WO2016186100A1 - Polycarbonate resin composition, and prepreg made from polycarbonate resin - Google Patents

Polycarbonate resin composition, and prepreg made from polycarbonate resin Download PDF

Info

Publication number
WO2016186100A1
WO2016186100A1 PCT/JP2016/064563 JP2016064563W WO2016186100A1 WO 2016186100 A1 WO2016186100 A1 WO 2016186100A1 JP 2016064563 W JP2016064563 W JP 2016064563W WO 2016186100 A1 WO2016186100 A1 WO 2016186100A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate resin
resin composition
polycarbonate
prepreg
flame retardant
Prior art date
Application number
PCT/JP2016/064563
Other languages
French (fr)
Japanese (ja)
Inventor
黒川 晴彦
翔平 高萩
Original Assignee
三菱瓦斯化学株式会社
Mgcフィルシート株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社, Mgcフィルシート株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2017519368A priority Critical patent/JP6716551B2/en
Priority to KR1020177035868A priority patent/KR20180008602A/en
Priority to CN201680028421.2A priority patent/CN107614611B/en
Publication of WO2016186100A1 publication Critical patent/WO2016186100A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/5399Phosphorus bound to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates

Definitions

  • the present invention relates to a polycarbonate resin composition, a polycarbonate prepreg, and the like. More specifically, the present invention relates to a polycarbonate resin composition containing a flame retardant, a polycarbonate prepreg obtained by impregnating a continuous fiber reinforcement with a polycarbonate resin composition, and the like.
  • a continuous fiber reinforced composite material (hereinafter sometimes referred to as “FRTP”) in which a thermoplastic resin is used as a matrix and is combined with a continuous fiber reinforcement is already widely known.
  • FRTP is usually used for manufacturing a prepreg in which a reinforcing fiber in the form of a single strand, a unidirectional sheet (UD sheet), a woven fabric, or a non-woven fabric is impregnated with a resin, and the prepreg is formed by press molding or filament winding molding ( Products such as structural members and various parts are manufactured by FW molding.
  • FRTP examples include a prepreg made from a unidirectionally-arranged fiber sheet or woven or knitted fabric using continuous fibers such as glass fibers or carbon fibers, and a thermoplastic resin. These prepregs have the advantage that the volume content of the fiber can be increased, and have excellent elastic modulus and strength in the fiber orientation direction.
  • the impregnation property of the matrix resin into the continuous fibers is important and greatly affects the mechanical properties such as strength and the appearance.
  • a solution method, a hot melt method, a slurry method, a fluidized bed method, and the like are generally known.
  • a hot press method in which a resin component is melted and impregnated into continuous fibers is simple, but polycarbonate with low resin melt flowability has poor impregnation properties with continuous fibers, and a good product cannot be obtained.
  • Patent Document 1 relates to a chopped strand prepreg using a thermoplastic resin in which the melt viscosity of the thermoplastic resin is in the range of 1,000 to 15,000 poise, but uses a FRTP plate cut into strips. Therefore, there is a problem that sufficient rigidity cannot be obtained when molding a large molded product. Furthermore, Patent Document 1 does not suggest that the prepreg has flame retardancy.
  • Patent Document 2 describes a composite material composed of a thermoplastic resin and carbon fibers.
  • the thermoplastic resin used has a high viscosity and poor impregnation with carbon fibers, the pellets were freeze-ground. It is described that it is preferable to spray a powdery resin. Since the resin in powder form has a low bulk density and contains air, removal of bubbles in the composite material becomes insufficient, resulting in a problem of poor appearance and strength. Further, in Patent Document 2, although it is described that a flame retardant may be included in the composite material, there is no specific disclosure regarding the flame retardant of the flame retardant and the composite material.
  • Patent Document 3 describes a prepreg made of a carbon continuous fiber reinforced polycarbonate resin in which carbon fibers using polycarbonate having a melt viscosity at 250 ° C. of 1 to 100 Pa ⁇ s are aligned in one direction.
  • the prepreg described in Patent Document 3 there is a problem that mold contamination due to low molecular components is likely to occur at the time of heat forming due to the low molecular weight of polycarbonate, and the strength when bent is insufficient.
  • the polycarbonate resin since the polycarbonate resin is low-viscosity, it is easy to hang down with a fire kind at the time of combustion, and it is unsuitable for incombustibility, and to ensure incombustibility. Neither has been suggested.
  • An object of the present invention is to provide a polycarbonate resin composition excellent in impregnation property and flame retardancy of a continuous fiber reinforcement, and a polycarbonate prepreg excellent in flame retardancy.
  • the present inventors have used a mixture of a polycarbonate and a flame retardant adjusted to a specific melt viscosity as an impregnating agent for continuous fiber reinforcement, which has not existed in the past. It has been found that a polycarbonate resin composition excellent in resin impregnation and flame retardancy and a highly flame retardant polycarbonate prepreg using the resin composition having such excellent performance can be provided. That is, the present invention is as follows.
  • X A polycarbonate resin composition of 0.01 cc / sec.
  • the phosphorus-based flame retardant (B) includes at least one of a condensed phosphate ester and a phosphazene-based flame retardant.
  • the condensed phosphate ester includes at least one of triphenyl phosphate, bisphenol A tetraphenyl phosphate, resorcinol tetraphenyl phosphate, resorcinol tetra-2,6-xylenol phosphate; 2.
  • the phosphazene flame retardant comprising at least one of phenoxyphosphazene, (poly) tolyloxyphosphazene, and (poly) phenoxytolyloxyphosphazene.
  • the polycarbonate resin composition of the present invention has high resin impregnation into fibers and excellent flame retardancy, and therefore the prepreg made of continuous fiber reinforced flame retardant polycarbonate resin of the present invention is also excellent in flame retardancy. For this reason, the prepreg made of continuous fiber reinforced flame retardant polycarbonate resin of the present invention can be suitably used as a heat-forming sheet and film for electronic and electrical equipment casing applications.
  • the type of the polycarbonate resin (A) (hereinafter sometimes referred to as “component (A)”) used in the present invention is not particularly limited, but is preferably a polycarbonate resin, and particularly preferably an aromatic polycarbonate resin. preferable.
  • the polycarbonate resin is an optionally branched thermoplastic polymer or copolymer obtained by reacting a dihydroxy compound or a small amount thereof with phosgene or a carbonic acid diester.
  • the production method of the polycarbonate resin is not particularly limited, and a polycarbonate resin produced by a conventionally known phosgene method (interfacial polymerization method) or a melting method (transesterification method) can be used. Further, when the melting method is used, a polycarbonate resin in which the amount of OH groups of terminal groups is adjusted can be used.
  • bisphenol A a compound in which one or more tetraalkylphosphonium sulfonates are bonded to the above aromatic dihydroxy compound can also be used.
  • the amount of the compound to be substituted is usually 0.01 to 10 mol%, preferably 0.1 to 2 mol%, based
  • polycarbonate resin (A) among the above-mentioned, polycarbonate resin derived from 2,2-bis (4-hydroxyphenyl) propane, or 2,2-bis (4-hydroxyphenyl) propane and other aromatics Polycarbonate copolymers derived from dihydroxy compounds are preferred. Further, it may be a copolymer mainly composed of a polycarbonate resin, such as a copolymer with a polymer or oligomer having a siloxane structure.
  • polycarbonate resins may be used alone or in combination of two or more.
  • a monovalent hydroxy compound such as an aromatic hydroxy compound may be used.
  • the monovalent aromatic hydroxy compound include m- and p-methylphenol, m- and p-propylphenol, p-tert-butylphenol, p-long chain alkyl-substituted phenol and the like.
  • the molecular weight of the polycarbonate resin (A) used in the present invention is arbitrary depending on the use and may be appropriately selected and determined. From the viewpoint of moldability, strength of the molded product, etc., the polycarbonate resin (A), preferably aromatic
  • the molecular weight of the polycarbonate resin (A) is preferably 15,000 to 40,000, particularly 15,000 to 30,000, in terms of viscosity average molecular weight [Mv].
  • Mv viscosity average molecular weight
  • the viscosity average molecular weight of the polycarbonate resin (A) is 40,000 or less, a decrease in fluidity tends to be suppressed and improved, and from the viewpoint of ease of molding processability and flame retardancy. preferable.
  • the intrinsic viscosity [ ⁇ ] is a value calculated from the following equation by measuring the specific viscosity [ ⁇ sp ] at each solution concentration [C] (g / dl).
  • the polycarbonate resin composition of the present invention contains a phosphorus-based flame retardant (B) in order to improve the impregnation property at the time of hot-melting into fibers, which will be described in detail later, and to improve the flame retardancy.
  • a phosphate ester-based flame retardant As the phosphorus-based flame retardant (B), a phosphate ester-based flame retardant, a phosphazene-based flame retardant, or the like can be used. As the phosphorus-based flame retardant (B), one type may be used alone, or two or more types may be mixed and used. As the phosphorus-based flame retardant (B), a phosphate ester-based flame retardant is preferably used because of its high flame retarding effect, fluidity improving effect, and resistance to mold corrosion.
  • the phosphate ester flame retardant used as the phosphorus flame retardant (B) is not particularly limited, but the phosphate ester flame retardant is preferably a phosphate ester compound represented by the following general formula (II). .
  • R 1 , R 2 , R 3 and R 4 are each independently an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 20 carbon atoms which may be substituted with an alkyl group
  • P, q, r and s are each independently 0 or 1
  • t is an integer of 1 to 5
  • X is an arylene group.
  • examples of the aryl group represented by R 1 to R 4 include a phenyl group and a naphthyl group.
  • examples of the arylene group for X include a phenylene group and a naphthylene group.
  • the compound represented by formula (II) is a phosphate ester, and when t is greater than 0, it is a condensed phosphate ester (including a mixture).
  • a condensed phosphate ester is particularly preferably used.
  • phosphate ester flame retardant represented by the general formula (II) include trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, tributoxyethyl phosphate, triphenyl phosphate.
  • triphenyl phosphate bisphenol A tetraphenyl phosphate, resorcinol tetraphenyl phosphate, resorcinol tetra-2,6-xylenol phosphate and the like are preferable.
  • the phosphazene flame retardant is used as the most effective phosphorus flame retardant in the present invention because it has a lower heat resistance than the condensed phosphate ester.
  • the phosphazene-based flame retardant is an organic compound having a P ⁇ N bond in the molecule, and the phosphazene-based flame retardant is preferably a cyclic phosphazene compound represented by the following general formula (IIIa) or a general formula (IIIb) below. Examples thereof include a chain phosphazene compound represented by the formula and a crosslinked phosphazene compound formed by crosslinking with a crosslinking group.
  • the crosslinking group represented by the following general formula (IIIc) is preferable from the flame retardance point of the bridge
  • m is an integer of 3 to 25, and R 5 may be the same or different and represents an aryl group or an alkylaryl group.
  • n is an integer of 3 to 10,000
  • Z represents a —N ⁇ P (OR 5 ) 3 group or a —N ⁇ P (O) OR 5 group
  • Y represents a — 4 represents P (OR 5 ) 4 group or —P (O) (OR 5 ) 2 group
  • R 5 may be the same or different and represents an aryl group or an alkylaryl group.
  • A is —C (CH 3 ) 2 —, —SO 2 —, —S—, or —O—, and l is 0 or 1.
  • cyclic phosphazene in which R 5 is a phenyl group is particularly preferable.
  • examples of such cyclic phenoxyphosphazene compounds include hexachlorocyclotriphosphazene, octachlorochloromethane, and a mixture of cyclic and linear chlorophosphazene obtained by reacting ammonium chloride and phosphorus pentachloride at a temperature of 120 to 130 ° C.
  • Cyclic chlorophosphazenes such as cyclotetraphosphazene, decachlorocyclopentaphosphazene, etc.
  • cyclic phenoxyphosphazene compound represented by the general formula (IIIa) include phenoxyphosphazene, (poly) tolyloxyphosphazene (for example, o-tolyloxyphosphazene, m-tolyloxyphosphazene, p-tolyloxyphosphazene, cyclic C 1-6 such as o, m-tolyloxyphosphazene, o, p-tolyloxyphosphazene, m, p-tolyloxyphosphazene, o, m, p-tolyloxyphosphazene, and (poly) xylyloxyphosphazene and alkyl C 6-20 aryloxy phosphazene, (poly) phenoxy tolyloxy phosphazene (e.g., phenoxy o- tolyloxy phosphazene, a phenoxy m- tolyloxyethy
  • C 1-6 means “having 1 to 6 carbon atoms”, and the same applies to “C 6-20 ”, “C 1-10 ”, and the like.
  • (poly) phenoxy Indicates one or both of “phenoxy...” And “polyphenoxy.
  • chain phosphazene compound represented by the general formula (IIIb) chain phenoxyphosphazene in which R 5 is a phenyl group is particularly preferable.
  • a chain phenoxyphosphazene compound for example, hexachlorocyclotriphosphazene obtained by the above-described method is subjected to reversion polymerization at a temperature of 220 to 250 ° C., and the resulting linear chain having a polymerization degree of 3 to 10,000 is obtained.
  • Examples include compounds obtained by substituting the chloro group (chlorine) of dichlorophosphazene with a phenoxy group.
  • N in the general formula (IIIb) of the linear phenoxyphosphazene compound is preferably 3 to 1,000, more preferably 3 to 100, and further preferably 3 to 25.
  • Specific examples of the chain phenoxyphosphazene compound represented by the general formula (IIIb) include phenoxyphosphazene, (poly) tolyloxyphosphazene (for example, o-tolyloxyphosphazene, m-tolyloxyphosphazene, p-tolyloxyphosphazene).
  • Oxyphosphazenes C 6-20 aryloxy C 1-3 alkyl C 6-20 aryloxyphosphazenes (eg, chained tolyloxyphosphazenes, chained phenoxytolylphenoxyphosphazenes, etc.).
  • crosslinked phosphazene compound a crosslinked phenoxyphosphazene compound obtained by crosslinking a cyclic phenoxyphosphazene compound in which R 5 is a phenyl group in the general formula (IIIa) with a crosslinking group represented by the general formula (IIIc), or A crosslinked phenoxyphosphazene compound obtained by crosslinking the chain phenoxyphosphazene compound in which R 5 is a phenyl group in the general formula (IIIb) with a crosslinking group represented by the general formula (IIIc) is preferable from the viewpoint of flame retardancy, A crosslinked phenoxyphosphazene compound obtained by crosslinking a cyclic phenoxyphosphazene compound with a crosslinking group represented by the general formula (IIIc) is more preferable.
  • bridged phenoxyphosphazene compound examples include a compound having a crosslinked structure of 4,4′-sulfonyldiphenylene (bisphenol S residue) and a crosslinked structure of 2,2- (4,4′-diphenylene) isopropylidene group.
  • the content of the phenylene group in the crosslinked phenoxyphosphazene compound is such that the cyclic phosphazene compound represented by the general formula (IIIa) and / or the all phenyl groups in the chain phenoxyphosphazene compound represented by the general formula (IIIb) and Based on the number of phenylene groups, it is usually 50 to 99.9%, preferably 70 to 90%.
  • the crosslinked phenoxyphosphazene compound is particularly preferably a compound having no free hydroxyl group in the molecule.
  • the phenoxyphosphazene compound is a crosslinked product obtained by crosslinking the cyclic phenoxyphosphazene compound represented by the general formula (IIIa) and the cyclic phenoxyphosphazene compound represented by the general formula (IIIa) with a crosslinking group.
  • a crosslinking group From the viewpoint of flame retardancy and mechanical properties, at least one selected from the group consisting of cyclic phenoxyphosphazene compounds of the type is preferred.
  • the commercially available cyclic phosphazene-based flame retardant include “Ravitor FP110” manufactured by Fushimi Pharmaceutical Co., Ltd., which is phenoxyphosphazene, and “SPS100” manufactured by Otsuka Chemical Co., Ltd.
  • the polycarbonate resin composition of the present invention contains 60 to 88% by mass of the polycarbonate resin (A) and 12 to 40% by mass of the phosphorus flame retardant (B).
  • the content of the polycarbonate resin (A) is preferably 70 to 85% by mass, and more preferably 75 to 85% by mass.
  • the content of the phosphorus-based flame retardant (B) in the polycarbonate resin composition is preferably 9 to 120 ⁇ 0.01 (cc / sec), the flow value (240 ° C., 160 kg / cm 2 ) of the polycarbonate resin composition. Must be controlled to be 10 to 60 ⁇ 0.01 (cc / sec).
  • the specific amount of the phosphorus-based flame retardant (B) added is preferably 12 to 40% by mass, more preferably 15 to 30% by mass from the viewpoint of flame retardancy and heat resistance.
  • the addition amount of the phosphorus-based flame retardant (B) is 12% by mass or more, the flame retardant effect and the fiber impregnation property are good, and desired physical properties of the composition can be obtained.
  • the addition amount of a phosphorus flame retardant (B) is 40 mass% or less, the heat resistance and the fall of the toughness of a matrix resin can be suppressed.
  • the flow value at 240 ° C. is 9 to 120 ⁇ 0.01 cc / sec (160 kg / cm 2 ).
  • the impregnation property of the resin composition with respect to fibers, the heat resistance of the resin composition, and the flame retardance of the prepreg produced using the resin composition will be described in detail later. All the effects are good, and an excellent balance of these physical properties can be realized.
  • the aromatic polycarbonate resin composition of the present invention may further contain a flame retardant other than the component (B) of the present invention and an anti-drip agent.
  • Examples of the flame retardant other than the component (B) include halogenated bisphenol A polycarbonate, brominated bisphenol epoxy resin, brominated bisphenol phenoxy resin, halogenated flame retardant such as brominated polystyrene, diphenylsulfone-3,3 ′, and the like.
  • halogenated flame retardant such as brominated polystyrene, diphenylsulfone-3,3 ′, and the like.
  • -Organic metal salt flame retardants such as dipotassium disulfonate, potassium diphenylsulfone-3-sulfonate, potassium perfluorobutanesulfonate, and polyorganosiloxane flame retardants.
  • examples of the anti-dripping agent include fluorinated polyolefins such as polyfluoroethylene, and preferably polytetrafluoroethylene having fibril forming ability. This shows the tendency to disperse
  • Polytetrafluoroethylene having fibril-forming ability is classified as type 3 according to the ASTM standard. As polytetrafluoroethylene, in addition to a solid form, those in the form of an aqueous dispersion can also be used.
  • polytetrafluoroethylene having fibril-forming ability examples include, for example, Mitsui DuPont Fluorochemical Co., Ltd., Teflon (registered trademark) 6J or Teflon (registered trademark) 30J, or Daikin Industries, Ltd. Is commercially available.
  • the content of the anti-drip agent is that of the aromatic polycarbonate resin (A), the phosphorus flame retardant (B), or the continuous fiber reinforcement (C).
  • the amount is preferably 0.02 to 4 parts by mass, more preferably 0.03 to 3 parts by mass with respect to 100 parts by mass in total. If the blending amount of the dripping inhibitor exceeds the above upper limit, the appearance of the molded product may be deteriorated.
  • the aromatic polycarbonate resin composition of the present invention may contain other resin components other than the aromatic polycarbonate resin (A) as a resin component, as long as the object of the present invention is not impaired. .
  • resin components that can be blended, for example, polystyrene resin, high impact polystyrene resin, hydrogenated polystyrene resin, polyacryl styrene resin, ABS resin, AS resin, AES resin, ASA resin, SMA resin, polyalkyl methacrylate resin, Polymethacryl methacrylate resin, polyphenyl ether resin, polycarbonate resin other than component (A), amorphous polyalkylene terephthalate resin, polyester resin, amorphous polyamide resin, poly-4-methylpentene-1, cyclic polyolefin resin, non Crystalline polyarylate resin, polyether sulfone, etc. are mentioned.
  • Continuous fiber reinforcement (C) The continuous fiber reinforced polycarbonate resin prepreg of the present invention may be referred to as a continuous fiber reinforcing material (C) (hereinafter referred to as “component (C)”) in order to enhance bending properties such as bending elastic modulus and bending strength of the molded product. .) Is impregnated in a polycarbonate resin composition containing the components (A) and (B).
  • Examples of the continuous fiber reinforcing material (C) used in the present invention include glass fiber and carbon fiber. And since it is excellent in the reinforcement effect of a polycarbonate resin composition, as a form of a continuous fiber reinforcement (C), the fiber woven fabrics, such as cloth, or the fiber which opened the fiber bundle and was arranged in one direction is preferable. .
  • the volume content value (Vf value) of the continuous fiber reinforcement is used as an index of the fiber content in the prepreg.
  • Glass fiber There is no restriction
  • the glass fiber may be surface-treated with a surface treatment agent to be described later, and by such surface treatment, the adhesiveness between the resin component and the glass is improved, and high mechanical strength can be achieved. It becomes like this.
  • Carbon fiber> There is no restriction
  • PAN polyacrylonitrile
  • a continuous fiber reinforcement (C) and a resin component in order to improve the adhesiveness of a continuous fiber reinforcement (C) and a resin component, and aromatic polycarbonate resin (A) by contact with glass fiber and aromatic polycarbonate resin (A).
  • a continuous fiber reinforcing material (C) whose surface is treated with a surface treatment agent.
  • suitable surface treatment agents include silane coupling agents such as aminosilane and epoxysilane, and silicone compounds.
  • the continuous fiber reinforced polycarbonate resin composition of the present invention contains other components as necessary in addition to the aromatic polycarbonate resin (A), the phosphorus-based flame retardant (B), and the continuous fiber reinforcing material (C). You may do it.
  • other components that can be contained in the aromatic polycarbonate resin composition of the present invention include the following.
  • the aromatic polycarbonate resin composition of the present invention may further contain various additives as long as the effects of the present invention are not impaired.
  • additives include stabilizers, antioxidants, mold release agents, UV absorbers, dyes and pigments, antistatic agents, flame retardants, anti-dripping agents, impact strength improvers, plasticizers, dispersants, antibacterial agents , (A), (B) and other resins other than the component (C).
  • One of these resin additives may be contained, or two or more thereof may be contained in any combination and ratio.
  • the continuous fiber reinforced prepreg made of the aromatic polycarbonate resin of the present invention is prepared, by adding glass short fibers, carbon short fibers and the like having a fiber length of 10 mm or less as inorganic components other than the continuous fiber reinforcing material (C) component, Mechanical properties can be improved.
  • the short fiber filler include short glass fibers, short carbon fibers, wollastonite, various inorganic whiskers and the like.
  • the anisotropy at the time of shrinkage can also be improved by adding a plate-like or spherical filler.
  • the plate-like filler include glass flakes, mica and talc
  • examples of the spherical filler include glass beads and silica beads.
  • the method for producing a prepreg made of continuous fiber reinforced polycarbonate resin is a method in which a molten resin is poured from a T-die of an extruder and joined with a drawn fiber sheet or opened unidirectionally aligned fibers, and impregnated with a powder resin.
  • a method of dispersing on a fiber and heating and melting a heat laminating method in which a resin is formed into a film and laminated on a fiber layer and then heated.
  • the polycarbonate used in the prepreg made of continuous fiber reinforced polycarbonate resin of the present invention is excellent in fluidity, a method of discharging and impregnating a molten resin from an extruder, and a method of thermally laminating a resin into a film are particularly preferably used.
  • a method of solidifying the prepreg after melting and penetration by a combination of a heating press and a cooling press in addition to the method using the extruder, a method of solidifying the prepreg after melting and penetration by a combination of a heating press and a cooling press, a double belt press is used.
  • a method of providing a heating zone or a cooling zone may be included.
  • the thickness of the fiber-reinforced polycarbonate resin prepreg of the present invention is usually 50 to 500 ⁇ m, preferably 150 to 350 ⁇ m per sheet. For example, it is 170 to 305 ⁇ m. If the thickness of one prepreg is less than 50 ⁇ m, the resin component cannot be sufficiently impregnated, so that the obtained prepreg is opened and difficult to handle. Further, if the thickness of one prepreg exceeds 500 ⁇ m, sufficient physical properties cannot be obtained because the content of reinforcing fibers decreases.
  • the prepreg of the present invention produced by the above-described manufacturing method that is, the prepreg impregnated with the polycarbonate resin composition of the present invention in the continuous fiber reinforcement (C), or the polycarbonate resin film as the continuous fiber reinforcement (C).
  • the volume content value (Vf value) of the continuous fiber reinforcement is preferably 25 to 60%, more preferably 35 to 50%. By setting the Vf value to 25% or more, the reinforcing reinforcement becomes a sufficient level, and by setting the Vf value to 60% or less, it is possible to easily impregnate the resin with the reinforcing material and realize a prepreg excellent in appearance and strength. .
  • the laminate of the present invention contains the above-described polycarbonate prepreg of the present invention.
  • the laminate of the present invention is obtained by laminating a plurality of the polycarbonate prepregs of the present invention or a polycarbonate prepreg and a film.
  • the laminate of the present invention is produced, for example, by laminating the polycarbonate prepreg of the present invention and a thermoplastic resin film and heating or further pressing.
  • the molded object of this invention heat-forms the above-mentioned laminated body of this invention.
  • the molded article of the present invention can be produced by a process of laminating the polycarbonate prepreg of the present invention and a film or sheet, for example, a thermoplastic resin film or sheet, and pressing in a heated state.
  • a thermoplastic resin for example, polycarbonate such as aromatic polycarbonate is used.
  • the molded body of the present invention is obtained by, for example, laminating polycarbonate prepregs and thermoplastic resin films alternately, and pressing for about several seconds to 180 seconds in a state where the temperature is 150 ° C. or higher and 250 ° C. or lower. Can be manufactured.
  • the flow value (Q value) of the pellets of the resin composition was evaluated by the method described in JIS K7210 Appendix C.
  • a flow tester CFD500D manufactured by Shimadzu Corporation was used. Specifically, using a die having a hole diameter of 1.0 mm and a length of 10 mm, the amount of molten resin discharged under the conditions of a test temperature of 240 ° C., a test force of 160 kg / cm 2 , and a preheating time of 420 seconds is a flow value ( ⁇ 0. 01 cc / sec).
  • the flame retardant evaluation of the resin prepreg was performed using a UL-94 / VTM test evaluation apparatus for a prepreg having a width of 40 mm, a length of 150 mm, and a thickness of 100 to 370 ⁇ m produced by the method described below. A marked line was placed in a portion 100 mm away from the flame contact portion of the test piece. The flame contact position and the flame size were determined in accordance with the UL-94 / VTM test. The flame contact was set to 2 degrees for 3 seconds, and the total combustion duration after each flame-off was measured.
  • the combustion time is 7 More than a second, or when the resin dropped during combustion, or when the combustion reached the marked line was judged as defective.
  • the glass transition temperature of the resin composition constituting the resin prepreg was measured.
  • the glass transition temperature was measured by sampling about 10 mg of resin on the surface of the prepreg using a differential scanning calorimeter (“DSC220” manufactured by SII Nano Technology).
  • DSC differential scanning calorific value
  • the resin component was first melted sufficiently by heating from room temperature to 280 ° C. at a rate of temperature increase of 20 ° C./min, and maintaining the temperature for 3 minutes after reaching 280 ° C. Next, it was cooled to 0 ° C. at a cooling rate of 30 ° C./min.
  • the glass transition point was calculated using a curve measured by heating again at a heating rate of 20 ° C./min.
  • the glass transition point was measured according to JIS-K7121 (1987). In the measurement of the glass transition point, the temperature at the intersection of the straight line obtained by extending the base line on the low temperature side to the high temperature side and the tangent line drawn at the point where the slope of the curve at the stepwise change part of the glass transition is maximized. A certain extrapolated glass transition start temperature was set.
  • Vf value ⁇ Measurement of fiber volume content (Vf value)>
  • the density of the test piece for the bending test was calculated by a method according to JIS K7112.
  • the thermoplastic resin was burned off using a burner, and the fiber mass content was calculated.
  • the Vf value of the test piece was calculated from the obtained density and fiber mass content and the density of the carbon fiber. Specifically, the Vf value was calculated based on the following formula (I).
  • Vf (%) Wf ⁇ ⁇ c / ⁇ f (I)
  • Vf Fiber volume content value (%)
  • Wf Fiber mass content (%)
  • ⁇ c density of the entire test piece (prepreg) (g / cm 3 )
  • ⁇ f Fiber density (g / cm 3 )
  • Aromatic polycarbonate resin (A)> (A-1) “Iupilon (registered trademark) S-3000F” manufactured by Mitsubishi Engineering Plastics Co., Ltd., viscosity average molecular weight 23,000 (A-2) “Iupilon (registered trademark) E-2000F” manufactured by Mitsubishi Engineering Plastics Co., Ltd., viscosity average molecular weight 28,000 ⁇ Phosphorus flame retardant (B)> (B-1) Resorcinol bis-2,6-xylenyl phosphate (“PX-200” manufactured by Daihachi Chemical Industry) (B-2) Phenoxyphosphazene ("Ravitor FP-110" manufactured by Fushimi Pharmaceutical) ⁇ Continuous fiber reinforcement (C)> (C-1) Glass fiber: manufactured by Nitto Boseki Co., Ltd.
  • Carbon fiber PAN-based carbon fiber Pyrofil TRH50 60M RJ (60k) manufactured by Mitsubishi Rayon Co., Ltd. (C-3) Glass fiber cloth: 258 manufactured by Asahi Glass Co., Ltd. (thickness 0.093 mm, 106.5 g / m 2 , twill) (C-4) Carbon fiber cloth: CFP3110 (30 k, 160 g / m 2 , plain weave) manufactured by Arisawa Manufacturing Co., Ltd.
  • the aromatic polycarbonate resin composition was produced by a kneading method using the following melt extruder. First, components (A) and (B) were weighed according to the blending ratios shown in Table 1, and mixed with a tumbler for 15 minutes or longer. The mixture was melt kneaded with a melt extruder to obtain resin composition pellets.
  • a fiber-impregnated film was prepared using the above-described resin composition pellets.
  • the film of the resin composition described in Table 1 was produced using a film extruder having a screw diameter of 26 mm. That is, the barrel temperature is 250 ° C., the die (D) temperature is 250 ° C., the pressure roll (R1) temperature is 40 ° C., the first cooling roll (R2) temperature is the glass transition temperature (Tg) ⁇ 20 ° C. of the resin composition, and the second cooling is performed.
  • the resin composition was extruded under the condition that the roll (R3) temperature was the glass transition temperature (Tg) of the resin composition-30 ° C., and a film having a thickness of 100 to 150 ⁇ m was obtained.
  • ⁇ Making flame retardant evaluation sheet> The fiber prepreg having a thickness of 130 to 250 ⁇ m was cut into a width of 40 mm ⁇ length of 150 mm ⁇ thickness of 130 to 250 ⁇ m to obtain a test piece for a combustion test.
  • composition of the prepregs of the above Examples and Comparative Examples, and the properties of the prepregs and test pieces are summarized in the following table.
  • the polycarbonate resin compositions of the examples contain 60 to 88% by mass of the polycarbonate resin (A) and 12 to 40% by mass of the phosphorus flame retardant (B), and have a flow value at 240 ° C. It is adjusted to 9 to 120 ⁇ 0.01 cc / sec. It was confirmed that all of the polycarbonate resin compositions of these examples were excellent in the impregnation property to the fiber during prepreg production. Furthermore, the prepregs of Examples produced using the polycarbonate resin composition had good flame retardancy and heat resistance.
  • the content of the phosphorus-based flame retardant (B) in the polycarbonate resin composition is low, and the flow value is 7 ⁇ 0.01 cc / sec, which is within the range of the above examples.
  • the fiber impregnation property and the prepreg flame retardance were inferior.
  • Comparative Example 2 in which the phosphorus-based flame retardant (B) in the polycarbonate resin composition was excessive and the flow value was higher than the upper limit of the range of the above example measurement was not possible. It was confirmed that the heat resistance was poor.
  • the volume content value (Vf value) of the continuous fiber reinforcement (C) was adjusted within the range of 25 to 60%. ) was lower than the lower limit of the above range, the prepreg of Example 15 showed that the resin dripped from the test piece and showed slightly inferior flame retardancy. And in the prepreg of Example 16 whose volume content value (Vf value) is higher than the upper limit of the said range, the result in which the impregnation property with respect to the fiber of a resin composition was a little inferior compared with the other Example was shown. However, also in these examples, prepregs that can be used without any particular problem were obtained.
  • the fiber reinforcement is impregnated.
  • the polycarbonate prepreg and the like excellent in flame retardancy and heat resistance can be realized. Furthermore, it was confirmed that the impregnation property and flame retardancy can be further improved by adjusting the volume content value (Vf value) in the prepreg within a predetermined range.

Abstract

Provided are a polycarbonate resin composition having excellent flame retardancy and ability to impregnate continuous fiber reinforcement materials, and a polycarbonate prepreg and the like having excellent flame retardancy. The above problem is solved by a polycarbonate resin composition containing 60-88 mass% of a polycarbonate resin (A) and 12-40 mass% of a phosphorous-based flame retardant (B) wherein the polycarbonate resin composition has a flow value at 240°C of 9 to 120×0.01cc/sec.

Description

ポリカーボネート樹脂組成物、およびポリカーボネート樹脂製プリプレグPolycarbonate resin composition and polycarbonate resin prepreg
 本発明は、ポリカーボネート樹脂組成物、及びポリカーボネートプリプレグ等に関するものである。より具体的には、難燃剤を含むポリカーボネート樹脂組成物、及びポリカーボネート樹脂組成物を連続繊維強化材に含浸して得られるポリカーボネートプリプレグ等に関する。 The present invention relates to a polycarbonate resin composition, a polycarbonate prepreg, and the like. More specifically, the present invention relates to a polycarbonate resin composition containing a flame retardant, a polycarbonate prepreg obtained by impregnating a continuous fiber reinforcement with a polycarbonate resin composition, and the like.
 熱可塑性樹脂をマトリックスとし、連続繊維強化材と複合する連続繊維強化複合材料(以下“FRTP”と称する場合がある)は既に広く知られている。かかるFRTPは、通常、単一ストランド、一方向シート(UDシート)、織物、又は不織布の形態の強化繊維に樹脂を含浸させたプリプレグの製造に用いられ、該プリプレグがプレス成形やフィラメントワインディング成形(FW成形)されることにより、構造部材や各種部品などの製品が製造される。 2. Description of the Related Art A continuous fiber reinforced composite material (hereinafter sometimes referred to as “FRTP”) in which a thermoplastic resin is used as a matrix and is combined with a continuous fiber reinforcement is already widely known. Such FRTP is usually used for manufacturing a prepreg in which a reinforcing fiber in the form of a single strand, a unidirectional sheet (UD sheet), a woven fabric, or a non-woven fabric is impregnated with a resin, and the prepreg is formed by press molding or filament winding molding ( Products such as structural members and various parts are manufactured by FW molding.
 FRTPの利用例としては、ガラス繊維、又は炭素繊維等の連続繊維を使用し、一方向配列繊維シートあるいは織編物を作成し、これと熱可塑性樹脂とから作成したプリプレグが挙げられる。これらのプリプレグは、繊維の体積含有率を高くすることができる利点があり、繊維配向方向で弾性率、強度に優れた特性を有する。 Examples of the use of FRTP include a prepreg made from a unidirectionally-arranged fiber sheet or woven or knitted fabric using continuous fibers such as glass fibers or carbon fibers, and a thermoplastic resin. These prepregs have the advantage that the volume content of the fiber can be increased, and have excellent elastic modulus and strength in the fiber orientation direction.
 FRTPを用いたプリプレグの製造においては、マトリックス樹脂の連続繊維への含浸性が重要であり、強度等の機械物性、外観に大きく影響する。FRTPのプリプレグの製造方法としては、溶液法、ホットメルト法、スラリー法、及び流動床法などが一般的に知られている。なかでも樹脂成分を溶融し、連続繊維に含浸させるホットプレス法が簡便だが、樹脂溶融流動性の低いポリカーボネートでは連続繊維との含浸性が悪く、良品を得ることができなかった。 In the manufacture of prepregs using FRTP, the impregnation property of the matrix resin into the continuous fibers is important and greatly affects the mechanical properties such as strength and the appearance. As a method for producing an FRTP prepreg, a solution method, a hot melt method, a slurry method, a fluidized bed method, and the like are generally known. Among them, a hot press method in which a resin component is melted and impregnated into continuous fibers is simple, but polycarbonate with low resin melt flowability has poor impregnation properties with continuous fibers, and a good product cannot be obtained.
 特許文献1は、熱可塑性樹脂の溶融粘度が1,000~15,000ポイズの範囲にある熱可塑性樹脂を使用したチョップドストランドプリプレグに関するものであるが、FRTP板を短冊片に切削したものを使用しているため、大型成形品を成形する場合は充分な剛性が得られない問題があった。さらに、特許文献1においては、プリプレグが難燃性を有することは示唆されていない。 Patent Document 1 relates to a chopped strand prepreg using a thermoplastic resin in which the melt viscosity of the thermoplastic resin is in the range of 1,000 to 15,000 poise, but uses a FRTP plate cut into strips. Therefore, there is a problem that sufficient rigidity cannot be obtained when molding a large molded product. Furthermore, Patent Document 1 does not suggest that the prepreg has flame retardancy.
 特許文献2には、熱可塑性樹脂と炭素繊維からなる複合材料が記載されているが、使用されている熱可塑性樹脂は粘度が高く、炭素繊維との含浸性が悪いため、ペレットを凍結粉砕したパウダー状の樹脂を散布することが好ましいと記載されている。パウダー状の樹脂は、嵩密度が低く空気を含むことから、複合材料中の気泡の除去が不充分となるため外観及び強度に劣るという問題が生じる。また、特許文献2においては、複合材料に難燃剤を含めても良いと記載されているものの、難燃剤及び複合材料の難燃性に関する具体的な開示はなされていない。 Patent Document 2 describes a composite material composed of a thermoplastic resin and carbon fibers. However, since the thermoplastic resin used has a high viscosity and poor impregnation with carbon fibers, the pellets were freeze-ground. It is described that it is preferable to spray a powdery resin. Since the resin in powder form has a low bulk density and contains air, removal of bubbles in the composite material becomes insufficient, resulting in a problem of poor appearance and strength. Further, in Patent Document 2, although it is described that a flame retardant may be included in the composite material, there is no specific disclosure regarding the flame retardant of the flame retardant and the composite material.
 特許文献3においては、250℃の溶融粘度が1~100Pa・sのポリカーボネートを用いた炭素繊維が一方向に並んだ炭素連続繊維強化ポリカーボネート樹脂製プリプレグが記載されている。しかし、特許文献3に記載のプリプレグにおいては、ポリカーボネートの分子量が低いため、熱賦形時に低分子成分による金型汚れが発生しやすく、折り曲げた際の強度が不足するといった問題があった。また、特許文献3においては、ポリカーボネート樹脂が低粘度化されているため、燃焼時に樹脂が火種を持ったまま垂落ちしやすく難燃化には不向きである上に、難燃性を確保することも示唆されていない。 Patent Document 3 describes a prepreg made of a carbon continuous fiber reinforced polycarbonate resin in which carbon fibers using polycarbonate having a melt viscosity at 250 ° C. of 1 to 100 Pa · s are aligned in one direction. However, in the prepreg described in Patent Document 3, there is a problem that mold contamination due to low molecular components is likely to occur at the time of heat forming due to the low molecular weight of polycarbonate, and the strength when bent is insufficient. Moreover, in patent document 3, since the polycarbonate resin is low-viscosity, it is easy to hang down with a fire kind at the time of combustion, and it is unsuitable for incombustibility, and to ensure incombustibility. Neither has been suggested.
特許第2507565号Patent No. 2507565 特開2011-178890号公報JP 2011-178890 A 特開2014-91825号公報JP 2014-91825 A
 本発明の課題は、連続繊維強化材の含浸性、難燃性に優れたポリカーボネート樹脂組成物、及び、難燃性に優れたポリカーボネートプリプレグを提供することにある。 An object of the present invention is to provide a polycarbonate resin composition excellent in impregnation property and flame retardancy of a continuous fiber reinforcement, and a polycarbonate prepreg excellent in flame retardancy.
 本発明者らは上記課題を解決するべく検討を重ねた結果、特定の溶融粘度に調整したポリカーボネートと難燃剤の混合物を連続繊維強化材用含浸剤として使用することで、従来にはなかった、樹脂含浸性に優れ、難燃性にも優れたポリカーボネート樹脂組成物、及びこのように優れた性能を有する樹脂組成物を用いた難燃性の高いポリカーボネートプリプレグを提供できることを見出した。
 すなわち、本発明は、以下に示すものである。
As a result of repeated studies to solve the above problems, the present inventors have used a mixture of a polycarbonate and a flame retardant adjusted to a specific melt viscosity as an impregnating agent for continuous fiber reinforcement, which has not existed in the past. It has been found that a polycarbonate resin composition excellent in resin impregnation and flame retardancy and a highly flame retardant polycarbonate prepreg using the resin composition having such excellent performance can be provided.
That is, the present invention is as follows.
1.ポリカーボネート樹脂(A)60~88質量%、及びリン系難燃剤(B)12~40質量%を含有するポリカーボネート樹脂組成物であって、当該ポリカーボネート樹脂組成物の240℃における流れ値が9~120×0.01cc/secであるポリカーボネート樹脂組成物。 1. A polycarbonate resin composition containing 60 to 88% by mass of a polycarbonate resin (A) and 12 to 40% by mass of a phosphorus-based flame retardant (B), wherein the flow rate at 240 ° C. of the polycarbonate resin composition is 9 to 120. X A polycarbonate resin composition of 0.01 cc / sec.
2.前記リン系難燃剤(B)が、縮合リン酸エステル、及びホスファゼン系難燃剤の少なくともいずれかを含む、上記1.に記載のポリカーボネート樹脂組成物。 2. 1. The phosphorus-based flame retardant (B) includes at least one of a condensed phosphate ester and a phosphazene-based flame retardant. The polycarbonate resin composition described in 1.
3.前記縮合リン酸エステルが、トリフェニルフォスフェート、ビスフェノールAテトラフェニルフォスフェート、レゾルシノールテトラフェニルフォスフェート、レゾルシノールテトラ-2,6-キシレノールフォスフェートのうち少なくともいずれか一つを含み、
 前記ホスファゼン系難燃剤が、フェノキシホスファゼン、(ポリ)トリルオキシホスファゼン、及び(ポリ)フェノキシトリルオキシホスファゼンのうち少なくともいずれか一つを含む、上記2.に記載のポリカーボネート樹脂組成物。
3. The condensed phosphate ester includes at least one of triphenyl phosphate, bisphenol A tetraphenyl phosphate, resorcinol tetraphenyl phosphate, resorcinol tetra-2,6-xylenol phosphate;
2. The phosphazene flame retardant comprising at least one of phenoxyphosphazene, (poly) tolyloxyphosphazene, and (poly) phenoxytolyloxyphosphazene. The polycarbonate resin composition described in 1.
4.上記1.~3.のいずれかに記載のポリカーボネート樹脂組成物を成形して得られるポリカーボネート樹脂フィルム。 4). Above 1. ~ 3. A polycarbonate resin film obtained by molding the polycarbonate resin composition according to any one of the above.
5.上記1.~3.のいずれかに記載のポリカーボネート樹脂組成物を連続繊維強化材(C)に含浸させたポリカーボネートプリプレグであって、連続繊維強化材(C)が体積含有値(Vf値)として25~60%含有されているポリカーボネートプリプレグ。 5. Above 1. ~ 3. A polycarbonate prepreg obtained by impregnating a continuous fiber reinforcement (C) with the polycarbonate resin composition according to any of the above, wherein the continuous fiber reinforcement (C) is contained in a volume content (Vf value) of 25 to 60%. Polycarbonate prepreg.
6.上記4.に記載のポリカーボネート樹脂フィルムを連続繊維強化材(C)に含浸させたポリカーボネートプリプレグであって、連続繊維強化材(C)が体積含有値(Vf値)として25~60%含有されているポリカーボネートプリプレグ。 6). 4. above. A polycarbonate prepreg obtained by impregnating a continuous fiber reinforcement (C) with the polycarbonate resin film described in 1 above, wherein the continuous fiber reinforcement (C) is contained in a volume content (Vf value) of 25 to 60%. .
7.上記5.又は6.に記載のポリカーボネートプリプレグを含有する積層体。 7). 5. above. Or 6. A laminate containing the polycarbonate prepreg described in 1.
8.上記7.に記載の積層体を熱賦形した成形体。 8). Above 7. A molded product obtained by thermally shaping the laminate described in 1.
 本発明のポリカーボネート樹脂組成物は、繊維への高い樹脂含浸性及び優れた難燃性を有しており、よって本発明の連続繊維強化難燃ポリカーボネート樹脂製プリプレグも難燃性にも優れる。このため、本発明の連続繊維強化難燃ポリカーボネート樹脂製プリプレグは、電子電気機器筐体用途などの熱賦形用シート及びフィルムとして好適に使用できる。 The polycarbonate resin composition of the present invention has high resin impregnation into fibers and excellent flame retardancy, and therefore the prepreg made of continuous fiber reinforced flame retardant polycarbonate resin of the present invention is also excellent in flame retardancy. For this reason, the prepreg made of continuous fiber reinforced flame retardant polycarbonate resin of the present invention can be suitably used as a heat-forming sheet and film for electronic and electrical equipment casing applications.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
[ポリカーボネート樹脂(A)]
 本発明で使用されるポリカーボネート樹脂(A)(以下「(A)成分」と称す場合がある。)の種類には、特に制限はないものの、ポリカーボネート樹脂が好ましく、芳香族ポリカーボネート樹脂の使用が特に好ましい。ポリカーボネート樹脂は、ジヒドロキシ化合物又はこれと少量のポリヒドロキシ化合物を、ホスゲン又は炭酸ジエステルと反応させることによって得られる、分岐していてもよい熱可塑性重合体又は共重合体である。ポリカーボネート樹脂の製造方法は、特に限定されるものではなく、従来公知のホスゲン法(界面重合法)や溶融法(エステル交換法)により製造したものを使用することができる。また、溶融法を用いた場合には、末端基のOH基量を調整したポリカーボネート樹脂を使用することができる。
[Polycarbonate resin (A)]
The type of the polycarbonate resin (A) (hereinafter sometimes referred to as “component (A)”) used in the present invention is not particularly limited, but is preferably a polycarbonate resin, and particularly preferably an aromatic polycarbonate resin. preferable. The polycarbonate resin is an optionally branched thermoplastic polymer or copolymer obtained by reacting a dihydroxy compound or a small amount thereof with phosgene or a carbonic acid diester. The production method of the polycarbonate resin is not particularly limited, and a polycarbonate resin produced by a conventionally known phosgene method (interfacial polymerization method) or a melting method (transesterification method) can be used. Further, when the melting method is used, a polycarbonate resin in which the amount of OH groups of terminal groups is adjusted can be used.
 原料のジヒドロキシ化合物としては、2,2-ビス(4-ヒドロキシフェニル)プロパン(=ビスフェノールA)、テトラメチルビスフェノールA、ビス(4-ヒドロキシフェニル)-p-ジイソプロピルベンゼン、ハイドロキノン、レゾルシノール、4,4-ジヒドロキシジフェニル等が挙げられ、好ましくはビスフェノールAが挙げられる。また、上記の芳香族ジヒドロキシ化合物にスルホン酸テトラアルキルホスホニウムが1個以上結合した化合物を使用することもできる。 Examples of the raw material dihydroxy compound include 2,2-bis (4-hydroxyphenyl) propane (= bisphenol A), tetramethylbisphenol A, bis (4-hydroxyphenyl) -p-diisopropylbenzene, hydroquinone, resorcinol, 4,4 -Dihydroxydiphenyl etc. are mentioned, Preferably bisphenol A is mentioned. In addition, a compound in which one or more tetraalkylphosphonium sulfonates are bonded to the above aromatic dihydroxy compound can also be used.
 分岐したポリカーボネート樹脂を得るには、上述したジヒドロキシ化合物の一部を、以下の分岐剤、即ち、フロログルシン、4,6-ジメチル-2,4,6-トリ(4-ヒドロキシフェニル)ヘプテン、2,4-ジメチル-2,4,6-トリ(4-ヒドロキシフェニル)ヘプタン、2,6-ジメチル-2,4,6-トリ(4-ヒドロキシフェニル)-3-ヘプテン、1,3,5-トリ(4-ヒドロキシフェニル)ベンゼン、1,1,1-トリ(4-ヒドロキシフェニル)エタン等のポリヒドロキシ化合物や、3,3-ビス(4-ヒドロキシアリール)オキシインドール(=イサチンビスフェノール)、5-クロルイサチン、5,7-ジクロルイサチン、5-ブロムイサチン等の化合物で置換すればよい。これら置換する化合物の使用量は、ジヒドロキシ化合物に対して、通常0.01~10モル%であり、好ましくは0.1~2モル%である。 In order to obtain a branched polycarbonate resin, a part of the above-mentioned dihydroxy compound is mixed with the following branching agents: phloroglucin, 4,6-dimethyl-2,4,6-tri (4-hydroxyphenyl) heptene, 2, 4-dimethyl-2,4,6-tri (4-hydroxyphenyl) heptane, 2,6-dimethyl-2,4,6-tri (4-hydroxyphenyl) -3-heptene, 1,3,5-tri Polyhydroxy compounds such as (4-hydroxyphenyl) benzene, 1,1,1-tri (4-hydroxyphenyl) ethane, 3,3-bis (4-hydroxyaryl) oxindole (= isatin bisphenol), 5 -It may be substituted with a compound such as chlorisatin, 5,7-dichloroisatin, 5-bromoisatin and the like. The amount of the compound to be substituted is usually 0.01 to 10 mol%, preferably 0.1 to 2 mol%, based on the dihydroxy compound.
 ポリカーボネート樹脂(A)としては、上述した中でも、2,2-ビス(4-ヒドロキシフェニル)プロパンから誘導されるポリカーボネート樹脂、又は、2,2-ビス(4-ヒドロキシフェニル)プロパンと他の芳香族ジヒドロキシ化合物とから誘導されるポリカーボネート共重合体が好ましい。また、シロキサン構造を有するポリマー又はオリゴマーとの共重合体等の、ポリカーボネート樹脂を主体とする共重合体であってもよい。 As the polycarbonate resin (A), among the above-mentioned, polycarbonate resin derived from 2,2-bis (4-hydroxyphenyl) propane, or 2,2-bis (4-hydroxyphenyl) propane and other aromatics Polycarbonate copolymers derived from dihydroxy compounds are preferred. Further, it may be a copolymer mainly composed of a polycarbonate resin, such as a copolymer with a polymer or oligomer having a siloxane structure.
 上述したポリカーボネート樹脂は1種を単独で用いてもよく、2種以上を混合して用いてもよい。 The above-described polycarbonate resins may be used alone or in combination of two or more.
 ポリカーボネート樹脂(A)の分子量を調節するには、一価のヒドロキシ化合物、例えば芳香族ヒドロキシ化合物を用いればよく、この一価の芳香族ヒドロキシ化合物としては、例えば、m-及びp-メチルフェノール、m-及びp-プロピルフェノール、p-tert-ブチルフェノール、p-長鎖アルキル置換フェノール等が挙げられる。 In order to adjust the molecular weight of the polycarbonate resin (A), a monovalent hydroxy compound such as an aromatic hydroxy compound may be used. Examples of the monovalent aromatic hydroxy compound include m- and p-methylphenol, m- and p-propylphenol, p-tert-butylphenol, p-long chain alkyl-substituted phenol and the like.
 本発明で用いるポリカーボネート樹脂(A)の分子量は用途により任意であり、適宜選択して決定すればよいが、成形性、成形品の強度等の点から、ポリカーボネート樹脂(A)、好ましくは芳香族ポリカーボネート樹脂(A)の分子量は、粘度平均分子量[Mv]で、15,000~40,000、特に15,000~30,000であることが好ましい。ポリカーボネート樹脂(A)の粘度平均分子量が15,000以上であると機械的強度がより向上する傾向にあり、機械的強度の要求の高い用途に用いる場合により好ましいものとなる。一方、ポリカーボネート樹脂(A)の粘度平均分子量が40,000以下であることで流動性の低下がより抑制されて改善される傾向にあり、成形加工性容易性、及び難燃性の観点からより好ましい。ここでの粘度平均分子量〔Mv〕は溶液粘度から換算した粘度平均分子量[Mv]で溶媒としてメチレンクロライドを使用し、ウベローデ粘度計を用いて温度20℃での極限粘度[η](単位dl/g)を求め、Schnellの粘度式、すなわち、η=1.23×10-4Mv0.83、から算出される値(粘度平均分子量:Mv)を意味する。ここで極限粘度[η]とは各溶液濃度[C](g/dl)での比粘度[ηsp]を測定し、下記式により算出した値である。 The molecular weight of the polycarbonate resin (A) used in the present invention is arbitrary depending on the use and may be appropriately selected and determined. From the viewpoint of moldability, strength of the molded product, etc., the polycarbonate resin (A), preferably aromatic The molecular weight of the polycarbonate resin (A) is preferably 15,000 to 40,000, particularly 15,000 to 30,000, in terms of viscosity average molecular weight [Mv]. When the viscosity average molecular weight of the polycarbonate resin (A) is 15,000 or more, the mechanical strength tends to be further improved, and it is more preferable when used for applications requiring high mechanical strength. On the other hand, when the viscosity average molecular weight of the polycarbonate resin (A) is 40,000 or less, a decrease in fluidity tends to be suppressed and improved, and from the viewpoint of ease of molding processability and flame retardancy. preferable. The viscosity average molecular weight [Mv] here is the viscosity average molecular weight [Mv] converted from the solution viscosity, using methylene chloride as a solvent, and using an Ubbelohde viscometer, the intrinsic viscosity [η] (unit dl / g) is calculated and means a value (viscosity average molecular weight: Mv) calculated from Schnell's viscosity formula, that is, η = 1.23 × 10 −4 Mv 0.83 . Here, the intrinsic viscosity [η] is a value calculated from the following equation by measuring the specific viscosity [η sp ] at each solution concentration [C] (g / dl).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
[リン系難燃剤(B)]
 本発明のポリカーボネート樹脂組成物は、詳細を後述する繊維への熱溶融時の含浸性の向上、及び難燃性の改善のためにリン系難燃剤(B)を含有する。
[Phosphorus flame retardant (B)]
The polycarbonate resin composition of the present invention contains a phosphorus-based flame retardant (B) in order to improve the impregnation property at the time of hot-melting into fibers, which will be described in detail later, and to improve the flame retardancy.
 リン系難燃剤(B)としては、リン酸エステル系難燃剤、ホスファゼン系難燃剤等を用いることができる。
リン系難燃剤(B)は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。リン系難燃剤(B)としては、中でも難燃化効果が高く、流動性向上効果があり、金型腐食が生じにくいことから、リン酸エステル系難燃剤が好ましく用いられる。
As the phosphorus-based flame retardant (B), a phosphate ester-based flame retardant, a phosphazene-based flame retardant, or the like can be used.
As the phosphorus-based flame retardant (B), one type may be used alone, or two or more types may be mixed and used. As the phosphorus-based flame retardant (B), a phosphate ester-based flame retardant is preferably used because of its high flame retarding effect, fluidity improving effect, and resistance to mold corrosion.
<リン酸エステル系難燃剤>
 リン系難燃剤(B)として用いられるリン酸エステル系難燃剤は特に限定されないが、このリン酸エステル系難燃剤としては、下記の一般式(II)で表されるリン酸エステル系化合物が好ましい。
<Phosphate ester flame retardant>
The phosphate ester flame retardant used as the phosphorus flame retardant (B) is not particularly limited, but the phosphate ester flame retardant is preferably a phosphate ester compound represented by the following general formula (II). .
Figure JPOXMLDOC01-appb-C000002
(式(II)中、R、R、R及びRは、各々独立に、炭素数1~6のアルキル基又はアルキル基で置換されていてもよい炭素数6~20のアリール基を示し、p、q、r及びsは、各々独立に0又は1であり、tは、1~5の整数であり、Xは、アリーレン基を示す。)
Figure JPOXMLDOC01-appb-C000002
(In the formula (II), R 1 , R 2 , R 3 and R 4 are each independently an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 20 carbon atoms which may be substituted with an alkyl group) P, q, r and s are each independently 0 or 1, t is an integer of 1 to 5, and X is an arylene group.
 上記一般式(II)において、R~Rのアリール基としては、フェニル基、ナフチル基等が挙げられる。また、Xのアリーレン基としては、フェニレン基、ナフチレン基が挙げられる。tが0の場合、一般式(II)で表される化合物はリン酸エステルであり、tが0より大きい場合は縮合リン酸エステル(混合物を含む)である。本発明には、特に縮合リン酸エステルが好適に用いられる。 In the general formula (II), examples of the aryl group represented by R 1 to R 4 include a phenyl group and a naphthyl group. Examples of the arylene group for X include a phenylene group and a naphthylene group. When t is 0, the compound represented by formula (II) is a phosphate ester, and when t is greater than 0, it is a condensed phosphate ester (including a mixture). In the present invention, a condensed phosphate ester is particularly preferably used.
 上記一般式(II)で表されるリン酸エステル系難燃剤としては、具体的には、トリメチルフォスフェート、トリエチルフォスフェート、トリブチルフォスフェート、トリオクチルフォスフェート、トリブトキシエチルフォスフェート、トリフェニルフォスフェート、トリクレジルフォスフェート、トリクレジルフェニルフォスフェート、オクチルジフェニルフォスフェート、ジイソプロピルフェニルフォスフェート、トリス(クロルエチル)フォスフェート、トリス(ジクロルプロピル)フォスフェート、トリス(クロルプロピル)フォスフェート、ビス(2,3-ジブロモプロピル)フォスフェート、ビス(2,3-ジブロモプロピル)-2,3-ジクロルフォスフェート、ビス(クロルプロピル)モノオクチルフォスフェート、ビスフェノールAテトラフェニルフォスフェート、ビスフェノールAテトラクレジルジフォスフェート、ビスフェノールAテトラキシリルジフォスフェート、ヒドロキノンテトラフェニルジフォスフェート、ヒドロキノンテトラクレジルフォスフェート、ヒドロキノンテトラキシリルジフォスフェート、レゾルシノールテトラフェニルフォスフェート、レゾルシノールテトラ-2,6-キシレノールフォスフェート、レゾルシノールビスジキシレニルホスフェート等の種々のものが例示される。これらのうち好ましくは、トリフェニルフォスフェート、ビスフェノールAテトラフェニルフォスフェート、レゾルシノールテトラフェニルフォスフェート、レゾルシノールテトラ-2,6-キシレノールフォスフェート等が挙げられる。 Specific examples of the phosphate ester flame retardant represented by the general formula (II) include trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, tributoxyethyl phosphate, triphenyl phosphate. Fate, tricresyl phosphate, tricresyl phenyl phosphate, octyl diphenyl phosphate, diisopropyl phenyl phosphate, tris (chloroethyl) phosphate, tris (dichloropropyl) phosphate, tris (chloropropyl) phosphate, bis (2,3-dibromopropyl) phosphate, bis (2,3-dibromopropyl) -2,3-dichlorophosphate, bis (chloropropyl) monooctylphosphate, bis Enol A tetraphenyl phosphate, bisphenol A tetracresyl diphosphate, bisphenol A tetraxylyl diphosphate, hydroquinone tetraphenyl diphosphate, hydroquinone tetracresyl phosphate, hydroquinone tetraxyl diphosphate, resorcinol tetraphenyl phosphate, Examples thereof include resorcinol tetra-2,6-xylenol phosphate, resorcinol bisdixylenyl phosphate and the like. Of these, triphenyl phosphate, bisphenol A tetraphenyl phosphate, resorcinol tetraphenyl phosphate, resorcinol tetra-2,6-xylenol phosphate and the like are preferable.
<ホスファゼン系難燃剤>
 ホスファゼン系難燃剤は、縮合リン酸エステルよりも耐熱性の低下が低いため、本発明で最も効果的なリン系難燃剤として用いられる。ホスファゼン系難燃剤は、分子中にP=N結合を有する有機化合物であり、ホスファゼン系難燃剤としては、好ましくは下記一般式(IIIa)で表される環状ホスファゼン化合物、下記一般式(IIIb)で表される鎖状ホスファゼン化合物、及び架橋基によって架橋されてなる架橋ホスファゼン化合物が挙げられる。特に、下記一般式(IIIa)及び下記一般式(IIIb)からなる群より選択される少なくとも一種のホスファゼン化合物が架橋されたものの使用が好ましい。また、架橋ホスファゼン化合物を形成する架橋基としては、下記一般式(IIIc)で表される架橋基が、得られる架橋ホスファゼン化合物の難燃性の点から好ましい。
<Phosphazene flame retardant>
The phosphazene flame retardant is used as the most effective phosphorus flame retardant in the present invention because it has a lower heat resistance than the condensed phosphate ester. The phosphazene-based flame retardant is an organic compound having a P═N bond in the molecule, and the phosphazene-based flame retardant is preferably a cyclic phosphazene compound represented by the following general formula (IIIa) or a general formula (IIIb) below. Examples thereof include a chain phosphazene compound represented by the formula and a crosslinked phosphazene compound formed by crosslinking with a crosslinking group. In particular, it is preferable to use a crosslinked product of at least one phosphazene compound selected from the group consisting of the following general formula (IIIa) and the following general formula (IIIb). Moreover, as a crosslinking group which forms a bridge | crosslinking phosphazene compound, the crosslinking group represented by the following general formula (IIIc) is preferable from the flame retardance point of the bridge | crosslinking phosphazene compound obtained.
Figure JPOXMLDOC01-appb-C000003
(式(IIIa)中、mは3~25の整数であり、Rは、同一又は異なっていてもよく、アリール基又はアルキルアリール基を示す。)
Figure JPOXMLDOC01-appb-C000003
(In Formula (IIIa), m is an integer of 3 to 25, and R 5 may be the same or different and represents an aryl group or an alkylaryl group.)
Figure JPOXMLDOC01-appb-C000004
(式(IIIb)中、nは3~10,000の整数であり、Zは、-N=P(OR基又は-N=P(O)OR基を示し、Yは、-P(OR基又は-P(O)(OR基を示す。Rは、同一又は異なっていてもよく、アリール基又はアルキルアリール基を示す。)
Figure JPOXMLDOC01-appb-C000004
(In the formula (IIIb), n is an integer of 3 to 10,000, Z represents a —N═P (OR 5 ) 3 group or a —N═P (O) OR 5 group, and Y represents a — 4 represents P (OR 5 ) 4 group or —P (O) (OR 5 ) 2 group, R 5 may be the same or different and represents an aryl group or an alkylaryl group.
Figure JPOXMLDOC01-appb-C000005
(式(IIIc)中、Aは-C(CH-、-SO-、-S-、又は-O-であり、lは0又は1である。)
Figure JPOXMLDOC01-appb-C000005
(In the formula (IIIc), A is —C (CH 3 ) 2 —, —SO 2 —, —S—, or —O—, and l is 0 or 1.)
 一般式(IIIa)で表される環状ホスファゼン化合物としては、Rがフェニル基である環状フェノキシホスファゼンが特に好ましい。このような環状フェノキシホスファゼン化合物としては、例えば、塩化アンモニウムと五塩化リンとを120~130℃の温度で反応させて得られる環状及び直鎖状のクロロホスファゼン混合物から、ヘキサクロロシクロトリホスファゼン、オクタクロロシクロテトラホスファゼン、デカクロロシクロペンタホスファゼン等の環状のクロルホスファゼンを取り出した後に、クロル基(塩素)をフェノキシ基で置換して得られる、フェノキシシクロトリホスファゼン、オクタフェノキシシクロテトラホスファゼン、デカフェノキシシクロペンタホスファゼン等の化合物が挙げられる。また、該環状フェノキシホスファゼン化合物は、一般式(IIIa)中のmが3~8の整数である化合物が好ましく、mの異なる化合物の混合物であってもよい。なかでも、m=3のものが50質量%以上、m=4のものが10~40質量%、m=5以上のものが合わせて30質量%以下である化合物の混合物が好ましい。
 一般式(IIIa)で表される環状フェノキシホスファゼン化合物として、具体的には、フェノキシホスファゼン、(ポリ)トリルオキシホスファゼン(例えば、o-トリルオキシホスファゼン、m-トリルオキシホスファゼン、p-トリルオキシホスファゼン、o,m-トリルオキシホスファゼン、o,p-トリルオキシホスファゼン、m,p-トリルオキシホスファゼン、o,m,p-トリルオキシホスファゼン等)、(ポリ)キシリルオキシホスファゼン等の環状C1-6アルキルC6-20アリールオキシホスファゼンや、(ポリ)フェノキシトリルオキシホスファゼン(例えば、フェノキシo-トリルオキシホスファゼン、フェノキシm-トリルオキシホスファゼン、フェノキシp-トリルオキシホスファゼン、フェノキシo,m-トリルオキシホスファゼン、フェノキシo,p-トリルオキシホスファゼン、フェノキシm,p-トリルオキシホスファゼン、フェノキシo,m,p-トリルオキシホスファゼン等)、(ポリ)フェノキシキシリルオキシホスファゼン、(ポリ)フェノキシトリルオキシキシリルオキシホスファゼン等の環状C6-20アリールC1-10アルキルC6-20アリールオキシホスファゼン等が例示でき、好ましくは環状フェノキシホスファゼン、環状C1-3アルキルC6-20アリールオキシホスファゼン、C6-20アリールオキシC1-3アルキルC6-20アリールオキシホスファゼン(例えば、環状トリルオキシホスファゼン、環状フェノキシトリルフェノキシホスファゼン等)である。
 なお、「C1-6」の記載は「炭素数1~6の」を意味し、「C6-20」「C1-10」等についても同様である。また、「(ポリ)フェノキシ・・・」の記載は「フェノキシ・・・」と「ポリフェノキシ・・・」の一方、又は両方をさす。
As the cyclic phosphazene compound represented by the general formula (IIIa), cyclic phenoxyphosphazene in which R 5 is a phenyl group is particularly preferable. Examples of such cyclic phenoxyphosphazene compounds include hexachlorocyclotriphosphazene, octachlorochloromethane, and a mixture of cyclic and linear chlorophosphazene obtained by reacting ammonium chloride and phosphorus pentachloride at a temperature of 120 to 130 ° C. Cyclic chlorophosphazenes such as cyclotetraphosphazene, decachlorocyclopentaphosphazene, etc. are taken out, and then obtained by substituting the chloro group (chlorine) with a phenoxy group. And compounds such as phosphazene. The cyclic phenoxyphosphazene compound is preferably a compound in which m in the general formula (IIIa) is an integer of 3 to 8, and may be a mixture of compounds having different m. Among them, a mixture of compounds in which m = 3 is 50% by mass or more, m = 4 is 10 to 40% by mass, and m = 5 or more is 30% by mass or less is preferable.
Specific examples of the cyclic phenoxyphosphazene compound represented by the general formula (IIIa) include phenoxyphosphazene, (poly) tolyloxyphosphazene (for example, o-tolyloxyphosphazene, m-tolyloxyphosphazene, p-tolyloxyphosphazene, cyclic C 1-6 such as o, m-tolyloxyphosphazene, o, p-tolyloxyphosphazene, m, p-tolyloxyphosphazene, o, m, p-tolyloxyphosphazene, and (poly) xylyloxyphosphazene and alkyl C 6-20 aryloxy phosphazene, (poly) phenoxy tolyloxy phosphazene (e.g., phenoxy o- tolyloxy phosphazene, a phenoxy m- tolyloxyethyl phosphazene, a phenoxy p- tolyloxy phosphazene, a phenoxy o, -Tolyloxyphosphazene, phenoxy o, p-tolyloxyphosphazene, phenoxy m, p-tolyloxyphosphazene, phenoxy o, m, p-tolyloxyphosphazene, etc.), (poly) phenoxysilyloxyphosphazene, (poly) phenoxytolyl Examples thereof include cyclic C 6-20 aryl C 1-10 alkyl C 6-20 aryloxy phosphazenes such as oxyxyloxy phosphazene, preferably cyclic phenoxy phosphazenes, cyclic C 1-3 alkyl C 6-20 aryloxy phosphazenes, C 6-20 aryloxy C 1-3 alkylC 6-20 aryloxyphosphazene (for example, cyclic tolyloxyphosphazene, cyclic phenoxytolylphenoxyphosphazene, etc.).
Note that the description of “C 1-6 ” means “having 1 to 6 carbon atoms”, and the same applies to “C 6-20 ”, “C 1-10 ”, and the like. The description of “(poly) phenoxy...” Indicates one or both of “phenoxy...” And “polyphenoxy.
 一般式(IIIb)で表される鎖状ホスファゼン化合物としては、Rがフェニル基である鎖状フェノキシホスファゼンが特に好ましい。このような鎖状フェノキシホスファゼン化合物としては、例えば、上記の方法で得られるヘキサクロロシクロトリホスファゼンを220~250℃の温度で開還重合し、得られた重合度3~10,000の直鎖状ジクロロホスファゼンのクロロ基(塩素)をフェノキシ基で置換することにより得られる化合物が挙げられる。該直鎖状フェノキシホスファゼン化合物の、一般式(IIIb)中のnは、好ましくは3~1,000、より好ましくは3~100、さらに好ましくは3~25である。
 一般式(IIIb)で表される鎖状フェノキシホスファゼン化合物として、具体的には、フェノキシホスファゼン、(ポリ)トリルオキシホスファゼン(例えば、o-トリルオキシホスファゼン、m-トリルオキシホスファゼン、p-トリルオキシホスファゼン、o,m-トリルオキシホスファゼン、o,p-トリルオキシホスファゼン、m,p-トリルオキシホスファゼン、o,m,p-トリルオキシホスファゼン等)、(ポリ)キシリルオキシホスファゼン等の鎖状C1-6アルキルC6-20アリールオキシホスファゼンや、(ポリ)フェノキシトリルオキシホスファゼン(例えば、フェノキシo-トリルオキシホスファゼン、フェノキシm-トリルオキシホスファゼン、フェノキシp-トリルオキシホスファゼン、フェノキシo,m-トリルオキシホスファゼン、フェノキシo,p-トリルオキシホスファゼン、フェノキシm,p-トリルオキシホスファゼン、フェノキシo,m,p-トリルオキシホスファゼン等)、(ポリ)フェノキシキシリルオキシホスファゼン、(ポリ)フェノキシトリルオキシキシリルオキシホスファゼン等の鎖状C6-20アリールC1-10アルキルC6-20アリールオキシホスファゼン等が例示でき、好ましくは鎖状フェノキシホスファゼン、鎖状C1-3アルキルC6-20アリールオキシホスファゼン、C6-20アリールオキシC1-3アルキルC6-20アリールオキシホスファゼン(例えば、鎖状トリルオキシホスファゼン、鎖状フェノキシトリルフェノキシホスファゼン等)である。
As the chain phosphazene compound represented by the general formula (IIIb), chain phenoxyphosphazene in which R 5 is a phenyl group is particularly preferable. As such a chain phenoxyphosphazene compound, for example, hexachlorocyclotriphosphazene obtained by the above-described method is subjected to reversion polymerization at a temperature of 220 to 250 ° C., and the resulting linear chain having a polymerization degree of 3 to 10,000 is obtained. Examples include compounds obtained by substituting the chloro group (chlorine) of dichlorophosphazene with a phenoxy group. N in the general formula (IIIb) of the linear phenoxyphosphazene compound is preferably 3 to 1,000, more preferably 3 to 100, and further preferably 3 to 25.
Specific examples of the chain phenoxyphosphazene compound represented by the general formula (IIIb) include phenoxyphosphazene, (poly) tolyloxyphosphazene (for example, o-tolyloxyphosphazene, m-tolyloxyphosphazene, p-tolyloxyphosphazene). , o, m-tolyl oxy phosphazene, o, p-tolyloxy phosphazene, m, p-tolyloxy phosphazene, o, m, p-tolyloxy phosphazene, etc.), (poly) key chain C 1 such silyloxy phosphazene -6 and alkyl C 6-20 aryloxy phosphazene, (poly) phenoxy tolyloxy phosphazene (e.g., phenoxy o- tolyloxy phosphazene, a phenoxy m- tolyloxyethyl phosphazene, a phenoxy p- tolyloxy phosphazene, a phenoxy o, -Tolyloxyphosphazene, phenoxy o, p-tolyloxyphosphazene, phenoxy m, p-tolyloxyphosphazene, phenoxy o, m, p-tolyloxyphosphazene, etc.), (poly) phenoxysilyloxyphosphazene, (poly) phenoxytolyl Examples thereof include chain C 6-20 aryl C 1-10 alkyl C 6-20 aryloxy phosphazene such as oxyxyloxy phosphazene, preferably chain phenoxy phosphazene, chain C 1-3 alkyl C 6-20 aryl, etc. Oxyphosphazenes, C 6-20 aryloxy C 1-3 alkyl C 6-20 aryloxyphosphazenes (eg, chained tolyloxyphosphazenes, chained phenoxytolylphenoxyphosphazenes, etc.).
 また、架橋ホスファゼン化合物としては、一般式(IIIa)においてRがフェニル基である環状フェノキシホスファゼン化合物が上記一般式(IIIc)で表される架橋基によって架橋されてなる架橋フェノキシホスファゼン化合物、又は、上記一般式(IIIb)においてRがフェニル基である鎖状フェノキシホスファゼン化合物が上記一般式(IIIc)で表される架橋基によって架橋されてなる架橋フェノキシホスファゼン化合物が難燃性の点から好ましく、環状フェノキシホスファゼン化合物が上記一般式(IIIc)で表される架橋基によって架橋されてなる架橋フェノキシホスファゼン化合物がより好ましい。 Moreover, as the crosslinked phosphazene compound, a crosslinked phenoxyphosphazene compound obtained by crosslinking a cyclic phenoxyphosphazene compound in which R 5 is a phenyl group in the general formula (IIIa) with a crosslinking group represented by the general formula (IIIc), or A crosslinked phenoxyphosphazene compound obtained by crosslinking the chain phenoxyphosphazene compound in which R 5 is a phenyl group in the general formula (IIIb) with a crosslinking group represented by the general formula (IIIc) is preferable from the viewpoint of flame retardancy, A crosslinked phenoxyphosphazene compound obtained by crosslinking a cyclic phenoxyphosphazene compound with a crosslinking group represented by the general formula (IIIc) is more preferable.
 架橋フェノキシホスファゼン化合物としては、例えば、4,4’-スルホニルジフェニレン(ビスフェノールS残基)の架橋構造を有する化合物、2,2-(4,4’-ジフェニレン)イソプロピリデン基の架橋構造を有する化合物、4,4’-オキシジフェニレン基の架橋構造を有する化合物、4,4’-チオジフェニレン基の架橋構造を有する化合物等の、4,4’-ジフェニレン基の架橋構造を有する化合物等が挙げられる。 Examples of the bridged phenoxyphosphazene compound include a compound having a crosslinked structure of 4,4′-sulfonyldiphenylene (bisphenol S residue) and a crosslinked structure of 2,2- (4,4′-diphenylene) isopropylidene group. Compounds having a 4,4′-oxydiphenylene group crosslinked structure, compounds having a 4,4′-thiodiphenylene group crosslinked structure, etc., compounds having a 4,4′-diphenylene group crosslinked structure, etc. Is mentioned.
 また、架橋フェノキシホスファゼン化合物中のフェニレン基の含有量は、一般式(IIIa)で表される環状ホスファゼン化合物及び/又は一般式(IIIb)で表される鎖状フェノキシホスファゼン化合物中の全フェニル基及びフェニレン基数を基準として、通常50~99.9%、好ましくは70~90%である。また、該架橋フェノキシホスファゼン化合物は、その分子内にフリーの水酸基を有しない化合物であることが特に好ましい。 The content of the phenylene group in the crosslinked phenoxyphosphazene compound is such that the cyclic phosphazene compound represented by the general formula (IIIa) and / or the all phenyl groups in the chain phenoxyphosphazene compound represented by the general formula (IIIb) and Based on the number of phenylene groups, it is usually 50 to 99.9%, preferably 70 to 90%. The crosslinked phenoxyphosphazene compound is particularly preferably a compound having no free hydroxyl group in the molecule.
 本発明においては、フェノキシホスファゼン化合物は、上記一般式(IIIa)で表される環状フェノキシホスファゼン化合物、及び、上記一般式(IIIa)で表される環状フェノキシホスファゼン化合物が架橋基によって架橋されてなる架橋型の環状フェノキシホスファゼン化合物よる成る群から選択される少なくとも1種であることが、難燃性及び機械的特性の点から好ましい。市販品の環状ホスファゼン系難燃剤としては、例えば、フェノキシホスファゼンである伏見製薬所社製の「ラビトルFP110」及び大塚化学社製の「SPS100」等が挙げられる。 In the present invention, the phenoxyphosphazene compound is a crosslinked product obtained by crosslinking the cyclic phenoxyphosphazene compound represented by the general formula (IIIa) and the cyclic phenoxyphosphazene compound represented by the general formula (IIIa) with a crosslinking group. From the viewpoint of flame retardancy and mechanical properties, at least one selected from the group consisting of cyclic phenoxyphosphazene compounds of the type is preferred. Examples of the commercially available cyclic phosphazene-based flame retardant include “Ravitor FP110” manufactured by Fushimi Pharmaceutical Co., Ltd., which is phenoxyphosphazene, and “SPS100” manufactured by Otsuka Chemical Co., Ltd.
[ポリカーボネート樹脂組成物]
 本発明のポリカーボネート樹脂組成物は、上記ポリカーボネート樹脂(A)を60~88質量%、及び上記リン系難燃剤(B)を12~40質量%を含有する。
 ポリカーボネート樹脂(A)の好ましい含有量は、70~85質量%であり、より好ましくは、75~85質量%である。
 また、ポリカーボネート樹脂組成物におけるリン系難燃剤(B)の含有量は、ポリカーボネート樹脂組成物の流れ値(240℃、160kg/cm)が9~120×0.01(cc/sec)、好ましくは10~60×0.01(cc/sec)になるようにコントロールする必要がある。具体的なリン系難燃剤(B)の添加量としては、難燃性及び耐熱性の点から12~40質量%が好ましく、さらに15~30質量%が好ましく用いられる。リン系難燃剤(B)の添加量が12質量%以上であることにより、難燃効果、繊維含浸性が良好であり、組成物の所望の物性が得られる。またリン系難燃剤(B)の添加量が40質量%以下であることにより、耐熱性、及びマトリックス樹脂の靱性の低下を抑制できる。
[Polycarbonate resin composition]
The polycarbonate resin composition of the present invention contains 60 to 88% by mass of the polycarbonate resin (A) and 12 to 40% by mass of the phosphorus flame retardant (B).
The content of the polycarbonate resin (A) is preferably 70 to 85% by mass, and more preferably 75 to 85% by mass.
The content of the phosphorus-based flame retardant (B) in the polycarbonate resin composition is preferably 9 to 120 × 0.01 (cc / sec), the flow value (240 ° C., 160 kg / cm 2 ) of the polycarbonate resin composition. Must be controlled to be 10 to 60 × 0.01 (cc / sec). The specific amount of the phosphorus-based flame retardant (B) added is preferably 12 to 40% by mass, more preferably 15 to 30% by mass from the viewpoint of flame retardancy and heat resistance. When the addition amount of the phosphorus-based flame retardant (B) is 12% by mass or more, the flame retardant effect and the fiber impregnation property are good, and desired physical properties of the composition can be obtained. Moreover, when the addition amount of a phosphorus flame retardant (B) is 40 mass% or less, the heat resistance and the fall of the toughness of a matrix resin can be suppressed.
 ポリカーボネート樹脂組成物においては、上述のように、240℃における流れ値が9~120×0.01cc/secである(160kg/cm)。このようにポリカーボネート樹脂組成物の流れ値を調整することにより、詳細を後述する繊維に対する樹脂組成物の含浸性、樹脂組成物の耐熱性、及びその樹脂組成物を用いて製造したプリプレグの難燃効果がいずれも良好となり、これらの物性の優れたバランスを実現できる。 In the polycarbonate resin composition, as described above, the flow value at 240 ° C. is 9 to 120 × 0.01 cc / sec (160 kg / cm 2 ). Thus, by adjusting the flow value of the polycarbonate resin composition, the impregnation property of the resin composition with respect to fibers, the heat resistance of the resin composition, and the flame retardance of the prepreg produced using the resin composition will be described in detail later. All the effects are good, and an excellent balance of these physical properties can be realized.
・難燃剤・滴下防止剤
 本発明の芳香族ポリカーボネート樹脂組成物は、本発明の(B)成分以外の難燃剤、滴下防止剤をさらに含有していてもよい。
-Flame retardant and anti-dripping agent The aromatic polycarbonate resin composition of the present invention may further contain a flame retardant other than the component (B) of the present invention and an anti-drip agent.
 上記(B)成分以外の難燃剤としては、ハロゲン化ビスフェノールAのポリカーボネート、ブロム化ビスフェノール系エポキシ樹脂、ブロム化ビスフェノール系フェノキシ樹脂、ブロム化ポリスチレンなどのハロゲン系難燃剤、ジフェニルスルホン-3,3’-ジスルホン酸ジカリウム、ジフェニルスルホン-3-スルホン酸カリウム、パーフルオロブタンスルホン酸カリウムなどの有機金属塩系難燃剤、ポリオルガノシロキサン系難燃剤等が挙げられる。 Examples of the flame retardant other than the component (B) include halogenated bisphenol A polycarbonate, brominated bisphenol epoxy resin, brominated bisphenol phenoxy resin, halogenated flame retardant such as brominated polystyrene, diphenylsulfone-3,3 ′, and the like. -Organic metal salt flame retardants such as dipotassium disulfonate, potassium diphenylsulfone-3-sulfonate, potassium perfluorobutanesulfonate, and polyorganosiloxane flame retardants.
 また、滴下防止剤としては、例えばポリフルオロエチレンなどのフッ素化ポリオレフィンが挙げられ、好ましくはフィブリル形成能を有するポリテトラフルオロエチレンが挙げられる。これは、重合体中に容易に分散し、且つ、重合体同士を結合して繊維状材料を作る傾向を示すものである。フィブリル形成能を有するポリテトラフルオロエチレンはASTM規格でタイプ3に分類される。ポリテトラフルオロエチレンとしては、固体形状の他、水性分散液形態のものも使用可能である。フィブリル形成能を有するポリテトラフルオロエチレンとしては、例えば三井・デュポンフロロケミカル(株)より、テフロン(登録商標)6J又はテフロン(登録商標)30Jとして、又はダイキン工業(株)よりポリフロン(商品名)として市販されている。 Also, examples of the anti-dripping agent include fluorinated polyolefins such as polyfluoroethylene, and preferably polytetrafluoroethylene having fibril forming ability. This shows the tendency to disperse | distribute easily in a polymer and to make a fibrous material by couple | bonding polymers. Polytetrafluoroethylene having fibril-forming ability is classified as type 3 according to the ASTM standard. As polytetrafluoroethylene, in addition to a solid form, those in the form of an aqueous dispersion can also be used. Examples of polytetrafluoroethylene having fibril-forming ability include, for example, Mitsui DuPont Fluorochemical Co., Ltd., Teflon (registered trademark) 6J or Teflon (registered trademark) 30J, or Daikin Industries, Ltd. Is commercially available.
 本発明の芳香族ポリカーボネート樹脂組成物が滴下防止剤を含有する場合、滴下防止剤の含有量は、芳香族ポリカーボネート樹脂(A)、リン系難燃剤(B)、連続繊維強化材(C)の合計100質量部に対して、好ましくは0.02~4質量部、さらに好ましくは0.03~3質量部である。滴下防止剤の配合量が上記上限を超えると成形品外観の低下が生じる場合がある。 When the aromatic polycarbonate resin composition of the present invention contains an anti-drip agent, the content of the anti-drip agent is that of the aromatic polycarbonate resin (A), the phosphorus flame retardant (B), or the continuous fiber reinforcement (C). The amount is preferably 0.02 to 4 parts by mass, more preferably 0.03 to 3 parts by mass with respect to 100 parts by mass in total. If the blending amount of the dripping inhibitor exceeds the above upper limit, the appearance of the molded product may be deteriorated.
・その他の樹脂成分
 本発明の芳香族ポリカーボネート樹脂組成物は、本発明の目的を損なわない限りにおいて、樹脂成分として、芳香族ポリカーボネート樹脂(A)以外の他の樹脂成分を含有していてもよい。配合し得る他の樹脂成分としては、例えば、ポリスチレン樹脂、ハイインパクトポリスチレン樹脂、水添ポリスチレン樹脂、ポリアクリルスチレン樹脂、ABS樹脂、AS樹脂、AES樹脂、ASA樹脂、SMA樹脂、ポリアルキルメタクリレート樹脂、ポリメタクリルメタクリレート樹脂、ポリフェニルエーテル樹脂、(A)成分以外のポリカーボネート樹脂、非晶性ポリアルキレンテレフタレート樹脂、ポリエステル樹脂、非晶性ポリアミド樹脂、ポリ-4-メチルペンテン-1、環状ポリオレフィン樹脂、非晶性ポリアリレート樹脂、ポリエーテルサルフォンなどが挙げられる。
Other resin components The aromatic polycarbonate resin composition of the present invention may contain other resin components other than the aromatic polycarbonate resin (A) as a resin component, as long as the object of the present invention is not impaired. . As other resin components that can be blended, for example, polystyrene resin, high impact polystyrene resin, hydrogenated polystyrene resin, polyacryl styrene resin, ABS resin, AS resin, AES resin, ASA resin, SMA resin, polyalkyl methacrylate resin, Polymethacryl methacrylate resin, polyphenyl ether resin, polycarbonate resin other than component (A), amorphous polyalkylene terephthalate resin, polyester resin, amorphous polyamide resin, poly-4-methylpentene-1, cyclic polyolefin resin, non Crystalline polyarylate resin, polyether sulfone, etc. are mentioned.
[連続繊維強化材(C)]
 本発明の連続繊維強化ポリカーボネート樹脂製プリプレグは、成形品の曲げ弾性率、曲げ強度等の曲げ特性を高めるために連続繊維強化材(C)(以下、「(C)成分」と称す場合がある。)を上記(A)及び(B)成分を含むポリカーボネート樹脂組成物に含浸させることを特徴とする。
[Continuous fiber reinforcement (C)]
The continuous fiber reinforced polycarbonate resin prepreg of the present invention may be referred to as a continuous fiber reinforcing material (C) (hereinafter referred to as “component (C)”) in order to enhance bending properties such as bending elastic modulus and bending strength of the molded product. .) Is impregnated in a polycarbonate resin composition containing the components (A) and (B).
 本発明で用いる連続繊維強化材(C)としては、ガラス繊維又は、炭素繊維を挙げることができる。そして、ポリカーボネート樹脂組成物の補強効果に優れることから、連続繊維強化材(C)の形態としては、クロスなどの繊維状織物、又は繊維束を開繊し一方向に引き揃えられた繊維が好ましい。プリプレグ中の繊維の含有量の指標として、連続繊維強化材の体積含有値(Vf値)が用いられる。 Examples of the continuous fiber reinforcing material (C) used in the present invention include glass fiber and carbon fiber. And since it is excellent in the reinforcement effect of a polycarbonate resin composition, as a form of a continuous fiber reinforcement (C), the fiber woven fabrics, such as cloth, or the fiber which opened the fiber bundle and was arranged in one direction is preferable. . The volume content value (Vf value) of the continuous fiber reinforcement is used as an index of the fiber content in the prepreg.
<ガラス繊維>
 本発明で用いるガラス繊維のガラス組成には特に制限はなく、Aガラス、Cガラス、Eガラスなどのガラス組成からなるものなどを用いることができるが、特に以下のような成分組成の無アルカリガラスであるEガラスが芳香族ポリカーボネート樹脂(A)に悪影響を及ぼさないことから好ましい。
<Glass fiber>
There is no restriction | limiting in particular in the glass composition of the glass fiber used by this invention, What consists of glass compositions, such as A glass, C glass, E glass, etc. can be used, Especially, the alkali free glass of the following component compositions E glass is preferable because it does not adversely affect the aromatic polycarbonate resin (A).
(Eガラス組成:質量%)
   SiO:52~56
   Al:12~16
   Fe:0~0.4
   CaO:16~25
   MgO:0~6
   B:5~13
   TiO:0~0.5
   RO(NaO+KO):0~0.8
(E glass composition: mass%)
SiO 2 : 52 to 56
Al 2 O 3 : 12 to 16
Fe 2 O 3 : 0 to 0.4
CaO: 16-25
MgO: 0-6
B 2 O 3 : 5 to 13
TiO 2 : 0 to 0.5
R 2 O (Na 2 O + K 2 O): 0 to 0.8
 ガラス繊維は、後述の表面処理剤により表面処理されたものであってもよく、このような表面処理により、樹脂成分とガラスとの接着性が向上し、高い機械的強度を達成することができるようになる。 The glass fiber may be surface-treated with a surface treatment agent to be described later, and by such surface treatment, the adhesiveness between the resin component and the glass is improved, and high mechanical strength can be achieved. It becomes like this.
<炭素繊維>
 炭素繊維には特に制限は無く、ポリアクリロニトリル(PAN)系、石油・石炭ピッチ系などの公知の炭素繊維を使用することができる。
<Carbon fiber>
There is no restriction | limiting in particular in carbon fiber, Well-known carbon fibers, such as a polyacrylonitrile (PAN) type | system | group and a petroleum and coal pitch type | system | group, can be used.
 本発明においては、特に、連続繊維強化材(C)と樹脂成分との接着性を高めるために、また、ガラス繊維と芳香族ポリカーボネート樹脂(A)との接触による芳香族ポリカーボネート樹脂(A)の分解を抑制するために、表面を表面処理剤で処理した連続繊維強化材(C)を用いることが好ましい。好適な表面処理剤の例として、アミノシラン、エポキシシラン等のシランカップリング剤、シリコーン化合物などが挙げられる。 Especially in this invention, in order to improve the adhesiveness of a continuous fiber reinforcement (C) and a resin component, and aromatic polycarbonate resin (A) by contact with glass fiber and aromatic polycarbonate resin (A). In order to suppress decomposition, it is preferable to use a continuous fiber reinforcing material (C) whose surface is treated with a surface treatment agent. Examples of suitable surface treatment agents include silane coupling agents such as aminosilane and epoxysilane, and silicone compounds.
[その他の成分]
 本発明の連続繊維強化ポリカーボネート樹脂組成物は、上記芳香族ポリカーボネート樹脂(A)、リン系難燃剤(B)、及び連続繊維強化材(C)の他に、必要に応じてその他の成分を含有していてもよい。本発明の芳香族ポリカーボネート樹脂組成物が含有し得るその他の成分としては、例えば以下のようなものが挙げられる。
[Other ingredients]
The continuous fiber reinforced polycarbonate resin composition of the present invention contains other components as necessary in addition to the aromatic polycarbonate resin (A), the phosphorus-based flame retardant (B), and the continuous fiber reinforcing material (C). You may do it. Examples of other components that can be contained in the aromatic polycarbonate resin composition of the present invention include the following.
<その他の添加剤>
 本発明の芳香族ポリカーボネート樹脂組成物は、本発明の効果を損なわない範囲で、更に種々の添加剤を含有していても良い。このような添加剤としては、安定剤、酸化防止剤、離型剤、紫外線吸収剤、染顔料、帯電防止剤、難燃剤、滴下防止剤、衝撃強度改良剤、可塑剤、分散剤、抗菌剤、(A)、(B)及び(C)成分以外の他の樹脂などが挙げられる。これらの樹脂添加剤は1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
<Other additives>
The aromatic polycarbonate resin composition of the present invention may further contain various additives as long as the effects of the present invention are not impaired. Such additives include stabilizers, antioxidants, mold release agents, UV absorbers, dyes and pigments, antistatic agents, flame retardants, anti-dripping agents, impact strength improvers, plasticizers, dispersants, antibacterial agents , (A), (B) and other resins other than the component (C). One of these resin additives may be contained, or two or more thereof may be contained in any combination and ratio.
[その他の無機成分]
 本発明の芳香族ポリカーボネート樹脂製連続繊維強化プリプレグ作成の際、連続繊維強化材(C)成分以外の無機成分として繊維長が10mm以下のガラス短繊維、炭素短繊維等を含有させることにより、さらに機械物性を高めることができる。短繊維フィラーの例として、ガラス短繊維、炭素短繊維、ワラストナイト、各種無機ウイスカーなどが挙げられる。
 また板状、球状のフィラーを添加することにより収縮時の異方性も改善することができる。板状フィラーの例としてガラスフレーク、マイカ、タルク等が挙げられ、球状フィラーの例としてガラスビーズ、シリカビーズ等が挙げられる。
[Other inorganic components]
When the continuous fiber reinforced prepreg made of the aromatic polycarbonate resin of the present invention is prepared, by adding glass short fibers, carbon short fibers and the like having a fiber length of 10 mm or less as inorganic components other than the continuous fiber reinforcing material (C) component, Mechanical properties can be improved. Examples of the short fiber filler include short glass fibers, short carbon fibers, wollastonite, various inorganic whiskers and the like.
Moreover, the anisotropy at the time of shrinkage can also be improved by adding a plate-like or spherical filler. Examples of the plate-like filler include glass flakes, mica and talc, and examples of the spherical filler include glass beads and silica beads.
<連続繊維強化ポリカーボネート樹脂製プリプレグの製造方法>
 連続繊維強化ポリカーボネート樹脂製プリプレグを製造する方法は、溶融樹脂を押出機のTダイから流し、繰り出しされた繊維シート又は開繊された一方向に並んだ繊維と合流させ含浸させる方法、粉末樹脂を繊維上に分散し加熱溶融させる方法、樹脂をフィルム化して繊維層に積層させた後に加熱する熱ラミネート法などがある。本発明の連続繊維強化ポリカーボネート樹脂製プリプレグに使用するポリカーボネートは、流動性に優れることから、特に溶融樹脂を押出機から吐出させ含浸させる方法、樹脂をフィルム化して熱ラミネートする方法が好ましく用いられる。
<Method for producing prepreg made of continuous fiber reinforced polycarbonate resin>
The method for producing a prepreg made of continuous fiber reinforced polycarbonate resin is a method in which a molten resin is poured from a T-die of an extruder and joined with a drawn fiber sheet or opened unidirectionally aligned fibers, and impregnated with a powder resin. There are a method of dispersing on a fiber and heating and melting, a heat laminating method in which a resin is formed into a film and laminated on a fiber layer and then heated. Since the polycarbonate used in the prepreg made of continuous fiber reinforced polycarbonate resin of the present invention is excellent in fluidity, a method of discharging and impregnating a molten resin from an extruder, and a method of thermally laminating a resin into a film are particularly preferably used.
 溶融法にて特定のポリカーボネートを繊維に含浸させる工程には、前記押出機を用いる方法以外にも、加熱プレスと冷却プレスの組合せにより溶融浸透後にプリプレグを固化させる方法、ダブルベルトプレスを使用して加熱ゾーンや冷却ゾーンを設ける方法等が含まれ得る。 In the step of impregnating fibers with a specific polycarbonate by the melting method, in addition to the method using the extruder, a method of solidifying the prepreg after melting and penetration by a combination of a heating press and a cooling press, a double belt press is used. A method of providing a heating zone or a cooling zone may be included.
<プリプレグの形状、形態及び特徴>
 本発明の繊維強化ポリカーボネート樹脂製プリプレグの厚さは、通常1枚あたり50~500μmであり、好ましくは150~350μmである。例えば、170~305μmである。プリプレグ1枚の厚みが50μmより薄いと、充分に樹脂成分が含浸ができないため得られたプリプレグは開繊をし、取扱いが困難となる。またプリプレグ1枚の厚みが500μmを超えると強化繊維の含有率が低下するため充分な物性が得られない。
 また、上述の製法により製造される本発明のプリプレグ、すなわち、本発明のポリカーボネート樹脂組成物を連続繊維強化材(C)に含浸させたプリプレグ、又はポリカーボネート樹脂フィルムを連続繊維強化材(C)に積層させたプリプレグにおいて、連続繊維強化材の体積含有値(Vf値)は25~60%であることが好ましく、35~50%であることがさらに好ましい。Vf値を25%以上とすることにより補強強化が十分なレベルとなり、Vf値を60%以下にすることにより、樹脂の強化材への含浸を容易にし、外観及び強度に優れたプリプレグを実現できる。
<Prepreg shape, form and features>
The thickness of the fiber-reinforced polycarbonate resin prepreg of the present invention is usually 50 to 500 μm, preferably 150 to 350 μm per sheet. For example, it is 170 to 305 μm. If the thickness of one prepreg is less than 50 μm, the resin component cannot be sufficiently impregnated, so that the obtained prepreg is opened and difficult to handle. Further, if the thickness of one prepreg exceeds 500 μm, sufficient physical properties cannot be obtained because the content of reinforcing fibers decreases.
Moreover, the prepreg of the present invention produced by the above-described manufacturing method, that is, the prepreg impregnated with the polycarbonate resin composition of the present invention in the continuous fiber reinforcement (C), or the polycarbonate resin film as the continuous fiber reinforcement (C). In the laminated prepreg, the volume content value (Vf value) of the continuous fiber reinforcement is preferably 25 to 60%, more preferably 35 to 50%. By setting the Vf value to 25% or more, the reinforcing reinforcement becomes a sufficient level, and by setting the Vf value to 60% or less, it is possible to easily impregnate the resin with the reinforcing material and realize a prepreg excellent in appearance and strength. .
<積層体及び成形体> 
 本発明の積層体は、上述の本発明のポリカーボネートプリプレグを含有するものである。本発明の積層体は、具体的には、本発明のポリカーボネートプリプレグを複数、あるいは、ポリカーボネートプリプレグとフィルムとを積層させたものである。本発明の積層体は、例えば、本発明のポリカーボネートプリプレグと、熱可塑性樹脂のフィルムとを積層させて、加熱、あるいはさらに加圧することにより、製造される。

 また、本発明の成形体は、上述の本発明の積層体を熱賦形したものである。本発明の成形体は、本発明のポリカーボネートプリプレグと、フィルムまたはシート、例えば、熱可塑性樹脂のフィルムまたはシートとを積層させ、加熱した状態でプレスする工程により製造可能である。熱可塑性樹脂としては、例えば、芳香族ポリカーボネートなどのポリカーボネートが用いられる。本発明の成形体は、例えば、ポリカーボネートプリプレグと熱可塑性樹脂フィルムとを交互に積層し、温度が150℃以上250℃以下となるように加熱した状態で数秒~180秒程度プレスを行うことにより、製造できる。
<Laminated body and molded body>
The laminate of the present invention contains the above-described polycarbonate prepreg of the present invention. Specifically, the laminate of the present invention is obtained by laminating a plurality of the polycarbonate prepregs of the present invention or a polycarbonate prepreg and a film. The laminate of the present invention is produced, for example, by laminating the polycarbonate prepreg of the present invention and a thermoplastic resin film and heating or further pressing.

Moreover, the molded object of this invention heat-forms the above-mentioned laminated body of this invention. The molded article of the present invention can be produced by a process of laminating the polycarbonate prepreg of the present invention and a film or sheet, for example, a thermoplastic resin film or sheet, and pressing in a heated state. As the thermoplastic resin, for example, polycarbonate such as aromatic polycarbonate is used. The molded body of the present invention is obtained by, for example, laminating polycarbonate prepregs and thermoplastic resin films alternately, and pressing for about several seconds to 180 seconds in a state where the temperature is 150 ° C. or higher and 250 ° C. or lower. Can be manufactured.
 以下、実施例を示して本発明について更に具体的に説明する。ただし、本発明は以下の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施することができる。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples, and can be arbitrarily modified and implemented without departing from the gist of the present invention.
<樹脂組成物の流れ値測定>
 JIS K7210付属書Cに記載の方法にて樹脂組成物のペレットの流れ値(Q値)を評価した。流れ値(Q値)の測定には、島津製作所社製フローテスターCFD500Dを用いた。具体的には、穴径1.0mm、長さ10mmのダイを用い、試験温度240℃、試験力160kg/cm、余熱時間420secの条件で排出された溶融樹脂量を流れ値(×0.01cc/sec)の測定に用いた。
<Measurement of flow value of resin composition>
The flow value (Q value) of the pellets of the resin composition was evaluated by the method described in JIS K7210 Appendix C. For the measurement of the flow value (Q value), a flow tester CFD500D manufactured by Shimadzu Corporation was used. Specifically, using a die having a hole diameter of 1.0 mm and a length of 10 mm, the amount of molten resin discharged under the conditions of a test temperature of 240 ° C., a test force of 160 kg / cm 2 , and a preheating time of 420 seconds is a flow value (× 0. 01 cc / sec).
<繊維含浸性評価>
 芳香族ポリカーボネートの繊維への含浸性の評価は、プリプレグの幅20mmの繊維樹脂シートの厚み方向の破断面を顕微鏡観察(×50倍)することにより評価した。樹脂と繊維の間に気泡がほとんどなく密着性に優れているものを良好、樹脂と繊維の間に気泡が少なく密着性に優れているものを可、気泡が多く密着性の低いものを不良とした。
<Fiber impregnation evaluation>
Evaluation of the impregnation property to the fiber of the aromatic polycarbonate was evaluated by observing the fracture surface in the thickness direction of the fiber resin sheet having a width of 20 mm of the prepreg with a microscope (× 50 times). Good if there is almost no air bubbles between the resin and the fiber and has good adhesion, good if there are few air bubbles between the resin and the fiber, and good adhesion, acceptable if there are many air bubbles and low adhesion did.
<難燃性評価>
 樹脂製プリプレグの難燃性評価は、後述に記載の方法で作製した幅40mm×長さ150mm×厚み100~370μmのプリプレグについて、UL-94/VTM試験評価装置を用いて行った。試験片の接炎部から100mm離れた部分に標線を設置した。接炎位置及び炎の大きさはUL-94/VTM試験に準拠して行った。接炎は3秒を2度とし、各回の離炎後の燃焼継続時間の合計を測定した。燃焼時間の合計が5秒未満かつ標線まで燃焼が到達しなかった場合を良好、燃焼時間の合計が5秒~7秒かつ標線まで燃焼が到達しなかった場合を可、燃焼時間が7秒以上、又は燃焼時樹脂が垂落ちした場合、又は標線まで燃焼が到達した場合を不良と判定した。
<Flame retardance evaluation>
The flame retardant evaluation of the resin prepreg was performed using a UL-94 / VTM test evaluation apparatus for a prepreg having a width of 40 mm, a length of 150 mm, and a thickness of 100 to 370 μm produced by the method described below. A marked line was placed in a portion 100 mm away from the flame contact portion of the test piece. The flame contact position and the flame size were determined in accordance with the UL-94 / VTM test. The flame contact was set to 2 degrees for 3 seconds, and the total combustion duration after each flame-off was measured. Good when the total combustion time is less than 5 seconds and the combustion does not reach the marked line, or when the total combustion time is 5 to 7 seconds and the combustion does not reach the marked line, the combustion time is 7 More than a second, or when the resin dropped during combustion, or when the combustion reached the marked line was judged as defective.
<耐熱性評価>
 樹脂プリプレグの耐熱性の評価として、樹脂プリプレグを構成する樹脂組成物のガラス転移温度を測定した。ガラス転移温度の測定は、示差走査熱量計(エスアイアイ・ナノテクノロジー社製「DSC220」)を用いて、プリプレグ表面の樹脂約10mgをサンプリングして行った。DSC(示差走査熱量の測定)においては、まず昇温速度20℃/minで室温から280℃まで加熱、280℃到達後3分間保温し、樹脂成分を充分溶融した。次に冷却速度30℃/minで0℃まで冷却した。その後再度昇温速度20℃/minで加熱することによって測定された曲線を用いガラス転移点を算出した。ガラス転移点は、JIS-K7121(1987年)に準拠して測定した。ガラス転移点の測定においては、低温側のベースラインを高温側に延長した直線と、ガラス転移の階段状変化部分における曲線の勾配が最大になるような点で引いた接線との交点の温度である補外ガラス転移開始温度とした。
<Heat resistance evaluation>
As an evaluation of the heat resistance of the resin prepreg, the glass transition temperature of the resin composition constituting the resin prepreg was measured. The glass transition temperature was measured by sampling about 10 mg of resin on the surface of the prepreg using a differential scanning calorimeter (“DSC220” manufactured by SII Nano Technology). In DSC (measurement of differential scanning calorific value), the resin component was first melted sufficiently by heating from room temperature to 280 ° C. at a rate of temperature increase of 20 ° C./min, and maintaining the temperature for 3 minutes after reaching 280 ° C. Next, it was cooled to 0 ° C. at a cooling rate of 30 ° C./min. Thereafter, the glass transition point was calculated using a curve measured by heating again at a heating rate of 20 ° C./min. The glass transition point was measured according to JIS-K7121 (1987). In the measurement of the glass transition point, the temperature at the intersection of the straight line obtained by extending the base line on the low temperature side to the high temperature side and the tangent line drawn at the point where the slope of the curve at the stepwise change part of the glass transition is maximized. A certain extrapolated glass transition start temperature was set.
<繊維体積含有値(Vf値)の測定>
 ポリカーボネート樹脂製繊維プリプレグの繊維体積含有値として、まず、曲げ試験用の試験片の密度をJIS K7112に準じた方法にて算出した。続いて、JIS K7075に準じて、バーナーを用いて熱可塑性樹脂を焼き飛ばし、繊維質量含有率を算出した。最後に、得られた密度及び繊維質量含有率と、炭素繊維の密度から試験片のVf値を算出した。具体的には、以下の式(I)に基づいてVf値を算出した。
 
Vf(%)=Wf×ρc/ρf (I)       Vf:繊維体積含有値(%)
       Wf:繊維質量含有率(%)
       ρc:試験片(プリプレグ)全体の密度(g/cm

         ρf:繊維の密度(g/cm
<Measurement of fiber volume content (Vf value)>
As the fiber volume content value of the polycarbonate resin fiber prepreg, first, the density of the test piece for the bending test was calculated by a method according to JIS K7112. Subsequently, in accordance with JIS K7075, the thermoplastic resin was burned off using a burner, and the fiber mass content was calculated. Finally, the Vf value of the test piece was calculated from the obtained density and fiber mass content and the density of the carbon fiber. Specifically, the Vf value was calculated based on the following formula (I).

Vf (%) = Wf × ρc / ρf (I) Vf: Fiber volume content value (%)
Wf: Fiber mass content (%)
ρc: density of the entire test piece (prepreg) (g / cm 3 )

ρf: Fiber density (g / cm 3 )
[使用材料]
<芳香族ポリカーボネート樹脂(A)>
(a-1)三菱エンジニアリングプラスチックス(株)製「ユーピロン(登録商標)S-3000F」、粘度平均分子量23,000
(a-2)三菱エンジニアリングプラスチックス(株)製「ユーピロン(登録商標)E-2000F」、粘度平均分子量28,000
<リン系難燃剤(B)>
(b-1)レゾルシノールビス-2,6-キシレニルホスフェート(大八化学工業製「PX-200」)
(b-2)フェノキシホスファゼン(伏見製薬所 製「ラビトルFP-110」)
<連続繊維強化材(C)>
(c-1)ガラス繊維:日東紡績社製 RS 240QR-483AS(2400tex)
(c-2)炭素繊維:PAN系炭素繊維 三菱レイヨン社製 パイロフィル TRH50 60M RJ(60k)
(c-3)ガラス繊維クロス:旭硝子社製 258(厚み0.093mm、106.5g/m、綾織)
(c-4)炭素繊維クロス:有沢製作所社製 CFP3110 (30k、160g/m、平織)
[Materials used]
<Aromatic polycarbonate resin (A)>
(A-1) “Iupilon (registered trademark) S-3000F” manufactured by Mitsubishi Engineering Plastics Co., Ltd., viscosity average molecular weight 23,000
(A-2) “Iupilon (registered trademark) E-2000F” manufactured by Mitsubishi Engineering Plastics Co., Ltd., viscosity average molecular weight 28,000
<Phosphorus flame retardant (B)>
(B-1) Resorcinol bis-2,6-xylenyl phosphate (“PX-200” manufactured by Daihachi Chemical Industry)
(B-2) Phenoxyphosphazene ("Ravitor FP-110" manufactured by Fushimi Pharmaceutical)
<Continuous fiber reinforcement (C)>
(C-1) Glass fiber: manufactured by Nitto Boseki Co., Ltd. RS 240QR-483AS (2400 tex)
(C-2) Carbon fiber: PAN-based carbon fiber Pyrofil TRH50 60M RJ (60k) manufactured by Mitsubishi Rayon Co., Ltd.
(C-3) Glass fiber cloth: 258 manufactured by Asahi Glass Co., Ltd. (thickness 0.093 mm, 106.5 g / m 2 , twill)
(C-4) Carbon fiber cloth: CFP3110 (30 k, 160 g / m 2 , plain weave) manufactured by Arisawa Manufacturing Co., Ltd.
[実施例1~16、比較例1~4] [Examples 1 to 16, Comparative Examples 1 to 4]
<樹脂組成物ペレットの製造>
 芳香族ポリカーボネート樹脂組成物の製造は、下記の溶融押出機を用いた混練方法にて行った。まずは表1に記載の配合比率にしたがって(A)及び(B)成分を計量し、15分以上タンブラーで混合した。その混合物を溶融押出機で溶融混練することによって、樹脂組成物のペレットを得た。すなわち、本実施例及び比較例では、1ベントを備えた日本製鋼所社製二軸押出機TEX30α(C18ブロック、L/D=63)を用いて、スクリュー回転数200rpm、吐出量20kg/h、シリンダ温度270℃の条件下で樹脂等を混練し、ストランド状に押出した溶融樹脂を水槽にて急冷し、ペレタイザーを用いてペレット化した。
<Manufacture of resin composition pellets>
The aromatic polycarbonate resin composition was produced by a kneading method using the following melt extruder. First, components (A) and (B) were weighed according to the blending ratios shown in Table 1, and mixed with a tumbler for 15 minutes or longer. The mixture was melt kneaded with a melt extruder to obtain resin composition pellets. That is, in this example and a comparative example, using a twin screw extruder TEX30α (C18 block, L / D = 63) manufactured by Nippon Steel Works with one vent, a screw rotation speed of 200 rpm, a discharge amount of 20 kg / h, A resin or the like was kneaded under a cylinder temperature of 270 ° C., and the molten resin extruded into a strand shape was rapidly cooled in a water tank and pelletized using a pelletizer.
<樹脂フィルムの作製>
 先述の樹脂組成物ペレットを用い、繊維含浸用フィルムを作製した。表1に記載の樹脂組成物のフィルムは、スクリュー径26mmのフィルム押出機を用いて製造した。すなわち、バレル温度250℃、ダイス(D)温度250℃、圧着ロール(R1)温度40℃、第一冷却ロール(R2)温度を樹脂組成物のガラス転移温度(Tg)-20℃、第二冷却ロール(R3)温度を樹脂組成物のガラス転移温度(Tg)-30℃とした条件下で樹脂組成物を押し出し、厚み100~150μmのフィルムを得た。
<Production of resin film>
A fiber-impregnated film was prepared using the above-described resin composition pellets. The film of the resin composition described in Table 1 was produced using a film extruder having a screw diameter of 26 mm. That is, the barrel temperature is 250 ° C., the die (D) temperature is 250 ° C., the pressure roll (R1) temperature is 40 ° C., the first cooling roll (R2) temperature is the glass transition temperature (Tg) −20 ° C. of the resin composition, and the second cooling is performed. The resin composition was extruded under the condition that the roll (R3) temperature was the glass transition temperature (Tg) of the resin composition-30 ° C., and a film having a thickness of 100 to 150 μm was obtained.
<連続繊維強化ポリカーボネート系プリプレグの作成>
 繊維からなるクロス、及びあらかじめ開繊した一方向に引き揃えられた強化繊維層を中心とし、上下面に前記樹脂フィルム、離型紙の順に重ね合わせた状態で加熱式プレス装置にセットした。そして、強化繊維層及び樹脂フィルム等の積層体を、以下の加熱式プレス装置の設定条件、すなわち加熱温度240℃、1MPaで3分間加熱し、その後、20℃に設定した冷却盤で5~10分冷却することで、130~250μmのプリプレグを得た。
<Creation of continuous fiber reinforced polycarbonate prepreg>
Centering on a cloth cloth and a reinforcing fiber layer aligned in one direction opened in advance, the resin film and release paper were stacked on the upper and lower surfaces in this order and set in a heating press. Then, the laminated body such as the reinforcing fiber layer and the resin film is heated for 3 minutes at the following setting conditions of the heating press apparatus, that is, the heating temperature of 240 ° C. and 1 MPa, and then 5 to 10 with a cooling plate set to 20 ° C. A prepreg of 130 to 250 μm was obtained by cooling for a few minutes.
<難燃性評価シートの作成>
 厚み130~250μmの前記繊維プリプレグを幅40mm×長さ150mm×厚み130~250μmに切削することで燃焼試験用の試験片を得た。
<Making flame retardant evaluation sheet>
The fiber prepreg having a thickness of 130 to 250 μm was cut into a width of 40 mm × length of 150 mm × thickness of 130 to 250 μm to obtain a test piece for a combustion test.
 上記各実施例及び比較例のプリプレグの組成、プリプレグ及び試験片の特性について、以下の表にまとめた。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
The composition of the prepregs of the above Examples and Comparative Examples, and the properties of the prepregs and test pieces are summarized in the following table.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表1に示されるように、実施例のポリカーボネート樹脂組成物は、ポリカーボネート樹脂(A)を60~88質量%、リン系難燃剤(B)を12~40質量%含み、240℃における流れ値が9~120×0.01cc/secに調整されている。これらの実施例のポリカーボネート樹脂組成物は、いずれも、プリプレグ製造時の繊維への含浸性に優れていることが確認された。さらに、上記ポリカーボネート樹脂組成物を用いて製造された実施例のプリプレグは、いずれも難燃性及び耐熱性が良好であった。
 これに対し、表2に示されるように、ポリカーボネート樹脂組成物中のリン系難燃剤(B)の含有量が低く、流れ値の値が7×0.01cc/secと上記実施例の範囲の下限値よりも低い比較例1においては、繊維への含浸性、及びプリプレグの難燃性に劣る結果となった。また、ポリカーボネート樹脂組成物中のリン系難燃剤(B)が過剰であり、流れ値の値が上記実施例の範囲の上限値よりも高いため測定不能であった比較例2においては、プリプレグの耐熱性に劣ることが確認された。
 なお、実施例1~14のプリプレグにおいては、連続繊維強化材(C)の体積含有値(Vf値)が25~60%の範囲内に調整されていたのに対し、体積含有値(Vf値)が上記範囲の下限値よりも低い実施例15のプリプレグにおいては、試験片からの樹脂の垂落ちが認められ、難燃性に若干劣る結果が示された。そして体積含有値(Vf値)が上記範囲の上限値よりも高い実施例16のプリプレグにおいては、他の実施例に比べて、樹脂組成物の繊維に対する含浸性にやや劣る結果が示された。しかしながら、これらの実施例においても、特に問題なく使用できるプリプレグが得られた。
As shown in Table 1, the polycarbonate resin compositions of the examples contain 60 to 88% by mass of the polycarbonate resin (A) and 12 to 40% by mass of the phosphorus flame retardant (B), and have a flow value at 240 ° C. It is adjusted to 9 to 120 × 0.01 cc / sec. It was confirmed that all of the polycarbonate resin compositions of these examples were excellent in the impregnation property to the fiber during prepreg production. Furthermore, the prepregs of Examples produced using the polycarbonate resin composition had good flame retardancy and heat resistance.
On the other hand, as shown in Table 2, the content of the phosphorus-based flame retardant (B) in the polycarbonate resin composition is low, and the flow value is 7 × 0.01 cc / sec, which is within the range of the above examples. In Comparative Example 1 lower than the lower limit value, the fiber impregnation property and the prepreg flame retardance were inferior. Further, in Comparative Example 2 in which the phosphorus-based flame retardant (B) in the polycarbonate resin composition was excessive and the flow value was higher than the upper limit of the range of the above example, measurement was not possible. It was confirmed that the heat resistance was poor.
In the prepregs of Examples 1 to 14, the volume content value (Vf value) of the continuous fiber reinforcement (C) was adjusted within the range of 25 to 60%. ) Was lower than the lower limit of the above range, the prepreg of Example 15 showed that the resin dripped from the test piece and showed slightly inferior flame retardancy. And in the prepreg of Example 16 whose volume content value (Vf value) is higher than the upper limit of the said range, the result in which the impregnation property with respect to the fiber of a resin composition was a little inferior compared with the other Example was shown. However, also in these examples, prepregs that can be used without any particular problem were obtained.
 以上より、ポリカーボネート樹脂(A)及びリン系難燃剤(B)を所定の範囲でそれぞれ含有し、流れ値が上述のように調整されているポリカーボネート樹脂組成物によれば、繊維強化材への含浸性、及び難燃性等を向上させることができ、難燃性及び耐熱性に優れたポリカーボネートプリプレグ等を実現可能であった。さらに、プリプレグにおける体積含有値(Vf値)を所定の範囲内に調整することにより、含浸性及び難燃性をより向上させられることが確認された。
  
From the above, according to the polycarbonate resin composition containing the polycarbonate resin (A) and the phosphorus-based flame retardant (B) in a predetermined range and having the flow value adjusted as described above, the fiber reinforcement is impregnated. The polycarbonate prepreg and the like excellent in flame retardancy and heat resistance can be realized. Furthermore, it was confirmed that the impregnation property and flame retardancy can be further improved by adjusting the volume content value (Vf value) in the prepreg within a predetermined range.

Claims (8)

  1.  ポリカーボネート樹脂(A)60~88質量%、及びリン系難燃剤(B)12~40質量%を含有するポリカーボネート樹脂組成物であって、当該ポリカーボネート樹脂組成物の240℃における流れ値が9~120×0.01cc/secであるポリカーボネート樹脂組成物。 A polycarbonate resin composition containing 60 to 88% by mass of a polycarbonate resin (A) and 12 to 40% by mass of a phosphorus-based flame retardant (B), wherein the flow rate at 240 ° C. of the polycarbonate resin composition is 9 to 120. X A polycarbonate resin composition of 0.01 cc / sec.
  2.  前記リン系難燃剤(B)が、縮合リン酸エステル、及びホスファゼン系難燃剤の少なくともいずれかを含む請求項1に記載のポリカーボネート樹脂組成物。 The polycarbonate resin composition according to claim 1, wherein the phosphorus flame retardant (B) contains at least one of a condensed phosphate ester and a phosphazene flame retardant.
  3.  前記縮合リン酸エステルが、トリフェニルフォスフェート、ビスフェノールAテトラフェニルフォスフェート、レゾルシノールテトラフェニルフォスフェート、レゾルシノールテトラ-2,6-キシレノールフォスフェートのうち少なくともいずれか一つを含み、
     前記ホスファゼン系難燃剤が、フェノキシホスファゼン、(ポリ)トリルオキシホスファゼン、及び(ポリ)フェノキシトリルオキシホスファゼンのうち少なくともいずれか一つを含む、請求項2に記載のポリカーボネート樹脂組成物。
    The condensed phosphate ester includes at least one of triphenyl phosphate, bisphenol A tetraphenyl phosphate, resorcinol tetraphenyl phosphate, resorcinol tetra-2,6-xylenol phosphate;
    The polycarbonate resin composition according to claim 2, wherein the phosphazene-based flame retardant includes at least one of phenoxyphosphazene, (poly) tolyloxyphosphazene, and (poly) phenoxytolyloxyphosphazene.
  4.  請求項1~3のいずれかに記載のポリカーボネート樹脂組成物を成形して得られるポリカーボネート樹脂フィルム。 A polycarbonate resin film obtained by molding the polycarbonate resin composition according to any one of claims 1 to 3.
  5.  請求項1~3のいずれかに記載のポリカーボネート樹脂組成物を連続繊維強化材(C)に含浸させたポリカーボネートプリプレグであって、連続繊維強化材(C)が体積含有値(Vf値)として25~60%含有されているポリカーボネートプリプレグ。 A polycarbonate prepreg obtained by impregnating the continuous fiber reinforcement (C) with the polycarbonate resin composition according to any one of claims 1 to 3, wherein the continuous fiber reinforcement (C) has a volume content (Vf value) of 25. Polycarbonate prepreg containing ~ 60%.
  6.  請求項4に記載のポリカーボネート樹脂フィルムを連続繊維強化材(C)に積層させたポリカーボネートプリプレグであって、連続繊維強化材(C)が体積含有値(Vf値)として25~60%含有されているポリカーボネートプリプレグ。 A polycarbonate prepreg obtained by laminating the polycarbonate resin film according to claim 4 on a continuous fiber reinforcement (C), wherein the continuous fiber reinforcement (C) is contained in a volume content (Vf value) of 25 to 60%. Polycarbonate prepreg.
  7.  請求項5又は6に記載のポリカーボネートプリプレグを含有する積層体。 A laminate containing the polycarbonate prepreg according to claim 5 or 6.
  8.  請求項7に記載の積層体を熱賦形した成形体。
      
    The molded object which heat-shaped the laminated body of Claim 7.
PCT/JP2016/064563 2015-05-18 2016-05-17 Polycarbonate resin composition, and prepreg made from polycarbonate resin WO2016186100A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017519368A JP6716551B2 (en) 2015-05-18 2016-05-17 Polycarbonate resin composition and polycarbonate resin prepreg
KR1020177035868A KR20180008602A (en) 2015-05-18 2016-05-17 A polycarbonate resin composition, and a polycarbonate resin prepreg
CN201680028421.2A CN107614611B (en) 2015-05-18 2016-05-17 Polycarbonate resin composition and preform made of polycarbonate resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015101043 2015-05-18
JP2015-101043 2015-05-18

Publications (1)

Publication Number Publication Date
WO2016186100A1 true WO2016186100A1 (en) 2016-11-24

Family

ID=57320030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064563 WO2016186100A1 (en) 2015-05-18 2016-05-17 Polycarbonate resin composition, and prepreg made from polycarbonate resin

Country Status (5)

Country Link
JP (1) JP6716551B2 (en)
KR (1) KR20180008602A (en)
CN (1) CN107614611B (en)
TW (1) TW201706361A (en)
WO (1) WO2016186100A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018216517A1 (en) * 2017-05-24 2018-11-29 三菱瓦斯化学株式会社 Sheet formed from carbon fiber reinforced thermoplastic resin, and production method of said sheet
WO2018216518A1 (en) * 2017-05-24 2018-11-29 三菱瓦斯化学株式会社 Sheet formed from carbon fiber reinforced thermoplastic resin, and production method of said sheet
JP2019035001A (en) * 2017-08-10 2019-03-07 三菱瓦斯化学株式会社 Fiber-reinforced thermoplastic resin composite material and molded product including the same
KR20190062897A (en) * 2017-11-29 2019-06-07 롯데케미칼 주식회사 High heat resistant polyarylate resin composition having enhanced flowability
EP3498469A1 (en) * 2017-12-14 2019-06-19 Trinseo Europe GmbH Laminate containing polycarbonate composition layers and fiber structure layers with improved fire resistance properties
WO2020065536A1 (en) 2018-09-24 2020-04-02 Sabic Global Technologies B.V. Flame-retardant polycarbonate resin compositions
WO2021215162A1 (en) * 2020-04-21 2021-10-28 フクビ化学工業株式会社 Fiber-reinforced resin composite sheet, fiber-reinforced resin composite material, and molded resin article including same
CN115989278A (en) * 2020-08-31 2023-04-18 乐天化学株式会社 Thermoplastic resin composition and molded article produced therefrom

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102022172B1 (en) 2015-03-10 2019-09-17 화이바 레인포스드 써모플라스틱스 비.브이. Method for making unidirectional fiber-reinforced tapes
WO2021124726A1 (en) * 2019-12-20 2021-06-24 東レ株式会社 Fiber-reinforced resin molding material, fiber-reinforced resin molded article, and method for manufacturing fiber-reinforced resin molded article

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004115815A (en) * 1997-02-14 2004-04-15 Otsuka Chemical Holdings Co Ltd Flame-retardant, flame-retardant resin composition, and flame-retardant resin molding
JP2012031244A (en) * 2010-07-29 2012-02-16 Mitsubishi Engineering Plastics Corp Aromatic polycarbonate resin composition
JP2013256616A (en) * 2012-06-14 2013-12-26 Mitsubishi Gas Chemical Co Inc Method for producing fiber reinforced thermoplastic resin molded body and fiber reinforced thermoplastic resin molded body
JP2014091825A (en) * 2012-11-07 2014-05-19 Mitsubishi Rayon Co Ltd Prepreg, and composite material
JP2014133841A (en) * 2013-01-11 2014-07-24 Mitsubishi Chemicals Corp Prepreg and composite material
JP2016008295A (en) * 2014-06-26 2016-01-18 三菱エンジニアリングプラスチックス株式会社 Carbon fiber-reinforced composite molding and production method thereof
JP2016098376A (en) * 2014-11-17 2016-05-30 ランクセス・ドイチュランド・ゲーエムベーハー Flame-retardant fiber-matrix semifinished product

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1131265C (en) * 1997-10-15 2003-12-17 大塚化学株式会社 Crosslinked phenoxyphosphazene compounds, flame-retardant, flame-retardant resin compositions, and moldings of flame-retardant resins
TWI638005B (en) * 2011-08-19 2018-10-11 法克斯聚合物股份有限公司 Thermoplastic polyurethanes with exceptional fire resistance
WO2013115151A1 (en) * 2012-01-31 2013-08-08 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition
CN104271669B (en) * 2012-04-20 2016-02-17 三菱工程塑料株式会社 Poly carbonate resin composition
CN105209661B (en) * 2013-05-13 2018-03-09 三菱工程塑料株式会社 The manufacture method of laser direct forming resin combination, synthetic resin and the coated synthetic resin of tool
KR102292854B1 (en) * 2013-10-08 2021-08-25 코베스트로 도이칠란트 아게 Fiber composite material, use therefor, and method for the production thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004115815A (en) * 1997-02-14 2004-04-15 Otsuka Chemical Holdings Co Ltd Flame-retardant, flame-retardant resin composition, and flame-retardant resin molding
JP2012031244A (en) * 2010-07-29 2012-02-16 Mitsubishi Engineering Plastics Corp Aromatic polycarbonate resin composition
JP2013256616A (en) * 2012-06-14 2013-12-26 Mitsubishi Gas Chemical Co Inc Method for producing fiber reinforced thermoplastic resin molded body and fiber reinforced thermoplastic resin molded body
JP2014091825A (en) * 2012-11-07 2014-05-19 Mitsubishi Rayon Co Ltd Prepreg, and composite material
JP2014133841A (en) * 2013-01-11 2014-07-24 Mitsubishi Chemicals Corp Prepreg and composite material
JP2016008295A (en) * 2014-06-26 2016-01-18 三菱エンジニアリングプラスチックス株式会社 Carbon fiber-reinforced composite molding and production method thereof
JP2016098376A (en) * 2014-11-17 2016-05-30 ランクセス・ドイチュランド・ゲーエムベーハー Flame-retardant fiber-matrix semifinished product

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11466132B2 (en) 2017-05-24 2022-10-11 Mitsubishi Gas Chemical Company, Inc. Sheet formed from carbon fiber reinforced thermoplastic resin, and production method of said sheet
KR102507424B1 (en) 2017-05-24 2023-03-07 미츠비시 가스 가가쿠 가부시키가이샤 Sheet made of carbon fiber-reinforced thermoplastic resin and method for producing the sheet
JPWO2018216517A1 (en) * 2017-05-24 2020-05-07 三菱瓦斯化学株式会社 Sheet made of carbon fiber reinforced thermoplastic resin and method for producing the sheet
US11498310B2 (en) 2017-05-24 2022-11-15 Mitsubishi Gas Chemical Company, Inc. Sheet formed from carbon fiber reinforced thermoplastic resin, and production method of said sheet
WO2018216517A1 (en) * 2017-05-24 2018-11-29 三菱瓦斯化学株式会社 Sheet formed from carbon fiber reinforced thermoplastic resin, and production method of said sheet
KR20200010173A (en) * 2017-05-24 2020-01-30 미츠비시 가스 가가쿠 가부시키가이샤 Sheet made of carbon fiber reinforced thermoplastic resin and method for producing the sheet
JPWO2018216518A1 (en) * 2017-05-24 2020-03-26 三菱瓦斯化学株式会社 Sheet made of carbon fiber reinforced thermoplastic resin and method for producing the sheet
JP7092122B2 (en) 2017-05-24 2022-06-28 三菱瓦斯化学株式会社 A sheet made of carbon fiber reinforced thermoplastic resin and a method for manufacturing the sheet.
JP7088178B2 (en) 2017-05-24 2022-06-21 三菱瓦斯化学株式会社 A sheet made of carbon fiber reinforced thermoplastic resin and a method for manufacturing the sheet.
WO2018216518A1 (en) * 2017-05-24 2018-11-29 三菱瓦斯化学株式会社 Sheet formed from carbon fiber reinforced thermoplastic resin, and production method of said sheet
JP2019035001A (en) * 2017-08-10 2019-03-07 三菱瓦斯化学株式会社 Fiber-reinforced thermoplastic resin composite material and molded product including the same
KR102194548B1 (en) * 2017-11-29 2020-12-23 롯데케미칼 주식회사 High heat resistant polyarylate resin composition having enhanced flowability
KR20190062897A (en) * 2017-11-29 2019-06-07 롯데케미칼 주식회사 High heat resistant polyarylate resin composition having enhanced flowability
JP2021506616A (en) * 2017-12-14 2021-02-22 トリンゼオ ヨーロッパ ゲゼルシャフト ミット ベシュレンクテル ハフツング Laminated body having a polycarbonate composition layer and a fiber structure layer and improved fire resistance
JP7264898B2 (en) 2017-12-14 2023-04-25 トリンゼオ ヨーロッパ ゲゼルシャフト ミット ベシュレンクテル ハフツング A laminate having a polycarbonate composition layer and a fiber structure layer and having improved fire resistance
EP3498469A1 (en) * 2017-12-14 2019-06-19 Trinseo Europe GmbH Laminate containing polycarbonate composition layers and fiber structure layers with improved fire resistance properties
CN111344147A (en) * 2017-12-14 2020-06-26 盛禧奥欧洲有限责任公司 Laminate comprising a layer of polycarbonate composition and a layer of fibrous structure having improved fire resistance properties
WO2020065536A1 (en) 2018-09-24 2020-04-02 Sabic Global Technologies B.V. Flame-retardant polycarbonate resin compositions
WO2021215162A1 (en) * 2020-04-21 2021-10-28 フクビ化学工業株式会社 Fiber-reinforced resin composite sheet, fiber-reinforced resin composite material, and molded resin article including same
CN115989278A (en) * 2020-08-31 2023-04-18 乐天化学株式会社 Thermoplastic resin composition and molded article produced therefrom

Also Published As

Publication number Publication date
JP6716551B2 (en) 2020-07-01
CN107614611A (en) 2018-01-19
CN107614611B (en) 2021-04-06
TW201706361A (en) 2017-02-16
JPWO2016186100A1 (en) 2018-03-08
KR20180008602A (en) 2018-01-24

Similar Documents

Publication Publication Date Title
JP6716551B2 (en) Polycarbonate resin composition and polycarbonate resin prepreg
CN107531988B (en) Flame retardant compositions, methods of making, and articles comprising the same
JP6664550B2 (en) Polyetherimide compositions and related articles and additive manufacturing methods
TWI398463B (en) An aromatic polycarbonate resin composition and a molded body using the same
JP2005320515A (en) Thermoconductive polycarbonate resin composition and molded product
JP4768302B2 (en) Molded body made of highly heat conductive insulating polycarbonate resin composition
KR102564588B1 (en) Flame retardant polycarbonate resin composition, sheet and film using the same, and manufacturing method thereof
JP2005298552A (en) Thermoconductive polycarbonate resin composition and molded article
CN107949603B (en) Flame-retardant polycarbonate resin composition, sheet and film using same, and method for producing same
JP2001040229A (en) Flame-retardant resin composition, and its molded article
CN111349327A (en) Flame retardant glass-filled polycarbonate compositions
JP5312437B2 (en) Thermally conductive polycarbonate resin composition and molded body
JP6445389B2 (en) Prepreg made of continuous fiber reinforced polycarbonate resin
WO2023085297A1 (en) Pellets, molded article, and method for producing pellets
JP2019035001A (en) Fiber-reinforced thermoplastic resin composite material and molded product including the same
JP6310240B2 (en) Thermoplastic resin composition for laser direct structuring, resin molded product, and method for producing resin molded product
JP6511226B2 (en) Fiber-reinforced resin material, resin molded article and method for producing fiber-reinforced resin material
JP6713272B2 (en) Polycarbonate-based resin composition, product, housing-forming resin, method of using polycarbonate-based resin composition as housing-forming resin, and method of manufacturing polycarbonate-based resin composition
KR20200125739A (en) Impact-modified polyester carbonate-polysiloxane composition and related articles and lamination manufacturing method
WO2018163562A1 (en) Polycarbonate resin composition and molded article
WO2023085298A1 (en) Pellets, molded product, and pellet manufacturing method
JP2023070900A (en) Pellet, molded article, and method for manufacturing pellet
KR20220115699A (en) High-strength thermoplastic resin composition comprising inorganic filler
KR20110014315A (en) Flame-retardant resin composition of polycarbonate and method of forming flame-retardant film using the same
JP2018145397A (en) Polycarbonate resin composition and molded article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796493

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017519368

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177035868

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16796493

Country of ref document: EP

Kind code of ref document: A1