WO2016188461A1 - 磁悬浮轴承的控制方法和控制装置 - Google Patents

磁悬浮轴承的控制方法和控制装置 Download PDF

Info

Publication number
WO2016188461A1
WO2016188461A1 PCT/CN2016/083588 CN2016083588W WO2016188461A1 WO 2016188461 A1 WO2016188461 A1 WO 2016188461A1 CN 2016083588 W CN2016083588 W CN 2016083588W WO 2016188461 A1 WO2016188461 A1 WO 2016188461A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
rotor
control current
magnetic suspension
electromagnetic force
Prior art date
Application number
PCT/CN2016/083588
Other languages
English (en)
French (fr)
Inventor
胡叨福
胡余生
郭伟林
贺永玲
杨斌
李雪
Original Assignee
珠海格力节能环保制冷技术研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610064830.XA external-priority patent/CN106195004B/zh
Application filed by 珠海格力节能环保制冷技术研究中心有限公司 filed Critical 珠海格力节能环保制冷技术研究中心有限公司
Priority to EP16799348.4A priority Critical patent/EP3306123B1/en
Priority to US15/574,964 priority patent/US10871188B2/en
Publication of WO2016188461A1 publication Critical patent/WO2016188461A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means

Definitions

  • the invention relates to the field of magnetic levitation, in particular to a control method and a control device for a magnetic suspension bearing.
  • the rotor of the magnetic suspension bearing is always in a suspended state during stable operation. When it is necessary to stop floating, the currently used landing mode is to directly cut off the current. Under this scheme, the rotor will fall directly at the lower end of the protective bearing due to the action of gravity. For the magnetic suspension system with relatively large rotor mass, this method is more susceptible to shatter-resistant protection bearings and has a greater impact on system reliability.
  • the prior art discloses a method of reducing the impact of a rotor lifting process in a magnetic bearing system.
  • the method changes the output position command of the rotor (ie, the reference position of the rotor) in real time during the falling phase of the rotor, and calculates an output current command according to the position command, thereby generating an electromagnetic force required to control the rotor position, and finally achieving a slow landing of the rotor.
  • the above method requires real-time acquisition of the position of the rotor, so the control efficiency is low.
  • a method for controlling a magnetic suspension bearing includes the following steps:
  • a control current is applied to the control coil of the magnetic suspension bearing such that the rotor is subjected to a vertical upward or oblique upward electromagnetic force, and the component of the electromagnetic force in the vertical direction is smaller than the gravity of the rotor.
  • control current is gradually reduced.
  • I x P x * S + i x compute each of the control current I x value until each of the control current I x is 0;
  • a control current is respectively applied to two control coils of the magnetic levitation bearing; the two control coils are a first control coil and a second control coil, respectively; and the first control coil and the The second control coil is symmetrical with respect to a vertical line passing through the axis of the rotor;
  • a control current applied to the first control coil causes the rotor to be subjected to a first electromagnetic force
  • a control current applied to the second control coil causes the rotor to receive a second electromagnetic force; the first electromagnetic force and The resultant force of the second electromagnetic force is the electromagnetic force.
  • the magnitude of the control current applied to the first control coil is equal to the magnitude of the control current applied to the second control coil.
  • the invention also provides a control device for a magnetic suspension bearing, comprising a floating instruction acquisition unit and a control current application unit;
  • the floating instruction acquisition unit is adapted to acquire a floating bearing instruction of a magnetic suspension bearing
  • the control current applying unit is adapted to apply a control current to one or more control coils of the magnetic suspension bearing after the floating instruction acquisition unit acquires the magnetic suspension bearing floating instruction, so that the rotor is vertically upward or obliquely upward
  • the electromagnetic force, and the component of the electromagnetic force in the vertical direction is smaller than the gravity of the rotor.
  • control current is gradually reduced.
  • control device of the magnetic levitation bearing further includes a control current calculation unit, the control current calculation unit is adapted to calculate a required control current, and send the calculation result to the control current application unit.
  • the control current applying unit respectively applies a control current to one or more control coils of the magnetic suspension bearing according to the calculation result;
  • a control current is applied to each of the two control coils of the magnetic suspension bearing;
  • the control coils are respectively a first control coil and a second control coil; and the first control coil and the second control coil are symmetrical with respect to a vertical line passing through an axis of the rotor;
  • a control current applied to the first control coil causes the rotor to be subjected to a first electromagnetic force
  • a control current applied to the second control coil causes the rotor to receive a second electromagnetic force; the first electromagnetic force and The resultant force of the second electromagnetic force is the electromagnetic force.
  • the magnitude of the control current applied to the first control coil is equal to the magnitude of the control current applied to the second control coil.
  • the control method and the control device for the magnetic suspension bearing respectively apply a control current to one or more control coils of the magnetic suspension bearing, and the control current causes the vertical component of the electromagnetic force received by the rotor to partially cancel the gravity of the rotor, thereby The falling speed of the rotor is slowed relative to the falling speed of the rotor when only the gravity is applied, and the impact of the rotor on the protective bearing can be reduced, and the control efficiency is high.
  • FIG. 1 is a schematic structural view of an embodiment of a control device for a magnetic suspension bearing according to the present invention
  • FIG. 2 is a schematic view showing the force applied to the rotor in one embodiment of the magnetic suspension bearing of the present invention
  • FIG. 3 is a flow chart showing an embodiment of a method of controlling a magnetic suspension bearing of the present invention.
  • the control device for the magnetic suspension bearing of the present invention is suitable for controlling the falling speed of the rotor after the magnetic suspension bearing is stopped, and the falling speed of the rotor is slowed relative to the falling speed of the rotor when only the gravity is received, thereby reducing the rotor pair protection bearing.
  • the control device for the magnetic suspension bearing of the present invention includes a floating instruction acquisition unit 100 and a control current application unit 200.
  • the floating instruction acquisition unit 100 is adapted to acquire a magnetic suspension bearing suspension command.
  • the floating instruction acquisition unit 100 can be connected to the controller of the magnetic suspension bearing, and when the magnetic suspension bearing is stopped, the magnetic suspension bearing suspension instruction is obtained.
  • the control current applying unit 200 is adapted to apply a control current to one or more control coils of the magnetic suspension bearing after the floating instruction acquisition unit 100 acquires the magnetic suspension bearing suspension command, so that the rotor is vertically upward or obliquely upward.
  • the electromagnetic force, and the component of the electromagnetic force in the vertical direction is smaller than the gravity of the rotor.
  • control current is a current applied to a control coil of the magnetic suspension bearing.
  • the control current applied to one or more control coils of the magnetic suspension bearing can respectively cause the rotor to receive an electromagnetic force in a vertical upward or oblique direction, and the component force in the vertical direction of the electromagnetic force is smaller than the gravity of the rotor.
  • the control current causes the component of the vertical force of the electromagnetic force received by the rotor to be partially offset from the gravity of the rotor, so that the falling speed of the rotor is slowed relative to the falling speed of the rotor when only the gravity is applied, and the rotor pair protection is reduced. The impact of the bearing.
  • control current can be converted to an electromagnetic force by a magnetic bearing of the magnetic suspension bearing.
  • present invention is not limited thereto, and the control current may be converted into an electromagnetic force by other means.
  • control current is gradually reduced. In this way, the time required for the rotor to fall from the floating position to the protective bearing can be made shorter and the control efficiency is higher.
  • control device for the magnetic suspension bearing further includes a control current calculation unit 300.
  • the control current calculation unit 300 is adapted to calculate a required control current and transmit the calculation result to the control current time unit 200.
  • the control current applying unit 200 applies a control current to each of the one or more control coils of the magnetic suspension bearing according to the calculation result.
  • the value of x is an integer greater than or equal to 1.
  • the switching frequency and the control current I x A, the control period T and the initial value of the current I x i x values are set in advance according to the actual needs.
  • the preset number of switching times A of the control current I 1 is 10, and the period T is preset.
  • the second step the value n of the cycle timer is accumulated from time to time from the initial value 0.
  • the third step the value n of the cycle timer is accumulated from time to time from the initial value 0.
  • control current is applied to more than one control coil of the magnetic suspension bearing, and the magnitude of each control current is constant, the resultant force of the rotor in the vertical direction will also be the same, and the entire falling process of the rotor will be consumed. For a long time, the control power consumption will be relatively high.
  • the distance between the rotor and the protection bearing is gradually reduced. In the process, a gradually decreasing control current is set, so that the resultant force of the rotor in the vertical direction can be gradually increased, and the entire rotor can be made.
  • the falling process is shortened in time, thereby reducing the control power consumption, and since the gap between the rotor and the protective bearing becomes very small in the process, the impact force of the final landing is not large. Moreover, the control current is gradually reduced according to the slope coefficient P x , and the falling process of the rotor does not fluctuate greatly, which has a good control effect.
  • the resultant force of the rotor in the vertical direction is always less than or equal to the gravity of the rotor.
  • the present invention is not limited to the calculation of the control current by the above formula, and it is possible to make the falling speed of the rotor slower with respect to the falling speed when the rotor is only subjected to gravity and the falling time is small.
  • the slope coefficient P x may take other calculation formulas, or the control current may be gradually reduced in nonlinearity.
  • a control current can be applied to each of the two control coils of the magnetic suspension bearing.
  • the two control coils are respectively a first control coil and a second control coil, and the first control coil and the second control coil are symmetrical with respect to a vertical line passing through the axis of the rotor.
  • the control current applied to the first control coil causes the rotor to be subjected to a first electromagnetic force
  • the control current applied to the second control coil causes the rotor to receive a second electromagnetic force.
  • the resultant force of the first electromagnetic force and the second electromagnetic force is the electromagnetic force.
  • a control current is respectively applied to the first control coil and the second control coil of the magnetic levitation bearing, and the first control coil and the second control coil are symmetrical with respect to a vertical line passing through the axis of the rotor.
  • the direction from the rotor axis to the first control coil is the direction of the first electromagnetic force, and the angle with the gravity direction of the rotor is greater than 90 degrees and less than or equal to 180 degrees.
  • the direction from the rotor axis to the second control current is the direction of the second electromagnetic force, and the angle with the gravity direction of the rotor is greater than 90° and less than or equal to 180°.
  • F 1 is a first electromagnetic force 2
  • F 2 is a second electromagnetic force
  • f m is the electromagnetic force F. 1
  • a first and a second electromagnetic force F 2 is the resultant force component in the vertical direction.
  • the control current is respectively applied to the two control coils of the magnetic suspension bearing which are symmetrical with respect to the vertical line passing through the rotor axis, so that the control effect on the rotor falling process is better and the control efficiency is higher.
  • the magnitude of the control current applied to the first control coil may be equal to the magnitude of the control current applied to the second control coil. Then, the control current applied to the first control coil and the control current applied to the second control coil cause the resultant force of the electromagnetic force received by the rotor to be upward in the vertical direction and smaller than the gravity of the rotor. In this way, the rotor can be dropped vertically without being biased and more efficient.
  • a cancellation current capable of canceling the gravity of the rotor itself can be calculated from the simulation system of the magnetic suspension bearing system. Wherein, the sum of the magnitudes of the control currents applied to the one or more control coils of the magnetic suspension bearing may be less than the cancellation current.
  • the above control device for the magnetic suspension bearing applies a control current to one or more control coils of the magnetic suspension bearing, and the control current causes the vertical component of the electromagnetic force received by the rotor to partially cancel the gravity of the rotor, thereby making the rotor
  • the falling speed can be slowed relative to the falling speed of the rotor when only the gravity is applied, reducing the impact of the rotor on the protective bearing. Therefore, the above-described control device for the magnetic suspension bearing can achieve an effect of slowing down the falling speed of the rotor with respect to the falling speed of the rotor when only the gravity is applied, and reducing the impact of the rotor on the protective bearing, and the control efficiency is high.
  • the present invention also provides a control method for a magnetic suspension bearing, which is suitable for controlling a falling speed of a rotor to be slow relative to a falling speed of the rotor when only the gravity is stopped, thereby reducing a rotor pair protection bearing.
  • the control method of the magnetic suspension bearing of the present invention comprises the following steps:
  • the magnetic suspension bearing floating instruction can be obtained by the floating instruction acquisition unit 100.
  • the floating instruction acquisition unit 100 can be connected to the controller of the magnetic suspension bearing, and the magnetic suspension bearing suspension command can be obtained when the magnetic suspension bearing stops floating.
  • control current is a current applied to a control coil of the magnetic suspension bearing.
  • the control current applied to one or more control coils of the magnetic suspension bearing can respectively cause the rotor to receive an electromagnetic force in a vertical upward or oblique direction, and the component force in the vertical direction of the electromagnetic force is smaller than the gravity of the rotor.
  • the control current causes the component of the vertical force of the electromagnetic force received by the rotor to be partially offset from the gravity of the rotor, so that the falling speed of the rotor is slowed relative to the falling speed of the rotor when only the gravity is applied, and the rotor pair protection is reduced. The impact of the bearing.
  • control current can be converted to an electromagnetic force by a magnetic bearing of the magnetic suspension bearing.
  • present invention is not limited thereto, and the control current may be converted into an electromagnetic force by other means.
  • control current is gradually reduced. In this way, the rotor can be dropped from the floating position to the protective bearing. The time required is shorter and the control efficiency is higher.
  • I x P x * S + i x calcd respective control current I x until the respective control current I x is 0.
  • the value of x is an integer greater than or equal to 1.
  • the switching number A of the control current I x , the period T, and the initial value i x of the control current I are all values set in advance according to actual needs.
  • the preset number of switching times A of the control current I 1 is 10, and the period T is preset.
  • the second step the value n of the cycle timer is accumulated from time to time from the initial value 0.
  • the third step the value n of the cycle timer is accumulated from time to time from the initial value 0.
  • the magnitude of the control current applied to one or more control coils of the magnetic suspension bearing is constant, the combined force of the rotor in the vertical direction is constant, and the entire falling process of the rotor takes a long time, and the control work is performed.
  • the consumption is relatively high.
  • the distance between the rotor and the protection bearing is gradually reduced.
  • a gradually decreasing control current is set, so that the resultant force of the rotor in the vertical direction is gradually increased, and the entire rotor can be made.
  • the falling process is shortened in time, thereby reducing the control power consumption, and since the gap between the rotor and the protective bearing becomes very small in the process, the impact force of the final landing is not large.
  • control current is gradually reduced according to the slope coefficient P x , and the falling process of the rotor does not fluctuate greatly, which has a good control effect.
  • the resultant force of the rotor in the vertical direction is always less than or equal to the gravity of the rotor.
  • the present invention is not limited to the calculation of the control current by the above formula, and it is possible to make the falling speed of the rotor slower with respect to the falling speed when the rotor is only subjected to gravity and the falling time is small.
  • the slope coefficient P x may take other calculation formulas, or the control current may be gradually reduced in nonlinearity.
  • a control current can be applied to each of the two control coils of the magnetic suspension bearing.
  • the two control coils are respectively a first control coil and a second control coil, and the first control coil and the second control coil are symmetrical with respect to a vertical line passing through the axis of the rotor.
  • the control current applied to the first control coil causes the rotor to be subjected to a first electromagnetic force
  • the control current applied to the second control coil causes the rotor to receive a second electromagnetic force.
  • the resultant force of the first electromagnetic force and the second electromagnetic force is the electromagnetic force.
  • a control current is respectively applied to the first control coil and the second control coil of the magnetic levitation bearing, and the first control coil and the second control coil are symmetrical with respect to a vertical line passing through the axis of the rotor.
  • the direction from the rotor axis to the first control coil is the direction of the first electromagnetic force, and the angle with the gravity direction of the rotor is greater than 90 degrees and less than or equal to 180 degrees.
  • the direction from the rotor axis to the second control current is the direction of the second electromagnetic force, and the angle with the gravity direction of the rotor is greater than 90° and less than or equal to 180°.
  • F 1 is a first electromagnetic force 2
  • F 2 is a second electromagnetic force
  • f m is the electromagnetic force F. 1
  • a first and a second electromagnetic force F 2 is the resultant force component in the vertical direction.
  • the control current is respectively applied to the two control coils of the magnetic suspension bearing which are symmetrical with respect to the vertical line passing through the rotor axis, so that the control effect on the rotor falling process is better and the control efficiency is higher.
  • the magnitude of the control current applied to the first control coil may be equal to the magnitude of the control current applied to the second control coil. Then, the control current applied to the first control coil and the control current applied to the second control coil cause the resultant force of the electromagnetic force received by the rotor to be upward in the vertical direction and smaller than the gravity of the rotor. In this way, the rotor can be dropped vertically without being biased and more efficient.
  • a cancellation current capable of canceling the gravity of the rotor itself can be calculated from the simulation system of the magnetic suspension bearing system. Wherein, the sum of the magnitudes of the control currents applied to the one or more control coils of the magnetic suspension bearing may be less than the cancellation current.
  • the above control method of the magnetic suspension bearing applies a control current to one or more control coils of the magnetic suspension bearing, respectively, and the control current causes the vertical component of the electromagnetic force received by the rotor to partially cancel the gravity of the rotor, thereby making the rotor
  • the falling speed is slower than the falling speed of the rotor when only the gravity is applied, and the impact of the rotor on the protective bearing can be reduced. Therefore, the above control method of the magnetic suspension bearing can be achieved such that the falling speed of the rotor is lower than when the rotor is only subjected to gravity The falling speed is slowed down and the effect of the rotor on the impact of the protective bearing is reduced, and the control efficiency is high.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

一种磁悬浮轴承的控制方法,包括以下:获取磁悬浮轴承停浮指令;对磁悬浮轴承的一个以上的控制线圈分别施加控制电流,使转子受到竖直向上或斜向上的电磁力,且所述电磁力在竖直方向上的分力小于所述转子的重力。还公开了一种磁悬浮轴承的控制装置,其包括停浮指令获取单元和控制电流施加单元。磁悬浮轴承的控制方法和控制装置能够控制转子的下落速度相对于转子仅受重力时的下落速度变慢,且控制效率较高。

Description

磁悬浮轴承的控制方法和控制装置
相关申请
本发明申请要求2015年05月27日申请的,申请号为201510278938.4,名称为“磁悬浮轴承的控制方法和控制装置”的中国专利申请的优先权,以及2016年1月29日申请的,申请号为201610064830.X,名称为“磁悬浮轴承的控制方法和控制装置”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本发明涉及磁悬浮领域,尤其涉及一种磁悬浮轴承的控制方法和控制装置。
背景技术
磁悬浮轴承的转子在稳定运行过程中始终处于悬浮状态,当需要停浮时,目前常用的着陆方式为直接切断电流。而此方案下,转子会因为重力的作用直接跌落在保护轴承最下端,针对转子质量比较大的磁悬浮系统,这种方式较易震裂保护轴承,对系统可靠性有较大的影响。
现有技术公开了一种减小磁力轴承系统中转子起浮过程冲击的方法。该方法在转子下落阶段实时改变转子的输出位置指令(即转子的参考位置),并根据位置指令计算输出电流指令,进而产生控制转子位置所需的电磁力,最终实现转子缓慢的降落。而上述方法需实时获取转子的位置,因此控制效率较低。
发明内容
基于此,有必要提供一种磁悬浮轴承的控制方法,用于解决控制效率较低的问题。
一种磁悬浮轴承的控制方法,包括以下步骤:
获取磁悬浮轴承停浮指令;
对所述磁悬浮轴承的的控制线圈施加控制电流,使转子受到竖直向上或斜向上的电磁力,且所述电磁力在竖直方向上的分力小于所述转子的重力。
在其中一个实施例中,所述控制电流逐渐减小。
在其中一个实施例中,按公式:Ix=Px*S+ix计算各个所述控制电流Ix的值,直至各个所述控制电流Ix值为0;
其中,Px为切换各个所述控制电流Ix的斜坡系数,且Px=(0-ix)/A;ix为各个所述控制电流Ix的初始值;A为各个所述控制电流Ix的切换次数;S为迭代步数,S的初始值为0;各个所述控制电流Ix均按周期T切换,周期计时器的数值为n,n的初始值为0;且n不断累加,当n<T时,S不变,当n=T时,S=S+1,n清零;x的取值为大于等于1的整数。
在其中一个实施例中,对所述磁悬浮轴承的两个控制线圈分别施加控制电流;所述两个控制线圈分别为第一控制线圈和第二控制线圈;且所述第一控制线圈和所述第二控制线圈相对于经过所述转子的轴心的竖直线对称;
施加在所述第一控制线圈的控制电流使所述转子受到第一电磁力,施加在所述第二控制线圈的控制电流使所述转子受到第二电磁力;所述第一电磁力和所述第二电磁力的合力为所述电磁力。
在其中一个实施例中,施加在所述第一控制线圈上的控制电流大小与施加在所述第二控制线圈上的控制电流大小相等。
本发明还提出一种磁悬浮轴承的控制装置,包括停浮指令获取单元和控制电流施加单元;
所述停浮指令获取单元适用于获取磁悬浮轴承停浮指令;
所述控制电流施加单元适用于在所述停浮指令获取单元获取到磁悬浮轴承停浮指令后,对所述磁悬浮轴承的一个以上的控制线圈分别施加控制电流,使转子受到竖直向上或斜向上的电磁力,且所述电磁力在竖直方向上的分力小于所述转子的重力。
在其中一个实施例中,所述控制电流逐渐减小。
在其中一个实施例中,所述磁悬浮轴承的控制装置还包括控制电流计算单元,所述控制电流计算单元适用于计算所需的控制电流,并将计算结果发送给所述控制电流施加单元,所述控制电流施加单元根据所述计算结果对所述磁悬浮轴承的一个以上的控制线圈分别施加控制电流;
所述控制电流计算单元按公式:Ix=Px*S+ix计算各个所述控制电流Ix的值,直至各个所述控制电流Ix值为0;
其中,Px为切换各个所述控制电流Ix的斜坡系数,且Px=(0-ix)/A;ix为各个所述控制电流Ix的初始值;A为各个所述控制电流Ix的切换次数;S为迭代步数,S的初始值为0;各个所述控制电流Ix均按周期T切换,周期计时器的数值为n,n的初始值为0;且n不断累加,当n<T时,S不变,当n=T时,S=S+1,n清零;x的取值为大于等于1的整数。
在其中一个实施例中,对所述磁悬浮轴承的两个控制线圈分别施加控制电流;所述两个 控制线圈分别为第一控制线圈和第二控制线圈;且所述第一控制线圈和所述第二控制线圈相对于经过所述转子的轴心的竖直线对称;
施加在所述第一控制线圈的控制电流使所述转子受到第一电磁力,施加在所述第二控制线圈的控制电流使所述转子受到第二电磁力;所述第一电磁力和所述第二电磁力的合力为所述电磁力。
在其中一个实施例中,施加在所述第一控制线圈上的控制电流大小与施加在所述第二控制线圈上的控制电流大小相等。
上述磁悬浮轴承的控制方法和控制装置,对磁悬浮轴承的一个以上的控制线圈分别施加控制电流,而控制电流使转子受到的电磁力的竖直方向上的分力与转子的重力能够部分抵消,从而使得转子的下落速度相对于转子仅受重力时的下落速度变慢,能够减小转子对保护轴承的冲击,且控制效率较高。
附图说明
图1为本发明磁悬浮轴承的控制装置一个实施例的结构示意图;
图2为本发明磁悬浮轴承一个实施例中转子的受力示意图;
图3为本发明磁悬浮轴承的控制方法一个实施例的流程图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,以下结合附图对本发明磁悬浮轴承的控制方法和控制装置的具体实施方式进行说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
参见图1,一个实施例中,本发明磁悬浮轴承的控制装置,适用于磁悬浮轴承停浮后,控制转子的下落速度相对于转子仅受重力时的下落速度变慢,从而减小转子对保护轴承的冲击。本发明磁悬浮轴承的控制装置包括停浮指令获取单元100和控制电流施加单元200。
停浮指令获取单元100适用于获取磁悬浮轴承停浮指令。
其中,可以将停浮指令获取单元100与磁悬浮轴承的控制器连接,在磁悬浮轴承停浮时,获取磁悬浮轴承停浮指令。
控制电流施加单元200适用于在停浮指令获取单元100获取到磁悬浮轴承停浮指令后,对所述磁悬浮轴承的一个以上的控制线圈分别施加控制电流,使转子受到竖直向上或斜向上 的电磁力,且所述电磁力在竖直方向上的分力小于所述转子的重力。
其中,控制电流为施加在磁悬浮轴承的控制线圈上的电流。对磁悬浮轴承的一个以上的控制线圈分别施加的控制电流,能够使转子受到竖直向上或斜向上的电磁力,且电磁力的竖直方向上的分力小于转子的重力。这样,控制电流使转子受到的电磁力的竖直方向上的分力可以与转子的重力部分抵消,从而使得转子的下落速度相对于转子仅受重力时的下落速度变慢,减小转子对保护轴承的冲击。
优选的,可以通过磁悬浮轴承的磁力轴承将控制电流转换为电磁力。但本发明并不限于此,也可以通过其他装置将控制电流转换为电磁力。
本实施例中,控制电流逐渐减小。这样,可以使得转子从停浮位置下落到保护轴承上所需的时间更短,控制效率更高。
一个实施例中,磁悬浮轴承的控制装置还包括控制电流计算单元300。控制电流计算单元300适用于计算所需的控制电流,并将计算结果发送给控制电流时间单元200。控制电流施加单元200根据计算结果对磁悬浮轴承的一个以上的控制线圈分别施加控制电流。
具体的,控制电流计算单元300按公式:Ix=Px*S+ix计算各个控制电流Ix的值,直至各个控制电流Ix值为0。
其中,Px为切换各个所述控制电流Ix的斜坡系数,且Px=(0-ix)/A;ix为各个所述控制电流Ix的初始值;A为各个所述控制电流Ix的切换次数;S为迭代步数,S的初始值为0;各个所述控制电流Ix均按周期T切换,周期计时器的数值为n,n的初始值为0;且n不断累加,当n<T时,S不变,当n=T时,S=S+1,n清零。x的取值为大于等于1的整数。本实施例中,控制电流Ix的切换次数A、周期T和控制电流Ix的初始值ix均为根据实际需要预先设定的值。
一个具体的实施例中,以控制电流I1为例,对公式Ix=Px*S+ix进行详细说明,控制电流I1的切换次数A预先设定的值为10,周期T预先设定的值为0.1s,控制电流I1的初始值i1预先设定的值为1A,斜坡系数P1=(0-i1)/A=-0.1。
第一步:当迭代步数S=0时,I1=P1*S+i1=(-0.1)*0+1=1;
第二步:周期计时器的数值n从初始值0开始随着时间不断累加,当n累加到周期T预先设定的值0.1时,迭代步数S=S+1=1,且周期计时器的数值n清零,此时,I1=P1*S+i1=(-0.1)*1+1=0.9,控制电流I1由1A切换为0.9A;
第三步:周期计时器的数值n从初始值0开始随着时间不断累加,当n累加到周期T预先设定的值0.1时,迭代步数S=S+1=2,且周期计时器的数值n清零,此时,I1=P1*S+i1=(-0.1) *2+1=0.8,控制电流I1由0.9A切换为0.8A;
参照上述过程,直至第十一步:周期计时器的数值n从初始值0开始随着时间不断累加,当n累加到周期T预先设定的值0.1时,迭代步数S=S+1=10,且周期计时器的数值n清零,此时,I1=P1*S+i1=(-0.1)*10+1=0,控制电流I1由0.1A切换为0A。
上述过程只是以控制电流I1为例对公式Ix=Px*S+ix进行详细说明,因此各个参数的具体数值只是为了示例说明,而不是为了限制本发明的保护范围,本发明的保护范围以权利要求书所述内容为准。另外,其他控制电流Ix的计算过程与控制电流I1的计算过程相同,故在此不再赘述。
可以理解的,若对磁悬浮轴承的一个以上的控制线圈分别施加的控制电流,各个控制电流大小不变,则转子在竖直方向所受的合力也会大小不变,转子的整个下落过程会耗时较长,控制功耗会相对较高。而转子处于下落状态时,转子距离保护轴承的距离逐渐变小,此过程中,设置一个逐渐减小的控制电流,使得转子在竖直方向上的合力能够慢慢变大,可以使得转子的整个下落过程用时变短,从而降低控制功耗,并且,由于该过程中转子和保护轴承之间的间隙变得十分微小,所以最终着落的冲击力也不会很大。而且控制电流按照斜坡系数Px逐渐减小,转子的下落过程也不会发生较大波动,具有较好的控制效果。当然,转子在竖直方向上的合力始终小于等于转子的重力。
当然,本发明并不限于采用上述公式计算控制电流,能够达到使转子的下落速度相对于转子仅受重力时的下落速度变慢且下落时间较小即可。例如,斜坡系数Px可以采用其他计算公式,或控制电流可以为非线性逐渐减小。
优选的,可以对磁悬浮轴承的两个控制线圈分别施加控制电流。所述两个控制线圈分别为第一控制线圈和第二控制线圈,且第一控制线圈和第二控制线圈相对于经过转子的轴心的竖直线对称。而施加在第一控制线圈的控制电流使转子受到第一电磁力,施加在第二控制线圈的控制电流使转子受到第二电磁力。第一电磁力和第二电磁力的合力为所述的电磁力。
本实施例中,对磁悬浮轴承的第一控制线圈和第二控制线圈分别施加控制电流,且第一控制线圈和第二控制线圈相对于经过转子的轴心的竖直线对称。参见图2,由转子轴心指向第一控制线圈的方向即为第一电磁力的方向,与转子的重力方向所成夹角大于90°且小于等于180°。同理,由转子轴心指向第二控制电流的方向即为第二电磁力的方向,与转子的重力方向所成夹角大于90°且小于等于180°。
如图2所示,F1为第一电磁力,F2为第二电磁力,fm为第一电磁力F1和第二电磁力F2 的合力在竖直方向上的分力。向磁悬浮轴承的相对于经过转子轴心的竖直线相互对称的两个控制线圈分别施加控制电流,可以使得对转子下落过程的控制效果更佳,控制效率更高。
进一步的,施加在第一控制线圈上的控制电流大小与施加在第二控制线圈上的控制电流大小还可以相等。则施加在第一控制线圈上的控制电流与施加在第二控制线圈上的控制电流使转子所受到的电磁力的合力沿竖直方向向上,且小于转子的重力。这样,能够使转子竖直下落,不会偏歪,效率更高。
另外,可以根据磁悬浮轴承系统的仿真系统计算出能够抵消转子本身重力的抵消电流。其中,施加在磁悬浮轴承的一个以上的控制线圈上的控制电流的大小之和可以小于抵消电流。
上述磁悬浮轴承的控制装置,对磁悬浮轴承的一个以上的控制线圈分别施加控制电流,而控制电流使转子受到的电磁力的竖直方向上的分力与转子的重力能够部分抵消,从而使得转子的下落速度相对于转子仅受重力时的下落速度能够变慢,减小转子对保护轴承的冲击。因此,上述磁悬浮轴承的控制装置,可达到使得转子的下落速度相对于转子仅受重力时的下落速度变慢并减小转子对保护轴承的冲击的效果,且控制效率较高。
基于统一发明构思,本发明还提出一种磁悬浮轴承的控制方法,适用于磁悬浮轴承停浮后,控制转子的下落速度相对于转子仅受重力时的下落速度变慢,从而减小转子对保护轴承的冲击。参见图2,一个实施例中,本发明磁悬浮轴承的控制方法包括以下步骤:
S100,获取磁悬浮轴承停浮指令。
其中,可以通过停浮指令获取单元100获取磁悬浮轴承停浮指令。可以将停浮指令获取单元100与磁悬浮轴承的控制器连接,并在磁悬浮轴承停浮时,获取磁悬浮轴承停浮指令。
S200,对所述磁悬浮轴承的一个以上的控制线圈分别施加控制电流,使转子受到竖直向上或斜向上的电磁力,且所述电磁力在竖直方向上的分力小于所述转子的重力。
其中,控制电流为施加在磁悬浮轴承的控制线圈上的电流。对磁悬浮轴承的一个以上的控制线圈分别施加的控制电流,能够使转子受到竖直向上或斜向上的电磁力,且电磁力的竖直方向上的分力小于转子的重力。这样,控制电流使转子受到的电磁力的竖直方向上的分力可以与转子的重力部分抵消,从而使得转子的下落速度相对于转子仅受重力时的下落速度变慢,减小转子对保护轴承的冲击。
优选的,可以通过磁悬浮轴承的磁力轴承将控制电流转换为电磁力。但本发明并不限于此,也可以通过其他装置将控制电流转换为电磁力。
本实施例中,控制电流逐渐减小。这样,可以使得转子从停浮位置下落到保护轴承上所 需的时间更短,控制效率更高。
一个实施例中,按公式:Ix=Px*S+ix计算各个控制电流Ix的值,直至各个控制电流Ix值为0。
其中,Px为切换各个所述控制电流Ix的斜坡系数,且Px=(0-ix)/A;ix为各个所述控制电流Ix的初始值;A为各个所述控制电流Ix的切换次数;S为迭代步数,S的初始值为0;各个所述控制电流Ix均按周期T切换,周期计时器的数值为n,n的初始值为0;且n不断累加,当n<T时,S不变,当n=T时,S=S+1,n清零。x的取值为大于等于1的整数。本实施例中,控制电流Ix的切换次数A、周期T和控制电流I的初始值ix均为根据实际需要预先设定的值。
一个具体的实施例中,以控制电流I1为例,对公式Ix=Px*S+ix进行详细说明,控制电流I1的切换次数A预先设定的值为10,周期T预先设定的值为0.1s,控制电流I1的初始值i1预先设定的值为1A,斜坡系数P1=(0-i1)/A=-0.1。
第一步:当迭代步数S=0时,I1=P1*S+i1=(-0.1)*0+1=1;
第二步:周期计时器的数值n从初始值0开始随着时间不断累加,当n累加到周期T预先设定的值0.1时,迭代步数S=S+1=1,且周期计时器的数值n清零,此时,I1=P1*S+i1=(-0.1)*1+1=0.9,控制电流I1由1A切换为0.9A;
第三步:周期计时器的数值n从初始值0开始随着时间不断累加,当n累加到周期T预先设定的值0.1时,迭代步数S=S+1=2,且周期计时器的数值n清零,此时,I1=P1*S+i1=(-0.1)*2+1=0.8,控制电流I1由0.9A切换为0.8A;
参照上述过程,直至第十一步:周期计时器的数值n从初始值0开始随着时间不断累加,当n累加到周期T预先设定的值0.1时,迭代步数S=S+1=10,且周期计时器的数值n清零,此时,I1=P1*S+i1=(-0.1)*10+1=0,控制电流I1由0.1A切换为0A。
上述过程只是以控制电流I1为例对公式Ix=Px*S+ix进行详细说明,因此各个参数的具体数值只是为了示例说明,而不是为了限制本发明的保护范围,本发明的保护范围以权利要求书所述内容为准。另外,其他控制电流Ix的计算过程与控制电流I1的计算过程相同,故在此不再赘述。
可以理解的,若对磁悬浮轴承的一个以上的控制线圈分别施加的控制电流大小不变,则转子在竖直方向所受的合力大小不变,转子的整个下落过程会耗时较长,控制功耗相对较高。而转子处于下落状态时,转子距离保护轴承的距离逐渐变小,在此过程中,设置一个逐渐减小的控制电流,使得转子在竖直方向上的合力慢慢变大,可以使得转子的整个下落过程用时 变短,从而降低控制功耗,并且,由于该过程中转子和保护轴承之间的间隙变得十分微小,所以最终着落的冲击力也不会很大。而且控制电流按照斜坡系数Px逐渐减小,转子的下落过程也不会发生较大波动,具有较好的控制效果。当然,转子在竖直方向上的合力始终小于等于转子的重力。
当然,本发明并不限于采用上述公式计算控制电流,能够达到使转子的下落速度相对于转子仅受重力时的下落速度变慢且下落时间较小即可。例如,斜坡系数Px可以采用其他计算公式,或控制电流可以为非线性逐渐减小。
优选的,可以对磁悬浮轴承的两个控制线圈分别施加控制电流。所述两个控制线圈分别为第一控制线圈和第二控制线圈,且第一控制线圈和第二控制线圈相对于经过转子的轴心的竖直线对称。而施加在第一控制线圈的控制电流使转子受到第一电磁力,施加在第二控制线圈的控制电流使转子受到第二电磁力。第一电磁力和第二电磁力的合力为所述的电磁力。
本实施例中,对磁悬浮轴承的第一控制线圈和第二控制线圈分别施加控制电流,且第一控制线圈和第二控制线圈相对于经过转子的轴心的竖直线对称。参见图2,由转子轴心指向第一控制线圈的方向即为第一电磁力的方向,与转子的重力方向所成夹角大于90°且小于等于180°。同理,由转子轴心指向第二控制电流的方向即为第二电磁力的方向,与转子的重力方向所成夹角大于90°且小于等于180°。
如图2所示,F1为第一电磁力,F2为第二电磁力,fm为第一电磁力F1和第二电磁力F2的合力在竖直方向上的分力。向磁悬浮轴承的相对于经过转子轴心的竖直线相互对称的两个控制线圈分别施加控制电流,可以使得对转子下落过程的控制效果更佳,控制效率更高。
进一步的,施加在第一控制线圈上的控制电流大小与施加在第二控制线圈上的控制电流大小还可以相等。则施加在第一控制线圈上的控制电流与施加在第二控制线圈上的控制电流使转子所受到的电磁力的合力沿竖直方向向上,且小于转子的重力。这样,能够使转子竖直下落,不会偏歪,效率更高。
另外,可以根据磁悬浮轴承系统的仿真系统计算出能够抵消转子本身重力的抵消电流。其中,施加在磁悬浮轴承的一个以上的控制线圈上的控制电流的大小之和可以小于抵消电流。
上述磁悬浮轴承的控制方法,对磁悬浮轴承的一个以上的控制线圈分别施加控制电流,而控制电流使转子受到的电磁力的竖直方向上的分力与转子的重力能够部分抵消,从而使得转子的下落速度相对于转子仅受重力时的下落速度变慢,能够减小转子对保护轴承的冲击。因此,上述磁悬浮轴承的控制方法,可达到使得转子的下落速度相对于转子仅受重力时的下 落速度变慢并减小转子对保护轴承的冲击的效果,且控制效率较高。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种磁悬浮轴承的控制方法,其特征在于,包括以下步骤:
    获取磁悬浮轴承停浮指令;
    对所述磁悬浮轴承的控制线圈施加控制电流,使转子受到竖直向上或斜向上的电磁力,且所述电磁力在竖直方向上的分力小于所述转子的重力。
  2. 根据权利要求1所述的磁悬浮轴承的控制方法,其特征在于,所述控制电流逐渐减小。
  3. 根据权利要求2所述的磁悬浮轴承的控制方法,其特征在于,按公式:Ix=Px*S+ix计算各个所述控制电流Ix的值,直至各个所述控制电流Ix值为0;
    其中,Px为切换各个所述控制电流Ix的斜坡系数,且Px=(0-ix)/A;ix为各个所述控制电流Ix的初始值;A为各个所述控制电流Ix的切换次数;S为迭代步数,S的初始值为0;各个所述控制电流Ix均按周期T切换,周期计时器的数值为n,n的初始值为0;且n不断累加,当n<T时,S不变,当n=T时,S=S+1,n清零;x的取值为大于等于1的整数。
  4. 根据权利要求1至3任意一项所述的磁悬浮轴承的控制方法,其特征在于,对所述磁悬浮轴承的两个控制线圈分别施加控制电流;所述两个控制线圈分别为第一控制线圈和第二控制线圈;且所述第一控制线圈和所述第二控制线圈相对于经过所述转子的轴心的竖直线对称;
    施加在所述第一控制线圈的控制电流使所述转子受到第一电磁力,施加在所述第二控制线圈的控制电流使所述转子受到第二电磁力;所述第一电磁力和所述第二电磁力的合力为所述电磁力。
  5. 根据权利要求4所述的磁悬浮轴承的控制方法,其特征在于,施加在所述第一控制线圈上的控制电流大小与施加在所述第二控制线圈上的控制电流大小相等。
  6. 一种磁悬浮轴承的控制装置,其特征在于,包括停浮指令获取单元(100)和控制电流施加单元(200);
    所述停浮指令获取单元(100)适用于获取磁悬浮轴承停浮指令;
    所述控制电流施加单元(200)适用于在所述停浮指令获取单元(100)获取到磁悬浮轴承停浮指令后,对所述磁悬浮轴承的一个以上的控制线圈分别施加控制电流,使转子受到竖直向上或斜向上的电磁力,且所述电磁力在竖直方向上的分力小于所述转子的重力。
  7. 根据权利要求6所述的磁悬浮轴承的控制装置,其特征在于,所述控制电流逐渐减小。
  8. 根据权利要求7所述的磁悬浮轴承的控制装置,其特征在于,所述磁悬浮轴承的控制装置还包括控制电流计算单元(300),所述控制电流计算单元(300)适用于计算所述控制电流,并将计算结果发送给所述控制电流施加单元(200),所述控制电流施加单元(200)根据所述计算结果对所述磁悬浮轴承的一个以上的控制线圈分别施加控制电流;
    所述控制电流计算单元(300)按公式:Ix=Px*S+ix计算各个所述控制电流Ix的值,直至各个所述控制电流Ix值为0;
    其中,Px为切换各个所述控制电流Ix的斜坡系数,且Px=(0-ix)/A;ix为各个所述控制电流Ix的初始值;A为各个所述控制电流Ix的切换次数;S为迭代步数,S的初始值为0;各个所述控制电流Ix均按周期T切换,周期计时器的数值为n,n的初始值为0;且n不断累加,当n<T时,S不变,当n=T时,S=S+1,n清零;x的取值为大于等于1的整数。
  9. 根据权利要求6至8任意一项所述的磁悬浮轴承的控制装置,其特征在于,对所述磁悬浮轴承的两个控制线圈分别施加控制电流;所述两个控制线圈分别为第一控制线圈和第二控制线圈;且所述第一控制线圈和所述第二控制线圈相对于经过所述转子的轴心的竖直线对称;
    施加在所述第一控制线圈的控制电流使所述转子受到第一电磁力,施加在所述第二控制线圈的控制电流使所述转子受到第二电磁力;所述第一电磁力和所述第二电磁力的合力为所述电磁力。
  10. 根据权利要求9所述的磁悬浮轴承的控制装置,其特征在于,施加在所述第一控制线圈上的控制电流大小与施加在所述第二控制线圈上的控制电流大小相等。
PCT/CN2016/083588 2015-05-27 2016-05-27 磁悬浮轴承的控制方法和控制装置 WO2016188461A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16799348.4A EP3306123B1 (en) 2015-05-27 2016-05-27 Magnetic bearing control method and control device
US15/574,964 US10871188B2 (en) 2015-05-27 2016-05-27 Control method and control device for magnetic bearing

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510278938 2015-05-27
CN201510278938.4 2015-05-27
CN201610064830.XA CN106195004B (zh) 2015-05-27 2016-01-29 磁悬浮轴承的控制方法和控制装置
CN201610064830.X 2016-01-29

Publications (1)

Publication Number Publication Date
WO2016188461A1 true WO2016188461A1 (zh) 2016-12-01

Family

ID=57392365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083588 WO2016188461A1 (zh) 2015-05-27 2016-05-27 磁悬浮轴承的控制方法和控制装置

Country Status (1)

Country Link
WO (1) WO2016188461A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109630546A (zh) * 2019-02-21 2019-04-16 珠海格力电器股份有限公司 磁悬浮轴承系统控制方法、装置及磁悬浮轴承控制系统
CN112610603B (zh) * 2020-11-30 2021-11-23 珠海格力电器股份有限公司 磁悬浮转子起浮控制方法和控制装置、磁悬浮轴承
CN114738386A (zh) * 2022-04-28 2022-07-12 珠海格力电器股份有限公司 一种磁悬浮轴承控制方法、装置、存储介质及轴承控制器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5530306A (en) * 1993-04-14 1996-06-25 Koyo Seiko Co., Ltd. Magnetic bearing apparatus
CN101483017A (zh) * 2009-02-18 2009-07-15 陕西师范大学 电磁悬浮实验和演示装置
CN102072251A (zh) * 2011-01-21 2011-05-25 南京航空航天大学 磁悬浮轴承柔性转子的变偏置电流控制装置及控制方法
CN103489356A (zh) * 2013-09-18 2014-01-01 北京天路时代电气设备有限责任公司 磁悬浮实验装置的控制方法和控制装置
CN105041869A (zh) * 2014-05-02 2015-11-11 韩国机械研究院 用于偏置补偿的推力磁轴承

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5530306A (en) * 1993-04-14 1996-06-25 Koyo Seiko Co., Ltd. Magnetic bearing apparatus
CN101483017A (zh) * 2009-02-18 2009-07-15 陕西师范大学 电磁悬浮实验和演示装置
CN102072251A (zh) * 2011-01-21 2011-05-25 南京航空航天大学 磁悬浮轴承柔性转子的变偏置电流控制装置及控制方法
CN103489356A (zh) * 2013-09-18 2014-01-01 北京天路时代电气设备有限责任公司 磁悬浮实验装置的控制方法和控制装置
CN105041869A (zh) * 2014-05-02 2015-11-11 韩国机械研究院 用于偏置补偿的推力磁轴承

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109630546A (zh) * 2019-02-21 2019-04-16 珠海格力电器股份有限公司 磁悬浮轴承系统控制方法、装置及磁悬浮轴承控制系统
CN109630546B (zh) * 2019-02-21 2023-08-08 珠海格力电器股份有限公司 磁悬浮轴承系统控制方法和装置
CN112610603B (zh) * 2020-11-30 2021-11-23 珠海格力电器股份有限公司 磁悬浮转子起浮控制方法和控制装置、磁悬浮轴承
CN114738386A (zh) * 2022-04-28 2022-07-12 珠海格力电器股份有限公司 一种磁悬浮轴承控制方法、装置、存储介质及轴承控制器

Similar Documents

Publication Publication Date Title
Xie et al. Vibration reduction for flexible systems by command smoothing
WO2016188461A1 (zh) 磁悬浮轴承的控制方法和控制装置
US10871188B2 (en) Control method and control device for magnetic bearing
CN103414415B (zh) 一种基于pi参数自整定的电机控制方法
US20090267552A1 (en) Soft Starting Method and System Thereof in the Way of Wave-Skipping with Stepped Frequency and Stepless Voltage Regulating for a Motor
JP6139596B2 (ja) 高圧直流送電システム及びその制御方法
EP2863285A3 (en) Methods and systems for controlling an electric network
WO2012159989A3 (en) Method and system for operating and controlling a wind turbine to prevent excitation of subsynchronous oscillations within the wind turbine
JP2014529161A5 (zh)
CN103346719A (zh) 一种消除发电机间低频振荡的方法和系统
MX2012005307A (es) Aparato y metodo de control de planta de generacion.
GB2538986A8 (en) Method and apparatus for adaptive motion compensation
WO2015054954A1 (zh) 一种永磁同步电机传动系统的直轴电流保护方法及装置
Alhazza et al. A novel wave-form command-shaper for overhead cranes
WO2014090886A3 (en) Control system for a converter and method for controlling the converter
CN103929107A (zh) 同步发电机灭磁电路
CN110620497A (zh) 抑制三相pwm整流器启动冲击电流的控制方法及电路
JP2017055647A (ja) 誘導電動機の再起動方法
CN105720864B (zh) 电机减速频率给定方法、变频器及系统
EP2958227A3 (en) Apparatus for delay angle compensation of flying start function
CN106006342B (zh) 自动扶梯由电网驱动切换至变频驱动的控制方法及装置
Mohd Tumari et al. Active sway control of a gantry crane using hybrid input shaping and PID control schemes
WO2014158976A3 (en) Motor control loop with fast response
CN104728090B (zh) 一种空调变频压缩机全频域恒力矩控制系统及方法
CN107026483B (zh) 一种适用于lcc直流输电系统逆变侧交流故障下的复合移相控制策略

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799348

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15574964

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016799348

Country of ref document: EP