WO2016185818A1 - 半導体LSI(Large Scale Integration)のソフトエラー率計算装置および計算方法 - Google Patents
半導体LSI(Large Scale Integration)のソフトエラー率計算装置および計算方法 Download PDFInfo
- Publication number
- WO2016185818A1 WO2016185818A1 PCT/JP2016/061191 JP2016061191W WO2016185818A1 WO 2016185818 A1 WO2016185818 A1 WO 2016185818A1 JP 2016061191 W JP2016061191 W JP 2016061191W WO 2016185818 A1 WO2016185818 A1 WO 2016185818A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- neutron
- error rate
- value
- soft error
- energy
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2851—Testing of integrated circuits [IC]
- G01R31/2855—Environmental, reliability or burn-in testing
- G01R31/2872—Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation
- G01R31/2881—Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to environmental aspects other than temperature, e.g. humidity or vibrations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/26—Testing of individual semiconductor devices
- G01R31/2601—Apparatus or methods therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/26—Testing of individual semiconductor devices
- G01R31/265—Contactless testing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/302—Contactless testing
- G01R31/303—Contactless testing of integrated circuits
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/3181—Functional testing
- G01R31/31816—Soft error testing; Soft error rate evaluation; Single event testing
Definitions
- the present invention relates to a method for evaluating and calculating the incidence of soft errors in semiconductor LSIs caused by radiation.
- Patent Document 1 As a background art, there is Patent 03792092 (Patent Document 1). This patent states that “a procedure for dividing a spectral distribution of cosmic ray neutrons into energy bands having a plurality of predetermined energy values as representative values, and a soft error partial cross-sectional area of a semiconductor device corresponding to the plurality of energy values. And calculating the sum of the soft error partial cross-sectional areas by weighting the partial cross-sectional areas with the total flux for each of the plurality of energy bands, and using the sum of the soft error partial cross-sectional areas. "A cosmic ray soft error tolerance evaluation method for a semiconductor device characterized by estimating a soft error rate of the semiconductor device in a predetermined actual use environment".
- a soft error cross section is experimentally obtained by irradiating a neutron beam having energy corresponding to each of a plurality of divided energy bands, and a neutron soft error rate in the natural world is derived.
- the evaluation since neutron irradiation is performed a plurality of times by changing the neutron energy, the evaluation may be costly and take a long time.
- An object of the present invention is to make it possible to derive a neutron soft error rate only from data when low neutron energy is irradiated as data used to derive a neutron soft error rate in an actual use environment of a semiconductor LSI.
- a semiconductor LSI soft error calculation apparatus includes an SEU cross section function holding unit, an error value generated per unit time from an external value of the SEU cross section function and low energy neutron spectrum data.
- a calculation unit that calculates a number basic value, an error number actual value calculation unit that calculates an error number actual value per unit time from input data, a calculation unit that identifies a SEU cross-sectional area function from the calculation result of the calculation unit, A holding unit for a natural neutron spectrum; and an error rate calculating unit for calculating a soft error rate of the semiconductor device in the natural world from the calculation result and holding data.
- the data at the time of low neutron energy irradiation can be used as the actual measurement data used when deriving the neutron soft error rate.
- high-power facilities but also low-power facilities can be used, radiation equipment can be suppressed from being activated, and accelerator operation costs during evaluation can be reduced.
- FIG. 1 is a diagram illustrating a configuration example of a soft error rate calculation apparatus for a semiconductor LSI according to a first embodiment.
- FIG. 10 is a diagram illustrating an example of a soft error tolerance evaluation flow of the semiconductor LSI according to the first embodiment. An example of a user operation screen 401 at the time of calculating a soft error rate of a semiconductor LSI in the first embodiment is shown.
- FIG. 10 is a diagram illustrating a configuration example of a soft error rate calculation apparatus for a semiconductor LSI according to a second embodiment.
- the white method is a method for obtaining an error rate on the ground from an error rate when a white neutron beam whose energy distribution is similar to a natural neutron spectrum is irradiated. Since the natural neutron spectrum covers a wide range up to several hundred MeV, the neutron irradiation facility must also output a neutron beam containing high energy of several hundred MeV and irradiate the target LSI.
- the (quasi) monochromatic method irradiates a monochromatic or quasi-monochromatic neutron beam with specific energy, obtains the neutron soft error rate for each neutron energy to be irradiated from the error rate of each beam, and SEU (Single Event Upset) Find the cross-sectional area function. Next, a neutron soft error rate is calculated from the SEU cross section function and the neutron spectrum on the ground.
- SEU Single Event Upset
- neutrons are generated by accelerating particles such as protons and colliding with targets such as lithium and lead to cause a nuclear reaction.
- targets such as lithium and lead to cause a nuclear reaction.
- the faster the acceleration particles the larger the accelerator required, which increases the operating cost of the accelerator and limits the facilities that can be implemented.
- E represents neutron energy.
- Eth, W, and S are parameters that determine the shape of the Weibull function. It is known from the SEU cross-sectional area functions obtained from the results of irradiation experiments on a number of semiconductor LSIs that these values are constant. , Eth c , W c and S c . In this application, the Weibull function into which these are substituted is referred to as the SEU cross-sectional area function outline W (E).
- the SEU cross-sectional area function of the irradiation target device is a constant multiple of the SEU cross-sectional area function outer shape. In the present application, this constant is referred to as a SEU cross section function proportional coefficient ⁇ .
- the number of errors per unit time can be obtained by multiplying the irradiation neutron spectrum and the SEU cross section function and integrating with the energy E. Since the SEU cross section function is ⁇ times the outer shape value of the SEU cross section function, the number of errors per unit time is multiplied by the energy E by multiplying the irradiation neutron spectrum and the outer shape value of the SEU cross section function. In other words, the value (referred to as the error number basic value in this application) is multiplied by ⁇ .
- FIG. 1 is an example of a configuration diagram of a semiconductor LSI soft error rate calculation apparatus according to the present embodiment.
- the semiconductor LSI soft error rate calculation apparatus 100 includes a SEU cross-sectional area function calculation unit 110 and a natural world soft error rate calculation unit 120.
- the SEU cross section function calculation unit 110 includes an error number actual value calculation unit 111 that calculates and outputs an error number actual measurement value 115 per unit time from the low energy neutron irradiation time 11 and the error number 12 at the time of low energy neutron irradiation,
- the SEU cross-sectional area function external shape holding unit 113 that outputs the function value 118 of the external shape of the SEU cross-sectional area function corresponding to the neutron energy value 117 given from the error number basic value calculation unit 112, and the SEU cross-sectional area function external shape holding unit 113
- An error number basic value calculation unit 112 that outputs an outline value 118 of the SEU cross-sectional area function obtained by inputting the neutron energy value 117 and an error number basic value 119 generated per unit time from the low energy neutron spectrum 13, and per unit time
- the ratio of the error number basic value 119 and the actual number of errors per unit time 115 is calculated and It includes the SEU cross-sectional area functions proportionality coefficient calculation unit 114 to identify
- the low energy neutron irradiation time 11 and the number of errors 12 at the time of low energy neutron irradiation can be obtained by irradiating the evaluation target semiconductor LSI with neutrons at the low energy neutron irradiation facility.
- the low-energy neutron spectrum 13 can be actually measured by a method derived by the Unfolding method from the measurement result by the TOF (Time Of Flight) method or the Bonner ball type neutron detector.
- the neutron production reaction at the irradiation facility can be calculated by a nuclear spallation reaction simulation.
- the error number actual value calculation unit 111 calculates the error number actual measurement value 115 (E exp ) per unit time by dividing the error number 12 at the time of low energy neutron irradiation by the low energy neutron irradiation time 11 to calculate the SEU cross section function. The result is output to the proportional coefficient calculation unit 114.
- SEU sectional area function profile holding section 113 it holds the the Eth c and W c and S c therein, the value of Weibull function according to the desired neutron energy value an error number basic value calculation unit 112 generates Output as an outline value 118 of the SEU cross-sectional area function.
- a numerical integration operation is performed by multiplying the low-energy neutron spectrum 13 by the external value 118 of the SEU cross-sectional area function obtained by inputting the desired energy value 117 generated by the error number basic value calculating unit 112 to the SEU cross-sectional area external shape holding unit 113. Then, the basic value E base 119 of the number of errors generated per unit time is derived and output.
- this calculation is expressed by a mathematical formula, (Formula 2)
- ⁇ lowE (E) is a numerical expression of the low energy neutron spectrum 13.
- the SEU cross-sectional area function proportionality coefficient calculation unit 114 obtains the SEU cross-sectional area function proportionality coefficient ⁇ 123 by calculating the division ratio of E exp by E base and outputs it to the natural world soft error rate calculation unit 120.
- the natural world soft error rate calculation unit 120 holds the input natural world neutron spectrum 14, and outputs a natural world neutron spectrum 125 corresponding to the neutron energy value 124 given from the error rate calculation unit 122.
- An error rate calculation unit 122 that calculates and outputs the neutron soft error rate 15 in the natural world of the semiconductor LSI from the SEU cross section area outline and the natural neutron spectrum 14 is included.
- the natural neutron spectrum holding unit 121 holds the natural neutron spectrum 14 input to the semiconductor LSI soft error calculation device 100 according to the present invention, and the natural neutron flux corresponding to the neutron energy value 124 given from the error rate calculation unit 122. 125 is output.
- the natural neutron spectrum 14 is JEDEC Standard No. It can be obtained by referring to 89A or the like.
- the error rate calculation unit 122 adds the SEU cross-sectional area function proportional coefficient calculation unit 114 to the SEU cross-sectional area function outer shape value 127 obtained by inputting the desired energy value 126 to the SEU cross-sectional area function outer shape holding unit 113. Multiplying the area function by the proportional coefficient ⁇ 123, that is, the SEU cross-sectional area function of the semiconductor LSI and the neutron flux 125 obtained by inputting the desired energy value 124 to the natural neutron spectrum holding unit 121, the numerical integration operation is performed. , to derive the number of errors E n per unit time. When this calculation is expressed by an equation, (Equation 3)
- ⁇ n (E) represents the natural neutron spectrum 14 by a mathematical expression.
- the number of errors per unit time that is, the error rate is output as a neutron soft error rate 15 in the natural world.
- generally soft error rate is often expressed in FIT (Failures an In Time) unit (number of errors per 10 9 hours). Therefore, for example, if all physical quantities are expressed in the MKS unit system, the number of errors per unit time can be multiplied by 3600 ⁇ 10 9 to be converted into FIT units (Formula 4).
- the above result may be output as a neutron soft error rate 15 in nature.
- FIG. 2 is an example of a neutron resistance evaluation flow of the semiconductor LSI of this embodiment.
- data to be input to the soft error calculation device of the semiconductor LSI of this embodiment is acquired.
- the low energy neutron spectrum 13 is obtained by actual measurement of the neutron beam spectrum or simulation simulating the facility (202). Here, the low energy is 50 MeV or less, but it may be more than that.
- the semiconductor LSI is irradiated with the neutron beam. At this time, the irradiation time and the number of errors during irradiation are counted (203).
- the soft error rate is calculated using the data acquired in these steps.
- the number of errors per unit time is calculated from the neutron irradiation time and the number of errors during irradiation (204).
- the basic value of the number of errors per unit time is calculated from the energy spectrum of the irradiated neutrons and the outer shape of the SEU cross-sectional area function (205), and the ratio with the actual measurement value is calculated. Is calculated (206), and the SEU cross section function is derived (207). Finally, the soft error rate is calculated by multiplying the neutron spectrum in nature with the SEU cross section function (208).
- FIG. 3 shows an example of a user operation screen 401 when calculating the soft error rate of the semiconductor LSI in the first embodiment.
- an operation window 402 for calculating a soft error rate of a semiconductor LSI subject to error rate calculation is displayed.
- the operation window 402 includes, as information, a low energy neutron parameter 403, a natural neutron parameter 404, and a soft error rate calculation result 405.
- the parameter of the low energy neutron irradiated by the soft error rate calculation apparatus 100 is displayed and can be input and set by the user.
- “error number during irradiation” corresponding to the error number 12 during low energy neutron irradiation, and the low energy neutron spectrum 13 There is a corresponding “neutron spectrum (neutron energy [MeV], flux [/ s / cm 2 ])”.
- the natural neutron parameter 404 displays a neutron spectrum in the natural world used when calculating the soft error rate, and can be input and set by the user.
- a neutron spectrum neutral energy [MeV], flux [/ s / cm 2 ]
- the natural neutron soft error rate 15 calculated using the present embodiment is displayed as “neutron soft error rate”.
- the SEU cross-sectional area function proportional coefficient 123 is displayed.
- FIG. 4 is an example of a configuration diagram of a semiconductor LSI soft error rate calculation apparatus according to the second embodiment.
- the same parts as those in FIG. 1 are denoted by the same reference numerals, and the configuration and operation are the same, and thus description thereof is omitted.
- the external value of the SEU cross-sectional area function is universal, and the irradiation neutron beam spectrum is unique to the neutron irradiation facility.
- the calculation time can be reduced by calculating and diverting the basic number of errors per hit.
- the error number basic value database 302 in which the error number basic value per unit time, which is a numerical value specific to the irradiation facility, is calculated and recorded in advance is stored in the semiconductor LSI software.
- the error rate calculation apparatus 300 is provided.
- the error number basic value database 302 outputs the error number basic value 119 in the input neutron irradiation facility name 301.
- an implementation method of the error number basic value database 302 for example, an implementation using a lookup table in which the correspondence between the neutron irradiation facility name 301 and the error number basic value 119 is recorded can be considered. Compared with the numerical integration operation between functions, the search in the lookup table can be performed at high speed, which has the effect of reducing the calculation time.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Engineering & Computer Science (AREA)
- Tests Of Electronic Circuits (AREA)
- Measurement Of Radiation (AREA)
Abstract
Description
Claims (6)
- 与えられた中性子エネルギー値に対応する、SEU断面積関数の外形値を出力するSEU断面積関数外形保持部と、
前記SEU断面積関数の外形値と低エネルギー中性子スペクトルデータから単位時間当たりに発生するエラー数基本値を計算するエラー数基本値計算部と、
低エネルギー中性子照射時のエラー数と低エネルギー中性子照射時間から単位時間当たりのエラー数実測値を計算するエラー数実測値計算部と、
前記単位時間当たりのエラー数基本値と前記単位時間当たりのエラー数実測値からSEU断面積関数の比例係数を計算するSEU断面積関数比例係数計算部と、
自然界中性子スペクトルを保持しエラー率計算部から送られる中性子エネルギー値に応じた中性子フラックスを出力する自然界中性子スペクトル保持部と、
前記SEU断面積外形と前記比例定数とから定まるSEU断面積関数と、前記自然界中性子スペクトルと、を掛け積分演算を実行し、自然界における前記半導体デバイスのソフトエラー率を計算するエラー率計算部を備え、
低エネルギー中性子照射結果から自然界における中性子起因ソフトエラー率を推定することを特徴とする半導体LSIのソフトエラー率計算装置。 - 請求項1において、
前記エラー数基本値計算部は、中性子照射施設名とエラー数基本値との対応を記録したルックアップテーブルを有し、
前記ルックアップテーブル内検索によりエラー数基本値を取得し出力することを特徴とする半導体LSIのソフトエラー率計算装置。 - 請求項1または2において、
前記低エネルギー中性子のエネルギーが50MeV以下であることを特徴とする半導体LSIのソフトエラー率計算装置。 - 低エネルギー中性子照射結果から自然界における中性子起因ソフトエラー率を計算装置で推定する半導体LSIのソフトエラー率計算方法であって、
与えられた中性子エネルギー値に対応する、SEU断面積関数の外形値を出力し、
前記SEU断面積関数の外形値と低エネルギー中性子スペクトルデータから単位時間当たりに発生するエラー数基本値を計算し、
低エネルギー中性子照射時のエラー数と低エネルギー中性子照射時間から単位時間当たりのエラー数実測値を計算し、
前記単位時間当たりのエラー数基本値と前記単位時間当たりのエラー数実測値からSEU断面積関数の比例係数を計算し、
自然界中性子スペクトルを保持しエラー率計算部から送られる中性子エネルギー値に応じた中性子フラックスを出力し、
前記SEU断面積外形と前記比例定数とから定まるSEU断面積関数と、前記自然界中性子スペクトルと、を掛け積分演算を実行し、自然界における前記半導体デバイスのソフトエラー率を計算することを特徴とする半導体LSIのソフトエラー率計算方法。 - 請求項4において、
中性子照射施設名とエラー数基本値との対応を記録したルックアップテーブルを用意しておき、
前記ルックアップテーブル内検索により前記エラー数基本値を取得し出力することを特徴とする半導体LSIのソフトエラー率計算方法。 - 請求項4または5において、
前記低エネルギー中性子のエネルギーが50MeV以下であることを特徴とする半導体LSIのソフトエラー率計算方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/576,144 US10401424B2 (en) | 2015-05-21 | 2016-04-06 | Soft error rate calculation device and calculation method for semiconductor large scale integration (LSI) |
JP2017519065A JP6475828B2 (ja) | 2015-05-21 | 2016-04-06 | 半導体LSI(Large Scale Integration)のソフトエラー率計算装置および計算方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-103319 | 2015-05-21 | ||
JP2015103319 | 2015-05-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016185818A1 true WO2016185818A1 (ja) | 2016-11-24 |
Family
ID=57320154
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/061191 WO2016185818A1 (ja) | 2015-05-21 | 2016-04-06 | 半導体LSI(Large Scale Integration)のソフトエラー率計算装置および計算方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10401424B2 (ja) |
JP (1) | JP6475828B2 (ja) |
WO (1) | WO2016185818A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107144776A (zh) * | 2017-04-17 | 2017-09-08 | 深圳先进技术研究院 | 一种总剂量效应的探测方法及装置 |
CN108008289A (zh) * | 2017-11-22 | 2018-05-08 | 西北核技术研究所 | 一种器件质子单粒子效应截面的获取方法 |
CN108957283A (zh) * | 2017-05-19 | 2018-12-07 | 龙芯中科技术有限公司 | 辐照实验板、监控终端、asic芯片辐照实验系统 |
CN110058104A (zh) * | 2019-05-31 | 2019-07-26 | 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) | 异地智能单粒子效应测试系统、方法以及装置 |
CN110221143A (zh) * | 2019-05-29 | 2019-09-10 | 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) | 一种被测器件软错误甄别方法、装置及计算机设备 |
CN114880984A (zh) * | 2022-04-14 | 2022-08-09 | 中国人民解放军国防科技大学 | 集成电路中重离子致单粒子翻转软错误率的检测方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10901097B1 (en) * | 2018-03-05 | 2021-01-26 | Xilinx, Inc. | Method and apparatus for electronics-harmful-radiation (EHR) measurement and monitoring |
CN109581186B (zh) * | 2018-11-19 | 2021-06-08 | 北京时代民芯科技有限公司 | 视觉信息处理电路的单粒子效应测试方法、装置、系统及电子设备 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004125633A (ja) * | 2002-10-03 | 2004-04-22 | Renesas Technology Corp | 半導体デバイスの宇宙線中性子ソフトエラー耐性評価方法 |
JP2005276360A (ja) * | 2004-03-25 | 2005-10-06 | Renesas Technology Corp | 半導体デバイスのエラー評価支援方法および装置 |
JP2008282516A (ja) * | 2007-03-21 | 2008-11-20 | Internatl Business Mach Corp <Ibm> | プログラム可能な感知検出器、ソフト・エラーを検出する方法及びdramアレイ(高速のdramソフト・エラー検出のためのプログラム可能な重イオン感知デバイス) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5192214A (en) * | 1992-02-10 | 1993-03-09 | Digital Equipment Corporation | Planar interconnect with electrical alignment indicator |
JP3789136B2 (ja) * | 1995-07-28 | 2006-06-21 | ユニリード インターナショナル インコーポレイテッド | 使い捨て皮膚電気装置 |
JP3792092B2 (ja) | 2000-02-02 | 2006-06-28 | 株式会社ルネサステクノロジ | 半導体デバイスの宇宙線ソフトエラー耐性評価方法及び評価装置 |
US7967644B2 (en) * | 2009-08-25 | 2011-06-28 | Tyco Electronics Corporation | Electrical connector with separable contacts |
WO2016074946A1 (en) * | 2014-11-14 | 2016-05-19 | Koninklijke Philips N.V. | Magnetic resonance fingerprinting in slices along a one-dimensional extension |
DE102014226262B4 (de) * | 2014-12-17 | 2016-08-04 | Siemens Healthcare Gmbh | Untersuchungsobjekt-spezifisches Erfassen von Magnetresonanz-Bilddaten mittels einer Magnetresonanz-Sequenz, welche zumindest einen adiabatischen Hochfrequenz-Puls umfasst |
US10495709B2 (en) * | 2016-07-25 | 2019-12-03 | Siemens Healthcare Gmbh | Multi-contrast simultaneous multislice magnetic resonance imaging with binomial radio-frequency pulses |
-
2016
- 2016-04-06 WO PCT/JP2016/061191 patent/WO2016185818A1/ja active Application Filing
- 2016-04-06 JP JP2017519065A patent/JP6475828B2/ja active Active
- 2016-04-06 US US15/576,144 patent/US10401424B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004125633A (ja) * | 2002-10-03 | 2004-04-22 | Renesas Technology Corp | 半導体デバイスの宇宙線中性子ソフトエラー耐性評価方法 |
JP2005276360A (ja) * | 2004-03-25 | 2005-10-06 | Renesas Technology Corp | 半導体デバイスのエラー評価支援方法および装置 |
JP2008282516A (ja) * | 2007-03-21 | 2008-11-20 | Internatl Business Mach Corp <Ibm> | プログラム可能な感知検出器、ソフト・エラーを検出する方法及びdramアレイ(高速のdramソフト・エラー検出のためのプログラム可能な重イオン感知デバイス) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107144776A (zh) * | 2017-04-17 | 2017-09-08 | 深圳先进技术研究院 | 一种总剂量效应的探测方法及装置 |
CN107144776B (zh) * | 2017-04-17 | 2019-10-08 | 深圳先进技术研究院 | 一种总剂量效应的探测方法及装置 |
CN108957283A (zh) * | 2017-05-19 | 2018-12-07 | 龙芯中科技术有限公司 | 辐照实验板、监控终端、asic芯片辐照实验系统 |
CN108957283B (zh) * | 2017-05-19 | 2021-08-03 | 龙芯中科技术股份有限公司 | 辐照实验板、监控终端、asic芯片辐照实验系统 |
CN108008289A (zh) * | 2017-11-22 | 2018-05-08 | 西北核技术研究所 | 一种器件质子单粒子效应截面的获取方法 |
CN108008289B (zh) * | 2017-11-22 | 2019-12-27 | 西北核技术研究所 | 一种器件质子单粒子效应截面的获取方法 |
CN110221143A (zh) * | 2019-05-29 | 2019-09-10 | 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) | 一种被测器件软错误甄别方法、装置及计算机设备 |
CN110058104A (zh) * | 2019-05-31 | 2019-07-26 | 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) | 异地智能单粒子效应测试系统、方法以及装置 |
CN114880984A (zh) * | 2022-04-14 | 2022-08-09 | 中国人民解放军国防科技大学 | 集成电路中重离子致单粒子翻转软错误率的检测方法 |
CN114880984B (zh) * | 2022-04-14 | 2024-09-20 | 中国人民解放军国防科技大学 | 集成电路中重离子致单粒子翻转软错误率的检测方法 |
Also Published As
Publication number | Publication date |
---|---|
US20180149695A1 (en) | 2018-05-31 |
JPWO2016185818A1 (ja) | 2018-03-22 |
JP6475828B2 (ja) | 2019-02-27 |
US10401424B2 (en) | 2019-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6475828B2 (ja) | 半導体LSI(Large Scale Integration)のソフトエラー率計算装置および計算方法 | |
CN105607111B (zh) | 一种γ核素识别方法 | |
Ismail et al. | Neutral current neutrino interactions at FASER ν | |
Gómez-Ros et al. | Designing an extended energy range single-sphere multi-detector neutron spectrometer | |
Marcotulli et al. | NuSTAR perspective on high-redshift MeV blazars | |
Maurchev et al. | RUSCOSMIC-the new software toolbox for detailed analysis of cosmic ray interactions with matter | |
Agosteo et al. | Characterization of extended range Bonner Sphere Spectrometers in the CERF high-energy broad neutron field at CERN | |
Ihantola et al. | Advanced alpha spectrum analysis based on the fitting and covariance analysis of dependent variables | |
JP6169888B2 (ja) | 放射能測定装置 | |
CN105676103A (zh) | 获取大气中子单粒子效应敏感器件敏感截面的方法及装置 | |
Semikh et al. | The Plateau de Bure neutron monitor: design, operation and Monte Carlo simulation | |
CN113466915A (zh) | 一种基于高纯锗探测器的辐射剂量率测量系统及方法 | |
CN111111018A (zh) | 一种涉核人员器官辐射剂量快速计算方法 | |
JP2010066071A (ja) | オフアングル中性子積分フラックス測定演算装置及びその方法 | |
Persson et al. | Peak Area Consistency Evaluation in Gamma Spectrometry | |
Juste et al. | Uncertainty and sensitivity analysis of the effect of the mean energy and FWHM of the initial electron fluence on the Bremsstrahlung photon spectra of linear accelerators | |
Neuer et al. | Machine learning algorithms for improving the dose rate measurement in handheld homeland security instrumentation | |
Acero et al. | The 1st Fermi Lat Supernova Remnant Catalog | |
CN117409975B (zh) | 放射防护评价方法、装置、终端及存储介质 | |
Wender et al. | Neutron beam attenuation through semiconductor devices during SEU testing | |
Griffin et al. | Rigorous Uncertainty Propagation Using a Dosimetry Transfer Calibration-Distribution Format. | |
Maurchev et al. | Transport of solar protons through the atmosphere during GLE | |
Gersey et al. | Comparison of a tissue equivalent and a silicon equivalent proportional counter microdosimeter to high-energy proton and neutron fields | |
Gutierrez et al. | Analytic variance estimates of Swank and Fano factors | |
CN108152845B (zh) | 基于脉冲高度谱的空气吸收剂量率测量方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16796212 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017519065 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15576144 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16796212 Country of ref document: EP Kind code of ref document: A1 |