JP2018145397A - Polycarbonate resin composition and molded article - Google Patents

Polycarbonate resin composition and molded article Download PDF

Info

Publication number
JP2018145397A
JP2018145397A JP2017238432A JP2017238432A JP2018145397A JP 2018145397 A JP2018145397 A JP 2018145397A JP 2017238432 A JP2017238432 A JP 2017238432A JP 2017238432 A JP2017238432 A JP 2017238432A JP 2018145397 A JP2018145397 A JP 2018145397A
Authority
JP
Japan
Prior art keywords
polycarbonate resin
mass
resin composition
parts
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017238432A
Other languages
Japanese (ja)
Inventor
祥幸 鬼山
Sachiyuki Oniyama
祥幸 鬼山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Engineering Plastics Corp
Original Assignee
Mitsubishi Engineering Plastics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Engineering Plastics Corp filed Critical Mitsubishi Engineering Plastics Corp
Priority to PCT/JP2017/045697 priority Critical patent/WO2018163562A1/en
Publication of JP2018145397A publication Critical patent/JP2018145397A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polycarbonate resin composition which has extremely high flame retardancy even when formed into a thin molding, is excellent in rigidity, bending strength, impact strength, and weld strength, and is reduced in weight.SOLUTION: A polycarbonate resin composition contains, with respect to 100 pts.mass of a polycarbonate resin (A), 5 to 120 pts.mass of a carbon fiber (B), 1 to 15 pts.mass of a scaly inorganic mineral filler (C), and 15 to 50 pts.mass of a phosphorous flame retardant (D), where a ratio of the scaly inorganic mineral filler (C) is 3 to 30 mass% with respect to the carbon fiber (B).SELECTED DRAWING: None

Description

本発明は、ポリカーボネート樹脂組成物及び成形品に関し、詳しくは、薄肉成形体とした場合にも極めて高い難燃性を有し、さらには剛性、曲げ強度、衝撃強度、ウエルド強度に優れ、軽量化されたポリカーボネート樹脂組成物及びその成形品に関する。   The present invention relates to a polycarbonate resin composition and a molded product. Specifically, even when it is a thin-walled molded product, it has extremely high flame retardancy, and further has excellent rigidity, bending strength, impact strength, weld strength, and light weight. The present invention relates to a polycarbonate resin composition and a molded product thereof.

ポリカーボネート樹脂は、耐熱性、機械的物性、電気的特性に優れた樹脂であり、例えば自動車材料、電気電子機器材料、住宅材料、その他の工業分野における部品製造用材料等に幅広く利用されている。
中でも難燃化されたポリカーボネート樹脂組成物は、コンピューター、ノートブック型パソコン、タブレット端末、スマートフォン、携帯電話等の情報・モバイル機器やプリンター、複写機等のOA機器等の部材として好適に使用されている。
Polycarbonate resins are resins having excellent heat resistance, mechanical properties, and electrical characteristics, and are widely used, for example, as automotive materials, electrical and electronic equipment materials, housing materials, and other parts manufacturing materials in industrial fields.
Among them, the flame retardant polycarbonate resin composition is suitably used as a member for information / mobile devices such as computers, notebook computers, tablet terminals, smartphones, mobile phones, and OA devices such as printers and copiers. Yes.

近年、上述のような情報・モバイル機器をはじめとする電気電子機器は、小型化・薄肉化が進んでいるため、使用する材料には薄肉とした場合も高い難燃性を有し、さらに剛性にも優れる材料が求められている。
ポリカーボネート樹脂の剛性を高める手法はいくつか検討されているが、上述のような薄肉高剛性の要求に対しては、ガラス繊維のような繊維状の強化材を配合する手法が最も効果的である。このようなガラス繊維強化ポリカーボネート樹脂に難燃性を付与する手段としては、従来、ハロゲン系難燃剤をポリカーボネート樹脂に配合することがなされてきた。しかしながら、塩素や臭素を含有するハロゲン系難燃剤を配合したポリカーボネート樹脂組成物は、熱安定性の低下を招いたり、成形加工時における成形機のスクリューや成形金型の腐食を招いたりすることがあった。
In recent years, electric and electronic devices such as the above-mentioned information and mobile devices have been reduced in size and thickness. Therefore, even if the material used is thin, it has high flame retardancy and is also rigid. There is also a need for materials that are superior to the above.
Several methods for increasing the rigidity of the polycarbonate resin have been studied, but the method of blending a fibrous reinforcing material such as glass fiber is the most effective for the demand for thin and high rigidity as described above. . As a means for imparting flame retardancy to such a glass fiber reinforced polycarbonate resin, conventionally, a halogen-based flame retardant has been added to the polycarbonate resin. However, a polycarbonate resin composition containing a halogen-based flame retardant containing chlorine or bromine may lead to a decrease in thermal stability or corrosion of a molding machine screw or molding die during molding processing. there were.

これに代わる手法として有機リン酸エステルを配合したガラス繊維強化ポリカーボネート樹脂組成物が、数多く提案されている(例えば、特許文献1〜3参照)。
しかしながら、ガラス繊維強化ポリカーボネート樹脂では、比重が重いために近年要求されるような軽薄短小で高強度の成形品を得ることはできなかった。
Many glass fiber reinforced polycarbonate resin compositions containing organic phosphates have been proposed as alternative methods (see, for example, Patent Documents 1 to 3).
However, since the glass fiber reinforced polycarbonate resin has a high specific gravity, it has not been possible to obtain a light, thin, small and high strength molded product as required recently.

これに対し、例えば、特許文献4〜6等では、炭素繊維と有機リン酸エステルを配合した、炭素繊維強化ポリカーボネート樹脂が提案されている。
しかしながら上述のような炭素繊維強化ポリカーボネート樹脂は、難燃性や耐衝撃性の低下が課題であった。
On the other hand, for example, Patent Documents 4 to 6 propose carbon fiber-reinforced polycarbonate resins in which carbon fibers and organic phosphate esters are blended.
However, the above-described carbon fiber reinforced polycarbonate resin has a problem of reduction in flame retardancy and impact resistance.

特開平10−46017号公報Japanese Patent Laid-Open No. 10-46017 特開平10−30056号公報Japanese Patent Laid-Open No. 10-30056 特開2014−156588号公報JP 2014-156588 A 特開平9−48912号公報Japanese Patent Laid-Open No. 9-48912 特開2000−226508号公報JP 2000-226508 A 特開2002−265767号公報JP 2002-265767 A

本発明は、上記の課題に鑑みて創案されたもので、薄肉成形体とした場合にも極めて高い難燃性を有し、さらには剛性、曲げ強度、衝撃強度、ウエルド強度に優れ、かつ軽量化が可能な材料を提供することを目的(課題)とする。   The present invention was devised in view of the above problems, and has extremely high flame retardancy even when formed into a thin-walled molded article, and further has excellent rigidity, bending strength, impact strength, weld strength, and light weight. An object (problem) is to provide a material that can be made into a material.

本発明者は、上記課題を解決するため、鋭意検討を重ねた結果、ポリカーボネート樹脂に、炭素繊維、鱗片状無機鉱物フィラー及びリン系難燃剤を含有し、炭素繊維に対する鱗片状無機鉱物フィラーの割合を特定の量で組み合わせることにより、軽量で且つ衝撃強度及びウエルド強度に優れ、剛性、曲げ強度及び難燃性に優れるポリカーボネート樹脂組成物が得られることを見出し、本発明を完成させた。
本発明は、以下のポリカーボネート樹脂組成物及び成形品を提供する。
As a result of intensive studies in order to solve the above problems, the inventor contains carbon fiber, a flaky inorganic mineral filler, and a phosphorus-based flame retardant in a polycarbonate resin, and a ratio of the flaky inorganic mineral filler to the carbon fiber. It was found that a polycarbonate resin composition that is light in weight, excellent in impact strength and weld strength, and excellent in rigidity, bending strength, and flame retardancy can be obtained by combining a specific amount of the above.
The present invention provides the following polycarbonate resin composition and molded article.

[1]ポリカーボネート樹脂(A)100質量部に対し、炭素繊維(B)5〜120質量部、鱗片状無機鉱物フィラー(C)1〜15質量部及びリン系難燃剤(D)15〜50質量部を含有し、炭素繊維(B)に対する鱗片状無機鉱物フィラー(C)の割合が3〜30質量%であることを特徴とするポリカーボネート樹脂組成物。
[2]さらに、フルオロポリマー(E)を、ポリカーボネート樹脂(A)100質量部に対し、0.05〜2質量部含有する上記[1]に記載のポリカーボネート樹脂組成物。
[3]鱗片状無機鉱物フィラー(C)がタルク及び/又はマイカである上記[1]又は[2]に記載のポリカーボネート樹脂組成物。
[4]リン系難燃剤(D)が、縮合リン酸エステル化合物である上記[1]〜[3]のいずれかに記載のポリカーボネート樹脂組成物。
[5]さらに、コア/シェル型グラフト共重合体(F)を、ポリカーボネート樹脂(A)100質量部に対し、3〜10質量部含有する上記[1]〜[4]のいずれかに記載のポリカーボネート樹脂組成物。
[6]コア/シェル型グラフト共重合体(F)が、シリコーン−アクリレート複合ゴムをコアとするグラフト共重合体である上記[1]〜[5]のいずれかに記載のポリカーボネート樹脂組成物。
[7]鱗片状無機鉱物フィラー(C)とコア/シェル型グラフト共重合体(F)の含有量の質量比(C)/(F)が0.1〜2である上記[1]〜[6]のいずれかに記載のポリカーボネート樹脂組成物。
[8]UL94試験に基づく燃焼性が、0.8mm厚みでV−0である上記[1]〜[7]のいずれかに記載のポリカーボネート樹脂組成物。
[9]上記[1]〜[8]のいずれかに記載のポリカーボネート樹脂組成物を成形した成形品。
[10]電気電子機器の筐体である上記[9]に記載の成形品。
[11]前記電気電子機器が、ノートパソコン、タブレット端末、スマートフォン又は携帯電話である上記[10]に記載の成形品。
[1] Carbon fiber (B) 5 to 120 parts by mass, scale-like inorganic mineral filler (C) 1 to 15 parts by mass and phosphorus flame retardant (D) 15 to 50 parts by mass with respect to 100 parts by mass of polycarbonate resin (A) The polycarbonate resin composition is characterized in that the ratio of the scaly inorganic mineral filler (C) to the carbon fiber (B) is 3 to 30% by mass.
[2] The polycarbonate resin composition according to [1], further containing 0.05 to 2 parts by mass of the fluoropolymer (E) with respect to 100 parts by mass of the polycarbonate resin (A).
[3] The polycarbonate resin composition according to the above [1] or [2], wherein the scaly inorganic mineral filler (C) is talc and / or mica.
[4] The polycarbonate resin composition according to any one of [1] to [3], wherein the phosphorus-based flame retardant (D) is a condensed phosphate ester compound.
[5] The core / shell graft copolymer (F) according to any one of [1] to [4], further containing 3 to 10 parts by mass with respect to 100 parts by mass of the polycarbonate resin (A). Polycarbonate resin composition.
[6] The polycarbonate resin composition according to any one of [1] to [5], wherein the core / shell type graft copolymer (F) is a graft copolymer having a silicone-acrylate composite rubber as a core.
[7] The above [1] to [1], wherein the mass ratio (C) / (F) of the content of the scale-like inorganic mineral filler (C) and the core / shell type graft copolymer (F) is 0.1-2. 6] The polycarbonate resin composition according to any one of the above.
[8] The polycarbonate resin composition according to any one of [1] to [7], wherein the combustibility based on the UL94 test is V-0 at a thickness of 0.8 mm.
[9] A molded product obtained by molding the polycarbonate resin composition according to any one of [1] to [8].
[10] The molded product according to [9], which is a casing of an electric / electronic device.
[11] The molded article according to [10], wherein the electrical and electronic device is a notebook computer, a tablet terminal, a smartphone, or a mobile phone.

本発明のポリカーボネート樹脂組成物によれば、薄肉成形体とした場合にも極めて高い難燃性を有し、さらには剛性、曲げ強度、衝撃強度、ウエルド強度に優れ、軽量化されたポリカーボネート樹脂組成物が可能となる。   According to the polycarbonate resin composition of the present invention, the polycarbonate resin composition has extremely high flame retardancy even in the case of a thin molded article, and is excellent in rigidity, bending strength, impact strength, weld strength, and reduced in weight. Things are possible.

以下、本発明について実施形態及び例示物等を示して詳細に説明するが、本発明は以下に示す実施形態及び例示物等に限定して解釈されるものではない。   Hereinafter, although an embodiment, an example thing, etc. are shown and explained in detail about the present invention, the present invention is limited to an embodiment, an example, etc. shown below and is not interpreted.

本発明のポリカーボネート樹脂組成物は、ポリカーボネート樹脂(A)100質量部に対し、炭素繊維(B)5〜120質量部、鱗片状無機鉱物フィラー(C)1〜15質量部及びリン系難燃剤(D)15〜50質量部を含有し、炭素繊維(B)に対する鱗片状無機鉱物フィラー(C)の割合が3〜30質量%であることを特徴とする。   The polycarbonate resin composition of the present invention comprises 5 to 120 parts by mass of carbon fiber (B), 1 to 15 parts by mass of a flaky inorganic mineral filler (C) and a phosphorus flame retardant (100 parts by mass of polycarbonate resin (A). D) It contains 15 to 50 parts by mass, and the ratio of the scaly inorganic mineral filler (C) to the carbon fiber (B) is 3 to 30% by mass.

[ポリカーボネート樹脂(A)]
本発明のポリカーボネート樹脂組成物に用いるポリカーボネート樹脂の種類に制限は無い。また、ポリカーボネート樹脂は、1種類を用いてもよく、2種類以上を任意の組み合わせ及び任意の比率で併用してもよい。
[Polycarbonate resin (A)]
There is no restriction | limiting in the kind of polycarbonate resin used for the polycarbonate resin composition of this invention. In addition, one type of polycarbonate resin may be used, or two or more types may be used in any combination and in any ratio.

ポリカーボネート樹脂は、一般式:−[−O−X−O−C(=O)−]−で表される、炭酸結合を有する基本構造の重合体である。なお、式中、Xは、一般には炭化水素基であるが、種々の特性付与のためヘテロ原子、ヘテロ結合の導入されたXを用いてもよい。   The polycarbonate resin is a polymer having a basic structure having a carbonic acid bond, represented by a general formula: — [— O—X—O—C (═O) —] —. In the formula, X is generally a hydrocarbon group, but for imparting various properties, X introduced with a hetero atom or a hetero bond may be used.

また、ポリカーボネート樹脂は、炭酸結合に直接結合する炭素がそれぞれ芳香族炭素である芳香族ポリカーボネート樹脂、及び脂肪族炭素である脂肪族ポリカーボネート樹脂に分類できるが、いずれを用いることもできる。なかでも、耐熱性、機械的物性、電気的特性等の観点から、芳香族ポリカーボネート樹脂が好ましい。   The polycarbonate resin can be classified into an aromatic polycarbonate resin in which carbon directly bonded to a carbonic acid bond is aromatic carbon and an aliphatic polycarbonate resin in which aliphatic carbon is aliphatic carbon, either of which can be used. Of these, aromatic polycarbonate resins are preferred from the viewpoints of heat resistance, mechanical properties, electrical characteristics, and the like.

ポリカーボネート樹脂の具体的な種類に制限はないが、例えば、ジヒドロキシ化合物とカーボネート前駆体とを反応させてなるポリカーボネート重合体が挙げられる。この際、ジヒドロキシ化合物及びカーボネート前駆体に加えて、ポリヒドロキシ化合物等を反応させるようにしてもよい。また、二酸化炭素をカーボネート前駆体として、環状エーテルと反応させる方法も用いてもよい。またポリカーボネート重合体は、直鎖状でもよく、分岐鎖状でもよい。さらに、ポリカーボネート重合体は1種の繰り返し単位からなる単重合体であってもよく、2種以上の繰り返し単位を有する共重合体であってもよい。このとき共重合体は、ランダム共重合体、ブロック共重合体等、種々の共重合形態を選択することができる。なお、通常、このようなポリカーボネート重合体は、熱可塑性の樹脂となる。   Although there is no restriction | limiting in the specific kind of polycarbonate resin, For example, the polycarbonate polymer formed by making a dihydroxy compound and a carbonate precursor react is mentioned. At this time, in addition to the dihydroxy compound and the carbonate precursor, a polyhydroxy compound or the like may be reacted. Further, a method of reacting carbon dioxide with a cyclic ether using a carbonate precursor may be used. The polycarbonate polymer may be linear or branched. Further, the polycarbonate polymer may be a homopolymer composed of one type of repeating unit or a copolymer having two or more types of repeating units. At this time, the copolymer can be selected from various copolymerization forms such as a random copolymer and a block copolymer. In general, such a polycarbonate polymer is a thermoplastic resin.

芳香族ポリカーボネート樹脂の原料となるモノマーのうち、芳香族ジヒドロキシ化合物の例としては、
1,2−ジヒドロキシベンゼン、1,3−ジヒドロキシベンゼン(即ち、レゾルシノール)、1,4−ジヒドロキシベンゼン等のジヒドロキシベンゼン類;
2,5−ジヒドロキシビフェニル、2,2’−ジヒドロキシビフェニル、4,4’−ジヒドロキシビフェニル等のジヒドロキシビフェニル類;
2,2’−ジヒドロキシ−1,1’−ビナフチル、1,2−ジヒドロキシナフタレン、1,3−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、1,7−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレン等のジヒドロキシナフタレン類;
Among monomers used as raw materials for aromatic polycarbonate resins, examples of aromatic dihydroxy compounds include:
Dihydroxybenzenes such as 1,2-dihydroxybenzene, 1,3-dihydroxybenzene (ie, resorcinol), 1,4-dihydroxybenzene;
Dihydroxybiphenyls such as 2,5-dihydroxybiphenyl, 2,2′-dihydroxybiphenyl, 4,4′-dihydroxybiphenyl;
2,2′-dihydroxy-1,1′-binaphthyl, 1,2-dihydroxynaphthalene, 1,3-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, , 7-dihydroxynaphthalene, dihydroxynaphthalene such as 2,7-dihydroxynaphthalene;

2,2’−ジヒドロキシジフェニルエーテル、3,3’−ジヒドロキシジフェニルエーテル、4,4’−ジヒドロキシジフェニルエーテル、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルエーテル、1,4−ビス(3−ヒドロキシフェノキシ)ベンゼン、1,3−ビス(4−ヒドロキシフェノキシ)ベンゼン等のジヒドロキシジアリールエーテル類; 2,2′-dihydroxydiphenyl ether, 3,3′-dihydroxydiphenyl ether, 4,4′-dihydroxydiphenyl ether, 4,4′-dihydroxy-3,3′-dimethyldiphenyl ether, 1,4-bis (3-hydroxyphenoxy) Dihydroxy diaryl ethers such as benzene and 1,3-bis (4-hydroxyphenoxy) benzene;

2,2−ビス(4−ヒドロキシフェニル)プロパン(即ち、ビスフェノールA)、
1,1−ビス(4−ヒドロキシフェニル)プロパン、
2,2−ビス(3−メチル−4−ヒドロキシフェニル)プロパン、
2,2−ビス(3−メトキシ−4−ヒドロキシフェニル)プロパン、
2−(4−ヒドロキシフェニル)−2−(3−メトキシ−4−ヒドロキシフェニル)プロパン、
1,1−ビス(3−tert−ブチル−4−ヒドロキシフェニル)プロパン、
2,2−ビス(3,5−ジメチル−4−ヒドロキシフェニル)プロパン、
2,2−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)プロパン、
2−(4−ヒドロキシフェニル)−2−(3−シクロヘキシル−4−ヒドロキシフェニル)プロパン、
α,α’−ビス(4−ヒドロキシフェニル)−1,4−ジイソプロピルベンゼン、
1,3−ビス[2−(4−ヒドロキシフェニル)−2−プロピル]ベンゼン、
ビス(4−ヒドロキシフェニル)メタン、
ビス(4−ヒドロキシフェニル)シクロヘキシルメタン、
ビス(4−ヒドロキシフェニル)フェニルメタン、
ビス(4−ヒドロキシフェニル)(4−プロペニルフェニル)メタン、
ビス(4−ヒドロキシフェニル)ジフェニルメタン、
ビス(4−ヒドロキシフェニル)ナフチルメタン、
1,1−ビス(4−ヒドロキシフェニル)エタン、
1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、
1,1−ビス(4−ヒドロキシフェニル)−1−ナフチルエタン、
1,1−ビス(4−ヒドロキシフェニル)ブタン、
2,2−ビス(4−ヒドロキシフェニル)ブタン、
2,2−ビス(4−ヒドロキシフェニル)ペンタン、
1,1−ビス(4−ヒドロキシフェニル)ヘキサン、
2,2−ビス(4−ヒドロキシフェニル)ヘキサン、
1,1−ビス(4−ヒドロキシフェニル)オクタン、
2,2−ビス(4−ヒドロキシフェニル)オクタン、
4,4−ビス(4−ヒドロキシフェニル)ヘプタン、
2,2−ビス(4−ヒドロキシフェニル)ノナン、
1,1−ビス(4−ヒドロキシフェニル)デカン、
1,1−ビス(4−ヒドロキシフェニル)ドデカン、
等のビス(ヒドロキシアリール)アルカン類;
2,2-bis (4-hydroxyphenyl) propane (ie, bisphenol A),
1,1-bis (4-hydroxyphenyl) propane,
2,2-bis (3-methyl-4-hydroxyphenyl) propane,
2,2-bis (3-methoxy-4-hydroxyphenyl) propane,
2- (4-hydroxyphenyl) -2- (3-methoxy-4-hydroxyphenyl) propane,
1,1-bis (3-tert-butyl-4-hydroxyphenyl) propane,
2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane,
2,2-bis (3-cyclohexyl-4-hydroxyphenyl) propane,
2- (4-hydroxyphenyl) -2- (3-cyclohexyl-4-hydroxyphenyl) propane,
α, α′-bis (4-hydroxyphenyl) -1,4-diisopropylbenzene,
1,3-bis [2- (4-hydroxyphenyl) -2-propyl] benzene,
Bis (4-hydroxyphenyl) methane,
Bis (4-hydroxyphenyl) cyclohexylmethane,
Bis (4-hydroxyphenyl) phenylmethane,
Bis (4-hydroxyphenyl) (4-propenylphenyl) methane,
Bis (4-hydroxyphenyl) diphenylmethane,
Bis (4-hydroxyphenyl) naphthylmethane,
1,1-bis (4-hydroxyphenyl) ethane,
1,1-bis (4-hydroxyphenyl) -1-phenylethane,
1,1-bis (4-hydroxyphenyl) -1-naphthylethane,
1,1-bis (4-hydroxyphenyl) butane,
2,2-bis (4-hydroxyphenyl) butane,
2,2-bis (4-hydroxyphenyl) pentane,
1,1-bis (4-hydroxyphenyl) hexane,
2,2-bis (4-hydroxyphenyl) hexane,
1,1-bis (4-hydroxyphenyl) octane,
2,2-bis (4-hydroxyphenyl) octane,
4,4-bis (4-hydroxyphenyl) heptane,
2,2-bis (4-hydroxyphenyl) nonane,
1,1-bis (4-hydroxyphenyl) decane,
1,1-bis (4-hydroxyphenyl) dodecane,
Bis (hydroxyaryl) alkanes such as;

1,1−ビス(4−ヒドロキシフェニル)シクロペンタン、
1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3,3−ジメチルシクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3,4−ジメチルシクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3,5−ジメチルシクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、
1,1−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)−3,3,5−トリメチルシクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3−プロピル−5−メチルシクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3−tert−ブチル−シクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3−tert−ブチル−シクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3−フェニルシクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−4−フェニルシクロヘキサン、
等のビス(ヒドロキシアリール)シクロアルカン類;
1,1-bis (4-hydroxyphenyl) cyclopentane,
1,1-bis (4-hydroxyphenyl) cyclohexane,
1,1-bis (4-hydroxyphenyl) -3,3-dimethylcyclohexane,
1,1-bis (4-hydroxyphenyl) -3,4-dimethylcyclohexane,
1,1-bis (4-hydroxyphenyl) -3,5-dimethylcyclohexane,
1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane,
1,1-bis (4-hydroxy-3,5-dimethylphenyl) -3,3,5-trimethylcyclohexane,
1,1-bis (4-hydroxyphenyl) -3-propyl-5-methylcyclohexane,
1,1-bis (4-hydroxyphenyl) -3-tert-butyl-cyclohexane,
1,1-bis (4-hydroxyphenyl) -3-tert-butyl-cyclohexane,
1,1-bis (4-hydroxyphenyl) -3-phenylcyclohexane,
1,1-bis (4-hydroxyphenyl) -4-phenylcyclohexane,
Bis (hydroxyaryl) cycloalkanes such as;

9,9−ビス(4−ヒドロキシフェニル)フルオレン、
9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン等のカルド構造含有ビスフェノール類;
9,9-bis (4-hydroxyphenyl) fluorene,
Cardio structure-containing bisphenols such as 9,9-bis (4-hydroxy-3-methylphenyl) fluorene;

4,4’−ジヒドロキシジフェニルスルフィド、
4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルフィド等のジヒドロキシジアリールスルフィド類;
4,4′-dihydroxydiphenyl sulfide,
Dihydroxydiaryl sulfides such as 4,4′-dihydroxy-3,3′-dimethyldiphenyl sulfide;

4,4’−ジヒドロキシジフェニルスルホキシド、
4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルホキシド等のジヒドロキシジアリールスルホキシド類;
4,4′-dihydroxydiphenyl sulfoxide,
Dihydroxydiaryl sulfoxides such as 4,4′-dihydroxy-3,3′-dimethyldiphenyl sulfoxide;

4,4’−ジヒドロキシジフェニルスルホン、
4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルホン等のジヒドロキシジアリールスルホン類;
等が挙げられる。
4,4′-dihydroxydiphenyl sulfone,
Dihydroxydiaryl sulfones such as 4,4′-dihydroxy-3,3′-dimethyldiphenyl sulfone;
Etc.

これらの中でもビス(ヒドロキシアリール)アルカン類が好ましく、中でもビス(4−ヒドロキシフェニル)アルカン類が好ましく、特に耐衝撃性、耐熱性の点から2,2−ビス(4−ヒドロキシフェニル)プロパン(即ち、ビスフェノールA)が好ましい。
なお、芳香族ジヒドロキシ化合物は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
Among these, bis (hydroxyaryl) alkanes are preferable, and bis (4-hydroxyphenyl) alkanes are preferable, and 2,2-bis (4-hydroxyphenyl) propane (ie, from the viewpoint of impact resistance and heat resistance). Bisphenol A) is preferred.
In addition, 1 type may be used for an aromatic dihydroxy compound and it may use 2 or more types together by arbitrary combinations and a ratio.

また、脂肪族ポリカーボネート樹脂の原料となるモノマーの例を挙げると、
エタン−1,2−ジオール、プロパン−1,2−ジオール、プロパン−1,3−ジオール、2,2−ジメチルプロパン−1,3−ジオール、2−メチル−2−プロピルプロパン−1,3−ジオール、ブタン−1,4−ジオール、ペンタン−1,5−ジオール、ヘキサン−1,6−ジオール、デカン−1,10−ジオール等のアルカンジオール類;
In addition, when an example of a monomer that is a raw material of the aliphatic polycarbonate resin is given,
Ethane-1,2-diol, propane-1,2-diol, propane-1,3-diol, 2,2-dimethylpropane-1,3-diol, 2-methyl-2-propylpropane-1,3- Alkanediols such as diol, butane-1,4-diol, pentane-1,5-diol, hexane-1,6-diol, decane-1,10-diol;

シクロペンタン−1,2−ジオール、シクロヘキサン−1,2−ジオール、シクロヘキサン−1,4−ジオール、1,4−シクロヘキサンジメタノール、4−(2−ヒドロキシエチル)シクロヘキサノール、2,2,4,4−テトラメチル−シクロブタン−1,3−ジオール等のシクロアルカンジオール類;   Cyclopentane-1,2-diol, cyclohexane-1,2-diol, cyclohexane-1,4-diol, 1,4-cyclohexanedimethanol, 4- (2-hydroxyethyl) cyclohexanol, 2,2,4, Cycloalkanediols such as 4-tetramethyl-cyclobutane-1,3-diol;

エチレングリコール、2,2’−オキシジエタノール(即ち、ジエチレングリコール)、トリエチレングリコール、プロピレングリコール、スピログリコール等のグリコール類;   Glycols such as ethylene glycol, 2,2'-oxydiethanol (ie, diethylene glycol), triethylene glycol, propylene glycol, spiro glycol and the like;

1,2−ベンゼンジメタノール、1,3−ベンゼンジメタノール、1,4−ベンゼンジメタノール、1,4−ベンゼンジエタノール、1,3−ビス(2−ヒドロキシエトキシ)ベンゼン、1,4−ビス(2−ヒドロキシエトキシ)ベンゼン、2,3−ビス(ヒドロキシメチル)ナフタレン、1,6−ビス(ヒドロキシエトキシ)ナフタレン、4,4’−ビフェニルジメタノール、4,4’−ビフェニルジエタノール、1,4−ビス(2−ヒドロキシエトキシ)ビフェニル、ビスフェノールAビス(2−ヒドロキシエチル)エーテル、ビスフェノールSビス(2−ヒドロキシエチル)エーテル等のアラルキルジオール類;   1,2-benzenedimethanol, 1,3-benzenedimethanol, 1,4-benzenedimethanol, 1,4-benzenediethanol, 1,3-bis (2-hydroxyethoxy) benzene, 1,4-bis ( 2-hydroxyethoxy) benzene, 2,3-bis (hydroxymethyl) naphthalene, 1,6-bis (hydroxyethoxy) naphthalene, 4,4′-biphenyldimethanol, 4,4′-biphenyldiethanol, 1,4- Aralkyl diols such as bis (2-hydroxyethoxy) biphenyl, bisphenol A bis (2-hydroxyethyl) ether, bisphenol S bis (2-hydroxyethyl) ether;

1,2−エポキシエタン(即ち、エチレンオキシド)、1,2−エポキシプロパン(即ち、プロピレンオキシド)、1,2−エポキシシクロペンタン、1,2−エポキシシクロヘキサン、1,4−エポキシシクロヘキサン、1−メチル−1,2−エポキシシクロヘキサン、2,3−エポキシノルボルナン、1,3−エポキシプロパン等の環状エーテル類;等が挙げられる。   1,2-epoxyethane (ie ethylene oxide), 1,2-epoxypropane (ie propylene oxide), 1,2-epoxycyclopentane, 1,2-epoxycyclohexane, 1,4-epoxycyclohexane, 1-methyl And cyclic ethers such as -1,2-epoxycyclohexane, 2,3-epoxynorbornane, and 1,3-epoxypropane;

芳香族ポリカーボネート樹脂の原料となるモノマーのうち、カーボネート前駆体の例を挙げると、カルボニルハライド、カーボネートエステル等が使用される。なお、カーボネート前駆体は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。   Among the monomers used as the raw material for the aromatic polycarbonate resin, carbonyl halides, carbonate esters and the like are used as examples of the carbonate precursor. In addition, 1 type may be used for a carbonate precursor and it may use 2 or more types together by arbitrary combinations and a ratio.

カルボニルハライドとしては、具体的には例えば、ホスゲン;ジヒドロキシ化合物のビスクロロホルメート体、ジヒドロキシ化合物のモノクロロホルメート体等のハロホルメート等が挙げられる。   Specific examples of carbonyl halides include phosgene; haloformates such as bischloroformate of dihydroxy compounds and monochloroformate of dihydroxy compounds.

カーボネートエステルとしては、具体的には例えば、ジフェニルカーボネート、ジトリルカーボネート等のジアリールカーボネート類;ジメチルカーボネート、ジエチルカーボネート等のジアルキルカーボネート類;ジヒドロキシ化合物のビスカーボネート体、ジヒドロキシ化合物のモノカーボネート体、環状カーボネート等のジヒドロキシ化合物のカーボネート体等が挙げられる。   Specific examples of the carbonate ester include diaryl carbonates such as diphenyl carbonate and ditolyl carbonate; dialkyl carbonates such as dimethyl carbonate and diethyl carbonate; biscarbonate bodies of dihydroxy compounds, monocarbonate bodies of dihydroxy compounds, and cyclic carbonates. And carbonate bodies of dihydroxy compounds such as

ポリカーボネート樹脂の製造方法は、特に限定されるものではなく、任意の方法を採用できる。その例を挙げると、界面重合法、溶融エステル交換法、ピリジン法、環状カーボネート化合物の開環重合法、プレポリマーの固相エステル交換法などを挙げることができる。   The method for producing the polycarbonate resin is not particularly limited, and any method can be adopted. Examples thereof include an interfacial polymerization method, a melt transesterification method, a pyridine method, a ring-opening polymerization method of a cyclic carbonate compound, and a solid phase transesterification method of a prepolymer.

ポリカーボネート樹脂の分子量は、適宜選択して決定すればよいが、溶液粘度から換算した粘度平均分子量[Mv]は、17000〜24000であることが好ましい。粘度平均分子量をこのような範囲とすることにより、本発明のポリカーボネート樹脂組成物の機械的強度をより向上させることができ、粘度平均分子量を上記範囲の上限値以下とすることにより本発明のポリカーボネート樹脂組成物の流動性低下を抑制して改善でき、成形加工性を高めて薄肉成形加工を容易に行うこともできる。
なお、粘度平均分子量の異なる2種類以上のポリカーボネート樹脂を混合して用いてもよく、この場合には、粘度平均分子量が上記の好適な範囲外であるポリカーボネート樹脂を混合してもよく、この場合はポリカーボネート樹脂混合物の粘度平均分子量を上記の範囲とすることが好ましい。
The molecular weight of the polycarbonate resin may be appropriately selected and determined, but the viscosity average molecular weight [Mv] converted from the solution viscosity is preferably 17000 to 24000. By setting the viscosity average molecular weight in such a range, the mechanical strength of the polycarbonate resin composition of the present invention can be further improved, and by setting the viscosity average molecular weight to be equal to or less than the upper limit of the above range, the polycarbonate of the present invention. The fluidity of the resin composition can be suppressed and improved, and the molding processability can be improved and the thin-wall molding process can be easily performed.
In addition, two or more types of polycarbonate resins having different viscosity average molecular weights may be mixed and used. In this case, a polycarbonate resin having a viscosity average molecular weight outside the above-mentioned preferred range may be mixed. The viscosity average molecular weight of the polycarbonate resin mixture is preferably in the above range.

なお、粘度平均分子量[Mv]とは、溶媒としてメチレンクロライドを使用し、ウベローデ粘度計を用いて温度20℃での極限粘度[η](単位dl/g)を求め、Schnellの粘度式、すなわち、η=1.23×10−4Mv0.83 から算出される値を意味する。また極限粘度[η]とは、各溶液濃度[C](g/dl)での比粘度[ηsp]を測定し、下記式により算出した値である。
The viscosity average molecular weight [Mv] is obtained by using methylene chloride as a solvent and obtaining an intrinsic viscosity [η] (unit: dl / g) at a temperature of 20 ° C. using an Ubbelohde viscometer. , Η = 1.23 × 10 −4 Mv 0.83 . The intrinsic viscosity [η] is a value calculated from the following equation by measuring the specific viscosity [η sp ] at each solution concentration [C] (g / dl).

ポリカーボネート樹脂の末端水酸基濃度は任意であり、適宜選択して決定すればよいが、通常1,000ppm以下、好ましくは800ppm以下、より好ましくは600ppm以下である。これにより本発明のポリカーボネート樹脂組成物の滞留熱安定性及び色調をより向上させることができる。また、その下限は、特に溶融エステル交換法で製造されたポリカーボネート樹脂では、通常10ppm以上、好ましくは30ppm以上、より好ましくは40ppm以上である。これにより、分子量の低下を抑制し、本発明のポリカーボネート樹脂組成物の機械的特性をより向上させることができる。   The terminal hydroxyl group concentration of the polycarbonate resin is arbitrary and may be appropriately selected and determined, but is usually 1,000 ppm or less, preferably 800 ppm or less, more preferably 600 ppm or less. Thereby, the residence heat stability and color tone of the polycarbonate resin composition of the present invention can be further improved. In addition, the lower limit is usually 10 ppm or more, preferably 30 ppm or more, more preferably 40 ppm or more, particularly for polycarbonate resins produced by the melt transesterification method. Thereby, the fall of molecular weight can be suppressed and the mechanical characteristic of the polycarbonate resin composition of this invention can be improved more.

なお、末端水酸基濃度の単位は、ポリカーボネート樹脂の質量に対する、末端水酸基の質量をppmで表示したものである。その測定方法は、四塩化チタン/酢酸法による比色定量(Macromol.Chem.88 215(1965)に記載の方法)である。   In addition, the unit of a terminal hydroxyl group density | concentration represents the mass of the terminal hydroxyl group with respect to the mass of polycarbonate resin in ppm. The measurement method is colorimetric determination (method described in Macromol. Chem. 88 215 (1965)) by the titanium tetrachloride / acetic acid method.

ポリカーボネート樹脂は、ポリカーボネート樹脂単独(ポリカーボネート樹脂単独とは、ポリカーボネート樹脂の1種のみを含む態様に限定されず、例えば、モノマー組成や分子量が互いに異なる複数種のポリカーボネート樹脂を含む態様を含む意味で用いる。)で用いてもよく、ポリカーボネート樹脂と他の熱可塑性樹脂とのアロイ(混合物)とを組み合わせて用いてもよい。さらに、例えば、難燃性や耐衝撃性をさらに高める目的で、ポリカーボネート樹脂を、シロキサン構造を有するオリゴマーまたはポリマーとの共重合体;熱酸化安定性や難燃性をさらに向上させる目的でリン原子を有するモノマー、オリゴマーまたはポリマーとの共重合体;熱酸化安定性を向上させる目的で、ジヒドロキシアントラキノン構造を有するモノマー、オリゴマーまたはポリマーとの共重合体;光学的性質を改良するためにポリスチレン等のオレフィン系構造を有するオリゴマーまたはポリマーとの共重合体;耐薬品性を向上させる目的でポリエステル樹脂オリゴマーまたはポリマーとの共重合体;等の、ポリカーボネート樹脂を主体とする共重合体として構成してもよい。   The polycarbonate resin is a polycarbonate resin alone (the polycarbonate resin alone is not limited to an embodiment containing only one type of polycarbonate resin, and is used in a sense including an embodiment containing a plurality of types of polycarbonate resins having different monomer compositions and molecular weights, for example. .), Or an alloy (mixture) of a polycarbonate resin and another thermoplastic resin may be used in combination. Further, for example, for the purpose of further improving flame retardancy and impact resistance, a polycarbonate resin is copolymerized with an oligomer or polymer having a siloxane structure; for the purpose of further improving thermal oxidation stability and flame retardancy A monomer, oligomer or polymer having a copolymer; a monomer, oligomer or polymer having a dihydroxyanthraquinone structure for the purpose of improving thermal oxidation stability; A copolymer with an oligomer or polymer having an olefin structure; a copolymer with a polyester resin oligomer or polymer for the purpose of improving chemical resistance; Good.

さらにポリカーボネート樹脂は、バージン原料だけでなく、使用済みの製品から再生されたポリカーボネート樹脂(いわゆるマテリアルリサイクルされたポリカーボネート樹脂)であってもよい。前記の使用済みの製品としては、例えば、光学ディスク等の光記録媒体;導光板;自動車窓ガラス、自動車ヘッドランプレンズ、風防等の車両透明部材;水ボトル等の容器;メガネレンズ;防音壁、ガラス窓、波板等の建築部材などが挙げられる。また、製品の不適合品、スプルー、ランナー等から得られた粉砕品またはそれらを溶融して得たペレット等も使用可能である。
ただし、再生されたポリカーボネート樹脂は、本発明のポリカーボネート樹脂組成物に含まれるポリカーボネート樹脂のうち、80質量%以下であることが好ましく、中でも50質量%以下であることがより好ましい。再生されたポリカーボネート樹脂は、熱劣化や経年劣化等の劣化を受けている可能性が高いため、このようなポリカーボネート樹脂を前記の範囲よりも多く用いた場合、色相や機械的物性を低下させる可能性があるためである。
Further, the polycarbonate resin may be not only a virgin raw material but also a polycarbonate resin regenerated from a used product (so-called material-recycled polycarbonate resin). Examples of the used products include: optical recording media such as optical disks; light guide plates; vehicle window glass, vehicle headlamp lenses, windshields and other vehicle transparent members; water bottles and other containers; eyeglass lenses; Examples include architectural members such as glass windows and corrugated sheets. Also, non-conforming products, pulverized products obtained from sprues, runners, etc., or pellets obtained by melting them can be used.
However, the regenerated polycarbonate resin is preferably 80% by mass or less, more preferably 50% by mass or less, among the polycarbonate resins contained in the polycarbonate resin composition of the present invention. Recycled polycarbonate resin is likely to have undergone deterioration such as heat deterioration and aging deterioration, so when such polycarbonate resin is used more than the above range, hue and mechanical properties can be reduced. It is because there is sex.

[炭素繊維(B)]
本発明のポリカーボネート樹脂組成物は、炭素繊維(B)を含有する。炭素繊維(B)としては、PAN系(ポリアクリロニトリル系)、ピッチ系、レーヨン系等のいずれをも使用できる。
[Carbon fiber (B)]
The polycarbonate resin composition of the present invention contains carbon fiber (B). As the carbon fiber (B), any of PAN (polyacrylonitrile), pitch, rayon and the like can be used.

炭素繊維(B)の平均繊維径は20μm以下が好ましく、流動性、耐衝撃性、寸法安定性、外観のバランスから、5〜8μmの範囲が最も好ましい。平均繊維径が20μmを超えると寸法安定性、耐衝撃性のバランスが低下するため、好ましくない。
また、樹脂組成物中での炭素繊維(B)の平均繊維長は、0.1〜2mmの範囲にあることが耐衝撃性、寸法安定性、外観のバランスの点から好ましい。
The average fiber diameter of the carbon fiber (B) is preferably 20 μm or less, and most preferably in the range of 5 to 8 μm from the balance of fluidity, impact resistance, dimensional stability and appearance. If the average fiber diameter exceeds 20 μm, the balance between dimensional stability and impact resistance is lowered, which is not preferable.
The average fiber length of the carbon fibers (B) in the resin composition is preferably in the range of 0.1 to 2 mm from the viewpoint of balance between impact resistance, dimensional stability, and appearance.

炭素繊維(B)は、表面処理が施されたものが好ましく、樹脂組成物としての引張り強度、曲げ強度が向上する。表面処理剤は通常用いられる任意のものが使用でき、例えばエポキシ系サイジング剤、ウレタン系サイジング剤、エポキシ−ウレンタン系サイジング剤、ポリアミド系サイジング剤、オレフィン系サイジング剤などが挙げられる。これらの中では、エポキシ系、ポリアミド系、ウレタン系のものが、ポリカーボネート樹脂に対しての分散性が良好であるため、好ましい。
表面処理剤の量は、炭素繊維(B)100質量部に対して、0.5〜15質量部の範囲であることが好ましく、1〜10質量部の範囲内であることがさらに好ましい。
The carbon fiber (B) is preferably subjected to surface treatment, and the tensile strength and bending strength as the resin composition are improved. Any commonly used surface treating agent can be used, and examples thereof include epoxy sizing agents, urethane sizing agents, epoxy-urentane sizing agents, polyamide sizing agents, and olefin sizing agents. Among these, epoxy-based, polyamide-based, and urethane-based materials are preferable because of their good dispersibility with respect to the polycarbonate resin.
The amount of the surface treatment agent is preferably in the range of 0.5 to 15 parts by mass and more preferably in the range of 1 to 10 parts by mass with respect to 100 parts by mass of the carbon fiber (B).

本発明のポリカーボネート樹脂組成物における炭素繊維(B)の含有量は、ポリカーボネート樹脂(A)100質量部に対して、5〜120質量部である。炭素繊維(B)の含有量が5質量部未満では剛性が不十分であり、逆に120質量部を超えると耐衝撃性や流動性が不十分となり、また生産が困難となる。炭素繊維(B)の含有量は、好ましくは10質量部以上、より好ましくは20質量部以上であり、好ましくは100質量部以下、より好ましくは80質量部以下、さらに好ましくは70質量部以下である。   Content of the carbon fiber (B) in the polycarbonate resin composition of this invention is 5-120 mass parts with respect to 100 mass parts of polycarbonate resin (A). If the carbon fiber (B) content is less than 5 parts by mass, the rigidity is insufficient. Conversely, if it exceeds 120 parts by mass, the impact resistance and fluidity are insufficient, and the production becomes difficult. The content of the carbon fiber (B) is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, preferably 100 parts by mass or less, more preferably 80 parts by mass or less, and further preferably 70 parts by mass or less. is there.

[鱗片状無機鉱物フィラー(C)]
本発明のポリカーボネート樹脂組成物は、鱗片状無機鉱物フィラー(C)を含有する。本発明において、無機鉱物フィラーとは樹脂成分に含有させて強度及び剛性を向上させる無機鉱物質のものをいい、鱗片状とは平板状、湾曲板状等のように、所定の角度から観察した際(平面視した際)の面積が、当該観察方向と直交する角度から観察した際の面積よりも大きい形状のことをいう。
[Scale-like inorganic mineral filler (C)]
The polycarbonate resin composition of the present invention contains a scaly inorganic mineral filler (C). In the present invention, an inorganic mineral filler refers to an inorganic mineral that is contained in a resin component to improve strength and rigidity, and a scale shape is observed from a predetermined angle, such as a flat plate shape, a curved plate shape, etc. The area (when viewed in plan) is a shape larger than the area when observed from an angle orthogonal to the observation direction.

鱗片状無機鉱物フィラー(C)としては、例えば、タルク、マイカ、カオリン等が挙げられ、中でもタルク及び/又はマイカが好ましく、特に好ましいのはタルクである。鱗片状無機鉱物フィラー(C)は1種でも2種類の混合物であってもよい。   Examples of the scale-like inorganic mineral filler (C) include talc, mica, kaolin, and the like. Among them, talc and / or mica are preferable, and talc is particularly preferable. The scale-like inorganic mineral filler (C) may be a single type or a mixture of two types.

タルクは、ポリカーボネート樹脂との接着性を高めるため、シラン処理剤等の各種表面処理剤で表面処理がなされたものであってもよい。表面処理剤としては特に限定されず、従来公知のものを使用することができるが、メチル水素シロキサン等のハイドロジェンシロキサン化合物やエポキシシラン等のエポキシ基含有シランカップリング剤、及び、アミノシラン等のアミノ基含有シランカップリング剤が、ポリカーボネート樹脂の物性を低下させることが少ないため好ましい。その他にもポリオキシエチレンシラン等を用いることができる。
タルクを表面処理剤で処理する方法には特に限定はなく、通常の方法で実施しうる。たとえば、タルクに表面処理剤を添加し、溶液中であるいは加熱しながら撹拌あるいは混合することで行なうことができる。
Talc may be surface-treated with various surface treatment agents such as a silane treatment agent in order to enhance the adhesion to the polycarbonate resin. The surface treatment agent is not particularly limited, and a conventionally known one can be used, but a hydrogen siloxane compound such as methylhydrogen siloxane, an epoxy group-containing silane coupling agent such as epoxy silane, and an amino such as amino silane. A group-containing silane coupling agent is preferable because it hardly reduces the physical properties of the polycarbonate resin. In addition, polyoxyethylene silane or the like can be used.
There is no particular limitation on the method for treating talc with the surface treatment agent, and it can be carried out by a usual method. For example, it can be carried out by adding a surface treatment agent to talc and stirring or mixing in solution or with heating.

鱗片状無機鉱物フィラー(C)の含有量は、ポリカーボネート樹脂(A)100質量部に対し、1〜15質量部である。含有量が1質量部を下回ると強度や難燃性の向上効果が不十分となり、15質量部を超えるとウエルド強度の低下に繋がるため相応しくない。鱗片状無機鉱物フィラー(C)の含有量は1.5質量部以上が好ましく、3質量部以上がより好ましく、10質量部以下が好ましく、7質量部以下がより好ましい。   Content of a scale-like inorganic mineral filler (C) is 1-15 mass parts with respect to 100 mass parts of polycarbonate resin (A). If the content is less than 1 part by mass, the effect of improving strength and flame retardancy will be insufficient, and if it exceeds 15 parts by mass, the weld strength will be reduced, which is not suitable. The content of the scale-like inorganic mineral filler (C) is preferably 1.5 parts by mass or more, more preferably 3 parts by mass or more, preferably 10 parts by mass or less, and more preferably 7 parts by mass or less.

そして、本発明のポリカーボネート樹脂組成物は、炭素繊維(B)の含有量に対する鱗片状無機鉱物フィラー(C)の割合が3〜30質量%であることを特徴とする。3〜30質量%とすることで、効果的に強度と難燃性を向上した高剛性かつ低比重で軽量化が可能な材料を提供することができる。鱗片状無機鉱物フィラー(C)の割合は好ましくは5質量%以上、より好ましくは10質量%以上、さらに好ましくは12質量%以上、特に好ましくは13質量%以上であり、好ましくは25質量%以下、より好ましくは20質量%以下、特に好ましくは17質量%以下である。
ここで鱗片状無機鉱物フィラー(C)の割合は、炭素繊維(B)の含有量100質量%に対する値(%)である。
And the polycarbonate resin composition of this invention is characterized by the ratio of the scale-like inorganic mineral filler (C) with respect to content of carbon fiber (B) being 3-30 mass%. By setting the content to 3 to 30% by mass, it is possible to provide a material that can effectively reduce the weight with high rigidity, low specific gravity, and improved strength and flame retardancy. The proportion of the scale-like inorganic mineral filler (C) is preferably 5% by mass or more, more preferably 10% by mass or more, further preferably 12% by mass or more, particularly preferably 13% by mass or more, and preferably 25% by mass or less. More preferably, it is 20 mass% or less, Most preferably, it is 17 mass% or less.
Here, the ratio of the scale-like inorganic mineral filler (C) is a value (%) with respect to 100% by mass of the carbon fiber (B).

[リン系難燃剤(D)]
本発明の超臨界発泡成形用熱可塑性樹脂組成物は、リン系難燃剤(D)を含有する。
リン系難燃剤(D)としては、分子中にリンを含む化合物であり、低分子であっても、オリゴマーであっても、ポリマーであってもよいが、熱安定性の面から、下記一般式(1)で表される縮合リン酸エステル化合物や一般式(2)および(3)で表されるホスファゼン化合物が特に好ましい。
[Phosphorus flame retardant (D)]
The supercritical foam molding thermoplastic resin composition of the present invention contains a phosphorus-based flame retardant (D).
The phosphorus-based flame retardant (D) is a compound containing phosphorus in the molecule, and may be a low molecule, an oligomer, or a polymer. The condensed phosphate compound represented by the formula (1) and the phosphazene compounds represented by the general formulas (2) and (3) are particularly preferable.

<縮合リン酸エステル化合物>
上記一般式(1)で表される縮合リン酸エステル化合物は、kが異なる数を有する化合物の混合物であってもよく、かかるkが異なる縮合リン酸エステルの混合物の場合は、kはそれらの混合物の平均値となる。kは、通常0〜5の整数であり、異なるk数を有する化合物の混合物の場合は、平均のk数は好ましくは0.5〜2、より好ましくは0.6〜1.5、さらに好ましくは0.8〜1.2、特に好ましくは0.95〜1.15の範囲である。
<Condensed phosphate ester compound>
The condensed phosphate ester compound represented by the general formula (1) may be a mixture of compounds having different numbers of k. In the case of a mixture of condensed phosphate esters having different k, k is the number of those compounds. It becomes the average value of the mixture. k is usually an integer of 0 to 5, and in the case of a mixture of compounds having different k numbers, the average k number is preferably 0.5 to 2, more preferably 0.6 to 1.5, and even more preferably. Is in the range of 0.8 to 1.2, particularly preferably 0.95 to 1.15.

また、Xは、二価のアリーレン基を示し、例えばレゾルシノール、ハイドロキノン、ビスフェノールA、2,2’−ジヒドロキシビフェニル、2,3’−ジヒドロキシビフェニル、2,4’−ジヒドロキシビフェニル、3,3’−ジヒドロキシビフェニル、3,4’−ジヒドロキシビフェニル、4,4’−ジヒドロキシビフェニル、1,2−ジヒドロキシナフタレン、1,3−ジヒドロキシナフタレン、1,4−ジヒドロキシナフタレン、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、1,7−ジヒドロキシナフタレン、1,8−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレン等のジヒドロキシ化合物から誘導される二価の基である。これらのうち、特に、レゾルシノール、ビスフェノールA、3,3’−ジヒドロキシビフェニルから誘導される二価の基が好ましい。 X 1 represents a divalent arylene group such as resorcinol, hydroquinone, bisphenol A, 2,2′-dihydroxybiphenyl, 2,3′-dihydroxybiphenyl, 2,4′-dihydroxybiphenyl, 3,3 ′. -Dihydroxybiphenyl, 3,4'-dihydroxybiphenyl, 4,4'-dihydroxybiphenyl, 1,2-dihydroxynaphthalene, 1,3-dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1, Divalent derivatives derived from dihydroxy compounds such as 6-dihydroxynaphthalene, 1,7-dihydroxynaphthalene, 1,8-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,6-dihydroxynaphthalene and 2,7-dihydroxynaphthalene It is a group. Of these, divalent groups derived from resorcinol, bisphenol A, and 3,3′-dihydroxybiphenyl are particularly preferable.

また、一般式(1)におけるp、q、rおよびsは、それぞれ0または1を表し、なかでも1であることが好ましい。   Further, p, q, r and s in the general formula (1) each represent 0 or 1, and 1 is particularly preferable.

また、R、R、RおよびRは、それぞれ、炭素数1〜6のアルキル基またはアルキル基で置換されていてもよい炭素数6〜20のアリール基を示す。このようなアリール基としては、フェニル基、クレジル基、キシリル基、イソプロピルフェニル基、ブチルフェニル基、tert−ブチルフェニル基、ジ−tert−ブチルフェニル基、p−クミルフェニル基等が挙げられるが、フェニル基、クレジル基、キシリル基がより好ましい。 R 1 , R 2 , R 3 and R 4 each represent an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 20 carbon atoms which may be substituted with an alkyl group. Examples of such aryl groups include phenyl group, cresyl group, xylyl group, isopropylphenyl group, butylphenyl group, tert-butylphenyl group, di-tert-butylphenyl group, and p-cumylphenyl group. Group, cresyl group and xylyl group are more preferred.

一般式(1)で表される縮合リン酸エステル化合物の具体例としては、
トリフェニルホスフェート(TPP)、トリクレジルホスフェート(TCP)、トリキシレニルホスフェート(TXP)、クレジルジフェニルホスフェート(CDP)、2−エチルヘキシルジフェニルホスフェート(EHDP)、tert−ブチルフェニルジフェニルホスフェート、ビス−(tert−ブチルフェニル)フェニルホスフェート、トリス−(tert−ブチルフェニル)ホスフェート、イソプロピルフェニルジフェニルホスフェート、ビス−(イソプロピルフェニル)ジフェニルホスフェート、トリス−(イソプロピルフェニル)ホスフェート等の芳香族リン酸エステル類;
レゾルシノールビス−ジフェニルホスフェート(RDP)、レゾルシノールビス−ジキシレニルホスフェート(RDX)、ビスフェノールAビス−ジフェニルホスフェート(BDP)、ビフェニルビス−ジフェニルホスフェート等の縮合リン酸エステル類;
等が挙げられる。
As a specific example of the condensed phosphate ester compound represented by the general formula (1),
Triphenyl phosphate (TPP), tricresyl phosphate (TCP), trixylenyl phosphate (TXP), cresyl diphenyl phosphate (CDP), 2-ethylhexyl diphenyl phosphate (EHDP), tert-butylphenyl diphenyl phosphate, bis- ( aromatic phosphates such as tert-butylphenyl) phenyl phosphate, tris- (tert-butylphenyl) phosphate, isopropylphenyldiphenyl phosphate, bis- (isopropylphenyl) diphenyl phosphate, tris- (isopropylphenyl) phosphate;
Condensed phosphate esters such as resorcinol bis-diphenyl phosphate (RDP), resorcinol bis-dixylenyl phosphate (RDX), bisphenol A bis-diphenyl phosphate (BDP), biphenyl bis-diphenyl phosphate;
Etc.

一般式(1)で表される縮合リン酸エステル化合物の酸価は、0.2mgKOH/g以下が好ましく、より好ましくは0.15mgKOH/g以下であり、さらに好ましくは0.1mgKOH以下であり、特に好ましくは0.05mgKOH/g以下である。かかる酸価の下限は実質的に0とすることも可能である。一方、ハーフエステルの含有量は1.1質量部以下がより好ましく、0.9質量部以下がさらに好ましい。酸価が0.2mgKOH/gを超える場合やハーフエステル含有量が1.5mgを超える場合は、本発明のポリカーボネート樹脂組成物の熱安定性や耐加水分解性の低下を招く。   The acid value of the condensed phosphate ester compound represented by the general formula (1) is preferably 0.2 mgKOH / g or less, more preferably 0.15 mgKOH / g or less, still more preferably 0.1 mgKOH or less, Especially preferably, it is 0.05 mgKOH / g or less. The lower limit of the acid value can be substantially zero. On the other hand, the content of the half ester is more preferably 1.1 parts by mass or less, and still more preferably 0.9 parts by mass or less. When the acid value exceeds 0.2 mgKOH / g or the half ester content exceeds 1.5 mg, the thermal stability and hydrolysis resistance of the polycarbonate resin composition of the present invention are reduced.

リン酸エステル化合物としては、上述のものの他に、10−(2,5−ジヒドロキシフェニル)−10H−9−オキサ−10−ホスファフェナントレン−10−オキシド、10−(2,3−ジヒドロキシフェニル)−10H−9−オキサ−10−ホスファフェナントレン−10−オキシド、10−(2,4−ジヒドロキシフェニル)−10H−9−オキサ−10−ホスファフェナントレン−10−オキシド、リン酸エステル部位を含有するポリエステル樹脂、ポリカーボネート樹脂またはエポキシ樹脂も当然含まれる。   As the phosphoric ester compound, in addition to the above, 10- (2,5-dihydroxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (2,3-dihydroxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (2,4-dihydroxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide, containing phosphate ester moiety Naturally, polyester resins, polycarbonate resins or epoxy resins are also included.

<ホスファゼン化合物>
上記一般式(2)及び(3)で表されるホスファゼン化合物としては、例えば、フェノキシホスファゼン、(ポリ)トリルオキシホスファゼン(例えば、o−トリルオキシホスファゼン、m−トリルオキシホスファゼン、p−トリルオキシホスファゼン、o,m−トリルオキシホスファゼン、o,p−トリルオキシホスファゼン、m,p−トリルオキシホスファゼン、o,m,p−トリルオキシホスファゼン等)、(ポリ)キシリルオキシホスファゼン等の環状及び/又は鎖状C1−6アルキルC6−20アリールオキシホスファゼンや、(ポリ)フェノキシトリルオキシホスファゼン(例えば、フェノキシo−トリルオキシホスファゼン、フェノキシm−トリルオキシホスファゼン、フェノキシp−トリルオキシホスファゼン、フェノキシo,m−トリルオキシホスファゼン、フェノキシo,p−トリルオキシホスファゼン、フェノキシm,p−トリルオキシホスファゼン、フェノキシo,m,p−トリルオキシホスファゼン等)、(ポリ)フェノキシキシリルオキシホスファゼン、(ポリ)フェノキシトリルオキシキシリルオキシホスファゼン等の環状及び/又は鎖状C6−20アリールC1−10アルキルC6−20アリールオキシホスファゼン等が例示できる。
これらのうち、好ましくは、環状及び/又は鎖状フェノキシホスファゼン、環状及び/又は鎖状C1−3アルキルC6−20アリールオキシホスファゼン、C6−20アリールオキシC1−3アルキルC6−20アリールオキシホスファゼン(例えば、環状及び/又は鎖状トリルオキシホスファゼン、環状及び/又は鎖状フェノキシトリルフェノキシホスファゼン等)である。
<Phosphazene compound>
Examples of the phosphazene compounds represented by the general formulas (2) and (3) include phenoxyphosphazene, (poly) tolyloxyphosphazene (for example, o-tolyloxyphosphazene, m-tolyloxyphosphazene, p-tolyloxyphosphazene). O, m-tolyloxyphosphazene, o, p-tolyloxyphosphazene, m, p-tolyloxyphosphazene, o, m, p-tolyloxyphosphazene, etc.), (poly) xylyloxyphosphazene and / or cyclic and chain C 1-6 alkyl C 6-20 aryloxy phosphazene, (poly) phenoxy tolyloxy phosphazene (e.g., phenoxy o- tolyloxy phosphazene, a phenoxy m- tolyloxyethyl phosphazene, a phenoxy p- tolyloxy phosphazene, phenoxy o, m-tolyloxyphosphazene, phenoxy o, p-tolyloxyphosphazene, phenoxy m, p-tolyloxyphosphazene, phenoxy o, m, p-tolyloxyphosphazene, etc.), (poly) phenoxysilyloxyphosphazene, (poly ) Cyclic and / or chain C 6-20 aryl C 1-10 alkyl C 6-20 aryloxy phosphazene such as phenoxytolyloxyxyloxyphosphazene .
Of these, cyclic and / or chain phenoxyphosphazene, cyclic and / or chain C 1-3 alkyl C 6-20 aryloxyphosphazene, C 6-20 aryloxy C 1-3 alkyl C 6-20 Aryloxyphosphazenes (eg, cyclic and / or chain tolyloxyphosphazenes, cyclic and / or chain phenoxytolylphenoxyphosphazenes, etc.).

一般式(2)で表される環状ホスファゼン化合物としては、R及びRは、同一又は異なっていてもよく、アリール基又はアルキルアリール基を示す。このようなアリール基又はアルキルアリール基としては、フェニル基、ナフチル基、メチルフェニル基、ベンジル基等が挙げられるが、なかでもR及びRがフェニル基である環状フェノキシホスファゼンが特に好ましい。
このような環状フェノキシホスファゼン化合物としては、例えば、塩化アンモニウムと五塩化リンとを120〜130℃の温度で反応させて得られる環状及び直鎖状のクロロホスファゼン混合物から、ヘキサクロロシクロトリホスファゼン、オクタクロロシクロテトラホスファゼン、デカクロロシクロペンタホスファゼン等の環状のクロルホスファゼンを取り出した後にフェノキシ基で置換して得られる、フェノキシシクロトリホスファゼン、オクタフェノキシシクロテトラホスファゼン、デカフェノキシシクロペンタホスファゼン等の化合物が挙げられる。
In the cyclic phosphazene compound represented by the general formula (2), R 5 and R 6 may be the same or different and each represents an aryl group or an alkylaryl group. Examples of such an aryl group or alkylaryl group include a phenyl group, a naphthyl group, a methylphenyl group, and a benzyl group. Among them, cyclic phenoxyphosphazene in which R 5 and R 6 are phenyl groups is particularly preferable.
Examples of such a cyclic phenoxyphosphazene compound include hexachlorocyclotriphosphazene, octachlorocyclohexane, and a mixture of cyclic and linear chlorophosphazene obtained by reacting ammonium chloride and phosphorus pentachloride at a temperature of 120 to 130 ° C. Examples include compounds such as phenoxycyclotriphosphazene, octaphenoxycyclotetraphosphazene, and decaffenoxycyclopentaphosphazene obtained by removing a cyclic chlorophosphazene such as cyclotetraphosphazene and decachlorocyclopentaphosphazene and then substituting with a phenoxy group. .

また、式(2)中、tは3〜25の整数を表すが、なかでもtが3〜8の整数である化合物が好ましく、tの異なる化合物の混合物であってもよい。なかでも、t=3のものが50質量%以上、t=4のものが10〜40質量%、t=5以上のものが合わせて30質量%以下である化合物の混合物が好ましい。   Moreover, in formula (2), t represents an integer of 3 to 25. Among them, a compound in which t is an integer of 3 to 8 is preferable, and a mixture of compounds having different t may be used. Among them, a mixture of compounds in which t = 3 is 50% by mass or more, t = 4 is 10 to 40% by mass, and t = 5 or more is 30% by mass or less is preferable.

式(3)中、R及びRは、同一又は異なっていてもよく、アリール基又はアルキルアリール基を示す。このようなアリール基又はアルキルアリール基としては、フェニル基、ナフチル基、メチルフェニル基、ベンジル基等が挙げられるが、R及びRがフェニル基である鎖状フェノキシホスファゼンが特に好ましい。
このような鎖状フェノキシホスファゼン化合物は、例えば、上記の方法で得られるヘキサクロロシクロトリホスファゼンを220〜250℃の温度で開還重合し、得られた重合度3〜10,000の直鎖状ジクロロホスファゼンをフェノキシ基で置換することにより得られる化合物が挙げられる。
In formula (3), R 7 and R 8 may be the same or different and each represents an aryl group or an alkylaryl group. Examples of such an aryl group or alkylaryl group include a phenyl group, a naphthyl group, a methylphenyl group, a benzyl group, and the like, and a chain phenoxyphosphazene in which R 7 and R 8 are phenyl groups is particularly preferable.
Such a chain phenoxyphosphazene compound is obtained by, for example, subjecting hexachlorocyclotriphosphazene obtained by the above-described method to reverse polymerization at a temperature of 220 to 250 ° C., and the obtained linear dichloromethane having a polymerization degree of 3 to 10,000. Examples thereof include compounds obtained by substituting phosphazene with a phenoxy group.

また、Rは、−N=P(OR基、−N=P(OR基、−N=P(O)OR基、−N=P(O)OR基から選ばれる少なくとも1種を示し、R10は、−P(OR基、−P(OR基、−P(O)(OR基、−P(O)(OR基から選ばれる少なくとも1種を示す。 Also, R 9 is represented by -N = P (OR 7 ) 3 groups, -N = P (OR 8 ) 3 groups, -N = P (O) OR 7 groups, and -N = P (O) OR 8 groups. At least one selected is shown, and R 10 is -P (OR 7 ) 4 group, -P (OR 8 ) 4 group, -P (O) (OR 7 ) 2 group, -P (O) (OR 8 ) At least one selected from two groups.

また、式(3)中、uは3〜10,000の整数を示し、好ましくは3〜1,000、より好ましくは3〜100、さらに好ましくは3〜25である。   Moreover, in Formula (3), u shows the integer of 3-10,000, Preferably it is 3-1,000, More preferably, it is 3-100, More preferably, it is 3-25.

また、ホスファゼン化合物は、その一部が架橋された架橋ホスファゼン化合物であってもよい。このような架橋構造を有することで耐熱性が向上する傾向にある。
このような架橋ホスファゼン化合物としては、下記一般式(4)で表わされる架橋基、例えば、4,4’−スルホニルジフェニレン(ビスフェノールS残基)の架橋構造を有する化合物、2,2−(4,4’−ジフェニレン)イソプロピリデン基の架橋構造を有する化合物、4,4’−オキシジフェニレン基の架橋構造を有する化合物、4,4’−チオジフェニレン基の架橋構造を有する化合物等の、4,4’−ジフェニレン基の架橋構造を有する化合物等が挙げられる。
Further, the phosphazene compound may be a crosslinked phosphazene compound partially crosslinked. By having such a crosslinked structure, the heat resistance tends to be improved.
Examples of such crosslinked phosphazene compounds include compounds having a crosslinking structure represented by the following general formula (4), for example, 4,4′-sulfonyldiphenylene (bisphenol S residue), 2,2- (4 , 4′-diphenylene) isopropylidene group-crosslinked structure, 4,4′-oxydiphenylene group-crosslinked structure, 4,4′-thiodiphenylene group-crosslinked structure, etc. Examples thereof include compounds having a crosslinked structure of 4,4′-diphenylene group.

[式(4)中、Xは−C(CH−、−SO−、−S−、又は−O−であり、vは0又は1である。] [In Formula (4), X 2 is —C (CH 3 ) 2 —, —SO 2 —, —S—, or —O—, and v is 0 or 1. ]

また、架橋ホスファゼン化合物としては、一般式(2)においてR及びRがフェニル基である環状フェノキシホスファゼン化合物が前記一般式(4)で表される架橋基によって架橋されてなる架橋フェノキシホスファゼン化合物又は、前記一般式(3)においてR及びRがフェニル基である鎖状フェノキシホスファゼン化合物が上記一般式(4)で表される架橋基によって架橋されてなる架橋フェノキシホスファゼン化合物が難燃性の点から好ましく、環状フェノキシホスファゼン化合物が上記一般式(4)で表される架橋基によって架橋されてなる架橋フェノキシホスファゼン化合物がより好ましい。 In addition, as the crosslinked phosphazene compound, a crosslinked phenoxyphosphazene compound obtained by crosslinking a cyclic phenoxyphosphazene compound in which R 5 and R 6 are phenyl groups in the general formula (2) with a crosslinking group represented by the general formula (4). Alternatively, a crosslinked phenoxyphosphazene compound obtained by crosslinking a chain phenoxyphosphazene compound in which R 7 and R 8 are phenyl groups in the general formula (3) with a crosslinking group represented by the general formula (4) is flame retardant. From the above point, a crosslinked phenoxyphosphazene compound obtained by crosslinking a cyclic phenoxyphosphazene compound with a crosslinking group represented by the general formula (4) is more preferable.

また、架橋フェノキシホスファゼン化合物中のフェニレン基の含有量は、一般式(2)で表される環状ホスファゼン化合物及び/又は一般式(3)で表される鎖る状フェノキシホスファゼン化合物中の全フェニル基及びフェニレン基数を基準として、通常50〜99.9%、好ましくは70〜90%である。また、該架橋フェノキシホスファゼン化合物は、その分子内にフリーの水酸基を有しない化合物であることが特に好ましい。   The content of the phenylene group in the crosslinked phenoxyphosphazene compound is such that the cyclic phosphazene compound represented by the general formula (2) and / or the all phenyl groups in the chain-like phenoxyphosphazene compound represented by the general formula (3) And based on the number of phenylene groups, it is usually 50 to 99.9%, preferably 70 to 90%. The crosslinked phenoxyphosphazene compound is particularly preferably a compound having no free hydroxyl group in the molecule.

本発明においては、ホスファゼン化合物は、前記一般式(2)で表される環状フェノキシホスファゼン化合物、及び、上記一般式(3)で表される環状フェノキシホスファゼン化合物が架橋基によって架橋されてなる架橋フェノキシホスファゼン化合物よる成る群から選択される少なくとも1種であることが、難燃性及び機械的特性の点から好ましい。   In the present invention, the phosphazene compound is a crosslinked phenoxy obtained by crosslinking the cyclic phenoxyphosphazene compound represented by the general formula (2) and the cyclic phenoxyphosphazene compound represented by the general formula (3) with a crosslinking group. In view of flame retardancy and mechanical properties, at least one selected from the group consisting of phosphazene compounds is preferable.

リン系難燃剤(D)としては、特には前記した縮合リン酸エステル化合物が好ましい。   As the phosphorus-based flame retardant (D), the above-described condensed phosphate compound is particularly preferable.

リン系難燃剤(D)の含有量は、ポリカーボネート樹脂(A)100質量部に対し、15〜50質量部であり、好ましくは20質量部以上であり、好ましくは40質量部以下、である。リン系難燃剤(D)の配合量が15質量部を下回る場合は、難燃性が不十分となり、50質量部を超えると著しい耐熱性の低下や機械物性の低下を引き起こす。   Content of phosphorus flame retardant (D) is 15-50 mass parts with respect to 100 mass parts of polycarbonate resin (A), Preferably it is 20 mass parts or more, Preferably it is 40 mass parts or less. When the blending amount of the phosphorus-based flame retardant (D) is less than 15 parts by mass, the flame retardancy becomes insufficient, and when it exceeds 50 parts by mass, a remarkable decrease in heat resistance and a decrease in mechanical properties are caused.

[フルオロポリマー(E)]
本発明のポリカーボネート樹脂組成物は、さらにフルオロポリマー(E)を含有することが好ましい。これによりポリカーボネート樹脂組成物の溶融特性を改良することができ、燃焼時の滴下防止性を向上させることができる。
[Fluoropolymer (E)]
The polycarbonate resin composition of the present invention preferably further contains a fluoropolymer (E). Thereby, the melting characteristic of a polycarbonate resin composition can be improved, and the dripping prevention property at the time of combustion can be improved.

フルオロポリマー(E)は、その見掛け密度が0.4g/ml以上であることが好ましい。フルオロポリマー(E)の見掛け密度が0.4g/ml以上とすることで燃焼時の滴下防止性がより向上する。フルオロポリマーの見掛け密度は、より好ましくは0.45g/ml以上であり、また、ハンドリング性の観点から、好ましくは2.0g/ml以下であり、より好ましくは1.5g/ml以下であり、更に好ましくは1.0g/ml以下である。
なお、フルオロポリマーの見掛け密度は、JIS K6820に基づく、見掛け密度測定装置を用いて行う。
The apparent density of the fluoropolymer (E) is preferably 0.4 g / ml or more. When the apparent density of the fluoropolymer (E) is 0.4 g / ml or more, the dripping prevention property during combustion is further improved. The apparent density of the fluoropolymer is more preferably 0.45 g / ml or more, and from the viewpoint of handling properties, it is preferably 2.0 g / ml or less, more preferably 1.5 g / ml or less, More preferably, it is 1.0 g / ml or less.
The apparent density of the fluoropolymer is measured using an apparent density measuring device based on JIS K6820.

フルオロポリマー(E)の好ましい含有量は、ポリカーボネート樹脂(A)100質量部に対し、0.05〜2質量部である。0.05質量部より少ないと難燃性向上効果が不十分になりやすく、2質量部を超えると樹脂組成物を成形した成形品の外観不良や機械的強度の低下が生じやすい。フルオロポリマー(E)の含有量は、より好ましくは0.1質量部以上、さらに好ましくは0.2質量部以上であり、また1.5質量部以下がより好ましく、特に1.2質量部以下であることが好ましい。   The preferable content of the fluoropolymer (E) is 0.05 to 2 parts by mass with respect to 100 parts by mass of the polycarbonate resin (A). When the amount is less than 0.05 parts by mass, the effect of improving flame retardancy tends to be insufficient, and when the amount exceeds 2 parts by mass, poor appearance and reduced mechanical strength tend to occur. The content of the fluoropolymer (E) is more preferably 0.1 parts by mass or more, further preferably 0.2 parts by mass or more, more preferably 1.5 parts by mass or less, and particularly preferably 1.2 parts by mass or less. It is preferable that

フルオロポリマーは、通常ポリフルオロエチレン構造を含む重合体あるいは共重合体であり、具体例としては、ジフルオロエチレン重合体、テトラフルオロエチレン重合体、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体等が挙げられるが、中でもテトラフルオロエチレン重合体が好ましい。
また、このフルオロポリマーとしては、フィブリル形成能を有するものが好ましく、具体的には、フィブリル形成能を有するフルオロポリマー樹脂が挙げられる。このように、フィブリル形成能を有することで、燃焼時の滴下防止性が著しく向上する傾向にある。
The fluoropolymer is usually a polymer or copolymer containing a polyfluoroethylene structure, and specific examples include a difluoroethylene polymer, a tetrafluoroethylene polymer, a tetrafluoroethylene / hexafluoropropylene copolymer, and the like. Of these, tetrafluoroethylene polymers are preferred.
Moreover, as this fluoropolymer, what has fibril formation ability is preferable, and specifically, fluoropolymer resin which has fibril formation ability is mentioned. Thus, it has the tendency to improve dripping prevention property at the time of combustion by having fibril formation ability.

また、フルオロポリマーとして、有機重合体被覆フルオロオレフィン樹脂も好適に使用することができる。有機重合体被覆フルオロオレフィン樹脂を用いることで、分散性が向上し、成形品の表面外観が向上し、表面異物を抑制できる。有機重合体被覆フルオロオレフィン樹脂は、公知の種々の方法により製造でき、例えば(1)ポリフルオロエチレン粒子水性分散液と有機系重合体粒子水性分散液とを混合して、凝固またはスプレードライにより粉体化して製造する方法、(2)ポリフルオロエチレン粒子水性分散液存在下で、有機系重合体を構成する単量体を重合した後、凝固またはスプレードライにより粉体化して製造する方法、(3)ポリフルオロエチレン粒子水性分散液と有機系重合体粒子水性分散液とを混合した分散液中で、エチレン性不飽和結合を有する単量体を乳化重合した後、凝固又はスプレードライにより粉体化して製造する方法、等が挙げられる。   An organic polymer-coated fluoroolefin resin can also be suitably used as the fluoropolymer. By using the organic polymer-coated fluoroolefin resin, the dispersibility is improved, the surface appearance of the molded product is improved, and the surface foreign matter can be suppressed. The organic polymer-coated fluoroolefin resin can be produced by various known methods. For example, (1) a polyfluoroethylene particle aqueous dispersion and an organic polymer particle aqueous dispersion are mixed and powdered by coagulation or spray drying. (2) A method of polymerizing a monomer constituting an organic polymer in the presence of an aqueous dispersion of polyfluoroethylene particles, and then pulverizing or producing the powder by solidification or spray drying. 3) After emulsion polymerization of a monomer having an ethylenically unsaturated bond in a dispersion obtained by mixing an aqueous dispersion of polyfluoroethylene particles and an aqueous dispersion of organic polymer particles, a powder is obtained by coagulation or spray drying. And the like, and the like.

フルオロポリマーを被覆する有機系重合体を生成するための単量体としては、ポリカーボネート樹脂に配合する際の分散性の観点から、ポリカーボネート樹脂との親和性が高いものが好ましく、芳香族ビニル系単量体、(メタ)アクリル酸エステル系単量体、シアン化ビニル系単量体がより好ましい。   From the viewpoint of dispersibility when blended with a polycarbonate resin, a monomer having a high affinity with the polycarbonate resin is preferable as the monomer for producing the organic polymer that coats the fluoropolymer. More preferred are monomers, (meth) acrylic acid ester monomers, and vinyl cyanide monomers.

[コア/シェル型グラフト共重合体(F)]
本発明のポリカーボネート樹脂組成物は、コア/シェル型グラフト共重合体(F)を含有することが好ましい。コア/シェル型グラフト共重合体(F)としては、ゴム成分をコア層とし、その周囲に、(メタ)アクリル酸エステル化合物、(メタ)アクリル酸化合物、芳香族ビニル化合物、及び不飽和ニトリル化合物等から選ばれる少なくとも1種の単量体成分を共重合して形成されたシェル層からなるコア/シェル型グラフト共重合体が好ましい。
[Core / shell type graft copolymer (F)]
The polycarbonate resin composition of the present invention preferably contains a core / shell type graft copolymer (F). As the core / shell type graft copolymer (F), a rubber component is used as a core layer, and a (meth) acrylic acid ester compound, a (meth) acrylic acid compound, an aromatic vinyl compound, and an unsaturated nitrile compound are provided around the core layer. A core / shell type graft copolymer comprising a shell layer formed by copolymerizing at least one monomer component selected from the above is preferred.

ゴム成分の具体例としては、ポリブタジエンゴム、ポリイソプレンゴム、ポリブチルアクリレートやポリ(2−エチルヘキシルアクリレート)、ブチルアクリレート−2−エチルヘキシルアクリレート共重合体などのポリアルキルアクリレートゴム、ポリオルガノシロキサンゴムなどのシリコーン系ゴム、ブタジエン−アクリル複合ゴム、シリコーン−アクリレート複合ゴム、スチレン−ブタジエンゴム、エチレン−プロピレンゴムやエチレン−ブテンゴム、エチレン−オクテンゴムなどのエチレン−α−オレフィン系ゴム、エチレン−アクリルゴム、フッ素ゴムなど挙げることができる。これらは、単独でも2種以上を混合して使用してもよい。   Specific examples of the rubber component include polybutadiene rubber, polyisoprene rubber, polybutyl acrylate and poly (2-ethylhexyl acrylate), polyalkyl acrylate rubber such as butyl acrylate-2-ethylhexyl acrylate copolymer, and polyorganosiloxane rubber. Silicone rubber, butadiene-acrylic composite rubber, silicone-acrylate composite rubber, styrene-butadiene rubber, ethylene-α-olefin rubber such as ethylene-propylene rubber, ethylene-butene rubber, ethylene-octene rubber, ethylene-acrylic rubber, fluorine rubber And so on. These may be used alone or in admixture of two or more.

本発明において、コア/シェル型グラフト共重合体(F)として好ましいのは、シリコーン−アクリレート複合ゴムをコアとするグラフト共重合体であり、特にシリコーン−アクリレート複合ゴムのコアの周囲に、アクリル系重合体または共重合体成分をシェル層とするコア/シェル型グラフト共重合体である。   In the present invention, the core / shell type graft copolymer (F) is preferably a graft copolymer having a silicone-acrylate composite rubber as a core, and in particular, an acrylic resin around the core of the silicone-acrylate composite rubber. A core / shell type graft copolymer having a polymer or copolymer component as a shell layer.

コア層を構成するシリコーン−アクリレート複合ゴムとしては、ポリオルガノシロキサン、例えば、ジメチルシロキサン単位を構成単位として含有する重合体と、(メタ)アクリル酸エステル化合物あるいはアクリロニトリル等の不飽和ニトリル化合物等のアクリル系成分から構成されるものが好ましい。   Examples of the silicone-acrylate composite rubber constituting the core layer include polyorganosiloxanes, for example, polymers containing dimethylsiloxane units as constituent units, and acrylics such as (meth) acrylate compounds or unsaturated nitrile compounds such as acrylonitrile. Those composed of system components are preferred.

アクリル系成分のシェルとしては、(メタ)アクリル酸エステル化合物、(メタ)アクリル酸化合物などを重合することにより得られる。
(メタ)アクリル酸エステル化合物としては、メチルメタクリレート、エチルメタクリレート、n−ブチルメタクリレート、ヘキシルメタクリレート等の(メタ)アクリル酸アルキルエステル;フェニルメタクリレート、ナフチルメタクリレート等のアリール(メタ)アクリレート;グリシジルアクリレート、グリシジルメタクリレート等のグリシジル基含有(メタ)アクリレート;等が挙げられるが、なかでもメタクリル酸アルキルエステルが好ましく、メチルメタクリレートがより好ましい。
なお、上記(メタ)アクリル酸エステル化合物は1種または2種以上を使用することができる。
The shell of the acrylic component can be obtained by polymerizing a (meth) acrylic acid ester compound, a (meth) acrylic acid compound, or the like.
Examples of (meth) acrylic acid ester compounds include (meth) acrylic acid alkyl esters such as methyl methacrylate, ethyl methacrylate, n-butyl methacrylate and hexyl methacrylate; aryl (meth) acrylates such as phenyl methacrylate and naphthyl methacrylate; glycidyl acrylate and glycidyl Examples thereof include glycidyl group-containing (meth) acrylates such as methacrylate; among them, methacrylic acid alkyl esters are preferable, and methyl methacrylate is more preferable.
In addition, the said (meth) acrylic acid ester compound can use 1 type (s) or 2 or more types.

また、上記(メタ)アクリル酸エステル化合物の他に、その他のビニル系単量体を含有してよい。その他のビニル系単量体としては、例えば、スチレン、α−メチルスチレン等の芳香族ビニル類;アクリロニトリル、メタクリロニトリル等の不飽和ニトリル類;メチルビニルエーテル、ブチルビニルエーテル等のビニルエーテル類;マレイミド、N−メチルマレイミド、N−フェニルマレイミド等のマレイミド化合物;マレイン酸、フタル酸、イタコン酸等のα,β−不飽和カルボン酸化合物やそれらの無水物(例えば無水マレイン酸等);等が挙げられる。   In addition to the (meth) acrylic acid ester compound, other vinyl monomers may be contained. Other vinyl monomers include, for example, aromatic vinyls such as styrene and α-methylstyrene; unsaturated nitriles such as acrylonitrile and methacrylonitrile; vinyl ethers such as methyl vinyl ether and butyl vinyl ether; maleimide, N -Maleimide compounds such as methylmaleimide and N-phenylmaleimide; α, β-unsaturated carboxylic acid compounds such as maleic acid, phthalic acid and itaconic acid, and anhydrides thereof (for example, maleic anhydride); and the like.

さらに、ジビニルベンゼン、ジビニルトルエン等の芳香族多官能ビニル化合物;エチレングリコールジメタクリレート、1,3−ブタンジオールジアクリレート、トリメチロールエタントリアクリレート、トリメチロールプロパントリメタクリレート、ペンタエリスリトールテトラメタクリレート等の多価アルコールの不飽和カルボン酸エステル類;アクリル酸アリル、メタクリル酸アリル等の不飽和カルボン酸アリルエステル;ジアリルフタレート、ジアリルセバケート、トリアリルトリアジン等のジ及びトリアリル化合物等の架橋性単量体を併用することもできる。   Furthermore, aromatic polyfunctional vinyl compounds such as divinylbenzene and divinyltoluene; polyvalent compounds such as ethylene glycol dimethacrylate, 1,3-butanediol diacrylate, trimethylolethane triacrylate, trimethylolpropane trimethacrylate, pentaerythritol tetramethacrylate Unsaturated carboxylic acid esters of alcohol; unsaturated carboxylic acid allyl esters such as allyl acrylate and allyl methacrylate; cross-linking monomers such as di- and triallyl compounds such as diallyl phthalate, diallyl sebacate, and triallyl triazine You can also

コア/シェル型グラフト共重合体(F)の含有量は、ポリカーボネート樹脂(A)100質量部に対し、好ましくは3〜10質量部であり、より好ましくは4質量部以上であり、より好ましくは8質量部以下である。コア/シェル型グラフト共重合体(D)の含有量が3質量部を下回ると、耐衝撃性の改良効果を十分に得ることができず、10質量部を上回ると、耐熱性が低下し難燃性が悪化しやすい。   The content of the core / shell type graft copolymer (F) is preferably 3 to 10 parts by mass, more preferably 4 parts by mass or more, more preferably 100 parts by mass of the polycarbonate resin (A). 8 parts by mass or less. If the content of the core / shell type graft copolymer (D) is less than 3 parts by mass, the impact resistance improvement effect cannot be sufficiently obtained, and if it exceeds 10 parts by mass, the heat resistance is hardly lowered. Flammability is likely to deteriorate.

鱗片状無機鉱物フィラー(C)とコア/シェル型グラフト共重合体(F)の含有量の質量比(C)/(F)は、0.1〜2の範囲にあることが好ましい。質量比が2を超えるとウエルド曲げ強度が低下しやすく、0.1未満では燃焼性が不十分となりやすい。質量比(C)/(F)の範囲の好ましい下限値は0.2、0.3、0.45、0.6、0.8、0.9であり、質量比(C)/(F)の範囲の好ましい上限値は1.8、1.6、1.4、1.2、1.1である。   The mass ratio (C) / (F) of the contents of the scale-like inorganic mineral filler (C) and the core / shell type graft copolymer (F) is preferably in the range of 0.1-2. If the mass ratio exceeds 2, the weld bending strength tends to decrease, and if it is less than 0.1, the combustibility tends to be insufficient. The preferred lower limit of the mass ratio (C) / (F) range is 0.2, 0.3, 0.45, 0.6, 0.8, 0.9, and the mass ratio (C) / (F ) Is preferably 1.8, 1.6, 1.4, 1.2, 1.1.

[リン系安定剤]
本発明のポリカーボネート樹脂組成物は、リン系安定剤を含有することが好ましい。リン系安定剤としては、公知の任意のものを使用できる。具体例を挙げると、リン酸、ホスホン酸、亜燐酸、ホスフィン酸、ポリリン酸などのリンのオキソ酸;酸性ピロリン酸ナトリウム、酸性ピロリン酸カリウム、酸性ピロリン酸カルシウムなどの酸性ピロリン酸金属塩;リン酸カリウム、リン酸ナトリウム、リン酸セシウム、リン酸亜鉛など第1族または第2B族金属のリン酸塩;有機ホスフェート化合物、有機ホスファイト化合物、有機ホスホナイト化合物などが挙げられるが、有機ホスファイト化合物が特に好ましい。
[Phosphorus stabilizer]
The polycarbonate resin composition of the present invention preferably contains a phosphorus stabilizer. Any known phosphorous stabilizer can be used. Specific examples include phosphorus oxo acids such as phosphoric acid, phosphonic acid, phosphorous acid, phosphinic acid, and polyphosphoric acid; acidic pyrophosphate metal salts such as acidic sodium pyrophosphate, acidic potassium pyrophosphate, and acidic calcium pyrophosphate; phosphoric acid Group 1 or Group 2B metal phosphates such as potassium, sodium phosphate, cesium phosphate and zinc phosphate; organic phosphate compounds, organic phosphite compounds, organic phosphonite compounds, etc. Particularly preferred.

有機ホスファイト化合物としては、トリフェニルホスファイト、トリス(モノノニルフェニル)ホスファイト、トリス(モノノニル/ジノニル・フェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、モノオクチルジフェニルホスファイト、ジオクチルモノフェニルホスファイト、モノデシルジフェニルホスファイト、ジデシルモノフェニルホスファイト、トリデシルホスファイト、トリラウリルホスファイト、トリステアリルホスファイト、2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト等が挙げられる。
なお、リン系安定剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。
Organic phosphite compounds include triphenyl phosphite, tris (monononylphenyl) phosphite, tris (monononyl / dinonyl phenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite, monooctyl Diphenyl phosphite, dioctyl monophenyl phosphite, monodecyl diphenyl phosphite, didecyl monophenyl phosphite, tridecyl phosphite, trilauryl phosphite, tristearyl phosphite, 2,2-methylenebis (4,6-di- tert-butylphenyl) octyl phosphite and the like.
In addition, 1 type may contain phosphorus stabilizer and 2 or more types may contain it by arbitrary combinations and a ratio.

リン系安定剤の含有量は、ポリカーボネート樹脂(A)100質量部に対して、通常0.001質量部以上、好ましくは0.01質量部以上、より好ましくは0.03質量部以上であり、また、通常1質量部以下、好ましくは0.7質量以下、より好ましくは0.5質量部以下である。リン系安定剤の含有量が前記範囲の下限値未満の場合は、熱安定効果が不十分となる可能性があり、リン系安定剤の含有量が前記範囲の上限値を超える場合は、効果が頭打ちとなり経済的でなくなる可能性がある。   The content of the phosphorus stabilizer is usually 0.001 parts by mass or more, preferably 0.01 parts by mass or more, more preferably 0.03 parts by mass or more, with respect to 100 parts by mass of the polycarbonate resin (A). Moreover, it is 1 mass part or less normally, Preferably it is 0.7 mass part or less, More preferably, it is 0.5 mass part or less. If the content of the phosphorus stabilizer is less than the lower limit of the range, the thermal stability effect may be insufficient, and if the content of the phosphorus stabilizer exceeds the upper limit of the range, the effect May stop and become economical.

[フェノール系安定剤]
本発明のポリカーボネート樹脂組成物は、フェノール系安定剤を含有することも好ましい。フェノール系安定剤としては、例えばヒンダードフェノール系酸化防止剤が挙げられる。その具体例としては、ペンタエリスリトールテトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、チオジエチレンビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、N,N’−ヘキサン−1,6−ジイルビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオナミド]、2,4−ジメチル−6−(1−メチルペンタデシル)フェノール、ジエチル[[3,5−ビス(1,1−ジメチルエチル)−4−ヒドロキシフェニル]メチル]ホスフォエート、3,3’,3”,5,5’,5”−ヘキサ−tert−ブチル−a,a’,a”−(メシチレン−2,4,6−トリイル)トリ−p−クレゾール、4,6−ビス(オクチルチオメチル)−o−クレゾール、エチレンビス(オキシエチレン)ビス[3−(5−tert−ブチル−4−ヒドロキシ−m−トリル)プロピオネート]、ヘキサメチレンビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、1,3,5−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)−1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオン,2,6−ジ−tert−ブチル−4−(4,6−ビス(オクチルチオ)−1,3,5−トリアジン−2−イルアミノ)フェノール、2−[1−(2−ヒドロキシ−3,5−ジ−tert−ペンチルフェニル)エチル]−4,6−ジ−tert−ペンチルフェニルアクリレート等が挙げられる。
[Phenolic stabilizer]
The polycarbonate resin composition of the present invention preferably contains a phenol-based stabilizer. As a phenol type stabilizer, a hindered phenol type antioxidant is mentioned, for example. Specific examples thereof include pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl). ) Propionate, thiodiethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], N, N′-hexane-1,6-diylbis [3- (3,5-di-) tert-butyl-4-hydroxyphenyl) propionamide], 2,4-dimethyl-6- (1-methylpentadecyl) phenol, diethyl [[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] ] Methyl] phosphoate, 3,3 ′, 3 ″, 5,5 ′, 5 ″ -hexa-tert-butyl-a, a ′, a ″-( Mesitylene-2,4,6-triyl) tri-p-cresol, 4,6-bis (octylthiomethyl) -o-cresol, ethylenebis (oxyethylene) bis [3- (5-tert-butyl-4- Hydroxy-m-tolyl) propionate], hexamethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 1,3,5-tris (3,5-di-tert- Butyl-4-hydroxybenzyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, 2,6-di-tert-butyl-4- (4,6-bis ( Octylthio) -1,3,5-triazin-2-ylamino) phenol, 2- [1- (2-hydroxy-3,5-di-tert-pentylphenyl) ethyl] -4,6-di- ert- pentylphenyl acrylate.

なかでも、ペンタエリスリトールテトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネートが好ましい。
なお、フェノール系安定剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。
Among them, pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate preferable.
In addition, 1 type may be contained for the phenol type stabilizer, and 2 or more types may be contained by arbitrary combinations and ratios.

フェノール系安定剤の含有量は、ポリカーボネート樹脂(A)100質量部に対して、通常0.001質量部以上、好ましくは0.01質量部以上であり、また、通常1質量部以下、好ましくは0.5質量部以下である。フェノール系安定剤の含有量が前記範囲の下限値未満の場合は、フェノール系安定剤としての効果が不十分となる可能性があり、フェノール系安定剤の含有量が前記範囲の上限値を超える場合は、効果が頭打ちとなり経済的でなくなる可能性がある。   The content of the phenol-based stabilizer is usually 0.001 part by mass or more, preferably 0.01 part by mass or more, and usually 1 part by mass or less, preferably 100 parts by mass of the polycarbonate resin (A). 0.5 parts by mass or less. When the content of the phenol-based stabilizer is less than the lower limit of the range, the effect as the phenol-based stabilizer may be insufficient, and the content of the phenol-based stabilizer exceeds the upper limit of the range. If this is the case, the effect may reach its peak and not economical.

[離型剤]
また、本発明のポリカーボネート樹脂組成物は、離型剤を含有することも好ましい。離型剤としては、例えば、脂肪族カルボン酸、脂肪族カルボン酸とアルコールとのエステル、数平均分子量200〜15,000の脂肪族炭化水素化合物、ポリシロキサン系シリコーンオイルなどが挙げられる。
[Release agent]
Moreover, it is also preferable that the polycarbonate resin composition of this invention contains a mold release agent. Examples of the release agent include aliphatic carboxylic acids, esters of aliphatic carboxylic acids and alcohols, aliphatic hydrocarbon compounds having a number average molecular weight of 200 to 15,000, polysiloxane silicone oils, and the like.

脂肪族カルボン酸としては、例えば、飽和または不飽和の脂肪族一価、二価または三価カルボン酸を挙げることができる。ここで脂肪族カルボン酸とは、脂環式のカルボン酸も包含する。これらの中で好ましい脂肪族カルボン酸は、炭素数6〜36の一価または二価カルボン酸であり、炭素数6〜36の脂肪族飽和一価カルボン酸がさらに好ましい。かかる脂肪族カルボン酸の具体例としては、パルミチン酸、ステアリン酸、カプロン酸、カプリン酸、ラウリン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、メリシン酸、テトラリアコンタン酸、モンタン酸、アジピン酸、アゼライン酸などが挙げられる。   Examples of the aliphatic carboxylic acid include saturated or unsaturated aliphatic monovalent, divalent or trivalent carboxylic acid. Here, the aliphatic carboxylic acid includes alicyclic carboxylic acid. Among these, preferable aliphatic carboxylic acids are monovalent or divalent carboxylic acids having 6 to 36 carbon atoms, and aliphatic saturated monovalent carboxylic acids having 6 to 36 carbon atoms are more preferable. Specific examples of such aliphatic carboxylic acids include palmitic acid, stearic acid, caproic acid, capric acid, lauric acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, mellicic acid, tetrariacontanoic acid, montanic acid, adipine Examples include acids and azelaic acid.

脂肪族カルボン酸とアルコールとのエステルにおける脂肪族カルボン酸としては、例えば、前記脂肪族カルボン酸と同じものが使用できる。一方、アルコールとしては、例えば、飽和または不飽和の一価または多価アルコールが挙げられる。これらのアルコールは、フッ素原子、アリール基などの置換基を有していてもよい。これらの中では、炭素数30以下の一価または多価の飽和アルコールが好ましく、炭素数30以下の脂肪族飽和一価アルコールまたは脂肪族飽和多価アルコールがさらに好ましい。なお、ここで脂肪族とは、脂環式化合物も包含する用語として使用される。   As aliphatic carboxylic acid in ester of aliphatic carboxylic acid and alcohol, the same thing as the said aliphatic carboxylic acid can be used, for example. On the other hand, examples of the alcohol include saturated or unsaturated monohydric or polyhydric alcohols. These alcohols may have a substituent such as a fluorine atom or an aryl group. Among these, monovalent or polyvalent saturated alcohols having 30 or less carbon atoms are preferable, and aliphatic saturated monohydric alcohols or aliphatic saturated polyhydric alcohols having 30 or less carbon atoms are more preferable. Here, the term “aliphatic” is used as a term including alicyclic compounds.

かかるアルコールの具体例としては、オクタノール、デカノール、ドデカノール、ステアリルアルコール、ベヘニルアルコール、エチレングリコール、ジエチレングリコール、グリセリン、ペンタエリスリトール、2,2−ジヒドロキシペルフルオロプロパノール、ネオペンチレングリコール、ジトリメチロールプロパン、ジペンタエリスリトール等が挙げられる。   Specific examples of such alcohols include octanol, decanol, dodecanol, stearyl alcohol, behenyl alcohol, ethylene glycol, diethylene glycol, glycerin, pentaerythritol, 2,2-dihydroxyperfluoropropanol, neopentylene glycol, ditrimethylolpropane, dipentaerythritol, and the like. Is mentioned.

なお、上記のエステルは、不純物として脂肪族カルボン酸及び/またはアルコールを含有していてもよい。また、上記のエステルは、純物質であってもよいが、複数の化合物の混合物であってもよい。さらに、結合して一つのエステルを構成する脂肪族カルボン酸及びアルコールは、それぞれ、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。   In addition, said ester may contain aliphatic carboxylic acid and / or alcohol as an impurity. Moreover, although said ester may be a pure substance, it may be a mixture of a plurality of compounds. Furthermore, the aliphatic carboxylic acid and alcohol which combine and comprise one ester may each be used 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.

脂肪族カルボン酸とアルコールとのエステルの具体例としては、蜜ロウ(ミリシルパルミテートを主成分とする混合物)、ステアリン酸ステアリル、ベヘン酸ベヘニル、ベヘン酸ステアリル、グリセリンモノパルミテート、グリセリンモノステアレート、グリセリンジステアレート、グリセリントリステアレート、ペンタエリスリトールモノパルミテート、ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールトリステアレート、ペンタエリスリトールテトラステアレート等が挙げられる。   Specific examples of esters of aliphatic carboxylic acids and alcohols include beeswax (a mixture based on myricyl palmitate), stearyl stearate, behenyl behenate, stearyl behenate, glycerin monopalmitate, glycerin monostearate Examples thereof include rate, glycerol distearate, glycerol tristearate, pentaerythritol monopalmitate, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, pentaerythritol tetrastearate and the like.

数平均分子量200〜15,000の脂肪族炭化水素としては、例えば、流動パラフィン、パラフィンワックス、マイクロワックス、ポリエチレンワックス、フィッシャ−トロプシュワックス、炭素数3〜12のα−オレフィンオリゴマー等が挙げられる。なお、ここで脂肪族炭化水素としては、脂環式炭化水素も含まれる。また、これらの炭化水素は部分酸化されていてもよい。   Examples of the aliphatic hydrocarbon having a number average molecular weight of 200 to 15,000 include liquid paraffin, paraffin wax, microwax, polyethylene wax, Fischer-Tropsch wax, and α-olefin oligomer having 3 to 12 carbon atoms. Here, the aliphatic hydrocarbon includes alicyclic hydrocarbons. Further, these hydrocarbons may be partially oxidized.

これらの中では、パラフィンワックス、ポリエチレンワックスまたはポリエチレンワックスの部分酸化物が好ましく、パラフィンワックス、ポリエチレンワックスがさらに好ましい。
また、前記の脂肪族炭化水素の数平均分子量は、好ましくは5,000以下である。
なお、脂肪族炭化水素は、単一物質であってもよいが、構成成分や分子量が様々なものの混合物であっても、主成分が上記の範囲内であれば使用できる。
Among these, paraffin wax, polyethylene wax, or a partial oxide of polyethylene wax is preferable, and paraffin wax and polyethylene wax are more preferable.
The number average molecular weight of the aliphatic hydrocarbon is preferably 5,000 or less.
The aliphatic hydrocarbon may be a single substance, but even a mixture of various constituent components and molecular weights can be used as long as the main component is within the above range.

ポリシロキサン系シリコーンオイルとしては、例えば、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、ジフェニルシリコーンオイル、フッ素化アルキルシリコーン等が挙げられる。   Examples of the polysiloxane silicone oil include dimethyl silicone oil, methylphenyl silicone oil, diphenyl silicone oil, and fluorinated alkyl silicone.

なお、上述した離型剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。   In addition, 1 type may contain the release agent mentioned above, and 2 or more types may contain it by arbitrary combinations and a ratio.

離型剤の含有量は、ポリカーボネート樹脂(A)100質量部に対して、通常0.001質量部以上、好ましくは0.01質量部以上であり、また、通常2質量部以下、好ましくは1質量部以下である。離型剤の含有量が前記範囲の下限値未満の場合は、離型性の効果が十分でない場合があり、離型剤の含有量が前記範囲の上限値を超える場合は、耐加水分解性の低下、射出成形時の金型汚染などが生じる可能性がある。   The content of the release agent is usually 0.001 parts by mass or more, preferably 0.01 parts by mass or more, and usually 2 parts by mass or less, preferably 1 with respect to 100 parts by mass of the polycarbonate resin (A). It is below mass parts. When the content of the release agent is less than the lower limit of the range, the effect of releasability may not be sufficient, and when the content of the release agent exceeds the upper limit of the range, hydrolysis resistance And mold contamination during injection molding may occur.

[その他の成分]
本発明のポリカーボネート樹脂組成物は、所望の諸物性を著しく損なわない限り、必要に応じて、上述したもの以外にその他の成分を含有していてもよい。その他の成分の例を挙げると、ポリカーボネート樹脂以外の樹脂、上記した以外の他の樹脂添加剤などが挙げられる。なお、その他の成分は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。
[Other ingredients]
The polycarbonate resin composition of the present invention may contain other components in addition to those described above as necessary, as long as the desired physical properties are not significantly impaired. Examples of other components include resins other than polycarbonate resins and other resin additives other than those described above. In addition, 1 type may contain other components and 2 or more types may contain them by arbitrary combinations and ratios.

その他の樹脂
その他の樹脂としては、例えば、ポリエチレンテレフタレート樹脂、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート樹脂などの熱可塑性ポリエステル樹脂;ポリスチレン樹脂、高衝撃ポリスチレン樹脂(HIPS)、アクリロニトリル−スチレン共重合体(AS樹脂)などのスチレン系樹脂;ポリエチレン樹脂、ポリプロピレン樹脂等のポリオレフィン樹脂;ポリアミド樹脂;ポリイミド樹脂;ポリエーテルイミド樹脂;ポリウレタン樹脂;ポリフェニレンエーテル樹脂;ポリフェニレンサルファイド樹脂;ポリスルホン樹脂;ポリメタクリレート樹脂等が挙げられる。
なお、その他の樹脂は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。
ただし、その他の樹脂を含有する場合の含有量は、ポリカーボネート樹脂(A)100質量部に対し、20質量部以下とすることが好ましく、10質量部以下がより好ましく、さらには5質量部以下、特には3質量部以下とすることが好ましい。
Other resins Examples of other resins include thermoplastic polyester resins such as polyethylene terephthalate resin, polytrimethylene terephthalate, and polybutylene terephthalate resin; polystyrene resin, high-impact polystyrene resin (HIPS), and acrylonitrile-styrene copolymer (AS). Resin) and the like; polyolefin resins such as polyethylene resins and polypropylene resins; polyamide resins; polyimide resins; polyether imide resins; polyurethane resins; polyphenylene ether resins; polyphenylene sulfide resins; .
In addition, 1 type may contain other resin and 2 or more types may contain it by arbitrary combinations and a ratio.
However, the content when other resins are contained is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and further preferably 5 parts by mass or less, relative to 100 parts by mass of the polycarbonate resin (A). In particular, the amount is preferably 3 parts by mass or less.

樹脂添加剤
上記した以外の他の樹脂添加剤としては、例えば、紫外線吸収剤、染顔料(カーボンブラックを含む)、帯電防止剤、防曇剤、アンチブロッキング剤、可塑剤、流動性改質剤、分散剤、抗菌剤などが挙げられる。なお、樹脂添加剤は1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。
Resin additives Other resin additives other than those described above include, for example, ultraviolet absorbers, dyes and pigments (including carbon black), antistatic agents, antifogging agents, antiblocking agents, plasticizers, and fluidity modifiers. , Dispersants, antibacterial agents and the like. In addition, 1 type may contain resin additive and 2 or more types may contain it by arbitrary combinations and a ratio.

[ポリカーボネート樹脂組成物の製造方法]
本発明のポリカーボネート樹脂組成物の製造方法に制限はなく、公知のポリカーボネート樹脂組成物の製造方法を広く採用できる。
具体例を挙げると、ポリカーボネート樹脂(A)、鱗片状無機鉱物フィラー(C)及びリン系難燃剤(D)、並びに、必要に応じて配合されるその他の成分を、例えばタンブラーやヘンシェルミキサーなどの各種混合機を用い予め混合した後、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダーなどの混合機で溶融混練する方法が挙げられる。炭素繊維(B)はサイドフィードすることが好ましい。
[Production Method of Polycarbonate Resin Composition]
There is no restriction | limiting in the manufacturing method of the polycarbonate resin composition of this invention, The manufacturing method of a well-known polycarbonate resin composition can be employ | adopted widely.
Specific examples include polycarbonate resin (A), scaly inorganic mineral filler (C) and phosphorus-based flame retardant (D), and other components blended as necessary, such as tumblers and Henschel mixers. Examples thereof include a method of premixing using various mixers and then melt-kneading with a mixer such as a Banbury mixer, roll, Brabender, single-screw kneading extruder, twin-screw kneading extruder, or kneader. The carbon fiber (B) is preferably side fed.

また、例えば、各成分を予め混合せずに、又は、一部の成分のみを予め混合し、フィーダーを用いて押出機に供給して溶融混練して、本発明のポリカーボネート樹脂組成物を製造することもできる。
また、例えば、一部の成分を予め混合し押出機に供給して溶融混練することで得られる樹脂組成物をマスターバッチとし、このマスターバッチを再度残りの成分と混合し、溶融混練することによって本発明のポリカーボネート樹脂組成物を製造することもできる。
また、例えば、分散し難い成分を混合する際には、その分散し難い成分を予め水や有機溶剤等の溶媒に溶解又は分散させ、その溶液又は分散液と混練するようにすることで、分散性を高めることもできる。
Also, for example, without mixing each component in advance, or only a part of the components is mixed in advance, and supplied to an extruder using a feeder and melt kneaded to produce the polycarbonate resin composition of the present invention. You can also.
Also, for example, by mixing a part of the components in advance and supplying the resulting mixture to an extruder and melt-kneading it as a master batch, this master batch is again mixed with the remaining components and melt-kneaded. The polycarbonate resin composition of the present invention can also be produced.
In addition, for example, when mixing a component that is difficult to disperse, the component that is difficult to disperse is dissolved or dispersed in a solvent such as water or an organic solvent in advance, and kneaded with the solution or the dispersion. It can also improve sex.

得られた本発明のポリカーボネート樹脂組成物は、難燃性に優れ、UL94試験に基づく燃焼性が、0.8mm厚みでV−0である高度の難燃性を示す。   The obtained polycarbonate resin composition of the present invention is excellent in flame retardancy, and exhibits a high flame retardance of V-0 at a thickness of 0.8 mm based on the UL94 test.

本発明のポリカーボネート樹脂組成物から成形品を製造するには、ポリカーボネート樹脂組成物について一般に採用されている成形法を任意に採用できる。その例を挙げると、射出成形法、超高速射出成形法、射出圧縮成形法、二色成形法、ガスアシスト等の中空成形法、断熱金型を使用した成形法、急速加熱金型を使用した成形法、発泡成形(超臨界流体も含む)、インサート成形、IMC(インモールドコーティング成形)成形法、押出成形法、シート成形法、熱成形法、回転成形法、積層成形法、プレス成形法、ブロー成形法などが挙げられ、また、ホットランナー方式を使用した成形法を用いることも出来る。なかでも、射出成形法、超高速射出成形法、射出圧縮成形法などの射出成形法が好ましい。   In order to produce a molded article from the polycarbonate resin composition of the present invention, a molding method generally adopted for the polycarbonate resin composition can be arbitrarily adopted. For example, injection molding method, ultra-high speed injection molding method, injection compression molding method, two-color molding method, hollow molding method such as gas assist, molding method using heat insulating mold, rapid heating mold were used. Molding method, foam molding (including supercritical fluid), insert molding, IMC (in-mold coating molding) molding method, extrusion molding method, sheet molding method, thermoforming method, rotational molding method, laminate molding method, press molding method, Examples thereof include a blow molding method, and a molding method using a hot runner method can also be used. Of these, injection molding methods such as injection molding, ultra-high speed injection molding, and injection compression molding are preferred.

[成形品]
成形品の例を挙げると、電気・電子機器、OA機器、情報端末機器、機械部品、家電製品、車輌部品、建築部材、各種容器、レジャー用品・雑貨類、照明機器等の部品が挙げられる。これらの中でも、電気電子機器、OA機器、情報端末機器等の部品に用いて好適である。中でも電気電子機器の筐体に好適であり、ノートパソコン、タブレット端末、スマートフォン又は携帯電話の筺体に特に好適である。
[Molding]
Examples of molded products include parts such as electrical / electronic equipment, OA equipment, information terminal equipment, machine parts, home appliances, vehicle parts, building members, various containers, leisure goods / miscellaneous goods, and lighting equipment. Among these, it is suitable for use in parts such as electrical and electronic equipment, OA equipment, and information terminal equipment. Among them, it is suitable for a housing of an electric / electronic device, and particularly suitable for a casing of a notebook computer, a tablet terminal, a smartphone, or a mobile phone.

以下、実施例を示して本発明について更に具体的に説明する。ただし、本発明は以下の実施例に限定して解釈されるものではない。
なお、以下の説明において[部]とは、特に断らない限り質量基準に基づく「質量部」を表す。
実施例及び比較例に使用した各成分は以下の表1のとおりである。
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not construed as being limited to the following examples.
In the following description, “parts” means “parts by mass” based on mass standards unless otherwise specified.
Each component used in Examples and Comparative Examples is as shown in Table 1 below.

(実施例1〜20、比較例1〜14)
[樹脂ペレット製造]
表1に記載した各成分の中、炭素繊維(B)とリン系難燃剤(D)以外を表3〜5に記載の量(質量部)で配合し、タンブラーにて20分混合した後、1ベントを備えた日本製鋼所社製押出機「TEX30α」に上流のフィーダーより供給し、リン系難燃剤(D)を液注ポンプによりバレルの途中より表3〜5に記載の量(質量部)で供給し、更に炭素繊維(B)を、表3〜5に記載の量(質量部)でサイドフィーダーによりバレルの途中より供給しながら、回転数200rpm、吐出量30kg/h、バレル温度260℃の条件で混練し、ストランド状に押出された溶融樹脂を水槽にて冷却し、ペレタイザーを用いてペレット化し、ポリカーボネート樹脂組成物のペレットを得た。
(Examples 1-20, Comparative Examples 1-14)
[Production of resin pellets]
Among each component described in Table 1, after compounding carbon fiber (B) and phosphorus flame retardant (D) other than the amount (parts by mass) described in Tables 3 to 5, and mixing for 20 minutes with a tumbler, Supplyed from an upstream feeder to an extruder “TEX30α” manufactured by Nippon Steel Works with 1 vent, the amount of phosphorus flame retardant (D) shown in Tables 3 to 5 in the middle of the barrel by a liquid injection pump (parts by mass) The carbon fiber (B) is further fed from the middle of the barrel by the side feeder in the amounts (parts by mass) shown in Tables 3 to 5, while the rotation speed is 200 rpm, the discharge rate is 30 kg / h, and the barrel temperature is 260. The molten resin which was kneaded under the condition of ° C. and extruded into a strand shape was cooled in a water tank and pelletized using a pelletizer to obtain a pellet of a polycarbonate resin composition.

[試験片の作製]
上述の方法で得られたペレットを、80℃で5時間乾燥させた後、東洋機械金属社製射出成形機「Si−80−6」(型締力80トン)を用いて、シリンダー温度280℃、金型温度60℃の条件で射出成形し、ISO多目的試験片(4mm厚)を成形した。
また、上述の方法で得られたペレットを、80℃で5時間乾燥させた後、住友重機械工業社製射出成形機「SE100D」(型締力100トン)に、試験片の両端にゲートを設けた金型を用い、シリンダー温度300℃、金型温度60℃の条件で射出成形し、長さ125mm、幅13mm、厚み1.6mmで試験片中心にウエルドのあるウエルド試験片を成形した。
さらに、上述の方法で得られたペレットを、80℃で5時間乾燥させた後、住友重機械工業社製射出成形機「SE100D」(型締力100トン)を用いて、シリンダー温度280℃、金型温度60℃の条件で射出成形し、長さ125mm、幅13mm、厚み0.8mmのUL試験用試験片を成形した。
[Preparation of test piece]
The pellet obtained by the above-mentioned method was dried at 80 ° C. for 5 hours, and then the cylinder temperature was 280 ° C. using an injection molding machine “Si-80-6” (clamping force 80 tons) manufactured by Toyo Machine Metal Co., Ltd. Then, injection molding was performed under the condition of a mold temperature of 60 ° C. to form an ISO multipurpose test piece (4 mm thickness).
After the pellets obtained by the above method were dried at 80 ° C. for 5 hours, the injection molding machine “SE100D” (clamping force 100 tons) manufactured by Sumitomo Heavy Industries, Ltd. was connected to gates at both ends of the test piece. Using the provided mold, injection molding was performed under the conditions of a cylinder temperature of 300 ° C. and a mold temperature of 60 ° C., and a weld test piece having a length of 125 mm, a width of 13 mm, a thickness of 1.6 mm and a weld in the center of the test piece was formed.
Furthermore, after the pellets obtained by the above-mentioned method were dried at 80 ° C. for 5 hours, the cylinder temperature was 280 ° C. using an injection molding machine “SE100D” (clamping force 100 tons) manufactured by Sumitomo Heavy Industries, Ltd. A test piece for UL test having a length of 125 mm, a width of 13 mm, and a thickness of 0.8 mm was formed by injection molding under the condition of a mold temperature of 60 ° C.

[比重]
上記の方法で得られたISO多目的試験片(4mm厚)を用い、ISO1883に準拠し、比重を測定した。
[specific gravity]
Using the ISO multipurpose test piece (4 mm thickness) obtained by the above method, specific gravity was measured according to ISO1883.

[流動性評価]
上述の方法で得られたペレットを、80℃で5時間乾燥させた後、日精樹脂工業社製「NEX80III」(型締力80トン)を用いて、シリンダー温度280℃、金型温度60℃、射出圧力150MPaの条件で、幅20mm、厚さ1mmのバーフロー成形品を射出成形し、その流動長(単位:mm)を評価した。
[Fluidity evaluation]
After the pellets obtained by the above-mentioned method were dried at 80 ° C. for 5 hours, the cylinder temperature was 280 ° C., the mold temperature was 60 ° C. using “NEX80III” (clamping force 80 tons) manufactured by Nissei Plastic Industry Co., Ltd. Under the conditions of an injection pressure of 150 MPa, a bar flow molded product having a width of 20 mm and a thickness of 1 mm was injection molded, and the flow length (unit: mm) was evaluated.

[曲げ特性]
上述の方法で得られたISO多目的試験片を用い、ISO178に準拠して曲げ弾性率(単位:GPa)、曲げ強度(単位:MPa)を測定し評価した。
[Bending characteristics]
Using the ISO multipurpose test piece obtained by the above method, the flexural modulus (unit: GPa) and the flexural strength (unit: MPa) were measured and evaluated in accordance with ISO178.

[耐衝撃性]
上述の方法で得られたISO多目的試験片を用い、ISO179に準拠してノッチ付およびノッチ無しシャルピー衝撃強度(単位:kJ/m)を測定し評価した。
[Shock resistance]
Using the ISO multi-purpose test piece obtained by the above-described method, notched and unnotched Charpy impact strength (unit: kJ / m 2 ) was measured and evaluated in accordance with ISO179.

[ウエルド強度]
上述の方法で得られたウエルド試験片を、インストロン万能試験機を用いて、支点間距離26mm、圧子の半径R5mm、圧子降下速度1mm/minの条件で、圧子にウエルド部が接触するように試験片を設置して曲げ試験を行い、その強度(単位:MPa)を評価した。
この方法で測定したウエルド曲げ強度は、80MPa以上であることが好ましい。
[Weld strength]
Using the Instron universal testing machine, the weld test piece obtained by the above-described method is made so that the weld part comes into contact with the indenter under the conditions of a fulcrum distance of 26 mm, an indenter radius R of 5 mm, and an indenter descending speed of 1 mm / min. A test piece was placed and subjected to a bending test, and its strength (unit: MPa) was evaluated.
The weld bending strength measured by this method is preferably 80 MPa or more.

[耐熱性]
上述の方法で得られたISO多目的試験片を用い、ISO75に準拠して1.8MPaの荷重たわみ温度を測定し評価した。
[Heat-resistant]
Using the ISO multipurpose test piece obtained by the above-mentioned method, a deflection temperature under load of 1.8 MPa was measured and evaluated according to ISO75.

[難燃性評価 UL94試験]
上述の方法で得られたペレットUL試験用試験片を温度23℃、湿度59%の恒温室で48時間調湿し、米国アンダーライターズ・ラボラトリーズ(UL)が定めているUL94試験(機器の部品用プラスチック材料燃焼試験)に準拠して行った。
UL94Vとは、鉛直に保持した所定の大きさの試験片にバーナーの炎を10秒間接炎した後の残炎時間やドリップ性から難燃性を評価する方法であり、V−0、V−1及びV−2の難燃性を有するためには以下の表に示す基準を満たすことが必要となる。
[Flame retardancy evaluation UL94 test]
The UL UL test (equipment parts) defined by US Underwriters Laboratories (UL) was conditioned for 48 hours in a temperature-controlled room at 23 ° C and 59% humidity. Plastic material combustion test).
UL94V is a method for evaluating flame retardancy from the after-flame time and drip properties after indirect flame of a burner for 10 seconds on a test piece of a predetermined size held vertically, V-0, V- In order to have flame retardancy of 1 and V-2, it is necessary to satisfy the criteria shown in the following table.

ここで残炎時間とは、着火源を遠ざけた後の、試験片の有炎燃焼を続ける時間の長さである。また、ドリップによる綿着火とは、試験片の下端から約300mm下にある標識用の面が、試験片からの滴下(ドリップ)物によって着火されるかどうかによって決定される。
さらに全5本中の総燃焼時間(単位:秒)をカウントし、評価した。この総燃焼時間は小さい方が、良好な難燃性を有していることを意味し、好ましい。
以上の評価結果を、以下の表3〜表5に示す。
Here, the after-flame time is the length of time for which the flammable combustion of the test piece is continued after the ignition source is moved away. Further, the cotton ignition by the drip is determined by whether or not the marking surface that is approximately 300 mm below the lower end of the test piece is ignited by a drip from the test piece.
Furthermore, the total burning time (unit: second) in all five was counted and evaluated. A smaller total combustion time means that it has good flame retardancy, and is preferable.
The above evaluation results are shown in Tables 3 to 5 below.

(比較例15〜19)
[樹脂ペレット製造]
表1に記載した各成分の中、ガラス繊維CX1及びCX2と難燃剤(D)以外を表6に記載の量(質量部)で配合し、タンブラーにて20分混合した後、1ベントを備えた日本製鋼所社製押出機「TEX30α」に上流のフィーダーより供給し、リン系難燃剤(D)を液注ポンプによりバレルの途中より表6に記載の量(質量部)で供給し、更にガラス繊維CX1及びCX2を、表6に記載の量(質量部)でサイドフィーダーによりバレルの途中より供給しながら、回転数200rpm、吐出量30kg/h、バレル温度260℃の条件で混練し、ストランド状に押出された溶融樹脂を水槽にて冷却し、ペレタイザーを用いてペレット化し、ポリカーボネート樹脂組成物のペレットを得た。
得られたペレットを用い、前記と同様にして各種の評価を行った。
評価結果を、以下の表6に示す。
(Comparative Examples 15-19)
[Production of resin pellets]
Among the components listed in Table 1, glass fibers CX1 and CX2 and the flame retardant (D) other than the flame retardant (D) were blended in the amounts (parts by mass) listed in Table 6 and mixed for 20 minutes with a tumbler. Supplied from an upstream feeder to an extruding machine “TEX30α” manufactured by Nippon Steel Works Co., Ltd., and a phosphorus flame retardant (D) was supplied in the amount (part by mass) shown in Table 6 from the middle of the barrel by a liquid injection pump. The glass fibers CX1 and CX2 are kneaded under the conditions of a rotation speed of 200 rpm, a discharge amount of 30 kg / h, and a barrel temperature of 260 ° C. while supplying the glass fibers CX1 and CX2 in the amount (part by mass) shown in Table 6 from the middle of the barrel. The molten resin extruded in a shape was cooled in a water bath and pelletized using a pelletizer to obtain pellets of a polycarbonate resin composition.
Various evaluations were performed in the same manner as described above using the obtained pellets.
The evaluation results are shown in Table 6 below.

本発明のポリカーボネート樹脂組成物は、薄肉成形体とした場合にも極めて高い難燃性を有し、さらには流動性、衝撃強度、ウエルド強度、耐熱性にも優れる高剛性材料であるので、電気電子機器、OA機器、情報端末機器、家電製品等の部品に広く好適に利用でき、産業上の利用性は非常に高い。   Since the polycarbonate resin composition of the present invention is a highly rigid material that has extremely high flame retardancy even when formed into a thin-walled molded article, and further has excellent fluidity, impact strength, weld strength, and heat resistance, It can be used widely and suitably for parts such as electronic equipment, OA equipment, information terminal equipment, home appliances, etc., and industrial applicability is very high.

Claims (11)

ポリカーボネート樹脂(A)100質量部に対し、炭素繊維(B)5〜120質量部、鱗片状無機鉱物フィラー(C)1〜15質量部及びリン系難燃剤(D)15〜50質量部を含有し、炭素繊維(B)に対する鱗片状無機鉱物フィラー(C)の割合が3〜30質量%であることを特徴とするポリカーボネート樹脂組成物。   Contains 5 to 120 parts by mass of carbon fiber (B), 1 to 15 parts by mass of a flaky inorganic mineral filler (C) and 15 to 50 parts by mass of a phosphorus-based flame retardant (D) with respect to 100 parts by mass of the polycarbonate resin (A). And the ratio of the scale-like inorganic mineral filler (C) with respect to carbon fiber (B) is 3-30 mass%, The polycarbonate resin composition characterized by the above-mentioned. さらに、フルオロポリマー(E)を、ポリカーボネート樹脂(A)100質量部に対し、0.05〜2質量部含有する請求項1に記載のポリカーボネート樹脂組成物。   Furthermore, the polycarbonate resin composition of Claim 1 which contains a fluoropolymer (E) 0.05-2 mass parts with respect to 100 mass parts of polycarbonate resin (A). 鱗片状無機鉱物フィラー(C)がタルク及び/又はマイカである請求項1又は2に記載のポリカーボネート樹脂組成物。   The polycarbonate resin composition according to claim 1 or 2, wherein the scaly inorganic filler (C) is talc and / or mica. リン系難燃剤(D)が、縮合リン酸エステル化合物である請求項1〜3のいずれか1項に記載のポリカーボネート樹脂組成物。   The polycarbonate resin composition according to any one of claims 1 to 3, wherein the phosphorus-based flame retardant (D) is a condensed phosphate ester compound. さらに、コア/シェル型グラフト共重合体(F)を、ポリカーボネート樹脂(A)100質量部に対し、3〜10質量部含有する請求項1〜4のいずれか1項に記載のポリカーボネート樹脂組成物。   Furthermore, 3-10 mass parts of core / shell type graft copolymers (F) are contained with respect to 100 mass parts of polycarbonate resin (A), The polycarbonate resin composition of any one of Claims 1-4. . コア/シェル型グラフト共重合体(F)が、シリコーン−アクリレート複合ゴムをコアとするグラフト共重合体である請求項1〜5のいずれか1項に記載のポリカーボネート樹脂組成物。   The polycarbonate resin composition according to any one of claims 1 to 5, wherein the core / shell type graft copolymer (F) is a graft copolymer having a silicone-acrylate composite rubber as a core. 鱗片状無機鉱物フィラー(C)とコア/シェル型グラフト共重合体(F)の含有量の質量比(C)/(F)が0.1〜2である請求項1〜6のいずれか1項に記載のポリカーボネート樹脂組成物。   The mass ratio (C) / (F) of the content of the scale-like inorganic mineral filler (C) and the core / shell type graft copolymer (F) is 0.1 to 2, 7. The polycarbonate resin composition according to item. UL94試験に基づく燃焼性が、0.8mm厚みでV−0である請求項1〜7のいずれか1項に記載のポリカーボネート樹脂組成物。   The polycarbonate resin composition according to any one of claims 1 to 7, wherein the flammability based on the UL94 test is V-0 at a thickness of 0.8 mm. 請求項1〜8のいずれか1項に記載のポリカーボネート樹脂組成物を成形した成形品。   The molded article which shape | molded the polycarbonate resin composition of any one of Claims 1-8. 電気電子機器の筐体である請求項9に記載の成形品。   The molded article according to claim 9, which is a casing of an electric / electronic device. 前記電気電子機器が、ノートパソコン、タブレット端末、スマートフォン又は携帯電話である請求項10に記載の成形品。   The molded article according to claim 10, wherein the electric and electronic device is a notebook computer, a tablet terminal, a smartphone, or a mobile phone.
JP2017238432A 2017-03-06 2017-12-13 Polycarbonate resin composition and molded article Pending JP2018145397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/045697 WO2018163562A1 (en) 2017-03-06 2017-12-20 Polycarbonate resin composition and molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017042144 2017-03-06
JP2017042144 2017-03-06

Publications (1)

Publication Number Publication Date
JP2018145397A true JP2018145397A (en) 2018-09-20

Family

ID=63589556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017238432A Pending JP2018145397A (en) 2017-03-06 2017-12-13 Polycarbonate resin composition and molded article

Country Status (1)

Country Link
JP (1) JP2018145397A (en)

Similar Documents

Publication Publication Date Title
JP6147595B2 (en) Polycarbonate resin composition, molded article comprising the same, and method for producing the same
JP5782547B2 (en) Thermoplastic resin composition
JPWO2018116607A1 (en) Polycarbonate resin composition and molded article
JP2013159703A (en) Composite fiber-reinforced polycarbonate resin composition
JP7025936B2 (en) Polycarbonate resin composition and molded products
JP2020111668A (en) Flame-retardant polycarbonate resin composition and molded article
JP2019059813A (en) Polycarbonate resin composition
JP5449458B2 (en) Polycarbonate resin composition
JP6645743B2 (en) Heat conductive polycarbonate resin composition and molded article
JP6480120B2 (en) Thermally conductive polycarbonate resin composition and molded article
JP2013177476A (en) Carbon fiber-reinforced polycarbonate resin composition
JP7254588B2 (en) Polycarbonate resin composition and molded article
JP6276019B2 (en) Polycarbonate resin composition
JP6411173B2 (en) Polycarbonate resin composition and molded article
JP5973333B2 (en) Polycarbonate resin composition
JP5758649B2 (en) Polycarbonate resin composition and molded body
WO2018163562A1 (en) Polycarbonate resin composition and molded article
JP5770487B2 (en) Polycarbonate resin composition
JP2015227421A (en) Thermoplastic resin composition
JP2014055255A (en) Glass fiber reinforced polycarbonate resin composition
JP5646791B1 (en) Polycarbonate resin composition and molded article
JP2018145397A (en) Polycarbonate resin composition and molded article
JP2014227436A (en) Thermoplastic resin compositions
JP6026129B2 (en) Polycarbonate resin composition, molded article comprising the same, and method for producing the same
JP6151615B2 (en) Polycarbonate resin composition and molded product