で、10〜40質量部であり、好ましくは15〜35質量部、より好ましくは20〜30質量部である。   The total amount of the acrylate monomer is 10 to 40 parts by mass, preferably 15 to 35 parts by mass, more preferably 20 to 30 parts by mass.

次に、「液状エポキシ樹脂」とは、常温(25℃)において液体であるエポキシ樹脂をいうものとする。当該液状エポキシ樹脂としては、分子内にエポキシ基を含有するもので、常温で液体であれば特に限定されないが、具体例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、グリシジルアミン系エポキシ樹脂、グリシジルエーテル系エポキシ樹脂等が挙げられる。液状エポキシ樹脂は、1種を単独で用いることもでき、2種以上ブレンドして用いることもできる。   Next, “liquid epoxy resin” refers to an epoxy resin that is liquid at normal temperature (25 ° C.). The liquid epoxy resin contains an epoxy group in the molecule and is not particularly limited as long as it is liquid at normal temperature. Specific examples thereof include bisphenol A epoxy resin, bisphenol F epoxy resin, and glycidylamine epoxy resin. Resins and glycidyl ether epoxy resins. One type of liquid epoxy resin can be used alone, or two or more types can be blended and used.

液状エポキシ樹脂の配合量は、上記固形エポキシ樹脂、アクリレートモノマーの配合量を考慮し、樹脂成分が100質量部となるように配合する。   The compounding amount of the liquid epoxy resin is determined so that the resin component is 100 parts by mass in consideration of the compounding amounts of the solid epoxy resin and the acrylate monomer.

本発明で用いる硬化剤は、特に限定されないが、イミダゾール、イミダゾール誘導体等のイミダゾール系硬化剤、又は変性アミンが好適に用いられる。イミダゾール系硬化剤の具体例として、イミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−エチルイミダゾール、2−フェニルイミダゾール、2−エチル−4−メチルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、及び2,4−ジアミノ−6−〔2’−メチルイミダゾリル−(1’)〕−エチル−s−トリアジン等が挙げられる。変性アミンの具体例としては、各種ポリアミンのエポキシ付加物、マンニッヒ反応物、ミカエル反応物、チオ尿素反応物等が挙げられる。   The curing agent used in the present invention is not particularly limited, but imidazole-based curing agents such as imidazole and imidazole derivatives, or modified amines are preferably used. Specific examples of the imidazole-based curing agent include imidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecyl And imidazole and 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine. Specific examples of the modified amine include epoxy adducts of various polyamines, Mannich reactants, Michael reactants, thiourea reactants, and the like.

上記硬化剤の配合量は、樹脂成分100質量部に対して、0.5〜30質量部であり、好ましくは1〜20質量部、より好ましくは3〜15質量部である。0.5質量部以上であると、接着性及び導電性を得るために十分な硬化が得られ、30質量部以下であると、作業性を損なわない範囲でポットライフを確保できる。   The compounding amount of the curing agent is 0.5 to 30 parts by mass, preferably 1 to 20 parts by mass, more preferably 3 to 15 parts by mass with respect to 100 parts by mass of the resin component. When the amount is 0.5 parts by mass or more, sufficient curing for obtaining adhesiveness and conductivity can be obtained, and when the amount is 30 parts by mass or less, a pot life can be ensured within a range that does not impair workability.

本発明で用いる導電性フィラーは、金、銀、又は銅から選ばれる1種、又は2種以上であることが好ましく、形状や製法は問わない。また、単一の金属からなる金属粉のほか、2種以上の合金からなる金属粉や、これらの金属粉を他種の金属でコートしたものも使用でき、好ましい例としては、銀コート銅粉が挙げられる。導電性フィラーの粒径は特に限定されないが、平均粒径は、0.5μm〜20μmであることが好ましい。   The conductive filler used in the present invention is preferably one kind or two or more kinds selected from gold, silver, and copper, and the shape and the production method are not limited. In addition to metal powders composed of a single metal, metal powders composed of two or more alloys, and powders obtained by coating these metal powders with other metals can be used. Preferred examples include silver-coated copper powder. Is mentioned. The particle size of the conductive filler is not particularly limited, but the average particle size is preferably 0.5 μm to 20 μm.

上記導電性フィラーの配合量は、樹脂成分100質量部に対して、400〜1200質量部であり、好ましくは500〜1000質量部、より好ましくは600〜800質量部である。400質量部以上であると、十分な導電性が得られる。また1200質量部以下であると、粘度が高くなり過ぎず、転写時に適切な量の実装用導電性ペーストを転写することが可能となり、転写時にチップが転写台に密着することなく、実装することが可能である。   The amount of the conductive filler is 400 to 1200 parts by mass, preferably 500 to 1000 parts by mass, and more preferably 600 to 800 parts by mass with respect to 100 parts by mass of the resin component. When it is 400 parts by mass or more, sufficient conductivity is obtained. When the amount is less than 1200 parts by mass, the viscosity does not become too high, and an appropriate amount of the conductive paste for mounting can be transferred at the time of transfer, and the chip can be mounted without being in close contact with the transfer table at the time of transfer. Is possible.

本発明の実装用導電性ペーストは、上記した各成分を所定量配合して十分に混合することにより得られる。なお、本発明の実装用導電性ペーストには、従来から同種の導電性ペーストに添加されることのあった添加剤を、本発明の目的から外れない範囲内で添加することもできる。   The conductive paste for mounting of the present invention can be obtained by blending the above-mentioned components in predetermined amounts and mixing them sufficiently. In addition, additives that have been conventionally added to the same type of conductive paste can be added to the mounting conductive paste of the present invention within a range not departing from the object of the present invention.

上記により得られる実装用導電性ペーストは、フリップチップ実装方法に好適に用いることができ、固形エポキシ樹脂を有することから低温での粘性が高く、低温での実装が可能となり、チップの小型化、及び薄肉化に対応できるものとなる。すなわち、フリップチップ実装法において、チップのバンプに、該実装用導電性ペーストをディッピングにより転写する際、転写台に密着せず、小型化したチップの微細なバンプに対して、実装するために適切な量の実装用導電性ペーストを転写することができる。従って、チップと基板との微細な接合部の接着性や導電性及びその信頼性の向上が可能となる。   The conductive paste for mounting obtained as described above can be suitably used for a flip chip mounting method, and since it has a solid epoxy resin, the viscosity at a low temperature is high, and the mounting at a low temperature is possible. And it can respond to thinning. That is, in the flip chip mounting method, when the conductive paste for mounting is transferred to the bump of the chip by dipping, the conductive paste does not adhere to the transfer table, and is suitable for mounting on the fine bumps of the miniaturized chip. An appropriate amount of the conductive paste for mounting can be transferred. Therefore, it is possible to improve the adhesiveness and conductivity of the fine joint between the chip and the substrate and the reliability thereof.

以下に本発明の実施例を示すが、本発明は以下の実施例によって限定されるものではない。なお、以下に示す配合量等は特に規定しない限り、質量基準とする。   Examples of the present invention will be described below, but the present invention is not limited by the following examples. In addition, the compounding amount shown below is based on mass unless otherwise specified.

下記表1に示す配合に従い、固形エポキシ樹脂、液状エポキシ樹脂、アクリレートモノマー、硬化剤、及び銀コート銅粉を混合し、実装用導電性ペーストを調製した。   According to the composition shown in Table 1 below, a solid epoxy resin, a liquid epoxy resin, an acrylate monomer, a curing agent, and a silver-coated copper powder were mixed to prepare a conductive paste for mounting.

得られた実装用導電性ペーストを転写台(図示せず)上に薄く塗布し、これにチップ1のバンプ2をディッピングすることにより、図1に示すように実装用導電性ペースト3をチップ1に転写した。このチップ1を、基板に実装し、80℃で60分間加熱後、160℃で60分間さらに加熱し、硬化させ、実装基板を得た。   The obtained conductive paste for mounting is thinly applied on a transfer table (not shown), and the bumps 2 of the chip 1 are dipped into the conductive paste. As shown in FIG. Transferred to The chip 1 was mounted on a substrate, heated at 80 ° C. for 60 minutes, further heated at 160 ° C. for 60 minutes, and cured to obtain a mounting substrate.

表1中の各成分の詳細及び評価に用いた基板、チップ、フリップチップボンダーの詳細は以下の通りである。   The details of each component in Table 1 and the details of the substrate, chip, and flip chip bonder used for evaluation are as follows.

・固形エポキシ樹脂:三菱化学株式会社製「JER157S70」
・液状エポキシ樹脂:株式会社ADEKA製「EP−4901」(80重量%)と株式会社ADEKA製「ED502」(20重量%)のブレンド
・アクリレートモノマー:2−ヒドロキシ−3−アクリロイロキシプロピルメタクリレート
・硬化剤A(イミダゾール系硬化剤):2−エチルイミダゾール
・硬化剤B(変性アミン):株式会社T&K TOKA製「フジキュアー FXR−1030」
・銀コート銅粉:平均粒径3μm、球状
・ Solid epoxy resin: Mitsubishi Chemical Corporation “JER157S70”
-Liquid epoxy resin: blend of "EP-4901" (80% by weight) manufactured by ADEKA Corporation and "ED502" (20% by weight) manufactured by ADEKA Corporation-Acrylate monomer: 2-hydroxy-3-acryloyloxypropyl methacrylate Curing agent A (imidazole-based curing agent): 2-ethylimidazole / curing agent B (modified amine): "Fujicure FXR-1030" manufactured by T & K TOKA Corporation
・ Silver coated copper powder: average particle size 3μm, spherical

・基板:株式会社ウォルツ製「WALTS−KIT 01A150P−10」
基板サイズ:30.0mm×30.0mm×(0.8〜1.0mmt)
パッド数:61×61=3721
パッドピッチ:0.15mm
パッドサイズ:φ0.12mm(SRオープニングφ0.08mm)
・チップ:株式会社ウォルツ製「WALTS−TEG FC150JY(P1)」
バンプ数:61×61=3721
バンプピッチ:0.15mm
バンプサイズ:φ0.085mm
バンプ材質:Sn/Ag3/Cu0.5
ウエハー厚み:500μm±25μm
・フリップチップボンダー:パナソニック株式会社製「FCB3 フリップチップボンダー」
ペースト転写条件…回数:1回、荷重:200N
実装条件…コンタクト荷重:400N
-Substrate: "WALTS-KIT 01A150P-10" manufactured by Waltz Co., Ltd.
Substrate size: 30.0 mm x 30.0 mm x (0.8 to 1.0 mmt)
Number of pads: 61 × 61 = 3721
Pad pitch: 0.15mm
Pad size: φ0.12mm (SR opening φ0.08mm)
・ Chip: "WALTS-TEG FC150JY (P1)" manufactured by Waltz Co., Ltd.
Number of bumps: 61 × 61 = 3721
Bump pitch: 0.15mm
Bump size: φ0.085mm
Bump material: Sn / Ag3 / Cu0.5
Wafer thickness: 500μm ± 25μm
・ Flip chip bonder: “FCB3 flip chip bonder” manufactured by Panasonic Corporation
Paste transfer conditions: Number of times: once, load: 200N
Mounting condition: Contact load: 400N

得られた実装基板について、導電性評価、プッシュ強度(ズリ応力)、及び24時間経過後の粘度変化を以下の方法により測定した。   With respect to the obtained mounting board, conductivity evaluation, push strength (shear stress), and change in viscosity after 24 hours were measured by the following methods.

・導電性評価:図2に示すようにプリント配線板4の四隅、及び中央部分に設けた240連結デイジーパターンA〜Eにより実装後の抵抗値を、室温(25℃)において、テスター(日置電機製 HIOKI3540 HiTESTER)を用いて測定し評価を行った。 Conductivity evaluation: As shown in FIG. 2, the resistance value after mounting by 240 connected daisy patterns A to E provided at the four corners and the center of the printed wiring board 4 was measured at room temperature (25 ° C.) by a tester (Hioki Electric). The measurement and evaluation were performed using HIOKI3540 HiTESTER (manufactured by Hitachi, Ltd.).

・プッシュ強度:実装、硬化後のチップを、金属製の治具を用いて、20mm/minで水平方向(横方向)に押し、チップが外れるまでの最大荷重を、室温(25℃)において、SHIMADZU AUTOGRAPH AGS−Xを用いて測定した。 ・ Push strength: The chip after mounting and curing is pushed in a horizontal direction (lateral direction) at 20 mm / min using a metal jig, and the maximum load until the chip comes off at room temperature (25 ° C.) It measured using SHIMADZU AUTOGRAPH AGS-X.

・24時間経過後の粘度変化:BH型粘度計を用いて、ローターNo7,10rpmでの粘度について、常温(25℃)で24時間経過後の粘度変化を求めた。
なお、上記測定方法により測定した導電性、及び接着性が共に優れているものについては、チップと基板との接合部の信頼性を確保することができたものと評価できる。
Viscosity change after 24 hours: Using a BH type viscometer, the viscosity change after 24 hours at normal temperature (25 ° C.) was determined for the viscosity at rotor No. 7 and 10 rpm.
It should be noted that those excellent in both conductivity and adhesiveness measured by the above-mentioned measuring method can be evaluated as those in which the reliability of the joint between the chip and the substrate could be secured.

Figure 0006632618
Figure 0006632618

結果は表1に示す通りであり、固形エポキシ樹脂を10〜50質量部、アクリレートモノマーを10〜40質量部、残部が液状エポキシ樹脂である樹脂成分100質量部に対し、硬化剤を0.5〜30質量部、導電性フィラーを400〜1200質量部の割合で含有する実装用導電性ペーストである実施例1〜6においては、十分な接着性、導電性及びその信頼性が得られた。   The results are as shown in Table 1. The solid epoxy resin was 10 to 50 parts by mass, the acrylate monomer was 10 to 40 parts by mass, and the balance was 100 parts by mass of the liquid epoxy resin. In Examples 1 to 6 which are conductive pastes for mounting containing a conductive filler at a ratio of 400 to 1200 parts by mass, a sufficient adhesiveness, conductivity and reliability thereof were obtained.

一方、固形エポキシ樹脂が、10質量部より少ない比較例1では、基板とチップとの十分な接着性及び導電性が得られず、固形エポキシ樹脂が、50質量部より多い比較例2では、実装用導電性ペーストの粘度が高く、転写時にチップが転写台に密着し、実装することができなかった。また、硬化剤が樹脂成分100質量部に対して、0.5質量部より少ない比較例3では、硬化不足のため、十分な接着性及び導電性が得られず、30質量部より多い比較例4、5では、ポットライフが短くなり、作業性が損なわれた。さらに、導電性フィラーが樹脂成分100質量部に対して、400質量部より少ない比較例6では、十分な導電性が得られず、1200質量部より多い比較例7では、実装用導電性ペーストの粘度が高く、転写時に適切な量の実装用導電性ペーストを転写できず、また、転写時にチップが転写台に密着し、実装することができなかった。   On the other hand, in Comparative Example 1 in which the solid epoxy resin was less than 10 parts by mass, sufficient adhesion and conductivity between the substrate and the chip could not be obtained, and in Comparative Example 2 in which the solid epoxy resin was more than 50 parts by mass, Since the viscosity of the conductive paste for use was high, the chip adhered to the transfer table during transfer and could not be mounted. In Comparative Example 3 in which the curing agent was less than 0.5 part by mass with respect to 100 parts by mass of the resin component, sufficient adhesion and conductivity were not obtained due to insufficient curing, and Comparative Example 3 in which the curing agent was more than 30 parts by mass. In Nos. 4 and 5, the pot life was shortened, and the workability was impaired. Further, in Comparative Example 6 in which the conductive filler was less than 400 parts by mass with respect to 100 parts by mass of the resin component, sufficient conductivity was not obtained, and in Comparative Example 7 in which the conductive filler was more than 1200 parts by mass, the conductive paste for mounting was Due to its high viscosity, an appropriate amount of the conductive paste for mounting could not be transferred at the time of transfer, and the chip adhered to the transfer table at the time of transfer and could not be mounted.

1……チップ
2……ハンダバンプ
3……実装用導電性ペースト
4……プリント配線板
A……240連結デイジーパターン左上
B……240連結デイジーパターン右上
C……240連結デイジーパターン左下
D……240連結デイジーパターン右下
E……240連結デイジーパターン中央
1 ... Chip 2 ... Solder bump 3 ... Conductive paste 4 for mounting ... Printed wiring board A ... 240 connection daisy pattern Upper left B ... 240 connection daisy pattern Upper right C ... 240 connection daisy pattern Lower left D ... 240 Connected daisy pattern Lower right E ... Center of 240 connected daisy patterns

Claims (4)

固形エポキシ樹脂を10〜50質量部、アクリレートモノマーを10〜40質量部、残部が液状エポキシ樹脂である樹脂成分100質量部に対し、
硬化剤を0.5〜30質量部、導電性フィラーを400〜1200質量部の割合で含有し、
前記固形エポキシ樹脂が、ビスフェノールA型エポキシ樹脂、トリスフェノールメタン型エポキシ樹脂、及びフェノールノボラック型エポキシ樹脂からなる群から選択された1種又は2種以上であることを特徴とする、実装用導電性ペースト。
10 to 50 parts by mass of the solid epoxy resin, 10 to 40 parts by mass of the acrylate monomer, and the balance is 100 parts by mass of the resin component which is a liquid epoxy resin.
0.5 to 30 parts by mass of the curing agent, 400 to 1200 parts by mass of the conductive filler ,
Wherein the solid epoxy resin is one or more selected from the group consisting of a bisphenol A epoxy resin, a trisphenol methane epoxy resin, and a phenol novolak epoxy resin, paste.
前記液状エポキシ樹脂が、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、グリシジルアミン系エポキシ樹脂、及びグリシジルエーテル系エポキシ樹脂からなる群から選択された1種又は2種以上であることを特徴とする、請求項1に記載の実装用導電性ペースト。 The liquid epoxy resin is one or more selected from the group consisting of a bisphenol A epoxy resin, a bisphenol F epoxy resin, a glycidylamine epoxy resin, and a glycidyl ether epoxy resin. The conductive paste for mounting according to claim 1 . 前記硬化剤が、イミダゾール、イミダゾール誘導体、及び変性アミンからなる群から選択された1種又は2種以上であることを特徴とする、請求項1又は2に記載の実装用導電性ペースト。 Wherein the curing agent, imidazole, imidazole derivatives, and is characterized in that at least one selected from the group consisting of modified amine, mounting a conductive paste according to claim 1 or 2. 前記導電性フィラーが、金、銀、及び銅からなる群から選択された1種又は2種以上であることを特徴とする、請求項1〜のいずれか1項に記載の実装用導電性ペースト。
The conductive filler according to any one of claims 1 to 3 , wherein the conductive filler is at least one selected from the group consisting of gold, silver, and copper. paste.
JP2017520223A 2015-05-28 2016-05-17 Conductive paste for mounting Active JP6632618B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015108872 2015-05-28
JP2015108872 2015-05-28
PCT/JP2016/002411 WO2016189829A1 (en) 2015-05-28 2016-05-17 Conductive paste for mounting

Publications (2)

Publication Number Publication Date
JPWO2016189829A1 JPWO2016189829A1 (en) 2018-03-15
JP6632618B2 true JP6632618B2 (en) 2020-01-22

Family

ID=57392699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017520223A Active JP6632618B2 (en) 2015-05-28 2016-05-17 Conductive paste for mounting

Country Status (3)

Country Link
JP (1) JP6632618B2 (en)
TW (1) TWI666657B (en)
WO (1) WO2016189829A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020166137A1 (en) * 2019-02-13 2020-08-20 横浜ゴム株式会社 Electroconductive composition
JP6705568B1 (en) * 2019-02-13 2020-06-03 横浜ゴム株式会社 Conductive composition
CN117106398B (en) * 2023-08-22 2024-04-16 湖北三选科技有限公司 Liquid mold sealing adhesive for printing, chip and preparation method thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2514973B2 (en) * 1987-05-28 1996-07-10 日東電工株式会社 Semiconductor device
JP2000143776A (en) * 1998-11-12 2000-05-26 Toshiba Chem Corp Electroconductive paste
JP3765731B2 (en) * 2000-04-10 2006-04-12 住友ベークライト株式会社 Die attach paste and semiconductor device
JP2001291431A (en) * 2000-04-10 2001-10-19 Jsr Corp Composition for anisotropic conductive sheet, anisotropic conductive sheet, its production and contact structure using anisotropic conductive sheet
JP2002128866A (en) * 2000-10-20 2002-05-09 Toshiba Chem Corp Conductive paste
JP2002368043A (en) * 2001-06-12 2002-12-20 Matsushita Electric Ind Co Ltd Conductive paste, conductive bump using it, its forming method, method for connecting conductive bump, circuit board and its producing method
JP2004186525A (en) * 2002-12-05 2004-07-02 Sumitomo Bakelite Co Ltd Area package type semiconductor device
KR20080106308A (en) * 2006-02-27 2008-12-04 히다치 가세고교 가부시끼가이샤 Circuit connecting material, connection structure for circuit member using the same, and method for producing such connection structure
JP4967482B2 (en) * 2006-02-27 2012-07-04 日立化成工業株式会社 Conductive particles, adhesive composition and circuit connecting material
CN101421886B (en) * 2006-04-12 2010-12-15 日立化成工业株式会社 Circuit connecting adhesive film, circuit member connecting structure and circuit member connecting method
JP5200340B2 (en) * 2006-06-27 2013-06-05 住友ベークライト株式会社 Liquid resin composition and semiconductor device produced using liquid resin composition
WO2009117345A2 (en) * 2008-03-17 2009-09-24 Henkel Corporation Adhesive compositions for use in die attach applications
JP2010070605A (en) * 2008-09-17 2010-04-02 Dic Corp Liquid epoxy resin composition, cured product, method for manufacturing the same and resin composition for printed wiring board
JP5650611B2 (en) * 2011-08-23 2015-01-07 デクセリアルズ株式会社 Anisotropic conductive film, method for manufacturing anisotropic conductive film, connection method, and joined body
KR101906644B1 (en) * 2011-09-05 2018-10-10 나믹스 가부시끼가이샤 Conductive resin composition and cured object using same

Also Published As

Publication number Publication date
JPWO2016189829A1 (en) 2018-03-15
WO2016189829A1 (en) 2016-12-01
TW201711057A (en) 2017-03-16
TWI666657B (en) 2019-07-21

Similar Documents

Publication Publication Date Title
TWI595062B (en) Adhesives for semiconductor, flux, manufacturing method of semiconductor device, and semiconductor device
JP6534122B2 (en) Resin flux solder paste and mounting structure
CN104662118A (en) Anisotropic conductive adhesive
JP6632618B2 (en) Conductive paste for mounting
JP3837858B2 (en) Conductive adhesive and method of using the same
JP2012072211A (en) Thermosetting resin composition and semiconductor component mounting board
US20160066421A1 (en) Solder paste and electronic part
JP4468750B2 (en) Conductive paste and multilayer substrate using the same
JP2006265484A (en) Adhesive resin composition and electronic apparatus
KR101035873B1 (en) Fast curable adhesive film composition at high temperature and adhesive film using it
JP2014209624A (en) Joint structure between circuit board and semiconductor component
JP2021178336A (en) Resin flux solder paste and mounting structure
TWI476267B (en) Anisotropic conductive adhesive
JP6189148B2 (en) Epoxy resin composition and semiconductor device
JP6472837B2 (en) Epoxy resin composition and semiconductor device
WO2023013732A1 (en) Resin composition for fluxes, solder paste and package structure
JP2009227962A (en) Epoxy resin composition for sealing and semiconductor device
KR101545962B1 (en) Solder ball having adhesion coating layer
JP2014077122A (en) Adhesive for electronic component and method for manufacturing semiconductor chip package
JP6126834B2 (en) Pre-feed type liquid resin composition for semiconductor encapsulation and semiconductor device
JP5047632B2 (en) Mounting method using hot-pressure adhesive for flip chip connection
JP2012216831A (en) Semiconductor chip packaging body manufacturing method
JP2004090021A (en) Hardenable flux
JP2014107354A (en) Method for manufacturing semiconductor device
JP2014107355A (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191210

R150 Certificate of patent or registration of utility model

Ref document number: 6632618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250