WO2016188007A1 - 铁路机车冷却风扇电机起动控制方法 - Google Patents

铁路机车冷却风扇电机起动控制方法 Download PDF

Info

Publication number
WO2016188007A1
WO2016188007A1 PCT/CN2015/091448 CN2015091448W WO2016188007A1 WO 2016188007 A1 WO2016188007 A1 WO 2016188007A1 CN 2015091448 W CN2015091448 W CN 2015091448W WO 2016188007 A1 WO2016188007 A1 WO 2016188007A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
time
value
output frequency
voltage
Prior art date
Application number
PCT/CN2015/091448
Other languages
English (en)
French (fr)
Inventor
蔡志伟
杨曦亮
徐朝林
宋杨
陆璐
Original Assignee
中车大连机车车辆有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车大连机车车辆有限公司 filed Critical 中车大连机车车辆有限公司
Priority to AU2015258260A priority Critical patent/AU2015258260B2/en
Priority to NZ714326A priority patent/NZ714326A/en
Publication of WO2016188007A1 publication Critical patent/WO2016188007A1/zh
Priority to ZA2017/00519A priority patent/ZA201700519B/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/26Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual polyphase induction motor

Definitions

  • the invention relates to a motor starting control method, in particular to a railway locomotive cooling fan motor starting control method, belonging to the technical field of railway locomotives.
  • converters are often used to drive fan motors to achieve precise fan motor speed control.
  • the speed encoder cannot be installed on the shaft head of the cooling fan motor due to constraints such as cost and installation space.
  • the fan motor has a higher initial speed when the converter is started, and its steering is not determined. If the converter outputs three-phase alternating current to the cooling fan motor at a certain frequency and voltage rising rate from the beginning of starting, the starting current of the motor will be too large, causing vibration and shock to the mechanical and electrical systems, and even triggering. Flow protection affects the reliable operation of the system.
  • a starting method for starting a cooling motor of a railway locomotive cooling fan which uses an inverter to drive a cooling fan motor, which is characterized in that a first target value F1 and a second target value F2 of the inverter output frequency are set, and F1 ⁇ F2, the first loading The rate Rp1 and the second loading rate Rp2, and Rp1 ⁇ Rp2, when starting, first control the inverter output frequency Fd according to the first loading rate Rp1, when the inverter output frequency Fd reaches the first target value F1 at time T0, Keeping the output frequency F1 to T1, from the time T1, the inverter output frequency Fd is controlled to reach the second target value F2 according to the loading rate Rp2; from the start of the motor to the time T1, the output current limit and the intermediate DC voltage limit are adopted.
  • Double closed loop control, output current limit closed loop output control value VD1out, and limit 0 ⁇ VD1out ⁇ 100%, intermediate voltage limit closed loop output control value VD2out, and limit 0 ⁇ VD2out ⁇ 100%; take the smaller of VD1out, VD2out For the control value VDout, let the modulation degree ML VDout*Mi, where Mi is the fan inverter open-loop control modulation degree, use ML to control the inverter output voltage, and limit the output current to the given maximum starting current range. Within the perimeter, the intermediate DC voltage is limited to the DC voltage limit.
  • the T1 time is determined by setting the output current effective value threshold Icmp, the time setting value Ccmp1 of the timer Cnt1, and the time setting value Ccmp2 of the timer Cnt2, and Ccmp1>Ccmp2, the timer Cnt1 starts counting when the inverter output frequency Fd reaches F1, and the timer Cnt2 starts counting when the output current effective value Ifdb is smaller than the current effective value threshold Icmp, and the time immediately before the time set value is T1. time.
  • the utility model has the beneficial effects that the fan motor starting control method can realize that the fan motor can achieve the fan motor level by adopting the output current limit and the intermediate DC voltage limit double closed loop control under the condition that the initial motor speed has an initial rotation speed and the steering is indefinite.
  • Stable low-frequency brake control combined with the determination method of T1 time, increases the output circuit detection and delay control link based on the preset low-frequency braking time to ensure that the speed-adjusting mode is immediately entered after the low-frequency braking is over.
  • the control method can eliminate the impact of the fan motor starting current on the electrical and mechanical systems, and prevent the intermediate DC voltage overvoltage problem caused by the braking.
  • FIG. 1 is a schematic diagram of a main circuit of a power supply circuit for a cooling fan motor according to an embodiment of the present invention.
  • FIG. 2 is a graph showing a frequency time Fd-t of a cooling fan motor starting process according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a timer 1 interrupt subroutine according to an embodiment of the present invention.
  • FIG. 4 is a flow chart of a fan motor startup subroutine according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a T1 time stamp determination subroutine according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a main circuit of a power supply circuit of a cooling fan motor according to an embodiment of the present invention.
  • the three-phase AC voltage is connected from the U, V, W terminal, through the three-phase AC contactor CTT1, and is input to the three-phase rectifier circuit composed of diodes D1 to D6 to become DC power, and is input to the S1 through the intermediate filter circuit C1.
  • the three-phase inverter circuit composed of ⁇ S6 becomes a three-phase alternating current with adjustable voltage and frequency, and is output to the cooling fan motor M1.
  • a frequency time Fd-t graph of a fan motor starting process according to an embodiment of the present invention.
  • the inverter output frequency Fd reaches the target value F1 at time T0, the output frequency F1 to T1 is maintained.
  • the closed-loop control and the closed-loop control of the closed-loop control of the output current limit and the intermediate DC voltage limit are used, and the minimum value of the two closed-loop control outputs is multiplied by the open-loop control degree Mi of the inverter to obtain a new modulation degree ML.
  • the ML is used to control the inverter output voltage so that the output current is limited to a given maximum starting current range and the intermediate DC voltage is limited to the DC voltage limit value.
  • the inverter output frequency target value is set to the operating frequency F2, and the inverter output frequency Fd is controlled to reach the operating frequency F2 according to the loading rate Rp2.
  • FIG. 3 a flowchart of a timer 1 interrupt subroutine according to an embodiment of the present invention is shown.
  • This embodiment applies a timer 1 interrupt to generate a 10mS timer interrupt.
  • the interrupt subroutine first turns off the Timer 1 interrupt in Box 1.1 and clears the Timer 1 interrupt flag in Box 1.2. Then, proceed to block 1.3 to determine if the start command is true: if yes, proceed to block 1.4 to execute the fan motor start subroutine, otherwise proceed to block 1.5 to execute the fan motor stop subroutine. Then enter box 1.6, open the timer 1 interrupt, as The next timer 1 interrupt is ready. Then the interrupt subroutine runs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种铁路机车冷却风扇电机起动控制方法,先设定逆变器输出频率目标值为较低值F1,并按较低加载率Rp1控制逆变器输出频率,当逆变器输出频率达到F1后,保持F1至T1时刻。从起动时至T1时刻,以输出电流限制和中间直流电压限制两个闭环控制输出值中的较小者与调制度Mi相乘得到新的调制度ML,控制逆变器输出电压,使输出电流限制在给定的最大起动电流范围之内,并使中间直流电压限制在直流电压限制值范围内。在T1时刻,设定逆变器输出频率目标值为较高值F2,按较高加载率Rp2控制逆变器输出频率,在T2时刻达到F2。该方法可实现风扇电机在任意初始转速及转向条件下的平稳起动,防止逆变器中间电压过压。

Description

铁路机车冷却风扇电机起动控制方法 技术领域
本发明涉及一种电机起动控制方法,尤其涉及一种铁路机车冷却风扇电机起动控制方法,属于铁路机车技术领域。
背景技术
随着电力电子技术的迅猛发展,变流器的应用越来越广泛,在工业控制领域,经常采用变流器驱动风扇电机,进而实现精确的风扇电机转速控制。然而,在铁路机车应用场合下,受成本及安装空间等条件的约束,冷却风扇电机的轴头无法安装转速编码器。在很多情况下,变流器起动时,风扇电机已有较高的初始转速,且其转向并不确定。如果变流器从起动一开始就按一定的频率、电压上升率向冷却风扇电机输出三相交流电,则会使电机的起动电流过大,给机械和电气系统带来振动和冲击,甚至触发过流保护,影响系统的可靠运行。
发明内容
本发明的目的是提供一种能在任意初始转速及转向下实现平稳起动的铁路机车冷却风扇电机起动控制方法。
本发明解决其技术问题所采用的技术方案是:
一种铁路机车冷却风扇电机起动控制方法,采用逆变器驱动冷却风扇电机,其特征在于设定逆变器输出频率第一目标值F1和第二目标值F2,且F1<F2,第一加载率Rp1和第二加载率Rp2,且Rp1<Rp2,起动时,先按第一加载率Rp1控制逆变器输出频率Fd,当逆变器输出频率Fd在T0时刻达到第一目标值F1后,保持该输出频率F1至T1时刻,从T1时刻起,按加载率Rp2控制逆变器输出频率Fd逐渐达到第二目标值F2;从电机起动开始至T1时刻,采用输出电流限制和中间直流电压限制双闭环控制,输出电流限制闭环输出控制值VD1out,且限制0≤VD1out≤100%,中间电压限制闭环输出控制值VD2out,且限制0≤VD2out≤100%;取VD1out、VD2out两者中较小者为控制值VDout,令调制度ML=VDout*Mi,其中Mi为风扇逆变器开环控制调制度,用ML控制逆变器输出电压,使输出电流限制在给定的最大起动电流范围之内,并使中间直流电压限制在直流电压限制值范围内。
为了更好地实现本发明的目的,按下述步骤确定所述T1时刻:设定输出电流有效值阈值Icmp、计时器Cnt1的时间设定值Ccmp1和计时器Cnt2的时间设定值Ccmp2,且Ccmp1>Ccmp2,计时器Cnt1从逆变器输出频率Fd达到F1时开始计时,计时器Cnt2从输出电流有效值Ifdb小于电流有效值阈值Icmp时开始计时,先到时间设定值的时刻即为T1时刻。
本发明的有益效果是,该风扇电机起动控制方法可实现风扇电机在具有初始转速且转向不定的条件下,通过采用输出电流限制和中间直流电压限制双闭环控制,可实现风扇电机平 稳的低频制动控制,结合T1时刻的确定方法,在预设低频制动时间的基础上增加输出电路检测及延时控制环节,确保在低频制动结束后,立即进入升速调速模式。本控制方法能够消除风扇电机启动电流大对电气和机械系统的冲击,并且防止由于制动造成的逆变器中间直流电压过压问题。
附图说明
图1为本发明实施例的冷却风扇电机供电主电路原理示意图。
图2是本发明实施例的冷却风扇电机起动过程频率时间Fd-t曲线图;
图3是本发明实施例的定时器1中断子程序流程图;
图4是本发明实施例的风扇电机启动子程序流程图;
图5是本发明实施例的T1时刻标志判断子程序流程图。
具体实施方式
为使本发明目的、技术方案和优点更加清楚,下面结合本发明实施例中的附图,对本发明的技术方案进行清楚完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参看图1本发明实施例的冷却风扇电机供电主电路原理示意图。三相交流电压自U、V、W接线端子接入,经过三相交流接触器CTT1,输入至由二极管D1~D6组成的三相整流电路变为直流电,经过中间滤波电路C1,输入至由S1~S6组成的三相逆变器电路,变为电压、频率可调的三相交流电,输出至冷却风扇电机M1。
参看图2本发明实施例的风扇电机起动过程频率时间Fd-t曲线图。电机起动时刻t=0,Fd=0,按加载率Rp1控制逆变器输出频率Fd,当逆变器输出频率Fd在T0时刻达到该目标值F1后,保持该输出频率F1至T1时刻。从电机起动时刻至T1时刻,采用输出电流限制闭环和中间直流电压限制闭环控制双闭环控制,用两个闭环控制输出的最小值与逆变器开环控制度Mi相乘得到新的调制度ML,用ML控制逆变器输出电压,使输出电流限制在给定的最大起动电流范围之内,并使中间直流电压限制在直流电压限制值范围内。在T1时刻,将逆变器输出频率目标值设为工作频率F2,按加载率Rp2控制逆变器输出频率Fd逐渐达到该工作频率F2。
参看图3本发明实施例的定时器1中断子程序流程图。本实施例应用定时器1中断产生10mS定时中断。中断子程序首先在框1.1关闭定时器1中断,在框1.2清除定时器1中断标志。然后进入框1.3,判断启动指令是否为真:如果是,则进入框1.4,执行风扇电机启动子程序,否则进入框1.5,执行风扇电机停止子程序。然后进入框1.6,打开定时器1中断,为 下一次定时器1中断作好准备。然后中断子程序运行结束。
参看图4本发明实施例的风扇电机启动子程序流程图。风扇电机启动子程序1.4,首先在框1.4.1执行计算频率目标F2,然后进入框1.4.2执行调用T1时刻标志判断子程序,然后进入框1.4.3判断是否T1Flag==1:如果是,进入右边框1.4.6程序判断是否Fd<F2,如果是,进入框1.4.7执行Fd=Fd+Rp2,然后进入框1.4.11执行设置调制度控制值Vdout=1,然后进入框1.4.13执行计算调制度控制值VDout等于VD1out与VD2out中的最小值;框1.4.6程序判断是否Fd<F2:如果否,进入到框1.4.8执行Fd=F2,然后进入到框1.4.11执行设置调制度控制值Vdout=1,然后进入到框1.4.13执行计算调制度控制值VDout等于VD1out与VD2out中的最小值;进入框1.4.3判断程序是否T1Flag==1:如果否,进入到框1.4.3判断程序是否T1Flag==1:如果否,进入框1.4.4判断程序是否Fd=F1:如果否,进入框1.4.9执行Fd=F1,然后到框1.4.10执行将Iref及Ifdb送入输出电流PID控制器VD1并输出控制值VD1out,且限制0≤VD1out≤1;框1.4.4判断程序是否Fd=F1,如果是,进入到框1.4.5执行Fd=Fd+Rp1,然后进入框1.4.10执行将Iref及Ifdb送入输出电流PID控制器VD1并输出控制值VD1out,且限制0≤VD1out≤1,然后进入框1.4.12执行将VdcRef及VdcFdb送入中间电压PID控制器VD2,并输出控制VD2out,且限制0≤VD2out≤1,然后进入框1.4.13执行计算调制度控制值VDout等于VD1out与VD2out中的最小值,然后进入框1.4.14执行计算初始调制度Mi=Fd/Fmax,,然后进入框1.4.15执行计算最终调制度ML=Vout×Mi,然后程序运行结束。
参看图5本发明实施例的T1时刻标志判断子程序流程图。T1时刻标志判断子程序1.4.2,首先在框1.4.2.1程序判断是否Fd<F1:如果是,进入框1.4.2.3执行Cnt1=0,然后进入框1.4.2.8执行T1Flag=0;1.4.2.1判断是否Fd<F1?,如果否,进入到框1.4.2.2执行Cntl=Cntl+1,然后进入框1.4.2.4判断是否Ifdb<Icmp:如果否,进入到框1.4.2.10执行Cnt2=0,然后到框1.4.2.8执行T1Flag=0;1.4.2.4程序判断是否Ifdb<Icmp,如果是,进入到框1.4.2.5执行Cnt2=Cnt2+1,然后进入框1.4.2.6程序判断是否Cnt1==Ccmp1:如果是,进入到框1.4.2.9执行T1Flag=1;1.4.2.6程序判断是否Cnt1==Ccmp1:如果否,进入1.4.2.7程序判断是否Cnt2==Ccmp2:如果是,运行框1.4.2.9执行T1Flag=1;1.4.2.7程序判断是否Cnt2==Ccmp2:如果否,运行框1.4.2.8执行T1Flag=0,然后程序运行结束。

Claims (2)

  1. 一种铁路机车冷却风扇电机起动控制方法,采用逆变器驱动冷却风扇电机,其特征在于设定逆变器输出频率第一目标值F1和第二目标值F2,且F1<F2,第一加载率Rp1和第二加载率Rp2,且Rp1<Rp2,起动时,先按第一加载率Rp1控制逆变器输出频率Fd,当逆变器输出频率Fd在T0时刻达到第一目标值F1后,保持该输出频率F1至T1时刻,从T1时刻起,按加载率Rp2控制逆变器输出频率Fd逐渐达到第二目标值F2;从电机起动开始至T1时刻,采用输出电流限制和中间直流电压限制双闭环控制,输出电流限制闭环输出控制值VD1out,且限制0≤VD1out≤100%,中间电压限制闭环输出控制值VD2out,且限制0≤VD2out≤100%;取VD1out、VD2out两者中较小者为控制值VDout,令调制度ML=VDout*Mi,其中Mi为风扇逆变器开环控制调制度,用ML控制逆变器输出电压,使输出电流限制在给定的最大起动电流范围之内,并使中间直流电压限制在直流电压限制值范围内。
  2. 根据权利要求1所述的铁路机车冷却风扇电机起动控制方法,其特征在于按下述步骤确定所述T1时刻:设定输出电流有效值阈值Icmp、计时器Cnt1的时间设定值Ccmp1和计时器Cnt2的时间设定值Ccmp2,且Ccmp1>Ccmp2,计时器Cnt1从逆变器输出频率Fd达到F1时开始计时,计时器Cnt2从输出电流有效值Ifdb小于电流有效值阈值Icmp时开始计时,先到时间设定值的时刻即为T1时刻。
PCT/CN2015/091448 2015-05-28 2015-10-08 铁路机车冷却风扇电机起动控制方法 WO2016188007A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2015258260A AU2015258260B2 (en) 2015-05-28 2015-10-08 A control method of starting a locomotive cooling fan motor
NZ714326A NZ714326A (en) 2015-05-28 2015-10-08 A method of starting the locomotive cooling fan motor
ZA2017/00519A ZA201700519B (en) 2015-05-28 2017-01-23 Motor starting control method for cooling fan of railway locomotive

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510284672.4A CN104868795B (zh) 2015-05-28 2015-05-28 铁路机车冷却风扇电机起动控制方法
CN201510284672.4 2015-05-28

Publications (1)

Publication Number Publication Date
WO2016188007A1 true WO2016188007A1 (zh) 2016-12-01

Family

ID=53914371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/091448 WO2016188007A1 (zh) 2015-05-28 2015-10-08 铁路机车冷却风扇电机起动控制方法

Country Status (5)

Country Link
CN (1) CN104868795B (zh)
AU (1) AU2015258260B2 (zh)
NZ (1) NZ714326A (zh)
WO (1) WO2016188007A1 (zh)
ZA (1) ZA201700519B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104868795B (zh) * 2015-05-28 2017-07-07 中国铁路总公司 铁路机车冷却风扇电机起动控制方法
JP6121602B1 (ja) * 2016-07-20 2017-04-26 巴工業株式会社 三相誘導電動機の起動方法及びデカンタ型遠心分離装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190287A (ja) * 1982-04-30 1983-11-07 Hitachi Ltd ブラシレスモ−タの始動方法
CN1679227A (zh) * 2002-09-13 2005-10-05 富士电机机器制御株式会社 感应电动机的控制方法
CN104868795A (zh) * 2015-05-28 2015-08-26 中国北车集团大连机车车辆有限公司 铁路机车冷却风扇电机起动控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7468595B2 (en) * 2005-07-26 2008-12-23 Eaton Corporation System and method of controlling the start-up of an adjustable speed motor drive based sinusoidal output power conditioner
CN101662247B (zh) * 2009-09-25 2012-03-21 中国北车集团大连机车车辆有限公司 宽频电源下的异步电动机限流软起动方法
CN101860286B (zh) * 2010-07-06 2012-01-25 中国北车股份有限公司大连电力牵引研发中心 电机启动阶段提供给定频率的方法
JP6035942B2 (ja) * 2012-07-25 2016-11-30 ダイキン工業株式会社 モータ駆動制御装置
CN104481907B (zh) * 2014-12-05 2017-02-08 广东美的制冷设备有限公司 一种直流风机的启动控制方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190287A (ja) * 1982-04-30 1983-11-07 Hitachi Ltd ブラシレスモ−タの始動方法
CN1679227A (zh) * 2002-09-13 2005-10-05 富士电机机器制御株式会社 感应电动机的控制方法
CN104868795A (zh) * 2015-05-28 2015-08-26 中国北车集团大连机车车辆有限公司 铁路机车冷却风扇电机起动控制方法

Also Published As

Publication number Publication date
CN104868795A (zh) 2015-08-26
ZA201700519B (en) 2018-04-25
AU2015258260A1 (en) 2016-12-15
AU2015258260B2 (en) 2017-04-13
NZ714326A (en) 2019-03-29
CN104868795B (zh) 2017-07-07

Similar Documents

Publication Publication Date Title
TWI425759B (zh) Power conversion device
CN105531922B (zh) 用于在可调速驱动中控制再生能量的系统以及方法
CN104980067B (zh) 排水泵用直流无刷电动机系统、及其控制方法和控制装置
WO2017152546A1 (zh) 空调器及其压缩机的停机控制方法和装置
WO2016188007A1 (zh) 铁路机车冷却风扇电机起动控制方法
TW201436448A (zh) 馬達控制裝置
JP2011103707A (ja) モータ制御装置
CN109357436B (zh) 变频热泵控制方法
CN112737421A (zh) 一种用于控制电动机减速的方法及系统
JP6180578B1 (ja) 電力変換装置の制御装置および制御方法
JP4300831B2 (ja) インバータ駆動誘導電動機の制動方法及びインバータ装置
CN105406796B (zh) 一种变频压缩机频率控制方法、系统及变频空调
WO2016035434A1 (ja) モータ駆動装置
WO2015081768A1 (zh) 防止内燃机车辅助发电电路过压的控制方法
CN104901598A (zh) 电机驱动装置、方法及电机
TWI691159B (zh) 馬達控制裝置
CN113085552B (zh) 车辆电机的母线电压控制方法、系统
CN108194338B (zh) 一种压缩机驱动电压饱和控制方法及装置
CN110212823B (zh) 母线电压控制方法、以及风机母线控制电路和空调器
JP2011050244A (ja) 圧縮機駆動方法および圧縮機駆動装置
JP2020058231A5 (zh)
JP2006325341A (ja) 永久磁石モータの再始動方法及びインバータ装置
JP2005020846A (ja) 電力変換装置
JP3468232B2 (ja) Pwm/pam制御形モータ駆動装置及びそれを用いた空調機
JP6409966B2 (ja) モータ制御装置とモータ制御方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015258260

Country of ref document: AU

Date of ref document: 20151008

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15893085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15893085

Country of ref document: EP

Kind code of ref document: A1