WO2016186238A1 - Environment-friendly plant cultivating system - Google Patents

Environment-friendly plant cultivating system Download PDF

Info

Publication number
WO2016186238A1
WO2016186238A1 PCT/KR2015/006318 KR2015006318W WO2016186238A1 WO 2016186238 A1 WO2016186238 A1 WO 2016186238A1 KR 2015006318 W KR2015006318 W KR 2015006318W WO 2016186238 A1 WO2016186238 A1 WO 2016186238A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
plant cultivation
light
heat exchange
underground
Prior art date
Application number
PCT/KR2015/006318
Other languages
French (fr)
Korean (ko)
Inventor
현명택
오관준
김용환
김대영
Original Assignee
(주)제스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)제스코 filed Critical (주)제스코
Publication of WO2016186238A1 publication Critical patent/WO2016186238A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/20Forcing-frames; Lights, i.e. glass panels covering the forcing-frames
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Definitions

  • the present invention relates to an environmentally friendly plant cultivation system, and more particularly, to include a roughness providing device for providing the roughness required for plant growth, and a temperature control device for adjusting the temperature of the plant cultivation space, the illuminance providing device Condensing unit for condensing the light, a light transmitting unit for transmitting the solar light collected by the light collecting unit to the plant cultivation space, an illuminating unit for emitting the light transmitted by the light transmitting unit to the plant cultivation space, and cooling for cooling the lighting unit.
  • a roughness providing device for providing the roughness required for plant growth
  • a temperature control device for adjusting the temperature of the plant cultivation space
  • the illuminance providing device Condensing unit for condensing the light
  • a light transmitting unit for transmitting the solar light collected by the light collecting unit to the plant cultivation space
  • an illuminating unit for emitting the light transmitted by the light transmitting unit to the plant cultivation space
  • cooling for cooling the lighting unit.
  • the lighting unit includes an LED lighting to compensate for the illumination caused by sunlight
  • the cooling unit includes an air cooling unit adjacent to the LED lighting to allow the circulation of external air, the air cooling unit and the LED lighting and LED lighting is possible for the continuous use of LED lighting in the rainy season when the cloudy day continues.
  • the temperature control device includes an indirect blower that blows air using underground heat exchange and a direct blower that directly transfers underground air into the plant cultivation space.
  • Such plant factories must use energy for the provision of artificial light sources, for the control of temperature and humidity, and for this purpose, various types of energy sources are used.
  • the present invention has been made to solve the above problems,
  • the present invention includes an illuminance providing device for providing an illuminance necessary for plant growth, wherein the illuminance providing device includes a light condensing unit for condensing sunlight, and a light transmission unit for transmitting the light condensed by the condensing unit to a plant cultivation space; And a lighting unit for radiating the sunlight transmitted by the light transmitting unit to the plant cultivation space, and a cooling unit for cooling the lighting unit, and the lighting unit may include LED lighting to supplement illumination of sunlight.
  • the aim is to provide an eco-friendly plant cultivation system that can prevent the failure of the lighting unit. All.
  • the present invention includes a lighting unit having a light pipe for emitting sunlight, the air-cooling unit is an inlet tube through which air is introduced from the outside, a heat exchange tube communicating with the inlet tube and formed in or around the light pipe, Eco-friendly plant cultivation system to prevent overheating of the lighting unit including LED lighting by allowing natural heat exchange with the outside air, including an outflow pipe that communicates with air and flows out to the outside.
  • the purpose is to provide.
  • the present invention includes a temperature control device for controlling the temperature of the plant cultivation space, the temperature control device is an indirect blower for performing the blow using the ground heat exchange, and a direct blower for delivering underground air directly into the plant cultivation space At the same time, it is to provide an environment-friendly plant cultivation system that can increase the efficiency of the temperature control device by reducing the power consumed in the indirect blower by directly supplying the ground air maintaining a constant temperature to the plant cultivation space.
  • the present invention includes a temperature control device having a underground pipe which is buried in the ground, a plurality of through-holes are formed along the circumferential surface so that underground air or groundwater can be introduced therein, and the direct blower unit grows air in the underground pipe.
  • the indirect blower is inserted into the underground pipe, and the first heat exchange loop circulates a fluid that absorbs and transfers energy from air or water in the underground pipe, and exchanges heat with the fluid circulating in the first heat exchange loop.
  • the present invention includes a direct blower that communicates with the underground pipe and is inserted into the inside of the plant cultivation space, and includes a blower installed in the air duct to transfer underground air into the plant cultivation space, and the air duct includes a perimeter. Including a plurality of air outlet formed to penetrate through the, it is an object to provide an environment-friendly plant cultivation system that allows the heat exchange through the ground air to be efficiently introduced into the plant cultivation space evenly.
  • the present invention is implemented by the embodiment having the following configuration to achieve the above object.
  • the environment-friendly plant cultivation system includes an illuminance providing device for providing an illuminance required for plant growth, and the illuminance providing device collects solar light, and the house And a light transmitting unit for transmitting the sunlight collected by the mining unit to the plant cultivation space, a lighting unit for emitting the solar light transmitted by the light transmitting unit to the plant cultivation space, and a cooling unit for cooling the lighting unit.
  • the cooling unit includes an air cooling means to enable the circulation of external air adjacent to the LED lighting, to prevent overheating by the use of the LED lighting Characterized in that it can be prevented.
  • the lighting unit includes a light pipe for emitting sunlight, the air cooling means is an inlet pipe through which air is introduced from the outside, and the inlet And a heat exchange tube communicating with the tube and formed around or inside the light pipe, and an outlet tube communicating with the heat exchange tube and outflowing air to the outside.
  • the environment-friendly plant cultivation system includes a temperature control device for controlling the temperature of the plant cultivation space, the temperature control device is an indirect blower for performing the blowing using underground heat exchange And, characterized in that it comprises a direct blower for transmitting underground air directly into the plant cultivation space at the same time.
  • the temperature control device is embedded into the ground, a plurality of through holes are formed along the circumferential surface can be ground air or groundwater flows in And a direct pipe to transfer air in the underground pipe into the plant cultivation space, and the indirect blower is inserted into the underground pipe to absorb energy from air or water in the underground pipe. And a heat pump configured to exchange heat with the fluid circulating the first heat exchange loop and to supply cold or warm air into the plant cultivation space. It is done.
  • the direct blower is in communication with the underground pipe and is inserted into the plant cultivation space and is installed in the air duct It includes a blower for transporting the ground air into the plant cultivation space, the air duct is characterized in that it comprises a plurality of air outlets formed to pass through the circumference.
  • the present invention can obtain the following effects by the configuration, combination, and use relationship described above with the present embodiment.
  • the present invention includes an illuminance providing device for providing an illuminance necessary for plant growth, wherein the illuminance providing device includes a light condensing unit for condensing sunlight, and a light transmission unit for transmitting the light condensed by the condensing unit to a plant cultivation space; And a lighting unit for radiating the sunlight transmitted by the light transmitting unit to the plant cultivation space, and a cooling unit for cooling the lighting unit, and the lighting unit may include LED lighting to supplement illumination of sunlight.
  • the present invention includes a lighting unit having a light pipe for emitting sunlight, the air-cooling unit is an inlet tube through which air is introduced from the outside, a heat exchange tube communicating with the inlet tube and formed in or around the light pipe, Including the outflow pipe communicating with the air to the outside, by allowing natural heat exchange with the outside air there is an effect to prevent overheating of the lighting unit including the LED lights without using a separate power.
  • the present invention includes a temperature control device for controlling the temperature of the plant cultivation space, the temperature control device is an indirect blower for performing the blow using the ground heat exchange, and a direct blower for delivering underground air directly into the plant cultivation space Including at the same time, by supplying the ground air maintaining a constant temperature directly to the plant cultivation space has the effect of reducing the power consumed in the indirect blower to increase the efficiency of the temperature control device.
  • the present invention includes a temperature control device having a underground pipe which is buried in the ground, a plurality of through-holes are formed along the circumferential surface so that underground air or groundwater can be introduced therein, and the direct blower unit grows air in the underground pipe.
  • the indirect blower is inserted into the underground pipe, and the first heat exchange loop circulates a fluid that absorbs and transfers energy from air or water in the underground pipe, and exchanges heat with the fluid circulating in the first heat exchange loop.
  • the present invention includes a direct blower that communicates with the underground pipe and is inserted into the inside of the plant cultivation space, and includes a blower installed in the air duct to transfer underground air into the plant cultivation space, and the air duct includes a perimeter. Including a plurality of air outlet formed to penetrate along, there is an effect that the ground air is evenly introduced into the plant cultivation space to make the heat exchange through the ground air efficiently.
  • FIG. 1 is a block diagram of an environmentally friendly plant cultivation system according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along the line A-A of FIG.
  • FIG. 3 is a block diagram showing the configuration of a control unit of an environmentally friendly plant cultivation system according to an embodiment of the present invention
  • FIG. 4 is a reference diagram showing the configuration of the heat pump of FIG.
  • FIG. 5 is a block diagram of an environmentally friendly plant cultivation system according to another embodiment of the present invention.
  • the eco-friendly plant cultivation system is a roughness providing device (1) for providing the illumination required for the growth of plants, plant cultivation space It includes a thermostat (3) to control the temperature of the.
  • the eco-friendly plant cultivation system is a plant cultivation system that can be applied to a plant factory for artificially controlling light (illuminance), temperature and humidity, air, etc. in a certain space to allow the cultivation of plants regardless of time and place throughout the year, It provides the wind (heat) using the solar illuminance and geothermal heat to construct an eco-friendly plant cultivation system.
  • a system for cultivating plants by providing illumination using the sun and providing wind using geothermal heat has existed in the past, but due to many problems such as overheating and low efficiency in the process of growing plants, It is not working. Therefore, in the eco-friendly plant cultivation system according to the present invention to provide a practical plant cultivation system by using the sun and geothermal heat as it is, by overcoming problems such as heat generation of the illuminance providing device (1), efficiency of the temperature control device (3).
  • a plant cultivation space (S) including an outer wall (C) forming a constant space in which the plants can grow, and a plant bed (B) in which the plants are grown.
  • the illuminance providing device 1 is configured to provide light in order to provide illumination (brightness of light) necessary for plant growth inside the plant cultivation space S, so that the sun can transmit natural light by the sun.
  • the light condenser 11 for condensing light, the light transmitter 12 for transmitting the sunlight collected by the light concentrator 11 to the plant cultivation space S, and the light transmitted by the light transmitter 12 The lighting unit 13 for emitting sunlight to the plant cultivation space (S), the cooling unit 14 for cooling the lighting unit 13, the control unit 14 for controlling the illuminance providing device 1, the solar And a rotating part 15 for rotating the light collecting part 11 according to the position.
  • the light collecting unit 11 is configured to collect light incident upon the light emitted by the sun, and to collect the incident light.
  • the light collecting unit 11 includes a lens, a reflector, and the like, and is collected by the light collecting unit 11. Light is transmitted to the lighting unit 13 in the plant cultivation space S through the light transmission unit 12.
  • the light collecting part 11 may be applied in various ways, and the detailed description thereof will be omitted.
  • the optical transmission unit 12 is configured to transfer the solar light collected by the condensing unit 11 to the lighting unit 13, various methods such as optical ducts, optical cables can be applied, and the optical fiber is made of a bundle of optical fibers It is desirable to apply this to enable light transmission to various locations without light loss.
  • the lighting unit 13 is installed above the plant cultivation space (S), is connected to the light transmission unit 12 receives the sunlight from the light transmission unit 12, this inside the plant cultivation space (S) To diverge. Therefore, including an optical pipe 131 into which the optical fiber connected to the optical transmission unit 12 is inserted, the solar light is diverted, and LED lighting 132 is also included to compensate for the illumination of the sunlight. .
  • the optical pipe 131 may be connected to the optical transmission unit 12 to allow the optical fiber to be inserted into the optical pipe 131.
  • the optical pipe 131 penetrates an upper portion of the optical fiber to allow sunlight to be emitted into the optical pipe 131. Sunlight is reflected downward again inside the pipe 131 so that the sun light can be emitted to the lower side of the light pipe 131.
  • the optical fiber is formed of a plastic optical fiber, the clad coated on the surface of the core can be removed so that the core can leak directly to the outside of the light. Light illumination can be formed.
  • the present invention is not limited thereto, and various solar light emitting methods may be applied.
  • the LED light 132 is a light made of LED (Light Emitting Diode, LED), the LED is similar to natural light and relatively soft and evenly radiated light can help the photosynthesis of the plant, because the power consumption is very low It may be suitable as an artificial light source that operates by receiving electricity. Since the LED lighting 132 needs to consume electricity to emit light, it is preferable to operate the LED lighting 132 only when the illumination of sunlight is not smooth. Therefore, the illumination intensity by sunlight by the light quantity measurement module 151 to be described later of the control unit 15, LED lighting 132 by the operation module 152 to be described later only when the illumination intensity does not reach the set value This should work.
  • LED Light Emitting Diode
  • the LED lighting 132 needs to operate for a long time, and heat is generated accordingly. Therefore, when the cloudy day continues or the illumination is not provided by the solar light due to other causes, the risk of failure or fire of the lighting unit 13 due to the heat generated by the long time operation of the LED lighting 132. Was present. Therefore, even when the LED lighting 132 is continuously operated because the illumination of sunlight is not smoothly provided, it is necessary to cool the LED lighting 132 to reduce the risk of failure or fire.
  • the cooling unit 14 is formed around the LED lighting 132 to prevent overheating.
  • the cooling unit 14 is formed around the LED lighting 132 to prevent overheating by the long time use of the LED lighting 132, the outside air is adjacent to the LED lighting 132 By allowing it to flow, it is possible to cool the heat generated from the LED lighting (132). Therefore, the failure caused by the heat of the LED lighting 132 even when the use of the LED lighting 132 is continued because the provision of light by the sun does not reach the level necessary for plant growth due to a cloudy day or other causes. To prevent fire and the like.
  • the cooling unit 14 includes air cooling means 141 for preventing heat generation of the LED lighting 132 by the air, the air cooling means 141 is an inlet pipe 141a through which the external air flows, the LED lighting
  • the heat exchanger tube 141b formed around the 132 to allow heat exchange between the external air and the LED light 132 and the heat exchanger tube 141b communicated with the LED light 132 to complete heat exchange. May include an outlet pipe 141c exiting to the outside.
  • the heat exchange tube 141b may be formed inside the light pipe 131 as shown in FIG. 2A, and the light pipe 131 as shown in FIG. 2B. It may be formed on the outside of, and may be formed in a variety of shapes to allow heat exchange adjacent to the LED light (132).
  • the cooling unit 141 may include a water cooling unit 142 according to another embodiment of the present invention, which will be described later.
  • the control unit 15 is configured to control the operation of the illuminance providing device 1, by measuring the amount of sunlight provided from the illuminance providing device 1, to the growth of plants in the plant cultivation space (S). If it does not reach the required illuminance to operate the LED lighting 132 to replenish the illuminance. As shown in FIG. 3, the controller 15 controls the LED lighting 132 according to the amount of sunlight measured by the quantity of light measuring module 151 and the quantity of sunlight measured by the quantity of light measuring module 151 as shown in FIG. 3. It includes an operation module 152 for operating.
  • the light quantity measuring module 151 measures the amount of sunlight provided by the illuminance providing device 1, and collects the light quantity of sunlight that is collected by the light collecting unit 11 and flows through the light transmitting unit 12. Installed in the sensing sensor (not shown) or the plant cultivation space (S) for detecting may be applied to the illumination sensor (not shown) that can measure the illuminance by sunlight, by the light quantity measuring module 151 When the amount of light to be measured does not reach the set value, the operation module 152 is operated.
  • the operation module 152 operates the LED lighting 132 to adjust the illuminance required for plant growth when the amount of sunlight measured by the photometric module 151 does not provide illuminance for plant growth. In such a configuration that it can be provided, the LED lighting 132 is operated by flowing a current.
  • the rotating part 16 supports the light collecting part 11 from the lower side, and is configured to allow the light collecting part 11 to be rotated.
  • the solar detecting sensor 161 detects the position of the sun, and thus Rotation driving module 162 for rotating the light collecting portion (11). Therefore, the position of the sun is sensed by the solar sensor 161, and accordingly the condenser 11 can rotate in various directions by the rotation driving module 162 including a motor, a gear, and the like. As a result, efficient condensation of sunlight can be achieved. Since the rotating part 16 is the same as a known configuration, a detailed description thereof will be omitted.
  • the temperature control device 3 is supplied to the hot or cold air in the plant cultivation space (S) to maintain a constant temperature, preferably 9 °C ⁇ 12 °C suitable for plant growth in the temperature in the plant cultivation space (S) To help.
  • the temperature control device (3) is to maintain the temperature of the plant cultivation space (S) in an environmentally friendly manner using geothermal heat, especially in basalts of volcanic areas such as Jeju Island, basalt has a lot of pore development and vertical to cracks It has the characteristics of joint development, and it has an underground temperature invariable layer which shows little seasonal change of the ground temperature at the depth of 10 ⁇ 20m underground, and is maintained at the temperature of around 15 °C throughout the year.
  • the temperature control device 3 includes an indirect blower unit 31 for blowing air using underground heat exchange and a direct blower unit 32 for directly transferring underground air into the plant cultivation space S, It is embedded in the ground, a plurality of through-holes 331 is formed along the circumferential surface includes an underground tube 33 to allow the underground air or groundwater to flow.
  • the indirect blower part 31 supplies hot air or cold air into the plant cultivation space S through heat exchange with underground air or groundwater, and is inserted into the underground pipe 33 embedded in the ground, especially the basalt layer.
  • the first heat exchange loop 311 circulates the fluid that exchanges heat with the heat pump, and heat that takes heat or cold air from the fluid circulating through the first heat exchange loop 311 and transfers the heat or cold air to the second heat exchange loop 313.
  • the second heat exchange loop 313 and the second heat exchange loop 313 to receive heat or cold air from the pump 312 and the heat pump 312 to provide cold or warm air by the blowing means 314.
  • Receiving cold air or heat from the fluid circulating) comprises a blowing means 314 for supplying cold or warm air in the plant cultivation space (S).
  • the first heat exchange loop 311 is inserted into the underground pipe 33 and the heat exchange fluid such as liquid or gas is circulated, underground air circulated through the through-hole 331 of the underground pipe 33 and Maximize heat exchange efficiency by allowing direct heat exchange with groundwater.
  • the fluid obtained with heat or cold air from the underground air and ground water is heat-exchanged with the first heat exchanger (312a) to be described later of the heat pump (32).
  • the heat pump 312 is provided by the first heat exchanger (312a), the heat or cold air received from the fluid circulating the first heat exchange loop 311, the second heat exchanger (312b) Heat exchange with the fluid circulating in the second heat exchange loop (313).
  • the heat pump 312 connects the first heat exchanger 312a and the second heat exchanger 312b, and provides a refrigerant circulation tube 312f and a refrigerant circulation tube 312f that provide a movement path of the refrigerant.
  • a compressor provided between the compressor 312c and the first heat exchanger 312a and the second heat exchanger 312b to circulate the first heat exchanger 312a and the second heat exchanger 312b.
  • the present invention is not limited thereto, and various methods may be applied such that the second heat exchange loop 313 is unnecessary by allowing the air to be directly blown from the second heat exchanger 312b into the plant cultivation space S.
  • Heat exchange and operation by the heat pump 312 is as is known in the art, briefly described as follows.
  • the heat pump 312 is different from the operation process according to the supply of hot or cold air, the first heat exchanger (312a) and the second heat exchanger (312b) alternately take on the role of the condenser and the evaporator.
  • the fluid circulating in the first heat exchange loop 311 is cooled by underground air and ground water, and the fluid in the cooled first heat exchange loop 311 is the first heat exchanger 312a.
  • the first heat exchanger (312a) is to function as a condenser.
  • the refrigerant cooled through the first heat exchanger (312a) passes through the expander (312d), becomes a low temperature low pressure state, evaporates in the second heat exchanger (312b), absorbs latent heat, and the second The fluid circulating in the heat exchange loop 313 is cooled.
  • the second heat exchanger 312b functions as an evaporator, and the cooled fluid is moved to the blowing means 314 along the second heat exchange loop 313 to provide cold air to the plant cultivation space S. Done.
  • the first heat exchanger 312a serves as an evaporator
  • the second heat exchanger 312b serves as a condenser
  • the fluid circulating through the second heat exchange loop 313 obtains heat.
  • the heat pump 312 may be operated according to the temperature measured by a temperature sensor (not shown) installed in the plant cultivation space (S), in the present invention by the direct blower (32)
  • the direct blower (32) By allowing the ground air to be delivered inside the plant cultivation space (S), the amount of heat to be transmitted by the heat pump 312 is relatively reduced, thereby reducing heat loss and enabling accurate control of temperature.
  • the second heat exchange loop 313 is configured to circulate a fluid that exchanges heat with the second heat exchanger 312b. As described above, the second heat exchange loop 313 receives heat or cold air and provides it to the blowing means 314. The means 314 may obtain heat or cold air from the fluid circulating through the second heat exchange loop 313 to provide hot air or cold air.
  • the blower means 314 is connected to the second heat exchange loop 314 to exchange heat with the fluid flowing through the second heat exchange loop 314, and comprises a fan coil unit that can provide hot or cold air through the blower
  • the fan coil unit may allow the fluid circulating in the second heat exchange loop 314 to pass through a coil or the like in the course of passing through the fan coil unit to increase heat exchange efficiency and provide wind by a blower. Or to obtain a cold air to the plant cultivation space (S).
  • the direct blower 32 is configured to directly transfer the underground air flowing into the underground pipe 33 into the plant cultivation space S, and simultaneously with the indirect blower 31 as described above. This allows for efficient geothermal heat transfer and accurate temperature control.
  • the underground pipe 33 has a plurality of through-holes 331 is formed to maintain the underground air circulating through the pores such as basalt, even in the underground pipe 33, 15 circulating through the underground pipe 33 Plant air space (S) through the air blower 322 to maintain the temperature between 10 °C ⁇ 20 °C even if the heat exchange with the air circulating in the outside, the fluid circulating the first heat exchange loop 311 To be transported).
  • the direct blower 32 communicates with the underground tube 33 and is inserted into the plant cultivation space S, and the air duct 331 is disposed within the air duct 331. It is installed includes a blower 332 for transporting underground air into the plant cultivation space (S).
  • the air duct 331 is in communication with the underground pipe 33 does not require a separate underground hole drilling or separate equipment, the first heat exchange loop 311 is inserted into the indirect blower 31
  • a duct is formed to communicate with the underground pipe 33 to be formed, and a blower 332 is formed in the air duct 331 to transfer the air in the underground pipe 33 to the plant cultivation space S. do.
  • the air duct 331 forms a plurality of air outlets 331a along the circumference of the part inserted into the plant cultivation space (S), and the underground air transferred to the air duct 331 is an air outlet ( Through the 331a) to be evenly distributed in the plant cultivation space (S), it is possible to evenly form the temperature distribution of the entire plant cultivation space (S).
  • the blower 332 is formed in the air duct 331, preferably the upper portion of the underground pipe 33 to transport the ground air in the underground pipe 33 into the plant cultivation space (S).
  • the blower 332 is a temperature measured by a temperature sensor (not shown) formed in the underground pipe 33 or a temperature sensor (not shown) formed in the plant cultivation space (S), that is, the temperature of underground air B may be adjusted to adjust the amount of air transferred into the plant cultivation space (S) according to the temperature in the plant cultivation space (S).
  • the underground pipe 33 is a cylindrical tube embedded in the ground, it is preferable to be formed in a temperature constant layer of 10 ⁇ 20m underground to maintain a constant temperature throughout the year, a number along the circumference of the buried portion
  • the through hole 331 is formed to allow the inflow of underground air and groundwater to circulate the ground freely. Therefore, heat exchange with the fluid circulating in the first heat exchange loop 311 may be smoothly performed, and the transfer of underground air through the air duct 321 may be smoothly performed.
  • the eco-friendly plant cultivation system according to an embodiment of the present invention eco-friendly plant cultivation system and roughness providing device (1), temperature control device (3) and the like, except that the cooling unit 14 includes a water cooling unit 142 instead of the air cooling unit 141.
  • the air-cooling means 141 and the water-cooling means 142 may be formed at the same time, but in consideration of efficiency and ease of installation, it is preferable to form only one of the two. Therefore, in the following description of the same other components will be omitted, and only the water cooling means 142 will be described.
  • the water cooling means 142 is configured to prevent the overheating of the LED light 132 by allowing a fluid to flow from the second heat exchange loop 313 near the LED light 132 of the illuminance providing device 1.
  • the objects and effects thereof are as described above in the air cooling means 141, and the water cooling means 142 is branched from the second heat exchange loop 313 to be in close contact with the light pipe 131.
  • a bypass pipe 142a connected to the second heat exchange loop 313 and a pump 142b for allowing a fluid to flow into the bypass pipe 142a may be included.
  • the bypass pipe 142a is configured to allow the fluid flowing out of the second heat exchange loop 313 to flow near the LED light 132 to cool the heat generated from the operation of the LED light 132.
  • the fluid flows out from a portion of the second heat exchange loop 313 in which the fluid having a relatively low temperature flows to flow near the LED light 132, and the fluid which has completed heat exchange with the LED light 132 is again formed in the second heat exchange loop 313.
  • the two heat exchange loops 313 are connected to a relatively high temperature side to be introduced.
  • the bypass tube 142a may be formed along the inner or outer circumference of the light pipe 131, such as the heat exchange tube 141b of the air cooling means 141, and the flow of fluid by the pump 142b. This is regulated.
  • the pump 142b is configured to introduce a fluid circulating in the second heat exchange loop 313 into the bypass pipe 142a, and adjusts an amount of fluid flowing according to the degree of overheating of the LED light 132. Thus, the overheating can be effectively prevented.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Botany (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Cultivation Of Plants (AREA)

Abstract

The present invention relates to an environment-friendly plant cultivating system. More specifically, the present invention relates to an environment-friendly plant cultivating system, comprising: an illumination-providing apparatus for providing illumination required for growth of a plant; and a temperature controlling apparatus for controlling temperature of a plant cultivation room, wherein the illumination-providing apparatus comprises: a lighting part having sunlight and LED light, and a cooling part for cooling the lighting part to thereby supplement the illumination by means of sunlight and to prevent overheating, and the temperature controlling apparatus comprises: an indirect air blowing part for blowing air using an underground heat exchanger and a direct air blowing part for transferring underground air directly into the plant cultivation room to thereby supply the underground air, maintaining a constant temperature directly to the plant cultivation room, so that power consumed by the indirect blowing portion and heat loss can be reduced and an efficiency of the temperature controlling apparatus can be increased.

Description

친환경 식물 재배 시스템Eco-friendly plant cultivation system
본 발명은 친환경 식물 재배 시스템에 관한 것으로, 더욱 상세하게는 식물의 생장에 필요한 조도를 제공하는 조도제공장치와, 식물 재배 공간의 온도를 조절하는 온도조절장치를 포함하고, 조도제공장치는 태양광을 집광하는 집광부와, 집광부에 의하여 집광된 태양광을 식물 재배 공간으로 전달하는 광전송부와, 광전송부에 의하여 전송된 태양광을 식물 재배 공간으로 발산하는 조명부와, 조명부를 냉각하기 위한 냉각부를 포함하며, 조명부는 엘이디조명을 포함하여 태양광에 의한 조도를 보충할 수 있도록 하고, 냉각부는 엘이디조명에 인접하여 외부공기의 순환이 가능하도록 하는 공냉수단을 포함하여, 공냉부와 엘이디조명과의 열교환이 가능하도록 함으로써 흐린 날이 계속되는 장마철 등에 있어서 엘이디조명의 계속적인 사용에도 엘이디조명의 과열을 방지하여 조명부의 고장 및 화재 등을 방지할 수 있도록 하고, 온도조절장치는 지중열교환을 이용한 송풍을 실시하는 간접송풍부와, 지중공기를 직접 상기 식물재배공간 내부로 전달하는 직접송풍부를 동시에 포함하여, 일정 온도를 유지하는 지중 공기를 식물 재배 공간에 직접 공급하도록 함으로써 간접송풍부에서 소모되는 동력과 열손실을 줄이고 온도조절장치의 효율을 높일 수 있도록 하여 태양광 및 지열을 이용한 식물 재배 시스템이 원활하게 동작할 수 있도록 하는 친환경 식물 재배 시스템에 관한 것이다. The present invention relates to an environmentally friendly plant cultivation system, and more particularly, to include a roughness providing device for providing the roughness required for plant growth, and a temperature control device for adjusting the temperature of the plant cultivation space, the illuminance providing device Condensing unit for condensing the light, a light transmitting unit for transmitting the solar light collected by the light collecting unit to the plant cultivation space, an illuminating unit for emitting the light transmitted by the light transmitting unit to the plant cultivation space, and cooling for cooling the lighting unit. The lighting unit includes an LED lighting to compensate for the illumination caused by sunlight, and the cooling unit includes an air cooling unit adjacent to the LED lighting to allow the circulation of external air, the air cooling unit and the LED lighting and LED lighting is possible for the continuous use of LED lighting in the rainy season when the cloudy day continues. To prevent overheating of the lighting unit to prevent malfunctions and fires, and the temperature control device includes an indirect blower that blows air using underground heat exchange and a direct blower that directly transfers underground air into the plant cultivation space. At the same time, by supplying the ground air maintaining a constant temperature directly to the plant cultivation space to reduce the power and heat loss consumed by the indirect blower and to increase the efficiency of the temperature control device plant cultivation using solar and geothermal It relates to an eco-friendly plant cultivation system that allows the system to operate smoothly.
최근 들어 식물, 농작물 등을 계절에 관계없이 연중 안정적으로 생산하기 위하여 일정한 시설 내에 빛, 온도와 습도, 이산화탄소 농도, 배양액 등의 환경 조건을 인공적으로 제어하여 계절과 장소에 관계없이 자동적으로 연속 생산하는 시설이 증가하고 있으며, 이를 이른바 식물 공장이라 한다. In recent years, in order to produce plants, crops, etc. regardless of season, year-round, artificially control environmental conditions such as light, temperature and humidity, carbon dioxide concentration, and culture solution in a certain facility to continuously produce regardless of season and place. Increasing facilities are called plant plants.
이와 같은 식물 공장은 인공광원의 제공, 온도와 습도의 조절 등을 위하여 필수적으로 에너지를 사용하여야 하며, 이를 위해 다양한 형태의 에너지원을 사용하고 있다. Such plant factories must use energy for the provision of artificial light sources, for the control of temperature and humidity, and for this purpose, various types of energy sources are used.
일반적으로 사용되는 에너지원은 석탄, 석유, 천연가스 등과 같은 화석 연료 및 핵연료를 이용하는 경우가 대부분이나, 이러한 화석연료는 연소과정에서 발생하는 각종 공해물질로 인하여 환경을 오염시키고, 핵연료는 수질오염 및 방사능과 같은 유해물질을 발생시키는 단점과 함께 이들 에너지원은 매장량의 한계로 인하여 근래에는 이를 대체할 수 있는 신재생 에너지의 개발이 활발하게 진행되고 있다. 신재생 에너지는 풍력, 태양열, 지열, 공기 등 자연에서 무한하게 얻을 수 있으며, 공장에서 버려지는 폐수로부터도 얻을 수 있다. Most commonly used energy sources are fossil fuels such as coal, petroleum, and natural gas, and nuclear fuels. However, these fossil fuels pollute the environment due to various pollutants generated during combustion, and nuclear fuel is used for water pollution and In addition to the disadvantages of generating harmful substances such as radioactivity, due to the limited reserves of these energy sources, in recent years, the development of renewable energy that can replace it is being actively developed. Renewable energy can be infinitely obtained from nature, such as wind, solar, geothermal and air, and from wastewaters that are discarded in factories.
따라서, 식물 재배를 위한 식물 공장 시스템 등에 있어서도 아래 특허문헌과 같은 태양광을 이용한 조명장치를 이용하여 자연광을 제공하거나, 지열을 이용하여 온도의 조절이 가능하도록 하고 있다. 그러나 태양광을 이용하여 식물 공장 내에 일정한 조도를 유지하도록 하는 경우에는 태양광의 입사량이 충분치 않은 흐린 날이 계속되거나 장마철 등의 경우에 충분한 조도를 얻을 수 없으며, 이에 따라 엘이디(LED) 등의 조명장치를 함께 설치하여 조도를 유지할 수 있도록 하고 있다. 그러나 흐린 날이 계속되는 경우에는 엘이디 조명을 지속적으로 사용하여야만 하고, 이를 통한 발열이 매우 심각하였으며, 발명이 계속될 경우 엘이디 등의 조명장치가 쉽게 고장나는 문제가 있었다. Therefore, even in a plant factory system for plant cultivation, it is possible to provide natural light by using an illumination device using solar light as described in the following patent document, or to control temperature using geothermal heat. However, when using sunlight to maintain a constant illuminance in a plant factory, it is impossible to obtain sufficient illuminance in the case of a cloudy day when the amount of incident sunlight is insufficient or in the rainy season, and thus, an illumination device such as an LED. It is installed together to maintain the illuminance. However, if the cloudy day is continued, the LED lighting must be used continuously, and the heat generated through this is very serious, and if the invention continues, there was a problem that the lighting device such as the LED is easily broken.
또한, 지열을 이용하여 냉, 난방을 실시하는 다양한 장치들이 개발되어 출원된바 있으나, 실제로 열손실 등의 문제로 인해 기타 다른 에너지원을 통한 온도의 조절보다 좋은 효율을 보이지 못하고 있다. In addition, various devices for cooling and heating using geothermal heat have been developed and filed, but due to problems such as heat loss, they do not show better efficiency than temperature control through other energy sources.
(특허문헌)(Patent literature)
대한민국 등록특허공보 제10-1047445호(2011. 07. 01, 등록)"태양광 조명 어셈블리"Republic of Korea Patent Publication No. 10-1047445 (registered July 1, 2011) "solar lighting assembly"
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로, The present invention has been made to solve the above problems,
본 발명은 식물의 생장에 필요한 조도를 제공하는 조도제공장치를 포함하고, 조도제공장치는 태양광을 집광하는 집광부와, 집광부에 의하여 집광된 태양광을 식물 재배 공간으로 전달하는 광전송부와, 광전송부에 의하여 전송된 태양광을 식물 재배 공간으로 발산하는 조명부와, 조명부를 냉각하기 위한 냉각부를 포함하며, 조명부는 엘이디조명을 포함하여 태양광에 의한 조도를 보충할 수 있도록 하고, 냉각부는 엘이디조명에 인접하여 외부공기의 순환이 가능하도록 하는 공냉수단을 포함하여, 공냉부와 엘이디조명과의 열교환이 가능하도록 함으로써 흐린 날이 계속되는 장마철 등에 있어서 엘이디조명의 계속적인 사용에도 엘이디조명의 과열을 방지하여 조명부의 고장을 방지할 수 있도록 하는 친환경 식물 재배 시스템을 제공하는데 목적이 있다. The present invention includes an illuminance providing device for providing an illuminance necessary for plant growth, wherein the illuminance providing device includes a light condensing unit for condensing sunlight, and a light transmission unit for transmitting the light condensed by the condensing unit to a plant cultivation space; And a lighting unit for radiating the sunlight transmitted by the light transmitting unit to the plant cultivation space, and a cooling unit for cooling the lighting unit, and the lighting unit may include LED lighting to supplement illumination of sunlight. Including air-cooling means to allow the circulation of external air adjacent to the LED lighting, by allowing heat exchange between the air-cooling section and the LED lighting, it is possible to prevent the overheating of the LED lighting even in the continuous use of the LED lighting in the rainy season, etc. The aim is to provide an eco-friendly plant cultivation system that can prevent the failure of the lighting unit. All.
본 발명은 태양광을 발산하는 광파이프를 갖는 조명부를 포함하고, 공냉부는 외부로부터 공기가 유입되는 유입관과, 유입관과 연통되며 광파이프의 둘레 또는 내부에 형성되는 열교환관과, 열교환관과 연통되며 외부로 공기가 유출되는 유출관을 포함하여, 외부 공기와의 자연적인 열교환이 가능하도록 함으로써 별도의 동력을 사용하지 않고도 엘이디조명을 포함하는 조명부의 과열을 방지할 수 있도록 하는 친환경 식물 재배 시스템을 제공하는데 목적이 있다. The present invention includes a lighting unit having a light pipe for emitting sunlight, the air-cooling unit is an inlet tube through which air is introduced from the outside, a heat exchange tube communicating with the inlet tube and formed in or around the light pipe, Eco-friendly plant cultivation system to prevent overheating of the lighting unit including LED lighting by allowing natural heat exchange with the outside air, including an outflow pipe that communicates with air and flows out to the outside. The purpose is to provide.
본 발명은 식물 재배 공간의 온도를 조절하는 온도조절장치를 포함하고, 온도조절장치는 지중열교환을 이용한 송풍을 실시하는 간접송풍부와, 지중공기를 직접 상기 식물 재배 공간 내부로 전달하는 직접송풍부를 동시에 포함하여, 일정 온도를 유지하는 지중 공기를 식물 재배 공간에 직접 공급하도록 함으로써 간접송풍부에서 소모되는 동력을 줄여 온도조절장치의 효율을 높일 수 있는 친환경 식물 재배 시스템을 제공하는데 목적이 있다.The present invention includes a temperature control device for controlling the temperature of the plant cultivation space, the temperature control device is an indirect blower for performing the blow using the ground heat exchange, and a direct blower for delivering underground air directly into the plant cultivation space At the same time, it is to provide an environment-friendly plant cultivation system that can increase the efficiency of the temperature control device by reducing the power consumed in the indirect blower by directly supplying the ground air maintaining a constant temperature to the plant cultivation space.
본 발명은 지중으로 매입되며, 둘레면을 따라 복수의 관통홀이 형성되어 지중공기 또는 지하수가 유입될 수 있도록 하는 지중관을 갖는 온도조절장치를 포함하고, 직접송풍부는 지중관 내의 공기를 식물 재배 공간 내부로 이송되도록 하며, 간접송풍부는 지중관 내부에 삽입되어 지중관 내부의 공기 또는 물로부터 에너지를 흡수하여 전달하는 유체가 순환되는 제1열교환루프와, 제1열교환루프를 순환하는 유체와 열교환을 실시하여 식물 재배 공간 내부로의 냉풍 또는 온풍의 공급이 가능하도록 하는 열펌프를 포함하여, 하나의 지중관에 의해 간접송풍부와의 열교환 및 직접송풍부를 통한 지중공기의 공급이 가능하도록 함으로써 설치 및 유지·관리를 용이하게 하고, 설치면적을 줄일 수 있으며, 관통홀을 통해 지하수와 지중공기의 유입이 가능하도록 함으로써 열교환효율을 높일 수 있도록 하는 친환경 식물 재배 시스템을 제공하는데 목적이 있다. The present invention includes a temperature control device having a underground pipe which is buried in the ground, a plurality of through-holes are formed along the circumferential surface so that underground air or groundwater can be introduced therein, and the direct blower unit grows air in the underground pipe. The indirect blower is inserted into the underground pipe, and the first heat exchange loop circulates a fluid that absorbs and transfers energy from air or water in the underground pipe, and exchanges heat with the fluid circulating in the first heat exchange loop. Including a heat pump to enable the supply of cold or warm air into the plant cultivation space by installing, by allowing the ground air to be supplied through the direct blower and the heat exchange with the indirect blower by one underground pipe And maintenance and management, installation area can be reduced, and groundwater and underground air can be introduced through through holes. It aims to provide an environmentally friendly plant cultivation system that can by increasing the heat exchange efficiency.
본 발명은 지중관과 연통되며 상기 식물 재배 공간의 내부에 삽입되는 공기덕트와, 공기덕트 내에 설치되어 지중공기를 식물 재배 공간 내부로 이송하는 송풍기를 포함하는 직접송풍부를 포함하고, 공기덕트는 둘레를 따라 관통되도록 형성되는 복수의 공기유출구를 포함하여, 지중공기가 식물 재배 공간 내부에 골고루 유입되도록 함으로써 지중공기를 통한 열교환이 효율적으로 이루어질 수 있도록 하는 친환경 식물 재배 시스템을 제공하는데 목적이 있다. The present invention includes a direct blower that communicates with the underground pipe and is inserted into the inside of the plant cultivation space, and includes a blower installed in the air duct to transfer underground air into the plant cultivation space, and the air duct includes a perimeter. Including a plurality of air outlet formed to penetrate through the, it is an object to provide an environment-friendly plant cultivation system that allows the heat exchange through the ground air to be efficiently introduced into the plant cultivation space evenly.
본 발명은 앞서 본 목적을 달성하기 위해서 다음과 같은 구성을 가진 실시예에 의해서 구현된다.The present invention is implemented by the embodiment having the following configuration to achieve the above object.
본 발명의 일 실시예에 따르면, 본 발명에 따른 친환경 식물 재배 시스템은 식물의 생장에 필요한 조도를 제공하는 조도제공장치를 포함하고, 상기 조도제공장치는 태양광을 집광하는 집광부와, 상기 집광부에 의하여 집광된 태양광을 식물 재배 공간으로 전달하는 광전송부와, 상기 광전송부에 의하여 전송된 태양광을 식물 재배 공간으로 발산하는 조명부와, 상기 조명부를 냉각하기 위한 냉각부를 포함하며, 상기 조명부는 엘이디조명을 포함하여 태양광에 의한 조도를 보충할 수 있도록 하고, 상기 냉각부는 상기 엘이디조명에 인접하여 외부공기의 순환이 가능하도록 하는 공냉수단을 포함하여, 상기 엘이디조명의 사용에 의한 과열을 방지할 수 있도록 하는 것을 특징으로 한다. According to an embodiment of the present invention, the environment-friendly plant cultivation system according to the present invention includes an illuminance providing device for providing an illuminance required for plant growth, and the illuminance providing device collects solar light, and the house And a light transmitting unit for transmitting the sunlight collected by the mining unit to the plant cultivation space, a lighting unit for emitting the solar light transmitted by the light transmitting unit to the plant cultivation space, and a cooling unit for cooling the lighting unit. It is possible to supplement the illumination caused by sunlight, including LED lighting, and the cooling unit includes an air cooling means to enable the circulation of external air adjacent to the LED lighting, to prevent overheating by the use of the LED lighting Characterized in that it can be prevented.
본 발명의 다른 실시예에 따르면, 본 발명에 따른 친환경 식물 재배 시스템에 있어서, 상기 조명부는 태양광을 발산하는 광파이프를 포함하고, 상기 공냉수단은 외부로부터 공기가 유입되는 유입관과, 상기 유입관과 연통되며 상기 광파이프의 둘레 또는 내부에 형성되는 열교환관과, 상기 열교환관과 연통되며 외부로 공기가 유출되는 유출관을 포함하는 것을 특징으로 한다.According to another embodiment of the present invention, in the eco-friendly plant cultivation system according to the present invention, the lighting unit includes a light pipe for emitting sunlight, the air cooling means is an inlet pipe through which air is introduced from the outside, and the inlet And a heat exchange tube communicating with the tube and formed around or inside the light pipe, and an outlet tube communicating with the heat exchange tube and outflowing air to the outside.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 친환경 식물 재배 시스템은 식물 재배 공간의 온도를 조절하는 온도조절장치를 포함하고, 상기 온도조절장치는 지중열교환을 이용한 송풍을 실시하는 간접송풍부와, 지중공기를 직접 상기 식물 재배 공간 내부로 전달하는 직접송풍부를 동시에 포함하는 것을 특징으로 한다.According to another embodiment of the present invention, the environment-friendly plant cultivation system according to the present invention includes a temperature control device for controlling the temperature of the plant cultivation space, the temperature control device is an indirect blower for performing the blowing using underground heat exchange And, characterized in that it comprises a direct blower for transmitting underground air directly into the plant cultivation space at the same time.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 친환경 식물 재배 시스템에 있어서, 상기 온도조절장치는 지중으로 매입되며, 둘레면을 따라 복수의 관통홀이 형성되어 지중공기 또는 지하수가 유입될 수 있도록 하는 지중관을 포함하고, 상기 직접송풍부는 상기 지중관 내의 공기를 상기 식물 재배 공간 내부로 이송되도록 하며, 상기 간접송풍부는 상기 지중관 내부에 삽입되어 지중관 내부의 공기 또는 물로부터 에너지를 흡수하여 전달하는 유체가 순환되는 제1열교환루프와, 상기 제1열교환루프를 순환하는 유체와 열교환을 실시하여 상기 식물 재배 공간 내부로의 냉풍 또는 온풍의 공급이 가능하도록 하는 열펌프를 포함하는 것을 특징으로 한다.According to another embodiment of the present invention, in the environment-friendly plant cultivation system according to the present invention, the temperature control device is embedded into the ground, a plurality of through holes are formed along the circumferential surface can be ground air or groundwater flows in And a direct pipe to transfer air in the underground pipe into the plant cultivation space, and the indirect blower is inserted into the underground pipe to absorb energy from air or water in the underground pipe. And a heat pump configured to exchange heat with the fluid circulating the first heat exchange loop and to supply cold or warm air into the plant cultivation space. It is done.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 친환경 식물 재배 시스템에 있어서, 상기 직접송풍부는 상기 지중관과 연통되며 상기 식물 재배 공간의 내부에 삽입되는 공기덕트와, 상기 공기덕트 내에 설치되어 지중공기를 상기 식물 재배 공간 내부로 이송하는 송풍기를 포함하고, 상기 공기덕트는 둘레를 따라 관통되도록 형성되는 복수의 공기유출구를 포함하는 것을 특징으로 한다.According to another embodiment of the present invention, in the eco-friendly plant cultivation system according to the present invention, the direct blower is in communication with the underground pipe and is inserted into the plant cultivation space and is installed in the air duct It includes a blower for transporting the ground air into the plant cultivation space, the air duct is characterized in that it comprises a plurality of air outlets formed to pass through the circumference.
본 발명은 앞서 본 실시예와 하기에 설명할 구성과 결합, 사용관계에 의해 다음과 같은 효과를 얻을 수 있다.The present invention can obtain the following effects by the configuration, combination, and use relationship described above with the present embodiment.
본 발명은 식물의 생장에 필요한 조도를 제공하는 조도제공장치를 포함하고, 조도제공장치는 태양광을 집광하는 집광부와, 집광부에 의하여 집광된 태양광을 식물 재배 공간으로 전달하는 광전송부와, 광전송부에 의하여 전송된 태양광을 식물 재배 공간으로 발산하는 조명부와, 조명부를 냉각하기 위한 냉각부를 포함하며, 조명부는 엘이디조명을 포함하여 태양광에 의한 조도를 보충할 수 있도록 하고, 냉각부는 엘이디조명에 인접하여 외부공기의 순환이 가능하도록 하는 공냉수단을 포함하여, 공냉부와 엘이디조명과의 열교환이 가능하도록 함으로써 흐린 날이 계속되는 장마철 등에 있어서 엘이디조명의 계속적인 사용에도 엘이디조명의 과열을 방지하여 조명부의 고장을 방지할 수 있도록 하는 효과가 있다. The present invention includes an illuminance providing device for providing an illuminance necessary for plant growth, wherein the illuminance providing device includes a light condensing unit for condensing sunlight, and a light transmission unit for transmitting the light condensed by the condensing unit to a plant cultivation space; And a lighting unit for radiating the sunlight transmitted by the light transmitting unit to the plant cultivation space, and a cooling unit for cooling the lighting unit, and the lighting unit may include LED lighting to supplement illumination of sunlight. Including air-cooling means to allow the circulation of external air adjacent to the LED lighting, by allowing heat exchange between the air-cooling section and the LED lighting, it is possible to prevent the overheating of the LED lighting even in the continuous use of the LED lighting in the rainy season, etc. It is effective to prevent the failure of the lighting unit by preventing.
본 발명은 태양광을 발산하는 광파이프를 갖는 조명부를 포함하고, 공냉부는 외부로부터 공기가 유입되는 유입관과, 유입관과 연통되며 광파이프의 둘레 또는 내부에 형성되는 열교환관과, 열교환관과 연통되며 외부로 공기가 유출되는 유출관을 포함하여, 외부 공기와의 자연적인 열교환이 가능하도록 함으로써 별도의 동력을 사용하지 않고도 엘이디조명을 포함하는 조명부의 과열을 방지할 수 있도록 하는 효과가 있다. The present invention includes a lighting unit having a light pipe for emitting sunlight, the air-cooling unit is an inlet tube through which air is introduced from the outside, a heat exchange tube communicating with the inlet tube and formed in or around the light pipe, Including the outflow pipe communicating with the air to the outside, by allowing natural heat exchange with the outside air there is an effect to prevent overheating of the lighting unit including the LED lights without using a separate power.
본 발명은 식물 재배 공간의 온도를 조절하는 온도조절장치를 포함하고, 온도조절장치는 지중열교환을 이용한 송풍을 실시하는 간접송풍부와, 지중공기를 직접 상기 식물 재배 공간 내부로 전달하는 직접송풍부를 동시에 포함하여, 일정 온도를 유지하는 지중 공기를 식물 재배 공간에 직접 공급하도록 함으로써 간접송풍부에서 소모되는 동력을 줄여 온도조절장치의 효율을 높일 수 있는 효과가 있다.The present invention includes a temperature control device for controlling the temperature of the plant cultivation space, the temperature control device is an indirect blower for performing the blow using the ground heat exchange, and a direct blower for delivering underground air directly into the plant cultivation space Including at the same time, by supplying the ground air maintaining a constant temperature directly to the plant cultivation space has the effect of reducing the power consumed in the indirect blower to increase the efficiency of the temperature control device.
본 발명은 지중으로 매입되며, 둘레면을 따라 복수의 관통홀이 형성되어 지중공기 또는 지하수가 유입될 수 있도록 하는 지중관을 갖는 온도조절장치를 포함하고, 직접송풍부는 지중관 내의 공기를 식물 재배 공간 내부로 이송되도록 하며, 간접송풍부는 지중관 내부에 삽입되어 지중관 내부의 공기 또는 물로부터 에너지를 흡수하여 전달하는 유체가 순환되는 제1열교환루프와, 제1열교환루프를 순환하는 유체와 열교환을 실시하여 식물 재배 공간 내부로의 냉풍 또는 온풍의 공급이 가능하도록 하는 열펌프를 포함하여, 하나의 지중관에 의해 간접송풍부와의 열교환 및 직접송풍부를 통한 지중공기의 공급이 가능하도록 함으로써 설치 및 유지·관리를 용이하게 하고, 설치면적을 줄일 수 있으며, 관통홀을 통해 지하수와 지중공기의 유입이 가능하도록 함으로써 열교환효율을 높일 수 있도록 하는 효과가 있다. The present invention includes a temperature control device having a underground pipe which is buried in the ground, a plurality of through-holes are formed along the circumferential surface so that underground air or groundwater can be introduced therein, and the direct blower unit grows air in the underground pipe. The indirect blower is inserted into the underground pipe, and the first heat exchange loop circulates a fluid that absorbs and transfers energy from air or water in the underground pipe, and exchanges heat with the fluid circulating in the first heat exchange loop. Including a heat pump to enable the supply of cold or warm air into the plant cultivation space by installing, by allowing the ground air to be supplied through the direct blower and the heat exchange with the indirect blower by one underground pipe And maintenance and management, installation area can be reduced, and groundwater and underground air can be introduced through through holes. There is an effect that allows to increase by the heat exchange efficiency.
본 발명은 지중관과 연통되며 상기 식물 재배 공간의 내부에 삽입되는 공기덕트와, 공기덕트 내에 설치되어 지중공기를 식물 재배 공간 내부로 이송하는 송풍기를 포함하는 직접송풍부를 포함하고, 공기덕트는 둘레를 따라 관통되도록 형성되는 복수의 공기유출구를 포함하여, 지중공기가 식물 재배 공간 내부에 골고루 유입되도록 함으로써 지중공기를 통한 열교환이 효율적으로 이루어질 수 있도록 하는 효과가 있다. The present invention includes a direct blower that communicates with the underground pipe and is inserted into the inside of the plant cultivation space, and includes a blower installed in the air duct to transfer underground air into the plant cultivation space, and the air duct includes a perimeter. Including a plurality of air outlet formed to penetrate along, there is an effect that the ground air is evenly introduced into the plant cultivation space to make the heat exchange through the ground air efficiently.
도 1은 본 발명의 일 실시예에 따른 친환경 식물 재배 시스템의 구성도1 is a block diagram of an environmentally friendly plant cultivation system according to an embodiment of the present invention
도 2는 도 1의 A-A선을 따라 절단한 단면도2 is a cross-sectional view taken along the line A-A of FIG.
도 3은 본 발명의 일 실시예에 따른 친환경 식물 재배 시스템의 제어부의 구성을 나타내는 블럭도Figure 3 is a block diagram showing the configuration of a control unit of an environmentally friendly plant cultivation system according to an embodiment of the present invention
도 4는 도 1의 열펌프의 구성을 나타내는 참고도4 is a reference diagram showing the configuration of the heat pump of FIG.
도 5는 본 발명의 다른 실시예에 따른 친환경 식물 재배 시스템의 구성도5 is a block diagram of an environmentally friendly plant cultivation system according to another embodiment of the present invention
이하에서는 본 발명에 따른 친환경 식물 재배 시스템의 바람직한 실시예들을 첨부된 도면을 참조하여 상세히 설명한다. 하기에서 본 발명을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하도록 한다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Hereinafter, with reference to the accompanying drawings, preferred embodiments of an eco-friendly plant cultivation system according to the present invention will be described in detail. In the following description of the present invention, if it is determined that a detailed description of a known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted. Throughout the specification, when a part is said to "include" a certain component, it means that it may further include other components, without excluding other components unless specifically stated otherwise.
본 발명의 일 실시예에 따른 친환경 식물 재배 시스템을 도 1 내지 도 5를 참조하여 설명하면, 상기 친환경 식물 재배 시스템은 식물의 생장에 필요한 조도를 제공하는 조도제공장치(1)와, 식물 재배 공간의 온도를 조절하는 온도조절장치(3)를 포함한다. 상기 친환경 식물 재배 시스템은 일정한 공간에서 빛(조도), 온도와 습도, 공기 등을 인공적으로 제어하여 시간과 장소에 관계없는 식물의 재배가 연중 가능하도록 하는 식물 공장 등에 적용될 수 있는 식물 재배 시스템으로, 태양에 의한 조도와 지열을 이용한 바람(열)을 제공하여 친환경 식물 재배 시스템을 구성할 수 있도록 한다. 앞서 설명한 바와 같이 종래에도 태양을 이용한 조도의 제공, 지열을 이용한 바람의 제공을 통해 식물을 재배하도록 하는 시스템이 존재하였으나, 실질적으로 식물을 재배하는 과정에서 과열 등의 많은 문제점과 낮은 효율로 인해 그 실효성을 거두지 못하고 있다. 따라서, 본 발명에 따른 친환경 식물 재배 시스템에서는 태양과 지열을 그대로 이용하면서도 조도제공장치(1)의 발열, 온도조절장치(3)의 효율과 같은 문제를 극복함으로써 실용성 있는 식물 재배 시스템을 제공하도록 하며, 식물이 자랄 수 있는 일정한 공간을 형성하는 외벽(C)과, 식물이 식재되어 자랄 수 있는 식물베드(B)를 포함하여 식물재배공간(S)을 형성한다. Referring to FIGS. 1 to 5, the eco-friendly plant cultivation system according to an embodiment of the present invention, the eco-friendly plant cultivation system is a roughness providing device (1) for providing the illumination required for the growth of plants, plant cultivation space It includes a thermostat (3) to control the temperature of the. The eco-friendly plant cultivation system is a plant cultivation system that can be applied to a plant factory for artificially controlling light (illuminance), temperature and humidity, air, etc. in a certain space to allow the cultivation of plants regardless of time and place throughout the year, It provides the wind (heat) using the solar illuminance and geothermal heat to construct an eco-friendly plant cultivation system. As described above, a system for cultivating plants by providing illumination using the sun and providing wind using geothermal heat has existed in the past, but due to many problems such as overheating and low efficiency in the process of growing plants, It is not working. Therefore, in the eco-friendly plant cultivation system according to the present invention to provide a practical plant cultivation system by using the sun and geothermal heat as it is, by overcoming problems such as heat generation of the illuminance providing device (1), efficiency of the temperature control device (3). To form a plant cultivation space (S), including an outer wall (C) forming a constant space in which the plants can grow, and a plant bed (B) in which the plants are grown.
상기 조도제공장치(1)는 상기 식물재배공간(S) 내부에 식물의 생장에 필요한 조도(빛의 밝기)를 제공하기 위하여 빛을 제공하는 구성으로, 기본적으로 태양에 의한 자연광을 전달할 수 있도록 태양광을 집광하는 집광부(11)와, 상기 집광부(11)에 의하여 집광된 태양광을 식물 재배 공간(S)으로 전달하는 광전송부(12)와, 상기 광전송부(12)에 의하여 전송된 태양광을 식물 재배 공간(S)으로 발산하는 조명부(13)와, 상기 조명부(13)를 냉각하기 위한 냉각부(14), 상기 조도제공장치(1)를 제어하는 제어부(14), 태양의 위치에 따라 상기 집광부(11)를 회전시키는 회전부(15) 등을 포함한다. The illuminance providing device 1 is configured to provide light in order to provide illumination (brightness of light) necessary for plant growth inside the plant cultivation space S, so that the sun can transmit natural light by the sun. The light condenser 11 for condensing light, the light transmitter 12 for transmitting the sunlight collected by the light concentrator 11 to the plant cultivation space S, and the light transmitted by the light transmitter 12 The lighting unit 13 for emitting sunlight to the plant cultivation space (S), the cooling unit 14 for cooling the lighting unit 13, the control unit 14 for controlling the illuminance providing device 1, the solar And a rotating part 15 for rotating the light collecting part 11 according to the position.
상기 집광부(11)는 도 1에 도시된 바와 같이 태양으로 방출되는 광이 입사되어, 입사된 광을 집광하는 구성으로, 렌즈, 반사판 등으로 구성되며, 상기 집광부(11)에 의하여 모아진 태양광은 상기 광전송부(12)를 통해 식물재배공간(S) 내의 조명부(13)로 전달된다. 상기 집광부(11)는 기공지된 다양한 방식이 적용될 수 있으며, 이에 관한 상세한 설명은 생략한다. As shown in FIG. 1, the light collecting unit 11 is configured to collect light incident upon the light emitted by the sun, and to collect the incident light. The light collecting unit 11 includes a lens, a reflector, and the like, and is collected by the light collecting unit 11. Light is transmitted to the lighting unit 13 in the plant cultivation space S through the light transmission unit 12. The light collecting part 11 may be applied in various ways, and the detailed description thereof will be omitted.
상기 광전송부(12)는 상기 집광부(11)에 의하여 모아진 태양광을 상기 조명부(13)로 전달하도록 하는 구성으로, 광덕트, 광케이블 등 다양한 방식이 적용될 수 있으며, 광섬유가 다발 형태로 이루어진 광케이블이 적용되어 광손실 없이 다양한 위치로의 광 전달이 가능하도록 하는 것이 바람직하다. The optical transmission unit 12 is configured to transfer the solar light collected by the condensing unit 11 to the lighting unit 13, various methods such as optical ducts, optical cables can be applied, and the optical fiber is made of a bundle of optical fibers It is desirable to apply this to enable light transmission to various locations without light loss.
상기 조명부(13)는 상기 식물재배공간(S)의 상부에 설치되며, 상기 광전송부(12)와 연결되어 상기 광전송부(12)로부터 태양광을 전달받고, 이를 식물재배공간(S) 내부에 발산하도록 한다. 따라서, 상기 광전송부(12)와 연결되는 광섬유가 삽입되는 광파이프(131)를 포함하여 태양광의 발산이 이루어지도록 하고, 태양광에 의한 조도의 제공을 보충하기 위하여 엘이디조명(132) 또한 포함한다. The lighting unit 13 is installed above the plant cultivation space (S), is connected to the light transmission unit 12 receives the sunlight from the light transmission unit 12, this inside the plant cultivation space (S) To diverge. Therefore, including an optical pipe 131 into which the optical fiber connected to the optical transmission unit 12 is inserted, the solar light is diverted, and LED lighting 132 is also included to compensate for the illumination of the sunlight. .
상기 광파이프(131)는 상기 광전송부(12)와 연결되어 내부로 광섬유가 삽입되도록 할 수 있으며, 광섬유의 상부에 구멍을 뚫어 태양광이 상기 광파이프(131) 내부로 발산되도록 하고, 상기 광파이프(131)의 내부에서 태양광을 다시 밑으로 반사시켜 상기 광파이프(131)의 하측으로 태양광이 발산될 수 있도록 한다. 예를 들어 상기 광섬유가 플라스틱 광섬유로 형성되는 경우에는 코어의 표면에 코팅된 클래드를 제거함으로써 코어에서 직접 빛의 외부로 누설되도록 할 수 있고, 클래드가 제거된 광섬유 상부에 반사갓을 씌워 형광등과 같은 태양광 조명을 형성하도록 할 수 있다. 다만 이에 한정되지는 않으며 다양한 태양광 발산 방식이 적용될 수 있다. 그러나 태양광은 환경오염을 일으키지 않으며 자원고갈의 문제가 없으므로, 식물에게 친환경적인 조도(빛)를 제공할 수 있으나, 태양은 흐린 날의 경우에는 충분한 조도를 제공할 수 없고, 특히 장마철 등 흐린 날이 계속되는 경우에는 식물에게 충분한 빛을 제공하지 못하여 식물이 정상적으로 생장하지 못하는 문제가 발생할 수 있다. 따라서, 이를 보충하기 위해 태양광에 의한 조도의 제공이 충분하지 않은 경우 엘이디조명(132)에 의해 조도를 제공하도록 한다. The optical pipe 131 may be connected to the optical transmission unit 12 to allow the optical fiber to be inserted into the optical pipe 131. The optical pipe 131 penetrates an upper portion of the optical fiber to allow sunlight to be emitted into the optical pipe 131. Sunlight is reflected downward again inside the pipe 131 so that the sun light can be emitted to the lower side of the light pipe 131. For example, when the optical fiber is formed of a plastic optical fiber, the clad coated on the surface of the core can be removed so that the core can leak directly to the outside of the light. Light illumination can be formed. However, the present invention is not limited thereto, and various solar light emitting methods may be applied. However, since sunlight does not cause environmental pollution and there is no problem of depletion of resources, it can provide environmentally friendly illumination (light) to plants, but the sun cannot provide sufficient illumination in cloudy days, especially on cloudy days in rainy seasons. In this case, there may be a problem that plants do not grow normally because they do not provide enough light to the plants. Therefore, to compensate for this, if the illumination by the sunlight is not sufficient to provide the illumination by the LED lighting (132).
상기 엘이디조명(132)은 LED(Light Emitting Diode, 발광 다이오드)로 만들어진 조명으로, 엘이디는 자연광과 유사하면서 비교적 부드럽고 고르게 빛이 발산되어 식물의 광합성에 도움이 될 수 있으며, 전력 소모량이 매우 적으므로 전기를 받아 작동하는 인공광원으로 적합하다 할 수 있다. 상기 엘이디조명(132)은 빛을 발산하기 위해 전기를 소비하여야 하므로, 태양광에 의한 조도의 제공이 원활하지 않은 경우에만 작동하도록 하는 것이 바람직하다. 따라서, 상기 제어부(15)의 후술할 광량측정모듈(151)에 의하여 태양광에 의한 조도를 측정하고, 조도가 설정된 값에 미치지 못하는 경우에만 후술할 작동모듈(152)에 의하여 엘이디조명(132)이 작동하도록 한다. 그러나, 흐린 날이 계속되는 장마철 등의 경우에는 태양광에 의한 조도의 제공이 원활하지 못하기 때문에, 상기 엘이디조명(132)이 장시간 작동하여야 하고, 이에 따른 발열이 발생하게 된다. 따라서, 흐린 날이 계속되거나 기타 다른 원인에 의하여 태양광에 의한 조도의 제공이 원활하지 않은 경우에는 상기 엘이디조명(132)의 장시간 작동에 의한 발열에 의해 조명부(13)의 고장 내지 화재 등의 위험이 존재하였다. 따라서, 태양광에 의한 조도의 제공이 원활하지 못하여 상기 엘이디조명(132)이 지속적으로 작동하는 경우에도 상기 엘이디조명(132)을 냉각시켜 주어 고장 내지 화재 등의 위험을 줄일 필요가 있으며, 이에 따라 본 발명에서는 상기 엘이디조명(132) 주변에 냉각부(14)를 형성하여 과열을 방지할 수 있도록 한다. The LED light 132 is a light made of LED (Light Emitting Diode, LED), the LED is similar to natural light and relatively soft and evenly radiated light can help the photosynthesis of the plant, because the power consumption is very low It may be suitable as an artificial light source that operates by receiving electricity. Since the LED lighting 132 needs to consume electricity to emit light, it is preferable to operate the LED lighting 132 only when the illumination of sunlight is not smooth. Therefore, the illumination intensity by sunlight by the light quantity measurement module 151 to be described later of the control unit 15, LED lighting 132 by the operation module 152 to be described later only when the illumination intensity does not reach the set value This should work. However, in case of rainy season in which the cloudy day continues, since the illumination of sunlight is not smoothly provided, the LED lighting 132 needs to operate for a long time, and heat is generated accordingly. Therefore, when the cloudy day continues or the illumination is not provided by the solar light due to other causes, the risk of failure or fire of the lighting unit 13 due to the heat generated by the long time operation of the LED lighting 132. Was present. Therefore, even when the LED lighting 132 is continuously operated because the illumination of sunlight is not smoothly provided, it is necessary to cool the LED lighting 132 to reduce the risk of failure or fire. In the present invention, the cooling unit 14 is formed around the LED lighting 132 to prevent overheating.
상기 냉각부(14)는 상기 엘이디조명(132)의 주변에 형성되어 상기 엘이디조명(132)의 장시간 사용에 의한 과열을 방지할 수 있도록 하는 구성으로, 외부 공기가 상기 엘이디조명(132)에 인접하여 흐를 수 있도록 함으로써 엘이디조명(132)으로부터 발생하는 열을 식힐 수 있도록 한다. 따라서, 흐린 날이 계속되거나 기타 다른 원인에 의해 태양에 의한 빛의 제공이 식물의 생장에 필요한 수준에 미치치 못하여 엘이디조명(132)의 사용이 계속되는 경우에도 상기 엘이디조명(132)의 발열에 의한 고장 내지 화재 등을 방지할 수 있다. 상기 냉각부(14)는 공기에 의한 엘이디조명(132)의 발열을 방지하는 공냉수단(141)을 포함하며, 상기 공냉수단(141)은 외부공기가 유입되는 유입관(141a), 상기 엘이디조명(132)의 주변에 형성되어 외부공기와 상기 엘이디조명(132)과의 열교환이 이루어지도록 하는 열교환관(141b), 상기 열교환관(141b)과 연통되어 상기 엘이디조명(132)과 열교환을 마친 공기가 외부로 빠져나가는 유출관(141c)을 포함할 수 있다. 상기 열교환관(141b)은 도 2의(a)에 도시된 바와 같이 상기 광파이프(131)의 내측에 형성되도록 할 수도 있고, 도 2의(b)에 도시된 바와 같이 상기 광파이프(131)의 외측에 형성되도록 할 수도 있으며, 상기 엘이디조명(132)에 인접하여 열교환이 이루어질 수 있도록 하는 다양한 형상으로 형성될 수 있다. 상기 냉각부(141)는 후술할 본 발명의 다른 실시예에 따라 수냉수단(142)을 포함할 수 있으며, 이에 관한 설명은 후술하도록 한다. The cooling unit 14 is formed around the LED lighting 132 to prevent overheating by the long time use of the LED lighting 132, the outside air is adjacent to the LED lighting 132 By allowing it to flow, it is possible to cool the heat generated from the LED lighting (132). Therefore, the failure caused by the heat of the LED lighting 132 even when the use of the LED lighting 132 is continued because the provision of light by the sun does not reach the level necessary for plant growth due to a cloudy day or other causes. To prevent fire and the like. The cooling unit 14 includes air cooling means 141 for preventing heat generation of the LED lighting 132 by the air, the air cooling means 141 is an inlet pipe 141a through which the external air flows, the LED lighting The heat exchanger tube 141b formed around the 132 to allow heat exchange between the external air and the LED light 132 and the heat exchanger tube 141b communicated with the LED light 132 to complete heat exchange. May include an outlet pipe 141c exiting to the outside. The heat exchange tube 141b may be formed inside the light pipe 131 as shown in FIG. 2A, and the light pipe 131 as shown in FIG. 2B. It may be formed on the outside of, and may be formed in a variety of shapes to allow heat exchange adjacent to the LED light (132). The cooling unit 141 may include a water cooling unit 142 according to another embodiment of the present invention, which will be described later.
상기 제어부(15)는 상기 조도제공장치(1)의 작동을 제어하는 구성으로, 상기 조도제공장치(1)로부터 제공되는 태양광의 양을 측정하여, 상기 식물재배공간(S) 내의 식물의 생장에 필요한 조도에 미치지 못하는 경우에는 상기 엘이디조명(132)을 작동하여 조도를 보충할 수 있도록 한다. 상기 제어부(15)는 도 3에 도시된 바와 같이 태양에 의한 광량을 측정하는 광량측정모듈(151)과 상기 광량측정모듈(151)에 의하여 측정되는 태양광의 양에 따라 상기 엘이디조명(132)을 작동시키는 작동모듈(152)을 포함한다. The control unit 15 is configured to control the operation of the illuminance providing device 1, by measuring the amount of sunlight provided from the illuminance providing device 1, to the growth of plants in the plant cultivation space (S). If it does not reach the required illuminance to operate the LED lighting 132 to replenish the illuminance. As shown in FIG. 3, the controller 15 controls the LED lighting 132 according to the amount of sunlight measured by the quantity of light measuring module 151 and the quantity of sunlight measured by the quantity of light measuring module 151 as shown in FIG. 3. It includes an operation module 152 for operating.
상기 광량측정모듈(151)은 상기 조도제공장치(1)에 의하여 제공되는 태양광의 양을 측정하는 구성으로, 상기 집광부(11)에 의하여 모아져 상기 광전송부(12)를 통해 흐르는 태양광의 광량을 감지하는 감지센서(미도시) 또는 상기 식물재배공간(S) 내에 설치되어 태양광에 의한 조도를 측정할 수 있는 조도센서(미도시) 등이 적용될 수 있으며, 상기 광량측정모듈(151)에 의하여 측정되는 태양광의 광량이 설정값에 미치지 못하는 경우 상기 작동모듈(152)이 작동되도록 한다. The light quantity measuring module 151 measures the amount of sunlight provided by the illuminance providing device 1, and collects the light quantity of sunlight that is collected by the light collecting unit 11 and flows through the light transmitting unit 12. Installed in the sensing sensor (not shown) or the plant cultivation space (S) for detecting may be applied to the illumination sensor (not shown) that can measure the illuminance by sunlight, by the light quantity measuring module 151 When the amount of light to be measured does not reach the set value, the operation module 152 is operated.
상기 작동모듈(152)은 상기 광량측정모듈(151)에 의하여 측정되는 태양광의 광량이 식물의 생장에 필요한 조도를 제공하지 못하는 경우, 상기 엘이디조명(132)을 작동시켜 식물의 생장에 필요한 조도를 제공할 수 있도록 하는 구성으로, 상기 엘이디조명(132)에 전류를 흐르도록 하여 작동시킨다. The operation module 152 operates the LED lighting 132 to adjust the illuminance required for plant growth when the amount of sunlight measured by the photometric module 151 does not provide illuminance for plant growth. In such a configuration that it can be provided, the LED lighting 132 is operated by flowing a current.
상기 회전부(16)는 상기 집광부(11)를 하측에서 받치며, 상기 집광부(11)의 회전이 가능하도록 하는 구성으로, 태양의 위치를 감지하는 태양광감지센서(161)와, 이에 따라 집광부(11)를 회전시키는 회전구동모듈(162)을 포함한다. 따라서, 태양광감지센서(161)에 의하여 태양의 위치를 감지하고, 이에 따라 모터, 기어 등을 포함하는 상기 회전구동모듈(162)에 의해 상기 집광부(11)가 다양한 방향으로 회전할 수 있도록 함으로써 태양광의 효율적인 집광이 이루어질 수 있도록 한다. 상기 회전부(16)는 이미 공지된 구성과 같으므로, 상세한 설명은 생략한다. The rotating part 16 supports the light collecting part 11 from the lower side, and is configured to allow the light collecting part 11 to be rotated. The solar detecting sensor 161 detects the position of the sun, and thus Rotation driving module 162 for rotating the light collecting portion (11). Therefore, the position of the sun is sensed by the solar sensor 161, and accordingly the condenser 11 can rotate in various directions by the rotation driving module 162 including a motor, a gear, and the like. As a result, efficient condensation of sunlight can be achieved. Since the rotating part 16 is the same as a known configuration, a detailed description thereof will be omitted.
상기 온도조절장치(3)는 상기 식물재배공간(S) 내에 온풍 또는 냉풍을 공급하여 상기 식물재배공간(S) 내의 온도가 식물 생장에 적합한 일정한 온도, 바람직하게는 9℃ ~ 12℃가 유지될 수 있도록 한다. 상기 온도조절장치(3)는 지열을 이용하여 친환경적으로 상기 식물재배공간(S)의 온도를 유지할 수 있도록 하는데, 특히 제주도와 같은 화산지대의 현무암류 등에 있어서, 현무암은 기공 발달이 많고 균열과 수직절리가 발달된 특징을 갖고 있으며, 지하 10~20m 깊이에서는 지온의 계절변화가 거의 나타나지 않는 지중온도 불변층을 갖고 있고, 연중 15℃ 내외의 온도로 유지된다. 또한, 현무암의 기공 사이로 공기의 흐름이 유지되는바 효율적인 열교환을 실시할 수 있어 종래 지열을 이용한 열교환 시스템에 자주 이용되고 있다. 그러나 종래 열펌프를 이용하여 온풍 또는 냉풍 등을 공급하도록 하는 시스템은 존재하였으나, 많은 열손실과 제어의 어려움으로 인해 효율적인 온도조절을 실시하지 못하고 있었다. 따라서, 본 발명에서는 열펌프를 이용한 간접송풍 뿐만 아니라, 지중공기를 이용한 직접 송풍이 동시에 이루어지도록 하고, 하나의 지중관을 통하여 직접송풍과 간접송풍이 모두 이루어질 수 있도록 함으로써 최소한의 설치면적, 최소한의 비용으로 높은 효율을 갖는 온도조절장치(3)를 제공할 수 있게 된다. The temperature control device 3 is supplied to the hot or cold air in the plant cultivation space (S) to maintain a constant temperature, preferably 9 ℃ ~ 12 ℃ suitable for plant growth in the temperature in the plant cultivation space (S) To help. The temperature control device (3) is to maintain the temperature of the plant cultivation space (S) in an environmentally friendly manner using geothermal heat, especially in basalts of volcanic areas such as Jeju Island, basalt has a lot of pore development and vertical to cracks It has the characteristics of joint development, and it has an underground temperature invariable layer which shows little seasonal change of the ground temperature at the depth of 10 ~ 20m underground, and is maintained at the temperature of around 15 ℃ throughout the year. In addition, since the flow of air is maintained between the pores of the basalt, efficient heat exchange can be performed, which is frequently used in a heat exchange system using conventional geothermal heat. However, although a system for supplying hot air or cold air by using a conventional heat pump exists, efficient heat regulation has not been carried out due to a lot of heat loss and control difficulty. Therefore, in the present invention, as well as indirect air blow using the heat pump, direct air blow using the ground air is made at the same time, by allowing both the direct blow and indirect air blow through the one underground pipe, the minimum installation area, the minimum It is possible to provide the thermostat 3 with high efficiency at cost.
상기 온도조절장치(3)는 지중열교환을 이용한 송풍을 실시하는 간접송풍부(31)와, 지중공기를 직접 상기 식물 재배 공간(S) 내부로 전달하는 직접송풍부(32)를 동시에 포함하며, 지중으로 매입되며, 둘레면을 따라 복수의 관통홀(331)이 형성되어 지중공기 또는 지하수가 유입될 수 있도록 하는 지중관(33)을 포함한다. The temperature control device 3 includes an indirect blower unit 31 for blowing air using underground heat exchange and a direct blower unit 32 for directly transferring underground air into the plant cultivation space S, It is embedded in the ground, a plurality of through-holes 331 is formed along the circumferential surface includes an underground tube 33 to allow the underground air or groundwater to flow.
상기 간접송풍부(31)는 지중공기 또는 지하수와의 열교환을 통해 온풍 또는 냉풍을 상기 식물재배공간(S) 내에 공급하도록 하며, 땅속, 특히 현무암 층에 매입되는 지중관(33)의 내부에 삽입되며, 열펌프와 열교환하는 유체가 순환하는 제1열교환루프(311)와, 상기 제1열교환루프(311)를 순환하는 유체로부터 열 또는 냉기를 빼앗아 상기 제2열교환루프(313)로 전달하는 열펌프(312), 상기 열펌프(312)로부터 열 또는 냉기를 전달받아 상기 송풍수단(314)에 의해 냉풍 또는 온풍을 제공할 수 있도록 하는 제2열교환루프(313), 상기 제2열교환루프(313)를 순환하는 유체로부터 냉기 또는 열을 전달받아 상기 식물재배공간(S) 내부에 냉풍 또는 온풍을 공급하는 송풍수단(314)을 포함한다. The indirect blower part 31 supplies hot air or cold air into the plant cultivation space S through heat exchange with underground air or groundwater, and is inserted into the underground pipe 33 embedded in the ground, especially the basalt layer. The first heat exchange loop 311 circulates the fluid that exchanges heat with the heat pump, and heat that takes heat or cold air from the fluid circulating through the first heat exchange loop 311 and transfers the heat or cold air to the second heat exchange loop 313. The second heat exchange loop 313 and the second heat exchange loop 313 to receive heat or cold air from the pump 312 and the heat pump 312 to provide cold or warm air by the blowing means 314. Receiving cold air or heat from the fluid circulating) comprises a blowing means 314 for supplying cold or warm air in the plant cultivation space (S).
상기 제1열교환루프(311)는 상기 지중관(33) 내에 삽입되어 액체 또는 기체와 같은 열교환유체가 순환하는 구성으로, 상기 지중관(33)의 관통홀(331)을 통하여 순환하는 지중공기 및 지하수와 직접 열교환을 실시하도록 함으로써 열교환효율을 극대화한다. 상기 지중공기 및 지하수로부터 열 또는 냉기를 얻은 유체는 상기 열펌프(32)의 후술할 제1열교환기(312a)와 열교환을 하게 된다. The first heat exchange loop 311 is inserted into the underground pipe 33 and the heat exchange fluid such as liquid or gas is circulated, underground air circulated through the through-hole 331 of the underground pipe 33 and Maximize heat exchange efficiency by allowing direct heat exchange with groundwater. The fluid obtained with heat or cold air from the underground air and ground water is heat-exchanged with the first heat exchanger (312a) to be described later of the heat pump (32).
상기 열펌프(312)는 상기 제1열교환루프(311)를 순환하는 유체로부터 전달받는 열 또는 냉기를 상기 제1열교환기(312a)에 의해 제공받으며, 상기 제2열교환기(312b)에 의해 상기 제2열교환루프(313)를 순환하는 유체와 열교환을 하도록 한다. 또한, 상기 열펌프(312)는 상기 제1열교환기(312a)와 제2열교환기(312b)를 연결하며, 냉매의 이동경로를 제공하는 냉매순환관(312f), 상기 냉매순환관(312f)에 구비되어 냉매가 상기 제1열교환기(312a)와 제2열교환기(312b)를 순환하도록 하는 압축기(312c), 상기 제1열교환기(312a)와 제2열교환기(312b) 사이에 구비되어 냉매의 압력을 낮추는 팽창기(312d), 냉매유로의 전환이 가능하도록 하는 유로전환밸브(312e)를 포함한다. 그러나 이에 한정되지는 않으며, 상기 제2열교환기(312b)로부터 상기 식물재배공간(S) 내에 직접 송풍이 되도록 하여 상기 제2열교환루프(313)가 필요없도록 하는 등 다양한 방식이 적용될 수 있다. 상기 열펌프(312)에 의한 열교환 및 작동은 기 공지된 바와 같으며, 이를 간략하게 설명하면 다음과 같다. The heat pump 312 is provided by the first heat exchanger (312a), the heat or cold air received from the fluid circulating the first heat exchange loop 311, the second heat exchanger (312b) Heat exchange with the fluid circulating in the second heat exchange loop (313). In addition, the heat pump 312 connects the first heat exchanger 312a and the second heat exchanger 312b, and provides a refrigerant circulation tube 312f and a refrigerant circulation tube 312f that provide a movement path of the refrigerant. A compressor provided between the compressor 312c and the first heat exchanger 312a and the second heat exchanger 312b to circulate the first heat exchanger 312a and the second heat exchanger 312b. An expander (312d) for lowering the pressure of the refrigerant, and the flow path switching valve (312e) to enable the switching to the refrigerant flow path. However, the present invention is not limited thereto, and various methods may be applied such that the second heat exchange loop 313 is unnecessary by allowing the air to be directly blown from the second heat exchanger 312b into the plant cultivation space S. Heat exchange and operation by the heat pump 312 is as is known in the art, briefly described as follows.
상기 열펌프(312)는 온풍 또는 냉풍의 공급에 따라 그 작동과정을 달리하며, 상기 제1열교환기(312a) 및 제2열교환기(312b)는 응축기 및 증발기의 역할을 번갈아 맡게 된다. 예를 들어 여름철 냉방의 경우에는 상기 제1열교환루프(311)를 순환하는 유체는 지중공기 및 지하수에 의해 냉각되며, 냉각된 제1열교환루프(311) 내의 유체는 상기 제1열교환기(312a)에서 냉매의 열을 빼앗고, 이때 상기 제1열교환기(312a)는 응축기로서 기능하게 된다. 상기 제1열교환기(312a)를 통과하며 냉각된 냉매는 상기 팽창기(312d)를 통과하며, 저온저압 상태가 되고, 상기 제2열교환기(312b) 내에서 증발하며, 잠열을 흡수, 상기 제2열교환루프(313)를 순환하는 유체를 냉각시킨다. 이때 상기 제2열교환기(312b)는 증발기로 기능하며, 냉각된 유체는 상기 제2열교환루프(313)를 따라 상기 송풍수단(314)으로 이동되어, 냉풍을 상기 식물재배공간(S)에 제공하게 된다. 이와는 반대로 온풍을 제공할 경우에는 상기 제1열교환기(312a)가 증발기로, 상기 제2열교환기(312b)가 응축기로 기능하며, 상기 제2열교환루프(313)를 순환하는 유체가 열을 얻어 상기 송풍수단(314)으로 이동함으로써 상기 식물재배공간(S)에 온풍을 제공하도록 한다. The heat pump 312 is different from the operation process according to the supply of hot or cold air, the first heat exchanger (312a) and the second heat exchanger (312b) alternately take on the role of the condenser and the evaporator. For example, in the case of summer cooling, the fluid circulating in the first heat exchange loop 311 is cooled by underground air and ground water, and the fluid in the cooled first heat exchange loop 311 is the first heat exchanger 312a. Takes away the heat of the refrigerant at this time, the first heat exchanger (312a) is to function as a condenser. The refrigerant cooled through the first heat exchanger (312a) passes through the expander (312d), becomes a low temperature low pressure state, evaporates in the second heat exchanger (312b), absorbs latent heat, and the second The fluid circulating in the heat exchange loop 313 is cooled. At this time, the second heat exchanger 312b functions as an evaporator, and the cooled fluid is moved to the blowing means 314 along the second heat exchange loop 313 to provide cold air to the plant cultivation space S. Done. On the contrary, when providing warm air, the first heat exchanger 312a serves as an evaporator, the second heat exchanger 312b serves as a condenser, and the fluid circulating through the second heat exchange loop 313 obtains heat. By moving to the blowing means 314 to provide warm air to the plant cultivation space (S).
또한, 상기 열펌프(312)는 상기 식물재배공간(S) 내에 설치된 온도센서(미도시)에 의하여 측정되는 온도에 따라 작동하도록 할 수 있으며, 본 발명에서는 상기 직접송풍부(32)에 의하여 상기 식물재배공간(S) 내부에 지중공기가 전달되도록 함으로써 상기 열펌프(312)에 의하여 전달해야 하는 열의 양이 상대적으로 줄어들며, 이에 따라 열손실을 줄일 수 있고 온도의 정확한 제어 또한 가능해진다. In addition, the heat pump 312 may be operated according to the temperature measured by a temperature sensor (not shown) installed in the plant cultivation space (S), in the present invention by the direct blower (32) By allowing the ground air to be delivered inside the plant cultivation space (S), the amount of heat to be transmitted by the heat pump 312 is relatively reduced, thereby reducing heat loss and enabling accurate control of temperature.
상기 제2열교환루프(313)는 상기 제2열교환기(312b)와 열교환을 하는 유체가 순환하는 구성으로, 앞서 설명한 바와 같이 열 또는 냉기를 전달받아 상기 송풍수단(314)에 제공하며, 상기 송풍수단(314)은 상기 제2열교환루프(313)를 순환하는 유체로부터 열 또는 냉기를 얻어 온풍 또는 냉풍을 제공할 수 있게 된다. The second heat exchange loop 313 is configured to circulate a fluid that exchanges heat with the second heat exchanger 312b. As described above, the second heat exchange loop 313 receives heat or cold air and provides it to the blowing means 314. The means 314 may obtain heat or cold air from the fluid circulating through the second heat exchange loop 313 to provide hot air or cold air.
상기 송풍수단(314)는 상기 제2열교환루프(314)와 연결되어 상기 제2열교환루프(314)를 흐르는 유체와 열교환을 하고, 송풍기를 통하여 온풍 또는 냉풍을 제공할 수 있는 팬코일유닛으로 구성될 수 있으며, 팬코일유닛은 상기 제2열교환루프(314)를 순환하는 유체가 상기 팬코일유닛을 통과하는 과정에서 코일 등을 통과하도록 하여 열교환효율을 높이며, 송풍기에 의해 바람을 제공하도록 함으로써 열 또는 냉기를 얻은 바람이 상기 식물재배공간(S)에 제공될 수 있도록 한다. The blower means 314 is connected to the second heat exchange loop 314 to exchange heat with the fluid flowing through the second heat exchange loop 314, and comprises a fan coil unit that can provide hot or cold air through the blower The fan coil unit may allow the fluid circulating in the second heat exchange loop 314 to pass through a coil or the like in the course of passing through the fan coil unit to increase heat exchange efficiency and provide wind by a blower. Or to obtain a cold air to the plant cultivation space (S).
상기 직접송풍부(32)는 상기 지중관(33)으로 유입되는 지중공기를 상기 식물재배공간(S) 내부로 직접 이송되도록 하는 구성으로, 앞서 설명한 바와 같이 상기 간접송풍부(31)와 함께 동시에 형성되도록 함으로써 효율적인 지열의 전달과 정확한 온도의 제어가 가능하도록 한다. 상기 지중관(33)은 다수개의 관통홀(331)이 형성되어 현무암 등의 공극을 통해 순환하는 지중공기가 지중관(33) 내에서도 그대로 유지되며, 상기 지중관(33)을 관통하여 순환하는 15℃ 내외의 공기, 상기 제1열교환루프(311)를 순환하는 유체와 열교환을 실시한다 하더라도 10℃ ~ 20℃ 사이의 온도를 유지하게 되는 지중공기를 송풍기(322)를 통하여 상기 식물재배공간(S)으로 이송될 수 있도록 한다. 따라서, 겨울철 영하로 내려가거나, 여름철 30도 이상의 고온이 지속되는 환경에서도 10℃ ~ 20℃ 사이의 지중공기가 상기 식물재배공간(S) 내에 지속적으로 제공됨으로써 식물재배공간(S) 내부는 크게 올라가거나 내려가지 않는 안정적인 온도를 유지하게 된다. 상기 직접송풍부(32)는 도 1에 도시된 바와 같이 상기 지중관(33)과 연통되며 상기 식물재배공간(S)의 내부에 삽입되는 공기덕트(331)와, 상기 공기덕트(331) 내에 설치되어 지중공기를 상기 식물재배공간(S) 내부로 이송하는 송풍기(332)를 포함한다. The direct blower 32 is configured to directly transfer the underground air flowing into the underground pipe 33 into the plant cultivation space S, and simultaneously with the indirect blower 31 as described above. This allows for efficient geothermal heat transfer and accurate temperature control. The underground pipe 33 has a plurality of through-holes 331 is formed to maintain the underground air circulating through the pores such as basalt, even in the underground pipe 33, 15 circulating through the underground pipe 33 Plant air space (S) through the air blower 322 to maintain the temperature between 10 ℃ ~ 20 ℃ even if the heat exchange with the air circulating in the outside, the fluid circulating the first heat exchange loop 311 To be transported). Therefore, even in the environment where the temperature is lowered below freezing in winter, or in the environment of high temperature of 30 degrees or more in summer, underground air between 10 ° C. and 20 ° C. is continuously provided in the plant growing space S, thereby greatly increasing the inside of the plant growing space S. It will maintain a stable temperature that will not rise or fall. As shown in FIG. 1, the direct blower 32 communicates with the underground tube 33 and is inserted into the plant cultivation space S, and the air duct 331 is disposed within the air duct 331. It is installed includes a blower 332 for transporting underground air into the plant cultivation space (S).
상기 공기덕트(331)는 상기 지중관(33)과 연통되어 별도로 지중공을 시추하거나 별도의 설비를 필요로하지 않으며, 상기 제1열교환루프(311)가 삽입되어 상기 간접송풍부(31)를 형성하는 지중관(33)과 연통되도록 덕트를 형성하고, 상기 공기덕트(331) 내부에 송풍기(332)를 형성하여 상기 지중관(33) 내부의 공기를 상기 식물재배공간(S) 측으로 이송되도록 한다. 또한, 상기 공기덕트(331)는 상기 식물재배공간(S) 내부로 삽입되는 부분의 둘레를 따라 다수의 공기유출구(331a)를 형성하여 상기 공기덕트(331)로 이송되는 지중공기가 공기유출구(331a)를 통해 식물재배공간(S) 내부에 골고루 전달될 수 있도록 하며, 이에 따라 상기 식물재배공간(S) 전체의 온도분포를 고르게 형성할 수 있다. The air duct 331 is in communication with the underground pipe 33 does not require a separate underground hole drilling or separate equipment, the first heat exchange loop 311 is inserted into the indirect blower 31 A duct is formed to communicate with the underground pipe 33 to be formed, and a blower 332 is formed in the air duct 331 to transfer the air in the underground pipe 33 to the plant cultivation space S. do. In addition, the air duct 331 forms a plurality of air outlets 331a along the circumference of the part inserted into the plant cultivation space (S), and the underground air transferred to the air duct 331 is an air outlet ( Through the 331a) to be evenly distributed in the plant cultivation space (S), it is possible to evenly form the temperature distribution of the entire plant cultivation space (S).
상기 송풍기(332)는 상기 공기덕트(331) 내, 바람직하게는 상기 지중관(33)의 상부에 형성되어 상기 지중관(33) 내의 지중공기를 상기 식물재배공간(S) 내로 이송하도록 한다. 상기 송풍기(332)는 상기 지중관(33) 내부에 형성되는 온도센서(미도시) 또는 상기 식물재배공간(S) 내에 형성되는 온도센서(미도시)에 의하여 측정되는 온도, 즉 지중공기의 온도나 식물재배공간(S) 내의 온도에 따라 상기 식물재배공간(S) 내부로 이송되는 공기의 양을 조절하도록 할 수 있다. The blower 332 is formed in the air duct 331, preferably the upper portion of the underground pipe 33 to transport the ground air in the underground pipe 33 into the plant cultivation space (S). The blower 332 is a temperature measured by a temperature sensor (not shown) formed in the underground pipe 33 or a temperature sensor (not shown) formed in the plant cultivation space (S), that is, the temperature of underground air B may be adjusted to adjust the amount of air transferred into the plant cultivation space (S) according to the temperature in the plant cultivation space (S).
상기 지중관(33)은 지중에 매입되는 원통형의 관으로, 대체적으로 연중 일정 온도를 유지하는 지하 10 ~ 20m의 온도불변층에 형성되도록 하는 것이 바람직하며, 지중에 매입된 부분의 둘레를 따라 다수의 관통홀(331)이 형성되도록 하여 지중을 순환하는 지중공기 및 지하수의 유입이 자유롭게 이루어지도록 한다. 따라서, 상기 제1열교환루프(311)를 순환하는 유체와의 열교환이 원활하게 이루어질 수 있으며, 상기 공기덕트(321)를 통한 지중공기의 이송 또한 원활하게 이루어질 수 있다. The underground pipe 33 is a cylindrical tube embedded in the ground, it is preferable to be formed in a temperature constant layer of 10 ~ 20m underground to maintain a constant temperature throughout the year, a number along the circumference of the buried portion The through hole 331 is formed to allow the inflow of underground air and groundwater to circulate the ground freely. Therefore, heat exchange with the fluid circulating in the first heat exchange loop 311 may be smoothly performed, and the transfer of underground air through the air duct 321 may be smoothly performed.
본 발명의 다른 실시예에 따른 친환경 식물 재배 시스템을 도 5를 참조하여 설명하면, 상기 친환경 식물 재배 시스템은 본 발명의 일 실시예에 따른 친환경 식물 재배 시스템과 조도제공장치(1), 온도조절장치(3) 등 동일한 구성을 가지며, 다만 차이는 상기 냉각부(14)에 있어서, 상기 공냉수단(141) 대신 수냉수단(142)을 포함한다는 것이다. 물론 상기 공냉수단(141)과 수냉수단(142)을 동시에 형성하여도 무방하나, 효율과 설치의 용이성 등을 고려하여 둘 중 하나만 형성되도록 하는 것이 바람직하다. 따라서, 하기에서는 동일한 다른 구성들에 관한 설명은 생략하며, 상기 수냉수단(142)에 관해서만 설명하도록 한다. Referring to Figure 5 eco-friendly plant cultivation system according to an embodiment of the present invention, the eco-friendly plant cultivation system according to an embodiment of the present invention eco-friendly plant cultivation system and roughness providing device (1), temperature control device (3) and the like, except that the cooling unit 14 includes a water cooling unit 142 instead of the air cooling unit 141. Of course, the air-cooling means 141 and the water-cooling means 142 may be formed at the same time, but in consideration of efficiency and ease of installation, it is preferable to form only one of the two. Therefore, in the following description of the same other components will be omitted, and only the water cooling means 142 will be described.
상기 수냉수단(142)은 상기 제2열교환루프(313)로부터 상기 조도제공장치(1)의 엘이디조명(132) 근처에 유체가 흐르도록 하여 상기 엘이디조명(132)의 과열을 막을 수 있도록 하는 구성으로, 이에 관한 목적 및 효과는 앞서 상기 공냉수단(141)에서 설명한 바와 같으며, 상기 수냉수단(142)은 상기 제2열교환루프(313)로부터 분기되어 상기 광파이프(131) 둘레에 밀착되며, 다시 제2열교환루프(313)와 연결되는 바이패스관(142a)과 상기 바이패스관(142a)으로 유체가 흐르도록 하는 펌프(142b) 등을 포함할 수 있다. The water cooling means 142 is configured to prevent the overheating of the LED light 132 by allowing a fluid to flow from the second heat exchange loop 313 near the LED light 132 of the illuminance providing device 1. In this regard, the objects and effects thereof are as described above in the air cooling means 141, and the water cooling means 142 is branched from the second heat exchange loop 313 to be in close contact with the light pipe 131. In addition, a bypass pipe 142a connected to the second heat exchange loop 313 and a pump 142b for allowing a fluid to flow into the bypass pipe 142a may be included.
상기 바이패스관(142a)은 상기 제2열교환루프(313)로부터 유출된 유체가 상기 엘이디조명(132) 근처를 흘러 엘이디조명(132)의 작동으로부터 발생하는 열을 식힐 수 있도록 하는 구성으로, 상기 제2열교환루프(313) 중 상대적으로 온도가 낮은 유체가 흐르는 부분으로부터 유체가 유출되어 상기 엘이디조명(132) 근처를 흐르도록 하며, 상기 엘이디조명(132) 과의 열교환을 마친 유체가 다시 상기 제2열교환루프(313) 중 상대적으로 온도가 높은 측에 연결되어 유입되도록 한다. 상기 바이패스관(142a)은 상기 공냉수단(141)의 열교환관(141b)과 같이 상기 광파이프(131) 내부 또는 외부 둘레를 따라 형성되도록 할 수 있으며, 상기 펌프(142b)에 의해 유체의 흐름이 조절된다. The bypass pipe 142a is configured to allow the fluid flowing out of the second heat exchange loop 313 to flow near the LED light 132 to cool the heat generated from the operation of the LED light 132. The fluid flows out from a portion of the second heat exchange loop 313 in which the fluid having a relatively low temperature flows to flow near the LED light 132, and the fluid which has completed heat exchange with the LED light 132 is again formed in the second heat exchange loop 313. The two heat exchange loops 313 are connected to a relatively high temperature side to be introduced. The bypass tube 142a may be formed along the inner or outer circumference of the light pipe 131, such as the heat exchange tube 141b of the air cooling means 141, and the flow of fluid by the pump 142b. This is regulated.
상기 펌프(142b)는 상기 바이패스관(142a)으로 상기 제2열교환루프(313)를 순환하는 유체가 유입되도록 하는 구성으로, 상기 엘이디조명(132)의 과열 정도에 따라 유체가 흐르는 양을 조절하여 과열의 방지가 효율적으로 이루어지도록 할 수 있다. The pump 142b is configured to introduce a fluid circulating in the second heat exchange loop 313 into the bypass pipe 142a, and adjusts an amount of fluid flowing according to the degree of overheating of the LED light 132. Thus, the overheating can be effectively prevented.
이상에서, 출원인은 본 발명의 다양한 실시예들을 설명하였지만, 이와 같은 실시예들은 본 발명의 기술적 사상을 구현하는 일 실시예일 뿐이며, 본 발명의 기술적 사상을 구현하는 한 어떠한 변경예 또는 수정예도 본 발명의 범위에 속하는 것으로 해석되어야 한다.In the above, the Applicant has described various embodiments of the present invention, but these embodiments are merely one embodiment for implementing the technical idea of the present invention, and any changes or modifications may be made to the present invention as long as the technical idea of the present invention is implemented. It should be interpreted as falling within the scope of.

Claims (5)

  1. 일정 공간에서 다수의 식물을 재배할 수 있는 식물 재배 시스템에 있어서, In the plant cultivation system that can grow a plurality of plants in a certain space,
    식물의 생장에 필요한 조도를 제공하는 조도제공장치를 포함하고, Including a roughness providing device for providing the roughness required for plant growth,
    상기 조도제공장치는 태양광을 집광하는 집광부와, 상기 집광부에 의하여 집광된 태양광을 식물 재배 공간으로 전달하는 광전송부와, 상기 광전송부에 의하여 전송된 태양광을 식물 재배 공간으로 발산하는 조명부와, 상기 조명부를 냉각하기 위한 냉각부를 포함하며, The illuminance providing apparatus includes a light concentrating unit for condensing sunlight, a light transmitting unit for transmitting the light condensed by the light concentrating unit to the plant cultivation space, and radiating the sunlight transmitted by the light transmitting unit to the plant cultivation space. An illumination unit and a cooling unit for cooling the illumination unit,
    상기 조명부는 엘이디조명을 포함하여 태양광에 의한 조도를 보충할 수 있도록 하고, The lighting unit may include LED lighting to supplement the illumination caused by sunlight,
    상기 냉각부는 상기 엘이디조명에 인접하여 외부공기의 순환이 가능하도록 하는 공냉수단을 포함하여, 상기 엘이디조명의 사용에 의한 과열을 방지할 수 있도록 하는 것을 특징으로 하는 친환경 식물 재배 시스템. The cooling unit comprises an air cooling means for allowing the circulation of external air adjacent to the LED lighting, eco-friendly plant cultivation system, characterized in that to prevent overheating by the use of the LED lighting.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 조명부는 태양광을 발산하는 광파이프를 포함하고, The lighting unit includes a light pipe for emitting sunlight,
    상기 공냉수단은, The air cooling means,
    외부로부터 공기가 유입되는 유입관과, 상기 유입관과 연통되며 상기 광파이프의 둘레 또는 내부에 형성되는 열교환관과, 상기 열교환관과 연통되며 외부로 공기가 유출되는 유출관을 포함하는 것을 특징으로 하는 친환경 식물 재배 시스템.And an inlet tube through which air is introduced from the outside, a heat exchange tube communicating with the inlet tube and formed in or around the light pipe, and an outlet tube communicating with the heat exchange tube and outflowing air to the outside. Eco-friendly plant cultivation system.
  3. 제 1 항에 있어서, 상기 친환경 식물 재배 시스템은 According to claim 1, wherein the environmentally friendly plant cultivation system
    식물재배공간의 온도를 조절하는 온도조절장치를 포함하고, It includes a temperature control device for controlling the temperature of the plant cultivation space,
    상기 온도조절장치는 지중열교환을 이용한 송풍을 실시하는 간접송풍부와, 지중공기를 직접 상기 식물재배공간 내부로 전달하는 직접송풍부를 동시에 포함하는 것을 특징으로 하는 친환경 식물 재배 시스템.The temperature control device is an eco-friendly plant cultivation system, characterized in that it comprises an indirect blower for performing the blow using the ground heat exchange, and a direct blower for transmitting underground air directly into the plant cultivation space.
  4. 제 3 항에 있어서, 상기 온도조절장치는 The method of claim 3, wherein the temperature control device
    지중으로 매입되며, 둘레면을 따라 복수의 관통홀이 형성되어 지중공기 또는 지하수가 유입될 수 있도록 하는 지중관을 포함하고, It is embedded into the ground, and includes a underground pipe to form a plurality of through-holes along the circumferential surface to allow underground air or groundwater to enter,
    상기 직접송풍부는 상기 지중관 내의 공기를 상기 식물재배공간 내부로 이송되도록 하며, The direct blower is to transfer the air in the underground pipe into the plant cultivation space,
    상기 간접송풍부는 상기 지중관 내부에 삽입되어 지중관 내부의 공기 또는 물로부터 에너지를 흡수하여 전달하는 유체가 순환되는 제1열교환루프와, 상기 제1열교환루프를 순환하는 유체와 열교환을 실시하여 상기 식물 재배 공간 내부로의 냉풍 또는 온풍의 공급이 가능하도록 하는 열펌프를 포함하는 것을 특징으로 하는 친환경 식물 재배 시스템.The indirect blower is inserted into the underground pipe and heat-exchanges with a first heat exchange loop through which a fluid that absorbs and transfers energy from air or water in the underground pipe is circulated, and a fluid circulating through the first heat exchange loop. Eco-friendly plant cultivation system comprising a heat pump to enable the supply of cold or warm air into the plant cultivation space.
  5. 제 4 항에 있어서, 상기 직접송풍부는 The method of claim 4, wherein the direct blower
    상기 지중관과 연통되며 상기 식물재배공간의 내부에 삽입되는 공기덕트와, 상기 공기덕트 내에 설치되어 지중공기를 상기 식물재배공간 내부로 이송하는 송풍기를 포함하고, An air duct in communication with the underground pipe and inserted into the plant cultivation space, and a blower installed in the air duct to transfer underground air into the plant cultivation space,
    상기 공기덕트는 둘레를 따라 관통되도록 형성되는 복수의 공기유출구를 포함하는 것을 특징으로 하는 친환경 식물 재배 시스템.The air duct is eco-friendly plant cultivation system, characterized in that it comprises a plurality of air outlet formed to penetrate along the circumference.
PCT/KR2015/006318 2015-05-20 2015-06-22 Environment-friendly plant cultivating system WO2016186238A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150070470A KR20160136653A (en) 2015-05-20 2015-05-20 A Eco-friendly System for Culturing Plant
KR10-2015-0070470 2015-05-20

Publications (1)

Publication Number Publication Date
WO2016186238A1 true WO2016186238A1 (en) 2016-11-24

Family

ID=57320390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/006318 WO2016186238A1 (en) 2015-05-20 2015-06-22 Environment-friendly plant cultivating system

Country Status (2)

Country Link
KR (1) KR20160136653A (en)
WO (1) WO2016186238A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107950253A (en) * 2018-01-22 2018-04-24 温州大学新材料与产业技术研究院 A kind of removable fresh flower culture cabinet with laser plant lamp
CN110447440A (en) * 2019-08-20 2019-11-15 四川大学 Extremely frigid zones plant heat-preserving equipment and its application method
CN111226660A (en) * 2020-03-10 2020-06-05 中国农业科学院农业环境与可持续发展研究所 Heat storage and release light supplementing system for sunlight greenhouse
DE102019209916A1 (en) * 2019-07-05 2021-01-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Lighting device and lighting method for at least one plant
WO2021147215A1 (en) * 2020-01-20 2021-07-29 南京信息工程大学 Intelligent climatic chamber for plant cultivation
CN113448263A (en) * 2020-03-25 2021-09-28 日日顺供应链科技股份有限公司 Intelligent warehouse energy management method and system
WO2022232916A1 (en) * 2021-05-03 2022-11-10 Ferme D'hiver Technologies Inc. Energy management system and method in combined greenhouses and vertical farms

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102050330B1 (en) * 2017-12-26 2019-12-02 한국산업기술대학교산학협력단 Plant Factory System using the Sunlight
KR102122063B1 (en) 2019-03-29 2020-06-11 이해영 Underground plant cultivation facility

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH087618A (en) * 1994-06-25 1996-01-12 Satoshi Kurihara Lighting system using sunlight
KR101047445B1 (en) * 2011-02-11 2011-07-07 최재수 Illumination assembly for solar ray
KR20120021050A (en) * 2010-08-31 2012-03-08 노병대 A lamp for plant growth and a method for growing the plant using natural light and led light
KR20140048509A (en) * 2012-10-16 2014-04-24 (주)양협 Greenhouse and hydroponic cultivation for axis column expression heat pump airconditioning, heating system
KR20140078846A (en) * 2012-12-18 2014-06-26 주식회사 인포마인드 System and method for managing a standard cultivation apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH087618A (en) * 1994-06-25 1996-01-12 Satoshi Kurihara Lighting system using sunlight
KR20120021050A (en) * 2010-08-31 2012-03-08 노병대 A lamp for plant growth and a method for growing the plant using natural light and led light
KR101047445B1 (en) * 2011-02-11 2011-07-07 최재수 Illumination assembly for solar ray
KR20140048509A (en) * 2012-10-16 2014-04-24 (주)양협 Greenhouse and hydroponic cultivation for axis column expression heat pump airconditioning, heating system
KR20140078846A (en) * 2012-12-18 2014-06-26 주식회사 인포마인드 System and method for managing a standard cultivation apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107950253A (en) * 2018-01-22 2018-04-24 温州大学新材料与产业技术研究院 A kind of removable fresh flower culture cabinet with laser plant lamp
DE102019209916A1 (en) * 2019-07-05 2021-01-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Lighting device and lighting method for at least one plant
DE102019209916B4 (en) * 2019-07-05 2021-03-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Lighting device and lighting method for at least one plant
CN114206098A (en) * 2019-07-05 2022-03-18 弗劳恩霍夫应用研究促进协会 Lighting device and lighting method for at least one plant
US11982413B2 (en) 2019-07-05 2024-05-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Lighting device and lighting method for at least one plant
CN110447440A (en) * 2019-08-20 2019-11-15 四川大学 Extremely frigid zones plant heat-preserving equipment and its application method
CN110447440B (en) * 2019-08-20 2021-07-27 四川大学 High and cold area planting heat preservation equipment and use method thereof
WO2021147215A1 (en) * 2020-01-20 2021-07-29 南京信息工程大学 Intelligent climatic chamber for plant cultivation
CN111226660A (en) * 2020-03-10 2020-06-05 中国农业科学院农业环境与可持续发展研究所 Heat storage and release light supplementing system for sunlight greenhouse
CN113448263A (en) * 2020-03-25 2021-09-28 日日顺供应链科技股份有限公司 Intelligent warehouse energy management method and system
WO2022232916A1 (en) * 2021-05-03 2022-11-10 Ferme D'hiver Technologies Inc. Energy management system and method in combined greenhouses and vertical farms

Also Published As

Publication number Publication date
KR20160136653A (en) 2016-11-30

Similar Documents

Publication Publication Date Title
WO2016186238A1 (en) Environment-friendly plant cultivating system
KR102050330B1 (en) Plant Factory System using the Sunlight
JP2018509892A (en) Environmentally friendly indoor cultivation
CN107062474B (en) Near-zero energy consumption building system based on energy storage
CN204948942U (en) Warmhouse booth's temperature control system
KR102154666B1 (en) Vinyl house with underground heat storage space structure
CN108958336B (en) Greenhouse system based on solar energy and ground source heat pump
CN102626043A (en) New energy closed-loop type comprehensive energy-saving system applied to agricultural ecological greenhouses
KR101479191B1 (en) System for culturing plant and purifying air
KR101175923B1 (en) Combination Lightening System Including Solar and LED And Operation Method thereof
CN111758579A (en) Solar energy, electricity and thermal coupling ecological breeding system and working method thereof
CN203661722U (en) Nursery greenhouse
WO2022080892A1 (en) Piping network system simultaneously supplying hot waste water and carbon dioxide from power plant to greenhouse
CN103283633B (en) Solar type totally-enclosed constant temperature laying hen breeding workshop
CN205030260U (en) Crop growth environmental conditioning system
KR101578808B1 (en) Energy Supply System for Multi-Story Plant factory
JPH09223809A (en) Environment control equipment
CN219555783U (en) Heating system for warmhouse booth
CN111226661A (en) Heating and ventilation system of solar active plant factory
WO2014148655A1 (en) Seedling growing method for crop in plant factory and seedling growing apparatus therefor
RU117589U1 (en) CIRCULAR MULTI-FUNCTIONAL SOLAR POWER INSTALLATION
KR102652407B1 (en) Smart farm system using renewable energy
KR101569675B1 (en) Multifunction curtain wall system with solar light and thermal spectrum
CN218072692U (en) Off-grid type agricultural facility solar energy comprehensive energy system
CN215912830U (en) Container planting system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15892651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15892651

Country of ref document: EP

Kind code of ref document: A1