WO2016187873A1 - 基于互联网协议的语音voip通信方法与装置 - Google Patents

基于互联网协议的语音voip通信方法与装置 Download PDF

Info

Publication number
WO2016187873A1
WO2016187873A1 PCT/CN2015/080068 CN2015080068W WO2016187873A1 WO 2016187873 A1 WO2016187873 A1 WO 2016187873A1 CN 2015080068 W CN2015080068 W CN 2015080068W WO 2016187873 A1 WO2016187873 A1 WO 2016187873A1
Authority
WO
WIPO (PCT)
Prior art keywords
scheduling
uplink
pusch
downlink
pusch resource
Prior art date
Application number
PCT/CN2015/080068
Other languages
English (en)
French (fr)
Inventor
陈益亮
王一凡
孔祥振
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580033024.XA priority Critical patent/CN106465381B/zh
Priority to PCT/CN2015/080068 priority patent/WO2016187873A1/zh
Publication of WO2016187873A1 publication Critical patent/WO2016187873A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the embodiments of the present invention relate to the field of mobile communications technologies, and in particular, to a VOIP communication method and apparatus.
  • VOIP voice over Internet Protocol
  • PUCCH Physical Uplink Control Channel
  • the embodiment of the invention provides a VOIP communication method and device to improve the call quality of the VOIP service.
  • a first aspect of the embodiments of the present invention provides a voice VOIP communication method of the Internet protocol, including:
  • the wireless access device determines the user equipment UE that is performing the VOIP service
  • the wireless access device monitors scheduling of the UE
  • the radio access device actively performs scheduling of the physical uplink shared channel PUSCH on the UE according to the monitored scheduling, to allocate PUSCH resources to the UE;
  • the wireless access device sends an authorization of the PUSCH resource to the UE.
  • the wireless access device monitors scheduling of the UE, including:
  • the wireless access device monitors downlink scheduling for the UE
  • the radio access device actively performs scheduling on the PUSCH for the UE according to the monitored scheduling, to allocate the PUSCH resource to the UE, including:
  • the radio access device When the radio access device detects the downlink scheduling of the UE, the UE performs the PUSCH scheduling on the UE to allocate the PUSCH resource to the UE, where the PUSCH resource is used for the downlink scheduling. feedback of.
  • the authorization time of the downlink scheduling is T
  • the feedback timing of the downlink scheduling is T+K1
  • K1 is a feedback delay of the feedback of the downlink scheduling grant to the downlink scheduling.
  • the value of K1 is 4, and the time division duplex TDD communication In the system, the value of K1 is determined according to the uplink and downlink subframe ratio and the HARQ feedback timing of each uplink and downlink subframe ratio.
  • the authorization moment of the PUSCH resource is T+K1 - K2, where K2 is the transmission delay of the grant of the PUSCH resource to the PUSCH transmission.
  • the value of K2 is 4, and in the TDD communication system, the value of K2 is The PUSCH transmission timing is determined according to the uplink and downlink subframe ratio and the uplink and downlink subframe ratio.
  • the wireless access device monitors scheduling of the UE, including:
  • the wireless access device monitors uplink scheduling for the UE
  • the radio access device actively performs scheduling on the PUSCH for the UE according to the monitored scheduling, to allocate the PUSCH resource to the UE, including:
  • the UE When the radio access device does not perform uplink scheduling on the UE, the UE performs the PUSCH scheduling on the UE to allocate the PUSCH resource to the UE, where the PUSCH resource is used for the UE.
  • the UE transmits uplink VOIP data.
  • the preset time length when the UE is in a call state, the preset time length is a first time length; When the UE is in the silent state, the preset time length is a second time length, and the first time length is less than the second time length.
  • a second aspect of the embodiments of the present invention provides a voice VOIP communication method of the Internet protocol, including:
  • the user equipment UE receives the authorization of the physical uplink shared channel PUSCH resource allocated by the wireless access device to the UE, where the VOIP service is being performed between the UE and the wireless access device, and the PUSCH resource is the wireless
  • the access device actively allocates the UE to the UE according to the monitoring of the scheduling of the UE;
  • the UE performs uplink transmission on the determined PUSCH resource.
  • the PUSCH resource is a resource that is used by the radio access device to actively allocate feedback for the downlink scheduling to the UE when performing downlink scheduling on the UE.
  • the authorization time of the downlink scheduling is T
  • the feedback timing of the downlink scheduling is T+K1
  • K1 is a feedback delay of the feedback of the downlink scheduling grant to the downlink scheduling.
  • the value of K1 is 4, and the time division duplex TDD communication In the system, the value of K1 is determined according to the uplink and downlink subframe ratio and the HARQ feedback timing of each uplink and downlink subframe ratio.
  • the authorization moment of the PUSCH resource is T+K1 - K2, where K2 is the transmission delay of the grant of the PUSCH resource to the PUSCH transmission.
  • the value of K2 is 4, and in the TDD communication system, the value of K2 is The PUSCH transmission timing is determined according to the uplink and downlink subframe ratio and the uplink and downlink subframe ratio.
  • the PUSCH resource is a resource that is used by the radio access device to actively allocate feedback for the downlink scheduling to the UE when performing downlink scheduling on the UE.
  • the preset time length when the UE is in a call state, the preset time length is a first time length; When the UE is in the silent state, the preset time length is a second time length, and the first time The length between the two is less than the second length of time.
  • a third aspect of the embodiments of the present invention provides a voice VOIP communication device based on an Internet protocol, which is located in a wireless access device, and includes:
  • a determining unit configured to determine a user equipment UE that is performing VOIP service
  • a monitoring unit configured to monitor a scheduling of the UE determined by the determining unit
  • a scheduling unit configured to actively perform scheduling of a physical uplink shared channel PUSCH on the UE according to the scheduling monitored by the monitoring unit, to allocate a PUSCH resource to the UE;
  • a sending unit configured to send the authorization of the PUSCH resource to the UE.
  • the monitoring unit is specifically configured to: monitor downlink scheduling of the UE;
  • the scheduling unit is specifically configured to: when the monitoring unit detects the downlink scheduling of the UE, actively perform scheduling on the PUSCH for the UE, to allocate the PUSCH resource, the PUSCH resource to the UE Feedback for the downlink scheduling.
  • the authorization time of the downlink scheduling is T
  • the feedback time of the downlink scheduling is T+K1
  • K1 is a feedback delay of the feedback of the downlink scheduling grant to the downlink scheduling.
  • the value of K1 is 4, and the time division duplex TDD communication In the system, the value of K1 is determined according to the uplink and downlink subframe ratio and the HARQ feedback timing of each uplink and downlink subframe ratio.
  • the authorization moment of the PUSCH resource is T+K1 - K2, where K2 is the transmission delay of the grant of the PUSCH resource to the PUSCH transmission.
  • the value of K2 is 4, and in the TDD communication system, the value of K2 is The PUSCH transmission timing is determined according to the uplink and downlink subframe ratio and the uplink and downlink subframe ratio.
  • the monitoring unit is specifically configured to: monitor an uplink scheduling of the UE;
  • the scheduling unit is specifically configured to: when the monitoring unit detects that the radio access device does not perform uplink scheduling on the UE within a preset time length, actively perform scheduling on the PUSCH for the UE, The UE allocates the PUSCH resource, and the PUSCH resource is used by the UE to send uplink VOIP data.
  • the preset time length when the UE is in a call state, the preset time length is a first time length; When the UE is in the silent state, the preset time length is a second time length, and the first time length is less than the second time length.
  • a fourth aspect of the embodiments of the present invention provides a voice VOIP communication device based on an Internet protocol, which is located in a user equipment UE, and includes:
  • a receiving unit configured to receive, by the radio access device, an authorization of a physical uplink shared channel PUSCH resource allocated by the radio access device, where the VOIP service is being performed between the UE and the radio access device, and the PUSCH resource is
  • the wireless access device actively allocates the UE to the UE according to the monitoring of the scheduling of the UE;
  • a determining unit configured to determine the PUSCH resource according to the authorization
  • a sending unit configured to perform uplink transmission on the determined PUSCH resource.
  • the PUSCH resource is a resource that is used by the radio access device to actively allocate feedback for the downlink scheduling to the UE when performing downlink scheduling on the UE.
  • the authorization time of the downlink scheduling is T
  • the feedback time of the downlink scheduling is T+K1
  • K1 is a feedback delay of the feedback of the downlink scheduling grant to the downlink scheduling.
  • the value of K1 is 4, and the time division duplex TDD communication In the system, the value of K1 is determined according to the uplink and downlink subframe ratio and the HARQ feedback timing of each uplink and downlink subframe ratio.
  • the authorization moment of the PUSCH resource It is T+K1-K2, where K2 is the transmission delay of the PUSCH transmission of the PUSCH resource.
  • the value of K2 is 4, and in the TDD communication system, the value of K2 is The PUSCH transmission timing is determined according to the uplink and downlink subframe ratio and the uplink and downlink subframe ratio.
  • the PUSCH resource is a resource that is actively allocated to the UE for the UE to send uplink VOIP data when the radio access device does not perform uplink scheduling on the UE within a preset time length.
  • the preset time length when the UE is in a call state, the preset time length is a first time length; When the UE is in the silent state, the preset time length is a second time length, and the first time length is less than the second time length.
  • a fifth aspect of the embodiments of the present invention provides a program, when the processor invokes the program, to perform the method according to the first aspect of the embodiments of the present invention or any possible implementation manner thereof.
  • a sixth aspect of the embodiments of the present invention provides a program, when the processor invokes the program, to perform the method according to the second aspect of the embodiments of the present invention or any possible implementation manner thereof.
  • the radio access device finds the UE that is performing the VOIP service, and then determines whether to actively perform PUSCH scheduling on the UE according to the scheduling situation of the UE, so as to allocate the PUSCH resource to the UE, so that the HARQ feedback can be in the PUSCH.
  • the uplink transmission and in the case of the SR miss detection, the UE can still perform uplink transmission to reduce the delay caused by the PUCCH demodulation failure or error, and improve the user's call experience.
  • FIG. 1 is a schematic flowchart diagram of a first embodiment of a VOIP communication method according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a second embodiment of a VOIP communication method according to an embodiment of the present invention
  • 3 is a timing chart of HARQ feedback when the ratio is 0;
  • Figure 5 is a HARQ feedback timing diagram when the ratio is 2;
  • FIG. 6 is a schematic flowchart diagram of a third embodiment of a VOIP communication method according to an embodiment of the present disclosure
  • FIG. 7 is a schematic flowchart diagram of a fourth embodiment of a VOIP communication method according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a first embodiment of a communication device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a second embodiment of a communication apparatus according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a third embodiment of a communication apparatus according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a fourth embodiment of a communication apparatus according to an embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • long-term Evolution system LTE frequency division duplex (English: Frequency Division Duplex, abbreviation: FDD) system, LTE time division duplex (English: Time Division Duplex, abbreviation: TDD), Universal Mobile Telecommunication System (English: Universal Mobile Telecommunication System, abbreviation : UMTS) or Worldwide Interoperability for Microwave Access (WiMAX) communication system.
  • the user equipment (English: User Equipment, abbreviation: UE) provided by the embodiment of the present invention includes a terminal (English: Terminal), a mobile station (English: Mobile Station, abbreviation: MS), or a mobile terminal (English: Mobile Terminal), etc.
  • the UE may communicate with one or more core networks via a Radio Access Network (English: Radio Access Network, RAN), for example, the UE may be a mobile phone (or "cellular" phone) or a computer with a mobile terminal. Etc.
  • the UE may also be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges voice and/or data with the wireless access network.
  • the wireless access device refers to a device that accesses a UE to a wireless network, and may be, for example, a base station in GSM or CDMA (English: Base Transceiver Station, abbreviated as: BTS), or may be in WCDMA.
  • BTS Base Transceiver Station
  • the base station (English: NodeB, abbreviation: NB) may also be an evolved base station (English: Evolutional Node B, abbreviation: eNB) in LTE.
  • the PUCCH is used to carry uplink control information, for example, Hybrid Automatic Repeat reQuest (HARQ) feedback information, and is used to request an uplink resource scheduling scheduling request indication (English: Scheduling Request Indicator, abbreviation: SRI) )Wait.
  • HARQ Hybrid Automatic Repeat reQuest
  • SRI Scheduling Request Indicator
  • the VOIP service is sensitive to packet loss rate and delay. For the problem that the PUCCH has poor demodulation performance when the uplink interference is large, the transmission of the uplink control information in the VOIP scenario needs to be optimized to improve the voice communication quality.
  • the feedback state is divided into ACK, NACK, and DTX tristates
  • ACK indicates that the physical downlink shared channel (English: Physical Downlink Share Channel, abbreviated: PDSCH) is correctly demodulated
  • NACK indicates PDSCH demodulation.
  • DTX indicates that the downlink control information (English: Downlink Control Information, abbreviation: DCI) is lost.
  • the HARQ feedback of the downlink data is mainly performed on the PUCCH. However, if the uplink data needs to be transmitted on the physical uplink shared channel (English: Physical Uplink Share Channel, abbreviated as: PUSCH), the HARQ feedback can be transmitted on the PUSCH. .
  • the embodiment of the present invention actively triggers the PUSCH scheduling at the time of the HARQ feedback to feed back the ACK or the NACK on the PUSCH. Since the PUSCH demodulation performance is significantly better than the PUCCH, the PUCCH demodulation performance can be reduced in a more complicated wireless environment. The impact of the difference reduces the probability that the HARQ feedback is misunderstood and improves the user's call experience.
  • PUCCH channel interference is unbalanced, and the signal to interference ratio (SINR) of PUCCH format 1 (format1) has a low bias, which may result in SR.
  • SINR Signal to interference ratio
  • SR Scheduling Request, abbreviated: SR
  • Demodulation failure SR high probability missed detection
  • eNB device on the radio access network side
  • UP uplink grant, abbreviation: UP
  • PUSCH scheduling can still allocate uplink resources to the UE in the case of SR missed detection, thereby reducing the impact of SR miss detection and improving the user's call experience.
  • FIG. 1 is a schematic flowchart diagram of a first embodiment of a VOIP communication method according to an embodiment of the present invention.
  • the VOIP communication method described in this embodiment includes the following steps:
  • the wireless access device determines a UE that is performing VOIP service.
  • the wireless access device monitors scheduling of UEs that are performing VOIP services.
  • the radio access device actively performs scheduling of the PUSCH for the UE targeted by the scheduling according to the monitored scheduling, to allocate the PUSCH resource to the UE.
  • the wireless access device sends an authorization of the allocated PUSCH resource to the UE.
  • the radio access device finds the UE that is performing the VOIP service, and then determines whether to actively perform PUSCH scheduling on the UE according to the scheduling situation of the UE, so as to allocate the PUSCH resource to the UE, so that the HARQ feedback may be
  • the UE transmits on the PUSCH, and in the case of the SR missed detection, the UE can still perform uplink transmission to reduce the delay caused by the PUCCH demodulation failure or error, and improve the user's call experience.
  • VOIP services may include, but are not limited to, video services, voice services, or short message services. Determining whether the UE is performing VOIP service can be determined by determining whether the UE is performing one or more of these types of services.
  • the VOIP service can be determined by a QoS Class Identifier (QCI), where QoS is Quality of Service (QoS: QoS).
  • QCI QoS Class Identifier
  • DRB Data Radio Bearer
  • QCI1, QCI2, and QCI5 are all voice-related QCIs.
  • the QCI1 carries the voice service
  • the QCI2 carries the video service
  • the QCI5 carries the session initiation protocol (English: Session Initiation Protocol, SIP) signaling, for example, the SIP signaling used to establish and release the voice service.
  • SIP Session Initiation Protocol
  • the voice service When the voice service is established, it is completed by sending SIP signaling to the core network in QCI5, triggering the core network to establish a QCI1 bearer, or completing the QCI1 and QCI2 bearers for the videophone.
  • the voice service When the voice service is terminated, the corresponding SIP signaling is transmitted on the QCI5 to trigger the core network to release the QCI1 to complete.
  • QCI1 and QCI2 need to be released to complete, and the call is considered to be ended. Therefore, it is determined whether the UE is performing VOIP service, and the start and end can be determined by the SIP signaling of the QCI5; or can be determined by the bearer of the QCI1.
  • the radio access device monitors the scheduling of the UE that is performing the VOIP service, and may include monitoring the downlink scheduling of the UE, and may also include monitoring the uplink scheduling of the UE.
  • it may be determined whether to actively perform scheduling of the PUSCH for the UE according to the downlink scheduling or uplink scheduling of the UE.
  • the radio access device When the radio access device detects the downlink scheduling of the UE, the UE performs the PUSCH scheduling on the UE to allocate the PUSCH resource to the UE, where the PUSCH resource is used for the feedback of the downlink scheduling, that is, the UE is used in the PUSCH resource.
  • the feedback of the downlink VOIP packet for the downlink scheduling is sent.
  • the UE When the radio access device does not perform uplink scheduling on the UE for a preset time length, the UE performs the PUSCH scheduling on the UE to allocate the PUSCH resource to the UE, where the PUSCH resource is used for the UE to send the uplink VOIP data.
  • FIG. 2 is a second implementation of a VOIP communication method according to an embodiment of the present invention.
  • the VOIP communication method described in this embodiment includes the following steps:
  • the wireless access device determines a UE that is performing VOIP service.
  • the wireless access device monitors downlink scheduling of the UE.
  • the radio access device detects the downlink scheduling of the UE, the UE performs the PUSCH scheduling on the UE to allocate the PUSCH resource to the UE, where the PUSCH resource is used for feedback of the downlink scheduling.
  • the wireless access device sends an authorization of the allocated PUSCH resource to the UE.
  • the method for determining the UE that is performing the VOIP service is the same as the first embodiment, and details are not described herein again.
  • HARQ uses a stop-and-wait protocol to send data.
  • the stop protocol after the sender sends the data, it needs to stop and wait for the feedback from the receiver. After receiving the feedback, it can decide whether to send the new packet or send the packet again. If you stop and wait for feedback after each message is sent, it will result in wasted resources and low throughput, so the concept of HARQ process is introduced.
  • the sender can use another HARQ process to continue transmitting data.
  • Each transmission time interval (English: Transmission Time Interval, abbreviation: TTI) only corresponds to one HARQ process number, and considers a reasonable upper limit of processing delay.
  • the feedback timing of the downlink scheduling can be determined. For example, if the authorization time of the downlink access scheduling of the radio access device is T1, the feedback timing of the downlink scheduling is T1+K1, where K1 is the feedback delay of the downlink scheduling grant to the feedback of the downlink scheduling, and can also be understood.
  • the time interval between the HARQ feedback and the downlink transmission for downlink transmission can be reflected by the subframe number. Further, the unit of K1 is TTI.
  • the value of K1 is 4.
  • the value of K1 is determined according to the uplink and downlink subframe ratio and the HARQ feedback timing of each uplink and downlink subframe ratio. For details, refer to the table in 3GPP standard 36.213, Table 10.1.3.1-1, which is shown in the HARQ feedback timing of TDD in Table 1 below:
  • the first column in Table 1 is the serial number of different uplink and downlink ratios in the TDD system.
  • Table 2 there are multiple uplink and downlink ratio frame structures in the TDD system.
  • Each frame includes 10 subframes respectively represented by numbers 0-9, and each subframe structure is used for downlink transmission, and the subframe for uplink transmission is represented by U, and S is for special subframe.
  • the switching between uplink and downlink subframes includes DwPTS, UpPTS and GP parts, wherein DwPTS is used for downlink transmission, UpPTS is used for uplink transmission, and GP is protection period.
  • CurrentTti indicates the current time
  • DL_Voip_SchStatus(x) indicates whether the UE performs downlink scheduling at time x.
  • K1 The meaning and value of K1 are the same as above, and are not described here. If the downlink scheduling is performed on the UE, the value of DL_Voip_SchStatus is TRUE, then the current time needs to actively schedule the PUSCH for the UE; if the downlink scheduling is not performed for the UE, the value of DL_Voip_SchStatus is FALSE, then the current time is not The PUSCH scheduling needs to be actively performed on the UE.
  • the PUSCH resource allocated to the UE needs to be notified to the UE, that is, the authorization of the PUSCH resource is sent to the UE.
  • the transmission of the grant is to inform the UE of which PUSCH resources to feed back before the UE performs HARQ feedback.
  • the authorization time of the downlink scheduling is T
  • the feedback time of the UE is T+K1
  • the authorized transmission time of the PUSCH resource that is, the authorization time of the PUSCH resource (which may also be referred to as the authorization time of the uplink scheduling) is T. +K1-K2, where K2 is the transmission delay of the PUSCH resource grant to the PUSCH transmission.
  • the base station sends an uplink grant to the UE through a physical downlink control channel (English: Physical Downlink Control Channel, PDCCH).
  • PDCCH Physical Downlink Control Channel
  • the UE obtains an uplink grant by detecting the PDCCH, and then performs PUSCH transmission according to the uplink grant.
  • PDCCH Physical Downlink Control Channel
  • the delay between the grant-to-PUSCH transmission on the upper is 4TTI.
  • each subframe is fixed for uplink transmission or downlink transmission in each frame structure, after the UE detects the uplink grant in a subframe for downlink transmission (for example, a downlink subframe or a special subframe), It is necessary to wait for a subframe for uplink transmission (for example, an uplink subframe or a special subframe) to perform PUSCH transmission. Therefore, in the TDD system, the delay between grant-to-PUSCH transmission on the PDCCH is matched with the uplink and downlink subframes. The ratio is related, and the PUSCH transmission timing of each of the uplink and downlink subframe ratios is given in Table 3.
  • the value of K2 is 4, and in the TDD communication system, the value of K2 is determined according to the uplink and downlink subframe ratio and the PUSCH transmission timing of each uplink and downlink subframe ratio.
  • Table 8-2 which is shown in the PUSCH transmission timing of TDD in Table 3 below:
  • the subframe 3 is used to authorize the PUSCH transmission of the next 4 subframes, and the value of K2 is 4; the subframe 8 is used for the PUSCH of the next 4 subframes. The transfer is authorized, and the value of K2 is 4.
  • Other ratios are similar and will not be described in detail here.
  • CurrentTti indicates the current time
  • DL_Voip_SchStatus(x) indicates whether the UE performs downlink scheduling at time x.
  • K1 and K2 are the same as above, and are not described here. If the downlink scheduling is performed on the UE, the value of the DL_Voip_SchStatus is TRUE, and the current time needs to actively perform PUSCH scheduling on the UE; if the UE is not For downlink scheduling, the value of DL_Voip_SchStatus is FALSE, so there is no need to actively schedule PUSCH for the UE at the current moment.
  • the radio access device monitors the UE that is performing the VOIP service, and when the downlink scheduling is performed on the UE, the UE initiates the PUSCH scheduling to allocate the uplink resource to the UE, so that the UE can utilize the UE.
  • the allocated uplink resource performs feedback of the downlink scheduling. In this way, the feedback information can be transmitted on the PUSCH.
  • the PUSCH has higher transmission power and better demodulation performance than the PUCCH, which greatly reduces the probability of demodulation failure or error, thereby improving the quality of the voice call.
  • FIG. 6 is a schematic flowchart diagram of a third embodiment of a method for communicating a VOIP service according to an embodiment of the present invention.
  • the method described in this embodiment includes the following steps:
  • the wireless access device determines a UE that is performing VOIP service.
  • the wireless access device monitors uplink scheduling for the UE.
  • the UE performs the PUSCH scheduling on the UE to allocate the PUSCH resource to the UE, where the PUSCH resource is used by the UE to send the uplink VOIP data.
  • the wireless access device sends an authorization of the allocated PUSCH resource to the UE.
  • the method for determining the UE that is performing the VOIP service is the same as the first embodiment, and details are not described herein again.
  • the UE When the UE performs VOIP services, it can be in one of two states:
  • Call state mainly refers to the state of the UE when the user of the UE is speaking.
  • a data packet is usually generated every 20 ms.
  • the period in which the UE generates a data packet in the call state is referred to as a first period.
  • Quiet state mainly refers to the state of the UE when the user of the UE is answering. In the silent state, usually one data packet is generated every 160 ms. Hereinafter, the period in which the UE generates a data packet in the silent state is referred to as a second period.
  • the wireless access device should be able to receive the uplink data packet of the UE within a certain length of time. If the uplink data packet of the UE cannot be received, the radio access network device may not obtain the SR of the UE due to the PUCCH demodulation error or failure of the UE. Furthermore, uplink scheduling cannot be performed on the UE. In this embodiment, based on the SR of the UE, the UE is actively scheduled for PUSCH, and allocated uplink resources for the UE to send uplink VOIP data packets. Of course, there are extreme cases where one party of the call has not generated uplink packets, but it still does not affect the overall quality of the voice call.
  • LastPreAllocationTime indicates the last uplink scheduling time closest to the current time
  • PreAllocationMinPeriodicity indicates the preset time length.
  • PreAllocationMinPeriodicity (UE is in a call state? Period0: second cycle),
  • the meanings of the first period and the second period are the same as those described above, that is, the data packet generation period in which the UE is in the talking state and the silent state, respectively, and the second period is usually greater than the first period.
  • t is a preset length of time, and the value is between the first period and the second period.
  • the preset time length of the PreAllocationMinPeriodicity value is Period0; when the UE is not in the call state, that is, when the UE is in the silent state, the value of the preset time length PreAllocationMinPeriodicity is The second cycle.
  • the value of Period0 is related to the SR period. When the SR period is greater than or equal to the preset value t, the value of Period0 is t; when the SR period is less than the preset value t, the value of Period0 is the first period.
  • the radio access device monitors the UE that is performing the VOIP service.
  • the UE When the UE is not scheduled to perform uplink scheduling within the preset time length, the UE does not actively perform PUSCH on the UE according to the decoded SR.
  • the scheduling is to allocate uplink resources to the UE, so that the UE can use the uplink resource to send uplink VOIP data. In this way, in the case of SR miss detection, the UE can still perform uplink transmission to reduce the delay caused by PUCCH demodulation failure or error, and improve the user's call experience.
  • FIG. 7 is a schematic flowchart diagram of a fourth embodiment of a VOIP communication method according to an embodiment of the present invention.
  • the VOIP communication method described in this embodiment includes the following steps:
  • the UE receives the authorization of the PUSCH resource allocated by the radio access device to the UE, where the VOIP service is being performed between the UE and the radio access device, and the PUSCH resource is the radio access device according to the scheduling of the UE.
  • the monitoring is actively assigned to the UE.
  • the UE determines the PUSCH resource according to the authorization.
  • the UE performs uplink transmission on the determined PUSCH resource.
  • the PUSCH resource is a resource that is actively allocated by the radio access device to the UE for feedback of the downlink scheduling when monitoring the downlink scheduling of the UE.
  • the authorization time of the downlink scheduling is T
  • the feedback time of the downlink scheduling is T+K1
  • K1 is a feedback delay of the feedback of the downlink scheduling grant to the downlink scheduling.
  • the value of K1 is 4, and in the TDD communication system, the value of K1 is determined according to the uplink and downlink subframe ratio and the HARQ feedback timing of the uplink and downlink subframe ratios.
  • the grant time of the PUSCH resource is T+K1-K2, where K2 is the transmission delay of the PUSCH resource to the PUSCH transmission.
  • the value of K2 is 4, and in the TDD communication system, the value of K2 is determined according to the uplink and downlink subframe ratio and the PUSCH transmission timing of each uplink and downlink subframe ratio.
  • the PUSCH resource is a resource that the radio access device actively allocates for the UE to send uplink VOIP data when the UE does not perform uplink scheduling within a preset time length.
  • the preset time length is a first time length; when the UE is in a silent state, the preset time length is a second time length, and the first time length is less than the first time length Two length of time.
  • the UE receives the authorization of the PUSCH resource allocated by the radio access device for the UE, and determines the PUSCH resource according to the authorization, and performs uplink transmission on the determined PUSCH resource, where the UE and the UE
  • the VOIP service is being performed between the radio access devices, and the PUSCH resource is actively allocated to the UE by the radio access device according to the monitoring of the scheduling of the UE. of.
  • the HARQ feedback can be transmitted on the PUSCH, and in the case of the SR miss detection, the UE can still perform uplink transmission, so as to reduce the delay caused by the PUCCH demodulation failure or error, and improve the user's call experience.
  • FIG. 8 is a schematic structural diagram of a first embodiment of a VOIP communication device according to an embodiment of the present invention.
  • the communication device is located in a wireless access device, and is configured to implement the method described in FIG. 1, FIG. 2 or FIG.
  • the VOIP communication method as shown in FIG. 8, the communication device in this embodiment may include: a determining unit 801, a monitoring unit 802, a scheduling unit 803, and a sending unit 804, as follows:
  • a determining unit 801 configured to determine a UE that is performing VOIP service
  • a monitoring unit 802 configured to monitor a scheduling of the UE determined by the determining unit 801;
  • the scheduling unit 803 is configured to actively perform PUSCH scheduling on the UE according to the scheduling monitored by the monitoring unit 802, to allocate PUSCH resources to the UE.
  • the sending unit 804 is configured to send an authorization of the PUSCH resource to the UE.
  • the monitoring unit 802 is specifically configured to: monitor downlink scheduling for the UE.
  • the scheduling unit 803 is specifically configured to: when the monitoring unit 804 detects the downlink scheduling of the UE, actively perform scheduling on the PUSCH of the UE, to allocate a PUSCH resource to the UE, where the PUSCH resource is used for feedback of the downlink scheduling.
  • the authorization time of the downlink scheduling is T
  • the feedback time of the downlink scheduling is T+K1 where K1 is the feedback delay of the feedback of the downlink scheduling grant to the downlink scheduling.
  • the value of K1 is 4, and in the TDD communication system, the value of K1 is determined according to the uplink and downlink subframe ratio and the HARQ feedback timing of the uplink and downlink subframe ratios.
  • the grant time of the PUSCH resource is T+K1-K2, where K2 is a transmission delay of the PUSCH resource to the PUSCH transmission.
  • the value of K2 is 4, and in the TDD communication system, the value of K2 is determined according to the uplink and downlink subframe ratio and the PUSCH transmission timing of each uplink and downlink subframe ratio.
  • the monitoring unit 802 is specifically configured to: monitor uplink scheduling for the UE.
  • the scheduling unit 803 is specifically configured to: when the monitoring unit 802 detects the preset time If the radio access device does not perform uplink scheduling on the UE, the UE performs the PUSCH scheduling on the UE to allocate the PUSCH resource to the UE, where the PUSCH resource is used by the UE to send the uplink VOIP data.
  • the preset time length is a first time length; when the UE is in a silent state, the preset time length is a second time length, and the first time length is less than the second time length.
  • the determining unit 801 in this embodiment may be a processor of the wireless access device, and may be a separately set processor, or may be integrated into one processor of the wireless access device, and further, It may also be stored in the memory of the wireless access device in the form of program code, and the function of the above determining unit 801 is called by one of the processors of the wireless access device.
  • the monitoring unit 802 and the scheduling unit 803 are implemented in the same manner as the determining unit 801.
  • the determining unit 801, the monitoring unit 802, and the scheduling unit 803 may be disposed independently of each other, or may be integrated in whole or in part, and the embodiment of the present invention does not impose any limitation.
  • the sending unit 804 can be a transmitter of the wireless access device or a transceiver of the wireless access device.
  • the processor described herein may be a central processing unit (English: Central Processing Unit, abbreviated as CPU), or an application specific integrated circuit (ASIC: ASIC), or configured to implement the present invention.
  • CPU Central Processing Unit
  • ASIC application specific integrated circuit
  • the radio access device finds the UE that is performing the VOIP service, and then determines whether to actively perform PUSCH scheduling on the UE according to the scheduling situation of the UE, so as to allocate the PUSCH resource to the UE, so that the HARQ feedback can be
  • the UE transmits on the PUSCH, and in the case of the SR miss detection, the UE can still perform uplink transmission to reduce the delay caused by the PUCCH demodulation failure or error, and improve the user's call experience.
  • FIG. 9 is a schematic structural diagram of a second embodiment of a VOIP communication apparatus according to an embodiment of the present invention.
  • the communication apparatus is located in a UE, and is used to implement the VOIP communication method described in FIG.
  • the UE in this embodiment may include: a receiving unit 901, a determining unit 902, and a sending unit 903, as follows:
  • the receiving unit 901 is configured to receive an authorization of a PUSCH resource allocated by the radio access device to the UE, where the VOIP service is being performed between the UE and the radio access device, and the PUSCH resource is the radio access device according to the radio access device The monitoring of the scheduling of the UE is actively allocated for the UE.
  • the determining unit 902 is configured to determine a PUSCH resource according to the authorization received by the receiving unit 901.
  • the sending unit 903 is configured to perform uplink transmission on the PUSCH resource determined by the determining unit 902.
  • the foregoing PUSCH resource is a resource that is used by the radio access device to actively allocate feedback for the downlink scheduling to the UE when performing downlink scheduling on the UE.
  • the authorization time of the downlink scheduling is T
  • the feedback time of the downlink scheduling is T+K1 where K1 is the feedback delay of the feedback of the downlink scheduling grant to the downlink scheduling.
  • the value of K1 is 4, and in the TDD communication system, the value of K1 is determined according to the uplink and downlink subframe ratio and the HARQ feedback timing of the uplink and downlink subframe ratios.
  • the authorization time of the PUSCH resource is T+K1-K2, where K2 is a transmission delay of the PUSCH resource to the PUSCH transmission.
  • the value of K2 is 4.
  • the value of K2 is determined according to the uplink and downlink subframe ratio and the PUSCH transmission timing of each uplink and downlink subframe ratio.
  • the PUSCH resource is a resource that the radio access device actively allocates for the UE to send uplink VOIP data when the UE does not perform uplink scheduling for the preset time length.
  • the preset time length is a first time length; when the UE is in a silent state, the preset time length is a second time length, and the first time length is less than the second time length.
  • the receiving unit 901 in this embodiment may be a receiver of the UE, and the sending unit 903 may be a transmitter of the UE.
  • the receiving unit 901 and the transmitting unit 903 may be integrated to form a transceiver of the UE.
  • the determining unit 902 can be a separately set processor, or can be implemented in one processor of the UE. In addition, it can also be stored in the memory of the UE in the form of program code, and is called and executed by a certain processor of the UE. The function of the unit 902 is determined above.
  • the processor described herein can be a CPU, or an ASIC, or one or more integrated circuits configured to implement embodiments of the present invention.
  • the UE receives the authorization of the PUSCH resource allocated by the radio access device for the UE, and determines the PUSCH resource according to the authorization, and performs uplink transmission on the determined PUSCH resource.
  • the VOIP service is being performed between the UE and the radio access device, and the PUSCH resource is actively allocated to the UE by the radio access device according to the monitoring of the scheduling of the UE.
  • the HARQ feedback can be transmitted on the PUSCH, and in the case of the SR miss detection, the UE can still perform uplink transmission, so as to reduce the delay caused by the PUCCH demodulation failure or error, and improve the user's call experience.
  • FIG. 10 is a schematic structural diagram of a third embodiment of a VOIP communication apparatus according to an embodiment of the present invention.
  • the communication apparatus 1000 is located in a wireless access device.
  • the wireless access device may include: at least one processing.
  • the communication bus 1002 is used to implement connection communication between these components.
  • the network interface 1003 of the wireless access device in the embodiment of the present invention may be a wireless interface, which performs signaling or data communication with other node devices through the antenna device.
  • the memory 1004 may be a high speed random access memory (English: Random Access Memory, RAM) memory, or a non-volatile memory (English: non-volatile memory), such as at least one disk memory.
  • the memory 1004 may also be at least one storage device located away from the processor 1001.
  • a set of program codes is stored in the memory 1004, and the processor 1001 is configured to call the program code stored in the memory 1004 for performing the following operations:
  • the authorization of the PUSCH resource is sent to the UE.
  • the foregoing processor 1001 is specifically configured to: when performing downlink scheduling on the UE, actively perform PUSCH scheduling on the UE, to allocate a PUSCH resource to the UE, where the PUSCH resource is used for the downlink Scheduling feedback.
  • the authorization time of the downlink scheduling is T
  • the feedback time of the downlink scheduling is T+K1
  • K1 is a feedback delay of the feedback of the downlink scheduling grant to the downlink scheduling.
  • the value of K1 is 4, and in the TDD communication system, the value of K1 is determined according to the uplink and downlink subframe ratio and the HARQ feedback timing of the uplink and downlink subframe ratios.
  • the grant time of the PUSCH resource is T+K1-K2, where K2 is the transmission delay of the PUSCH resource to the PUSCH transmission.
  • the value of K2 is 4, and in the TDD communication system, the value of K2 is determined according to the uplink and downlink subframe ratio and the PUSCH transmission timing of each uplink and downlink subframe ratio.
  • the foregoing processor 1001 is specifically configured to: when the UE is not scheduled in the uplink for a preset time length, actively perform PUSCH scheduling on the UE, to allocate PUSCH resources to the UE, The PUSCH resource is used by the UE to send uplink VOIP data.
  • the preset time length is a first time length; when the UE is in a silent state, the preset time length is a second time length, and the first time length is less than the second time length.
  • the processor 1001 herein may be a processor or a collective name of multiple processing elements.
  • the processor may be a CPU, an ASIC, or one or more integrated circuits configured to implement embodiments of the present invention, such as one or more microprocessors (English: Digital Signal Processor, abbreviations: DSP), or one or more field programmable gate arrays (English: Field Programmable Gate Array, abbreviation: FPGA).
  • DSP Digital Signal Processor
  • FPGA Field Programmable Gate Array
  • the memory 1004 may be a storage device or a collective name of a plurality of storage elements, and is used to store executable program code or parameters, data, and the like required for the wireless access device to operate. And the memory 1004 may include a RAM, and may also include a non-volatile memory such as a disk memory, a flash memory, or the like.
  • the bus 1002 may be an industry standard architecture (English: Industry Standard Architecture, ISA) bus, an external device interconnection (English: Peripheral Component, abbreviation: PCI) bus or an extended industry standard architecture (English: Extended Industry Standard Architecture, Abbreviations: EISA) bus, etc.
  • the bus 1002 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one line is shown in Figure 10, but it does not mean that there is only one bus or one type of bus.
  • the radio access device finds the UE that is performing the VOIP service, and then determines whether to actively perform PUSCH scheduling on the UE according to the scheduling situation of the UE, so as to allocate the PUSCH resource to the UE, so that the HARQ feedback can be Transmitted on PUSCH and missed in SR
  • the UE can still perform uplink transmission to reduce the delay caused by the failure or error of the PUCCH demodulation, and improve the user's call experience.
  • the communication apparatus 1100 is located in a UE.
  • the UE may include: at least one processor 1101, such as a CPU.
  • the communication bus 1102 is used to implement connection communication between these components.
  • the network interface 1103 of the UE in the embodiment of the present invention may be a wireless interface, for example, signaling or data communication with other node devices through an antenna device.
  • the memory 1104 may be a high speed RAM memory or a nonvolatile memory such as at least one disk memory.
  • the memory 1104 may also be at least one storage device located away from the aforementioned processor 1101.
  • a set of program codes is stored in the memory 1104, and the processor 1101 is configured to call the program code stored in the memory 1104 for performing the following operations:
  • Uplink transmission is performed on the determined PUSCH resources.
  • the PUSCH resource is a resource that is actively allocated by the radio access device to the UE for feedback of the downlink scheduling when monitoring the downlink scheduling of the UE.
  • the authorization time of the downlink scheduling is T
  • the feedback time of the downlink scheduling is T+K1
  • K1 is a feedback delay of the feedback of the downlink scheduling grant to the downlink scheduling.
  • the value of K1 is 4, and in the time division duplex TDD communication system, the value of K1 is based on the uplink and downlink subframe ratio and the HARQ feedback timing of the uplink and downlink subframe ratios. determine.
  • the grant time of the PUSCH resource is T+K1-K2, where K2 is the transmission delay of the PUSCH resource to the PUSCH transmission.
  • the value of K2 is 4, and in the TDD communication system, the value of K2 is determined according to the uplink and downlink subframe ratio and the PUSCH transmission timing of each uplink and downlink subframe ratio.
  • the PUSCH resource is a resource that the radio access device actively allocates for the UE to send uplink VOIP data when the UE does not perform uplink scheduling within a preset time length.
  • the preset time length is a first time length; when the UE is in a silent state, the preset time length is a second time length, and the first time length is less than the second time length.
  • the processor 1101 herein may be a processor or a collective name of multiple processing elements.
  • the processor may be a CPU, or a specific integrated circuit ASIC, or one or more integrated circuits configured to implement embodiments of the present invention, such as one or more microprocessors DSP, or one or Multiple FPGAs.
  • the memory 1104 may be a storage device or a collective name of a plurality of storage elements, and is used to store executable program code or parameters, data, and the like required for the UE to operate. And the memory 1104 may include a RAM, and may also include a non-volatile memory such as a disk storage, a flash memory, or the like.
  • the bus 1102 can be an ISA bus, a PCI bus, or an EISA bus.
  • the bus 1102 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one line is shown in Figure 11, but it does not mean that there is only one bus or one type of bus.
  • the UE receives the authorization of the PUSCH resource allocated by the radio access device for the UE, and determines the PUSCH resource according to the authorization, and performs uplink transmission on the determined PUSCH resource, where the UE and the radio access device
  • the VOIP service is in progress, and the PUSCH resource is actively allocated to the UE by the radio access device according to the monitoring of the scheduling of the UE.
  • the HARQ feedback can be transmitted on the PUSCH, and in the case of the SR miss detection, the UE can still perform uplink transmission, so as to reduce the delay caused by the PUCCH demodulation failure or error, and improve the user's call experience.
  • the embodiment of the present invention further provides a computer storage medium, wherein the computer storage medium can store a program, and the program includes some or all of the steps of any one of the VOIP communication methods described in the foregoing method embodiments.
  • the embodiment of the present invention further provides a program, when the processor calls the program, to execute the method described in FIG. 1, FIG. 2 or FIG. 6; or, when the processor calls the program, The method described in 7.
  • the disclosed apparatus may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the above units is only a logical function division. In actual implementation, there may be another division manner. For example, multiple units or components may be combined or integrated. Go to another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical or otherwise.
  • the units described above as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the above-described integrated unit if implemented in the form of a software functional unit and sold or used as a stand-alone product, may be stored in a computer readable storage medium.
  • the instructions include a plurality of instructions for causing a computer device (which may be a personal computer, server or network device, etc., and in particular a processor in a computer device) to perform all or part of the steps of the above-described methods of various embodiments of the present invention.
  • the foregoing storage medium may include: a U disk, a mobile hard A variety of media that can store program code, such as disk, disk, CD, read-only memory (English: Read-Only Memory, ROM) or RAM.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种VOIP通信方法,包括:无线接入设备确定正在进行VOIP业务的UE,监测对所述UE的调度,根据所监测的调度,主动对所述UE进行PUSCH的调度,以为所述UE分配PUSCH资源,向所述UE发送所述PUSCH资源的授权。如此,HARQ反馈可以在PUSCH上传输,且在SR漏检的情况下,UE仍能进行上行传输,以减少PUCCH解调失败或错误时带来的时延,提高用户通话感受。

Description

基于互联网协议的语音VOIP通信方法与装置 技术领域
本发明实施例涉及移动通信技术领域,尤其涉及一种VOIP通信方法与装置。
背景技术
随着长期演进(英文:Long Time Evolution,缩写:LTE)网络的大规模使用,基于互联网协议的语音(英文:Voice over Internet Protocol,缩写VOIP)通信越来越普及,VOIP业务的通话质量也越来越受到用户的关注。实际应用中,VOIP的语音质量和数据丢包率、传输时延紧密相关。丢包率越少,传输时延越小,语音质量越好。但是,物理上行控制信道(英文:Physical Uplink Control Channel,缩写:PUCCH)解调性能较差,在比较复杂的无线环境下,PUCCH信道干扰不平衡,可能会出现解调失败或者错误的情况。此时,丢包率和传输时延会上升,降低语音通话质量,影响用户通话感受。
发明内容
本发明实施例提供了一种VOIP通信方法与装置,以提升VOIP业务的通话质量。
本发明实施例第一方面提供一种互联网协议的语音VOIP通信方法,包括:
无线接入设备确定正在进行VOIP业务的用户设备UE;
所述无线接入设备监测对所述UE的调度;
所述无线接入设备根据所监测的调度,主动对所述UE进行物理上行共享信道PUSCH的调度,以为所述UE分配PUSCH资源;
所述无线接入设备向所述UE发送所述PUSCH资源的授权。
结合第一方面,在第一方面的第一种可能的实施方式中,
所述无线接入设备监测对所述UE的调度,包括:
所述无线接入设备监测对所述UE的下行调度;
所述无线接入设备根据所监测的调度,主动对所述UE进行PUSCH的调度,以为所述UE分配PUSCH资源,包括:
当所述无线接入设备监测到对所述UE进行了下行调度时,主动对所述UE进行所述PUSCH的调度,以为所述UE分配所述PUSCH资源,该PUSCH资源用于所述下行调度的反馈。
结合第一方面的第一种可能的实施方式,在第一方面的第二种可能的实施方式中,所述下行调度的授权时刻为T,所述下行调度的反馈时刻为T+K1,其中,K1为所述下行调度的授权到该下行调度的反馈的反馈时延。
结合第一方面的第二种可能的实施方式,在第一方面的第三种可能的实施方式中,在频分双工FDD通信系统中,K1的取值为4,在时分双工TDD通信系统中,K1的取值根据上下行子帧配比和各上下行子帧配比的HARQ反馈时序确定。
结合第一方面的第二种可能的实施方式或第一方面的第三种可能的实施方式,在第一方面的第四种可能的实施方式中,所述PUSCH资源的授权时刻为T+K1-K2,其中,K2为所述PUSCH资源的授权到PUSCH传输的传输时延。
结合第一方面的第四种可能的实施方式,在第一方面的第五种可能的实施方式中,在FDD通信系统中,K2的取值为4,在TDD通信系统中,K2的取值根据上下行子帧配比和各上下行子帧配比的PUSCH传输时序确定。
结合第一方面,在第一方面的第六种可能的实施方式中,
所述无线接入设备监测对所述UE的调度,包括:
所述无线接入设备监测对所述UE的上行调度;
所述无线接入设备根据所监测的调度,主动对所述UE进行PUSCH的调度,以为所述UE分配PUSCH资源,包括:
当预设时间长度内所述无线接入设备未对所述UE进行上行调度时,主动对所述UE进行所述PUSCH的调度,以为所述UE分配所述PUSCH资源,该PUSCH资源用于所述UE发送上行VOIP数据。
结合第一方面的第六种可能的实施方式,在第一方面的第七种可能的实施方式中,当所述UE处于通话状态时,所述预设时间长度为第一时间长度;当所述UE处于静默状态时,所述预设时间长度为第二时间长度,且所述第一时间长度小于第二时间长度。
本发明实施例第二方面提供一种互联网协议的语音VOIP通信方法,包括:
用户设备UE接收无线接入设备为所述UE分配的物理上行共享信道PUSCH资源的授权,其中所述UE与所述无线接入设备之间正在进行VOIP业务,且所述PUSCH资源为所述无线接入设备根据对所述UE的调度的监控主动为所述UE分配的;
所述UE根据所述授权确定所述PUSCH资源;
所述UE在所确定的PUSCH资源上进行上行传输。
结合第二方面,在第二方面的第一种可能的实施方式中,
所述PUSCH资源为所述无线接入设备在监测到对所述UE进行了下行调度时主动为所述UE分配的用于该下行调度的反馈的资源。
结合第二方面的第一种可能的实施方式,在第二方面的第二种可能的实施方式中,所述下行调度的授权时刻为T,所述下行调度的反馈时刻为T+K1,其中,K1为所述下行调度的授权到该下行调度的反馈的反馈时延。
结合第二方面的第二种可能的实施方式,在第二方面的第三种可能的实施方式中,在频分双工FDD通信系统中,K1的取值为4,在时分双工TDD通信系统中,K1的取值根据上下行子帧配比和各上下行子帧配比的HARQ反馈时序确定。
结合第二方面的第二种可能的实施方式或第二方面的第三种可能的实施方式,在第二方面的第四种可能的实施方式中,所述PUSCH资源的授权时刻为T+K1-K2,其中,K2为所述PUSCH资源的授权到PUSCH传输的传输时延。
结合第二方面的第四种可能的实施方式,在第二方面的第五种可能的实施方式中,在FDD通信系统中,K2的取值为4,在TDD通信系统中,K2的取值根据上下行子帧配比和各上下行子帧配比的PUSCH传输时序确定。
结合第二方面,在第二方面的第六种可能的实施方式中,
所述PUSCH资源为所述无线接入设备在监测到对所述UE进行了下行调度时主动为所述UE分配的用于该下行调度的反馈的资源。
结合第二方面的第六种可能的实施方式,在第二方面的第七种可能的实施方式中,当所述UE处于通话状态时,所述预设时间长度为第一时间长度;当所述UE处于静默状态时,所述预设时间长度为第二时间长度,且所述第一时 间长度小于第二时间长度。
本发明实施例第三方面提供一种基于互联网协议的语音VOIP通信装置,位于无线接入设备,包括:
确定单元,用于确定正在进行VOIP业务的用户设备UE;
监测单元,用于监测对所述确定单元确定的UE的调度;
调度单元,用于根据所述监测单元所监测的调度,主动对所述UE进行物理上行共享信道PUSCH的调度,以为所述UE分配PUSCH资源;
发送单元,用于向所述UE发送所述PUSCH资源的授权。
结合第三方面,在第三方面的第一种可能的实施方式中,
所述监测单元具体用于:监测对所述UE的下行调度;
所述调度单元具体用于:当所述监测单元监测到对所述UE进行了下行调度时,主动对所述UE进行所述PUSCH的调度,以为所述UE分配所述PUSCH资源,该PUSCH资源用于所述下行调度的反馈。
结合第三方面的第一种可能的实施方式,在第三方面的第二种可能的实施方式中,所述下行调度的授权时刻为T,所述下行调度的反馈时刻为T+K1,其中,K1为所述下行调度的授权到该下行调度的反馈的反馈时延。
结合第三方面的第二种可能的实施方式,在第三方面的第三种可能的实施方式中,在频分双工FDD通信系统中,K1的取值为4,在时分双工TDD通信系统中,K1的取值根据上下行子帧配比和各上下行子帧配比的HARQ反馈时序确定。
结合第三方面的第二种可能的实施方式或第三方面的第三种可能的实施方式,在第三方面的第四种可能的实施方式中,所述PUSCH资源的授权时刻为T+K1-K2,其中,K2为所述PUSCH资源的授权到PUSCH传输的传输时延。
结合第三方面的第四种可能的实施方式,在第三方面的第五种可能的实施方式中,在FDD通信系统中,K2的取值为4,在TDD通信系统中,K2的取值根据上下行子帧配比和各上下行子帧配比的PUSCH传输时序确定。
结合第三方面,在第三方面的第六种可能的实施方式中,
所述监测单元具体用于:监测对所述UE的上行调度;
所述调度单元具体用于:当所述监测单元监测到预设时间长度内所述无线接入设备未对所述UE进行上行调度时,主动对所述UE进行所述PUSCH的调度,以为所述UE分配所述PUSCH资源,该PUSCH资源用于所述UE发送上行VOIP数据。
结合第三方面的第六种可能的实施方式,在第三方面的第七种可能的实施方式中,当所述UE处于通话状态时,所述预设时间长度为第一时间长度;当所述UE处于静默状态时,所述预设时间长度为第二时间长度,且所述第一时间长度小于第二时间长度。
本发明实施例第四方面提供一种基于互联网协议的语音VOIP通信装置,位于用户设备UE,包括:
接收单元,用于接收无线接入设备为所述UE分配的物理上行共享信道PUSCH资源的授权,其中所述UE与所述无线接入设备之间正在进行VOIP业务,且所述PUSCH资源为所述无线接入设备根据对所述UE的调度的监控主动为所述UE分配的;
确定单元,用于根据所述授权确定所述PUSCH资源;
发送单元,用于在所确定的PUSCH资源上进行上行传输。
结合第四方面,在第四方面的第一种可能的实施方式中,
所述PUSCH资源为所述无线接入设备在监测到对所述UE进行了下行调度时主动为所述UE分配的用于该下行调度的反馈的资源。
结合第四方面的第一种可能的实施方式,在第四方面的第二种可能的实施方式中,所述下行调度的授权时刻为T,所述下行调度的反馈时刻为T+K1,其中,K1为所述下行调度的授权到该下行调度的反馈的反馈时延。
结合第四方面的第二种可能的实施方式,在第四方面的第三种可能的实施方式中,在频分双工FDD通信系统中,K1的取值为4,在时分双工TDD通信系统中,K1的取值根据上下行子帧配比和各上下行子帧配比的HARQ反馈时序确定。
结合第四方面的第二种可能的实施方式或第四方面的第三种可能的实施方式,在第四方面的第四种可能的实施方式中,所述PUSCH资源的授权时刻 为T+K1-K2,其中,K2为所述PUSCH资源的授权到PUSCH传输的传输时延。
结合第四方面的第四种可能的实施方式,在第四方面的第五种可能的实施方式中,在FDD通信系统中,K2的取值为4,在TDD通信系统中,K2的取值根据上下行子帧配比和各上下行子帧配比的PUSCH传输时序确定。
结合第四方面,在第四方面的第六种可能的实施方式中,
所述PUSCH资源为所述无线接入设备在监测到预设时间长度内未对所述UE进行上行调度时主动为所述UE分配的用于所述UE发送上行VOIP数据的资源。
结合第四方面的第六种可能的实施方式,在第四方面的第七种可能的实施方式中,当所述UE处于通话状态时,所述预设时间长度为第一时间长度;当所述UE处于静默状态时,所述预设时间长度为第二时间长度,且所述第一时间长度小于第二时间长度。
本发明实施例第五方面提供一种程序,当处理器调用该程序时,用于执行本发明实施例第一方面或其任一种可能的实施方式所述的方法。
本发明实施例第六方面提供一种程序,当处理器调用该程序时,用于执行本发明实施例第二方面或其任一种可能的实施方式所述的方法。
通过上述方案,无线接入设备找到正在进行VOIP业务的UE,而后根据对该UE的调度情况来确定是否主动对该UE进行PUSCH的调度,以为该UE分配PUSCH资源,如此,HARQ反馈可以在PUSCH上传输,且在SR漏检的情况下,UE仍能进行上行传输,以减少PUCCH解调失败或错误时带来的时延,提高用户通话感受。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是 本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种VOIP通信方法的第一实施例的流程示意图;
图2为本发明实施例提供的一种VOIP通信方法的第二实施例的流程示意图;
图3为配比0时HARQ反馈时序图;
图4为配比1时HARQ反馈时序图;
图5为配比2时HARQ反馈时序图;
图6为本发明实施例提供的一种VOIP通信方法的第三实施例的流程示意图;
图7为本发明实施例提供的一种VOIP通信方法的第四实施例的流程示意图;
图8是本发明实施例提供的一种通信装置的第一实施例的结构示意图;
图9是本发明实施例提供的一种通信装置的第二实施例的结构示意图;
图10是本发明实施例提供的一种通信装置的第三实施例的结构示意图;
图11是本发明实施例提供的一种通信装置的第四实施例的结构示意图。
具体实施方式
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,下面所描述的实施例仅仅是本发明的一部分实施例,而非全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(英文:Global System of Mobile communication,缩写:GSM)系统、码分多址(英文:Code Division Multiple Access,缩写:CDMA)系统、宽带码分多址(英文:Wideband Code Division Multiple Access,缩写:WCDMA)系统、通用分组无线业务(英文:General Packet Radio Service,缩写:GPRS)、长期 演进系统、LTE频分双工(英文:Frequency Division Duplex,缩写:FDD)系统、LTE时分双工(英文:Time Division Duplex,缩写:TDD)、通用移动通信系统(英文:Universal Mobile Telecommunication System,缩写:UMTS)或全球互联微波接入(英文:Worldwide Interoperability for Microwave Access,缩写:WiMAX)通信系统等。
本发明实施例提供的用户设备(英文:User Equipment,缩写:UE)包括终端(英文:Terminal)、移动台(英文:Mobile Station,缩写:MS)或移动终端(英文:Mobile Terminal)等,该UE可以经无线接入网(英文:Radio Access Network,缩写:RAN)与一个或多个核心网进行通信,例如,UE可以是移动电话(或称为“蜂窝”电话)或具有移动终端的计算机等,例如,UE还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语音和/或数据。
本发明实施例提供的无线接入设备是指将UE接入到无线网络的设备,其例如可以是GSM或CDMA中的基站(英文:Base Transceiver Station,缩写:BTS),也可以是WCDMA中的基站(英文:NodeB,缩写:NB),还可以是LTE中的演进型基站(英文:Evolutional Node B,缩写:eNB)。
PUCCH用来承载上行控制信息,例如,混合自动重传请求(英文:Hybrid Automatic Repeat reQuest,缩写:HARQ)反馈信息,用于请求上行资源调度的调度请求指示(英文:Scheduling Request Indicator,缩写:SRI)等。VOIP业务对丢包率和时延比较敏感,针对PUCCH在上行干扰较大的情况下解调性能较差的问题,需要对VOIP场景下的上行控制信息的传输进行优化,以提高语音通信质量。
例如,在现有的HARQ反馈机制中,反馈状态分为ACK,NACK,DTX三态,ACK表示物理下行共享信道(英文:Physical Downlink Share Channel,缩写:PDSCH)解调正确,NACK表示PDSCH解调错误,DTX表示下行控制信息(英文:Downlink Control Information,缩写:DCI)丢失。下行数据的HARQ反馈主要在PUCCH上进行,但是在反馈时刻,如果有上行数据需要在物理上行共享信道(英文:Physical Uplink Share Channel,缩写:PUSCH)上发送时,则可以在PUSCH上传输HARQ反馈。然而,在VOIP场景下,上下 行业务往往是错开的,因此,HARQ反馈还是通过PUCCH进行传输的。PUCCH解调性能较差,在比较复杂的无线环境下,ACK可能被误解成NACK或者DTX的概率较高,ACK如果被错解,则丢包率和传输时延都会上升,影响用户通话感受。基于此,本发明实施例主动触发HARQ反馈时刻的PUSCH调度,以在PUSCH上反馈ACK或NACK,由于PUSCH解调性能明显优于PUCCH,在比较复杂的无线环境下,能够减少PUCCH解调性能较差的影响,减少HARQ反馈被误解的概率,提高用户通话感受。
再如,在比较复杂的无线环境下,PUCCH信道干扰不平衡,PUCCH格式1(format1)的信干噪比(英文:Signal to Interference plus Noise Ratio,缩写:SINR)偏置低,可能会导致SR(英文:Scheduling Request,缩写:SR)解调失败,SR高概率漏检,如此,无线接入网侧的设备(例如,eNB)无法及时为UE分配上行授权(英文:uplink grant,缩写:UP Grant),从而导致VOIP业务丢包严重,甚至出现业务单通现象,影响用户通话感受。基于此,本发明实施例主动触发PUSCH调度,在SR漏检的情况下仍能为UE分配上行资源,减少SR漏检的影响,提高用户通话感受。
可见,本发明实施例通过主动触发PUSCH的调度,来减少PUCCH解调性能较差的影响,提高用户通话感受。以下结合附图进行描述:
请参阅图1,图1是本发明实施例提供的一种VOIP通信方法的第一实施例的流程示意图。本实施例中所描述的VOIP通信方法,包括以下步骤:
S101、无线接入设备确定正在进行VOIP业务的UE。
S102、无线接入设备监测对正在进行VOIP业务的UE的调度;
S103、无线接入设备根据所监测的调度,主动对该调度所针对的UE进行PUSCH的调度,以为该UE分配PUSCH资源;
S104、无线接入设备向该UE发送所分配的PUSCH资源的授权。
在本实施例中,无线接入设备找到正在进行VOIP业务的UE,而后根据对该UE的调度情况来确定是否主动对该UE进行PUSCH的调度,以为该UE分配PUSCH资源,如此,HARQ反馈可以在PUSCH上传输,且在SR漏检的情况下,UE仍能进行上行传输,以减少PUCCH解调失败或错误时带来的时延,提高用户通话感受。
VOIP业务可包括但不仅限于:视频业务、语音业务或者短信业务。确定UE是否正在进行VOIP业务可以通过判断UE是否正在进行这几种业务中的一种或多种来判断。
例如,在LTE系统中,对于VOIP业务的判断,可以通过QoS分类识别码(英文:QoS Class Identifier,缩写:QCI)来实现,其中QoS为服务质量(英文:quality of service,缩写:QoS)。数据无线承载(英文:Data Radio Bearer,缩写:DRB)上的QCI中,QCI1、QCI2和QCI5都是语音相关的QCI。其中,QCI1承载语音业务,QCI2承载视频业务,QCI5承载语音业务的会话初始化协议(英文:Session Initiation Protocol,缩写:SIP)信令,例如,建立和释放语音业务所用的SIP信令。在建立语音业务时,通过在QCI5发送SIP信令给核心网,触发核心网建立QCI1承载来完成,或者,对于可视电话需要建立QCI1和QCI2承载来完成。在结束语音业务时,在QCI5上传输相应的SIP信令,以触发核心网释放QCI1来完成,或者,对于可视电话业务,需要释放QCI1和QCI2来完成,认为通话结束。因此,判断UE是否在进行VOIP业务,可以通过QCI5的SIP信令来判断开始和结束;也可以通过QCI1的承载来判断。
在以上步骤S102中,无线接入设备监测对正在进行VOIP业务的UE的调度,可以包括对UE的下行调度的监测,也可以包括对UE的上行调度的监测。相应的,在步骤S103中可以根据对UE的下行调度或上行调度情况,确定是否主动对该UE进行PUSCH的调度。
其中,当无线接入设备监测到对UE进行了下行调度时,主动对UE进行PUSCH的调度,以为UE分配PUSCH资源,该PUSCH资源用于该下行调度的反馈,即用于UE在该PUSCH资源上发送下行调度所针对的下行VOIP数据包的反馈。
当无线接入设备监测到预设时间长度内未对UE进行上行调度时,主动对UE进行PUSCH的调度,以为UE分配PUSCH资源,该PUSCH资源用于UE发送上行VOIP数据。
以下分别结合图2和图6对这两种情况进行描述:
请参阅图2,图2是本发明实施例提供的一种VOIP通信方法的第二实施 例的流程示意图。本实施例中所描述的VOIP通信方法,包括以下步骤:
S201、无线接入设备确定正在进行VOIP业务的UE。
S202、无线接入设备监测对该UE的下行调度。
S203、当无线接入设备监测到对该UE进行了下行调度时,主动对该UE进行PUSCH的调度,以为该UE分配PUSCH资源,该PUSCH资源用于该下行调度的反馈。
S204、无线接入设备向该UE发送所分配的PUSCH资源的授权。
以上确定正在进行VOIP业务的UE的方法同以上实施例一,在此不再赘述。
HARQ使用停等协议(英文:stop-and-wait protocol)来发送数据。在停等协议中,发送端发送数据后,需要停下来等待接收端的反馈,收到反馈后才能决定下一次是发新包还是发重传包。如果每次发送信息后都停下来等待反馈,会导致资源浪费、吞吐量很低,因此引入了HARQ进程的概念。当一个HARQ进程在等待反馈时,发送端可以使用另一个HARQ进程来继续发送数据。每传输时间间隔(英文:Transmission Time Interval,缩写:TTI)只会对应一个HARQ进程号,且考虑处理延迟的合理上限,对于每个HARQ进程,每个调度时刻和针对该调度的反馈时刻之间相差固定的TTI。因此,无线接入设备对UE进行下行调度时,便可以确定该下行调度的反馈时刻。例如,无线接入设备对下行调度的授权时刻为T1,那么该下行调度的反馈时刻为T1+K1,其中,K1为所下行调度的授权到该下行调度的反馈的反馈时延,也可以理解为下行传输的HARQ反馈与下行传输之间的时间间隔。这里所说的各个时刻,例如授权时刻,反馈时刻等可以通过子帧号来反映,此外,K1的单位为TTI。
在频分双工(英文:Freuency Division Duplexing,缩写:FDD)通信系统中,K1的取值为4。在时分双工(英文:Time Division Duplexing,缩写:TDD)通信系统中,K1的取值根据上下行子帧配比和各上下行子帧配比的HARQ反馈时序确定。具体,可以参见3GPP标准36.213中的表格,Table 10.1.3.1-1,即如下表1的TDD的HARQ反馈时序所示:
表1
Figure PCTCN2015080068-appb-000001
表1中的第一列为TDD系统中的不同上下行配比的序号,如表2所示,TDD系统中有多种上下行配比的帧结构。每个帧包括10个子帧分别以编号0~9表示,且每种帧结构中用于下行传输的子帧以D表示,用于上行传输的子帧以U表示,S表示特殊子帧,用于上下行子帧间的切换,其包括DwPTS,UpPTS和GP部分,其中DwPTS用于下行传输,UpPTS用于上行传输,GP为保护期。
从表2可以看出,TDD系统中,下行子帧多、上行子帧少,无法做到每个下行子帧对应一个上行子帧来进行HARQ反馈。因此,所有第n-k个下行子帧的HARQ反馈都在第n个上行子帧上进行,其中n为子帧号,k的取值可以从表1中获得。请结合参考图3至图5所示配比0至配比2的HARQ反馈时序图。对于配比0,子帧2用于对之前6个子帧的下行传输进行上行反馈,此时k的取值为6,相应的K1的取值为6;子帧4用于对之前4个子帧的下行传输进行上行反馈,此时k的取值为4,相应的K1的取值为4。其它配比与之类似,在此不再详述。
表2
Figure PCTCN2015080068-appb-000002
以上原理也可以通过以下公式(1)来表述:
DL_Voip_SchStatus(CurrentTti-K1)=TRUE   (1)
其中:公式(1)中CurrentTti表示当前时刻,DL_Voip_SchStatus(x)表示x时刻是否对UE进行了下行调度,K1的含义与取值与上面相同,在此不再赘述。如果对UE进行了下行调度,则DL_Voip_SchStatus的取值为TRUE,那么当前时刻便需要主动对UE进行PUSCH的调度;如果未对UE进行下行调度,则DL_Voip_SchStatus的取值为FALSE,那么当前时刻便不需要主动对UE进行PUSCH的调度。
对UE进行PUSCH的调度之后,还需要将为UE分配的PUSCH资源通知给UE,即向UE发送PUSCH资源的授权。该授权的发送在UE进行HARQ反馈之前以告知UE在哪些PUSCH资源上进行反馈。若记下行调度的授权时刻为T,则UE的反馈时刻为T+K1,那么该PUSCH资源的授权的发送时刻,即该PUSCH资源的授权时刻(也可以称为上行调度的授权时刻)为T+K1-K2,其中,K2为PUSCH资源的授权到PUSCH传输的传输时延。
目前,基站通过物理下行控制信道(英文:Physical Downlink Control Channel,缩写:PDCCH)向UE发送上行授权,UE通过检测PDCCH来获得上行授权,进而根据该上行授权进行PUSCH传输。在FDD系统中,PDCCH 上的授权到PUSCH传输之间的时延为4TTI。在TDD系统中,由于每种帧结构中,每个子帧固定用于上行传输或下行传输,因此UE在用于下行传输的子帧(例如下行子帧或特殊子帧)检测到上行授权之后,需要等待到用于上行传的子帧(例如上行子帧或特殊子帧)才能进行PUSCH传输,因此,在TDD系统中,PDCCH上的授权到PUSCH传输之间的时延跟上下行子帧配比相关,且表3中给出了每种上下行子帧配比的PUSCH传输时序。因此,在FDD通信系统中,K2的取值为4,在TDD通信系统中,K2的取值根据上下行子帧配比和各上下行子帧配比的PUSCH传输时序确定。具体,可以参见3GPP标准36.213中的表格,Table 8-2,即如下表3的TDD的PUSCH传输时序所示:
表3
Figure PCTCN2015080068-appb-000003
从表3中可以看出,对于配比2,子帧3用于对之后4个子帧的PUSCH传输进行授权,此时K2的取值为4;子帧8用于对之后4个子帧的PUSCH传输进行授权,此时K2的取值为4。其它配比与之类似,在此不再详述。
此时,以上公式(1)可以进一步优化为以下公式(2)
DL_Voip_SchStatus(CurrentTti-K1+K2)=TRUE   (2)
其中:公式(2)中CurrentTti表示当前时刻,DL_Voip_SchStatus(x)表示x时刻是否对UE进行了下行调度,K1和K2的含义与取值与上面相同,在此不再赘述。如果对UE进行了下行调度,则DL_Voip_SchStatus的取值为TRUE,那么当前时刻便需要主动对UE进行PUSCH的调度;如果未对UE进 行下行调度,则DL_Voip_SchStatus的取值为FALSE,那么当前时刻便不需要主动对UE进行PUSCH的调度。
本实施例中,无线接入设备对正在进行VOIP业务的UE进行监测,当监测到对该UE进行了下行调度时,便主动对该UE发起PUSCH调度,以为该UE分配上行资源,使得UE利用分配的上行资源进行该下行调度的反馈。如此,反馈信息便可以在PUSCH上传输,PUSCH相对于PUCCH,其发射功率较高,解调性能更好,极大地降低了解调失败或错误的概率,从而改善了语音通话的质量。
请参阅图6,图6是本发明实施例提供的一种VOIP业务的通信方法的第三实施例的流程示意图。本实施例中所描述的方法,包括以下步骤:
S601、无线接入设备确定正在进行VOIP业务的UE。
S602、无线接入设备监测对该UE的上行调度。
S603、当预设时间长度内无线接入设备未对该UE进行上行调度时,主动对该UE进行PUSCH的调度,以为该UE分配PUSCH资源,该PUSCH资源用于所述UE发送上行VOIP数据。
S604、无线接入设备向该UE发送所分配的PUSCH资源的授权。
以上确定正在进行VOIP业务的UE的方法同以上实施例一,在此不再赘述。
当UE进行VOIP业务时,可以处于以下两种状态之一:
(1)、通话状态:主要指UE的使用者正在说话时UE的状态,在通话状态下,通常每20ms产生一个数据包,以下将通话状态下UE产生数据包的周期称为第一周期。
(2)、静默状态:主要指UE的使用者正在接听时UE的状态,在静默状态下,通常每160ms产生一个数据包,以下将静默状态下UE产生数据包的周期称为第二周期。
无论UE处于何种状态,在VOIP场景下,无线接入设备在一定时长内应该可以接收到该UE的上行数据包。如果无法接收该UE的上行数据包,可能是因为UE的PUCCH解调错误或失败,无线接入网设备无法获得该UE的SR, 进而无法对该UE进行上行调度。本实施例不以UE的SR为依据,主动对该UE进行PUSCH调度,为其分配上行资源,以便UE发送上行VOIP数据包。当然,也有极端情况下,通话的某一方一直未有上行数据包产生,但是,仍不影响本方案从整体上提高语音通话的质量。
以上原理也可以通过以下公式(3)来表述:
(CurrentTTI-LastPreAllocationTime)>=PreAllocationMinPeriodicity   (3)
其中,CurrentTTI表示当前时刻,LastPreAllocationTime表示与当前时刻最接近的上一次上行调度时刻,PreAllocationMinPeriodicity表示预设时间长度。当以上公式(3)成立时,主动对该UE发起PUSCH调度。
关于预设时间长度,本领域技术人员可以根据需要进行设置。本发明实施例不做限制,以下给出一种示例性的设置方式,如公式(4)所示,其仅用于举例,并非用于限制本发明。
PreAllocationMinPeriodicity=(UE处于通话状态?Period0:第二周期),
Period0=(SR周期>=t?t:第一周期)   (4)
在公式(4)中,第一周期与第二周期的含义同以上描述,即分别为UE处于通话状态和静默状态下的数据包产生周期,通常第二周期大于第一周期。t为一时间长度预设值,其取值介于第一周期与第二周期之间。
从公式(4)可以看出,当UE处于通话状态时,预设时间长度PreAllocationMinPeriodicity的取值为Period0;当UE不处于通话状态时,即处于静默状态时,预设时间长度PreAllocationMinPeriodicity的取值为第二周期。Period0的取值与SR周期相关,当SR周期大于或等于预设值t时,Period0的取值为t;当SR周期小于预设值t时,Period0的取值为第一周期。
本实施例中,无线接入设备对正在进行VOIP业务的UE进行监测,当监测到预设时间长度内未对该UE进行上行调度时,不再依据解码出的SR,主动对该UE进行PUSCH的调度,以为该UE分配上行资源,使得UE可以利用该上行资源发送上行VOIP数据。如此,在SR漏检的情况下,UE仍能进行上行传输,以减少PUCCH解调失败或错误时带来的时延,提高用户通话感受。
请参阅图7,图7是本发明实施例提供的一种VOIP通信方法的第四实施例的流程示意图。本实施例中所描述的VOIP通信方法,包括以下步骤:
S701、UE接收无线接入设备为该UE分配的PUSCH资源的授权,其中该UE与该无线接入设备之间正在进行VOIP业务,且该PUSCH资源为该无线接入设备根据对该UE的调度的监控主动为该UE分配的。
S702、UE根据该授权确定该PUSCH资源。
S703、UE在所确定的PUSCH资源上进行上行传输。
可选地,该PUSCH资源为该无线接入设备在监测到对该UE进行了下行调度时主动为所述UE分配的用于该下行调度的反馈的资源。
进一步可选地,下行调度的授权时刻为T,该下行调度的反馈时刻为T+K1,其中,K1为该下行调度的授权到该下行调度的反馈的反馈时延。
需要指出的是,在FDD通信系统中,K1的取值为4,在TDD通信系统中,K1的取值根据上下行子帧配比和各上下行子帧配比的HARQ反馈时序确定。
进一步地,PUSCH资源的授权时刻为T+K1-K2,其中,K2为该PUSCH资源的授权到PUSCH传输的传输时延。
进一步需要指出的是,在FDD通信系统中,K2的取值为4,在TDD通信系统中,K2的取值根据上下行子帧配比和各上下行子帧配比的PUSCH传输时序确定。
相应地,该PUSCH资源为该无线接入设备在监测到预设时间长度内未对该UE进行上行调度时主动为该UE分配的用于该UE发送上行VOIP数据的资源。
可选地,当该UE处于通话状态时,该预设时间长度为第一时间长度;当该UE处于静默状态时,该预设时间长度为第二时间长度,且该第一时间长度小于第二时间长度。
由上可见,本实施例中,UE接收无线接入设备为该UE分配的PUSCH资源的授权,并根据该授权确定该PUSCH资源,在所确定的PUSCH资源上进行上行传输,其中该UE与该无线接入设备之间正在进行VOIP业务,且该PUSCH资源为该无线接入设备根据对该UE的调度的监控主动为该UE分配 的。如此,HARQ反馈可以在PUSCH上传输,且在SR漏检的情况下,UE仍能进行上行传输,以减少PUCCH解调失败或错误时带来的时延,提高用户通话感受。
请参见图8,图8是本发明实施例中一种VOIP通信装置的第一实施例的结构示意图,该通信装置位于无线接入设备,用于实现图1、图2或图6所述的VOIP通信方法,如图8所示本实施例中的通信装置可以包括:确定单元801、监测单元802、调度单元803和发送单元804,具体如下:
确定单元801,用于确定正在进行VOIP业务的UE;
监测单元802,用于监测对确定单元801确定的UE的调度;
调度单元803,用于根据监测单元802所监测的调度,主动对该UE进行PUSCH的调度,以为该UE分配PUSCH资源;
发送单元804,用于向该UE发送该PUSCH资源的授权。
可选地,在本发明一些可能的实施方式中,监测单元802具体用于:监测对该UE的下行调度。调度单元803具体用于:当监测单元804监测到对该UE进行了下行调度时,主动对该UE进行PUSCH的调度,以为该UE分配PUSCH资源,该PUSCH资源用于该下行调度的反馈。
进一步,下行调度的授权时刻为T,该下行调度的反馈时刻为T+K1,其中,K1为该下行调度的授权到该下行调度的反馈的反馈时延。
需要指出的是,在FDD通信系统中,K1的取值为4,在TDD通信系统中,K1的取值根据上下行子帧配比和各上下行子帧配比的HARQ反馈时序确定。
进一步地,该PUSCH资源的授权时刻为T+K1-K2,其中,K2为该PUSCH资源的授权到PUSCH传输的传输时延。
进一步需要指出的是,在FDD通信系统中,K2的取值为4,在TDD通信系统中,K2的取值根据上下行子帧配比和各上下行子帧配比的PUSCH传输时序确定。
可选地,在本发明一些可能的实施方式中,监测单元802具体用于:监测对该UE的上行调度。调度单元803具体用于:当监测单元802监测到预设时间 长度内无线接入设备未对该UE进行上行调度时,主动对该UE进行PUSCH的调度,以为该UE分配PUSCH资源,该PUSCH资源用于该UE发送上行VOIP数据。
进一步,当UE处于通话状态时,该预设时间长度为第一时间长度;当UE处于静默状态时,该预设时间长度为第二时间长度,且第一时间长度小于第二时间长度。
需要说明的是,本实施例中的确定单元801可以为无线接入设备的处理器,其可以为单独设立的处理器,也可以集成在无线接入设备的某一个处理器中实现,此外,也可以以程序代码的形式存储于无线接入设备的存储器中,由无线接入设备的某一个处理器调用并执行以上确定单元801的功能。监测单元802和调度单元803的实现方式同确定单元801。且确定单元801、监测单元802和调度单元803可以彼此独立设置,也可以全部或部分集成在一起,本发明实施例不做任何限制。发送单元804可以为无线接入设备的发射机,也可以为无线接入设备的收发机。这里所述的处理器可以是一个中央处理器(英文:Central Processing Unit,缩写:CPU),或者是特定集成电路(英文:Application Specific Integrated Circuit,缩写:ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路。
本实施例中,无线接入设备找到正在进行VOIP业务的UE,而后根据对该UE的调度情况来确定是否主动对该UE进行PUSCH的调度,以为该UE分配PUSCH资源,如此,HARQ反馈可以在PUSCH上传输,且在SR漏检的情况下,UE仍能进行上行传输,以减少PUCCH解调失败或错误时带来的时延,提高用户通话感受。
请参见图9,图9是本发明实施例中一种VOIP通信装置的第二实施例的结构示意图,该通信装置位于UE,用于实现图7所述的VOIP通信方法,如图9所示本实施例中的UE可以包括:接收单元901、确定单元902和发送单元903,具体如下:
接收单元901,用于接收无线接入设备为该UE分配的PUSCH资源的授权,其中该UE与该无线接入设备之间正在进行VOIP业务,且该PUSCH资源为该无线接入设备根据对该UE的调度的监控主动为该UE分配的。
确定单元902,用于根据接收单元901接收到的授权确定PUSCH资源。
发送单元903,用于在确定单元902所确定的PUSCH资源上进行上行传输。
可选地,以上PUSCH资源为无线接入设备在监测到对UE进行了下行调度时主动为该UE分配的用于该下行调度的反馈的资源。
进一步,下行调度的授权时刻为T,该下行调度的反馈时刻为T+K1,其中,K1为该下行调度的授权到该下行调度的反馈的反馈时延。
需要指出的是,在FDD通信系统中,K1的取值为4,在TDD通信系统中,K1的取值根据上下行子帧配比和各上下行子帧配比的HARQ反馈时序确定。
进一步地,该PUSCH资源的授权时刻为T+K1-K2,其中,K2为所述PUSCH资源的授权到PUSCH传输的传输时延。
需要指出的是,在FDD通信系统中,K2的取值为4,在TDD通信系统中,K2的取值根据上下行子帧配比和各上下行子帧配比的PUSCH传输时序确定。
可选地,PUSCH资源为无线接入设备在监测到预设时间长度内未对UE进行上行调度时主动为该UE分配的用于该UE发送上行VOIP数据的资源。
进一步地,当UE处于通话状态时,该预设时间长度为第一时间长度;当UE处于静默状态时,该预设时间长度为第二时间长度,且第一时间长度小于第二时间长度。
需要说明的是,本实施例中的接收单元901可以为UE的接收机,发送单元903可以为UE的发射机。另外,也可以将接收单元901和发送单元903集成在一起构成UE的收发机。确定单元902可以为单独设立的处理器,也可以集成在UE的某一个处理器中实现,此外,也可以以程序代码的形式存储于UE的存储器中,由UE的某一个处理器调用并执行以上确定单元902的功能。这里所述的处理器可以是一个CPU,或者是ASIC,或者是被配置成实施本发明实施例的一个或多个集成电路。
本实施例中,UE接收无线接入设备为该UE分配的PUSCH资源的授权,并根据该授权确定该PUSCH资源,在所确定的PUSCH资源上进行上行传输, 其中该UE与该无线接入设备之间正在进行VOIP业务,且该PUSCH资源为该无线接入设备根据对该UE的调度的监控主动为该UE分配的。如此,HARQ反馈可以在PUSCH上传输,且在SR漏检的情况下,UE仍能进行上行传输,以减少PUCCH解调失败或错误时带来的时延,提高用户通话感受。
图10是本发明实施例中的一种VOIP通信装置的第三实施例的结构示意图,该通信装置1000位于无线接入设备,如图10所示,该无线接入设备可以包括:至少一个处理器1001,例如CPU,至少一个网络接口1003,存储器1004,至少一个通信总线1002。其中,通信总线1002用于实现这些组件之间的连接通信。其中,本发明实施例中无线接入设备的网络接口1003可以为无线接口,其通过天线装置与其他节点设备进行信令或数据的通信。存储器1004可以是高速随机存取存储器(英文:Random Access Memory,缩写:RAM)存储器,也可以是非易失的存储器(英文:non-volatile memory),例如至少一个磁盘存储器。可选地,存储器1004还可以是至少一个位于远离前述处理器1001的存储装置。存储器1004中存储一组程序代码,且处理器1001用于调用存储器1004中存储的程序代码,用于执行以下操作:
确定正在进行VOIP业务的UE;
监测对该UE的调度;
根据所监测的调度,主动对该UE进行PUSCH的调度,以为该UE分配PUSCH资源;
向该UE发送该PUSCH资源的授权。
在一些可行的实施方式中,上述处理器1001具体用于:当监测到对UE进行了下行调度时,主动对该UE进行PUSCH的调度,以为该UE分配PUSCH资源,该PUSCH资源用于该下行调度的反馈。
可选地,下行调度的授权时刻为T,则下行调度的反馈时刻为T+K1,其中,K1为该下行调度的授权到该下行调度的反馈的反馈时延。
需要指出的是,在FDD通信系统中,K1的取值为4,在TDD通信系统中,K1的取值根据上下行子帧配比和各上下行子帧配比的HARQ反馈时序确定。
进一步地,PUSCH资源的授权时刻为T+K1-K2,其中,K2为该PUSCH资源的授权到PUSCH传输的传输时延。
进一步需要指出的是,在FDD通信系统中,K2的取值为4,在TDD通信系统中,K2的取值根据上下行子帧配比和各上下行子帧配比的PUSCH传输时序确定。
可选地,在一些可行的实施方式中,上述处理器1001具体用于:当预设时间长度内未对UE进行上行调度时,主动对该UE进行PUSCH的调度,以为该UE分配PUSCH资源,该PUSCH资源用于该UE发送上行VOIP数据。
可选地,当UE处于通话状态时,该预设时间长度为第一时间长度;当UE处于静默状态时,该预设时间长度为第二时间长度,且第一时间长度小于第二时间长度。
需要说明的是,这里的处理器1001可以是一个处理器,也可以是多个处理元件的统称。例如,该处理器可以是CPU,也可以是ASIC,或者是被配置成实施本发明实施例的一个或多个集成电路,例如:一个或多个微处理器(英文:Digital Signal Processor,缩写:DSP),或,一个或者多个现场可编程门阵列(英文:Field Programmable Gate Array,缩写:FPGA)。
存储器1004可以是一个存储装置,也可以是多个存储元件的统称,且用于存储可执行程序代码或无线接入设备运行所需要参数、数据等。且存储器1004可以包括RAM,也可以包括非易失性存储器,例如磁盘存储器,闪存(Flash)等。
总线1002可以是工业标准体系结构(英文:Industry Standard Architecture,缩写:ISA)总线、外部设备互连(英文:Peripheral Component,缩写:PCI)总线或扩展工业标准体系结构(英文:Extended Industry Standard Architecture,缩写:EISA)总线等。该总线1002可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条线表示,但并不表示仅有一根总线或一种类型的总线。
本实施例中,无线接入设备找到正在进行VOIP业务的UE,而后根据对该UE的调度情况来确定是否主动对该UE进行PUSCH的调度,以为该UE分配PUSCH资源,如此,HARQ反馈可以在PUSCH上传输,且在SR漏检 的情况下,UE仍能进行上行传输,以减少PUCCH解调失败或错误时带来的时延,提高用户通话感受。
图11是本发明实施例中的一种VOIP通信装置的第四实施例的结构示意图,该通信装置1100位于UE,如图11所示,该UE可以包括:至少一个处理器1101,例如CPU,至少一个网络接口1103,存储器1104,至少一个通信总线1102。其中,通信总线1102用于实现这些组件之间的连接通信。本发明实施例中UE的网络接口1103可以为无线接口,例如通过天线装置与其他节点设备进行信令或数据的通信。存储器1104可以是高速RAM存储器,也可以是非易失的存储器,例如至少一个磁盘存储器。可选地,存储器1104还可以是至少一个位于远离前述处理器1101的存储装置。存储器1104中存储一组程序代码,且处理器1101用于调用存储器1104中存储的程序代码,用于执行以下操作:
接收无线接入设备为UE分配的PUSCH资源的授权,其中该UE与无线接入设备之间正在进行VOIP业务,且该PUSCH资源为该无线接入设备根据对该UE的调度的监控主动为该UE分配的;
根据以上接收到的授权确定PUSCH资源;
在所确定的PUSCH资源上进行上行传输。
可选地,PUSCH资源为该无线接入设备在监测到对该UE进行了下行调度时主动为该UE分配的用于该下行调度的反馈的资源。
进一步地,下行调度的授权时刻为T,该下行调度的反馈时刻为T+K1,其中,K1为该下行调度的授权到该下行调度的反馈的反馈时延。
需要指出的是,在FDD通信系统中,K1的取值为4,在时分双工TDD通信系统中,K1的取值根据上下行子帧配比和各上下行子帧配比的HARQ反馈时序确定。
进一步地,PUSCH资源的授权时刻为T+K1-K2,其中,K2为该PUSCH资源的授权到PUSCH传输的传输时延。
进一步需要指出的是,在FDD通信系统中,K2的取值为4,在TDD通信系统中,K2的取值根据上下行子帧配比和各上下行子帧配比的PUSCH传输时序确定。
可选地,PUSCH资源为该无线接入设备在监测到预设时间长度内未对该UE进行上行调度时主动为该UE分配的用于该UE发送上行VOIP数据的资源。
可选地,当UE处于通话状态时,该预设时间长度为第一时间长度;当UE处于静默状态时,该预设时间长度为第二时间长度,且第一时间长度小于第二时间长度。
需要说明的是,这里的处理器1101可以是一个处理器,也可以是多个处理元件的统称。例如,该处理器可以是CPU,也可以是特定集成电路ASIC,或者是被配置成实施本发明实施例的一个或多个集成电路,例如:一个或多个微处理器DSP,或,一个或者多个FPGA。
存储器1104可以是一个存储装置,也可以是多个存储元件的统称,且用于存储可执行程序代码或UE运行所需要参数、数据等。且存储器1104可以包括RAM,也可以包括非易失性存储器,例如磁盘存储器,闪存等。
总线1102可以是ISA总线、PCI总线或EISA总线等。该总线1102可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条线表示,但并不表示仅有一根总线或一种类型的总线。
本实施例中,UE接收无线接入设备为该UE分配的PUSCH资源的授权,并根据该授权确定该PUSCH资源,在所确定的PUSCH资源上进行上行传输,其中该UE与该无线接入设备之间正在进行VOIP业务,且该PUSCH资源为该无线接入设备根据对该UE的调度的监控主动为该UE分配的。如此,HARQ反馈可以在PUSCH上传输,且在SR漏检的情况下,UE仍能进行上行传输,以减少PUCCH解调失败或错误时带来的时延,提高用户通话感受。
本发明实施例还提供一种计算机存储介质,其中,该计算机存储介质可存储有程序,该程序执行时包括上述方法实施例中记载的任意一种VOIP通信方法的部分或全部步骤。
本发明实施例还提供一种程序,当处理器调用该程序时,用于执行图1、图2或6图中所描述的方法;或者,当上述处理器调用该程序时,用于执行图7中所描述的方法。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可能可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如上述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
上述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以为个人计算机、服务器或者网络设备等,具体可以是计算机设备中的处理器)执行本发明各个实施例上述方法的全部或部分步骤。其中,而前述的存储介质可包括:U盘、移动硬 盘、磁碟、光盘、只读存储器(英文:Read-Only Memory,缩写:ROM)或者RAM等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (34)

  1. 一种基于互联网协议的语音VOIP通信方法,其特征在于,包括:
    无线接入设备确定正在进行VOIP业务的用户设备UE;
    所述无线接入设备监测对所述UE的调度;
    所述无线接入设备根据所监测的调度,主动对所述UE进行物理上行共享信道PUSCH的调度,以为所述UE分配PUSCH资源;
    所述无线接入设备向所述UE发送所述PUSCH资源的授权。
  2. 如权利要求1所述的方法,其特征在于,所述无线接入设备监测对所述UE的调度,包括:
    所述无线接入设备监测对所述UE的下行调度;
    所述无线接入设备根据所监测的调度,主动对所述UE进行PUSCH的调度,以为所述UE分配PUSCH资源,包括:
    当所述无线接入设备监测到对所述UE进行了下行调度时,主动对所述UE进行所述PUSCH的调度,以为所述UE分配所述PUSCH资源,该PUSCH资源用于所述下行调度的反馈。
  3. 如权利要求2所述的方法,其特征在于,所述下行调度的授权时刻为T,所述下行调度的反馈时刻为T+K1,其中,K1为所述下行调度的授权到该下行调度的反馈的反馈时延。
  4. 如权利要求3所述的方法,其特征在于,在频分双工FDD通信系统中,K1的取值为4,在时分双工TDD通信系统中,K1的取值根据上下行子帧配比和各上下行子帧配比的HARQ反馈时序确定。
  5. 如权利要求3或4任一项所述的方法,其特征在于,所述PUSCH资源的授权时刻为T+K1-K2,其中,K2为所述PUSCH资源的授权到PUSCH传输的传输时延。
  6. 如权利要求5所述的方法,其特征在于,在FDD通信系统中,K2的取值为4,在TDD通信系统中,K2的取值根据上下行子帧配比和各上下行子帧配比的PUSCH传输时序确定。
  7. 如权利要求1所述的方法,其特征在于,所述无线接入设备监测对所述UE的调度,包括:
    所述无线接入设备监测对所述UE的上行调度;
    所述无线接入设备根据所监测的调度,主动对所述UE进行PUSCH的调度,以为所述UE分配PUSCH资源,包括:
    当预设时间长度内所述无线接入设备未对所述UE进行上行调度时,主动对所述UE进行所述PUSCH的调度,以为所述UE分配所述PUSCH资源,该PUSCH资源用于所述UE发送上行VOIP数据。
  8. 如权利要求7所述的方法,其特征在于,当所述UE处于通话状态时,所述预设时间长度为第一时间长度;当所述UE处于静默状态时,所述预设时间长度为第二时间长度,且所述第一时间长度小于第二时间长度。
  9. 一种基于互联网协议的语音VOIP通信方法,其特征在于,包括:
    用户设备UE接收无线接入设备为所述UE分配的物理上行共享信道PUSCH资源的授权,其中所述UE与所述无线接入设备之间正在进行VOIP业务,且所述PUSCH资源为所述无线接入设备根据对所述UE的调度的监控主动为所述UE分配的;
    所述UE根据所述授权确定所述PUSCH资源;
    所述UE在所确定的PUSCH资源上进行上行传输。
  10. 如权利要求9所述的方法,其特征在于,所述PUSCH资源为所述无线接入设备在监测到对所述UE进行了下行调度时主动为所述UE分配的用于该下行调度的反馈的资源。
  11. 如权利要求10所述的方法,其特征在于,所述下行调度的授权时刻为T,所述下行调度的反馈时刻为T+K1,其中,K1为所述下行调度的授权到该下行调度的反馈的反馈时延。
  12. 如权利要求11所述的方法,其特征在于,在频分双工FDD通信系统中,K1的取值为4,在时分双工TDD通信系统中,K1的取值根据上下行子帧配比和各上下行子帧配比的HARQ反馈时序确定。
  13. 如权利要求11或12所述的方法,其特征在于,所述PUSCH资源的授权时刻为T+K1-K2,其中,K2为所述PUSCH资源的授权到PUSCH传输的传输时延。
  14. 如权利要求13所述的方法,其特征在于,在FDD通信系统中,K2的取值为4,在TDD通信系统中,K2的取值根据上下行子帧配比和各上下行子帧配比的PUSCH传输时序确定。
  15. 如权利要求9所述的方法,其特征在于,所述PUSCH资源为所述无线接入设备在监测到预设时间长度内未对所述UE进行上行调度时主动为所述UE分配的用于所述UE发送上行VOIP数据的资源。
  16. 如权利要求15所述的方法,其特征在于,当所述UE处于通话状态时,所述预设时间长度为第一时间长度;当所述UE处于静默状态时,所述预设时间长度为第二时间长度,且所述第一时间长度小于第二时间长度。
  17. 一种基于互联网协议的语音VOIP通信装置,位于无线接入设备,其特征在于,包括:
    确定单元,用于确定正在进行VOIP业务的用户设备UE;
    监测单元,用于监测对所述确定单元确定的UE的调度;
    调度单元,用于根据所述监测单元所监测的调度,主动对所述UE进行物 理上行共享信道PUSCH的调度,以为所述UE分配PUSCH资源;
    发送单元,用于向所述UE发送所述PUSCH资源的授权。
  18. 如权利要求17所述的装置,其特征在于,
    所述监测单元具体用于:监测对所述UE的下行调度;
    所述调度单元具体用于:当所述监测单元监测到对所述UE进行了下行调度时,主动对所述UE进行所述PUSCH的调度,以为所述UE分配所述PUSCH资源,该PUSCH资源用于所述下行调度的反馈。
  19. 如权利要求18所述的装置,其特征在于,所述下行调度的授权时刻为T,所述下行调度的反馈时刻为T+K1,其中,K1为所述下行调度的授权到该下行调度的反馈的反馈时延。
  20. 如权利要求19所述的装置,其特征在于,在频分双工FDD通信系统中,K1的取值为4,在时分双工TDD通信系统中,K1的取值根据上下行子帧配比和各上下行子帧配比的HARQ反馈时序确定。
  21. 如权利要求19或20所述的装置,其特征在于,所述PUSCH资源的授权时刻为T+K1-K2,其中,K2为所述PUSCH资源的授权到PUSCH传输的传输时延。
  22. 如权利要求21所述的装置,其特征在于,在FDD通信系统中,K2的取值为4,在TDD通信系统中,K2的取值根据上下行子帧配比和各上下行子帧配比的PUSCH传输时序确定。
  23. 如权利要求17所述的装置,其特征在于,
    所述监测单元具体用于:监测对所述UE的上行调度;
    所述调度单元具体用于:当所述监测单元监测到预设时间长度内所述无线接入设备未对所述UE进行上行调度时,主动对所述UE进行所述PUSCH的调度,以为所述UE分配所述PUSCH资源,该PUSCH资源用于所述UE发送 上行VOIP数据。
  24. 如权利要求23所述的装置,其特征在于,当所述UE处于通话状态时,所述预设时间长度为第一时间长度;当所述UE处于静默状态时,所述预设时间长度为第二时间长度,且所述第一时间长度小于第二时间长度。
  25. 一种基于互联网协议的语音VOIP通信装置,位于用户设备UE,其特征在于,包括:
    接收单元,用于接收无线接入设备为所述UE分配的物理上行共享信道PUSCH资源的授权,其中所述UE与所述无线接入设备之间正在进行VOIP业务,且所述PUSCH资源为所述无线接入设备根据对所述UE的调度的监控主动为所述UE分配的;
    确定单元,用于根据所述授权确定所述PUSCH资源;
    发送单元,用于在所确定的PUSCH资源上进行上行传输。
  26. 如权利要求25所述的装置,其特征在于,所述PUSCH资源为所述无线接入设备在监测到对所述UE进行了下行调度时主动为所述UE分配的用于该下行调度的反馈的资源。
  27. 如权利要求26所述的装置,其特征在于,所述下行调度的授权时刻为T,所述下行调度的反馈时刻为T+K1,其中,K1为所述下行调度的授权到该下行调度的反馈的反馈时延。
  28. 如权利要求27所述的装置,其特征在于,在频分双工FDD通信系统中,K1的取值为4,在时分双工TDD通信系统中,K1的取值根据上下行子帧配比和各上下行子帧配比的HARQ反馈时序确定。
  29. 如权利要求27或28所述的装置,其特征在于,所述PUSCH资源的授权时刻为T+K1-K2,其中,K2为所述PUSCH资源的授权到PUSCH传输 的传输时延。
  30. 如权利要求29所述的装置,其特征在于,在FDD通信系统中,K2的取值为4,在TDD通信系统中,K2的取值根据上下行子帧配比和各上下行子帧配比的PUSCH传输时序确定。
  31. 如权利要求25所述的装置,其特征在于,所述PUSCH资源为所述无线接入设备在监测到预设时间长度内未对所述UE进行上行调度时主动为所述UE分配的用于所述UE发送上行VOIP数据的资源。
  32. 如权利要求31所述的装置,其特征在于,当所述UE处于通话状态时,所述预设时间长度为第一时间长度;当所述UE处于静默状态时,所述预设时间长度为第二时间长度,且所述第一时间长度小于第二时间长度。
  33. 一种程序,当处理器调用该程序时,用于执行如权利要求1至8任一项所述的方法。
  34. 一种程序,当处理器调用该程序时,用于执行如权利要求9至16任一项所述的方法。
PCT/CN2015/080068 2015-05-28 2015-05-28 基于互联网协议的语音voip通信方法与装置 WO2016187873A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580033024.XA CN106465381B (zh) 2015-05-28 2015-05-28 基于互联网协议的语音voip通信方法与装置
PCT/CN2015/080068 WO2016187873A1 (zh) 2015-05-28 2015-05-28 基于互联网协议的语音voip通信方法与装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/080068 WO2016187873A1 (zh) 2015-05-28 2015-05-28 基于互联网协议的语音voip通信方法与装置

Publications (1)

Publication Number Publication Date
WO2016187873A1 true WO2016187873A1 (zh) 2016-12-01

Family

ID=57392470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/080068 WO2016187873A1 (zh) 2015-05-28 2015-05-28 基于互联网协议的语音voip通信方法与装置

Country Status (2)

Country Link
CN (1) CN106465381B (zh)
WO (1) WO2016187873A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110381486A (zh) * 2019-07-09 2019-10-25 广东以诺通讯有限公司 一种通过NFC共享VoWiFi业务的方法、Tag标签和终端
CN111970705B (zh) * 2020-08-04 2023-10-20 京信网络系统股份有限公司 资源复用方法、装置、基站和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2168331A1 (en) * 2007-06-18 2010-03-31 Motorola, Inc. Use of the physical uplink control channel in a 3rd generation partnership project communication system
CN102026391A (zh) * 2009-09-23 2011-04-20 中兴通讯股份有限公司 一种实现非对称带宽系统的方法及装置
CN102224755A (zh) * 2008-09-23 2011-10-19 高通股份有限公司 用于在无线通信系统中控制ue发射的方法和装置
TW201334613A (zh) * 2011-12-23 2013-08-16 Research In Motion Ltd 實施於演進節點b基地台中之方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841791A (zh) * 2009-03-18 2010-09-22 华为技术有限公司 一种紧急呼叫业务方法、演进基站和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2168331A1 (en) * 2007-06-18 2010-03-31 Motorola, Inc. Use of the physical uplink control channel in a 3rd generation partnership project communication system
CN102224755A (zh) * 2008-09-23 2011-10-19 高通股份有限公司 用于在无线通信系统中控制ue发射的方法和装置
CN102026391A (zh) * 2009-09-23 2011-04-20 中兴通讯股份有限公司 一种实现非对称带宽系统的方法及装置
TW201334613A (zh) * 2011-12-23 2013-08-16 Research In Motion Ltd 實施於演進節點b基地台中之方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON ET AL.: "Resource Allocation for UCI on PUSCH", TSG-RAN WG1 #61BIS, R1-103845, 28 June 2010 (2010-06-28), Dresden, Germany, XP050449260 *

Also Published As

Publication number Publication date
CN106465381B (zh) 2019-11-29
CN106465381A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
US11291000B2 (en) Coverage for time division duplex systems
EP3550754B1 (en) Data retransmission method and communication device
JP6096926B2 (ja) 無線電機通信ネットワークにおける無線機器間のd2d通信におけるharq送信を可能にして実行するための、ネットワークノード、無線機器、およびそれらにおける方法
US8423856B2 (en) Method and apparatus for semi-persistent scheduling activation detection
US10361823B2 (en) Method and apparatus for transmitting uplink data in licensed-assisted access system
KR20190139272A (ko) 데이터 전송 방법 및 장치
EP3783808B1 (en) Information transmission method and device
TW201320780A (zh) 載波聚合之非連續接收
EP3288304B1 (en) Data transmission apparatus
US9706547B2 (en) Method of handling communication operations and related communication device
WO2016187873A1 (zh) 基于互联网协议的语音voip通信方法与装置
WO2018120107A1 (zh) 通信方法、网络设备和终端设备
CN109792725A (zh) 载波聚合的消息反馈方法及装置
WO2018126410A1 (zh) 数据传输方法及终端与网络设备
WO2017084095A1 (zh) 传输数据的方法、终端和基站
TWI646815B (zh) 載波聚合中服務小區的分組方法與使用者設備
WO2018120475A1 (zh) 一种消息应答方法及无线网络设备
WO2014179980A1 (zh) 混合自动重传请求harq反馈方法、用户设备及基站
WO2018201338A1 (zh) 通信方法和设备
KR101922040B1 (ko) 데이터 전송 방법 및 장치
WO2014047892A1 (zh) 用于数据传输的方法、基站和用户设备
WO2022237539A1 (zh) 反馈处理方法、发送方法、反馈方法、设备和存储介质
WO2017147833A1 (zh) 传输数据的方法和装置
WO2015058405A1 (zh) 通信方法、基站和用户设备
CN117560770A (zh) 确定用于发送NACK-only的PUCCH资源的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15892954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15892954

Country of ref document: EP

Kind code of ref document: A1