WO2016187938A1 - 测距系统及校准测距系统的方法 - Google Patents
测距系统及校准测距系统的方法 Download PDFInfo
- Publication number
- WO2016187938A1 WO2016187938A1 PCT/CN2015/084248 CN2015084248W WO2016187938A1 WO 2016187938 A1 WO2016187938 A1 WO 2016187938A1 CN 2015084248 W CN2015084248 W CN 2015084248W WO 2016187938 A1 WO2016187938 A1 WO 2016187938A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mirror group
- receiving
- transmitting
- optical path
- ranging system
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
Definitions
- the invention relates to a laser ranging device, in particular to a distance measuring system and a method for calibrating a ranging system.
- Handheld laser range finder is widely used in engineering, construction, surveying and other fields.
- Laser range finder generally includes a transmitting unit, a collimating lens and a receiving unit.
- the transmitting unit emits a laser beam onto the object to be measured, and is received by reflection.
- the unit receives the distance of the measured object according to the phase of the modulated light relative to the transmitting unit.
- the optical axes of the emitted light and the received light need to be parallel or substantially parallel with the mirror group, but in practice, due to the diameter error of the measuring unit of the receiving unit, and subject to the focal length of the mirror group, the existing measurement The distance measurement accuracy of the distance meter often fails to meet the ideal high precision requirements.
- a ranging system comprising:
- the light beam emitted by the emitter is emitted to the object to be measured through the emitting lens, and forms an emission light path;
- the receiving mirror group is disposed on the base, the receiving mirror group receives light reflected by the object to be measured, forming a receiving light path, and the receiving mirror group is movable in at least one direction;
- the transmitting mirror group is disposed on the base, the emitting lens is disposed on the transmitting mirror group, the transmitting mirror group is movable in at least one direction, and the transmitting mirror group moves
- the transmit light path and focal length can be adjusted to calibrate the receive light path.
- the transmitting mirror group is movable in at least two directions, and the receiving mirror group is movable in an axial direction in which the receiving optical path is located.
- the transmitting mirror group is movable in an axial direction in which the transmitting optical path is located, and the receiving mirror group is movable in at least two directions.
- the group of transmitting mirrors is movable in at least two directions
- the group of receiving mirrors is movable in at least two directions.
- the set of transmitting mirrors is movable in three directions.
- the receiving mirror group is movable in three directions.
- the emitter is embedded on the base.
- the emitter is embedded on the carrier plate.
- the light emitting path passes through the transmitting mirror group, and the transmitting light path and the receiving light path are adjusted by the position of the transmitting mirror group, so that the light path can be accurately received by the receiving sensor.
- the invention also provides a method of calibrating a ranging system, the ranging system comprising:
- the light beam emitted by the emitter is emitted to the object to be measured through the emitting lens, and forms an emission light path;
- the receiving mirror group is disposed on the base, the receiving mirror group receives light reflected by the object to be measured, forming a receiving light path, and the receiving mirror group is movable in at least one direction;
- Receiving a sensor the receiving sensor being fixed on the carrier board; for identifying reflected light received by the receiving mirror group with ranging information;
- the transmitting mirror group is disposed on the base, the emitting lens is disposed on a transmitting mirror group, and the transmitting mirror group is movable in at least one direction;
- the method is: adjusting the emission optical path and the focal length by the movement of the transmitting mirror group, thereby calibrating the receiving optical path.
- the invention adjusts the transmitting optical path by setting the adjusting device on the transmitting optical path, thereby realizing the calibration of the receiving optical path.
- the invention has the advantages of simple structure and reasonable method, and greatly improves the measuring accuracy.
- Figure 1 is a schematic view of the structure of the present invention
- Figure 2 is a schematic view of a first embodiment of the present invention
- Figure 3 is a schematic view of the second embodiment of the present invention.
- Figure 4 is a schematic view of the third embodiment of the present invention.
- the present invention provides a ranging system including a base 1, a carrier 4, a transmitter 3, a receiver 4, a transmitting mirror 5, and a receiving mirror 6, on which the transmitting mirror 5 is mounted.
- An emitting lens is provided, the carrier plate is fixed at one end of the base 4, the transmitter 3 and the receiver 4 are fixed on the carrier plate 4, and the transmitting mirror group 5 and the receiving mirror group 6 are fixed at On the susceptor 1, the emitter 3 emits a laser beam through the transmitting mirror group 5 to form an emitting light path, and the emitting optical path is emitted onto the object to be tested, and then reflected from the object to be measured to the receiving mirror group 6, and forms a receiving optical path.
- the receiving optical path is received by the receiving sensor 2, and both the transmitting mirror group 5 and the receiving mirror group 6 are movable in at least one direction, and are adjusted by the positional movement of the transmitting mirror group 5.
- the section emits an optical path and a receiving optical path, so that the optical path can be accurately received by the receiving sensor for calibration purposes.
- 1 and 2 are the first embodiment of the present invention, and the present embodiment will be described in detail below.
- the transmitting mirror group 5 can be moved in two directions, and the receiving mirror group 6 can move in the axial direction in which the receiving optical path is located.
- the susceptor 1 is formed with an emission hole 7 and a receiving hole 8 .
- the transmitting mirror group 5 is disposed in the transmitting hole 7
- the receiving mirror group 6 is disposed in the receiving hole 8 .
- the emitter 3, the emission hole 7 and the transmitting mirror group 5 are coaxially arranged, and the transmitting mirror group 5 can be moved in two directions (in the X and Y directions) in the receiving hole; similarly, the receiving hole 8 and the receiving mirror group 6
- the receiving sensor 2 is also disposed coaxially, and the receiving mirror group 6 can be moved in the axial direction (in the Y direction) where the receiving hole is located.
- the transmitting mirror group 5 can also move in three directions (in the X, Y, and Z directions).
- the transmitting mirror group 5 can only move in the axial direction in which the transmitting optical path is located, and the receiving mirror group 6 can be in two directions ( In the X and Y directions, the movement is received; alternatively, the receiving mirror group 6 in this embodiment can also be moved in three directions (in the X, Y, and Z directions).
- the transmitting mirror group 5 and the receiving mirror group 6 can be moved in two directions (in the X and Y directions); alternatively In this embodiment, the transmitting mirror group 5 and/or the receiving mirror group 6 can be moved in three directions (in the X, Y, and Z directions).
- the structure of the pedestal is not limited, and there may be no emission holes and receiving holes, and the optical path emission and adjustment may not be affected;
- the transmitter may also be embedded on the base to save space for the distance measuring device.
- the calibration optical path can be adjusted according to the setting by changing the moving position of the transmitting mirror group and/or the receiving mirror group.
- the present invention adjusts the transmitting optical path by setting a transmitting mirror group on the transmitting optical path, thereby realizing Receive calibration of the optical path.
- the present invention provides a ranging system including a base 1, a carrier 4, a transmitter 3, a receiver 4, a transmitting mirror 5, and a receiving mirror 6, on which the transmitting mirror 5 is mounted.
- An emitting lens is provided, the carrier plate is fixed at one end of the base 4, the transmitter 3 and the receiver 4 are fixed on the carrier plate 4, and the transmitting mirror group 5 and the receiving mirror group 6 are fixed at On the susceptor 1, the emitter 3 emits a laser beam through the transmitting mirror group 5 to form an emitting light path, and the emitting optical path is emitted onto the object to be tested, and then reflected from the object to be measured to the receiving mirror group 6, and forms a receiving optical path.
- the receiving optical path is received by the receiving sensor 2, and both the transmitting mirror group 5 and the receiving mirror group 6 are movable in at least one direction, and the transmitting optical path and the receiving optical path are adjusted by the positional movement of the transmitting mirror group 5, so that the optical path can be
- the receiving sensor is accurately received for calibration purposes.
- 1 and 2 are the first embodiment of the present invention, and the present embodiment will be described in detail below.
- the susceptor 1 is formed with an emission hole 7 and a receiving hole 8 .
- the transmitting mirror group 5 is disposed in the transmitting hole 7
- the receiving mirror group 6 is disposed in the receiving hole 8 .
- the emitter 3, the emission hole 7 and the transmitting mirror group 5 are coaxially arranged, and the transmitting mirror group 5 can be moved in two directions (in the X and Y directions) in the receiving hole; similarly, the receiving hole 8 and the receiving mirror group 6
- the receiving sensor 2 is also disposed coaxially, and the receiving mirror group 6 can be moved in the axial direction (in the Y direction) where the receiving hole is located.
- the transmitting mirror group 5 can also move in three directions (in the X, Y, and Z directions).
- the transmitting mirror group 5 can only move in the axial direction in which the transmitting optical path is located, and the receiving mirror group 6 can be in two directions ( In the X and Y directions, the movement is received; alternatively, the receiving mirror group 6 in this embodiment can also be moved in three directions (in the X, Y, and Z directions).
- the transmitting mirror group 5 and the receiving mirror group 6 can be moved in two directions (in the X and Y directions); alternatively In this embodiment, the transmitting mirror group 5 and/or the receiving mirror group 6 can be moved in three directions (in the X, Y, and Z directions).
- the calibration optical path can be adjusted by changing the position of the transmitting mirror and/or the receiving mirror according to the setting.
- the present invention adjusts the transmitting optical path by setting a transmitting mirror on the transmitting optical path, thereby achieving calibration of the receiving optical path.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Electromagnetism (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
一种测距系统以及校准测距系统的方法,包括基座(1)、承载板(4)、发射器(3)、发射镜组(5)、接收镜组(6)和接收传感器(2),所述发射器(3)发出激光束,经过设置在发射镜组(5)上的发射透镜,形成发射光路,发射光路发射到待测物体上被反射形成接收光路,接收光路被接收传感器(2)接收,通过调节装置对发射光路的调节,实现接收光路的校准,达到精确测量目的,校准测距系统的方法操作简单,检测精度高。
Description
本发明涉及一种激光测距装置,特别涉及一种测距系统及校准测距系统的方法。
手持式激光测距仪在工程、建筑、勘测等领域得到广泛应用,激光测距仪一般包括发射单元、准直透镜和接收单元,发射单元发射激光束到被测物体上,再通过反射被接收单元所接收,依据经调制的光线相对发射单元的相位,得到被测物的距离。
在激光测距过程中,发射光和接收光的光轴需要与镜组平行或基本平行,但实际中,由于接收单元测光面存在直径误差,且受镜组焦距等因素制约,现有测距仪的测距精度往往达不到理想高精度要求。
发明内容
一种测距系统,所述测距系统包括:
基座;
承载板,所述承载板固定在所述基座的一端;
发射器,所述发射器用于光束发射;
发射透镜,所述发射器发射的光束通过所述发射透镜发射到被测物体上,并形成发射光路;
接收镜组,所述接收镜组设置在所述基座上,所述接收镜组接收被测物反射回来的光,形成接收光路,所述接收镜组可以在至少一个方向上移动;
接收传感器,所述接收传感器固定在所述承载板上,用来识别所述接收镜组接收到的带有测距信息的反射光;以及,
发射镜组,所述发射镜组设置在所述基座上,所述发射透镜设置在所述发射镜组上,所述发射镜组可以在至少一个方向上移动,所述发射镜组的移动可以调节发射光路和焦距,进而校准接收光路。
优选地,所述发射镜组可以在至少两个方向上移动,所述接收镜组可以在接收光路所在的轴向上移动。
优选地,所述发射镜组可以在发射光路所在的轴向方向上移动,所述接收镜组可以在至少两个方向上移动。
优选地,所述发射镜组可以在至少两个方向上移动,所述接收镜组可以在至少两个方向上移动。
优选地,所述发射镜组可以在三个方向上移动。
优选地,所述接收镜组可以在三个方向上移动。
优选地,所述发射器嵌设在所述基座上。
优选地,所述发射器嵌设在所述承载板上。
优选地,所述发射光路穿过所述发射镜组,并通过所述发射镜组位置移动调节发射光路和接收光路,使光路可以被接收传感器精确接收。
本发明还提供了一种校准测距系统的方法,所述测距系统包括:
基座;
承载板,所述承载板固定在所述基座的一端;
发射器,所述发射器用于光束发射;
发射透镜,所述发射器发射的光束通过所述发射透镜发射到被测物体上,并形成发射光路;
接收镜组,所述接收镜组设置在所述基座上,所述接收镜组接收被测物反射回来的光,形成接收光路,所述接收镜组可以在至少一个方向上移动;
接收传感器,所述接收传感器固定在所述承载板上;用来识别所述接收镜组接收到的带有测距信息的反射光;以及,
发射镜组,所述发射镜组设置在所述基座上,所述发射透镜设置在发射镜组上,所述发射镜组可以在至少一个方向上移动;
该方法为:通过所述发射镜组的移动调节发射光路和焦距,进而校准接收光路。
本发明通过在发射光路上设置调节装置来调节发射光路,从而实现接收光路的校准,本发明结构简单、方法合理,大大提高了测距精度。
图1是本发明结构示意图;
图2是本发明实施例一示意图;
图3是本发明实施例二示意图;
图4是本发明实施例三示意图;
以下将结合实施例和附图对本发明的构思、具体结构及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。
参照图1至图4,本发明提供一种测距系统,包括基座1、承载板4、发射器3、接收器4、发射镜组5和接收镜组6,所述发射镜组5上设置有发射透镜,所述承载板固定在所述基座4的一端,所述发射器3和接收器4固定在所述承载板4上,所述发射镜组5和接收镜组6固定在所述基座1上,所述发射器3通过发射镜组5发出激光束,形成发射光路,发射光路发射到待测物体上,然后从待测物体反射到接收镜组6,并形成接收光路,接收光路被接收传感器2接收,所述发射镜组5和接收镜组6都可以在至少一个方向上移动,通过所述发射镜组5位置移动来调
节发射光路和接收光路,使光路可以被接收传感器精确接收,达到校准的目的。
图1、图2是本发明实施例一,下面对本实施例作详细阐述。
本实施例中,所述发射镜组5可以在两个方向上移动,所述接收镜组6可以在接收光路所在的轴向上移动。
具体地说,所述基座1上形成有发射孔7和接收孔8,所述发射镜组5设置在所述发射孔7内,所述接收镜组6设置在所述接收孔8内,所述发射器3、发射孔7和发射镜组5同轴设置,发射镜组5可以在接收孔内两个方向(X、Y方向上)移动;同理,接收孔8、接收镜组6和接收传感器2也同轴设置,接收镜组6可以在接收孔所在的轴向上(Y方向上)移动。
本实施例中,所述发射镜组5还可以在三个方向上(X、Y、Z方向上)移动。
图3是本发明实施例二,与实施例一相似,其区别在于,所述发射镜组5仅可以在发射光路所在的轴向上移动,所述接收镜组6可以在两个方向上(X、Y方向上)移动;作为可选地,本实施例中接收镜组6还可以在三个方向上(X、Y、Z方向上)移动。
图4是本发明实施例三,与实施例一相似,其区别在于,所述发射镜组5和接收镜组6都可以在两个方向上(X、Y方向上)移动;作为可选地,本实施例中发射镜组5和/或接收镜组6可以在三个方向上(X、Y、Z方向上)移动。
需要说明的是,上述各实施例中,基座的结构不是限定的,可以没有发射孔和接收孔,不影响光路发射和调节即可;
另外,作为可选的,发射器也可以嵌设在所述基座上,节省测距装置的布置空间。
使用时,可以根据设定,通过改变发射镜组和/或接收镜组移动位置来调节校准光路,本发明通过在发射光路上设置发射镜组来调节发射光路,从而实现
接收光路的校准。
本发明还提供了一种校准测距系统的方法;
参照图1至图4,本发明提供一种测距系统,包括基座1、承载板4、发射器3、接收器4、发射镜组5和接收镜组6,所述发射镜组5上设置有发射透镜,所述承载板固定在所述基座4的一端,所述发射器3和接收器4固定在所述承载板4上,所述发射镜组5和接收镜组6固定在所述基座1上,所述发射器3通过发射镜组5发出激光束,形成发射光路,发射光路发射到待测物体上,然后从待测物体反射到接收镜组6,并形成接收光路,接收光路被接收传感器2接收,所述发射镜组5和接收镜组6都可以在至少一个方向上移动,通过所述发射镜组5位置移动来调节发射光路和接收光路,使光路可以被接收传感器精确接收,达到校准的目的。
图1、图2是本发明实施例一,下面对本实施例作详细阐述。
本实施例中,所述发射镜组5可以在两个方向上移动,所述接收镜组6可以在接收光路所在的轴向上移动。
具体地说,所述基座1上形成有发射孔7和接收孔8,所述发射镜组5设置在所述发射孔7内,所述接收镜组6设置在所述接收孔8内,所述发射器3、发射孔7和发射镜组5同轴设置,发射镜组5可以在接收孔内两个方向(X、Y方向上)移动;同理,接收孔8、接收镜组6和接收传感器2也同轴设置,接收镜组6可以在接收孔所在的轴向上(Y方向上)移动。
本实施例中,所述发射镜组5还可以在三个方向上(X、Y、Z方向上)移动。
图3是本发明实施例二,与实施例一相似,其区别在于,所述发射镜组5仅可以在发射光路所在的轴向上移动,所述接收镜组6可以在两个方向上(X、Y方向上)移动;作为可选地,本实施例中接收镜组6还可以在三个方向上(X、Y、Z方向上)移动。
图4是本发明实施例三,与实施例一相似,其区别在于,所述发射镜组5和接收镜组6都可以在两个方向上(X、Y方向上)移动;作为可选地,本实施例中发射镜组5和/或接收镜组6可以在三个方向上(X、Y、Z方向上)移动。
使用时,可以根据设定,通过改变发射镜组和/或接收镜组移动位置来调节校准光路,本发明通过在发射光路上设置发射镜组来调节发射光路,从而实现接收光路的校准。
以上所述实施例仅表达了本发明的具体实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (10)
- 一种测距系统,其特征在于,所述测距系统包括:基座;承载板,所述承载板固定在所述基座的一端;发射器,所述发射器用于光束发射;发射透镜,所述发射器发射的光束通过所述发射透镜发射到被测物体上,并形成发射光路;接收镜组,所述接收镜组设置在所述基座上,所述接收镜组接收被测物反射回来的光,形成接收光路,所述接收镜组可以在至少一个方向上移动;接收传感器,所述接收传感器固定在所述承载板上,用来识别所述接收镜组接收到的带有测距信息的反射光;以及,发射镜组,所述发射镜组设置在所述基座上,所述发射透镜设置在所述发射镜组上,所述发射镜组可以在至少一个方向上移动,所述发射镜组的移动可以调节发射光路和焦距,进而校准接收光路。
- 根据权利要求1所述的测距系统,其特征在于,所述发射镜组可以在至少两个方向上移动,所述接收镜组可以在接收光路所在的轴向上移动。
- 根据权利要求1所述的测距系统,其特征在于,所述发射镜组可以在发射光路所在的轴向方向上移动,所述接收镜组可以在至少两个方向上移动。
- 根据权利要求1所述的测距系统,其特征在于,所述发射镜组可以在至少两个方向上移动,所述接收镜组可以在至少两个方向上移动。
- 根据权利要求1、2或4所述的测距系统,其特征在于,所述发射镜组可以在三个方向上移动。
- 根据权利要求1、3或4所述的测距系统,其特征在于,所述接收镜组可以在三个方向上移动。
- 根据权利要求1所述的测距系统,其特征在于,所述发射器嵌设在所述基座上。
- 根据权利要求1所述的测距系统,其特征在于,所述发射器嵌设在所述承载板上。
- 根据权利要求1所述的测距系统,其特征在于,所述发射光路穿过所述发射镜组,并通过所述发射镜组位置移动调节发射光路和接收光路,使光路可以被接收传感器精确接收。
- 一种校准测距系统的方法,其特征在于,所述测距系统包括:基座;承载板,所述承载板固定在所述基座的一端;发射器,所述发射器用于光束发射;发射透镜,所述发射器发射的光束通过所述发射透镜发射到被测物体上,并形成发射光路;接收镜组,所述接收镜组设置在所述基座上,所述接收镜组接收被测物反射回来的光,形成接收光路,所述接收镜组可以在至少一个方向上移动;接收传感器,所述接收传感器固定在所述承载板上;用来识别所述接收镜组接收到的带有测距信息的反射光;以及,发射镜组,所述发射镜组设置在所述基座上,所述发射透镜设置在发射镜组上,所述发射镜组可以在至少一个方向上移动;该方法为:通过所述发射镜组的移动调节发射光路和焦距,进而校准接收光路。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510272077.9 | 2015-05-25 | ||
CN201510272077.9A CN106199619A (zh) | 2015-05-25 | 2015-05-25 | 测距系统及校准测距系统的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016187938A1 true WO2016187938A1 (zh) | 2016-12-01 |
Family
ID=57392388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/084248 WO2016187938A1 (zh) | 2015-05-25 | 2015-07-16 | 测距系统及校准测距系统的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106199619A (zh) |
WO (1) | WO2016187938A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109444913A (zh) * | 2018-12-28 | 2019-03-08 | 广州市合熠电子科技有限公司 | 一种数字智能型微型激光位移传感器及其测距方法 |
RU2756381C1 (ru) * | 2021-04-02 | 2021-09-29 | Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" | Лазерный дальномер |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109580185B (zh) * | 2018-12-26 | 2021-04-30 | 北京安和博控科技有限公司 | 一种便携光距校准装置 |
CN111458696B (zh) * | 2020-05-14 | 2022-02-22 | 厦门通测电子有限公司 | 手持式激光测距仪示值误差的校准方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6330056B1 (en) * | 1998-07-02 | 2001-12-11 | Leica Geosystems Ag | Laser telemeter |
CN101238389A (zh) * | 2005-08-08 | 2008-08-06 | 莱卡地球系统公开股份有限公司 | 光电测距仪 |
CN102360079A (zh) * | 2011-07-05 | 2012-02-22 | 上海理工大学 | 一种激光测距仪及工作方法 |
DE102010062616A1 (de) * | 2010-12-08 | 2012-06-14 | Ifm Electronic Gmbh | Optischer Entfernungsmesser |
CN103245953A (zh) * | 2012-02-14 | 2013-08-14 | 奥迪股份公司 | 机动车飞行时间摄像机、机动车及飞行时间摄像机运行方法 |
CN104011560A (zh) * | 2011-12-23 | 2014-08-27 | 莱卡地球系统公开股份有限公司 | 测距装置对准 |
-
2015
- 2015-05-25 CN CN201510272077.9A patent/CN106199619A/zh active Pending
- 2015-07-16 WO PCT/CN2015/084248 patent/WO2016187938A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6330056B1 (en) * | 1998-07-02 | 2001-12-11 | Leica Geosystems Ag | Laser telemeter |
CN101238389A (zh) * | 2005-08-08 | 2008-08-06 | 莱卡地球系统公开股份有限公司 | 光电测距仪 |
DE102010062616A1 (de) * | 2010-12-08 | 2012-06-14 | Ifm Electronic Gmbh | Optischer Entfernungsmesser |
CN102360079A (zh) * | 2011-07-05 | 2012-02-22 | 上海理工大学 | 一种激光测距仪及工作方法 |
CN104011560A (zh) * | 2011-12-23 | 2014-08-27 | 莱卡地球系统公开股份有限公司 | 测距装置对准 |
CN103245953A (zh) * | 2012-02-14 | 2013-08-14 | 奥迪股份公司 | 机动车飞行时间摄像机、机动车及飞行时间摄像机运行方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109444913A (zh) * | 2018-12-28 | 2019-03-08 | 广州市合熠电子科技有限公司 | 一种数字智能型微型激光位移传感器及其测距方法 |
RU2756381C1 (ru) * | 2021-04-02 | 2021-09-29 | Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" | Лазерный дальномер |
Also Published As
Publication number | Publication date |
---|---|
CN106199619A (zh) | 2016-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6256995B2 (ja) | 座標測定システムおよび方法 | |
CN1304879C (zh) | 基于光程倍增补偿方法的二维光电自准直装置和测量方法 | |
CN109520425B (zh) | 一种精跟踪误差测试装置及测试方法 | |
WO2012142356A4 (en) | Gimbal instrument having a prealigned and replaceable optics bench | |
WO2016187938A1 (zh) | 测距系统及校准测距系统的方法 | |
US20180202796A1 (en) | Measuring device and method for measuring at least one length measurand | |
CN203535218U (zh) | 一种激光测距光路装置 | |
CN112284302B (zh) | 扫描法测量主动光电系统激光收发同轴度的装置及方法 | |
CN105987674A (zh) | 基于影像测量的z轴垂直度误差测量方法及装置 | |
JP2019200168A (ja) | 真直度測定装置 | |
CN108955537A (zh) | 一种可实现离轴反射镜高低点位置精确测量的系统及方法 | |
WO2021081860A1 (zh) | 一种激光复路导轨测试装置及方法 | |
CN207439442U (zh) | 一种激光接收发射部件调试设备 | |
CN107450287B (zh) | 调焦调平测量装置及方法 | |
CN204789995U (zh) | 一种测距系统 | |
CN103528525A (zh) | 三光轴补偿及气浴式线位移激光干涉仪校准方法与装置 | |
CN107202557B (zh) | 对标测量装置、校准镜头与图卡相对位置的系统及方法 | |
CN106679592B (zh) | 一种角度校准装置及校准方法 | |
US20150300811A1 (en) | Apparatus for measuring inner diameter | |
CN106405563A (zh) | 一种测距系统及校准测距系统的方法 | |
TWI715304B (zh) | 差動式光學測距儀 | |
TWI518300B (zh) | 光學校正裝置與光學校正方法 | |
CN105509706A (zh) | 一种可变角度的光学测量装置和测量方法 | |
US9605954B2 (en) | Distance measuring laser pointer | |
CN106840043B (zh) | 一种基于到达时间的角度校准装置及校准方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15893019 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15893019 Country of ref document: EP Kind code of ref document: A1 |