WO2016189065A1 - Méthode et système d'évaluation de la qualité de la coloration pour l'immunocytochimie et l'hybridation in situ - Google Patents

Méthode et système d'évaluation de la qualité de la coloration pour l'immunocytochimie et l'hybridation in situ Download PDF

Info

Publication number
WO2016189065A1
WO2016189065A1 PCT/EP2016/061859 EP2016061859W WO2016189065A1 WO 2016189065 A1 WO2016189065 A1 WO 2016189065A1 EP 2016061859 W EP2016061859 W EP 2016061859W WO 2016189065 A1 WO2016189065 A1 WO 2016189065A1
Authority
WO
WIPO (PCT)
Prior art keywords
values
intensity
stain
analyte
image
Prior art date
Application number
PCT/EP2016/061859
Other languages
English (en)
Other versions
WO2016189065A8 (fr
Inventor
Karl Garsha
Michael Otter
Benjamin Stevens
Jefferson TAFT
Frank Ventura
Original Assignee
Ventana Medical Systems, Inc.
F. Hoffmann-La Roche Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ventana Medical Systems, Inc., F. Hoffmann-La Roche Ag filed Critical Ventana Medical Systems, Inc.
Priority to JP2017561410A priority Critical patent/JP6673941B2/ja
Priority to EP16725132.1A priority patent/EP3304415B1/fr
Priority to CA2981155A priority patent/CA2981155C/fr
Priority to AU2016269085A priority patent/AU2016269085B2/en
Publication of WO2016189065A1 publication Critical patent/WO2016189065A1/fr
Publication of WO2016189065A8 publication Critical patent/WO2016189065A8/fr
Priority to US15/819,676 priority patent/US10614284B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts

Definitions

  • ISH assays For commercial in-vitro diagnostic ISH assays, the staining performance, e.g. stain uniformity, stain intensity, or background staining, must be validated to deliver sensitive and specific staining to the sequences of interest, with a high degree of repeatability. For this reason, specifications that define the various factors that influence acceptable performance of ISH assays must be developed and documented.
  • the entropy values are computed by (i) deriving image histogi'ams of intensity values from each of the analyte intensity images, and (ii) calculating a probability that a pixel sampled from an analyte intensity image has a particular value in the respective histogram.
  • the image histograms of intensity values are derived by sorting pixels from each analyte intensity image into bins.
  • the multi -spectral image data comprises scanned images of a stained tissue specimen, e.g. specimens mounted on a slide.
  • spectral images of the tissue sample are taken at several axial positions.
  • the scanned images are combined into a spectral cube (also referred to as an image cube or hyperspectral cube to those of ordinary skill in the art).
  • the tissue samples were stained in a multiplex IHC and/or ISH assay for the detection of biomarkers therein.
  • a computer device for objective stain assessment comprising one or more processors and at least one memory, the at least one memory storing non-transitory computer-readable instructions for execution by the one or more processors to cause the one or more processors to: unmix a multi-spectral image of a tissue specimen to obtain analyte intensity images; compute metrics based on the analyte intensity images, wherein a first metric is a numerical descriptor of the uniformity and distribution of pixel intensity values in the analyte intensity images, and wherein a second metric is a numerical descriptor of the dispersion of pixel intensity values in the analyte intensity images, the pixel intensity values corresponding to signals from a detectable stain in each analyte intensity image; assess a stain quality of a slide by comparing the computed metrics to pre-determined cutoff values, wherein the stain quality of the slide is assessed as acceptable if the computed metrics meet or exceed the pre-determined cut
  • FIG. 5B illustrates an example of an intensity histogram and the number of pixels in any particular bin
  • spectral cube refers to data aligned along three dimensions. Two of the dimensions are the 'x' and 'y' coordinates of an image field of view and the third dimension is wavelength.
  • target refers to any molecule for which the presence, location and/or concentration is or can be determined.
  • target molecules include proteins, nucleic acid sequences, and haptens, such as haptens covalently bonded to proteins.
  • Target molecules are typically detected using one or more conjugates of a specific binding molecule and a detectable label.
  • the columns of the M x N matrix R is the known reference spectral signature of the individual fluorophores and the N x l vector A is the unknown of the proportions of individual fluorophores and the M x 1 vector S is the measured multichannel spectral vector at a pixel.
  • the signal in each pixel (S) is measured during acquisition of the multiplex image and the reference spectra for the known stains are usually determined in an independent offline method from fluorescent specimens labeled with only a single stain using identical instrument settings. It becomes a simple linear algebra matrix exercise to determine the contributions of various stains (Ai) by calculating their contribution to each point in the measured spectrum.
  • unmixing is accomplished using the methods described in
  • the unmixed images may be limited to a certain dynamic range constraint.
  • the dynamic range may be limited by applying a thresholding filter, step (450).
  • the threshold is set to cover the entire positive spectrum range of the unmixed images (0-100% of the brightest value present with negative values clamped to a value of zero). This operation restricts analysis of signals to a consistent part of the dynamic range of the data acquired and avoids the inclusion of pixel values that are not relevant to the signal localization.
  • This step is repeated for each bin (and for each of the selected channels) to provide a probability of a sampled pixel belonging in a particular bin.
  • Each probability is then multiplied by the logarithm to the base of 2 of the probability to convert the value to a unit of bits, step (570).
  • the probabilities are then summed to estimate the entropy for the analyte channels, step (580).
  • a metric is derived that serves as a numerical descriptor of the dispersion of the pixel intensity values for a spectrally unmixed image.
  • the metric of the dispersion of intensity values is a mean to variance ratio ("M7V Ratio"), i.e., a ratio of a mean intensity value of a signal in an image histogram to a variance value of the signal in an image histogram.
  • the pixel intensity mode value represents the pixel intensity value that occurs most often in a particular histogram (and hence in an analyte intensity image).
  • the pixel intensity variance value represents a value of how spread apart certain pixel intensities are in a histogram (and hence in an analyte intensity image).
  • the analyte intensity images to be measured are selected, step (510), and histograms for each analyte intensity image are derived, step (520).
  • the mean value and variance of pixel intensity are measured from each derived image intensity histogram, step (530).
  • a ratio of the mean value and variance of pixel intensity is then computed, step (540), to provide the M/V Ratio metric.
  • objecti ve criteria may be empirically determined by comparing and evaluating reference slides that are known to be acceptable as determined by an expert pathologist, steps (710), to those that are known to be unacceptable as determined by an expert pathologist, steps (710), wherein the same analytes are being detected in both the acceptable and unacceptable quality slides.
  • metrics e.g., entropy and M/V ratio
  • steps (720) and (730) and the metrics for all reference slides are analyzed to derive cutoff values or a decision boundary, using one of a support vector machine, a linear discriminant analysis, or a logistic regression analysis, steps (740).
  • step (920) an evaluation is made as to whether the result is inconsistent, step (920).
  • step (920) To determine whether an inconsistent result is caused by a slide staining apparatus or the scanner, the slide is classified on a separate imaging instrument, step (930) and if the slide meets the staining specification, step (940), the scanner should be checked for inconsistencies. On the other hand, if the slide does not meet the staining specification, step (950), a staining apparatus should be checked for inconsistencies.
  • the artifacts that lead to an inconsistent result may be attributed to the imaging process.
  • detectable labels include enzymes such as horseradish peroxidase, alkaline phosphatase, acid phosphatase, glucose oxidase, ⁇ -galactosidase or ⁇ -glucuronidase; fluorphores such as fluoresceins, luminophores, coumarins, BODJPY dyes, resorufins, and rhodamines (many additional examples of fluorescent molecules can be found in The Handbook— A Guide lo Fluorescent Probes and Labeling Technologies, Molecular Probes, Eugene, OR); nanoparticles such as quantum dots (described further below); metal chelates such as DOTA and DPTA chelates of radioactive or paramagnetic metal ions like Gd 3+ ; and liposomes, for example, liposomes containing trapped fluorescent molecules.
  • enzymes such as horseradish peroxidase, alkaline phosphatase, acid phosphatase, glucose oxidase, ⁇ -galact
  • Logic refers to any information having the form of instruction signals and/or data that may be applied to affect the operation of a processor.
  • Software is one example of such logic.
  • Logic may also comprise digital and/or analog hardware circuits, for example, hardware circuits comprising logical AND, OR, XOR, NAND, NOR, and other logical operations.
  • Logic may be formed from combinations of software and hardware.
  • On a network logic may be programmed on a server, or a complex of servers. A particular logic unit is not limited to a single logical location on the network.
  • a computer having a display device, e.g., an LCD (liquid crystal display), LED (light emitting diode) display, or OLED (organic light emitting diode) display, for displaying information to the user and a keyboard and a pointing device, e.g., a mouse or a trackball, by which the user can provide input to the computer.
  • a display device e.g., an LCD (liquid crystal display), LED (light emitting diode) display, or OLED (organic light emitting diode) display
  • a keyboard and a pointing device e.g., a mouse or a trackball
  • a touch screen can be used to display information and receive input from a user.
  • chromosomal rearrangements involving the SYT gene located in the breakpoint region of chromosome 18ql 1.2 are common among synovial sarcoma soft tissue tumors.
  • the t(18ql 1.2) translocation can be identified, for example, using probes with different labels: the first probe includes FPC nucleic acid molecules generated from a target nucleic acid sequence that extends distally from the SYT gene, and the second probe includes FPC nucleic acid generated from a target nucleic acid sequence that extends 3' or proximal to the SYT gene.
  • a target protein produced from a nucleic acid sequence is selected that is a tumor suppressor gene that is deleted (lost) in malignant cells.
  • the target protein is produced from a nucleic acid sequence

Abstract

L'immunocytochimie (IHC) et l'hybridation in situ (ISH) ont pour but de détecter, localiser et quantifier certains analytes à diverses fins de diagnostic. La qualité des colorants qui sont analysés peut varier pour diverses raisons. Par conséquent, la présente invention concerne une méthode et un système pour l'évaluation de la qualité de la coloration et l'établissement des critères objectifs pour l'évaluation de la qualité de la coloration, dans le cadre d'une application dans les domaines de l'immunocytochimie et de l'hybridation in situ. Dans un mode de réalisation possible, l'invention comprend les étapes consistant à séparer des données d'images multi-spectrales provenant d'un échantillon de tissu afin d'obtenir des images d'intensité d'analyte, chaque image d'intensité d'analyte comprenant des signaux provenant d'une coloration unique, calculer des paramètres sur la base des images d'intensité d'analyte, les paramètres étant l'uniformité, la répartition et/ou la dispersion des valeurs d'intensité de pixels dans les images d'intensité d'analyte, et évaluer la qualité de la coloration d'une lame en comparant les paramètres calculés à des valeurs seuils pré-définies concernant l'uniformité, la répartition et/ou la dispersion des valeurs d'intensité de pixels, la qualité de la coloration de la lame étant évaluée comme étant acceptable si les paramètres calculés satisfont ou dépassent les valeurs seuils pré-définies, et la qualité de la coloration de la lame étant évaluée comme inacceptable si les paramètres calculés ne satisfont pas aux valeurs seuils pré-définies. Afin d'établir des critères objectifs d'évaluation de la qualité de la coloration, dans un mode de réalisation possible, la méthode et le système comprennent une étape consistant à dériver des valeurs seuils pour l'uniformité, la répartition et/ou la dispersion de l'intensité des pixels en associant les paramètres calculés sur la base des images d'intensité d'analyte avec des données pré-définies quantifiant la qualité de la coloration.
PCT/EP2016/061859 2015-05-26 2016-05-25 Méthode et système d'évaluation de la qualité de la coloration pour l'immunocytochimie et l'hybridation in situ WO2016189065A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017561410A JP6673941B2 (ja) 2015-05-26 2016-05-25 イン・サイチュー・ハイブリダイゼーションおよび免疫組織化学のための染色品質評価方法およびシステム
EP16725132.1A EP3304415B1 (fr) 2015-05-26 2016-05-25 Méthode et système d'évaluation de la qualité de la coloration pour l'immunocytochimie et l'hybridation in situ
CA2981155A CA2981155C (fr) 2015-05-26 2016-05-25 Methode et systeme d'evaluation de la qualite de la coloration pour l'immunocytochimie et l'hybridation in situ
AU2016269085A AU2016269085B2 (en) 2015-05-26 2016-05-25 Method and system for assessing stain quality for in-situ hybridization and immunohistochemistry
US15/819,676 US10614284B2 (en) 2015-05-26 2017-11-21 Descriptive measurements and quantification of staining artifacts for in situ hybridization

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562166115P 2015-05-26 2015-05-26
US62/166,155 2015-05-26
US62/166,115 2015-05-26
US201662328041P 2016-04-27 2016-04-27
US62/328,041 2016-04-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/819,676 Continuation US10614284B2 (en) 2015-05-26 2017-11-21 Descriptive measurements and quantification of staining artifacts for in situ hybridization

Publications (2)

Publication Number Publication Date
WO2016189065A1 true WO2016189065A1 (fr) 2016-12-01
WO2016189065A8 WO2016189065A8 (fr) 2017-04-27

Family

ID=56081484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/061859 WO2016189065A1 (fr) 2015-05-26 2016-05-25 Méthode et système d'évaluation de la qualité de la coloration pour l'immunocytochimie et l'hybridation in situ

Country Status (1)

Country Link
WO (1) WO2016189065A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180143111A1 (en) * 2016-10-25 2018-05-24 Abbott Laboratories Assessment and Control of Reagents in Automated Slide Preparation
CN111986157A (zh) * 2020-07-21 2020-11-24 万达信息股份有限公司 一种数字病理图像质量评价系统
WO2021189771A1 (fr) * 2020-07-30 2021-09-30 平安科技(深圳)有限公司 Procédé et appareil de test de qualité d'informations de numérisation de diapositives, et dispositif et support
CN114383913A (zh) * 2021-12-31 2022-04-22 迈克医疗电子有限公司 样本制作仪的高低速控制方法及控制系统
CN114511559A (zh) * 2022-04-18 2022-05-17 杭州迪英加科技有限公司 染色鼻息肉病理切片质量多维评价方法、系统及介质

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1564604A (en) 1925-06-12 1925-12-08 Chas S Hodges Water wheel
US5650327A (en) 1990-03-02 1997-07-22 Ventana Medical Systems, Inc. Method for mixing reagent and sample mounted on a slide
US6296809B1 (en) 1998-02-27 2001-10-02 Ventana Medical Systems, Inc. Automated molecular pathology apparatus having independent slide heaters
US20030211630A1 (en) 1998-02-27 2003-11-13 Ventana Medical Systems, Inc. Automated molecular pathology apparatus having independent slide heaters
US6649138B2 (en) 2000-10-13 2003-11-18 Quantum Dot Corporation Surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media
US6670113B2 (en) 2001-03-30 2003-12-30 Nanoprobes Enzymatic deposition and alteration of metals
US6682596B2 (en) 2000-12-28 2004-01-27 Quantum Dot Corporation Flow synthesis of quantum dot nanocrystals
US20040052685A1 (en) 1998-02-27 2004-03-18 Ventana Medical Systems, Inc. Automated molecular pathology apparatus having independent slide heaters
US6815064B2 (en) 2001-07-20 2004-11-09 Quantum Dot Corporation Luminescent nanoparticles and methods for their preparation
US20040265922A1 (en) 2003-06-24 2004-12-30 Ventana Medical Systems, Inc. Enzyme-catalyzed metal deposition for the enhanced in situ detection of immunohistochemical epitopes and nucleic acid sequences
US20080266652A1 (en) * 2007-04-30 2008-10-30 General Electric Company Microscope with dual image sensors for rapid autofocusing
US20080273788A1 (en) * 2007-05-04 2008-11-06 Aperio Technologies, Inc. System and Method for Quality Assurance in Pathology
WO2009020972A2 (fr) * 2007-08-06 2009-02-12 Historx, Inc. Procédés et système pour valider des images échantillons pour des immuno-essais quantitatifs
WO2011049608A2 (fr) 2009-10-19 2011-04-28 Bioimagene, Inc. Système et techniques d'imagerie
US20140078286A1 (en) 2011-05-06 2014-03-20 Ventana Medical Systems, Inc. Method and system for spectral unmixing of tissue images
WO2014195193A1 (fr) 2013-06-03 2014-12-11 Ventana Medical Systems, Inc. Separation de couleurs physiologiquement plausibles adaptative d'image
WO2015124772A1 (fr) 2014-02-21 2015-08-27 Ventana Medical Systems, Inc. Modèle à parcimonie de groupes pour séparation d'images

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1564604A (en) 1925-06-12 1925-12-08 Chas S Hodges Water wheel
US6943029B2 (en) 1990-03-02 2005-09-13 Ventana Medical Systems, Inc. Automated biological reaction apparatus
US5650327A (en) 1990-03-02 1997-07-22 Ventana Medical Systems, Inc. Method for mixing reagent and sample mounted on a slide
US5654200A (en) 1990-03-02 1997-08-05 Ventana Medical Systems, Inc. Automated slide processing apparatus with fluid injector
US6352861B1 (en) 1990-03-02 2002-03-05 Ventana Medical Systems, Inc. Automated biological reaction apparatus
US6827901B2 (en) 1990-03-02 2004-12-07 Ventana Medical Systems, Inc. Automated biological reaction apparatus
US6296809B1 (en) 1998-02-27 2001-10-02 Ventana Medical Systems, Inc. Automated molecular pathology apparatus having independent slide heaters
US20030211630A1 (en) 1998-02-27 2003-11-13 Ventana Medical Systems, Inc. Automated molecular pathology apparatus having independent slide heaters
US20040052685A1 (en) 1998-02-27 2004-03-18 Ventana Medical Systems, Inc. Automated molecular pathology apparatus having independent slide heaters
US6649138B2 (en) 2000-10-13 2003-11-18 Quantum Dot Corporation Surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media
US6682596B2 (en) 2000-12-28 2004-01-27 Quantum Dot Corporation Flow synthesis of quantum dot nanocrystals
US6670113B2 (en) 2001-03-30 2003-12-30 Nanoprobes Enzymatic deposition and alteration of metals
US6815064B2 (en) 2001-07-20 2004-11-09 Quantum Dot Corporation Luminescent nanoparticles and methods for their preparation
WO2005003777A2 (fr) 2003-06-24 2005-01-13 Ventana Medical Systems, Inc. Depot de metal catalyse par une enzyme pour la detection in situ amelioree d'epitopes immunohistochimiques et de sequences d'acides nucleiques
US20040265922A1 (en) 2003-06-24 2004-12-30 Ventana Medical Systems, Inc. Enzyme-catalyzed metal deposition for the enhanced in situ detection of immunohistochemical epitopes and nucleic acid sequences
US20080266652A1 (en) * 2007-04-30 2008-10-30 General Electric Company Microscope with dual image sensors for rapid autofocusing
US20080273788A1 (en) * 2007-05-04 2008-11-06 Aperio Technologies, Inc. System and Method for Quality Assurance in Pathology
WO2009020972A2 (fr) * 2007-08-06 2009-02-12 Historx, Inc. Procédés et système pour valider des images échantillons pour des immuno-essais quantitatifs
WO2011049608A2 (fr) 2009-10-19 2011-04-28 Bioimagene, Inc. Système et techniques d'imagerie
US20140078286A1 (en) 2011-05-06 2014-03-20 Ventana Medical Systems, Inc. Method and system for spectral unmixing of tissue images
WO2014195193A1 (fr) 2013-06-03 2014-12-11 Ventana Medical Systems, Inc. Separation de couleurs physiologiquement plausibles adaptative d'image
WO2015124772A1 (fr) 2014-02-21 2015-08-27 Ventana Medical Systems, Inc. Modèle à parcimonie de groupes pour séparation d'images

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
AGARD D A: "OPTICAL SECTIONING MICROSCOPY: CELLULAR ARCHITECTURE IN THREE DIMENSIONS", ANNUAL REVIEW OF BIOPHYSICS AND BIOENGINEERING., ANNUAL REVIEWS INC., PALO ALTO, CA., US, vol. 13, 1 January 1984 (1984-01-01), US, pages 191 - 219, XP009081866, ISSN: 0883-9182
ALLAN GRAY ET AL: "Quantification of histochemical stains using whole slide imaging: development of a method and demonstration of its usefulness in laboratory quality control", JOURNAL OF CLINICAL PATHOLOGY, vol. 68, no. 3, 5 December 2014 (2014-12-05), GB, pages 192 - 199, XP055297239, ISSN: 0021-9746, DOI: 10.1136/jclinpath-2014-202526 *
AUSUBEL ET AL.: "Current Protocols in Molecular Biology", 1987, GREENE PUBLISHING ASSOCIATES AND WILEY-INTERSCIENCES
C. L. LAWSON; R. J. HANSON: "Solving least squares Problems", 1974, PRENTICEHALL, article "chapter 23", pages: 161
DASHAN GAO ET AL: "Automated Training Data Generation for Microscopy Focus Classification", 20 September 2010, MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2010, SPRINGER BERLIN HEIDELBERG, BERLIN, HEIDELBERG, PAGE(S) 446 - 453, ISBN: 978-3-642-15744-8, XP019151932 *
GUNDERSEN: "The Efficiency of Systematic Sampling in Stereology and its Prediction", J. OF MICROSCOPY, vol. 147, September 1987 (1987-09-01), pages 229 - 263
KAYSER KLAUS; SCHULTZ HOLGER; GOLDMANN TORSTEN; GÖRTLER JÜRGEN; KAYSER GIAN; VOLLMER EKKEHARD: "Theory of sampling and its application in tissue based diagnosis", DIAGNOSTIC PATHOLOGY, BIOMED CENTRAL LTD, LO, vol. 4, no. 1, 16 February 2009 (2009-02-16), Lo, pages 6, XP021051946, ISSN: 1746-1596, DOI: 10.1186/1746-1596-4-6
KURITA, T.; OTSU, N.; ABDELMALIK, N.: "Maximum Likelihood Thresholding Based On Population Mixture Models", PATTERN RECOGNITION, vol. 25, no. 10, 1992, pages 1231 - 1240
NOBUYUKI OTSU: "A Threshold Selection Method from Gray-level Histograms", IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS., IEEE INC. NEW YORK., US, vol. 9, no. 1, 1 January 1979 (1979-01-01), US, pages 62 - 66, XP002386459, ISSN: 0018-9472
P SMITHA ET AL: "Quality enhancement technique for gray level immunohistochemistry images", 2014 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH, 1 December 2014 (2014-12-01), pages 1 - 4, XP055297274, ISBN: 978-1-4799-3975-6, DOI: 10.1109/ICCIC.2014.7238496 *
S. JOSHI; M. I. MILLER: "Maximum a Posteriori Estimate with Good's Roughness for Three-Dimensional Optical-Sectioning Microscopy", JOURNAL OF OPTICAL SOCIETY OF AMERICA, vol. 10, no. 5, 1993, pages 1078 - 1085
SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
TAYLOR C R ET AL: "Quantification of immunohistochemistry--issues concerning methods, utility and semiquantitative assessment II", HISTOPATHOLOGY, WILEY-BLACKWELL PUBLISHING LTD, GB, vol. 49, no. 4, 1 October 2006 (2006-10-01), pages 411 - 424, XP002405484, ISSN: 0309-0167, DOI: 10.1111/J.1365-2559.2006.02513.X *
TSAI: "Information Entropy Measure for Evaluation of Image Quality", J DIGIT IMAGING, no. 3, 21 September 2008 (2008-09-21), pages 338 - 347, XP019596201
ZIMMERMANN: "Spectral Imaging and Linear Unmixing in Light Microscopy", ADV BIOCHEM ENGIN/BIOTECHNOL, vol. 95, 2005, pages 245 - 265

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180143111A1 (en) * 2016-10-25 2018-05-24 Abbott Laboratories Assessment and Control of Reagents in Automated Slide Preparation
US10871426B2 (en) * 2016-10-25 2020-12-22 Abbott Laboratories Assessment and control of reagents in automated slide preparation
CN111986157A (zh) * 2020-07-21 2020-11-24 万达信息股份有限公司 一种数字病理图像质量评价系统
CN111986157B (zh) * 2020-07-21 2024-02-09 万达信息股份有限公司 一种数字病理图像质量评价系统
WO2021189771A1 (fr) * 2020-07-30 2021-09-30 平安科技(深圳)有限公司 Procédé et appareil de test de qualité d'informations de numérisation de diapositives, et dispositif et support
CN114383913A (zh) * 2021-12-31 2022-04-22 迈克医疗电子有限公司 样本制作仪的高低速控制方法及控制系统
CN114383913B (zh) * 2021-12-31 2023-10-13 迈克医疗电子有限公司 样本制作仪的高低速控制方法及控制系统
CN114511559A (zh) * 2022-04-18 2022-05-17 杭州迪英加科技有限公司 染色鼻息肉病理切片质量多维评价方法、系统及介质

Also Published As

Publication number Publication date
WO2016189065A8 (fr) 2017-04-27

Similar Documents

Publication Publication Date Title
US10614284B2 (en) Descriptive measurements and quantification of staining artifacts for in situ hybridization
US11836950B2 (en) Quality metrics for automatic evaluation of dual ISH images
US11526984B2 (en) Method of computing tumor spatial and inter-marker heterogeneity
US10755406B2 (en) Systems and methods for co-expression analysis in immunoscore computation
US20200117883A1 (en) Lab color space silver and red in situ hybridization based techniques for detecting genes in tissue samples
JP5870851B2 (ja) 情報処理装置、情報処理方法、及びプログラム
WO2016189065A1 (fr) Méthode et système d'évaluation de la qualité de la coloration pour l'immunocytochimie et l'hybridation in situ
US20210285056A1 (en) Systems for automated in situ hybridization analysis
US11747280B2 (en) System level calibration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16725132

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2981155

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2016269085

Country of ref document: AU

Date of ref document: 20160525

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017561410

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016725132

Country of ref document: EP