WO2016187915A1 - 将放射性废水处理至天然本底放射性水平的系统及应用 - Google Patents

将放射性废水处理至天然本底放射性水平的系统及应用 Download PDF

Info

Publication number
WO2016187915A1
WO2016187915A1 PCT/CN2015/081902 CN2015081902W WO2016187915A1 WO 2016187915 A1 WO2016187915 A1 WO 2016187915A1 CN 2015081902 W CN2015081902 W CN 2015081902W WO 2016187915 A1 WO2016187915 A1 WO 2016187915A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
reverse osmosis
filter
stage
radioactive waste
Prior art date
Application number
PCT/CN2015/081902
Other languages
English (en)
French (fr)
Inventor
李福志
赵璇
张猛
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2016187915A1 publication Critical patent/WO2016187915A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/20Disposal of liquid waste
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange

Definitions

  • the invention belongs to the field of wastewater treatment, and in particular relates to a system and application for treating radioactive wastewater to a natural background radioactive level.
  • the traditional radioactive wastewater treatment technology is mainly based on evaporation and ion exchange.
  • the investment and operation cost of the evaporation process is high, and the ion exchange process generates a large amount of radioactive waste resin, which brings difficulties for subsequent treatment and disposal.
  • the method provided by the invention adopts the concept of fractional purification to carry out multi-stage purification treatment of the radioactive waste water, thereby maximizing the advantages of each process and reducing the amount of secondary radioactive waste while ensuring the treatment effect.
  • the concept of the staged purification of the invention is embodied in two aspects: on the one hand, on the classification treatment of the particle size of the impurities in the water, the precision of the process is set from coarse to fine, from the self-cleaning filter to the ultrafiltration and reverse osmosis, The processing precision is increased step by step, the impurities in the water are classified and purified, and finally the electrochemical purification method is used for deep purification treatment through the continuous electric desalination process; on the other hand, it is embodied in the classification treatment of the radiation dose of the radioactive substance in the radioactive water.
  • Cs-134 and Cs-137 are the radionuclides with the highest proportion of radioactivity, and the irradiation dose is large, which has high requirements for radiation protection of equipment.
  • the ruthenium adsorbent can selectively adsorb and remove cesium ions in the raw water, and reduce the radiation protection requirements of the subsequent process, and the adsorption column itself has a simple process form, which is convenient for radiation protection, and the sorbent is selected. Strong, and the amount of radioactive waste generated is small.
  • radioactive wastewater contains a variety of other radionuclides, as well as other high concentrations of non-radioactive ions.
  • the reverse osmosis process has high removal efficiency for these ions.
  • the combination of helium adsorption and reverse osmosis processes can balance the need for radiation protection with the need for radioactive removal.
  • the method provided by the present invention enhances the effect of deep removal of radionuclides.
  • An important improvement is the combination of two-stage reverse osmosis and two-stage continuous electric desalination series. More importantly, a special agent is used between the two-stage continuous electric desalination process. By using this agent, a high decontamination factor can be obtained at a very low radioactivity level, so that the treated water is discharged. The level of radioactivity reaches the natural background level, which facilitates the reuse of water after treatment or environmental discharge, and can meet the most stringent environmental emission requirements.
  • the method provided by the invention facilitates radioactive operation and facilitates the treatment and disposal of secondary radioactive waste.
  • the radioactive waste water contains impurities such as oil, suspended matter, and organic matter, these impurities will affect the main treatment process for removing the radionuclide, reducing the treatment efficiency or effective working time, thereby increasing the amount of radioactive waste generated.
  • the present invention provides a combined process of paper core filter, self-cleaning filter and ultrafiltration for the pretreatment of radioactive waste water.
  • the paper core filter can intercept large particles in the raw water to ensure stable operation of the subsequent process, and the discarded paper core filter is convenient for subsequent processing and disposal.
  • the self-cleaning filter can be operated continuously and automatically, and the sludge produced can be returned to the paper core filter for treatment, so that it can run continuously, and almost no secondary radioactive waste is generated.
  • the paper core filter and self-cleaning filter can ensure the continuous and stable operation of the ultrafiltration process.
  • the deep removal of suspended solids, colloids and organic matter by the ultrafiltration process can ensure the stable operation of the subsequent reverse osmosis process and prolong the service life of the reverse osmosis membrane.
  • the method provided by the invention can reduce the amount of radioactive concentrate produced and increase the concentration factor.
  • Each stage of reverse osmosis uses a multi-stage design to increase the recovery rate of each stage of reverse osmosis.
  • the two-stage reverse osmosis concentrated water and the two-stage continuous electric desalting concentrated water are returned to the first-stage reverse osmosis treatment to improve the recovery rate.
  • Most of the first-stage reverse osmosis concentrated water is recycled to improve the recovery rate and reduce the radioactive concentrated liquid. The amount produced.
  • a system for treating radioactive wastewater to a natural background radioactive level mainly comprising a water-oil separator, a security filter, a ruthenium adsorption column, an inorganic adsorption water production tank, a paper core filter, a self-cleaning filter, Ultrafiltration, reverse osmosis raw water tank, security filter, primary reverse osmosis, secondary reverse osmosis, primary continuous electric desalination, continuous electric desalting intermediate water tank, secondary continuous electric desalting and final production tank.
  • the system also includes on-site water inlet interface, on-site flushing interface, on-site concentrated water interface, on-site water production interface, water production pipeline, agricultural water pipeline, dosing pipeline, flushing pipeline and soaking pipeline.
  • the oil-water separator removes oil impurities in the raw water and reduces the influence of the oil substances on the entire treatment process;
  • the ⁇ adsorption column removes radioactive cesium ions in the raw water, and protects the security filter before the adsorption column
  • the action of the adsorption column prevents the particulate matter from clogging the adsorption column;
  • the paper core filter removes the particulate matter in the radioactive waste water, and the paper core filter containing the particulate matter facilitates the subsequent treatment and disposal;
  • the water output of the paper core filter enters Self Cleaning the filter, the self-cleaning filter directly intercepts impurities in the water by using a filter to further remove suspended matter and particulate matter in the water;
  • the self-cleaning filter is used for automatic sewage discharge;
  • the self-cleaning filter effluent enters the ultrafiltration device, super The filtering can deeply remove the impurities in the colloidal form in the water;
  • the ultrafiltration water enters the reverse o
  • the effluent of the security filter sequentially enters the first-stage reverse osmosis and the second-stage reverse osmosis, and the two-stage reverse osmosis can widely remove the salt and the radionuclide in the water, greatly reducing the incoming water. Radioactivity; the secondary reverse osmosis water enters the first-stage continuous electric desalination.
  • the first-stage continuous electric desalted water enters the continuous electric demineralization intermediate water tank, and at the same time, the activator is added to the intermediate water tank, and then the pump is lifted to enter the second-stage continuous electric desalting, and the second-stage continuous electric demineralization effluent Enter the production tank and connect it to the on-site water production interface after pumping.
  • the two-stage continuous electric desalination is capable of deeply removing radionuclides in water and treating the radioactive waste water to a natural background radioactive level.
  • the application includes injecting radioactive waste water through a system on-site water injection port, and processing through the system to finally obtain natural background radioactivity.
  • ultrafiltration, primary reverse osmosis, primary continuous electrical desalination, and secondary continuous electrical desalination are essential processes.
  • Oil-water separator, ⁇ adsorption column, paper core filter, self-cleaning filter, and secondary reverse osmosis are optional processes.
  • a water separator is required when the oil content in the influent >0.5 mg/L, otherwise it is not required.
  • the inlet water is pressurized by the pump and directly enters the subsequent security filter.
  • the column When the activity of helium in the influent is >10 5 Bq/L, the column is required to be adsorbed, otherwise it is not required.
  • the inlet water is pressurized by the pump and directly enters the paper core filter.
  • the paper core filter and the self-cleaning filter are optional processes of the present invention, and a paper core filter and a self-cleaning filter are required when the concentration of suspended particulate matter in the influent water is higher than 5 mg/L, otherwise it is not required.
  • the ruthenium adsorption process consists of two tantalum adsorption columns connected in series. After the adsorption column of the tantalum adsorption column at the front end of the tandem process is saturated, a new adsorption column is replaced, and the series order of the two adsorption columns is adjusted, so that the unreplaced adsorption column is located at the front end of the tandem process, and the newly replaced adsorption column is located in the tandem process. rear end.
  • the first-stage reverse osmosis concentrated water is divided into two parts. A part of concentrated water is used as the concentrate of the whole system to enter the radioactive concentrated liquid storage device through the on-site concentrated water interface, and another part of the concentrated water is pressurized and returned to the high pressure pump for circulation treatment to improve the recovery rate. .
  • the secondary reverse osmosis concentrated water is returned to the first stage of reverse osmosis for reprocessing to increase the recovery rate.
  • the filter element can be replaced, and the replaced filter element can be directly disposed as a radioactive waste.
  • the self-cleaning filter works continuously and automatically drains the dirt.
  • the ultrafiltration rinse water is connected to the on-site rinse water connection.
  • Both the first-stage reverse osmosis and the second-stage reverse osmosis are arranged in multiple stages to increase the recovery rate.
  • the concentrated water of the first-stage continuous electric desalination is returned to the first stage of reverse osmosis for reprocessing to improve the recovery rate.
  • the concentrated water of the two-stage continuous electric demineralization is all returned to the first stage reverse osmosis for reprocessing to increase the recovery rate.
  • the treatment device provided by the invention has multiple interfaces with the radioactive waste water treatment site, including the water inlet, the concentrated liquid drain, the purified water drain and the flushing water interface.
  • the water in the final production tank can be pressurized by pump to return to ultrafiltration, primary reverse osmosis, secondary reverse osmosis, primary continuous electric desalination and secondary continuous electric demineralization to maintain the equipment during outage of the equipment. .
  • FIG. 1 is a schematic illustration of the processing system of the present application.
  • 1 oil-water separator
  • 2 security filter
  • 3 is ⁇ adsorption column
  • 4 is inorganic adsorption water tank
  • 5 is paper core filter
  • 6 is self-cleaning filter
  • 7 is ultrafiltration
  • 8 is reverse osmosis
  • 9 is the first-stage reverse osmosis
  • 10 is the second-stage reverse osmosis
  • 11 is the first-stage continuous electric desalination
  • 12 is the continuous electric desalting intermediate water tank
  • 13 is the second-level continuous electric desalting
  • 14 is the final production tank.
  • 15 is the on-site water inlet interface
  • 16 is the on-site flushing interface
  • 17 is the on-site concentrated water interface
  • 18 is the on-site water production interface.
  • the complete system containing the above invention is designed and processed to treat the radioactive wastewater after the accident of the nuclear power plant.
  • System design capacity is 1m 3 / h, the simulated radioactive waste water containing boric acid 3323mg / L, Cs + 1500 ⁇ g / L, Co 2+ 520 ⁇ g / L, Sr 2+ 633 ⁇ g / L.
  • the concentrations of Cs + , Sr 2+ , and Co 2+ were measured by the ICP-MS method, and the concentration of boric acid was measured by the methylenimine-H acid spectrophotometry.
  • Both the first-stage reverse osmosis and the second-stage reverse osmosis adopt a three-stage design, and the discharge of the first-stage reverse osmosis concentrated water is 0.2m 3 /h.
  • the concentration of boric acid in the first-stage reverse osmosis freshwater effluent was 1790 mg/L, and the concentrations of Cs + , Co 2+ and Sr 2+ were 119 ⁇ g/L, 3.37 ⁇ g/L and 5.70 ⁇ g/L, respectively.
  • the concentration of boric acid in the secondary reverse osmosis freshwater effluent was 1642 mg/L, and the concentrations of Cs + , Co 2+ and Sr 2+ were 41 ⁇ g/L, 0.365 ⁇ g/L and 1.24 ⁇ g/L, respectively.
  • the concentration of boric acid in primary continuous demineralized freshwater effluent was 1093 mg/L, and the concentrations of Cs + , Co 2+ and Sr 2+ were 0.202 ⁇ g/L, 0.086 ⁇ g/L and 0.368 ⁇ g/L, respectively.
  • Cs + , Co 2+ , and Sr 2+ were re-dosed in a continuous electric desalting intermediate tank, and the concentrations were adjusted to 461 ⁇ g/L, 601 ⁇ g/L, and 517 ⁇ g/L, respectively.
  • the concentration of boric acid in freshwater effluent was 1001 mg/L, and the concentrations of Cs + , Co 2+ and Sr 2+ were 0.57 ⁇ g/L and 1.6 ⁇ g/L, respectively. And 2.2 ⁇ g / L.
  • the removal rate of boric acid in the whole system was 69.9%, and the purification factors for Cs + , Co 2+ and Sr 2+ were 5.13 ⁇ 10 10 , 2.27 ⁇ 10 6 and 4.02 ⁇ 10 5 , respectively .
  • Handling the real source radioactive waste liquid designing and processing the processing system including the following treatment process for the characteristics of the source item: ultrafiltration ⁇ reverse osmosis raw water tank ⁇ security filter ⁇ first-order reverse osmosis ⁇ secondary reverse osmosis ⁇ first-class continuous electricity removal Salt ⁇ continuous electric desalination intermediate water tank ⁇ secondary continuous Electric demineralization ⁇ final production tank, designed to handle 200L / h.
  • the raw water contains radionuclide ions such as Cs + and Sr 2+ , and the total ⁇ activity level in the sample is determined by a low background beta meter.
  • the total ⁇ of raw water is 7060Bq/L. After ultrafiltration treatment, the total ⁇ is reduced to 5930Bq/L. After the first reverse osmosis treatment, the total ⁇ is reduced to 971Bq/L. After the secondary reverse osmosis treatment, the total ⁇ is reduced to 752Bq/ L, the total ⁇ of the first-stage continuous electric desalted freshwater effluent decreased to 1.22Bq/L, and the total ⁇ activity of the second-stage continuous electric desalted freshwater effluent reached 2.73 ⁇ 10 -2 Bq/L, which was lower than that of local tap water. The total ⁇ background level was 3.23 ⁇ 10 -2 Bq / L.
  • the purification factor for total ⁇ for the entire system was 2.59 ⁇ 10 5 .
  • the concentration factor of the entire system was 6.25, and the total beta activity level in the concentrate was 2.68 x 10 4 Bq/L.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Environmental & Geological Engineering (AREA)

Abstract

一种将放射性废水处理至天然本底放射性水平的系统,其包括依次连接的油水分离器(1)、保安过滤器(2)、铯吸附柱(3)、无机吸附产水箱(4)、纸芯过滤器(5)、自清洗过滤器(6)、超滤(7)、反渗透原水箱(8)、保安过滤器(2)、一级反渗透(9)、二级反渗透(10)、一级连续电除盐(11)、连续电除盐中间水箱(12)、二级连续电除盐(13)和最终产水箱(14)。利用该系统可以将放射性废水处理到天然本底放射性水平,并且在获得高去污因子的同时还可获得高的浓缩倍数。还公开了该系统的应用。

Description

将放射性废水处理至天然本底放射性水平的系统及应用 技术领域
本发明属废水处理领域,具体涉及一种将放射性废水处理至天然本底放射性水平的系统及应用。
背景技术
传统的放射性废水处理技术以蒸发和离子交换为主,蒸发工艺的投资和运行费用高,而离子交换工艺会产生大量的放射性废树脂,给后续的处理处置带来困难。
本发明所提供的方法采用分级净化的概念对放射性废水进行多级净化处理,从而在保证了处理效果的同时最大限度地发挥每一种工艺的优势,减少二次放射性废物的产生量。本发明分级净化的概念体现在两个方面:一方面体现在对水中杂质粒径大小的分级处理上,设置处理工艺的精度由粗到细,从自清洗过滤器到超滤、反渗透,其处理精度逐级提高,水中的杂质被分级净化处理,最终通过连续电除盐工艺利用电化学方法深度净化处理;另一方面体现在对放射性水中放射性物质照射剂量的分级处理上。在核电站的放射性废水中,尤其是核事故之后的放射性废水中,Cs-134和Cs-137是其中放射性占比最高的核素,照射剂量大,对设备辐射防护的要求高。铯吸附剂能够选择性地高效吸附去除原水中的铯离子,降低后续工艺的辐射防护需求,而吸附柱本身工艺形式简单,便于进行辐射防护,铯吸附剂选择 性强,放射性废物产生量少。除铯以外,放射性废水中含有其它多种放射性核素,同时还含有其它多种浓度更高的非放射性离子,反渗透工艺对这些离子均具有高的去除效率。采用铯吸附与反渗透工艺的组合,可以兼顾辐射防护的需求与放射性去除的需求。
本发明所提供的方法强化了对放射性核素深度去除的效果。其重要改进在于,采用了两级反渗透以及两级连续电除盐串联的组合工艺。更为重点的是,在两级连续电除盐工艺之间使用了一种特殊的药剂,通过使用该药剂,可以在极低的放射性水平下获得高的去污因子,从而使处理后出水的放射性水平达到天然本底水平,便于处理后水的回用或者环境排放,能够满足最严格的环境排放要求。
本发明所提供的方法便于放射性操作、便于二次放射性废物的处理处置。当放射性废水含有油类、悬浮物、有机物等杂质时,这些杂质会对去除放射性核素的主要处理工艺产生影响,降低其处理效率或者有效工作时间,从而增加放射性废物的产生量。本发明中提供了纸芯过滤器、自清洗过滤器和超滤的组合工艺形式用于放射性废水的预处理。纸芯过滤器能够截留原水中大的颗粒物,保证后续工艺的稳定运行,同时废弃的纸芯过滤器便于后续的处理处置。自清洗过滤器可连续自动运行,其产生的污泥可返回纸芯过滤器处理,因此其本身可连续运行,几乎不产生二次放射性废物。纸芯过滤器和自清洗过滤器可保证超滤工艺的连续稳定运行,超滤工艺对悬浮物、胶体和有机物的深度去除可保证后续反渗透工艺的稳定运行,延长反渗透膜的使用寿命。
本发明所提供的方法能够减少放射性浓缩液的产生量,提高浓缩倍数。每级反渗透都采用多段式设计,提高每一级反渗透的回收率。二级反渗透浓水、两级连续电除盐浓水都返回一级反渗透再处理以提高回收率,一级反渗透的浓水大部分进行循环处理以提高回收率,降低放射性浓缩液的产生量。
发明内容
针对现有技术中的不足,本发明的目的在于提供一种将放射性废水处理至天然本底放射性水平的系统及应用。
为了实现上述目的,本发明采取的技术方案是:
一种将放射性废水处理至天然本底放射性水平的系统,所述系统主要包括依次连接的油水分离器、保安过滤器、铯吸附柱、无机吸附产水箱、纸芯过滤器、自清洗过滤器、超滤、反渗透原水箱、保安过滤器、一级反渗透、二级反渗透、一级连续电除盐、连续电除盐中间水箱、二级连续电除盐和最终产水箱。
所述系统还包括现场进水接口、现场冲洗接口、现场浓水接口、现场产水接口、产水管线、农水管线、加药管线、冲洗管线和浸泡管线。
所述油水分离器是去除原水中的油类杂质,降低油类物质对整个处理工艺的影响;所述铯吸附柱是去除原水中放射性的铯离子,铯吸附柱之前的保安过滤器起到保护铯吸附柱的作用,防止颗粒物堵塞吸附柱;所述纸芯过滤器,是去除放射性废水中的颗粒物,容纳了颗粒物的纸芯过滤器便于后续的处理处置;所述纸芯过滤器的出水进入自 清洗过滤器,自清洗过滤器利用滤网直接拦截水中的杂质,进一步去除来水中的悬浮物和颗粒物;所述自清洗过滤器用于自动排污;所述自清洗过滤器出水进入超滤装置,超滤能够深度去除来水中以胶体形态存在的杂质;所述超滤出水进入反渗透原水箱;所述反渗透原水箱的水经泵提升后进入保安过滤器,所述保安过滤器去除水中的颗粒杂质,保护后续工艺的反渗透膜,所述保安过滤器的出水依次进入一级反渗透和二级反渗透,两级反渗透能够广泛去除来水中的盐分和放射性核素,大大降低来水的放射性活度;所述二级反渗透出水进入一级连续电除盐。
所述一级连续电除盐的产水进入连续电除盐中间水箱,同时往该中间水箱中加入活化剂,而后经泵提升后进入二级连续电除盐,二级连续电除盐的出水进入产水箱,经泵提升后与现场产水接口连接。
所述两级连续电除盐能够深度去除水中的放射性核素,将放射性废水处理至天然本底放射性水平。
所述应用包括将放射性废水经系统现场注水口注入,经过所述系统处理,最终得到天然本底放射性。
在本发明中,超滤、一级反渗透、一级连续电除盐和二级连续电除盐为必要工艺。油水分离器、铯吸附柱、纸芯过滤器、自清洗过滤器、二级反渗透为可选工艺。
当进水中含油量>0.5mg/L时需要油水分离器,否则不需要。当不需要油水分离器时,进水经泵加压后直接进入后续的保安过滤器。
当进水中铯的放射性活度>105Bq/L时需要铯吸附柱,否则不需 要。当不需要铯吸附柱时,进水经泵加压后直接进入纸芯过滤器。
纸芯过滤器和自清洗过滤器为本发明的可选工艺,当进水中悬浮颗粒物的浓度高于5mg/L时需要纸芯过滤器和自清洗过滤器,否则不需要。
铯吸附工艺由2根铯吸附柱串联组成。当位于串联工艺前端的铯吸附柱吸附饱和后,更换新的吸附柱,同时调整2根吸附柱的串联顺序,使未更换的吸附柱位于串联工艺的前端,新更换的吸附柱位于串联工艺的后端。
一级反渗透的浓水分成2部分,一部分浓水作为整个系统的浓缩液通过现场浓水接口进入放射性浓缩液贮存装置,另外一部分浓水经加压后返回高压泵后循环处理以提高回收率。
二级反渗透的浓水全部返回一级反渗透前进行再处理以提高回收率。
纸芯过滤器工作一段时间失效后可更换滤芯,更换后的滤芯可直接作为放射性废物处理处置。
自清洗过滤器连续工作,自动排污。
超滤工作一段时间后定期进行正洗和反洗,正洗采用自清洗过滤器的来水,反洗采用反渗透原水箱的水。超滤的冲洗水与现场的冲洗水接口相连接。
一级反渗透和二级反渗透均采用多段式布置以提高回收率。
一级连续电除盐的浓水全部返回一级反渗透前进行再处理以提高回收率。
二级连续电除盐的浓水全部返回一级反渗透前进行再处理以提高回收率。
本发明所提供的处理装置与放射性废水处理现场有多个接口,包括进水口、浓缩液排水口、净化水排水口和冲洗水接口。
可以将最终产水箱的水通过泵加压返回超滤、一级反渗透、二级反渗透、一级连续电除盐和二级连续电除盐,以便在设备停运期间对上述设备进行维护。
附图说明
图1为本申请所述处理系统的示意图。
其中,1是油水分离器、2是保安过滤器、3是铯吸附柱、4是无机吸附产水箱、5是纸芯过滤器、6是自清洗过滤器、7是超滤、8是反渗透原水箱、9是一级反渗透、10是二级反渗透、11是一级连续电除盐、12是连续电除盐中间水箱、13是二级连续电除盐、14是最终产水箱,15是现场进水接口、16是现场冲洗接口、17是现场浓水接口、18是现场产水接口。
具体实施方式
实施例1:
设计加工含有上述发明的完整系统,处理模拟核电站事故后的放射性废水。系统的设计处理量为1m3/h,模拟放射性废水中含有硼酸3323mg/L,Cs+1500μg/L,Co2+520μg/L,Sr2+633μg/L。
Cs+、Sr2+、Co2+的浓度采用ICP-MS法进行测定,硼酸浓度采用甲亚胺-H酸分光光度法进行测定。
上述废水经过铯吸附住处理之后,水中Cs+的浓度降至0.054μg/L,去污因子为27778。其它核素离子和硼酸的浓度不变。为了分析上的便利,在铯吸附出水暂存箱中重新投加Cs+,将其浓度调整为461μg/L。
一级反渗透和二级反渗透均采取3段式设计,一级反渗透浓水的排放量为0.2m3/h。一级反渗透淡水出水中硼酸的浓度为1790mg/L,Cs+、Co2+、Sr2+的浓度分别为119μg/L、3.37μg/L和5.70μg/L。二级反渗透淡水出水中硼酸的浓度为1642mg/L,Cs+、Co2+、Sr2+的浓度分别为41μg/L、0.365μg/L和1.24μg/L。
一级连续电除盐淡水出水中硼酸的浓度为1093mg/L,Cs+、Co2+、Sr2+的浓度分别为0.202μg/L、0.086μg/L和0.368μg/L。为了分析上的便利,在连续电除盐中间水箱中重新投加Cs+、Co2+、Sr2+,将其浓度分别调整为461μg/L、601μg/L和517μg/L。
调整后的模拟放射性废水经过二级连续电除盐处理后,淡水出水中硼酸的浓度为1001mg/L,Cs+、Co2+、Sr2+的浓度分别为0.57μg/L、1.6μg/L和2.2μg/L。
整个系统对硼酸的去除率为69.9%,对Cs+、Co2+、Sr2+的净化因子分别为5.13×1010、2.27×106和4.02×105
实施例2:
处理真实源项放射性废液,针对源项特点,设计加工包含如下处理工艺的处理系统:超滤→反渗透原水箱→保安过滤器→一级反渗透→二级反渗透→一级连续电除盐→连续电除盐中间水箱→二级连续 电除盐→最终产水箱,设计处理量为200L/h。
原水中含有Cs+、Sr2+等放射性核素离子,采用低本底β测量仪测定样品中的总β放射性活度水平。
原水的总β为7060Bq/L,经超滤处理后总β降至5930Bq/L,经过一级反渗透处理后总β降至971Bq/L,经过二级反渗透处理后总β降至752Bq/L,一级连续电除盐淡水出水中总β降至1.22Bq/L,二级连续电除盐淡水出水中总β放射性活度水平达到2.73×10-2Bq/L,低于当地自来水的总β本底水平3.23×10-2Bq/L。
整个系统对总β的净化因子为2.59×105
整个系统的浓缩倍数为6.25,浓缩液中的总β放射性活度水平为2.68×104Bq/L。
最后应说明的是:显然,上述实施例仅仅是为清楚地说明本申请所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本申请型的保护范围之中。

Claims (6)

  1. 一种将放射性废水处理至天然本底放射性水平的系统,其特征在于:所述系统主要包括依次连接的油水分离器、保安过滤器、铯吸附柱、无机吸附产水箱、纸芯过滤器、自清洗过滤器、超滤、反渗透原水箱、保安过滤器、保安过滤器、一级反渗透、二级反渗透、一级连续电除盐、连续电除盐中间水箱、二级连续电除盐和最终产水箱。
  2. 根据权利要求1所述的系统,其特征在于:所述系统还包括现场进水接口、现场冲洗接口、现场浓水接口、现场产水接口、产水管线、农水管线、加药管线、冲洗管线和浸泡管线。
  3. 根据权利要求2所述的系统,其特征在于:所述油水分离器是去除原水中的油类杂质,降低油类物质对整个处理工艺的影响;所述铯吸附柱是去除原水中放射性的铯离子,铯吸附柱之前的保安过滤器起到保护铯吸附柱的作用,防止颗粒物堵塞吸附柱;所述纸芯过滤器,是去除放射性废水中的颗粒物,容纳了颗粒物的纸芯过滤器便于后续的处理处置;所述纸芯过滤器的出水进入自清洗过滤器,自清洗过滤器利用滤网直接拦截水中的杂质,进一步去除来水中的悬浮物和颗粒物;所述自清洗过滤器用于自动排污;所述自清洗过滤器出水进入超滤装置,超滤能够深度去除来水中以胶体形态存在的杂质;所述超滤出水进入反渗透原水箱;所述反渗透原水箱的水经泵提升后进入保安过滤器,所述保安过滤器去除水中的颗粒杂质,保护后续工艺的反渗透膜,所述保安过滤器的出水依次进入一级反渗透和二级反渗 透,两级反渗透能够广泛去除来水中的盐分和放射性核素,大大降低来水的放射性活度;所述二级反渗透出水进入一级连续电除盐。
  4. 根据权利要求1所述的系统,其特征在于:所述一级连续电除盐的产水进入连续电除盐中间水箱,同时往该中间水箱中加入活化剂,而后经泵提升后进入二级连续电除盐,二级连续电除盐的出水进入产水箱,经泵提升后与现场产水接口连接。
  5. 根据权利要求1所述的系统,其特征在于:所述两级连续电除盐能够深度去除水中的放射性核素,将放射性废水处理至天然本底放射性水平。
  6. 权利要求1所述系统的应用,其特征在于:所述应用包括将放射性废水经系统现场注水口注入,经过所述系统处理,最终得到天然本底放射性。
PCT/CN2015/081902 2015-05-26 2015-06-19 将放射性废水处理至天然本底放射性水平的系统及应用 WO2016187915A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2015102717028 2015-05-26
CN201510271702.8A CN104900286B (zh) 2015-05-26 2015-05-26 将放射性废水处理至天然本底放射性水平的系统及应用

Publications (1)

Publication Number Publication Date
WO2016187915A1 true WO2016187915A1 (zh) 2016-12-01

Family

ID=54032901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/081902 WO2016187915A1 (zh) 2015-05-26 2015-06-19 将放射性废水处理至天然本底放射性水平的系统及应用

Country Status (2)

Country Link
CN (1) CN104900286B (zh)
WO (1) WO2016187915A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107601691A (zh) * 2017-09-15 2018-01-19 许继联华国际环境工程有限责任公司 一种浓盐水处理装置及方法
CN108461169A (zh) * 2018-01-29 2018-08-28 岭东核电有限公司 一种核素零排放的铅铋堆放射性废液净化系统
CN109179812A (zh) * 2018-10-29 2019-01-11 上海明坤水处理设备有限公司 模块化移动式反渗透浓水处理设备及其处理方法
CN110473644A (zh) * 2018-05-09 2019-11-19 上海核工程研究设计院有限公司 一种放射性废液除硼的装置和方法
CN110862168A (zh) * 2019-08-29 2020-03-06 深圳中拓天达环境工程有限公司 电极箔含磷清洗废水处理系统及其处理工艺
CN111646589A (zh) * 2020-05-06 2020-09-11 广东粤海水务股份有限公司 一种用于饮用水重金属突发污染的应急处理方法
CN112723576A (zh) * 2021-01-08 2021-04-30 长庆工程设计有限公司 一种闭式循环水系统内循环用除盐水制备装置及方法
CN112723644A (zh) * 2021-01-08 2021-04-30 长庆工程设计有限公司 一种提高除盐水产水率的装置、系统及方法
CN113113168A (zh) * 2021-03-03 2021-07-13 广东核电合营有限公司 一种核电站废液处理系统

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106448788A (zh) * 2016-12-02 2017-02-22 北京科泰兴达高新技术有限公司 一种受放射性物质污染的水质深度净化系统
CN106548816A (zh) * 2016-12-23 2017-03-29 岭东核电有限公司 一种组合式的放射性废水处理装置
CN107170505A (zh) * 2017-06-29 2017-09-15 江苏金环环保设备有限公司 一种核电厂含硼放射性废液的组合处理系统及方法
CN110349690B (zh) * 2018-04-03 2021-09-21 清华大学 放射性废液处理方法及装置
CN110379532B (zh) * 2018-04-13 2023-08-25 清华大学 放射性废液处理方法及装置
CN110391034B (zh) * 2018-04-19 2021-04-16 清华大学 含硼放射性废液处理装置及方法
CN109621727B (zh) * 2018-12-04 2021-01-26 天津大学 一种超低压反渗透系统及其处理放射性污染水中碘离子的方法
CN109754888A (zh) * 2019-01-16 2019-05-14 中国辐射防护研究院 一种利用核电站中废吸附剂处理放射性废油的方法
CN111768885B (zh) * 2020-06-10 2022-07-26 清华大学 放射性废液处理系统及方法
CN111689625A (zh) * 2020-07-15 2020-09-22 上海核工程研究设计院有限公司 一种核电厂蒸汽发生器排污水的净化系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11244854A (ja) * 1998-03-06 1999-09-14 Kurita Water Ind Ltd 純水の製造方法
JPH11262771A (ja) * 1998-03-16 1999-09-28 Kurita Water Ind Ltd 純水の製造方法
CN103137231A (zh) * 2011-11-30 2013-06-05 荏原工业洗净株式会社 用于被放射性铯污染的固体状材料的去污染方法和设备
CN103177784A (zh) * 2013-03-28 2013-06-26 清华大学 一种处理放射性废水的方法
WO2014150792A1 (en) * 2013-03-15 2014-09-25 Hydronovation, Inc. Electrochemical water treatment system and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102930912A (zh) * 2012-11-22 2013-02-13 中电投远达环保工程有限公司 超标放射性洗衣废水处理系统
CN103871536B (zh) * 2014-03-27 2016-05-04 中国能源建设集团广东省电力设计研究院有限公司 核电厂潜在放射性含油废水处理系统
CN104528991A (zh) * 2014-12-16 2015-04-22 天津市瑞德赛恩水业有限公司 利用生活污水制备一级除盐水的系统及工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11244854A (ja) * 1998-03-06 1999-09-14 Kurita Water Ind Ltd 純水の製造方法
JPH11262771A (ja) * 1998-03-16 1999-09-28 Kurita Water Ind Ltd 純水の製造方法
CN103137231A (zh) * 2011-11-30 2013-06-05 荏原工业洗净株式会社 用于被放射性铯污染的固体状材料的去污染方法和设备
WO2014150792A1 (en) * 2013-03-15 2014-09-25 Hydronovation, Inc. Electrochemical water treatment system and method
CN103177784A (zh) * 2013-03-28 2013-06-26 清华大学 一种处理放射性废水的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YU , SHAOQING ET AL.: "Post-Accident High-Level Radiation Contaminated Water Treatment System in Fukushima Dai-ichi Nuclear Power Plant", RADIATION PROTECTION, vol. 33, no. 5, 30 September 2013 (2013-09-30), pages 295 - 297, ISSN: 1000-8187 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107601691A (zh) * 2017-09-15 2018-01-19 许继联华国际环境工程有限责任公司 一种浓盐水处理装置及方法
CN108461169A (zh) * 2018-01-29 2018-08-28 岭东核电有限公司 一种核素零排放的铅铋堆放射性废液净化系统
CN110473644A (zh) * 2018-05-09 2019-11-19 上海核工程研究设计院有限公司 一种放射性废液除硼的装置和方法
CN109179812A (zh) * 2018-10-29 2019-01-11 上海明坤水处理设备有限公司 模块化移动式反渗透浓水处理设备及其处理方法
CN110862168A (zh) * 2019-08-29 2020-03-06 深圳中拓天达环境工程有限公司 电极箔含磷清洗废水处理系统及其处理工艺
CN111646589A (zh) * 2020-05-06 2020-09-11 广东粤海水务股份有限公司 一种用于饮用水重金属突发污染的应急处理方法
CN112723576A (zh) * 2021-01-08 2021-04-30 长庆工程设计有限公司 一种闭式循环水系统内循环用除盐水制备装置及方法
CN112723644A (zh) * 2021-01-08 2021-04-30 长庆工程设计有限公司 一种提高除盐水产水率的装置、系统及方法
CN113113168A (zh) * 2021-03-03 2021-07-13 广东核电合营有限公司 一种核电站废液处理系统

Also Published As

Publication number Publication date
CN104900286A (zh) 2015-09-09
CN104900286B (zh) 2018-02-06

Similar Documents

Publication Publication Date Title
WO2016187915A1 (zh) 将放射性废水处理至天然本底放射性水平的系统及应用
CN104900283B (zh) 一种核电厂放射性废液处理系统
CN104291489B (zh) 高温气冷堆元件核芯制备工艺废水的处理方法
CN110349689B (zh) 核电站放射性废液处理装置
CN106548816A (zh) 一种组合式的放射性废水处理装置
Chen et al. Influence of boron on rejection of trace nuclides by reverse osmosis
GB2583276A (en) Method and system for concentrating and solidifying nuclides in radioactive liquid waste
CN109346203A (zh) 核生化洗消废液处理系统
CN201965936U (zh) 具有三防功能的放射性污水应急处理系统
CN110349690B (zh) 放射性废液处理方法及装置
CN110391034B (zh) 含硼放射性废液处理装置及方法
CN110379532B (zh) 放射性废液处理方法及装置
CN106630304A (zh) 一种去除饮用水中放射性污染物的工艺装置
CN101074119B (zh) 钴源井水循环处理系统
CN208045113U (zh) 放射废液处理系统
KR101725258B1 (ko) 이온교환 수지를 이용한 전기동력학적 고효율 우라늄 오염 토양 처리 방법
CN104860439A (zh) 移动式放射性废液处理装置及处理方法
CN110491540B (zh) 一种放射性废物的处理方法
CN108461169A (zh) 一种核素零排放的铅铋堆放射性废液净化系统
CN212181940U (zh) 一种高盐含量放射性废水的处理装置
CN113113168A (zh) 一种核电站废液处理系统
CN110745973A (zh) 一种带有监控装置的核废水处理系统
CN213988329U (zh) 一种处理被放射性污染海水的装置
CN109493988A (zh) 核生化洗消废液预处理装置及处理方法
CN104016446B (zh) 一种反渗透废水处理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15892996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15892996

Country of ref document: EP

Kind code of ref document: A1