WO2016187842A1 - 充电方法及移动终端 - Google Patents

充电方法及移动终端 Download PDF

Info

Publication number
WO2016187842A1
WO2016187842A1 PCT/CN2015/079931 CN2015079931W WO2016187842A1 WO 2016187842 A1 WO2016187842 A1 WO 2016187842A1 CN 2015079931 W CN2015079931 W CN 2015079931W WO 2016187842 A1 WO2016187842 A1 WO 2016187842A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature rise
target
charging current
value
data model
Prior art date
Application number
PCT/CN2015/079931
Other languages
English (en)
French (fr)
Inventor
孙文涌
胡军
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580004159.3A priority Critical patent/CN106663848B/zh
Priority to PCT/CN2015/079931 priority patent/WO2016187842A1/zh
Publication of WO2016187842A1 publication Critical patent/WO2016187842A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Embodiments of the present invention relate to the field of circuits, and in particular, to a charging method and a mobile terminal.
  • Linear charging is a common charging method. Due to the low conversion efficiency, the linear charging chip generates a large amount of heat during operation, which causes the temperature of the mobile phone to rise too high, which easily damages the mobile phone and poses a safety hazard.
  • the heat generated by the chip is approximately equal to the voltage division of the chip multiplied by the charging current. Therefore, in the prior art, the chip is generally cooled down by means of software to gradually reduce the charging current.
  • the current is reduced by controlling the Pmos tube, and the charging current is reduced.
  • the impedance of the Pmos tube is also increased, which leads to an increase in the partial pressure of the chip, and the heat generated by the chip when the partial pressure is excessively increased. Increase. That is to say, in some scenarios, reducing the charging current not only does not reduce the heat generated by the chip, but causes an increase in heat, which increases the temperature rise of the mobile phone, damages the mobile phone and causes a safety hazard.
  • the embodiment of the invention provides a charging method and a mobile terminal, which are used for selecting the optimal charging current that meets the preset condition under the current battery operating voltage, and avoids the charging current being too high, thereby causing the partial pressure to be too high and aggravating the temperature of the mobile phone. A security risk caused by rising.
  • the first aspect of the present invention provides a charging method, including:
  • the temperature rise data model includes a temperature rise value of the charging chip, a charging current, and a working voltage of the battery;
  • the charging current of the battery is set to the target charging current.
  • the acquiring, by the mobile terminal, the temperature rise data model includes:
  • the determining, according to a target operating voltage value of the battery and the temperature rise data model, determining a target corresponding to a temperature rise value that satisfies a preset condition includes:
  • the target temperature rise data model corresponding to the target operating voltage value of the battery according to the temperature rise data model includes :
  • the temperature rise data model corresponding to the target operating voltage value in the temperature rise data model is used as the target temperature rise data model
  • the working according to the temperature rise data model and the target operating voltage value meets a preset condition
  • the temperature rise data model corresponding to the voltage value determines the target temperature rise data model including:
  • the selecting according to the target temperature rise data model selects a condition that satisfies a preset condition
  • the target charging current corresponding to the temperature rise value includes:
  • the maximum charging current among the alternative charging currents is taken as the target charging current.
  • the selecting according to the target temperature rise data model selects a condition that satisfies a preset condition
  • the target charging current corresponding to the temperature rise value includes:
  • the maximum charging current among the alternative charging currents is taken as the target charging current.
  • a second aspect of the present invention provides a charging method, including:
  • determining the target charging current corresponding to the heat loss value that satisfies the preset condition in the heat loss value comprises:
  • the maximum charging current among the alternative charging currents is taken as the target charging current.
  • the determining the target charging current corresponding to the heat loss value that satisfies the preset condition in the heat loss value comprises:
  • the maximum charging current among the alternative charging currents is taken as the target charging current.
  • a third aspect of the present invention provides a mobile terminal, including:
  • a first obtaining module configured to acquire a temperature rise data model, where the temperature rise data model includes a temperature rising value of the charging chip, a charging current, and a working relationship of the operating voltage of the battery;
  • a second obtaining module configured to acquire a target working voltage value of the battery, where a target working voltage value of the battery is a current working voltage value of the battery;
  • a determining module configured to determine, according to a target operating voltage value of the battery acquired by the second acquiring module and a temperature rise data model acquired by the first acquiring module, a target charging current corresponding to a temperature rising value satisfying a preset condition ;
  • a setting module configured to set a charging current of the battery to a target charging current determined by the determining module.
  • the first acquiring module includes:
  • control sub-module configured to determine a working voltage value of the battery, and adjust a charging current gear position, and record a temperature rising value corresponding to each charging current gear position, where the temperature rising value is a surface temperature of the charging chip within a preset time appreciation;
  • the determining module includes:
  • a calculation submodule configured to calculate a target temperature rise data model corresponding to the target operating voltage value of the battery according to the temperature rise data model
  • selecting a submodule configured to select, according to the target temperature rise data model, a target charging current corresponding to a temperature rise value that satisfies a preset condition.
  • the calculating submodule includes:
  • a determining unit configured to determine whether a working voltage in the temperature rise data model acquired by the first acquiring module includes a target working voltage value obtained by the acquiring module
  • a first determining unit configured to: when the determining unit determines that the working voltage includes the target working voltage value, perform a temperature rise data model corresponding to the target working voltage value in the temperature rise data model a temperature rise data model for the target;
  • a second determining unit configured to: when the determining unit determines that the working voltage does not include the target working voltage value, according to the work in the temperature rise data model that meets a preset condition with a difference between the target operating voltage values The temperature rise data model corresponding to the voltage value determines the target temperature rise data model.
  • the second determining unit includes:
  • a first determining subunit configured to determine a first working voltage value and a second working voltage value that are the smallest difference between the temperature rise data model and the target operating voltage value
  • a second determining subunit configured to determine a first temperature rise data model corresponding to the first working voltage value determined by the first determining subunit and a second temperature rising data model corresponding to the second working voltage value;
  • a calculating subunit configured to linearly calculate, according to the first temperature rise data model and the second temperature rise data model determined by the second determining subunit, the target working voltage value and the target temperature rising value corresponding to each charging current gear position ;
  • the selecting submodule includes:
  • a third determining unit configured to determine an alternative temperature rise value of the temperature rise value of the target temperature rise data model that is less than a preset temperature rise value
  • a fourth determining unit configured to determine an alternate charging current corresponding to the candidate temperature rising value
  • a fifth determining unit configured to use a maximum charging current among the candidate charging currents determined by the fourth determining unit as the target charging current.
  • the selecting submodule includes:
  • a sixth determining unit configured to determine a minimum value among temperature rise values of the target temperature rise data model
  • a seventh determining unit configured to determine an alternate charging current corresponding to the minimum value determined by the sixth determining unit
  • An eighth determining unit configured to determine a maximum value of the candidate charging currents by the seventh determining unit The charging current is used as the target charging current.
  • a fourth aspect of the present invention provides a mobile terminal, including:
  • control module configured to adjust a charging current of the battery within a preset current range, and read an input terminal voltage and an output terminal voltage of the charging chip under different charging currents
  • a calculation module configured to calculate a heat loss value corresponding to each charging current according to the input terminal voltage and the output terminal voltage
  • a determining module configured to determine a target charging current corresponding to a heat loss value that satisfies a preset condition among the heat loss values obtained by the calculating module
  • a setting module configured to set a charging current of the battery to a target charging current determined by the determining module.
  • the determining module includes:
  • a first determining submodule configured to determine an alternative heat loss value of the heat loss value that is less than a preset heat loss value
  • a second determining submodule configured to determine an alternate charging current corresponding to the candidate heat loss value determined by the first determining submodule
  • a third determining submodule configured to use a maximum charging current of the candidate charging current determined by the second determining submodule as the target charging current.
  • the determining module includes:
  • a fourth determining submodule configured to determine a minimum heat loss in the heat loss value
  • a fifth determining submodule configured to determine an alternate charging current corresponding to a minimum value of heat loss determined by the fourth determining submodule
  • a sixth determining submodule configured to use a maximum charging current among the candidate charging currents determined by the fifth determining submodule as the target charging current.
  • a fifth aspect of the present invention provides a mobile terminal, including: a processor, a charging control circuit, a voltage detecting circuit, and a memory;
  • the voltage detecting circuit performs the following steps: connecting with a battery to obtain an operating voltage of the battery;
  • the processor performs the following steps:
  • the temperature rise data model includes a temperature rise value of the charging chip, a charging current, and a working voltage of the battery;
  • the charge control circuit performs the step of setting a charge current of the battery to a target charge current determined by the processor.
  • the charging control circuit specifically performs the following steps:
  • the memory specifically performs the following steps: recording a temperature rise value corresponding to each charging current gear position;
  • the processor specifically performs the following steps:
  • the processor specifically performs the following steps:
  • a target temperature rise data model corresponding to a target operating voltage value of the battery, where the target temperature rise data model includes a charging current and a temperature rise value corresponding to a target operating voltage value of the battery;
  • the processor specifically performs the following steps:
  • the temperature rise data model corresponding to the target operating voltage value in the temperature rise data model is used as the target temperature rise data model
  • the temperature rise data model corresponding to the working voltage value of the piece determines the target temperature rise data model.
  • the processor specifically performs the following steps:
  • the processor is specifically configured to perform the following steps:
  • the maximum charging current among the alternative charging currents is taken as the target charging current.
  • the processor specifically performs the following steps:
  • the maximum charging current among the alternative charging currents is taken as the target charging current.
  • a sixth aspect of the present invention provides a mobile terminal, including: a processor, a charging chip, and a memory;
  • the charging chip performs the following steps:
  • the processor performs the following steps:
  • the memory performs the step of storing a heat loss value corresponding to each of the charging currents calculated by the processor.
  • the processor specifically performs the following steps:
  • the maximum charging current among the alternative charging currents is taken as the target charging current.
  • the processor specifically performs the following steps:
  • the maximum charging current among the alternative charging currents is taken as the target charging current.
  • a seventh aspect of the present invention provides a mobile terminal, comprising: one or more processors, a memory, and one or more programs, wherein the one or more programs are stored in the memory and The configuration is performed for the one or more processors, the one or more programs comprising instructions for performing any one of the sixth embodiments in accordance with the first aspect to the first aspect.
  • the mobile terminal can acquire the temperature rise data model, obtain the target working voltage value of the battery, and determine the target charging current corresponding to the preset condition temperature rise value according to the target working voltage value and the temperature rise data model. That is to say, the mobile terminal can select the optimal charging current that meets the preset condition under the current battery operating voltage according to the relationship between the temperature rise value and the charging current in the temperature rise data model, thereby avoiding the reduction of the charging current. As a result, the partial pressure is too high, which increases the safety hazard caused by the rise of the temperature of the mobile phone.
  • FIG. 5 is another embodiment of a charging method in an embodiment of the present invention.
  • FIG. 6 is an embodiment of a mobile terminal in an embodiment of the present invention.
  • FIG. 7 is another embodiment of a mobile terminal according to an embodiment of the present invention.
  • FIG. 8 is another embodiment of a mobile terminal according to an embodiment of the present invention.
  • FIG. 9 is another embodiment of a mobile terminal according to an embodiment of the present invention.
  • FIG. 10 is another embodiment of a mobile terminal according to an embodiment of the present invention.
  • FIG 11 is another embodiment of a mobile terminal in an embodiment of the present invention.
  • Embodiments of the present invention provide a charging method for selecting an optimal charging current that satisfies a preset condition under a current battery operating voltage, thereby avoiding a high voltage drop due to a decrease in charging current, and aggravating a temperature rise of the mobile phone. And the security risks caused.
  • an embodiment of a charging method in an embodiment of the present invention includes:
  • the mobile terminal acquires a temperature rise data model, and the temperature rise data model includes a correspondence relationship between a temperature rise value of the charging chip, a charging current, and an operating voltage of the battery.
  • the operating voltage of the battery refers to the potential difference between the positive and negative terminals of the battery when a current flows in the circuit during charging. It should be noted that the temperature rise data model is acquired by a processor in the mobile terminal.
  • the mobile terminal After the mobile terminal connects the battery, when the mobile terminal receives an instruction to reduce the surface temperature of the charging chip, the mobile terminal acquires the target working voltage value of the battery. It should be noted that the target working voltage value is detected by the voltage detecting circuit in the mobile terminal. It is obtained that the voltage detecting circuit can be integrated in the charging chip of the mobile terminal or integrated in other chips of the mobile terminal. It should be noted that the instruction to reduce the surface temperature of the charging chip may be triggered by the temperature of the charging chip being too high during the charging process, and may be triggered by other conditions, which is not limited herein.
  • the temperature rise value corresponds to the target charging current
  • the processor After the voltage detecting circuit measures the target working voltage value, the processor acquires the target working voltage value, and determines a target charging current corresponding to the temperature rising value that satisfies the preset condition according to the target working voltage value and the temperature rise data model.
  • the temperature rise value is a rising value of the surface temperature of the charging chip within a preset time, and the temperature rising value satisfying the preset condition is set by the user, for example, a temperature rising value that satisfies the preset condition can be set. Therefore, the surface temperature of the charging chip does not rise by more than 4 degrees Celsius within half an hour.
  • the mobile terminal After the processor in the mobile terminal determines the target charging current, the mobile terminal sets the charging current to the target charging current through the charging control circuit in the charging chip, so that the charger charges the battery with the target charging current.
  • the mobile terminal can acquire the temperature rise data model, obtain the target working voltage value of the battery, and determine the target charging current corresponding to the temperature rise value satisfying the preset condition according to the target working voltage value and the temperature rise data model. That is to say, the mobile terminal can select the optimal charging current corresponding to the temperature rise value of the preset condition under the current battery operating voltage according to the relationship between the temperature rise value and the charging current in the temperature rise data model, thereby avoiding the charging due to lowering the charging.
  • the current causes the partial pressure to be too high, which increases the safety hazard caused by the rise of the temperature of the mobile phone.
  • FIG. 2 another embodiment of the charging method in the embodiment of the present invention includes:
  • the mobile terminal determines an operating voltage value of the analog battery, adjusts a charging current gear position, and records a temperature rising value corresponding to each charging current gear position;
  • the analog battery is connected to the mobile terminal, placed in the thermostat, and at a constant room temperature, and the charging current gear position of the charging chip in the mobile terminal is set. It should be noted that the gear interval and the number of the charging current gear are not limited, for example, five can be set.
  • the gears are 100 mA, 200 mA, 300 mA, 400 mA and 500 mA, and can be used for other current gears.
  • the analog battery is a set of circuits that simulate a mobile phone battery. It can fully simulate a real mobile phone battery. It can be charged or discharged, and its operating voltage can be set at will.
  • the programmable power supply will simulate the operating voltage of the battery to a certain working voltage value, and the mobile terminal passes the electricity.
  • the voltage detecting circuit determines the working voltage value of the analog battery, adjusts the charging current gear position through the charging control circuit in the charging chip, and records the corresponding temperature rising value under each charging current gear position through the memory, and the temperature rising value is the surface of the charging chip.
  • the rising value of the temperature within the preset time can be detected by the temperature detecting circuit in the mobile terminal, or can be detected by other devices such as a temperature detector.
  • the preset time can be half an hour or other time. This is not a limitation.
  • the mobile terminal generates a temperature rise data model corresponding to the constant voltage value according to each charging current gear position and the temperature rising value;
  • the mobile terminal generates a temperature rise data model corresponding to the working voltage value according to each of the set charging current gear positions and the corresponding temperature rising value.
  • the programmable power supply can adjust the working voltage value of the analog battery, and each time the programmable power supply sets a working voltage value, the mobile terminal repeatedly performs steps 201 to 202 to obtain the temperature rise data model corresponding to the working voltage value.
  • the programmable power supply firstly stabilizes the operating voltage of the analog battery to 4.3 volts, increasing 0.05 volts each time until the operating voltage reaches 4.35 volts, then the battery operating voltage is 3.4 volts, 3.45 volts, 3.5 volts, 3.55 volts... ...4.3 volts, 4.35 volts corresponding temperature rise data model, each temperature rise data model contains the temperature rise value of the chip surface corresponding to each charging current gear position under the working voltage value.
  • the mobile terminal acquires a target working voltage value of the battery.
  • the mobile terminal After the mobile terminal is connected to the battery, when the mobile terminal receives an instruction to reduce the surface temperature of the charging chip, the mobile terminal acquires the target operating voltage value of the battery. It should be noted that the target working voltage value is detected by the voltage detecting circuit in the mobile terminal. It is obtained that the voltage detecting circuit can be integrated in the charging chip of the mobile terminal or integrated into other charging chips of the mobile terminal. It should be noted that the instruction to reduce the surface temperature of the charging chip may be triggered by the temperature of the charging chip being too high during the charging process, and may be triggered by other conditions, which is not limited herein.
  • the processor After the mobile terminal obtains the target working voltage value, the processor acquires the target working voltage value, and determines a target charging current corresponding to the temperature rising value that satisfies the preset condition according to the target working voltage value and the temperature rise data model.
  • the mobile terminal sets a charging current of the battery to a target charging current.
  • the mobile terminal After the processor in the mobile terminal determines the target charging current, the mobile terminal sets the charging current to the target charging current through the charging control circuit in the charging chip, so that the charger charges the battery with the target charging current.
  • the mobile terminal can acquire the temperature rise data model, obtain the target working voltage value of the battery, and determine the target charging current corresponding to the temperature rise value satisfying the preset condition according to the target working voltage value and the temperature rise data model. That is to say, the mobile terminal can select the optimal charging current that meets the preset condition under the current battery operating voltage according to the relationship between the temperature rise value and the charging current in the temperature rise data model, thereby avoiding the reduction of the charging current. As a result, the partial pressure is too high, which increases the safety hazard caused by the rise of the temperature of the mobile phone.
  • the embodiment of the invention provides a specific manner for the mobile terminal to acquire the temperature rise data model, and improves the achievability of the solution.
  • the foregoing embodiment describes a specific manner in which the mobile terminal obtains the temperature rise data model.
  • the following describes the specific manner in which the mobile terminal determines the target charging current.
  • FIG. 3 another embodiment of the charging method in the embodiment of the present invention is described. include:
  • the mobile terminal acquires a temperature rise data model.
  • the mobile terminal acquires a temperature rise data model, and the temperature rise data model includes a correspondence relationship between a temperature rise value of the charging chip, a charging current, and an operating voltage of the battery.
  • the operating voltage of the battery refers to the potential difference between the positive and negative terminals of the battery when a current flows in the circuit during charging.
  • the temperature rise data model is obtained by the processor in the mobile terminal, and may be established by the processor, or may be received by the processor from other devices, which is not limited herein.
  • the processor may be implemented in the manner of step 201 to step 202 in the corresponding embodiment of FIG. 2, or may be established in other manners, which is not limited herein.
  • the mobile terminal acquires a target operating voltage value of the battery.
  • the process of the mobile terminal acquiring the target operating voltage value of the battery is similar to the step 203 in the corresponding embodiment of FIG. 2, and details are not described herein again.
  • the mobile terminal calculates a target temperature rise data model corresponding to the target working voltage value of the battery according to the temperature rise data model.
  • the mobile terminal calculates a target temperature rise data model corresponding to the target operating voltage value according to the temperature rise data model, and the target temperature rise data model includes a charging current and a temperature rising value corresponding to the target voltage value.
  • the target temperature rise data model is calculated by the processor in the mobile terminal, and the temperature rise data model is The target temperature rise data model may or may not be included, and the target temperature rise data model may be determined by the relationship between the target operating voltage value and the operating voltage in the temperature rise data model.
  • the mobile terminal selects, according to the target temperature rise data model, a target charging current corresponding to the temperature rise value that meets the preset condition;
  • the target charging current corresponding to the temperature rise value satisfying the preset condition is selected according to the target temperature rise data model. It should be noted that the target charging current is determined by the processor in the mobile terminal, and the temperature rise value of the preset condition is set by the user.
  • the target charging current corresponding to the temperature rise value satisfying the preset condition may be selected as follows:
  • the mobile terminal determines an alternative temperature rise value of the temperature rise value of the target temperature rise data model that is less than the preset temperature rise value
  • the mobile terminal determines an alternative charging current corresponding to the candidate temperature rise value
  • the mobile terminal uses the maximum charging current among the alternative charging currents as the target charging current.
  • the temperature rise value is equal to the preset temperature rise value, and may be used as an alternative temperature rise value, or may not be an alternative temperature rise value, which is not limited herein.
  • the temperature rise value is greater than the preset temperature rise value, and may be used as an alternative temperature rise value, or may not be an alternative temperature rise value, which is not limited herein.
  • the mobile terminal determines a minimum value among temperature rise values of the target temperature rise data model
  • the charging current corresponding to the minimum value is used as an alternative charging current
  • the maximum charging current among the alternative charging currents is taken as the target charging current.
  • the mobile terminal may select a target charging current corresponding to the temperature rise value that satisfies the preset condition by other means.
  • the mobile terminal sets a charging current of the battery to a target charging current.
  • the process of setting the target charging current of the mobile terminal is similar to the step 205 in the corresponding embodiment of FIG. 2 , and details are not described herein again.
  • the mobile terminal can acquire the temperature rise data model, and obtain the target working voltage value of the battery, and determine the temperature that satisfies the preset condition according to the target working voltage value and the temperature rise data model. Appreciation of the target charging current. That is to say, the mobile terminal can select the optimal charging current that meets the preset condition under the current battery operating voltage according to the relationship between the temperature rise value and the charging current in the temperature rise data model, thereby avoiding the reduction of the charging current. As a result, the partial pressure is too high, which increases the safety hazard caused by the rise of the temperature of the mobile phone.
  • the mobile terminal can calculate the target temperature rise data model corresponding to the target working voltage value, and then select the target charging current through the target temperature rise data model, and provide a specific manner for the mobile terminal to determine the target charging current. Improve the achievability of the program.
  • the mobile terminal can select the target charging current from the target temperature rise data model in a plurality of manners, thereby improving the flexibility of the solution.
  • the mobile terminal determines the target charging current through the target temperature rise data model.
  • the specific manner of calculating the target temperature rise data model by the mobile terminal is described in detail below. Referring to FIG. 4, another charging method in the embodiment of the present invention is described.
  • An embodiment includes:
  • the mobile terminal acquires a temperature rise data model.
  • the process of the mobile terminal acquiring the temperature rise data model is similar to the step 301 in the corresponding embodiment of FIG. 3, and details are not described herein again.
  • the mobile terminal acquires a target operating voltage value of the battery.
  • the process of obtaining the target working voltage value by the mobile terminal is similar to the step 203 in the corresponding embodiment of FIG. 2 , and details are not described herein again.
  • the mobile terminal determines whether the operating voltage in the temperature rise data model includes the target operating voltage value, and if so, step 404 is performed, and if not, step 405 is performed;
  • step 304 After the mobile terminal determines the target operating voltage value of the battery, it is determined whether the operating voltage in the temperature rise data model includes the target operating voltage value. If yes, step 304 is performed, and if no, step 305 is performed.
  • the mobile terminal takes the temperature rise data model corresponding to the target operating voltage value in the temperature rise data model as the target temperature rise data model, and performs step 406;
  • the mobile terminal uses the temperature rise data model corresponding to the target working voltage value in the temperature rise data model as the target temperature rise data model, and performs step 406.
  • the mobile terminal determines the target temperature rise data model according to the temperature rise data model corresponding to the working voltage value of the preset operating condition in the temperature rise data model, and performs step 406;
  • the mobile terminal determines that the working voltage in the temperature rise data model does not include the target working voltage value
  • the mobile terminal determines the target according to the temperature rise data model corresponding to the working voltage value that meets the preset condition in the temperature rise data model. Warm up the data model and perform step 406.
  • the mobile terminal may determine the target temperature rise data model by:
  • the mobile terminal determines a first working voltage value and a second working voltage value that have the smallest difference from the target operating voltage value in the temperature rise data model;
  • the mobile terminal searches for the working voltage in the temperature rise data model, and determines two operating voltage values having the smallest difference between the value and the target operating voltage value, which are the first working voltage value and the second working voltage value, respectively.
  • the operating voltage in the temperature rise data model includes 3.4, 3.45, 3.5, 3.55, and 3.6. If the target operating voltage is 3.43, then the first operating voltage and the second operating voltage are 3.4 and 3.45.
  • the mobile terminal determines a first temperature rise data model corresponding to the first working voltage value and a second temperature rise data model corresponding to the second working voltage value;
  • the mobile terminal After determining the first working voltage value and the second working voltage value, the mobile terminal determines a first temperature rise data model corresponding to the first working voltage value and a second temperature rise data model corresponding to the second working voltage value.
  • the mobile terminal linearly calculates the target working voltage value and the target temperature rise value corresponding to each charging current gear position according to the first temperature rise data model and the second temperature rise data model;
  • the mobile terminal linearly calculates the target working voltage value and the target temperature rise value corresponding to each charging current gear according to the first temperature rise data model and the second temperature rise data model, and the specific calculation process is as follows:
  • the target working voltage value as the abscissa, and obtaining a corresponding ordinate value according to the binary one-time equation, the ordinate value being the temperature rising value corresponding to the target charging current gear position;
  • the mobile terminal generates the target temperature rise number according to each charging current gear position and the target temperature rise value. According to the model.
  • the mobile terminal obtains the target temperature rise value corresponding to each charging current gear position according to steps (1) to (3), and generates a target temperature rise data model according to each of the charging current gear position and the target temperature rising value.
  • the mobile terminal may determine the target temperature rise data model according to the working voltage value that meets the preset condition with the target working voltage difference value, which is not limited herein.
  • the mobile terminal selects, according to the target temperature rise data model, a target charging current corresponding to the temperature rise value that meets the preset condition;
  • the process of selecting the target charging current by the mobile terminal in the embodiment of the present invention is similar to the process of selecting the target charging current by the mobile terminal in step 304 of the embodiment corresponding to FIG. 3 , and details are not described herein again.
  • the mobile terminal sets a charging current of the battery to a target charging current.
  • the process of setting the target charging current of the mobile terminal is similar to the step 205 in the corresponding embodiment of FIG. 2 , and details are not described herein again.
  • the mobile terminal can acquire the temperature rise data model, obtain the target working voltage value of the battery, and determine the target charging current corresponding to the temperature rise value satisfying the preset condition according to the target working voltage value and the temperature rise data model. That is to say, the mobile terminal can select the optimal charging current that meets the preset condition under the current battery operating voltage according to the relationship between the temperature rise value and the charging current in the temperature rise data model, thereby avoiding the reduction of the charging current. As a result, the partial pressure is too high, which increases the safety hazard caused by the rise of the temperature of the mobile phone.
  • the mobile terminal can calculate the target temperature rise data model corresponding to the target working voltage value according to various methods, and can also select the target charging current according to the target temperature rise data model in various ways, thereby improving the flexibility of the solution. Sex.
  • the above describes the charging method for determining the optimal charging current based on the relation model of the mobile terminal.
  • another charging method can be adopted. Referring to FIG. 5, the implementation of the present invention is implemented.
  • Another embodiment of the charging method in the example includes:
  • the mobile terminal adjusts a charging current of the battery in a preset current range, and reads an input terminal voltage and an output terminal voltage of the charging chip under different charging currents;
  • the battery is placed in the mobile terminal, and when the battery needs to be charged, the mobile terminal is connected to the charger.
  • the mobile terminal adjusts the charging current of the battery in a preset current range through a charging control circuit in the charging chip. And read the input terminal voltage and output terminal voltage of the charging chip under different charging currents.
  • the mobile terminal calculates a heat loss value corresponding to each charging current according to the input terminal voltage and the output terminal voltage.
  • the mobile terminal determines a target charging current corresponding to a heat loss value that satisfies a preset condition among each heat loss value;
  • the processor determines a target charging current corresponding to the heat loss value of the preset condition among the heat loss values.
  • the mobile terminal sets a charging current of the battery to a target charging current.
  • the charging current is set to the target charging current through the charging control circuit in the charging chip, so that the discharging battery charges the battery with the target charging current.
  • the mobile terminal can read the input terminal voltage and the output terminal voltage of the charging chip, calculate the heat loss value corresponding to each charging current according to the input terminal voltage and the output terminal voltage, and then determine the heat loss value that satisfies the preset condition.
  • Corresponding target charging current That is to say, the mobile terminal can determine the heat loss value corresponding to different charging currents, and select the optimal charging current that the heat loss value satisfies the preset condition, thereby avoiding the partial voltage being too high due to the lowering of the charging current, thereby increasing the temperature rise of the mobile phone. The security risks caused.
  • the mobile terminal may determine the target charging current corresponding to the heat loss value of the preset condition in each of the heat loss values in the following manners; , such as:
  • the maximum charging current is less than the preset heat loss.
  • the mobile terminal determines an alternative heat loss value that is less than a preset heat loss value among the heat loss values
  • the mobile terminal determines an alternative charging current corresponding to the candidate heat loss value
  • the mobile terminal uses the maximum charging current among the alternative charging currents as the target charging current.
  • the value of the heat loss value equal to the preset heat loss value may be used as the candidate heat loss value, and may not be used as the candidate heat loss value, which is not limited herein.
  • the value of the heat loss value that is greater than the preset heat loss value it may be used as an alternative heat loss value or may not be an alternative heat loss value, which is not limited herein.
  • the mobile terminal determines a minimum heat loss in the heat loss value
  • the mobile terminal determines an alternative charging current corresponding to the minimum heat loss
  • the mobile terminal uses the maximum charging current among the alternative charging currents as the target charging current.
  • the mobile terminal can determine the target charging current in a plurality of manners, thereby improving the flexibility of the solution.
  • the programmable power supply can control the working voltage of the analog battery and provide power for charging the battery.
  • the charging chip in the mobile phone integrates the charging control circuit and the voltage detecting circuit. Then perform the following steps:
  • the mobile phone adjusts the charging current to 100 mA through the charging control circuit of the charging chip;
  • the rise value of the surface temperature of the charging chip is measured by a temperature detector, and the temperature rise value is recorded by the memory in the mobile phone;
  • the programmable power supply increases the operating voltage of the analog battery by 0.05 volts
  • the processor generates a temperature rise data model shown in Table 1 according to the operating voltage value, the charging current gear position and the temperature rise value obtained by the memory recording, and the temperature rise values in the table are all in degrees Celsius.
  • the mobile phone After the processor establishes the above temperature rise data model, the mobile phone is taken out, the mobile phone battery is placed, and the mobile phone is connected to the charger.
  • the charger first charges the mobile phone battery with a current of 500 mA. After half a time, the charging chip generates a large amount of heat, and the overall temperature of the mobile phone rises by 6 degrees Celsius. At this time, the processor in the mobile terminal issues a cooling command to reduce the charging.
  • the temperature rise of the chip increases the temperature rise of the charging chip below 4 degrees Celsius.
  • the mobile terminal detects that the operating voltage of the battery is 3.43 volts at this time, and the mobile terminal searches for the operating voltage in Table 1 above, and determines that 3.43 volts is not included, and the mobile terminal determines the first operating voltage value that is the smallest difference from the 3.43 volt in Table 1 and
  • the second operating voltage values are 3.4 volts and 3.45 volts, respectively, and the first operating voltage value of 3.43 volts corresponds to the first temperature rise data model and the second operating voltage value of 3.45 volts corresponding to the second temperature rise data model, according to the first temperature
  • the liter data model and the second temperature rise data model linearly calculate the temperature rise data for each charging current gear position corresponding to 3.43 volts, taking the charging current gear position as 100 mA, for example, 100 mA charging current, 3.4 volts operation.
  • the temperature rise value corresponding to the voltage is 5 degrees Celsius
  • the temperature rise value corresponding to the 3.45 volt working voltage is 4 degrees Celsius
  • the working voltage is taken as the abscissa and the temperature rise value.
  • the temperature rise value corresponding to each charging current gear position is calculated. As shown in Table 2, the temperature rise values in the table are all in degrees Celsius.
  • the alternative temperature rise value of the model with temperature rise below 4 degrees Celsius is 3.6 degrees Celsius and 2.6 degrees Celsius, and the corresponding alternative charging current is 300 mA.
  • 400 mA select the maximum charging current from the candidate charging current as the target charging current, ie 400 mA, the mobile terminal sets the charging current of the mobile phone battery to 400 mA, and the control chip in the charging chip adjusts the charging current.
  • the charger charges the phone battery at 400 mA.
  • an embodiment of the mobile terminal in the embodiment of the present invention includes:
  • the first obtaining module 601 is configured to acquire a temperature rise data model, where the temperature rise data model includes a temperature rising value of the charging chip, a charging current, and a working voltage of the battery;
  • the second obtaining module 602 is configured to acquire a target working voltage value of the battery, where the target working voltage value is a current working voltage value of the battery;
  • a determining module 603 configured to determine, according to the target operating voltage value acquired by the second obtaining module 602 and the temperature rising data model acquired by the first acquiring module 601, a target charging current corresponding to the temperature rising value satisfying the preset condition;
  • the setting module 604 is configured to set a charging current of the battery to a target charging current determined by the determining module 603.
  • the first obtaining module 601 can obtain the temperature rise data model
  • the second obtaining module 602 can obtain the target working voltage value of the battery
  • the determining module 603 can determine the satisfaction according to the target working voltage value and the temperature rise data model.
  • the partial pressure is too high, which increases the safety hazard caused by the rise of the temperature of the mobile phone.
  • FIG. 7 another embodiment of the mobile terminal in the embodiment of the present invention includes:
  • the first obtaining module 701 is configured to acquire a temperature rise data model, where the temperature rise data model includes a temperature rise value of the charging chip, a charging current, and a working voltage of the battery;
  • a second obtaining module 702 configured to acquire a target working voltage value of the battery, where the target working voltage value is a current working voltage value of the battery;
  • a determining module 703 configured to determine, according to the target operating voltage value acquired by the second obtaining module 702 and the temperature rising data model acquired by the second acquiring module 701, a target charging current corresponding to the temperature rising value that meets the preset condition;
  • the setting module 704 is configured to set the charging current of the battery to the target charging current determined by the determining module 703.
  • the first obtaining module 701 includes:
  • the control sub-module 7011 is configured to determine a working voltage value of the battery, adjust a charging current gear position, and record a temperature rising value corresponding to each charging current gear position, where the temperature rising value is a surface temperature of the charging chip within a preset time.
  • the generating sub-module 7012 is configured to generate a temperature rise data model corresponding to the constant voltage value according to each charging current gear position and the temperature rising value recorded by the control sub-module 7011.
  • the first obtaining module 701 can obtain the temperature rise data model
  • the second obtaining module 702 can obtain the target working voltage value of the battery
  • the determining module 703 can determine that the preset is satisfied according to the target working voltage value and the temperature rise data model.
  • the target temperature rise value corresponds to the target charging current. That is to say, the mobile terminal can select the relationship between the temperature rise value and the charging current in the temperature rise data model. Under the current battery operating voltage, the temperature rise value satisfies the optimal charging current of the preset condition, which avoids the safety hazard caused by the increase of the temperature rise of the mobile phone due to the lowering of the charging current.
  • the embodiment of the present invention provides a specific manner for the first obtaining module 701 to acquire the temperature rise data model, and improves the achievability of the solution.
  • another embodiment of the mobile terminal in the embodiment of the present invention includes:
  • the first obtaining module 801 is configured to acquire a temperature rise data model, where the temperature rise data model includes a temperature rise value of the charging chip, a charging current, and a working voltage of the battery;
  • a second obtaining module 802 configured to acquire a target working voltage value of the battery, where the target working voltage value is a current working voltage value of the battery;
  • a determining module 803 configured to determine, according to the target operating voltage value acquired by the second obtaining module 802 and the temperature rising data model acquired by the first acquiring module 801, a target charging current corresponding to the temperature rising value satisfying the preset condition;
  • the setting module 805 is configured to set the charging current of the battery to the target charging current determined by the determining module 803.
  • the determining module 803 includes:
  • a calculation submodule 8031 configured to calculate a target temperature rise data model corresponding to the target working voltage value according to the temperature rise data model
  • the selecting submodule 8032 is configured to select, according to the target temperature rise data model, a target charging current corresponding to the temperature rise value that satisfies the preset condition;
  • the calculating submodule 8031 includes:
  • the determining unit 80311 is configured to determine whether the working voltage in the temperature rise data model acquired by the first obtaining module 801 includes the target working voltage value obtained by the second acquiring module 802;
  • the first determining unit 80312 is configured to: when the determining unit 80311 determines that the working voltage includes the target working voltage value, use the temperature rise data model corresponding to the target working voltage value in the temperature rise data model as the target temperature rise data model;
  • the second determining unit 80313 is configured to, when the determining unit 80311 determines that the working voltage does not include the target working voltage value, according to the temperature rise data model corresponding to the working voltage value that satisfies the preset condition in the temperature rise data model and the target working voltage value difference Determining the target temperature rise data model;
  • the second determining unit 80313 may include:
  • the first determining subunit 803131 is configured to determine a first working voltage value and a second working voltage value that are the smallest difference from the target operating voltage value in the temperature rise data model;
  • a second determining subunit 803132 configured to determine a first temperature rise data model corresponding to the first working voltage value determined by the first determining subunit 803131 and a second temperature rising data model corresponding to the second working voltage value;
  • a calculation subunit 803133 configured to linearly calculate a target operating voltage value and a target temperature rise value corresponding to each charging current gear position according to the first temperature rise data model determined by the second determining subunit 803132 and the second temperature rise data model;
  • the generating sub-unit 803134 is configured to generate a target temperature rise data model according to the respective charging current gear positions and the target temperature rising value obtained by the calculating sub-unit 70333.
  • the selecting module 8032 includes:
  • a third determining unit 80321, configured to determine an alternative temperature rise value of the temperature rise value of the target temperature rise data model that is less than the preset temperature rise value
  • a fourth determining unit 80322 configured to determine an alternate charging current corresponding to the candidate temperature rising value
  • the fifth determining unit 80423 is configured to determine, as the target charging current, the maximum charging current of the candidate charging current of the third determining unit 8032.
  • a sixth determining unit 80324 configured to determine a minimum of temperature rise values of the target temperature rise data model
  • a seventh determining unit 80325, configured to determine an alternate charging current corresponding to the minimum value determined by the sixth determining unit 80324;
  • the eighth determining unit 80326 is configured to use the maximum charging current among the candidate charging currents determined by the seventh determining unit 80325 as the target charging current.
  • the first obtaining module 801 can obtain the temperature rise data model
  • the second obtaining module 802 can obtain the target working voltage value of the battery
  • the determining module 803 can determine that the preset is satisfied according to the target working voltage value and the temperature rise data model.
  • the target temperature rise value corresponds to the target charging current. That is to say, the mobile terminal can select the optimal charging current that meets the preset condition under the current battery operating voltage according to the relationship between the temperature rise value and the charging current in the temperature rise data model, thereby avoiding the reduction of the charging current. As a result, the partial pressure is too high, which increases the safety hazard caused by the rise of the temperature of the mobile phone.
  • the determining module 803 can determine the target charging current according to various manners, thereby improving the flexibility of the solution.
  • the first obtaining module 801 acquires a temperature rise data model, and the temperature rise data model includes a correspondence relationship between a temperature rise value of the charging chip, a charging current, and an operating voltage of the battery.
  • the operating voltage of the battery refers to the potential difference between the positive and negative terminals of the battery when a current flows in the circuit during charging.
  • the first obtaining module 801 acquires the temperature rise data model by:
  • the analog battery is connected to the mobile terminal, placed in the thermostat, and at a constant room temperature, and the charging current gear position of the charging chip in the mobile terminal is set.
  • the gear interval and the number of the charging current gear are not limited, for example, five can be set.
  • the gears are 100 mA, 200 mA, 300 mA, 400 mA and 500 mA, and can be used for other current gears.
  • the programmable power supply will constant the working voltage of the simulated battery to a certain working voltage value, determine the working voltage value of the analog battery through the voltage detecting circuit, adjust the charging current gear position through the charging control circuit in the charging chip, and record each charging current file through the memory.
  • the corresponding temperature rise value under the bit, the temperature rise value is a rising value of the surface temperature of the charging chip within a preset time, and can be detected by a temperature detecting circuit in the mobile terminal, or can be detected by other devices such as a temperature detector.
  • the preset time may be half an hour or other time, which is not limited herein.
  • the first obtaining module 801 generates a temperature rise data model corresponding to the working voltage value according to each of the set charging current gear positions and the corresponding temperature rising value.
  • the programmable power supply can adjust the working voltage value of the analog battery, and each time the programmable power supply sets a working voltage value, the mobile terminal repeatedly performs steps 201 to 202 to obtain the temperature rise data model corresponding to the working voltage value.
  • the programmable power supply firstly stabilizes the operating voltage of the analog battery to 4.3 volts, increasing 0.05 volts each time until the operating voltage reaches 4.35 volts, then the battery operating voltage is 3.4 volts, 3.45 volts, 3.5 volts, 3.55 volts... ...4.3 volts, 4.35 volts corresponding temperature rise data model, each temperature rise data model contains the temperature rise value of the chip surface corresponding to each charging current gear position under the working voltage value.
  • the mobile terminal After the first acquisition module 801 obtains the temperature rise data model, after the mobile terminal is connected to the battery, when the battery needs to be charged, the mobile terminal connects to the charger. When the mobile terminal receives the need to lower the surface of the charging chip When the temperature is commanded, the second obtaining module 802 acquires a target working voltage value of the battery, and the target working voltage value is detected by a voltage detecting circuit in the mobile terminal, and the voltage detecting circuit may be integrated in the charging chip of the mobile terminal, or Not integrated in the charging chip. It should be noted that the instruction to reduce the surface temperature of the charging chip may be triggered by the temperature of the charging chip being too high, and may be triggered by other conditions, which is not limited herein.
  • the determining unit 80311 in the calculating sub-module 8031 determines whether the working voltage in the temperature rising data model includes the target working voltage value, and if so, triggers the first determining unit 80312, if Otherwise, the second determining unit 80313 is triggered.
  • the first determining unit 80312 regards the temperature rise data model corresponding to the target operating voltage value in the temperature rise data model as the target temperature rise data model.
  • the second determining unit 80313 compares the temperature rise corresponding to the working voltage value that satisfies the preset condition in the temperature rise data model and the target working voltage difference.
  • the data model determines the target temperature rise data model.
  • the second determining unit 80313 may determine the target temperature rise data model according to the temperature rise data model corresponding to the working voltage value whose target operating voltage difference satisfies the preset condition:
  • the first determining sub-unit 803131 searches for the operating voltage in the temperature rise data model, and determines two operating voltage values having the smallest difference between the two values and the target operating voltage value, which are the first working voltage value and the second working voltage value, respectively.
  • the operating voltage in the temperature rise data model includes 3.4, 3.45, 3.5, 3.55, and 3.6. If the target operating voltage is 3.43, then the first operating voltage and the second operating voltage are 3.4 and 3.45.
  • the second determining sub-unit 803131 determines a first temperature-up data model corresponding to the first working voltage value and a second operating voltage value corresponding to the first Two temperature rise data models.
  • the calculating sub-unit 803133 linearly calculates the target working voltage value and the target temperature rising value corresponding to each charging current gear according to the first temperature rise data model and the second temperature rise data model, and the specific calculation process is as follows:
  • the target working voltage value as the abscissa, and obtaining a corresponding ordinate value according to the binary one-time equation, the ordinate value being the temperature rising value corresponding to the target charging current gear position;
  • the generation sub-unit 803134 After the calculation sub-unit 803133 obtains the target temperature rise value corresponding to each charging current gear position, the generation sub-unit 803134 generates a target temperature rise data model based on each of the charging current gear position and the target temperature increase value.
  • the calculation sub-module 8031 can determine the target temperature rise data model according to the temperature rise data model corresponding to the working voltage value that meets the preset condition with the target operating voltage difference, which is not determined herein. limited.
  • the selection sub-module 8032 selects the target charging current corresponding to the temperature rise value that satisfies the preset condition according to the target temperature rise data model. Specifically, you can do the following:
  • the maximum charging current is less than the preset temperature rise value.
  • the third determining unit 80311 determines an alternative temperature rise value of the temperature rise value of the target temperature rise data model that is less than the preset temperature rise value
  • the fourth determining unit 80312 determines an alternative charging current corresponding to the candidate temperature rising value
  • the fifth determining unit 80313 uses the maximum charging current among the alternative charging currents as the target charging current.
  • the sixth determining unit 80314 determines a minimum value among the temperature rise values of the target temperature rise data model
  • the seventh determining unit 80315 uses the charging current corresponding to the minimum value as the candidate charging current
  • the eighth determining unit 80316 uses the maximum charging current among the alternative charging currents as the target charging current.
  • the selection submodule 8031 may select the target charging current corresponding to the temperature rise value that satisfies the preset condition by other means.
  • the setting module 804 sets the charging current of the battery to the target charging current determined by the determining module 803.
  • FIG. 9 another embodiment of the mobile terminal in the embodiment of the present invention includes:
  • the control module 901 is configured to adjust a charging current of the battery within a preset current range, and read an input terminal voltage and an output terminal voltage of the charging chip under different charging currents;
  • the calculation module 902 is configured to calculate a heat loss value corresponding to each charging current according to the input terminal voltage and the output terminal voltage;
  • a determining module 903 configured to determine a target charging current corresponding to a heat loss value that satisfies a preset condition among the heat loss values obtained by the calculating module 902;
  • the setting module 904 is configured to set the charging current of the battery to the target charging current determined by the determining module 803.
  • the control module 901 can read the input terminal voltage and the output terminal voltage of the charging chip, and the calculating module 902 calculates the heat loss value corresponding to each charging current according to the input terminal voltage and the output terminal voltage, and the determining module 903 determines that the pre-compensation is satisfied.
  • the target heat current value corresponds to the target charging current. That is to say, the mobile terminal can determine the heat loss value corresponding to different charging currents, and select the optimal charging current that the heat loss value satisfies the preset condition, thereby avoiding the partial voltage being too high due to the lowering of the charging current, thereby increasing the temperature rise of the mobile phone. The security risks caused.
  • FIG. 10 another embodiment of the mobile terminal in the embodiment of the present invention includes:
  • the control module 1001 is configured to adjust a charging current of the battery in a preset current range, and read an input terminal voltage and an output terminal voltage of the charging chip under different charging currents;
  • the calculation module 1002 is configured to calculate a heat loss value corresponding to each charging current according to the input terminal voltage and the output terminal voltage;
  • a determining module 1003 configured to determine a target charging current corresponding to a heat loss value that satisfies a preset condition among the heat loss values obtained by the calculating module 1002;
  • the setting module 1004 is configured to set a charging current of the battery to a target charging current determined by the determining module 1003.
  • the determining module 1003 includes:
  • a first determining submodule 10031 configured to determine an alternative heat loss value of the heat loss value that is less than a preset heat loss value
  • a second determining submodule 10032 configured to determine an alternate charging current corresponding to the candidate heat loss value determined by the first determining submodule 10031;
  • a third determining sub-module 10033 configured to use a maximum charging current of the candidate charging current determined by the second determining unit 10032 as the target charging current
  • a fourth determining sub-module 10034 configured to determine a minimum heat loss in the heat loss value
  • a fifth determining sub-module 10035 configured to determine an alternate charging current corresponding to a minimum value of heat loss determined by the fourth determining sub-module 10034;
  • the sixth determining sub-module 10036 is configured to use the maximum charging current of the candidate charging current determined by the fifth determining sub-module 10035 as the target charging current.
  • the control module 1001 can read the input terminal voltage and the output terminal voltage of the charging chip, and the calculating module 1002 calculates the heat loss value corresponding to each charging current according to the input terminal voltage and the output terminal voltage, and the determining module 1003 determines that the pre-compensation is satisfied.
  • the target heat current value corresponds to the target charging current. That is to say, the mobile terminal can determine the heat loss value corresponding to different charging currents, and select the optimal charging current that the heat loss value satisfies the preset condition, thereby avoiding the partial voltage being too high due to the lowering of the charging current, thereby increasing the temperature rise of the mobile phone. The security risks caused.
  • the determining module 1003 can determine the target charging current in various ways, thereby improving the flexibility of the solution.
  • the mobile terminal in the embodiment of the present invention is described above from the perspective of the functionalization module.
  • the mobile terminal in the embodiment of the present invention is described in the following.
  • the terminal may be a mobile phone, a tablet computer, or a PDA (Personal Digital Assistant).
  • the mobile terminal device is a mobile terminal device.
  • the terminal is a mobile phone as an example.
  • FIG. 11 is a block diagram showing a partial structure of a mobile phone related to the terminal provided by the embodiment of the present invention.
  • an embodiment of a mobile terminal in an embodiment of the present invention includes:
  • the RF circuit 1110 can be used for receiving and transmitting signals during and after receiving or transmitting information, in particular, after receiving the downlink information of the base station, and processing it to the processor 1180; in addition, transmitting the designed uplink data to the base station.
  • the RF circuit 1110 includes, but is not limited to, an antenna, at least one amplifier, and a transceiver. Machine, coupler, Low Noise Amplifier (LNA), duplexer, etc.
  • RF circuitry 1110 can also communicate with the network and other devices via wireless communication.
  • the above wireless communication may use any communication standard or protocol, including but not limited to Global System of Mobile communication (GSM), General Packet Radio Service (GPRS), Code Division Multiple Access (Code Division). Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), Long Term Evolution (LTE), E-mail, Short Messaging Service (SMS), and the like.
  • GSM Global System of Mobile communication
  • GPRS General Packet Radio Service
  • CDMA Code Division Multiple Access
  • the memory 1120 can be used to store software programs and modules, and the processor 1180 executes various functional applications and data processing of the mobile phone by running software programs and modules stored in the memory 1120.
  • the memory 1120 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of the mobile phone (such as audio data, phone book, etc.).
  • memory 1120 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the input unit 1130 can be configured to receive input numeric or character information and to generate key signal inputs related to user settings and function controls of the handset.
  • the input unit 1130 may include a touch panel 1131 and other input devices 1132.
  • the touch panel 1131 also referred to as a touch screen, can collect touch operations on or near the user (such as the user using a finger, a stylus, or the like on the touch panel 1131 or near the touch panel 1131. Operation), and drive the corresponding connecting device according to a preset program.
  • the touch panel 1131 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 1180 is provided and can receive commands from the processor 1180 and execute them.
  • the touch panel 1131 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 1130 may also include other input devices 1132.
  • other input devices 1132 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like. One or more of them.
  • the display unit 1140 can be used to display information input by the user or information provided to the user as well as various menus of the mobile phone.
  • the display unit 1140 may include a display panel 1141.
  • the display panel 1141 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the touch panel 1131 can cover the display panel 1141. After the touch panel 1131 detects a touch operation thereon or nearby, the touch panel 1131 transmits to the processor 1180 to determine the type of the touch event, and then the processor 1180 according to the touch event. The type provides a corresponding visual output on the display panel 1141.
  • the touch panel 1131 and the display panel 1141 are used as two independent components to implement the input and input functions of the mobile phone, in some embodiments, the touch panel 1131 and the display panel 1141 may be integrated. Realize the input and output functions of the phone.
  • the handset may also include at least one type of sensor 1150, such as a light sensor, motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor, wherein the ambient light sensor may adjust the brightness of the display panel 1141 according to the brightness of the ambient light, and the proximity sensor may close the display panel 1141 and/or when the mobile phone moves to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in all directions (usually three axes). When it is stationary, it can detect the magnitude and direction of gravity.
  • the mobile phone can be used to identify the gesture of the mobile phone (such as horizontal and vertical screen switching, related Game, magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tapping), etc.; as for the mobile phone can also be configured with gyroscopes, barometers, hygrometers, thermometers, infrared sensors and other sensors, no longer Narration.
  • the gesture of the mobile phone such as horizontal and vertical screen switching, related Game, magnetometer attitude calibration
  • vibration recognition related functions such as pedometer, tapping
  • the mobile phone can also be configured with gyroscopes, barometers, hygrometers, thermometers, infrared sensors and other sensors, no longer Narration.
  • An audio circuit 1160, a speaker 1161, and a microphone 1162 can provide an audio interface between the user and the handset.
  • the audio circuit 1160 can transmit the converted electrical data of the received audio data to the speaker 1161, and convert it into a sound signal output by the speaker 1161; on the other hand, the microphone 1162 converts the collected sound signal into an electrical signal, and the audio circuit 1160 After receiving, it is converted into audio data, and then processed by the audio data output processor 1180, transmitted to the other mobile phone via the RF circuit 1110, or outputted to the memory 1120 for further processing.
  • WiFi is a short-range wireless transmission technology.
  • the mobile phone can help users to send and receive emails, browse web pages and access streaming media through the WiFi module 1170, which provides users with wireless broadband Internet access.
  • FIG. 11 shows the WiFi module 1170, it can be understood that it does not belong to The necessary structure of the mobile phone can be omitted as needed within the scope of not changing the essence of the invention.
  • the processor 1180 is a control center for the handset, which connects various portions of the entire handset using various interfaces and lines, by executing or executing software programs and/or modules stored in the memory 1120, and invoking data stored in the memory 1120, The phone's various functions and processing data, so that the overall monitoring of the phone.
  • the processor 1180 may include one or more processing units; preferably, the processor 1180 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, an application, and the like.
  • the modem processor primarily handles wireless communications. It will be appreciated that the above described modem processor may also not be integrated into the processor 1180.
  • the mobile phone further includes a charging chip 1190, and the charging chip 1190 is logically connected to the processor 1180, thereby realizing functions such as management charging, discharging, and power consumption management of the mobile phone power.
  • the charging control circuit 1191 is integrated in the charging chip 1190.
  • the mobile phone further includes a voltage detecting circuit 1192 for detecting the operating voltage of the battery.
  • a voltage detecting circuit 1192 for detecting the operating voltage of the battery.
  • the voltage detecting circuit 1192 is not integrated in the charging chip in FIG. 11, it can be understood that the voltage detecting circuit 1192 can also be integrated in other chips. Medium is not limited here.
  • the mobile phone may also include a camera, a Bluetooth module, etc., and will not be described herein.
  • the processor 1108 included in the terminal further has the following functions:
  • Obtaining a temperature rise data model determining a target charging current corresponding to a temperature rise value satisfying a preset condition according to a target working voltage value and a temperature rise data model, wherein the temperature rise data model includes a temperature rise value of the charging chip, a charging current, and a battery operation The correspondence of voltages.
  • the voltage detecting circuit 1192 performs the following steps: establishing a connection with the battery to obtain an operating voltage of the battery;
  • the processor 1180 performs the following steps:
  • the charging control circuit 1191 performs the steps of: setting a charging current of the battery to a target charging current determined by the processor 1180;
  • each hardware specifically performs the following steps:
  • the processor determines an analog battery operating voltage value
  • the charging control circuit 1191 adjusts the charging current gear position
  • the memory 1120 records the temperature rising value corresponding to each charging current gear position
  • the processor 1180 further records the charging current gear position and temperature according to the memory 1120.
  • the value of the temperature rise data model corresponding to the pool operating voltage value of the simulated electricity is generated.
  • the temperature rise value recorded by the memory 1120 is a rising value of the surface temperature of the charging chip within a preset time, and may be detected by a temperature detecting circuit in the mobile phone, or may be detected by another device such as a temperature detector.
  • the processor 1180 specifically performs the following steps:
  • the temperature rise data model may include the target temperature rise data model or may not include the target temperature rise data model, which is not limited herein.
  • the processor 1180 specifically performs the following steps:
  • the temperature rise data model Determining whether the working voltage in the temperature rise data model includes the target working voltage value, and if so, using the temperature rise data model corresponding to the target working voltage value in the temperature rise data model as the target temperature rise data model, and if not, according to the temperature rise data In the model, the temperature rise data model corresponding to the working voltage value whose target operating voltage value difference satisfies the preset condition determines the target temperature rise data model.
  • the processor 1180 specifically performs the following steps: determining a first working voltage value and a second working voltage value that are the smallest difference between the target operating voltage values in the temperature rise data model, and determining the first a first temperature rise data model corresponding to the working voltage value and a second temperature rise data model corresponding to the second working voltage value, and linearly calculating the target working voltage value and each according to the first temperature rise data model and the second temperature rise data model
  • the target temperature rise value corresponding to the charging current gear position, and the target temperature rise data model is generated according to each charging current gear position and the target temperature rising value.
  • the processor 1180 specifically performs the following steps:
  • the processor 1180 specifically performs the following steps:
  • the minimum value among the temperature rise values of the target temperature rise data model is determined, the charge current corresponding to the minimum value is used as the candidate charge current, and the maximum charge current among the candidate charge currents is used as the target charge current.
  • the terminal may be a mobile terminal device including a mobile phone, a tablet computer, a PDA (Personal Digital Assistant), and the like.
  • a mobile phone is taken as an example.
  • FIG. 11 is a block diagram showing a partial structure of a mobile phone related to a terminal provided by an embodiment of the present invention.
  • the charging chip 1190 performs the following steps: reading its own input terminal voltage and output terminal voltage; setting the charging current of the battery to the target determined by the processor 1180 through the charging control circuit 1191 recharging current;
  • the processor 1180 performs the following steps: calculating a heat loss value corresponding to each charging current according to the input terminal voltage voltage and the output terminal voltage read by the charging chip 1190, and determining a target charging current corresponding to the heat loss value satisfying the preset condition in the heat loss value. ;
  • the memory 1120 records the heat loss value calculated by the processor 1180.
  • the processor 1180 specifically performs the following steps:
  • An alternative heat loss value that is less than the preset heat loss value of the heat loss value is determined, an alternative charge current corresponding to the candidate heat loss value is determined, and a maximum charge current of the candidate charge current is used as the target charge current.
  • the processor 1180 specifically performs the following steps:
  • the minimum heat loss among the heat loss values is determined, the candidate charging current corresponding to the minimum heat loss is determined, and the maximum charging current among the alternative charging currents is used as the target charging current.
  • the mobile terminal includes one or more processors, a memory, and one or more programs, wherein one or more programs are stored in the memory and configured as one or more The processor executes, and the one or more programs include instructions for performing the embodiments corresponding to any one of Figures 1 through 5.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division, and the actual implementation may have another
  • the manner of division, such as multiple units or components, may be combined or integrated into another system, or some features may be omitted or not performed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种充电方法,该方法包括:获取温升数据模型,温升数据模型包括充电芯片的温度上升值、充电电流及电池的工作电压的对应关系;获取电池的目标工作电压值,电池的目标工作电压值为电池当前的工作电压值;根据电池的目标工作电压值及温升数据模型确定满足预置条件的温度上升值对应的目标充电电流;将电池的充电电流设置为目标充电电流。

Description

充电方法及移动终端 技术领域
本发明实施例涉及电路领域,尤其涉及充电方法及移动终端。
背景技术
线性充电是一种常见的充电方式,线性充电芯片由于转换效率低,工作时会产生大量热量,导致手机温度上升过高,容易损坏手机并且造成安全隐患。
芯片产生的热量近似等于芯片的分压乘以充电电流,所以现有技术中,一般采用软件逐步减低充电电流的方式对芯片进行降温。
但对于某些线性充电芯片,是通过控制Pmos管降低电流的,降低充电电流的同时,Pmos管阻抗也会增加,这就导致了芯片分压增加,而当分压增加过多时,芯片产生的热量增大。也就是说,在某些场景,降低充电电流,不仅没有降低芯片产生的热量,反而导致热量的增大,加剧手机温度上升,损坏手机并造成安全隐患。
发明内容
本发明实施例提供了充电方法及移动终端,用于选出当前电池工作电压下,温度上升值满足预置条件的最佳充电电流,避免由于降低充电电流,导致分压过高,加剧手机温度上升而造成的安全隐患。
有鉴于此,本发明第一方面提供了一种充电方法,包括:
获取温升数据模型,所述温升数据模型包括充电芯片的温度上升值、充电电流及电池的工作电压的对应关系;
获取电池的目标工作电压值,所述电池的目标工作电压值为所述电池当前的工作电压值;
根据所述电池的目标工作电压值及所述温升数据模型确定满足预置条件的温度上升值对应的目标充电电流;
将所述电池的充电电流设置为目标充电电流。
结合本发明第一方面,本发明第一方面的第一实施方式中,所述移动终端获取温升数据模型包括:
确定模拟电池的工作电压值,并调节充电电流档位,记录各个充电电流档位对应的温度上升值,所述温度上升值为充电芯片的表面温度在预置时间内的 上升值;
根据所述各个充电电流档位及所述温度上升值生成所述恒定电压值对应的温升数据模型。
结合本发明第一方面,本发明第一方面的第二实施方式中,所述根据所述电池的目标工作电压值及所述温升数据模型,确定满足预置条件的温度上升值对应的目标充电电流包括:
根据所述温升数据模型计算所述电池的目标工作电压值对应的目标温升数据模型;
根据所述目标温升数据模型选择满足预置条件的温度上升值对应的目标充电电流。
结合本发明第一方面的第二实施方式,本发明第一方面的第三实施方式中,所述根据所述温升数据模型计算所述电池的目标工作电压值对应的目标温升数据模型包括:
判断所述温升数据模型中的工作电压是否包含所述目标工作电压值;
若是,则将所述温升数据模型中所述目标工作电压值对应的温升数据模型作为目标温升数据模型;
若否,则根据所述温升数据模型中与所述目标工作电压值差值满足预置条件的工作电压值对应的温升数据模型确定目标温升数据模型。
结合本发明第一方面的第三实施例方式,本发明第一方面的第四实施方式中,所述根据所述温升数据模型中与所述目标工作电压值差值满足预置条件的工作电压值对应的温升数据模型确定目标温升数据模型包括:
确定所述温升数据模型中与所述目标工作电压值差值最小的第一工作电压值及第二工作电压值;
确定所述第一工作电压值对应的第一温升数据模型及第二工作电压值对应的第二温升数据模型;
根据所述第一温升数据模型及第二温升数据模型线性计算得到所述目标工作电压值及各个充电电流档位对应的目标温度上升值;
根据所述各个充电电流档位及所述目标温度上升值生成目标温升数据模型。
结合本发明第一方面的第二实施方式、第三实施方式或第四实施方式,本发明第一方面的第五实施方式中,所述根据所述目标温升数据模型选择满足预置条件的温度上升值对应的目标充电电流包括:
确定所述目标温升数据模型的温度上升值中小于预置温度上升值的备选温度上升值;
确定所述备选温度上升值对应的备选充电电流;
将所述备选充电电流中的最大值充电电流作为目标充电电流。
结合本发明第一方面的第二实施方式、第三实施方式或第四实施方式,本发明第一方面的第六实施方式中,所述根据所述目标温升数据模型选择满足预置条件的温度上升值对应的目标充电电流包括:
确定所述目标温升数据模型的温度上升值中的最小值;
将所述最小值对应的充电电流作为备选充电电流;
将所述备选充电电流中的最大值充电电流作为目标充电电流。
本发明第二方面提供了一种充电方法,包括:
在预置电流范围内调节电池的充电电流,并读取不同充电电流下充电芯片的输入端电压及输出端电压;
根据所述输入端电压及输出端电压计算各个充电电流对应的热损耗值;
确定所述热损耗值中满足预置条件的热损耗值对应的目标充电电流;
将电池的充电电流设置为目标充电电流。
结合本发明第二方面,本发明第二方面的第一实施方式中,所述确定所述热损耗值中满足预置条件的热损耗值对应的目标充电电流包括:
确定所述热损耗值中小于预置热损耗值的备选热损耗值;
确定所述备选热损耗值对应的备选充电电流;
将所述备选充电电流中的最大值充电电流作为目标充电电流。
结合本发明第二方面,本发明第二方面的第二实施方式中,所述确定所述热损耗值中满足预置条件的热损耗值对应的目标充电电流包括:
确定所述热损耗值中的最小值热损耗;
确定所述最小值热损耗对应的备选充电电流;
将所述备选充电电流中的最大值充电电流作为目标充电电流。
本发明第三方面提供了一种移动终端,包括:
第一获取模块,用于获取温升数据模型,所述温升数据模型包括充电芯片的温度上升值、充电电流及电池的工作电压的对应关系;
第二获取模块,用于获取电池的目标工作电压值,所述电池的目标工作电压值为所述电池当前的工作电压值;
确定模块,用于根据所述第二获取模块获取的所述电池的目标工作电压值及所述第一获取模块获取的温升数据模型,确定满足预置条件的温度上升值对应的目标充电电流;
设置模块,用于将所述电池的充电电流设置为所述确定模块确定的目标充电电流。
结合本发明第三方面,本发明第三方面的第一实施方式中,所述第一获取模块包括:
控制子模块,用于确定电池的工作电压值,并调节充电电流档位,记录各个充电电流档位对应的温度上升值,所述温度上升值为充电芯片的表面温度在预置时间内的上升值;
生成子模块,用于根据所述控制单元记录的各个充电电流档位及温度上升值生成所述工作电压值对应的温升数据模型。
结合本发明第三方面,本发明第三方面的第二实施方式中,所述确定模块包括:
计算子模块,用于根据所述温升数据模型计算所述电池的目标工作电压值对应的目标温升数据模型;
选择子模块,用于根据所述目标温升数据模型选择满足预置条件的温度上升值对应的目标充电电流。
结合本发明第三方面的第二实施方式,本发明第三方面的第三实施方式中,所述计算子模块包括:
判断单元,用于判断所述第一获取模块获取的温升数据模型中的工作电压是否包含所述获取模块得到的目标工作电压值;
第一确定单元,用于当所述判断单元确定所述工作电压包含所述目标工作电压值时,将所述温升数据模型中所述目标工作电压值对应的温升数据模型作 为目标温升数据模型;
第二确定单元,用于当所述判断单元确定所述工作电压不包含所述目标工作电压值时,根据所述温升数据模型中与所述目标工作电压值差值满足预置条件的工作电压值对应的温升数据模型确定目标温升数据模型。
结合本发明第三方面的第三实施方式,本发明第三方面的第四实施方式中,所述第二确定单元包括:
第一确定子单元,用于确定所述温升数据模型中与所述目标工作电压值差值最小的第一工作电压值及第二工作电压值;
第二确定子单元,用于确定所述第一确定子单元确定的第一工作电压值对应的第一温升数据模型及第二工作电压值对应的第二温升数据模型;
计算子单元,用于根据所述第二确定子单元确定的第一温升数据模型及第二温升数据模型线性计算得到所述目标工作电压值及各个充电电流档位对应的目标温度上升值;
生成子单元,用于根据所述各个充电电流档位及所述计算子单元得到的目标温度上升值生成目标温升数据模型。
结合本发明第三方面的第二实施方式、第三实施方式或第四实施方式,本发明第三方面的第五实施方式中,所述选择子模块包括:
第三确定单元,用于确定所述目标温升数据模型的温度上升值中小于预置温度上升值的备选温度上升值;
第四确定单元,用于确定所述备选温度上升值对应的备选充电电流;
第五确定单元,用于将所述第四确定单元确定的备选充电电流中的最大值充电电流作为目标充电电流。
结合本发明第三方面的第二实施方式、第三实施方式或第四实施方式,本发明第三方面的第六实施方式中,所述选择子模块包括:
第六确定单元,用于确定所述目标温升数据模型的温度上升值中的最小值;
第七确定单元,用于确定所述第六确定单元确定的最小值对应的备选充电电流;
第八确定单元,用于将所述第七确定单元确定的备选充电电流中的最大值 充电电流作为目标充电电流。
本发明第四方面提供了一种移动终端,包括:
控制模块,用于在预置电流范围内调节电池的充电电流,并读取不同充电电流下充电芯片的输入端电压及输出端电压;
计算模块,用于根据所述输入端电压及输出端电压计算各个充电电流对应的热损耗值;
确定模块,用于确定所述计算模块得到的热损耗值中满足预置条件的热损耗值对应的目标充电电流;
设置模块,用于将电池的充电电流设置为所述确定模块确定的目标充电电流。
结合本发明第四方面,本发明第四方面的第一实施方式中,所述确定模块包括:
第一确定子模块,用于确定所述热损耗值中小于预置热损耗值的备选热损耗值;
第二确定子模块,用于确定所述第一确定子模块确定的备选热损耗值对应的备选充电电流;
第三确定子模块,用于将所述第二确定子模块确定的备选充电电流中的最大值充电电流作为目标充电电流。
结合本发明第四方面,本发明第四方面的第二实施方式中,所述确定模块包括:
第四确定子模块,用于确定所述热损耗值中的最小值热损耗;
第五确定子模块,用于确定所述第四确定子模块确定的最小值热损耗对应的备选充电电流;
第六确定子模块,用于将所述第五确定子模块确定的备选充电电流中的最大值充电电流作为目标充电电流。
本发明第五方面提供了一种移动终端,包括:处理器、充电控制电路、电压检测电路及存储器;
所述电压检测电路执行以下步骤:与电池连接,获取电池的工作电压;
所述处理器执行以下步骤:
获取温升数据模型,所述温升数据模型包括充电芯片的温度上升值、充电电流及电池的工作电压的对应关系;
根据所述电池的目标工作电压值及所述温升数据模型,确定预置条件的温度上升值对应的目标充电电流;
所述充电控制电路执行以下步骤:将所述电池的充电电流设置为所述处理器确定的目标充电电流。
结合本发明第五方面,本发明第五方面的第一实施方式中,
所述充电控制电路具体执行以下步骤:
调节充电电流档位;
所述存储器具体执行以下步骤:记录各个充电电流档位对应的温度上升值;
所述处理器具体执行以下步骤:
确定模拟电池的工作电压值;
根据所述存储器记录的各个充电电流档位及所述温度上升值生成所述工作电压值对应的温升数据模型,所述温度上升值为充电芯片的表面温度在预置时间内的上升值。
结合本发明第五方面,本发明第五方面的第二实施方式中,所述处理器具体执行以下步骤:
根据所述温升数据模型计算所述电池的目标工作电压值对应的目标温升数据模型,所述目标温升数据模型包括所述电池的目标工作电压值对应的充电电流及温度上升值;
根据所述目标温升数据模型选择满足预置条件的温度上升值对应的目标充电电流。
结合本发明第五方面的第二实施方式,本发明第五方面的第三实施方式中,所述处理器具体执行以下步骤:
判断所述温升数据模型中的工作电压是否包含所述目标工作电压值;
若是,则将所述温升数据模型中所述目标工作电压值对应的温升数据模型作为目标温升数据模型;
若否,则根据所述温升数据模型中与所述目标工作电压值差值满足预置条 件的工作电压值对应的温升数据模型确定目标温升数据模型。
结合本发明第五方面的第三实施方式,本发明第五方面的第四实施方式中,所述处理器具体执行以下步骤:
确定所述温升数据模型中与所述目标工作电压值差值最小的第一工作电压值及第二工作电压值;
确定所述第一工作电压值对应的第一温升数据模型及第二工作电压值对应的第二温升数据模型;
根据所述第一温升数据模型及第二温升数据模型线性计算得到所述目标工作电压值及各个充电电流档位对应的目标温度上升值;
根据所述各个充电电流档位及所述目标温度上升值生成目标温升数据模型。
结合本发明第五方面的第二实施方式、第三实施方式或第四实施方式,本发明第五方面的第五实施方式中,所处处理器具体执行以下步骤:
确定所述目标温升数据模型的温度上升值中小于预置温度上升值的备选温度上升值;
确定所述备选温度上升值对应的备选充电电流;
将所述备选充电电流中的最大值充电电流作为目标充电电流。
结合本发明第五方面的第二实施方式、第三实施方式或第四实施方式,本发明第五方面的第六实施方式中,所述处理器具体执行以下步骤:
确定所述目标温升数据模型的温度上升值中的最小值;
将所述最小值对应的充电电流作为备选充电电流;
将所述备选充电电流中的最大值充电电流作为目标充电电流。
本发明第六方面提供了一种移动终端,包括:处理器、充电芯片及存储器;
所述充电芯片执行以下步骤:
读取自身的输入端电压及输出端电压;
将所述电池的充电电流设置为所述处理器确定的目标充电电流;
所述处理器执行以下步骤:
根据所述充电芯片读取的输入端电压及输出端电压计算各个充电电流对应的热损耗值;
确定所述热损耗值中满足预置条件的热损耗值对应的目标充电电流;
所述存储器执行以下步骤:存储所述处理器计算得到的各个充电电流对应的热损耗值。
结合本发明第六方面,本发明第六方面的第一实施方式中,所述处理器具体执行以下步骤:
确定所述热损耗值中小于预置热损耗值的备选热损耗值;
确定所述备选热损耗值对应的备选充电电流;
将所述备选充电电流中的最大值充电电流作为目标充电电流。
结合本发明第六方面,本发明第六方面的第二实施方式中,所述处理器具体执行以下步骤:
确定所述热损耗值中的最小值热损耗;
确定所述最小值热损耗对应的备选充电电流;
将所述备选充电电流中的最大值充电电流作为目标充电电流。
本发明第七方面提供了一种移动终端,所述移动终端包括:一个或多个处理器、存储器以及一个或多个程序,其中所述一个或多个程序被存储在所述存储器中并被配置为所述一个或多个处理器执行,所述一个或多个程序包括用于执行根据第一方面至第一方面的第六实施方式中任一种实施方式所述的指令。
从以上技术方案可以看出,本发明实施例具有以下优点:
本发明实施例中移动终端可以获取温升数据模型,并获取电池的目标工作电压值,根据目标工作电压值及温升数据模型,确定满足预置条件温度上升值对应的目标充电电流。也就是说移动终端可以根据温升数据模型中的温度上升值与充电电流的关系,选出当前电池工作电压下,温度上升值满足预置条件的最佳充电电流,避免了由于降低充电电流,导致分压过高,加剧手机温度上升而造成的安全隐患。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例中充电方法的一个实施例;
图2是本发明实施例中充电方法的另一实施例;
图3是本发明实施例中充电方法的另一实施例;
图4是本发明实施例中充电方法的另一实施例;
图5是本发明实施例中充电方法的另一实施例;
图6是本发明实施例中移动终端的一个实施例;
图7是本发明实施例中移动终端的另一实施例;
图8是本发明实施例中移动终端的另一实施例;
图9是本发明实施例中移动终端的另一实施例;
图10是本发明实施例中移动终端的另一实施例;
图11是本发明实施例中移动终端的另一实施例。
具体实施方式
本发明实施例提供了一种充电方法,用于选出当前电池工作电压下,温度上升值满足预置条件的最佳充电电流,避免由于降低充电电流,导致分压过高,加剧手机温度上升而造成的安全隐患。
请参考图1,本发明实施例中充电方法的一个实施例包括:
101、获取温升数据模型;
移动终端获取温升数据模型,该温升数据模型包括充电芯片的温度上升值、充电电流及电池的工作电压的对应关系。电池的工作电压是指充电过程中,电路中有电流流过时电池正负极之间的电势差。需要说明的是,该温升数据模型由移动终端中的处理器获取。
102、获取电池的目标工作电压值;
移动终端连接电池之后,当移动终端接收到需要降低充电芯片表面温度的指令时,移动终端获取电池的目标工作电压值,需要说明的是,该目标工作电压值由移动终端中的电压检测电路检测得到,该电压检测电路可以集成在移动终端的充电芯片中,也可以集成在移动终端的其他芯片中。还需要说明的是,降低充电芯片表面温度的指令可以是由于充电过程中充电芯片温度过高而触发的,还可以是由其他情况触发的,具体此处不作限定。
103、根据该电池的目标工作电压值及温升数据模型,确定满足预置条件 的温度上升值对应的目标充电电流;
电压检测电路测得目标工作电压值后,处理器获取该目标工作电压值,根据该目标工作电压值及温升数据模型,确定满足预置条件的温度上升值对应的目标充电电流。需要说明的是,该温度上升值为充电芯片的表面温度在预置时间内的上升值,满足预置条件的温度上升值由用户设定,比如:可以设定满足预置条件的温度上升值为,充电芯片的表面温度在半个小时内上升不超过4摄氏度。
104、将该电池的充电电流设置为目标充电电流。
移动终端中的处理器确定目标充电电流后,移动终端通过充电芯片中的充电控制电路将充电电流设置为目标充电电流,使得充电器以目标充电电流对电池进行充电。
本发明实施例中移动终端可以获取温升数据模型,并获取电池的目标工作电压值,根据目标工作电压值及温升数据模型确定满足预置条件的温度上升值对应的目标充电电流。也就是说移动终端可以根据温升数据模型中的温度上升值与充电电流的关系,选出当前电池工作电压下,满足预置条件的温度上升值对应的最佳充电电流,避免了由于降低充电电流,导致分压过高,加剧手机温度上升而造成的安全隐患。
为了便于理解,下面对本发明实施例充电方法中移动终端获取温升数据模型的具体方式进行详细描述,请参阅图2,本发明实施例中充电方法的另一实施例包括:
201、移动终端确定模拟电池的工作电压值,并调节充电电流档位,记录各个充电电流档位对应的温度上升值;
模拟电池与移动终端连接,放入温箱,恒定室温,设置移动终端中充电芯片的充电电流档位,需要说明的是,充电电流档位的档位间隔和个数不作限定,例如可以设置五个档位分别为100毫安、200毫安、300毫安、400毫安和500毫安,还可以为其他电流档位。模拟电池为模拟手机电池的一组电路,它可以完全模拟真正的手机电池,可以被充电,也可以被放电,并且它的工作电压可以随意设定。
程控电源将模拟电池的工作电压恒定为某一工作电压值,移动终端通过电 压检测电路确定模拟电池的工作电压值,通过充电芯片中的充电控制电路调节充电电流档位,通过存储器记录下各个充电电流档位下对应的温度上升值,该温度上升值为充电芯片的表面温度在预置时间内的上升值,可以通过移动终端中的温度检测电路检测得到,也可以通过温度检测仪等其他设备检测得到,预置时间可以为半个小时,还可以为其他时间,具体此处不作限定。
202、移动终端根据各个充电电流档位及温度上升值生成恒定电压值对应的温升数据模型;
移动终端根据上述设置的各个充电电流档位及对应的温度上升值生成该工作电压值对应的温升数据模型。
需要说明的是,程控电源可以调节模拟电池的工作电压值,程控电源每设置一个工作电压值,移动终端重复执行步骤201至202就可以得到该工作电压值对应的温升数据模型。程控电源先将模拟电池的工作电压值恒定为4.3伏,每次增加0.05伏,直到工作电压值达到4.35伏,那么就能得到电池工作电压值为3.4伏,3.45伏,3.5伏,3.55伏……4.3伏,4.35伏对应的温升数据模型,每一个温升数据模型包含该工作电压值下,各个充电电流档位对应的芯片表面的温度上升值。
203、移动终端获取电池的目标工作电压值;
移动终端连接电池之后,当移动终端接收到需要降低充电芯片表面温度的指令时,移动终端获取电池的目标工作电压值,需要说明的是,该目标工作电压值有移动终端中的电压检测电路检测得到,该电压检测电路可以集成在移动终端的充电芯片中,也可以集成移动终端的其他充电芯片中。还需要说明的是,降低充电芯片表面温度的指令可以是由于充电过程中充电芯片温度过高而触发的,还可以时由其他情况触发的,具体此处不作限定。
204、根据该电池的目标工作电压值及温升数据模型,确定满足预置条件的温度上升值对应的目标充电电流;
移动终端获取目标工作电压值后,处理器获取该目标工作电压值,根据该目标工作电压值及温升数据模型,确定满足预置条件的温度上升值对应的目标充电电流。
205、移动终端将该电池的充电电流设置为目标充电电流。
移动终端中的处理器确定目标充电电流后,移动终端通过充电芯片中的充电控制电路将充电电流设置为目标充电电流,使得充电器以目标充电电流对电池进行充电。
本发明实施例中移动终端可以获取温升数据模型,并获取电池的目标工作电压值,根据目标工作电压值及温升数据模型确定满足预置条件的温度上升值对应的目标充电电流。也就是说移动终端可以根据温升数据模型中的温度上升值与充电电流的关系,选出当前电池工作电压下,温度上升值满足预置条件的最佳充电电流,避免了由于降低充电电流,导致分压过高,加剧手机温度上升而造成的安全隐患。
其次,本发明实施例提供了一种移动终端获取温升数据模型的具体方式,提高了方案的可实现性。
上述实施例对移动终端获取温升数据模型的具体方式进行了描述,下面对移动终端确定目标充电电流的具体方式进行描述,请参阅图3,本发明实施例中充电方法的另一实施例包括:
301、移动终端获取温升数据模型;
移动终端获取温升数据模型,该温升数据模型包括充电芯片的温度上升值、充电电流及电池的工作电压的对应关系。电池的工作电压是指充电过程中,电路中有电流流过时电池正负极之间的电势差。需要说明的是,该温升数据模型由移动终端中的处理器获取,可以是处理器建立的,也可以处理器从其他设备中接收的,具体此处不作限定。处理器可以通过图2对应实施例中步骤201至步骤202的方式,也可以通过其他方式建立,具体此处不作限定。
302、移动终端获取电池的目标工作电压值;
移动终端获取电池的目标工作电压值的过程与图2对应实施例中步骤203相似,具体此处不再赘述。
303、移动终端根据温升数据模型计算该电池的目标工作电压值对应的目标温升数据模型;
移动终端根据温升数据模型计算目标工作电压值对应的目标温升数据模型,该目标温升数据模型包括目标电压值对应的充电电流及温度上升值。需要说明的是,目标温升数据模型由移动终端中的处理器计算得到,温升数据模型 可以包括目标温升数据模型,也可以不包括目标温升数据模型,具体由目标工作电压值与温升数据模型中的工作电压的关系决定。
304、移动终端根据目标温升数据模型选择满足预置条件的温度上升值对应的目标充电电流;
移动终端计算得到目标温升数据模型后,根据目标温升数据模型选择满足预置条件的温度上升值对应的目标充电电流。需要说明的是,目标充电电流由移动终端中的处理器确定,预置条件的温度上升值由用户设置。
具体可以通过如下方式选择满足预置条件的温度上升值对应的目标充电电流:
一、选择小于预置温度上升值的最大充电电流。
1、移动终端确定目标温升数据模型的温度上升值中小于预置温度上升值的备选温度上升值;
2、移动终端确定备选温度上升值对应的备选充电电流;
3、移动终端将备选充电电流中的最大值充电电流作为目标充电电流。
需要说明的是,对于目标温升数据模型中温度上升值等于预置温度上升值的,可以作为备选温度上升值,也可以不作为备选温度上升值,具体此处不作限定。对于目标温升数据模型中温度上升值大于预置温度上升值的,可以作为备选温度上升值,也可以不作为备选温度上升值,具体此处不作限定。
二、选择温度上升值最小的最大充电电流。
1、移动终端确定目标温升数据模型的温度上升值中的最小值;
2、将该最小值对应的充电电流作为备选充电电流;
3、将备选充电电流中的最大值充电电流作为目标充电电流。
需要说明的是,除了上述两种方式,移动终端还可以通过其他方式选择满足预置条件的温度上升值对应的目标充电电流。
305、移动终端将该电池的充电电流设置为目标充电电流。
移动终端设置目标充电电流的过程与图2对应实施例中步骤205相似,具体此处不再赘述。
本发明实施例中,移动终端可以获取温升数据模型,并获取电池的目标工作电压值,根据目标工作电压值及温升数据模型,确定满足预置条件的温度上 升值对应的目标充电电流。也就是说移动终端可以根据温升数据模型中的温度上升值与充电电流的关系,选出当前电池工作电压下,温度上升值满足预置条件的最佳充电电流,避免了由于降低充电电流,导致分压过高,加剧手机温度上升而造成的安全隐患。
其次,本发明实施例中,移动终端可以计算目标工作电压值对应的目标温升数据模型,再通过目标温升数据模型选择目标充电电流,提供了一种移动终端确定目标充电电流的具体方式,提高了方案的可实现性。
再次,本发明实施例中,移动终端可以通过多种方式从目标温升数据模型中选择目标充电电流,提高了方案的灵活性。
上述实施例中,移动终端通过目标温升数据模型确定目标充电电流,下面对移动终端计算目标温升数据模型的具体方式进行详细描述,请参阅图4,本发明实施例中充电方法的另一实施例包括:
401、移动终端获取温升数据模型;
移动终端获取温升数据模型的过程与图3对应实施例中步骤301相似,具体此处不再赘述。
402、移动终端获取电池的目标工作电压值;
移动终端获取目标工作电压值的过程与图2对应实施例中步骤203相似,具体此处不再赘述。
403、移动终端判断温升数据模型中的工作电压是否包含目标工作电压值,若是,则执行步骤404,若否,则执行步骤405;
移动终端确定电池的目标工作电压值后,判断温升数据模型中的工作电压是否包含目标工作电压值,若是,则执行步骤304,若否,则执行步骤305。
404、移动终端将温升数据模型中目标工作电压值对应的温升数据模型作为目标温升数据模型,并执行步骤406;
当移动终端确定温升数据模型中的工作电压包含目标工作电压值时,移动终端将温升数据模型中目标工作电压值对应的温升数据模型作为目标温升数据模型,并执行步骤406。
405、移动终端根据温升数据模型中与目标工作电压值差值满足预置条件的工作电压值对应的温升数据模型确定目标温升数据模型,并执行步骤406;
当移动终端确定温升数据模型中的工作电压不包含目标工作电压值时,移动终端根据温升数据模型中与目标工作电压差值满足预置条件的工作电压值对应的温升数据模型确定目标温升数据模型,并执行步骤406。
需要说明的是,移动终端根据与目标工作电压差值满足预置条件的工作电压值对应的温升数据模型可以通过以下方式确定目标温升数据模型:
(1)移动终端确定温升数据模型中与目标工作电压值差值最小的第一工作电压值及第二工作电压值;
移动终端查找温升数据模型中的工作电压,确定数值与目标工作电压值差值最小的两个工作电压值,分别为第一工作电压值和第二工作电压值。比如温升数据模型中的工作电压包含3.4、3.45、3.5、3.55及3.6,如果目标工作电压值为3.43,那么第一工作电压值和第二工作电压值为3.4及3.45。
(2)移动终端确定第一工作电压值对应的第一温升数据模型及第二工作电压值对应的第二温升数据模型;
移动终端确定第一工作电压值及第二工作电压值后,确定与第一工作电压值对应的第一温升数据模型及第二工作电压值对应的第二温升数据模型。
(3)移动终端根据第一温升数据模型及第二温升数据模型线性计算得到目标工作电压值及各个充电电流档位对应的目标温度上升值;
移动终端根据第一温升数据模型及第二温升数据模型线性计算得到目标工作电压值及各个充电电流档位对应的目标温度上升值,具体计算过程如下:
确定目标充电电流档位下,第一工作电压值对应的第一温度上升值及第二工作电压值对应的第二温度上升值;
确定第一坐标点(x1,y1)及第二坐标点(x2,y2),其中,第一坐标点的横坐标x1为第一工作电压值,纵坐标y1为第一温度上升值,第二坐标点的横坐标x2为第二工作电压值,纵坐标y2为第二温度上升值;
将第一坐标点(x1,y1)及第二坐标点(x2,y2)代入求解二元一次方程y=kx+b;
将目标工作电压值作为横坐标,根据该二元一次方程求出对应的纵坐标值,该纵坐标值即目标充电电流档位对应的温度上升值;
(4)移动终端根据各个充电电流档位及目标温度上升值生成目标温升数 据模型。
移动终端根据步骤(1)至(3)求出各个充电电流档位对应的目标温度上升值后,根据各个充电电流档位及目标温度上升值生成目标温升数据模型。
需要说明的是,除了上述方式,移动终端还可以通过其他方式根据与目标工作电压差值满足预置条件的工作电压值确定目标温升数据模型,具体此处不作限定。
406、移动终端根据目标温升数据模型选择满足预置条件的温度上升值对应的目标充电电流;
本发明实施例中移动终端选择目标充电电流的过程与图3对应实施例步骤304中移动终端选择目标充电电流的过程相似,具体此处不再赘述。
407、移动终端将该电池的充电电流设置为目标充电电流。
移动终端设置目标充电电流的过程与图2对应实施例中步骤205相似,具体此处不再赘述。
本发明实施例中,移动终端可以获取温升数据模型,并获取电池的目标工作电压值,根据目标工作电压值及温升数据模型,确定满足预置条件的温度上升值对应的目标充电电流。也就是说移动终端可以根据温升数据模型中的温度上升值与充电电流的关系,选出当前电池工作电压下,温度上升值满足预置条件的最佳充电电流,避免了由于降低充电电流,导致分压过高,加剧手机温度上升而造成的安全隐患。
其次,本发明实施例中,移动终端可以根据多种方式计算目标工作电压值对应的目标温升数据模型,也可以通过多种方式根据目标温升数据模型选择目标充电电流,提高了方案的灵活性。
上面介绍的是移动终端基于关系模型确定最佳充电电流的充电方法,对于一些硬件支持读取芯片输入输出端电压的移动终端,可以采取用另一种充电方法,请参阅图5,本发明实施例中充电方法的另一实施例包括:
501、移动终端在预置电流范围内调节电池的充电电流,并读取不同充电电流下充电芯片的输入端电压及输出端电压;
将电池置入移动终端中,当电池需要充电时,移动终端连接充电器。移动终端通过充电芯片中的充电控制电路在预置电流范围内调节电池的充电电流, 并读取不同充电电流下充电芯片的输入端电压和输出端电压。
502、移动终端根据输入端电压及输出端电压计算各个充电电流对应的热损耗值;
移动终端读取各个充电电流对应的输入端电压和输出端电压后,处理器获取该处输入端电压及输出端电压,根据输入端电压及输出端电压计算各个充电电流对应的热损耗值,具体地,热损耗值近似等于充电芯片的充电电流I乘以分压ΔU,分压即输入端电V1压减去输出端电压V2,即热损耗值Q=ΔU*I=(V1-V2)*I。
503移动终端确定各个热损耗值中满足预置条件的热损耗值对应的目标充电电流;
移动终端计算出各个充电电流对应的热损耗值后,处理器确定这些热损耗值中满足预置条件的热损耗值对应的目标充电电流。
504、移动终端将该电池的充电电流设置为目标充电电流。
移动终端中的处理器确定目标充电电流后,通过充电芯片中的充电控制电路将充电电流设置为目标充电电流,使得出电气以目标充电电流对电池进行充电。
本发明实施例中,移动终端可以读取充电芯片的输入端电压和输出端电压,根据输入端电压和输出端电压计算各个充电电流对应的热损耗值,再确定满足预置条件的热损耗值对应的目标充电电流。也就是说移动终端可以确定不同充电电流对应的热损耗值,并从中选择热损耗值满足预置条件的最佳充电电流,避免了由于降低充电电流,导致分压过高,加剧手机温度上升而造成的安全隐患。
基于上述图5对应的实施例,本发明实施例中充电方法的另一实施例中,移动终端可以通过以下多种方式确定各个热损耗值中满足预置条件的热损耗值对应的目标充电电流,比如:
一、小于预置热损耗的最大充电电流。
1、移动终端确定热损耗值中小于预置热损耗值的备选热损耗值;
2、移动终端确定备选热损耗值对应的备选充电电流;
3、移动终端将备选充电电流中的最大值充电电流作为目标充电电流。
需要说明的是对于热损耗值中等于预置热损耗值的,可以作为备选热损耗值也,可以不作为备选热损耗值,具体此处不作限定。对于热损耗值中大于预置热损耗值的,可以作为备选热损耗值,也可以不作为备选热损耗值,具体此处不作限定。
二、热损耗值最小的最大充电电流。
1、移动终端确定热损耗值中的最小值热损耗;
2、移动终端确定最小值热损耗对应的备选充电电流;
3、移动终端将备选充电电流中的最大值充电电流作为目标充电电流。
本发明实施例中,移动终端可以通过多种方式确定目标充电电流,提高了方案的灵活性。
为了便于理解,下面以一实际应用场景对本发明实施例中的充电方法进行详细描述:
首先准备手机、程控电源、模拟电池、温度检测仪及温箱。其中,程控电源可以控制模拟电池的工作电压,并为电池充电提供电源,手机中的充电芯片集成了充电控制电路、电压检测电路。然后执行以下步骤:
(1)将手机连接模拟电池,放入温箱,恒定温度为25度;
(2)程控电源控制模拟电池的工作电压恒定为3.4伏;
(3)将充电电流设置为5个档位,分别为100毫安、200毫安、300毫安、400毫安和500毫安;
(4)手机通过充电芯片的充电控制电路将充电电流调为100毫安;
(5)持续半小时后,通过温度检测仪测得充电芯片表面温度的上升值,手机中的存储器记录该温度上升值;
(6)将充电电流提升一个档位,重复执行(5),直到5个电流档位都记录完毕;
(7)程控电源将模拟电池的工作电压增大0.05伏;
重复执行步骤(4)至(7),直到工作电压达到3.85伏。
通过上述测试,处理器根据存储器记录得到的工作电压值、充电电流档位和温度上升值生成表1所示的温升数据模型,表中温度上升值均以摄氏度为单位。
Figure PCTCN2015079931-appb-000001
表1
处理器建立好上述温升数据模型后,取出手机,置入手机电池,并将手机与充电器连接。充电器先以500毫安的电流为手机电池充电,半个时间后,充电芯片产生的大量热量,手机整体温度升高6摄氏度,此时,移动终端中的处理器发出降温命令,要求降低充电芯片的温度上升值,将充电芯片的温度上升值低于4摄氏度。
移动终端检测到此时电池的工作电压为3.43伏,移动终端查找上述表1中的工作电压,确定没有包含3.43伏,移动终端确定表1中与3.43伏差值最小的第一工作电压值及第二工作电压值分别为3.4伏和3.45伏,确定这第一工作电压值3.43伏对应第一温升数据模型及第二工作电压值3.45伏对应的第二温升数据模型,根据第一温升数据模型及第二温升数据模型线性计算出3.43伏对应的各个充电电流档位下的温升数据,以充电电流档位为100毫安为例,100毫安充电电流下,3.4伏工作电压对应的温度上升值为5摄氏度,3.45伏工作电压对应的温度上升值为4摄氏度,将工作电压作为横坐标,温度上升值 作为纵坐标,计算出横坐标3.43伏对应的温度上升值,即将(3.4,5)和(3.45,4)两个坐标点代入二元一次方程y=kx+b求得k=-20,b=73,即y=-20x+73,将x=3.43代入得到y=4.4,即工作电压为3.43伏,充电电流为100毫安,对应的温度上升值为4.4摄氏度。根据上述方法,计算出工作电压为3.43伏时,各个充电电流档位对应的温度上升值,如表2所示,表中温度上升值均以摄氏度为单位。
Figure PCTCN2015079931-appb-000002
表2
根据上表中计算出来的3.43伏对应的目标温升数据模型,该模型中温度上升值低于4摄氏度的备选温度上升值为3.6摄氏度和2.6摄氏度,对应的备选充电电流为300毫安和400毫安,从备选充电电流中选取最大值充电电流作为目标充电电流,即400毫安,移动终端将手机电池的充电电流设置为400毫安,充电芯片中的控制芯片将充电电流调节为400毫安,使得充电器以400毫安对手机电池进行充电。
上面介绍了本发明实施例中的充电方法,下面介绍本发明实施例中的移动终端,请参阅图6,本发明实施例中移动终端的一个实施例包括:
第一获取模块601,用于获取温升数据模型,温升数据模型包括充电芯片的温度上升值、充电电流及电池的工作电压的对应关系;
第二获取模块602,用于获取电池的目标工作电压值,目标工作电压值为电池当前的工作电压值;
确定模块603,用于根据第二获取模块602获取的目标工作电压值及第一获取模块601获取的温升数据模型,确定满足预置条件的温度上升值对应的目标充电电流;
设置模块604,用于将电池的充电电流设置为确定模块603确定的目标充电电流。
本发明实施例中,第一获取模块601可以获取温升数据模型,第二获取模块602可以获取电池的目标工作电压值,确定模块603可以根据目标工作电压值及温升数据模型,确定满足预置条件的温度上升值对应的目标充电电流。也就是说移动终端可以根据温升数据模型中的温度上升值与充电电流的关系,选出当前电池工作电压下,温度上升值满足预置条件的最佳充电电流,避免了由于降低充电电流,导致分压过高,加剧手机温度上升而造成的安全隐患。
为了便于理解,下面对本发明实施例中的移动终端进行详细描述,请参阅图7,本发明实施例中移动终端的另一实施例包括:
第一获取模块701,用于获取温升数据模型,温升数据模型包括充电芯片的温度上升值、充电电流及电池的工作电压的对应关系;
第二获取模块702,用于获取电池的目标工作电压值,目标工作电压值为电池当前的工作电压值;
确定模块703,用于根据第二获取模块702获取的目标工作电压值及第二获取模块701获取的温升数据模型,确定满足预置条件的温度上升值对应的目标充电电流;
设置模块704,用于将电池的充电电流设置为确定模块703确定的目标充电电流。
本发明实施例中,第一获取模块701包括:
控制子模块7011,用于确定电池的工作电压值,并调节充电电流档位,记录各个充电电流档位对应的温度上升值,该温度上升值为充电芯片的表面温度在预置时间内的上升值;
生成子模块7012,用于根据控制子模块7011记录的各个充电电流档位及温度上升值生成恒定电压值对应的温升数据模型。
本发明实施例中,第一获取模块701可以获取温升数据模型,第二获取模块702可以获取电池的目标工作电压值,确定模块703可以根据目标工作电压值及温升数据模型确定满足预置条件的温度上升值对应的目标充电电流。也就是说移动终端可以根据温升数据模型中的温度上升值与充电电流的关系,选出 当前电池工作电压下,温度上升值满足预置条件的最佳充电电流,避免了由于降低充电电流,导致分压过高,加剧手机温度上升而造成的安全隐患。
其次,本发明实施例提供了第一获取模块701获取温升数据模型的具体方式,提高了方案的可实现性。
请参阅图8,本发明实施例中移动终端的另一实施例包括:
第一获取模块801,用于获取温升数据模型,温升数据模型包括充电芯片的温度上升值、充电电流及电池的工作电压的对应关系;
第二获取模块802,用于获取电池的目标工作电压值,目标工作电压值为电池当前的工作电压值;
确定模块803,用于根据第二获取模块802获取的目标工作电压值及第一获取模块801获取的温升数据模型,确定满足预置条件的温度上升值对应的目标充电电流;
设置模块805,用于将电池的充电电流设置为确定模块803确定的目标充电电流。
本发明实施例中,确定模块803包括:
计算子模块8031,用于根据温升数据模型计算目标工作电压值对应的目标温升数据模型;
选择子模块8032,用于根据目标温升数据模型选择满足预置条件的温度上升值对应的目标充电电流;
可选地,计算子模块8031包括:
判断单元80311,用于判断第一获取模块801获取的温升数据模型中的工作电压是否包含第二获取模块802得到的目标工作电压值;
第一确定单元80312,用于当判断单元80311确定工作电压包含目标工作电压值时,将温升数据模型中目标工作电压值对应的温升数据模型作为目标温升数据模型;
第二确定单元80313,用于当判断单元80311确定工作电压不包含目标工作电压值时,根据温升数据模型中与目标工作电压值差值满足预置条件的工作电压值对应的温升数据模型确定目标温升数据模型;
可选地,第二确定单元80313可以包括:
第一确定子单元803131,用于确定温升数据模型中与目标工作电压值差值最小的第一工作电压值及第二工作电压值;
第二确定子单元803132,用于确定第一确定子单元803131确定的第一工作电压值对应的第一温升数据模型及第二工作电压值对应的第二温升数据模型;
计算子单元803133,用于根据第二确定子单元803132确定的第一温升数据模型及第二温升数据模型线性计算得到目标工作电压值及各个充电电流档位对应的目标温度上升值;
生成子单元803134,用于根据各个充电电流档位及计算子单元70333得到的目标温度上升值生成目标温升数据模型。
可选地,选择模块8032包括:
第三确定单元80321,用于确定目标温升数据模型的温度上升值中小于预置温度上升值的备选温度上升值;
第四确定单元80322,用于确定备选温度上升值对应的备选充电电流;
第五确定单元80323,用于将第四确定单元确定80322的备选充电电流中的最大值充电电流作为目标充电电流。
或,
第六确定单元80324,用于确定目标温升数据模型的温度上升值中的最小;
第七确定单元80325,用于确定第六确定单元80324确定的最小值对应的备选充电电流;
第八确定单元80326,用于将第七确定单元80325确定的备选充电电流中的最大值充电电流作为目标充电电流。
本发明实施例中,第一获取模块801可以获取温升数据模型,第二获取模块802可以获取电池的目标工作电压值,确定模块803可以根据目标工作电压值及温升数据模型确定满足预置条件的温度上升值对应的目标充电电流。也就是说移动终端可以根据温升数据模型中的温度上升值与充电电流的关系,选出当前电池工作电压下,温度上升值满足预置条件的最佳充电电流,避免了由于降低充电电流,导致分压过高,加剧手机温度上升而造成的安全隐患。
其次,本发明实施例中,确定模块803可以根据多种方式确定目标充电电流,提高了方案的灵活性。
为了便于理解,下面以一具体的应用场景对本发明实施例中移动终端各模块之间的交互进行详细描述:
第一获取模块801获取温升数据模型,该温升数据模型包括充电芯片的温度上升值、充电电流及电池的工作电压的对应关系。电池的工作电压是指充电过程中,电路中有电流流过时电池正负极之间的电势差。具体地,第一获取模块801通过以下方式获取温升数据模型:
模拟电池与移动终端连接,放入温箱,恒定室温,设置移动终端中充电芯片的充电电流档位,需要说明的是,充电电流档位的档位间隔和个数不作限定,例如可以设置五个档位分别为100毫安、200毫安、300毫安、400毫安和500毫安,还可以为其他电流档位。
程控电源将模拟电池的工作电压恒定为某一工作电压值,通过电压检测电路确定模拟电池的工作电压值,通过充电芯片中的充电控制电路调节充电电流档位,通过存储器记录下各个充电电流档位下对应的温度上升值,该温度上升值为充电芯片的表面温度在预置时间内的上升值,可以通过移动终端中的温度检测电路检测得到,也可以通过温度检测仪等其他设备检测得到,预置时间可以为半个小时,还可以为其他时间,具体此处不作限定。
第一获取模块801根据上述设置的各个充电电流档位及对应的温度上升值生成该工作电压值对应的温升数据模型。
需要说明的是,程控电源可以调节模拟电池的工作电压值,程控电源每设置一个工作电压值,移动终端重复执行步骤201至202就可以得到该工作电压值对应的温升数据模型。程控电源先将模拟电池的工作电压值恒定为4.3伏,每次增加0.05伏,直到工作电压值达到4.35伏,那么就能得到电池工作电压值为3.4伏,3.45伏,3.5伏,3.55伏……4.3伏,4.35伏对应的温升数据模型,每一个温升数据模型包含该工作电压值下,各个充电电流档位对应的芯片表面的温度上升值。
第一获取模块801获取温升数据模型后,移动终端连接电池之后,当电池需要充电时,移动终端连接充电器。当移动终端接收到需要降低充电芯片表面 温度的指令时,第二获取模块802获取电池的目标工作电压值,该目标工作电压值有移动终端中的电压检测电路检测得到,该电压检测电路可以集成在移动终端的充电芯片中,也可以不集成在充电芯片中。还需要说明的是,降低充电芯片表面温度的指令可以是由于充电芯片温度过高而触发的,还可以时由其他情况触发的,具体此处不作限定。
第二获取模块802确定电池的目标工作电压值后,计算子模块8031中的判断单元80311判断温升数据模型中的工作电压是否包含目标工作电压值,若是,则触发第一确定单元80312,若否,则触发第二确定单元80313。
当判断单元80311确定温升数据模型中的工作电压包含目标工作电压值时,第一确定单元80312将温升数据模型中目标工作电压值对应的温升数据模型作为目标温升数据模型。
当判断单元80311确定温升数据模型中的工作电压不包含目标工作电压值时,第二确定单元80313根据温升数据模型中与目标工作电压差值满足预置条件的工作电压值对应的温升数据模型确定目标温升数据模型。
需要说明的是,第二确定单元80313根据与目标工作电压差值满足预置条件的工作电压值对应的温升数据模型可以通过以下方式确定目标温升数据模型:
第一确定子单元803131查找温升数据模型中的工作电压,确定两个数值与目标工作电压值差值最小的两个工作电压值,分别为第一工作电压值和第二工作电压值。比如温升数据模型中的工作电压包含3.4、3.45、3.5、3.55及3.6,如果目标工作电压值为3.43,那么第一工作电压值和第二工作电压值为3.4及3.45。
第一确定子单元803132确定第一工作电压值及第二工作电压值后,第二确定子单元803131确定与第一工作电压值对应的第一温升数据模型及第二工作电压值对应的第二温升数据模型。
计算子单元803133根据第一温升数据模型及第二温升数据模型线性计算得到目标工作电压值及各个充电电流档位对应的目标温度上升值,具体计算过程如下:
确定目标充电电流档位下,第一工作电压值对应的第一温度上升值及第二 工作电压值对应的第二温度上升值;
确定第一坐标点及第二坐标点,其中,第一坐标点的横坐标为第一工作电压值,纵坐标为第一温度上升值,第二坐标点的横坐标为第二工作电压值,总坐标为第二温度上升值;
将第一坐标点及第二坐标点代入求解二元一次方程y=kx+b;
将目标工作电压值作为横坐标,根据该二元一次方程求出对应的纵坐标值,该纵坐标值即目标充电电流档位对应的温度上升值;
根据计算子单元803133求出各个充电电流档位对应的目标温度上升值后,生成子单元803134根据各个充电电流档位及目标温度上升值生成目标温升数据模型。
需要说明的是,除了上述方式,计算子模块8031根据与目标工作电压差值满足预置条件的工作电压值对应的温升数据模型还可以通过其他方式确定目标温升数据模型,具体此处不作限定。
计算子模块8031计算得到目标温升数据模型后,选择子模块8032根据目标温升数据模型选择满足预置条件的温度上升值对应的目标充电电流。具体可以通过如下方式:
一、小于预置温度上升值的最大充电电流。
1、第三确定单元80311确定目标温升数据模型的温度上升值中小于预置温度上升值的备选温度上升值;
2、第四确定单元80312确定备选温度上升值对应的备选充电电流;
3、第五确定单元80313将备选充电电流中的最大值充电电流作为目标充电电流。
二、温度上升值最小的最大充电电流。
1、第六确定单元80314确定目标温升数据模型的温度上升值中的最小值;
2、第七确定单元80315将该最小值对应的充电电流作为备选充电电流;
3、第八确定单元80316将备选充电电流中的最大值充电电流作为目标充电电流。
需要说明的是,除了上述两种方式,选择子模块8031还可以通过其他方式选择满足预置条件的温度上升值对应的目标充电电流。
设置模块804将电池的充电电流设置为确定模块803确定的目标充电电流。
下面介绍硬件支持读取芯片输入输出端电压的移动终端,请参阅图9,本发明实施例中移动终端的另一实施例包括:
控制模块901,用于在预置电流范围内调节电池的充电电流,并读取不同充电电流下充电芯片的输入端电压及输出端电压;
计算模块902,用于根据输入端电压及输出端电压计算各个充电电流对应的热损耗值;
确定模块903,用于确定计算模块902得到的热损耗值中满足预置条件的热损耗值对应的目标充电电流;
设置模块904,用于将电池的充电电流设置为确定模块803确定的目标充电电流。
本发明实施例中,控制模块901可以读取充电芯片的输入端电压和输出端电压,计算模块902根据输入端电压和输出端电压计算各个充电电流对应的热损耗值,确定模块903确定满足预置条件的热损耗值对应的目标充电电流。也就是说移动终端可以确定不同充电电流对应的热损耗值,并从中选择热损耗值满足预置条件的最佳充电电流,避免了由于降低充电电流,导致分压过高,加剧手机温度上升而造成的安全隐患。
为了便于理解,下面对本发明实施例中的移动终端进行详细描述,请参阅图10,本发明实施例中移动终端的另一实施例包括:
控制模块1001,用于在预置电流范围内调节电池的充电电流,并读取不同充电电流下充电芯片的输入端电压及输出端电压;
计算模块1002,用于根据输入端电压及输出端电压计算各个充电电流对应的热损耗值;
确定模块1003,用于确定计算模块1002得到的热损耗值中满足预置条件的热损耗值对应的目标充电电流;
设置模块1004,用于将电池的充电电流设置为确定模块1003确定的目标充电电流。
其中,确定模块1003包括:
第一确定子模块10031,用于确定热损耗值中小于预置热损耗值的备选热损耗值;
第二确定子模块10032,用于确定第一确定子模块10031确定的备选热损耗值对应的备选充电电流;
第三确定子模块10033,用于将第二确定单元10032确定的备选充电电流中的最大值充电电流作为目标充电电流;
或,
第四确定子模块10034,用于确定热损耗值中的最小值热损耗;
第五确定子模块10035,用于确定第四确定子模块10034确定的最小值热损耗对应的备选充电电流;
第六确定子模块10036,用于将第五确定子模块10035确定的备选充电电流中的最大值充电电流作为目标充电电流。
本发明实施例中,控制模块1001可以读取充电芯片的输入端电压和输出端电压,计算模块1002根据输入端电压和输出端电压计算各个充电电流对应的热损耗值,确定模块1003确定满足预置条件的热损耗值对应的目标充电电流。也就是说移动终端可以确定不同充电电流对应的热损耗值,并从中选择热损耗值满足预置条件的最佳充电电流,避免了由于降低充电电流,导致分压过高,加剧手机温度上升而造成的安全隐患。
其次,本发明实施例中确定模块1003可以通过多种方式确定目标充电电流,提高了方案的灵活性。
上面从功能化模块的角度对本发明实施例中的移动终端进行描述,下面从实体硬件处理角度对本发明实施例中的移动终端进行描述,该终端可以为包括手机、平板电脑、PDA(Personal Digital Assistant,个人数字助理)等移动终端设备,以终端为手机为例,图11示出的是与本发明实施例提供的终端相关的手机的部分结构的框图。
请参阅图11,本发明实施例中移动终端的一个实施例包括:
RF电路1110可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器1180处理;另外,将设计上行的数据发送给基站。通常,RF电路1110包括但不限于天线、至少一个放大器、收发信 机、耦合器、低噪声放大器(Low Noise Amplifier,LNA)、双工器等。此外,RF电路1110还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(Global System of Mobile communication,GSM)、通用分组无线服务(General Packet Radio Service,GPRS)、码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、长期演进(Long Term Evolution,LTE)、电子邮件、短消息服务(Short Messaging Service,SMS)等。
存储器1120可用于存储软件程序以及模块,处理器1180通过运行存储在存储器1120的软件程序以及模块,从而执行手机的各种功能应用以及数据处理。存储器1120可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器1120可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元1130可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键信号输入。具体地,输入单元1130可包括触控面板1131以及其他输入设备1132。触控面板1131,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1131上或在触控面板1131附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板1131可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器1180,并能接收处理器1180发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1131。除了触控面板1131,输入单元1130还可以包括其他输入设备1132。具体地,其他输入设备1132可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等 中的一种或多种。
显示单元1140可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单。显示单元1140可包括显示面板1141,可选的,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板1141。进一步的,触控面板1131可覆盖显示面板1141,当触控面板1131检测到在其上或附近的触摸操作后,传送给处理器1180以确定触摸事件的类型,随后处理器1180根据触摸事件的类型在显示面板1141上提供相应的视觉输出。虽然在图11中,触控面板1131与显示面板1141是作为两个独立的部件来实现手机的输入和输入功能,但是在某些实施例中,可以将触控面板1131与显示面板1141集成而实现手机的输入和输出功能。
手机还可包括至少一种传感器1150,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板1141的亮度,接近传感器可在手机移动到耳边时,关闭显示面板1141和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路1160、扬声器1161,传声器1162可提供用户与手机之间的音频接口。音频电路1160可将接收到的音频数据转换后的电信号,传输到扬声器1161,由扬声器1161转换为声音信号输出;另一方面,传声器1162将收集的声音信号转换为电信号,由音频电路1160接收后转换为音频数据,再将音频数据输出处理器1180处理后,经RF电路1110以发送给比如另一手机,或者将音频数据输出至存储器1120以便进一步处理。
WiFi属于短距离无线传输技术,手机通过WiFi模块1170可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图11示出了WiFi模块1170,但是可以理解的是,其并不属于 手机的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
处理器1180是手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器1120内的软件程序和/或模块,以及调用存储在存储器1120内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器1180可包括一个或多个处理单元;优选的,处理器1180可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1180中。
手机还包括充电芯片1190,充电芯片1190与处理器1180逻辑相连,从而实现对手机电源进行管理充电、放电、以及功耗管理等功能。其中,充电芯片1190中集成了充电控制电路1191。
手机还包括电压检测电路1192,电压检测电路用于检测电池的工作电压,虽然在图11中,电压检测电路1192没有集成在充电芯片中,可以理解的是电压检测电路1192也可以集成在其他芯片中,此处并不限定。
尽管未示出,手机还可以包括摄像头、蓝牙模块等,在此不再赘述
在本发明实施例中,该终端所包括的处理器1108还具有以下功能:
获取温升数据模型,根据目标工作电压值及温升数据模型确定满足预置条件的温度上升值对应的目标充电电流,其中,温升数据模型包括充电芯片的温度上升值、充电电流和电池工作电压的对应关系。
电压检测电路1192执行以下步骤:与电池建立连接,获取电池的工作电压;
处理器1180执行以下步骤:
充电控制电路1191执行以下步骤:将电池的充电电流设置为处理器1180确定的目标充电电流;
在本发明实施例中移动终端的另一实施例中,各硬件具体执行以下步骤:
处理器确定模拟电池工作电压值,充电控制电路1191调节充电电流档位,存储器1120记录各个充电电流档位对应的温度上升值,处理器1180再根据存储器1120记录的各个充电电流档位及温度上升值生成模拟电的池工作电压值对应的温升数据模型。
需要说明的是,存储器1120记录的温度上升值为充电芯片表面温度在预置时间内的上升值,可以通过手机中的温度检测电路检测得到,也可以通过温度检测仪等其他设备检测得到。
在本发明实施例移动终端的另一实施例中,处理器1180具体执行以下步骤:
根据温升数据模型计算目标工作电压值对应的目标温升数据模型,根据目标温升数据模型选择满足预置条件的温度上升值对应的目标充电电流,目标温升数据模型包括目标工作电压值对应的充电电流及温度上升值,温升数据模型可以包括目标温升数据模型也可以不包括目标温升数据模型,具体此处不作限定。
在本发明实施例移动终端的另一实施例中,处理器1180具体执行以下步骤:
判断温升数据模型中的工作电压是否包含目标工作电压值,若是,则将温升数据模型中目标工作电压值对应的温升数据模型作为目标温升数据模型,若否,则根据温升数据模型中与目标工作电压值差值满足预置条件的工作电压值对应的温升数据模型确定目标温升数据模型。
在本发明实施例移动终端的另一实施例中,处理器1180具体执行以下步骤:确定温升数据模型中目标工作电压值差值最小的第一工作电压值及第二工作电压值,确定第一工作电压值对应的第一温升数据模型及第二工作电压值对应的第二温升数据模型,根据第一温升数据模型及第二温升数据模型线性计算得到目标工作电压值及各个充电电流档位对应的目标温度上升值,根据各个充电电流档位及目标温度上升值生成目标温升数据模型。
在本发明实施例中移动终端的另一实施例中,处理器1180具体执行以下步骤:
确定目标温升数据模型的温度上升值中小于预置温度上升值的备选温度上升值,确定备选温度上升值对应的备选充电电流,将备选充电电流中的最大值充电电流作为目标充电电流。
在本发明实施例中移动终端的另一实施例中,处理器1180具体执行以下步骤:
确定目标温升数据模型的温度上升值中的最小值,将该最小值对应的充电电流作为备选充电电流,将备选充电电流中的最大值充电电流作为目标充电电流。
下面对支持读取充电芯片输入输出端电压的移动终端从实体硬件角度进行描述,该终端可以为包括手机、平板电脑、PDA(Personal Digital Assistant,个人数字助理)等移动终端设备,以终端为手机为例,图11示出的是与本发明实施例提供的终端相关的手机的部分结构的框图。
本发明实施例移动终端的另一实施例中,充电芯片1190执行以下步骤:读取自身的输入端电压及输出端电压;通过充电控制电路1191将电池的充电电流设置为处理器1180确定的目标充电电流;
处理器1180执行以下步骤:根据充电芯片1190读取的输入端电压压及输出端电压计算各个充电电流对应的热损耗值,确定热损耗值中满足预置条件的热损耗值对应的目标充电电流;
存储器1120,记录所述处理器1180计算得到的热损耗值。
可选地,本发明实施例中移动终端的另一实施例中,处理器1180具体执行以下步骤:
确定热损耗值中小于预置热损耗值的备选热损耗值,确定备选热损耗值对应的备选充电电流,将备选充电电流中的最大值充电电流作为目标充电电流。
可选地,本发明实施例中移动终端的另一实施例中,处理器1180具体执行以下步骤:
确定热损耗值中的最小值热损耗,确定最小值热损耗对应的备选充电电流,将备选充电电流中的最大值充电电流作为目标充电电流。
本发明实施例移动终端的另一实施例中,移动终端包括一个或多个处理器、存储器及一个或多个程序,其中一个或多个程序被存储在存储器中并被配置为一个或多个处理器执行,一个或多个程序包括用于执行图1至图5任意一个示图对应的实施例中的指令。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另 外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (31)

  1. 一种充电方法,其特征在于,包括:
    获取温升数据模型,所述温升数据模型包括充电芯片的温度上升值、充电电流及电池的工作电压的对应关系;
    获取电池的目标工作电压值,所述电池的目标工作电压值为所述电池当前的工作电压值;
    根据所述电池的目标工作电压值及所述温升数据模型,确定满足预置条件的温度上升值对应的目标充电电流;
    将所述电池的充电电流设置为目标充电电流。
  2. 根据权利要求1所述的方法,其特征在于,所述获取温升数据模型包括:
    确定模拟电池的工作电压值,并调节充电电流档位,记录各个充电电流档位对应的温度上升值,所述温度上升值为充电芯片的表面温度在预置时间内的上升值;
    根据所述各个充电电流档位及所述温度上升值生成所述工作电压值对应的温升数据模型。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述电池的目标工作电压值及所述温升数据模型,确定满足预置条件的温度上升值对应的目标充电电流包括:
    根据所述温升数据模型计算所述电池的目标工作电压值对应的目标温升数据模型;
    根据所述目标温升数据模型选择满足预置条件的温度上升值对应的目标充电电流。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述温升数据模型计算所述电池的目标工作电压值对应的目标温升数据模型包括:
    判断所述温升数据模型中的工作电压是否包含所述目标工作电压值;
    若是,则将所述温升数据模型中所述目标工作电压值对应的温升数据模型作为目标温升数据模型;
    若否,则根据所述温升数据模型中与所述目标工作电压值差值满足预置条 件的工作电压值对应的温升数据模型确定目标温升数据模型。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述温升数据模型中与所述目标工作电压值差值满足预置条件的工作电压值对应的温升数据模型确定目标温升数据模型包括:
    确定所述温升数据模型中与所述目标工作电压值差值最小的第一工作电压值及第二工作电压值;
    确定所述第一工作电压值对应的第一温升数据模型及第二工作电压值对应的第二温升数据模型;
    根据所述第一温升数据模型及第二温升数据模型线性计算得到所述目标工作电压值及各个充电电流档位对应的目标温度上升值;
    根据所述各个充电电流档位及所述目标温度上升值生成目标温升数据模型。
  6. 根据权利要求3至5任一项所述的方法,其特征在于,所述根据所述目标温升数据模型选择满足预置条件的温度上升值对应的目标充电电流包括:
    确定所述目标温升数据模型的温度上升值中小于预置温度上升值的备选温度上升值;
    确定所述备选温度上升值对应的备选充电电流;
    将所述备选充电电流中的最大值充电电流作为目标充电电流。
  7. 根据权利要求3至5任一项所述的方法,其特征在于,所述根据所述目标温升数据模型选择满足预置条件的温度上升值对应的目标充电电流包括:
    确定所述目标温升数据模型的温度上升值中的最小值;
    将所述最小值对应的充电电流作为备选充电电流;
    将所述备选充电电流中的最大值充电电流作为目标充电电流。
  8. 一种充电方法,其特征在于,包括:
    在预置电流范围内调节电池的充电电流,并读取不同充电电流下充电芯片的输入端电压及输出端电压;
    根据所述输入端电压及输出端电压计算各个充电电流对应的热损耗值;
    确定所述热损耗值中满足预置条件的热损耗值对应的目标充电电流;
    将电池的充电电流设置为目标充电电流。
  9. 根据权利要求8所述的方法,其特征在于,所述确定所述热损耗值中满足预置条件的热损耗值对应的目标充电电流包括:
    确定所述热损耗值中小于预置热损耗值的备选热损耗值;
    确定所述备选热损耗值对应的备选充电电流;
    将所述备选充电电流中的最大值充电电流作为目标充电电流。
  10. 根据权利要求8所述的方法,其特征在于,所述确定所述热损耗值中满足预置条件的热损耗值对应的目标充电电流包括:
    确定所述热损耗值中的最小值热损耗;
    确定所述最小值热损耗对应的备选充电电流;
    将所述备选充电电流中的最大值充电电流作为目标充电电流。
  11. 一种移动终端,其特征在于,包括:
    第一获取模块,用于获取温升数据模型,所述温升数据模型包括充电芯片的温度上升值、充电电流及电池的工作电压的对应关系;
    第二获取模块,用于获取电池的目标工作电压值,所述电池的目标工作电压值为所述电池当前的工作电压值;
    确定模块,用于根据所述第二获取模块获取的所述电池的目标工作电压值及所述第一获取模块获取的温升数据模型,确定满足预置条件的温度上升值对应的目标充电电流;
    设置模块,用于将所述电池的充电电流设置为所述确定模块确定的目标充电电流。
  12. 根据权利要求11所述的移动终端,其特征在于,所述第一获取模块包括:
    控制子模块,用于确定模拟电池的工作电压值,并调节充电电流档位,记录各个充电电流档位对应的温度上升值,所述温度上升值为充电芯片的表面温度在预置时间内的上升值;
    生成子模块,用于根据所述控制单元记录的各个充电电流档位及温度上升值生成所述工作电压值对应的温升数据模型。
  13. 根据权利要求11所述的移动终端,其特征在于,所述确定模块包括:
    计算子模块,用于根据所述温升数据模型计算所述电池的目标工作电压值 对应的目标温升数据模型;
    选择子模块,用于根据所述目标温升数据模型选择满足预置条件的温度上升值对应的目标充电电流。
  14. 根据权利要求13所述的移动终端,其特征在于,所述计算子模块包括:
    判断单元,用于判断所述第一获取模块获取的温升数据模型中的工作电压是否包含所述获取模块得到的目标工作电压值;
    第一确定单元,用于当所述判断单元确定所述工作电压包含所述目标工作电压值时,将所述温升数据模型中所述目标工作电压值对应的温升数据模型作为目标温升数据模型;
    第二确定单元,用于当所述判断单元确定所述工作电压不包含所述目标工作电压值时,根据所述温升数据模型中与所述目标工作电压值差值满足预置条件的工作电压值对应的温升数据模型确定目标温升数据模型。
  15. 根据权利要求14所述的移动终端,其特征在于,所述第二确定单元包括:
    第一确定子单元,用于确定所述温升数据模型中与所述目标工作电压值差值最小的第一工作电压值及第二工作电压值;
    第二确定子单元,用于确定所述第一确定子单元确定的第一工作电压值对应的第一温升数据模型及第二工作电压值对应的第二温升数据模型;
    计算子单元,用于根据所述第二确定子单元确定的第一温升数据模型及第二温升数据模型线性计算得到所述目标工作电压值及各个充电电流档位对应的目标温度上升值;
    生成子单元,用于根据所述各个充电电流档位及所述计算子单元得到的目标温度上升值生成目标温升数据模型。
  16. 根据权利要求13至15任一项所述的移动终端,其特征在于,所述选择子模块包括:
    第三确定单元,用于确定所述目标温升数据模型的温度上升值中小于预置温度上升值的备选温度上升值;
    第四确定单元,用于确定所述备选温度上升值对应的备选充电电流;
    第五确定单元,用于将所述第四确定单元确定的备选充电电流中的最大值充电电流作为目标充电电流。
  17. 根据权利要求13至15任一项所述的移动终端,其特征在于,所述选择子模块包括:
    第六确定单元,用于确定所述目标温升数据模型的温度上升值中的最小值;
    第七确定单元,用于确定所述第六确定单元确定的最小值对应的备选充电电流;
    第八确定单元,用于将所述第七确定单元确定的备选充电电流中的最大值充电电流作为目标充电电流。
  18. 一种移动终端,其特征在于,包括:
    控制模块,用于在预置电流范围内调节电池的充电电流,并读取不同充电电流下充电芯片的输入端电压及输出端电压;
    计算模块,用于根据所述输入端电压及输出端电压计算各个充电电流对应的热损耗值;
    确定模块,用于确定所述计算模块得到的热损耗值中满足预置条件的热损耗值对应的目标充电电流;
    设置模块,用于将电池的充电电流设置为所述确定模块确定的目标充电电流。
  19. 根据权利要求18所述的移动终端,其特征在于,所述确定模块包括:
    第一确定子模块,用于确定所述热损耗值中小于预置热损耗值的备选热损耗值;
    第二确定子模块,用于确定所述第一确定子模块确定的备选热损耗值对应的备选充电电流;
    第三确定子模块,用于将所述第二确定单元子模块的备选充电电流中的最大值充电电流作为目标充电电流。
  20. 根据权利要求18所述的移动终端,其特征在于,所述确定模块包括:
    第四确定子模块,用于确定所述热损耗值中的最小值热损耗;
    第五确定子模块,用于确定所述第四确定子模块确定的最小值热损耗对应 的备选充电电流;
    第六确定子模块,用于将所述第五确定子模块确定的备选充电电流中的最大值充电电流作为目标充电电流。
  21. 一种移动终端,其特征在于,包括:处理器、充电控制电路、电压检测电路及存储器;
    所述电压检测电路执行以下步骤:与电池连接,获取电池的目标工作电压值;
    所述处理器执行以下步骤:
    获取温升数据模型,所述温升数据模型包括充电芯片的温度上升值、充电电流及电池的工作电压的对应关系;
    根据所述电池的目标工作电压值及所述温升数据模型,确定满足预置条件的温度上升值对应的目标充电电流;
    所述充电控制电路执行以下步骤:将所述电池的充电电流设置为所述处理器确定的目标充电电流。
  22. 根据权利要求21所述的移动终端,其特征在于,
    所述充电控制电路具体执行以下步骤:
    调节充电电流档位;
    所述存储器具体执行以下步骤:记录各个充电电流档位对应的温度上升值,所述温度上升值为充电芯片的表面温度在预置时间内的上升值;
    所述处理器具体执行以下步骤:
    确定模拟电池的工作电压值;
    根据所述存储器记录的各个充电电流档位及所述温度上升值生成所述工作电压值对应的温升数据模型。
  23. 根据权利要求21所述的移动终端,其特征在于,所述处理器具体执行以下步骤:
    根据所述温升数据模型计算所述电池的目标工作电压值对应的目标温升数据模型,所述目标温升数据模型包括所述电池的目标工作电压值对应的充电电流及温度上升值;
    根据所述目标温升数据模型选择满足预置条件的温度上升值对应的目标 充电电流。
  24. 根据权利要求23所述的移动终端,其特征在于,所述处理器具体执行以下步骤:
    判断所述温升数据模型中的工作电压是否包含所述目标工作电压值;
    若是,则将所述温升数据模型中所述目标工作电压值对应的温升数据模型作为目标温升数据模型;
    若否,则根据所述温升数据模型中与所述目标工作电压值差值满足预置条件的工作电压值对应的温升数据模型确定目标温升数据模型。
  25. 根据权利要求24所述的移动终端,其特征在于,所述处理器具体执行以下步骤:
    确定所述温升数据模型中与所述目标工作电压值差值最小的第一工作电压值及第二工作电压值;
    确定所述第一工作电压值对应的第一温升数据模型及第二工作电压值对应的第二温升数据模型;
    根据所述第一温升数据模型及第二温升数据模型线性计算得到所述目标工作电压值及各个充电电流档位对应的目标温度上升值;
    根据所述各个充电电流档位及所述目标温度上升值生成目标温升数据模型。
  26. 根据权利要求23至25任一项所述的移动终端,其特征在于,所述处理器具体执行以下步骤:
    确定所述目标温升数据模型的温度上升值中小于预置温度上升值的备选温度上升值;
    确定所述备选温度上升值对应的备选充电电流;
    将所述备选充电电流中的最大值充电电流作为目标充电电流。
  27. 根据权利要求23至25任一项所述的移动终端,其特征在于,所述处理器具体执行以下步骤:
    确定所述目标温升数据模型的温度上升值中的最小值;
    将所述最小值对应的充电电流作为备选充电电流;
    将所述备选充电电流中的最大值充电电流作为目标充电电流。
  28. 一种移动终端,其特征在于,包括:处理器、充电芯片及存储器;
    所述充电芯片执行以下步骤:
    读取自身的输入端电压及输出端电压;
    将所述电池的充电电流设置为所述处理器确定的目标充电电流;
    所述处理器执行以下步骤:
    根据所述充电芯片读取的输入端电压及输出端电压计算各个充电电流对应的热损耗值;
    确定所述热损耗值中满足预置条件的热损耗值对应的目标充电电流;
    所述存储器执行以下步骤:存储所述处理器计算得到的各个充电电流对应的热损耗值。
  29. 根据权利要求28所述的移动终端,其特征在于,所述处理器具体执行以下步骤:
    确定所述热损耗值中小于预置热损耗值的备选热损耗值;
    确定所述备选热损耗值对应的备选充电电流;
    将所述备选充电电流中的最大值充电电流作为目标充电电流。
  30. 根据权利要求28所述的移动终端,其特征在于,所述处理器具体执行以下步骤:
    确定所述热损耗值中的最小值热损耗;
    确定所述最小值热损耗对应的备选充电电流;
    将所述备选充电电流中的最大值充电电流作为目标充电电流。
  31. 一种移动终端,其特征在于,所述移动终端包括:一个或多个处理器、存储器以及一个或多个程序,其中所述一个或多个程序被存储在所述存储器中并被配置为所述一个或多个处理器执行,所述一个或多个程序包括用于执行根据权利要求1至5任一项所述的方法的指令。
PCT/CN2015/079931 2015-05-27 2015-05-27 充电方法及移动终端 WO2016187842A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580004159.3A CN106663848B (zh) 2015-05-27 2015-05-27 充电方法及移动终端
PCT/CN2015/079931 WO2016187842A1 (zh) 2015-05-27 2015-05-27 充电方法及移动终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/079931 WO2016187842A1 (zh) 2015-05-27 2015-05-27 充电方法及移动终端

Publications (1)

Publication Number Publication Date
WO2016187842A1 true WO2016187842A1 (zh) 2016-12-01

Family

ID=57392457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/079931 WO2016187842A1 (zh) 2015-05-27 2015-05-27 充电方法及移动终端

Country Status (2)

Country Link
CN (1) CN106663848B (zh)
WO (1) WO2016187842A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107171035A (zh) * 2017-05-24 2017-09-15 上海交通大学 锂离子电池的充电方法
CN111697645A (zh) * 2020-06-02 2020-09-22 Oppo广东移动通信有限公司 充电控制方法及装置、电子设备、计算机可读存储介质
CN116054297A (zh) * 2022-05-30 2023-05-02 荣耀终端有限公司 一种充电方法、装置及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101459348A (zh) * 2007-12-12 2009-06-17 三洋电机株式会社 充电方法
US20100085019A1 (en) * 2008-10-03 2010-04-08 Denso Corporation Battery temperature control system
US20100201324A1 (en) * 2009-02-10 2010-08-12 Chroma Ate Inc. Battery charging and discharging apparatus and method
CN102044716A (zh) * 2009-10-16 2011-05-04 富港电子(东莞)有限公司 电子装置的充电电池管理方法
CN104569836A (zh) * 2014-12-16 2015-04-29 北京新能源汽车股份有限公司 测量变电流工况下电池的生热功率的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101459348A (zh) * 2007-12-12 2009-06-17 三洋电机株式会社 充电方法
US20100085019A1 (en) * 2008-10-03 2010-04-08 Denso Corporation Battery temperature control system
US20100201324A1 (en) * 2009-02-10 2010-08-12 Chroma Ate Inc. Battery charging and discharging apparatus and method
CN102044716A (zh) * 2009-10-16 2011-05-04 富港电子(东莞)有限公司 电子装置的充电电池管理方法
CN104569836A (zh) * 2014-12-16 2015-04-29 北京新能源汽车股份有限公司 测量变电流工况下电池的生热功率的方法和装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107171035A (zh) * 2017-05-24 2017-09-15 上海交通大学 锂离子电池的充电方法
CN107171035B (zh) * 2017-05-24 2019-10-22 上海交通大学 锂离子电池的充电方法
CN111697645A (zh) * 2020-06-02 2020-09-22 Oppo广东移动通信有限公司 充电控制方法及装置、电子设备、计算机可读存储介质
CN111697645B (zh) * 2020-06-02 2024-01-30 Oppo广东移动通信有限公司 充电控制方法及装置、电子设备、计算机可读存储介质
CN116054297A (zh) * 2022-05-30 2023-05-02 荣耀终端有限公司 一种充电方法、装置及电子设备
CN116054297B (zh) * 2022-05-30 2024-03-29 荣耀终端有限公司 一种充电方法、装置及电子设备

Also Published As

Publication number Publication date
CN106663848B (zh) 2020-03-20
CN106663848A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
WO2017206916A1 (zh) 处理器中内核运行配置的确定方法以及相关产品
CN106412249B (zh) 跌落信息的检测方法及装置
WO2016107501A1 (zh) 智能设备控制方法及装置
CN106357897B (zh) 跌落信息的获取方法及装置
WO2018166204A1 (zh) 一种控制指纹识别模组的方法、移动终端及存储介质
CN106649010B (zh) 一种终端设备测试方法及终端设备
AU2018273505B2 (en) Method for capturing fingerprint and associated products
WO2015007092A1 (zh) 移动设备天线的控制方法、装置和设备
WO2016206491A1 (zh) 目标对象运动轨迹确定方法、装置以及存储介质
CN108988421B (zh) 一种电池的充电方法、充电电路以及终端
CN107450029B (zh) 电池状态校验方法和装置、计算机设备、计算机可读存储介质
CN110874128B (zh) 可视化数据处理方法和电子设备
TW201515682A (zh) 一種數據獲取的方法及終端
KR102023822B1 (ko) 전력 관리 방법, 장치 및 전자 기기
CN107172702B (zh) 移动终端及其WiFi发射功率的调整方法和装置
CN109962514B (zh) 一种充电方法及移动终端
US11558500B2 (en) Gesture interaction method and terminal
WO2018103441A1 (zh) 一种网络定位方法及终端设备
CN106549465B (zh) 充电控制方法、装置、系统和终端
CN106786961A (zh) 充电处理方法、装置及终端
WO2017215635A1 (zh) 一种音效处理方法及移动终端
WO2014000632A1 (zh) 一种获取移动终端安全状态的方法、装置及设备
WO2021114699A1 (zh) 信号强度上报方法、装置、存储介质及终端设备
CN107806943A (zh) 一种线圈温度检测方法及移动终端
CN107562303B (zh) 显示界面中元素运动控制方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15892923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15892923

Country of ref document: EP

Kind code of ref document: A1