WO2016187971A1 - 频谱资源调整方法及装置 - Google Patents

频谱资源调整方法及装置 Download PDF

Info

Publication number
WO2016187971A1
WO2016187971A1 PCT/CN2015/087271 CN2015087271W WO2016187971A1 WO 2016187971 A1 WO2016187971 A1 WO 2016187971A1 CN 2015087271 W CN2015087271 W CN 2015087271W WO 2016187971 A1 WO2016187971 A1 WO 2016187971A1
Authority
WO
WIPO (PCT)
Prior art keywords
standard network
carrier
network
base station
standard
Prior art date
Application number
PCT/CN2015/087271
Other languages
English (en)
French (fr)
Inventor
成军平
�田宏
张天鹏
邵立群
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016187971A1 publication Critical patent/WO2016187971A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning

Definitions

  • the present invention relates to the field of communications, and in particular, to a spectrum resource adjustment method and apparatus.
  • China Mobile has the coexistence of (Global System for Mobile Communication, GSM for short) and Long-Term Evolution (LTE) at 900M.
  • GSM Global System for Mobile Communication
  • LTE Long-Term Evolution
  • China Unicom has GSM and LTE coexistence at 1800M frequency, and China Telecom at 800M frequency.
  • Code Division Multiple Access (CDMA) and LTE coexist. It is especially urgent for the MSR mixed-mode base station to more effectively utilize the limited bandwidth spectrum resources and to reduce the interference caused by the excessive frequency spacing of the MSR system.
  • CDMA Code Division Multiple Access
  • 2G/3G narrowband signals and 4G broadband LTE service features 2G/3G narrowband signals are mainly used for language calls, 4G broadband LTE is mainly used for data transmission; according to statistics 2G/3G narrowband signals and 4G broadband LTE services are all Time changes, working hours, more language calls, the main business of data services after work. How to dynamically schedule the 2G/3G narrowband signal carrier number and the 4G broadband LTE bandwidth to maximize the spectrum efficiency is beneficial to improve user experience.
  • the present invention provides a spectrum resource adjustment method and apparatus, so as to at least solve the problem that the number of 2G/3G narrowband signal carriers and LTE bandwidth cannot be dynamically scheduled in the related art.
  • a method for adjusting a spectrum resource includes: acquiring a number of users activated by a first-standard network supported by a base station; and/or acquiring a physical resource block of a second-standard network supported by the base station ( Physical resource block (referred to as PRB) utilization rate; adjusting spectrum resources of the first system network and the second system network according to the number of users and/or the PRB utilization rate.
  • PRB Physical resource block
  • adjusting the spectrum resources of the first system network and the second system network according to the number of users and/or the PRB utilization rate including: the number of users is less than a first threshold, and the PRB If the utilization ratio is greater than the second threshold, the base station reduces the designated carrier of the first standard network according to a preset rule, and increases the bandwidth of the second standard network, where the specified carrier is close to the specified a carrier of a frequency of a second standard network; or, if the number of users is greater than or equal to a third threshold, the base station increases a carrier of the first standard network that is close to the frequency of the second standard network, And reducing the bandwidth of the second standard network.
  • the preset rule includes at least one of the following: the remaining spectrum of the base station after reducing the specified carrier can support a maximum LTE bandwidth; and the remaining of the first standard network after reducing the specified carrier The carrier can support a specified service of the first standard network.
  • the base station decreases the specified carrier,
  • the reduced carrier power of the first standard network is added to the carrier of the second standard network; or, after the base station increases the carrier of the first standard network close to the frequency of the second standard network, the first The carrier reduced power of the two-standard network is increased to the carrier of the first standard network.
  • the first standard network is a second generation 2G data communication network or a third generation 3G data communication network
  • the second standard network is a long term evolution LTE network.
  • a spectrum resource adjustment apparatus is provided, the apparatus is applied to a base station, and the apparatus includes: a first acquisition module configured to acquire a number of users activated by the first system supported by the base station; and/ Or the second obtaining module is configured to acquire a physical resource block PRB utilization rate of the second standard network supported by the base station; and the adjusting module is configured to adjust the first according to the number of users and/or the PRB utilization rate.
  • the spectrum resources of the system network and the second standard network are configured to acquire a number of users activated by the first system supported by the base station.
  • the adjusting module further includes: a first adjusting unit, configured to reduce the number according to a preset rule if the number of users is less than a first threshold, and the PRB utilization is greater than a second threshold a specified carrier of a standard network, and increasing a bandwidth of the second standard network, wherein the designated carrier is a carrier that is close to a frequency point belonging to the second standard network; or, the second adjusting unit is set to be in the In the case that the number of users is greater than or equal to the third threshold, the carrier of the first-standard network close to the frequency of the second-standard network is increased, and the bandwidth of the second-standard network is decreased.
  • the preset rule includes at least one of the following: the remaining spectrum of the base station after reducing the specified carrier can support a maximum LTE bandwidth; and the remaining of the first standard network after reducing the specified carrier The carrier can support a specified service of the first standard network.
  • the device further includes: a first processing module, configured to: after reducing the specified carrier, increase a carrier reduced power of the first standard network to a carrier of the second standard network; or, And a second processing module, configured to increase a carrier reduced power of the second standard network to a carrier of the first standard network after adding a carrier of the first standard network close to the frequency of the second standard network.
  • a first processing module configured to: after reducing the specified carrier, increase a carrier reduced power of the first standard network to a carrier of the second standard network
  • a second processing module configured to increase a carrier reduced power of the second standard network to a carrier of the first standard network after adding a carrier of the first standard network close to the frequency of the second standard network.
  • the first standard network is a second generation 2G data communication network or a third generation 3G data communication network
  • the second standard network is a long term evolution LTE network.
  • the number of users activated by the first-standard network supported by the base station is acquired; the PRB utilization rate of the second-standard network supported by the base station is acquired; and the first-standard network and the second-standard network are adjusted according to the number of users and/or the PRB utilization rate.
  • Spectrum resources The problem that the number of 2G/3G narrowband signal carriers and LTE bandwidth cannot be dynamically scheduled in the related art is solved, and the spectrum utilization rate is improved.
  • FIG. 1 is a flowchart of a method for adjusting a spectrum resource according to an embodiment of the present invention
  • FIG. 2 is a structural block diagram of a spectrum resource adjusting apparatus according to an embodiment of the present invention.
  • FIG. 3 is a structural block diagram (1) of a spectrum resource adjusting apparatus according to an embodiment of the present invention.
  • FIG. 4 is a structural block diagram (2) of a spectrum resource adjusting apparatus according to an embodiment of the present invention.
  • FIG. 5 is a structural diagram of a wireless communication network in the related art
  • FIG. 6 is a hardware structural diagram of dynamically adjusting a frequency offset resource according to an embodiment of the present invention.
  • FIG. 7 is a flow chart of RIM communication according to an embodiment of the present invention.
  • Figure 8 is a spectrum diagram of GSM and LTE
  • Figure 9 is a frequency spectrum diagram of CDMA and LTE.
  • FIG. 1 is a flowchart of a method for adjusting a spectrum resource according to an embodiment of the present invention. As shown in FIG. 1 , the process includes the following steps:
  • Step S102 Acquire a number of users activated by the first-standard network supported by the base station; and/or obtain a PRB utilization rate of the second-standard network supported by the base station;
  • Step S104 adjusting spectrum resources of the first system network and the second system network according to the number of users and/or the PRB utilization rate.
  • the spectrum of the first standard network and the second standard network are adjusted according to the number of users and/or the PRB utilization rate.
  • the carrier frequency of the narrowband signal of the first standard network, the number of carriers, and the frequency bandwidth of the second standard network are all fixed.
  • the foregoing steps solve the problem that the number of 2G/3G narrowband signal carriers cannot be dynamically scheduled in the related art. And the problem of LTE bandwidth, improving spectrum utilization.
  • the foregoing step S104 involves adjusting the spectrum resources of the first system network and the second system network according to the number of users and/or the PRB utilization rate.
  • the number of users is less than the first threshold, and the foregoing PRB utilization rate is used.
  • the base station reduces the designated carrier of the first-standard network according to the preset rule, and increases the bandwidth of the second-standard network, where the designated carrier is a carrier that is close to the frequency point belonging to the second-standard network, thereby The spectrum resources of the first-standard network and the second-standard network are adjusted.
  • the base station when the number of users is greater than or equal to a third threshold, increases a carrier of the first-standard network that is close to the frequency of the second-standard network, and reduces the bandwidth of the second-standard network. Thereby, the spectrum resources of the first system network and the second system network are adjusted.
  • the preset rule may be that the remaining spectrum of the base station after reducing the specified carrier can support the maximum LTE bandwidth, or the remaining carrier of the first standard network after reducing the designated carrier can support the first standard.
  • the designated service of the network ensures that the designated service of the first-standard network can be successfully completed.
  • the power of the first-standard network and the power of the second-standard network may be further performed. Adjustment. For example, after the base station reduces the designated carrier, the carrier reduced power of the first standard network is increased to the carrier of the second standard network; or after the base station increases the carrier of the first standard network near the frequency of the second standard network, The carrier reduced power of the second standard network is increased to the carrier of the first standard network.
  • the first-standard network is a second-generation 2G data communication network or a third-generation 3G data communication network
  • the second-standard network is a long-term evolution LTE network.
  • a spectrum resource adjustment apparatus is further provided, which is used to implement the foregoing embodiments and preferred embodiments, and is not described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • the apparatus is applied to a base station.
  • the apparatus includes: a first acquisition module 22 configured to acquire a first-standard network activation supported by a base station.
  • the second acquisition module 24 is configured to acquire the physical resource block PRB utilization rate of the second-standard network supported by the base station;
  • the adjustment module 26 is configured to adjust the first according to the number of users and/or the PRB utilization rate. Spectrum resources of the standard network and the second standard network.
  • FIG. 3 is a structural block diagram (1) of a spectrum resource adjusting apparatus according to an embodiment of the present invention.
  • the adjusting module 26 further includes: a first adjusting unit 262, configured to set the number of users to be less than a first threshold, and PRB When the utilization ratio is greater than the second threshold, the specified carrier of the first-standard network is reduced according to a preset rule, and the bandwidth of the second-standard network is increased, where the designated carrier is a carrier that is close to a frequency point belonging to the second-standard network; or
  • the second adjusting unit 264 is configured to increase a carrier of the first-standard network close to the second-standard network frequency point and reduce the bandwidth of the second-standard network, when the number of users is greater than or equal to the third threshold.
  • the foregoing preset rule includes at least one of the following: the remaining spectrum of the base station after reducing the designated carrier can support the maximum LTE bandwidth; and the remaining carrier of the first standard network after reducing the designated carrier can support the designation of the first standard network. business.
  • FIG. 4 is a structural block diagram (2) of a spectrum resource adjusting apparatus according to an embodiment of the present invention.
  • the apparatus further includes: a first processing module 42 configured to reduce the designated carrier, and then to the first standard network.
  • the reduced carrier power is added to the carrier of the second standard network; or the second processing module 44 is configured to increase the power of the carrier of the second standard network after increasing the carrier of the first standard network close to the frequency of the second standard network. Add carrier to the first standard network.
  • the first standard network is a second generation 2G data communication network or a third generation 3G data communication network
  • the second standard network is a long term evolution LTE network.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are respectively located.
  • the first processor, the second processor, and the third processor In the first processor, the second processor, and the third processor.
  • the present invention proposes a dynamic 2G/3G narrowband signal carrier and 4G broadband LTE bandwidth according to 2G/3G narrowband signals and 4G broadband LTE current service traffic dynamics. Methods.
  • the optional embodiment implements the 2G/3G narrowband signal service statistics module, the 4G broadband LTE service statistics module, and the scheduling module to manage the 2G/3G narrowband signal carrier number, the 4G broadband LTE bandwidth, and the LTE UE handover bandwidth.
  • Process, MSR dynamic power allocation, and MSR frequency location allocation. 6 is a hardware structural diagram of dynamically adjusting a frequency offset resource according to an embodiment of the present invention, and FIG. 6 is described below:
  • FIG. 5 is a schematic diagram of a wireless communication network architecture in the related art.
  • the core network includes a core network (Core Network, abbreviated as CN) and an access network (Evolved UMTS Terrestrial Radio Access Network, referred to as E- UTRAN) and Operation and Maintenance Center (network management).
  • the access network is composed of a base station (a node of LTE (Long Term Evolution)), and the base station includes a Baseband Processing Unit (BBU), a Radio Remote Unit (RRU), and an antenna (radiation). a while).
  • BBU Baseband Processing Unit
  • RRU Radio Remote Unit
  • the core network and the record (eNodeB) are connected through the S1 (interface between the core network and the access network) interface of the BBU.
  • the BBU and the RRU are connected by optical fibers.
  • Step 2 The 2G/3G narrowband signal service statistics module collects the current number of 2G/3G active users of the base station and the number of active 2G/3G narrowband signal activation carriers; and records the number of activated users in the past period of time, and the number of activated users reaches a certain threshold. The value and the high value are reported to the base station scheduling module.
  • Step 3 The LTE service statistics module collects the LTE service traffic of the current base station and the current LTE activation bandwidth.
  • the LTE service statistics module records the number of PRBs in the past period of time. When the number of the PRBs reaches a certain threshold low value and a high value, the LTE service statistics module reports to the base station scheduling module.
  • Step 4 The scheduling module performs signaling interaction through the radio access network information management (Radio Access Network Information Management, hereinafter referred to as RIM), and performs dynamic according to the statistical results of the 2G/3G narrowband signal service statistics module and the LTE service statistics module.
  • RIM Radio Access Network Information Management
  • Distribution. 7 is a flow chart of RIM communication according to an embodiment of the present invention. As shown in FIG. 7, a 4G base station "control point" sends a query command to a 2G/3G base station through a 4G core network and a 2G/3G core network, and then passes 2G/3G. The /4G core network is transmitted back to the 4G base station, and the information to be queried is stored in a storage space such as a flash.
  • a storage space such as a flash.
  • Step 5 When the number of 2G/3G narrowband activation users reaches the low threshold of the operation and maintenance module (OMMB) background setting threshold, and the number of carriers of 2G/3G is greater than 1, and the number of LTEPRBs reaches OMMB background.
  • the threshold is set to a high value
  • the base station scheduling module RIM performs scheduling: reducing the 2G/3G carrier close to the LTE frequency, and the 2G/3G carrier clearing the frequency in the OMMB background configuration step; and increasing the LTE bandwidth
  • the principle of the LTE handover is: The principle of LTE bandwidth with the largest spectrum placement is to ensure that 2G/3G is outside the effective bandwidth of LTE. Until the current number of activated 2G/3G can meet the current voice call requirements; in practice, the voice call requirements have higher priority than the data transmission requirements.
  • the base station scheduling module performs scheduling by RIM: adding 2G/3G carriers close to the LTE frequency point, and clearing the frequency of the 2G/3G carrier in the OMMB background configuration step; and increasing the LTE bandwidth, the principle of LTE handover is: the LTE with the largest spare space placement The bandwidth principle is to ensure that 2G/3G is outside the effective bandwidth of LTE. Until the current number of activated 2G/3G can meet the current voice call requirements; in practice, the voice call requirements have higher priority than the data transmission requirements.
  • Step 6 Switching the bandwidth in LTE, the handover procedure is as follows: After the LTE UE handover module receives the bandwidth switching command sent by the scheduling template of the base station: First, scheduling the service and control information to the scheduling module of the LTE system (physical downlink control channel ( Physical Downlink Control Channel (referred to as PDCCH), physical uplink control channel (Physical Uplink Control Channel, PUCCH for short), etc.) Orthogonal Frequency Division Multiplexing (OFDM) is used in the current active bandwidth. Orthogonality. When LTE switches bandwidth, the current demodulation capability of the UE can accurately resolve all the information of the previous bandwidth as long as the frequency is unchanged.
  • PDCCH Physical Downlink Control Channel
  • PUCCH Physical Uplink Control Channel
  • OFDM Orthogonal Frequency Division Multiplexing
  • the operation, management and maintenance of the base station (Operation Administration) And Maintenance (OAM) sends a command that does not need to delete the cell to ensure that the LTE cell does not retreat.
  • the command is not re-calibrated to the radio network software layer of the base station. (Consider automatic switching and manual switching), fourth: If the LTE service traffic drops very much, restart the cell reconfiguration process.
  • Step 7 When the power management module receives the carrier adjustment command from the scheduling module, dynamically adjusts the 2G/3G and 4G carrier power according to the change of the number of 2G/3G carriers.
  • the adjustment process is as follows: first, read the current OMMB setting 2G/3G each carrier power is A; 4G LTE is B; second: if the 2G/3G number increases, the A will be separated from the LTE power B 2G/3G carrier; third: If the number of 2G/3G is reduced, the power reduced by the 2G/3G carrier is given to the LTE carrier. It can bring the advantages of “enlarged cell coverage”, “increased cell capacity” and “performance improvement” (for common mode RRU cases).
  • Implementation Case 1 GSM & LTE MSR base station GSM carrier reduction, LTE increased bandwidth case, such as xx operator spectrum as shown in Figure 8: Spectrum characteristics: A carrier total bandwidth is 15M (1840MHz-1850MHz and 1875MHz-1880MHz) But there is a B operator (1850MHz-1875MHz) in the middle of the spectrum; currently fixed configuration is 3 GSM carriers (frequency is 1840M, 1850M, 1880M, GSM bandwidth is 200KHz), LTE frequency information is 1845M, with 5M wide. GSM voice call demand is dominant during working hours (8:00-18:00); LTE traffic is dominant at night (18:00-23:00). The spectrum and carrier configuration of the operator are taken as an example for description.
  • Step 1 OMMB background setting GSM The maximum user supported by each carrier is X1;
  • the OMMB sets the threshold of the LTE PRB utilization, for example, 80% is the threshold high value.
  • Step 2 The GSM service statistics module collects the number of GSM active users Y and the number of carrier activations 3 of the current base station. When the current number of active users Y is less than (3-1)*X1, it is reported to the base station scheduling module.
  • Step 3 The LTE service statistics module collects the current number of LTE PRBs of the base station and the current LTE activation bandwidth; and records the number of PRBs in the past period of time.
  • the PRB uses the PRB threshold set by the OMMB, it reports to the base station scheduling module.
  • Step 4 The base station scheduling module performs scheduling according to the GSM statistics and the information reported by the LTE statistics template.
  • Y is less than (3-1)*X1, it means that GSM can give up a GSM carrier.
  • the base station scheduling module calculates that the current exit frequency does not satisfy the LTE signal with a larger bandwidth, and stops the scheduling of the GSM carrier number and the LTE bandwidth.
  • the base station scheduling module calculates that the current hopping frequency satisfies the LTE signal larger than the current bandwidth, and starts to schedule the GSM carrier number and the LTE bandwidth.
  • Step 5 The base station scheduling module turns off two GSM carriers (1840 MHz and 1850 MHz) close to the edge of the LTE bandwidth, and increases the LTE bandwidth to 10 M bandwidth, and the LTE power increases the power of the GSM reduction.
  • Step 6 After the LTE UE handover module receives the handover 10M bandwidth command sent by the base station scheduling template: First, schedule traffic and control information to the scheduling module of the LTE system (for example, Centralized Media Access Control, CMCA for short) (High Speed - The Physical Downlink Shared Channel (PDSCH) and the Physical Uplink Control Channel (PUCCH) are on the center RB of the current active bandwidth. Second, the OAM is sent to the base station without deleting. The command of the cell ensures that the LTE cell does not retreat; thirdly, the command of the radio network software of the base station is not re-calibrated.
  • CMCA Centralized Media Access Control
  • PDSCH Physical Downlink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • Step 7 The scheduling process must maintain at least one remaining GSM carrier.
  • CDMA & LTE MSR base station CDMA carrier increase, LTE reduced bandwidth case such as xx operator spectrum as shown in Figure 9: spectrum characteristics: C operator total bandwidth is 17M (849M-866M), 1 CDMA Carrier (frequency is 849.8M, CDMA bandwidth is 1.228MHz), LTE frequency information is 85.8.5M, bandwidth is 15M. During working hours (8:00-18:00), CDMA voice calls are dominant; at night (18:00-23:00) LTE traffic is dominant. The spectrum and carrier configuration of the operator are taken as an example for description.
  • Step 1 OMMB background setting CDMA The maximum user supported by each carrier is X1;
  • Step 2 The CDMA service statistic module collects the number of CDMA active subscribers Y and the number of carrier activations of the current base station. When the current number of active subscribers is greater than the maximum supported subscriber X1, the CDMA service statistics module reports the number of subscribers to the base station scheduling module.
  • Step 3 The base station scheduling module forces the scheduling to increase the number of CDMA, and the LTE bandwidth changes from 15M to 10M; The LTE power is reduced to ensure the increased power of CDMA.
  • Step 4 After receiving the handover 10M bandwidth command sent by the base station scheduling module, the LTE UE handover module firstly schedules service and control information (PDSCH, PUUCH, etc.) to the scheduling module (for example, CMCA) of the LTE system. On the central RB of the active bandwidth, the second is to send a command to the OAM of the base station that does not need to delete the cell to ensure that the LTE cell does not retreat. Third, the command of the radio network software of the base station is not re-calibrated.
  • PDSCH service and control information
  • PUUCH PUUCH
  • Step 5 Adding a number of CDMA carriers, the CDMA service statistics module counts that the number of currently activated users of the current base station CDMA is greater than 2 times X1, and reports it to the base station scheduling module. Continue to increase the number of CDMA until it is met.
  • the present invention proposes a solution for dynamically scheduling 2G/3G narrowband signal carriers according to 2G/3G narrowband signals and 4G broadband LTE current traffic flows by introducing 2G/3G narrowband signals and 4G wideband LTE scheduling modules.
  • 4G broadband LTE bandwidth how to ensure that the UE does not drop calls during the LTE handover bandwidth, and dynamic power sharing between the MSR systems, and adjust the MSR frequency position to ensure the interference between the two is minimal.
  • the problem that the current carrier frequency and carrier number of the 2G/3G narrowband signal of the MSR mixed-mode base station and the 4G wideband LTE frequency band and the width are fixed, resulting in low spectrum utilization.
  • a storage medium is further provided, wherein the software includes the above-mentioned software, including but not limited to: an optical disk, a floppy disk, a hard disk, an erasable memory, and the like.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the present invention relates to the field of communications, and provides a method and an apparatus for adjusting a spectrum resource, where the method includes: acquiring a number of users activated by a first-standard network supported by a base station; and acquiring a PRB utilization rate of a second-standard network supported by the base station; The number of users and/or PRB utilization adjusts the spectrum resources of the first-standard network and the second-standard network.
  • the invention solves the problem that the number of 2G/3G narrowband signal carriers and the LTE bandwidth cannot be dynamically scheduled in the related art, and improves the spectrum utilization rate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种频谱资源调整方法及装置,其中,该方法包括:获取基站支持的第一制式网络激活的用户数量;获取基站支持的第二制式网络的PRB利用率;根据用户数量和/或PRB利用率调整第一制式网络和第二制式网络的频谱资源。通过本发明解决了相关技术中不能动态调度2G/3G窄带信号载波数和LTE带宽的问题,提高了频谱利用率。

Description

频谱资源调整方法及装置 技术领域
本发明涉及通信领域,具体而言,涉及一种频谱资源调整方法及装置。
背景技术
随着移动通信的大力发展,目前现网的第二代数字通信(2rd Generation,简称为2G)、第三代数字通信(3rd Generation,简称为3G)和第四代数字通信(4rd Generation,简称为4G)基站达到几千万个,为了降低运营成本,各个设备厂家都推出了多模MSR(Multi-Standard Radio)基站。同一个基站支持多个制式的通信信号。2G/3G通信时代都采用异频组网的方式4G采用同频组网的方式,目前4G基站也在大规模建设中,目前来看2G/3G暂时还不会退出市场,2G/3G与4G共存场景将会存在。中国移动在900M频率有(Global system for Mobile Communication,简称为GSM)与长期演进(Long-Term Evolution,简称为LTE)共存的需求、中国联通在1800M频率有GSM与LTE共存、中国电信在800M频率有码分多址接入(Code Division Multiple Access,简称为CDMA)与LTE共存等等。对于MSR混模基站如何更有效的利用有限带宽的频谱资源,以及降低MSR制式各个频率间隔过近来带来的干扰,尤为迫切。
目前MSR混模基站2G/3G信号GSM/码分多址(Code Division Multiple Access,简称为CDMA)/时分同步码分多址接入(Time Division-Synchronous Code Division Multiple Access,简称为TD-SCDMA)/宽带码分多址接入(Wideband Code Division Multiple Access,简称为WCDMA)载波频率、载波数目和4G信号LTE频率、带宽都是固定的。但是针对2G/3G窄带信号和4G宽带LTE的业务特点:2G/3G窄带信号重要用于语言通话,4G宽带LTE主要用于数据传输;根据统计2G/3G窄带信号和4G宽带LTE业务都是随时间变化,工作时间语言通话多些,工作之余数据业务主主流。如何动态调度2G/3G窄带信号载波数和4G宽带LTE带宽使得频谱效率得到最大的应用,有利于提高用户感受。
针对相关技术中,对于如何动态调度2G/3G窄带信号载波数和LTE带宽的问题,还未提出有效的解决方案。
发明内容
本发明提供了一种频谱资源调整方法及装置,以至少解决相关技术中不能动态调度2G/3G窄带信号载波数和LTE带宽的问题。
根据本发明的一个方面,提供了一种频谱资源调整方法,包括:获取基站支持的第一制式网络激活的用户数量;和/或,获取所述基站支持的第二制式网络的物理资源块(Physical Resource Block,简称为PRB)利用率;根据所述用户数量和/或所述PRB利用率调整所述第一制式网络和所述第二制式网络的频谱资源。
可选地,根据所述用户数量和/或所述PRB利用率调整所述第一制式网络和所述第二制式网络的频谱资源包括:在所述用户数量小于第一阈值,并且所述PRB利用率大于第二阈值的情况下,所述基站按照预设规则减少所述第一制式网络的指定载波,并增加所述第二制式网络的带宽,其中,所述指定载波为靠近属于所述第二制式网络的频点的载波;或者,在所述用户数量大于或者等于第三阈值的情况下,所述基站增加靠近所述第二制式网络频点的所述第一制式网络的载波,并减小所述第二制式网络的带宽。
可选地,所述预设规则包括以下至少之一:所述基站在减少所述指定载波后的剩余频谱能够支持最大的LTE带宽;所述第一制式网络在减少所述指定载波后的剩余载波能够支持所述第一制式网络的指定业务。
可选地,根据所述用户数量和/或所述PRB利用率调整所述第一制式网络和所述第二制式网络的频谱资源之后包括:所述基站减少所述指定载波之后,将所述第一制式网络的载波减少的功率增加到所述第二制式网络的载波;或者,所述基站增加靠近所述第二制式网络频点的所述第一制式网络的载波之后,将所述第二制式网络的载波减少的功率增加到所述第一制式网络的载波。
可选地,所述第一制式网络为第二代2G数据通信网络或者第三代3G数据通信网络,所述第二制式网络为长期演进LTE网络。
根据本发明的另一个方面,提供了一种频谱资源调整装置,该装置应用于基站,所述装置包括:第一获取模块,设置为获取基站支持的第一制式网络激活的用户数量;和/或,第二获取模块,设置为获取所述基站支持的第二制式网络的物理资源块PRB利用率;调整模块,设置为根据所述用户数量和/或所述PRB利用率调整所述第一制式网络和所述第二制式网络的频谱资源。
可选地,所述调整模块还包括:第一调整单元,设置为在所述用户数量小于第一阈值,并且所述PRB利用率大于第二阈值的情况下,按照预设规则减少所述第一制式网络的指定载波,并增加所述第二制式网络的带宽,其中,所述指定载波为靠近属于所述第二制式网络的频点的载波;或者,第二调整单元,设置为在所述用户数量大于或者等于第三阈值的情况下,增加靠近所述第二制式网络频点的所述第一制式网络的载波,并减小所述第二制式网络的带宽。
可选地,所述预设规则包括以下至少之一:所述基站在减少所述指定载波后的剩余频谱能够支持最大的LTE带宽;所述第一制式网络在减少所述指定载波后的剩余载波能够支持所述第一制式网络的指定业务。
可选地,所述装置还包括:第一处理模块,设置为减少所述指定载波之后,将所述第一制式网络的载波减少的功率增加到所述第二制式网络的载波;或者,第二处理模块,设置为增加靠近所述第二制式网络频点的所述第一制式网络的载波之后,将所述第二制式网络的载波减少的功率增加到所述第一制式网络的载波。
可选地,所述第一制式网络为第二代2G数据通信网络或者第三代3G数据通信网络,所述第二制式网络为长期演进LTE网络。
通过本发明,采用获取基站支持的第一制式网络激活的用户数量;获取基站支持的第二制式网络的PRB利用率;根据用户数量和/或PRB利用率调整第一制式网络和第二制式网络的频谱资源。解决了相关技术中不能动态调度2G/3G窄带信号载波数和LTE带宽的问题,提高了频谱利用率。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的频谱资源调整方法的流程图;
图2是根据本发明实施例的频谱资源调整装置的结构框图;
图3是根据本发明实施例的频谱资源调整装置的结构框图(一);
图4是根据本发明实施例的频谱资源调整装置的结构框图(二);
图5是相关技术中无线通信网络架构图;
图6是根据本发明实施例的动态调整频偏资源的硬件结构图;
图7是根据本发明实施例的RIM通信流程图;
图8是GSM与LTE的频谱图;
图9是CDMA与LTE的频谱图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
在本实施例中提供了一种频谱资源调整方法,图1是根据本发明实施例的频谱资源调整方法的流程图,如图1所示,该流程包括如下步骤:
步骤S102,获取基站支持的第一制式网络激活的用户数量;和/或,获取基站支持的第二制式网络的PRB利用率;
步骤S104,根据用户数量和/或PRB利用率调整第一制式网络和第二制式网络的频谱资源。
通过上述步骤,根据用户数量和/或PRB利用率调整第一制式网络和第二制式网络的频谱 资源,相比于相关技术中,第一制式网络窄带信号载波频率、载波数目和第二制式网络的频率带宽均是固定的,上述步骤解决了相关技术中不能动态调度2G/3G窄带信号载波数和LTE带宽的问题,提高了频谱利用率。
上述步骤S104涉及到根据用户数量和/或PRB利用率调整第一制式网络和第二制式网络的频谱资源,在一个可选实施例中,在上述用户数量小于第一阈值,并且上述PRB利用率大于第二阈值的情况下,基站按照预设规则减少第一制式网络的指定载波,并增加第二制式网络的带宽,其中,指定载波为靠近属于该第二制式网络的频点的载波,从而对第一制式网络和第二制式网络的频谱资源进行了调整。在另一个可选实施例中,在上述用户数量大于或者等于第三阈值的情况下,基站增加靠近第二制式网络频点的第一制式网络的载波,并减小第二制式网络的带宽,从而对第一制式网络和第二制式网络的频谱资源进行了调整。
在一个可选实施例中,预设规则可以是基站在减少上述指定载波后的剩余频谱能够支持最大的LTE带宽,也可以是第一制式网络在减少指定载波后的剩余载波能够支持第一制式网络的指定业务,进而保证了第一制式网络的指定业务能够顺利完成。
在根据用户数量和/或PRB利用率调整第一制式网络和第二制式网络的频谱资源之后,在一个可选实施例中,可以进一步对第一制式网络的功率和第二制式网络的功率进行调整。例如:基站减少该指定载波之后,将第一制式网络的载波减少的功率增加到第二制式网络的载波;或者,基站增加靠近第二制式网络频点的该第一制式网络的载波之后,将第二制式网络的载波减少的功率增加到该第一制式网络的载波。
在一个可选实施例中,第一制式网络为第二代2G数据通信网络或者第三代3G数据通信网络,第二制式网络为长期演进LTE网络。
在本实施例中还提供了一种频谱资源调整装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图2是根据本发明实施例的频谱资源调整装置的结构框图,该装置应用于基站,如图2所示,该装置包括:第一获取模块22,设置为获取基站支持的第一制式网络激活的用户数量;和/或,第二获取模块24,设置为获取基站支持的第二制式网络的物理资源块PRB利用率;调整模块26,设置为根据用户数量和/或PRB利用率调整第一制式网络和第二制式网络的频谱资源。
图3是根据本发明实施例的频谱资源调整装置的结构框图(一),如图3所示,调整模块26还包括:第一调整单元262,设置为在用户数量小于第一阈值,并且PRB利用率大于第二阈值的情况下,按照预设规则减少第一制式网络的指定载波,并增加第二制式网络的带宽,其中,指定载波为靠近属于第二制式网络的频点的载波;或者,第二调整单元264,设置为在用户数量大于或者等于第三阈值的情况下,增加靠近第二制式网络频点的第一制式网络的载波,并减小第二制式网络的带宽。
可选地,上述预设规则包括以下至少之一:基站在减少指定载波后的剩余频谱能够支持最大的LTE带宽;第一制式网络在减少指定载波后的剩余载波能够支持第一制式网络的指定业务。
图4是根据本发明实施例的频谱资源调整装置的结构框图(二),如图4所示,该装置还包括:第一处理模块42,设置为减少指定载波之后,将第一制式网络的载波减少的功率增加到第二制式网络的载波;或者,第二处理模块44,设置为增加靠近第二制式网络频点的第一制式网络的载波之后,将第二制式网络的载波减少的功率增加到第一制式网络的载波。
可选地,第一制式网络为第二代2G数据通信网络或者第三代3G数据通信网络,第二制式网络为长期演进LTE网络。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述各个模块均位于同一处理器中;或者,上述各个模块分别位于第一处理器、第二处理器和第三处理器…中。
针对相关技术中存在的上述问题,下面结合具体的可选实施例进行说明,在下述可选实施例中结合了上述可选实施例及其可选实施方式。
本可选实施例通过引入2G/3G窄带信号与4G宽带LTE调度模块,提出一种根据2G/3G窄带信号与4G宽带LTE当前业务流量动态的调度2G/3G窄带信号载波数和4G宽带LTE带宽的方法。
本可选实施例通过引入“2G/3G窄带信号业务统计模块”、“4G宽带LTE业务统计模块”和“调度模块”来管理2G/3G窄带信号载波数和4G宽带LTE带宽、LTE UE切换带宽过程、MSR动态的功率分配,以及MSR频点位置的分配。图6是根据本发明实施例的动态调整频偏资源的硬件结构图,下面对图6进行说明:
步骤1:图5是相关技术中无线通信网络架构图,如图5所示,主要包括:核心网(Core Network,简称为CN)、接入网(Evolved UMTS Terrestrial Radio Access Network,简称为E-UTRAN)和操作维护中心(网管)。接入网由基站(LTE(长期演进)的一个节点)构成,基站包含基带处理单元(Building Base band Unit,简称为BBU)、射频拉远单元(Radio Remote Unit,简称为RRU)和天线(辐射阵子)。核心网和记载(eNodeB)之间通过BBU的S1(核心网和接入网之间的接口)接口相连。BBU和RRU通过光纤连接。
步骤2:2G/3G窄带信号业务统计模块统计当前基站2G/3G激活用户数目以及当前2G/3G窄带信号激活载波数目;并且记录过去一段时间内的激活用户数目,激活用户数目达到一定的门限低值和高值时,上报给基站调度模块。
步骤3:LTE业务统计模块统计当前基站LTE业务流量以及当前LTE激活带宽;并且记录过去一段时间内的的PRB数目,业PRB数目达到一定的门限低值和高值时,上报给基站调度模块。
步骤4:调度模块通过无线接入网命令(Radio Access Network Information Management,简称为RIM)进行信令交互,根据“2G/3G窄带信号业务统计模块”与“LTE业务统计模块”的统计结果进行动态分配。图7是根据本发明实施例的RIM通信流程图,如图7所示:4G基站“控制点”通过4G核心网和2G/3G核心网向2G/3G基站发送查询命令,然后通过2G/3G/4G核心网回传给4G基站,将查询的信息保存在flash等存储空间中。
步骤5:当满足2G/3G窄带激活用户数目达到操作维护中心(Operation and maintenance module,简称为OMMB)后台设置门限低值的时候,并且2G/3G的载波数目大于1,以及LTEPRB数目达到OMMB后台设置门限高值时;基站调度模块RIM进行调度:减少靠近LTE频点2G/3G载波,2G/3G载波以OMMB后台配置的步进进行清频;同时增加LTE带宽,LTE切换的原则是:空余频谱放置最大的LTE带宽为原则,保证2G/3G位于LTE有效带宽之外。直到当前的激活的2G/3G数目能够满足当前的语音通话要求;在实际中语音通话要求的优先级要高于数据传输要求。
当满足2G/3G窄带激活用户数目达到OMMB后台设置门限高值的时候,此时无论LTEPRB数目是否达到OMMB后台设置门限低值时;此时都是优先满足2G/3G的语言通话为第一优先级。基站调度模块通过RIM进行调度:增加靠近LTE频点2G/3G载波,2G/3G载波以OMMB后台配置的步进进行清频;同时增加LTE带宽,LTE切换的原则是:空余频谱放置最大的LTE带宽为原则,保证2G/3G位于LTE有效带宽之外。直到当前的激活的2G/3G数目能够满足当前的语音通话要求;在实际中语音通话要求的优先级要高于数据传输要求。
步骤6:在LTE切换带宽,切换流程如下:“LTE UE切换模块”收到基站调度模板发出的带宽切换命令之后:第一,向LTE系统的调度模块调度业务和控制信息(物理下行控制信道(Physical Downlink Control Channel,简称为PDCCH)、物理上行控制信道(Physical Uplink Control Channel,简称为PUCCH)等等信息)在当前激活带宽上,利用正交频分复用(Orthogonal Frequency Division Multiplexing,简称为OFDM)正交性的特点,LTE切换带宽的时候,只要保证频点不变,UE当前的解调能力能够准确的解析之前带宽的所有信息;第二,向基站的运行、管理和维护(Operation Administration and Maintenance,简称为OAM)发出不需要删除小区的命令,保证LTE小区不退服;第三:向基站的射频软件高层下发不重新定标的命令。(考虑自动切换与手动切换),第四:如果LTE业务流量下降非常厉害,则重启小区重新配置流程。
步骤7:功率管理模块收到调度模块发出载波调整命令时候,根据2G/3G载波数目的变化动态调整2G/3G与4G载波功率。调整过程如下:第一,读取目前OMMB设置2G/3G每个载波的功率为A;4G LTE为B;第二:如果2G/3G数目增加,则将从LTE的功率B中分出A给2G/3G载波;第三:如果2G/3G数目减少,则将2G/3G载波减少的功率给LTE载波。可以带来“扩大小区覆盖”、“增加小区容量”和“性能提升”的优势(针对共模RRU情况)。
实施案例1,GSM&LTE MSR基站GSM载波减小,LTE增加的带宽案例,例如xx运行商的频谱如图8所示:频谱特点为:A运营商总带宽为15M(1840MHz-1850MHz以及1875MHz-1880MHz),但是频谱中间有B运行商(1850MHz-1875MHz);目前固定配置为3个GSM载波(频点为1840M,1850M,1880M,GSM带宽为200KHz),LTE频点信息为1845M,带 宽5M。工作时间(8:00-18:00)GSM语音通话需求占据主要;夜晚(18:00-23:00)LTE流量业务占主要。以该运行商的频谱以及载波配置为例进行说明。
步骤1:OMMB后台设置GSM每个载波支持的最大用户为X1;
OMMB设置LTE的PRB利用率的门限值,例如80%为门限高值。
步骤2:GSM业务统计模块统计当前基站GSM激活用户数目Y以及载波激活数目3,当目前激用户活数目Y小于(3-1)*X1时,上报给基站调度模块。
步骤3:LTE业务统计模块统计当前基站LTE PRB数目以及当前LTE激活带宽;并且记录过去一段时间内的PRB数目,当PRB利用超过OMMB设置的PRB门限值时,上报给基站调度模块。
步骤4:基站调度模块根据GSM统计和LTE统计模板上报的信息进行调度。Y小于(3-1)*X1时,说明GSM可以让出一个GSM载波。基站调度模计算当前退出的频率不满足放置带宽更大的LTE信号,则停止调度GSM载波数目与LTE带宽。
Y小于(3-2)*X1时,说明GSM可以让出二个GSM载波。基站调度模计算当前退出的频率满足比当前带宽更大的LTE信号开始调度GSM载波数目与LTE带宽。
步骤5:基站调度模块关闭靠近LTE带宽边缘的2个GSM载波(1840MHz和1850MHz),同时将LTE带宽增加到10M带宽,LTE功率增加GSM减小的功率。
步骤6:“LTE UE切换模块”收到基站调度模板发出的切换10M带宽命令之后:第一,向LTE系统的调度模块(例如Centralized Media Access Control,简称为CMCA)调度业务和控制信息(高速-物理下行共享信道(Physical Downlink Shared Channel,简称为PDSCH)、物理上行控制信道(Physical Uplink Control Channel,简称为PUCCH)在当前激活带宽的中心RB上,第二,向基站的OAM发出不需要删建小区的命令,保证LTE小区不退服;第三:向基站的射频软件高层下发不重新定标的命令。
步骤7:调度过程最少要保持剩余1个GSM载波。
实施案例2,CDMA&LTE MSR基站CDMA载波增加,LTE减小的带宽案例,例如xx运行商的频谱如图9所示:频谱特点为:C运营商总带宽为17M(849M-866M),1个CDMA载波(频点为849.8M,CDMA带宽为1.228MHz),LTE频点信息为85.8.5M,带宽15M。工作时间(8:00-18:00)CDMA语音通话需求占据主要;夜晚(18:00-23:00)LTE流量业务占主要。以该运行商的频谱以及载波配置为例进行说明。
步骤1:OMMB后台设置CDMA每个载波支持的最大用户为X1;
步骤2:CDMA业务统计模块统计当前基站CDMA激活用户数目Y以及载波激活数目1,当目前激用户活数目大于最大支持用户X1,上报给基站调度模块。
步骤3:基站调度模块强制调度增加1条CDMA数目,LTE带宽从15M变化到10M;同 时将LTE功率减小,保证CDMA增加的功率。
步骤4:“LTE UE切换模块”收到基站调度模块发出的切换10M带宽命令之后:第一,向LTE系统的调度模块(例如CMCA)调度业务和控制信息(PDSCH、PUUCH等等信息)在当前激活带宽的中心RB上,第二,向基站的OAM发出不需要删建小区的命令,保证LTE小区不退服;第三:向基站的射频软件高层下发不重新定标的命令。
步骤5:增加1条CDMA载波之后数目,CDMA业务统计模块统计当前基站CDMA当前激活用户数目大于2倍X1,上报给基站调度模块。继续增加CDMA数目,直到满足。
综上所述,本发明通过引入2G/3G窄带信号与4G宽带LTE调度模块,提出一种解决方案根据2G/3G窄带信号与4G宽带LTE当前业务流量动态的调度2G/3G窄带信号载波数和4G宽带LTE带宽、在LTE切换带宽过程中如何保证UE不掉话、以及MSR制式之间动态的功率共享,并且通过调整MSR制式频点位置来保证两者的干扰最小。从而维护了运营商的利益。解决了目前MSR混模基站2G/3G窄带信号载波频率、载波数目和4G宽带LTE频率带、宽都是固定,导致频谱利用率低的问题。
在另外一个实施例中,还提供了一种软件,该软件用于执行上述实施例及优选实施方式中描述的技术方案。
在另外一个实施例中,还提供了一种存储介质,该存储介质中存储有上述软件,该存储介质包括但不限于:光盘、软盘、硬盘、可擦写存储器等。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明涉及通信领域,提供了一种频谱资源调整方法及装置,其中,该方法包括:获取基站支持的第一制式网络激活的用户数量;获取基站支持的第二制式网络的PRB利用率;根据用户数量和/或PRB利用率调整第一制式网络和第二制式网络的频谱资源。通过本发明解决了相关技术中不能动态调度2G/3G窄带信号载波数和LTE带宽的问题,提高了频谱利用率。

Claims (10)

  1. 一种频谱资源调整方法,包括:
    获取基站支持的第一制式网络激活的用户数量;和/或,
    获取所述基站支持的第二制式网络的物理资源块PRB利用率;
    根据所述用户数量和/或所述PRB利用率调整所述第一制式网络和所述第二制式网络的频谱资源。
  2. 根据权利要求1所述的方法,其中,根据所述用户数量和/或所述PRB利用率调整所述第一制式网络和所述第二制式网络的频谱资源包括:
    在所述用户数量小于第一阈值,并且所述PRB利用率大于第二阈值的情况下,所述基站按照预设规则减少所述第一制式网络的指定载波,并增加所述第二制式网络的带宽,其中,所述指定载波为靠近属于所述第二制式网络的频点的载波;或者,
    在所述用户数量大于或者等于第三阈值的情况下,所述基站增加靠近所述第二制式网络频点的所述第一制式网络的载波,并减小所述第二制式网络的带宽。
  3. 根据权利要求2所述的方法,其中,所述预设规则包括以下至少之一:
    所述基站在减少所述指定载波后的剩余频谱能够支持最大的LTE带宽;
    所述第一制式网络在减少所述指定载波后的剩余载波能够支持所述第一制式网络的指定业务。
  4. 根据权利要求2所述的方法,其中,根据所述用户数量和/或所述PRB利用率调整所述第一制式网络和所述第二制式网络的频谱资源之后包括:
    所述基站减少所述指定载波之后,将所述第一制式网络的载波减少的功率增加到所述第二制式网络的载波;或者,
    所述基站增加靠近所述第二制式网络频点的所述第一制式网络的载波之后,将所述第二制式网络的载波减少的功率增加到所述第一制式网络的载波。
  5. 根据权利要求1-4中任一项所述的方法,其中,所述第一制式网络为第二代2G数据通信网络或者第三代3G数据通信网络,所述第二制式网络为长期演进LTE网络。
  6. 一种频谱资源调整装置,该装置应用于基站,所述装置包括:
    第一获取模块,设置为获取基站支持的第一制式网络激活的用户数量;和/或,
    第二获取模块,设置为获取所述基站支持的第二制式网络的物理资源块PRB利用率;
    调整模块,设置为根据所述用户数量和/或所述PRB利用率调整所述第一制式网络和所述第二制式网络的频谱资源。
  7. 根据权利要求6所述的装置,其中,所述调整模块还包括:
    第一调整单元,设置为在所述用户数量小于第一阈值,并且所述PRB利用率大于第二阈值的情况下,按照预设规则减少所述第一制式网络的指定载波,并增加所述第二制式网络的带宽,其中,所述指定载波为靠近属于所述第二制式网络的频点的载波;或者,
    第二调整单元,设置为在所述用户数量大于或者等于第三阈值的情况下,增加靠近所述第二制式网络频点的所述第一制式网络的载波,并减小所述第二制式网络的带宽。
  8. 根据权利要求7所述的装置,其中,所述预设规则包括以下至少之一:
    所述基站在减少所述指定载波后的剩余频谱能够支持最大的LTE带宽;
    所述第一制式网络在减少所述指定载波后的剩余载波能够支持所述第一制式网络的指定业务。
  9. 根据权利要求7所述的装置,其中,所述装置还包括:
    第一处理模块,设置为减少所述指定载波之后,将所述第一制式网络的载波减少的功率增加到所述第二制式网络的载波;或者,
    第二处理模块,设置为增加靠近所述第二制式网络频点的所述第一制式网络的载波之后,将所述第二制式网络的载波减少的功率增加到所述第一制式网络的载波。
  10. 根据权利要求6-9中任一项所述的装置,其中,所述第一制式网络为第二代2G数据通信网络或者第三代3G数据通信网络,所述第二制式网络为长期演进LTE网络。
PCT/CN2015/087271 2015-05-25 2015-08-17 频谱资源调整方法及装置 WO2016187971A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510270005.0A CN106304098A (zh) 2015-05-25 2015-05-25 频谱资源调整方法及装置
CN201510270005.0 2015-05-25

Publications (1)

Publication Number Publication Date
WO2016187971A1 true WO2016187971A1 (zh) 2016-12-01

Family

ID=57392331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087271 WO2016187971A1 (zh) 2015-05-25 2015-08-17 频谱资源调整方法及装置

Country Status (2)

Country Link
CN (1) CN106304098A (zh)
WO (1) WO2016187971A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111343723A (zh) * 2020-03-04 2020-06-26 宇龙计算机通信科技(深圳)有限公司 数据传输方法及相关设备
CN112188512A (zh) * 2019-07-05 2021-01-05 中国移动通信集团山东有限公司 功率协调方法、装置及设备、基站和计算机可读存储介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106888480B (zh) * 2017-03-20 2019-12-06 中国联合网络通信集团有限公司 一种基站资源调配方法及装置
CN109673054B (zh) * 2018-02-11 2020-06-05 中兴通讯股份有限公司 频率分配方法和系统
CN111132349B (zh) * 2019-12-31 2023-04-18 中国移动通信集团江苏有限公司 频谱带宽调整的方法、装置、设备和介质
CN113133002B (zh) * 2019-12-31 2022-09-13 成都鼎桥通信技术有限公司 宽带与窄带集群融合系统的通信方法、装置及存储介质
CN115086963A (zh) * 2021-03-16 2022-09-20 中兴通讯股份有限公司 无线频谱调度方法、无线频谱调整方法、设备及存储介质
CN115277507B (zh) * 2022-07-25 2023-06-16 中国联合网络通信集团有限公司 Prb频谱利用率的计算方法、装置、设备和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100136989A1 (en) * 2007-01-15 2010-06-03 Telefonaktiebolaget L M Ericsson (Publ) Method and Radio Base Station for Effective Spectrum Utilization
CN102143498A (zh) * 2011-01-28 2011-08-03 华为技术有限公司 多制式联合通信的方法、系统及无线网络控制设备
CN102547721A (zh) * 2009-08-25 2012-07-04 华为技术有限公司 共享频谱资源的方法、设备及系统
CN103222295A (zh) * 2012-11-09 2013-07-24 华为技术有限公司 频谱共享的方法和基站

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100136989A1 (en) * 2007-01-15 2010-06-03 Telefonaktiebolaget L M Ericsson (Publ) Method and Radio Base Station for Effective Spectrum Utilization
CN102547721A (zh) * 2009-08-25 2012-07-04 华为技术有限公司 共享频谱资源的方法、设备及系统
CN102143498A (zh) * 2011-01-28 2011-08-03 华为技术有限公司 多制式联合通信的方法、系统及无线网络控制设备
CN103222295A (zh) * 2012-11-09 2013-07-24 华为技术有限公司 频谱共享的方法和基站

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112188512A (zh) * 2019-07-05 2021-01-05 中国移动通信集团山东有限公司 功率协调方法、装置及设备、基站和计算机可读存储介质
CN111343723A (zh) * 2020-03-04 2020-06-26 宇龙计算机通信科技(深圳)有限公司 数据传输方法及相关设备
CN111343723B (zh) * 2020-03-04 2023-11-17 宇龙计算机通信科技(深圳)有限公司 数据传输方法及相关设备

Also Published As

Publication number Publication date
CN106304098A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
WO2016187971A1 (zh) 频谱资源调整方法及装置
US9986479B2 (en) Carrier prioritization for tune-away
US9491662B2 (en) Method in a radio network node for controlling usage of rat and frequency bandwidth in a radio communication system
KR102197555B1 (ko) 무선 통신 시스템의 장치 및 방법
US10582491B2 (en) Information transmission method and device
US8625519B2 (en) Carrier aggregation method and carrier aggregation device
US20220006599A1 (en) Method and device for managing band width part
US20170359728A1 (en) Unlicensed spectrum communications retransmission method, and base station and user equipment
TR201807821T4 (tr) Ağ düğümü ve hücre referans simgelerinin iletiminin yönetilmesi için usul.
KR20150103121A (ko) 이종 셀룰러 네트워크에서의 활성화되지 않은 스몰 커버리지 노드들의 활성화
KR20110122454A (ko) 이동통신시스템에서 복수 개의 캐리어들이 집적된 단말기의 캐리어들에 대한 효율적인 메저먼트 방법
KR20120055851A (ko) 무선 통신 시스템에서 기지국의 송신 파워 제어 방법 및 장치
JP6538313B2 (ja) 干渉調整方法および基地局
JP5723206B2 (ja) 無線通信方法、装置及び端末
EP2636276B1 (en) Method and arrangement for power sharing in a base station
US20190268919A1 (en) Data Multiplexing Apparatus and Method and Communication System
EP2665311B1 (en) Control method and apparatus for multi-carrier frequency power amplifier resources
WO2024082813A1 (zh) Harq进程的分配方法、装置、基站及存储介质
CN112105059B (zh) 分流方法和分流控制的基站
WO2016077950A1 (zh) 一种控制信息处理的方法、装置和系统
CN111836351B (zh) 一种功率分配方法及装置
CN105519162A (zh) 一种调整小区覆盖范围的方法及装置
WO2019237347A1 (zh) 资源分配和接收方法、装置及通信系统
Zhou et al. Expansion and Evolution of NB-IoT under 5G Co-construction and Sharing
TWI505741B (zh) 基地台及其資源分配方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15893052

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15893052

Country of ref document: EP

Kind code of ref document: A1