WO2016185818A1 - 半導体LSI(Large Scale Integration)のソフトエラー率計算装置および計算方法 - Google Patents

半導体LSI(Large Scale Integration)のソフトエラー率計算装置および計算方法 Download PDF

Info

Publication number
WO2016185818A1
WO2016185818A1 PCT/JP2016/061191 JP2016061191W WO2016185818A1 WO 2016185818 A1 WO2016185818 A1 WO 2016185818A1 JP 2016061191 W JP2016061191 W JP 2016061191W WO 2016185818 A1 WO2016185818 A1 WO 2016185818A1
Authority
WO
WIPO (PCT)
Prior art keywords
neutron
error rate
value
soft error
energy
Prior art date
Application number
PCT/JP2016/061191
Other languages
English (en)
French (fr)
Inventor
巧 上薗
鳥羽 忠信
健一 新保
長崎 文彦
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US15/576,144 priority Critical patent/US10401424B2/en
Priority to JP2017519065A priority patent/JP6475828B2/ja
Publication of WO2016185818A1 publication Critical patent/WO2016185818A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/2872Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation
    • G01R31/2881Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to environmental aspects other than temperature, e.g. humidity or vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2601Apparatus or methods therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/265Contactless testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/303Contactless testing of integrated circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/31816Soft error testing; Soft error rate evaluation; Single event testing

Definitions

  • the present invention relates to a method for evaluating and calculating the incidence of soft errors in semiconductor LSIs caused by radiation.
  • Patent Document 1 As a background art, there is Patent 03792092 (Patent Document 1). This patent states that “a procedure for dividing a spectral distribution of cosmic ray neutrons into energy bands having a plurality of predetermined energy values as representative values, and a soft error partial cross-sectional area of a semiconductor device corresponding to the plurality of energy values. And calculating the sum of the soft error partial cross-sectional areas by weighting the partial cross-sectional areas with the total flux for each of the plurality of energy bands, and using the sum of the soft error partial cross-sectional areas. "A cosmic ray soft error tolerance evaluation method for a semiconductor device characterized by estimating a soft error rate of the semiconductor device in a predetermined actual use environment".
  • a soft error cross section is experimentally obtained by irradiating a neutron beam having energy corresponding to each of a plurality of divided energy bands, and a neutron soft error rate in the natural world is derived.
  • the evaluation since neutron irradiation is performed a plurality of times by changing the neutron energy, the evaluation may be costly and take a long time.
  • An object of the present invention is to make it possible to derive a neutron soft error rate only from data when low neutron energy is irradiated as data used to derive a neutron soft error rate in an actual use environment of a semiconductor LSI.
  • a semiconductor LSI soft error calculation apparatus includes an SEU cross section function holding unit, an error value generated per unit time from an external value of the SEU cross section function and low energy neutron spectrum data.
  • a calculation unit that calculates a number basic value, an error number actual value calculation unit that calculates an error number actual value per unit time from input data, a calculation unit that identifies a SEU cross-sectional area function from the calculation result of the calculation unit, A holding unit for a natural neutron spectrum; and an error rate calculating unit for calculating a soft error rate of the semiconductor device in the natural world from the calculation result and holding data.
  • the data at the time of low neutron energy irradiation can be used as the actual measurement data used when deriving the neutron soft error rate.
  • high-power facilities but also low-power facilities can be used, radiation equipment can be suppressed from being activated, and accelerator operation costs during evaluation can be reduced.
  • FIG. 1 is a diagram illustrating a configuration example of a soft error rate calculation apparatus for a semiconductor LSI according to a first embodiment.
  • FIG. 10 is a diagram illustrating an example of a soft error tolerance evaluation flow of the semiconductor LSI according to the first embodiment. An example of a user operation screen 401 at the time of calculating a soft error rate of a semiconductor LSI in the first embodiment is shown.
  • FIG. 10 is a diagram illustrating a configuration example of a soft error rate calculation apparatus for a semiconductor LSI according to a second embodiment.
  • the white method is a method for obtaining an error rate on the ground from an error rate when a white neutron beam whose energy distribution is similar to a natural neutron spectrum is irradiated. Since the natural neutron spectrum covers a wide range up to several hundred MeV, the neutron irradiation facility must also output a neutron beam containing high energy of several hundred MeV and irradiate the target LSI.
  • the (quasi) monochromatic method irradiates a monochromatic or quasi-monochromatic neutron beam with specific energy, obtains the neutron soft error rate for each neutron energy to be irradiated from the error rate of each beam, and SEU (Single Event Upset) Find the cross-sectional area function. Next, a neutron soft error rate is calculated from the SEU cross section function and the neutron spectrum on the ground.
  • SEU Single Event Upset
  • neutrons are generated by accelerating particles such as protons and colliding with targets such as lithium and lead to cause a nuclear reaction.
  • targets such as lithium and lead to cause a nuclear reaction.
  • the faster the acceleration particles the larger the accelerator required, which increases the operating cost of the accelerator and limits the facilities that can be implemented.
  • E represents neutron energy.
  • Eth, W, and S are parameters that determine the shape of the Weibull function. It is known from the SEU cross-sectional area functions obtained from the results of irradiation experiments on a number of semiconductor LSIs that these values are constant. , Eth c , W c and S c . In this application, the Weibull function into which these are substituted is referred to as the SEU cross-sectional area function outline W (E).
  • the SEU cross-sectional area function of the irradiation target device is a constant multiple of the SEU cross-sectional area function outer shape. In the present application, this constant is referred to as a SEU cross section function proportional coefficient ⁇ .
  • the number of errors per unit time can be obtained by multiplying the irradiation neutron spectrum and the SEU cross section function and integrating with the energy E. Since the SEU cross section function is ⁇ times the outer shape value of the SEU cross section function, the number of errors per unit time is multiplied by the energy E by multiplying the irradiation neutron spectrum and the outer shape value of the SEU cross section function. In other words, the value (referred to as the error number basic value in this application) is multiplied by ⁇ .
  • FIG. 1 is an example of a configuration diagram of a semiconductor LSI soft error rate calculation apparatus according to the present embodiment.
  • the semiconductor LSI soft error rate calculation apparatus 100 includes a SEU cross-sectional area function calculation unit 110 and a natural world soft error rate calculation unit 120.
  • the SEU cross section function calculation unit 110 includes an error number actual value calculation unit 111 that calculates and outputs an error number actual measurement value 115 per unit time from the low energy neutron irradiation time 11 and the error number 12 at the time of low energy neutron irradiation,
  • the SEU cross-sectional area function external shape holding unit 113 that outputs the function value 118 of the external shape of the SEU cross-sectional area function corresponding to the neutron energy value 117 given from the error number basic value calculation unit 112, and the SEU cross-sectional area function external shape holding unit 113
  • An error number basic value calculation unit 112 that outputs an outline value 118 of the SEU cross-sectional area function obtained by inputting the neutron energy value 117 and an error number basic value 119 generated per unit time from the low energy neutron spectrum 13, and per unit time
  • the ratio of the error number basic value 119 and the actual number of errors per unit time 115 is calculated and It includes the SEU cross-sectional area functions proportionality coefficient calculation unit 114 to identify
  • the low energy neutron irradiation time 11 and the number of errors 12 at the time of low energy neutron irradiation can be obtained by irradiating the evaluation target semiconductor LSI with neutrons at the low energy neutron irradiation facility.
  • the low-energy neutron spectrum 13 can be actually measured by a method derived by the Unfolding method from the measurement result by the TOF (Time Of Flight) method or the Bonner ball type neutron detector.
  • the neutron production reaction at the irradiation facility can be calculated by a nuclear spallation reaction simulation.
  • the error number actual value calculation unit 111 calculates the error number actual measurement value 115 (E exp ) per unit time by dividing the error number 12 at the time of low energy neutron irradiation by the low energy neutron irradiation time 11 to calculate the SEU cross section function. The result is output to the proportional coefficient calculation unit 114.
  • SEU sectional area function profile holding section 113 it holds the the Eth c and W c and S c therein, the value of Weibull function according to the desired neutron energy value an error number basic value calculation unit 112 generates Output as an outline value 118 of the SEU cross-sectional area function.
  • a numerical integration operation is performed by multiplying the low-energy neutron spectrum 13 by the external value 118 of the SEU cross-sectional area function obtained by inputting the desired energy value 117 generated by the error number basic value calculating unit 112 to the SEU cross-sectional area external shape holding unit 113. Then, the basic value E base 119 of the number of errors generated per unit time is derived and output.
  • this calculation is expressed by a mathematical formula, (Formula 2)
  • ⁇ lowE (E) is a numerical expression of the low energy neutron spectrum 13.
  • the SEU cross-sectional area function proportionality coefficient calculation unit 114 obtains the SEU cross-sectional area function proportionality coefficient ⁇ 123 by calculating the division ratio of E exp by E base and outputs it to the natural world soft error rate calculation unit 120.
  • the natural world soft error rate calculation unit 120 holds the input natural world neutron spectrum 14, and outputs a natural world neutron spectrum 125 corresponding to the neutron energy value 124 given from the error rate calculation unit 122.
  • An error rate calculation unit 122 that calculates and outputs the neutron soft error rate 15 in the natural world of the semiconductor LSI from the SEU cross section area outline and the natural neutron spectrum 14 is included.
  • the natural neutron spectrum holding unit 121 holds the natural neutron spectrum 14 input to the semiconductor LSI soft error calculation device 100 according to the present invention, and the natural neutron flux corresponding to the neutron energy value 124 given from the error rate calculation unit 122. 125 is output.
  • the natural neutron spectrum 14 is JEDEC Standard No. It can be obtained by referring to 89A or the like.
  • the error rate calculation unit 122 adds the SEU cross-sectional area function proportional coefficient calculation unit 114 to the SEU cross-sectional area function outer shape value 127 obtained by inputting the desired energy value 126 to the SEU cross-sectional area function outer shape holding unit 113. Multiplying the area function by the proportional coefficient ⁇ 123, that is, the SEU cross-sectional area function of the semiconductor LSI and the neutron flux 125 obtained by inputting the desired energy value 124 to the natural neutron spectrum holding unit 121, the numerical integration operation is performed. , to derive the number of errors E n per unit time. When this calculation is expressed by an equation, (Equation 3)
  • ⁇ n (E) represents the natural neutron spectrum 14 by a mathematical expression.
  • the number of errors per unit time that is, the error rate is output as a neutron soft error rate 15 in the natural world.
  • generally soft error rate is often expressed in FIT (Failures an In Time) unit (number of errors per 10 9 hours). Therefore, for example, if all physical quantities are expressed in the MKS unit system, the number of errors per unit time can be multiplied by 3600 ⁇ 10 9 to be converted into FIT units (Formula 4).
  • the above result may be output as a neutron soft error rate 15 in nature.
  • FIG. 2 is an example of a neutron resistance evaluation flow of the semiconductor LSI of this embodiment.
  • data to be input to the soft error calculation device of the semiconductor LSI of this embodiment is acquired.
  • the low energy neutron spectrum 13 is obtained by actual measurement of the neutron beam spectrum or simulation simulating the facility (202). Here, the low energy is 50 MeV or less, but it may be more than that.
  • the semiconductor LSI is irradiated with the neutron beam. At this time, the irradiation time and the number of errors during irradiation are counted (203).
  • the soft error rate is calculated using the data acquired in these steps.
  • the number of errors per unit time is calculated from the neutron irradiation time and the number of errors during irradiation (204).
  • the basic value of the number of errors per unit time is calculated from the energy spectrum of the irradiated neutrons and the outer shape of the SEU cross-sectional area function (205), and the ratio with the actual measurement value is calculated. Is calculated (206), and the SEU cross section function is derived (207). Finally, the soft error rate is calculated by multiplying the neutron spectrum in nature with the SEU cross section function (208).
  • FIG. 3 shows an example of a user operation screen 401 when calculating the soft error rate of the semiconductor LSI in the first embodiment.
  • an operation window 402 for calculating a soft error rate of a semiconductor LSI subject to error rate calculation is displayed.
  • the operation window 402 includes, as information, a low energy neutron parameter 403, a natural neutron parameter 404, and a soft error rate calculation result 405.
  • the parameter of the low energy neutron irradiated by the soft error rate calculation apparatus 100 is displayed and can be input and set by the user.
  • “error number during irradiation” corresponding to the error number 12 during low energy neutron irradiation, and the low energy neutron spectrum 13 There is a corresponding “neutron spectrum (neutron energy [MeV], flux [/ s / cm 2 ])”.
  • the natural neutron parameter 404 displays a neutron spectrum in the natural world used when calculating the soft error rate, and can be input and set by the user.
  • a neutron spectrum neutral energy [MeV], flux [/ s / cm 2 ]
  • the natural neutron soft error rate 15 calculated using the present embodiment is displayed as “neutron soft error rate”.
  • the SEU cross-sectional area function proportional coefficient 123 is displayed.
  • FIG. 4 is an example of a configuration diagram of a semiconductor LSI soft error rate calculation apparatus according to the second embodiment.
  • the same parts as those in FIG. 1 are denoted by the same reference numerals, and the configuration and operation are the same, and thus description thereof is omitted.
  • the external value of the SEU cross-sectional area function is universal, and the irradiation neutron beam spectrum is unique to the neutron irradiation facility.
  • the calculation time can be reduced by calculating and diverting the basic number of errors per hit.
  • the error number basic value database 302 in which the error number basic value per unit time, which is a numerical value specific to the irradiation facility, is calculated and recorded in advance is stored in the semiconductor LSI software.
  • the error rate calculation apparatus 300 is provided.
  • the error number basic value database 302 outputs the error number basic value 119 in the input neutron irradiation facility name 301.
  • an implementation method of the error number basic value database 302 for example, an implementation using a lookup table in which the correspondence between the neutron irradiation facility name 301 and the error number basic value 119 is recorded can be considered. Compared with the numerical integration operation between functions, the search in the lookup table can be performed at high speed, which has the effect of reducing the calculation time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Measurement Of Radiation (AREA)

Abstract

低中性子エネルギーを照射した際のデータのみでも中性子ソフトエラー率の導出を可能とする。 与えられた中性子エネルギー値に対応するSEU断面積関数の外形値を出力し、SEU断面積関数の外形値と低エネルギー中性子スペクトルデータから単位時間当たりに発生するエラー数基本値を計算し、低エネルギー中性子照射時のエラー数と低エネルギー中性子照射時間から単位時間当たりのエラー数実測値を計算し、単位時間当たりのエラー数基本値と単位時間当たりのエラー数実測値からSEU断面積関数の比例係数を計算し、自然界中性子スペクトルを保持しエラー率計算部から送られる中性子エネルギー値に応じた中性子フラックスを出力し、SEU断面積外形と比例定数から定まるSEU断面積関数と前記自然界中性子スペクトルとを積分演算を実行し、自然界における前記半導体デバイスの中性子ソフトエラー率を計算する。

Description

半導体LSI(Large Scale Integration)のソフトエラー率計算装置および計算方法
 本発明は、放射線による半導体LSIのソフトエラーの発生率の評価計算方法に関する。
 背景技術として、特許03792092号公報(特許文献1)がある。この特許には、「宇宙線中性子のスペクトル分布を予め定められた複数のエネルギー値を代表値として有するエネルギーバンドに分割する手順と、前記複数のエネルギー値に対応する半導体デバイスのソフトエラー部分断面積を求める手順と、該部分断面積を前記複数のエネルギーバンド毎の総フラックスで重み付けを行なって、前記ソフトエラー部分断面積の総和を求める手順を備え、該ソフトエラー部分断面積の総和を用いて予め定められた実使用環境における前記半導体デバイスのソフトエラー率を推測することを特徴とする半導体デバイスの宇宙線ソフトエラー耐性評価方法。」と記載されている。
特許03792092号公報
 上記技術においては、分割した複数のエネルギーバンド毎に対応するエネルギーを持つ中性子ビームを照射して、ソフトエラー断面積を実験的に求め、自然界における中性子ソフトエラー率を導出する。しかし、当該技術では、中性子エネルギーを変更して複数回の中性子照射を行うため、評価が高コストかつ長時間に及ぶ可能性がある。
 本発明の目的は、半導体LSIの実使用環境における中性子ソフトエラー率の導出に用いるデータとして、低中性子エネルギーを照射した際のデータのみでも中性子ソフトエラー率の導出を可能とすることである。
 上記課題を解決すべく、本発明に係る半導体LSIのソフトエラー計算装置は、SEU断面積関数の保持部と、SEU断面積関数の外形値と低エネルギー中性子スペクトルデータから単位時間当たりに発生するエラー数基本値を計算する計算部と、入力データから単位時間当たりのエラー数実測値を計算するエラー数実測値計算部と、前記計算部の計算結果からSEU断面積関数を同定する計算部と、自然界中性子スペクトルの保持部と、前記計算結果及び保持データから自然界における前記半導体デバイスのソフトエラー率を計算するエラー率計算部とを備える。
 本発明によれば、中性子ソフトエラー率を導出する際に使用する実測データとして、低中性子エネルギー照射時のデータを利用可能とする。その結果、高出力の施設だけでなく、低出力施設の利用が可能になるとともに、照射機材の放射化抑制、評価時の加速器運転コストの低減も可能となる。
実施例1に係る半導体LSIのソフトエラー率計算装置の構成例を示す図である。 実施例1による半導体LSIのソフトエラー耐性評価フロー例を示す図である。 実施例1における半導体LSIのソフトエラー率計算時のユーザ操作画面401の例を示す。 実施例2に係る半導体LSIのソフトエラー率計算装置の構成例を示す図である。
 半導体デバイスの微細化・高集積化に伴い、α線や中性子線等の環境放射線による回路の一時的誤動作であるソフトエラーの影響が拡大している。これまで中性子線に対する対策として、ECC(Error Correction Code)によるメモリのエラーデータの検出・訂正や冗長化による演算エラー検出等のエラー耐性向上技術を取り入れた設計を行ってきた。これらの技術を用いたシステムの中性子耐性評価には、従来、中性子を照射する加速実験が行われている。
 中性子照射による加速試験方法として、従来、白色法と(準)単色法が用いられてきた。白色法はエネルギー分布が自然界の中性子スペクトルに似ている白色中性子ビームを照射したときのエラー率から、地上でのエラー率を求める方法である。自然界の中性子スペクトルは数100MeVまでの広い範囲にわたるため、中性子照射施設も同様に数100MeVの高いエネルギーを含む中性子ビームを出力し、対象のLSIに照射する必要がある。(準)単色法は、特定のエネルギーを持った単色または準単色の中性子ビームを照射し、各ビームのエラー率から照射対象の中性子エネルギー毎の中性子ソフトエラー率を求め、SEU(Single Event Upset)断面積関数を求める。次に、SEU断面積関数と地上での中性子スペクトルから中性子ソフトエラー率を計算する方法である。(準)単色法では、数MeVの低エネルギーから数100MeVまでの高エネルギーまでの中性子ビームを照射する必要がある。
 中性子照射施設では、陽子などの粒子を加速し、リチウムや鉛などのターゲットに衝突させ核反応を起こすことで中性子を生成している。一般に、加速粒子が高速であるほど、大型の加速器が必要となり、加速器の運転コストが増加し、また実施可能施設が限定される。
 本実施例の基となる原理について説明する。半導体LSIデバイスのSEU断面積関数は、Weibull分布の累積密度関数(本願ではWeibull関数と呼ぶ)にフィッティング可能であることが知られている。Weibull関数は、次式で表される。
Figure JPOXMLDOC01-appb-M000001
Eは中性子エネルギーを表す。Eth、W、SはWeibull関数の形を決定するパラメータであり、多数の半導体LSIに対する照射実験結果から得られたSEU断面積関数から、一定値となることが分かっており、これらの値をそれぞれ、EthとWとSと記載する。本願では、これらを代入したWeibull関数をSEU断面積関数外形W(E)と呼ぶ。照射対象デバイスのSEU断面積関数は、SEU断面積関数外形の定数倍となる。この定数を本願では、SEU断面積関数比例係数σと呼ぶ。
 単位時間当たりのエラー数は、照射中性子スペクトルとSEU断面積関数を掛け合わせて、エネルギーEで積分することで求められることが知られている。SEU断面積関数は、SEU断面積関数の外形値のσ倍であることから、単位時間当たりのエラー数は、照射中性子スペクトルとSEU断面積関数の外形値を掛け合わせて、エネルギーEで積分した値(本願ではエラー数基本値と呼ぶ)をσ倍したものと言い換えることができる。
 以下、半導体LSIのソフトエラー計算装置に関わる実施例について、図面を用いて説明する。
 図1は、本実施例の半導体LSIのソフトエラー率計算装置の構成図の例である。半導体LSIのソフトエラー率計算装置100は、SEU断面積関数計算部110と、自然界ソフトエラー率計算部120と、を含む。
 SEU断面積関数計算部110には、低エネルギー中性子照射時間11と低エネルギー中性子照射時のエラー数12から単位時間当たりのエラー数実測値115を計算し出力するエラー数実測値計算部111と、エラー数基本値計算部112から与えられた中性子エネルギー値117に対応するSEU断面積関数の外形の関数値118を出力するSEU断面積関数外形保持部113と、SEU断面積関数外形保持部113に中性子エネルギー値117を入力し得られるSEU断面積関数の外形値118と低エネルギー中性子スペクトル13から単位時間当たりに発生するエラー数基本値119を出力するエラー数基本値計算部112と、単位時間当たりのエラー数基本値119と単位時間当たりのエラー数実測値115の比を計算し照射対象デバイスのSEU断面積関数を同定するSEU断面積関数比例係数計算部114とが含まれる。
 低エネルギー中性子照射時間11と低エネルギー中性子照射時のエラー数12は、低エネルギー中性子照射施設にて、評価対象半導体LSIに中性子を照射することで取得することができる。低エネルギー中性子スペクトル13は、TOF(Time Of Flight)法やボナーボール型中性子検出器による測定結果からUnfolding法で導出する手法などで実測することができる。または、照射施設での中性子生成反応を、核破砕反応シミュレーションにより計算で求めることもできる。
 エラー数実測値計算部111では、低エネルギー中性子照射時のエラー数12を低エネルギー中性子照射時間11で割ることで、単位時間当たりのエラー数実測値115(Eexp)を計算しSEU断面積関数比例係数計算部114に出力する。
 SEU断面積関数外形保持部113では、EthとWとSとを内部に保持しておき、エラー数基本値計算部112が生成した所望の中性子エネルギー値に応じたWeibull関数の値をSEU断面積関数の外形値118として出力する。
 SEU断面積関数外形保持部113にエラー数基本値計算部112が生成した所望のエネルギー値117を入力し得られるSEU断面積関数の外形値118と低エネルギー中性子スペクトル13とを掛けて数値積分演算し、単位時間当たりに発生するエラー数基本値Ebase119を導出し出力する。本計算を数式で表すと、(式2)
Figure JPOXMLDOC01-appb-M000002
となる。ここで、φlowE(E)は、低エネルギー中性子スペクトル13を数式で表したものである。
 SEU断面積関数比例係数計算部114は、EexpをEbaseで割り比を計算することでSEU断面積関数比例係数σ123を取得し、自然界ソフトエラー率計算部120へ出力する。
 自然界ソフトエラー率計算部120には、入力された自然界中性子スペクトル14を保持し、エラー率計算部122から与えられる中性子エネルギー値124に対応する自然界中性子フラックス125を出力する自然界中性子スペクトル保持部121と、SEU断面積関数外形と自然界中性子スペクトル14から半導体LSIの自然界での中性子ソフトエラー率15を計算し出力するエラー率計算部122とが含まれる。
 自然界中性子スペクトル保持部121は、本発明に係る半導体LSIのソフトエラー計算装置100に入力された自然界中性子スペクトル14を保持し、エラー率計算部122から与えられる中性子エネルギー値124に対応する自然界中性子フラックス125を出力する。自然界中性子スペクトル14は、JEDEC Standard No.89Aなどを参照することで取得することができる。
 エラー率計算部122は、SEU断面積関数外形保持部113に所望のエネルギー値126を入力し得られるSEU断面積関数の外形値127に、SEU断面積関数比例係数計算部114から得られるSEU断面積関数の比例係数σ123を掛けたもの、即ち、半導体LSIのSEU断面積関数と、自然界中性子スペクトル保持部121に所望のエネルギー値124を入力し得られる中性子フラックス125とを掛けて数値積分演算し、単位時間当たりのエラー数Eを導出する。本計算を数式で表すと、(式3)
Figure JPOXMLDOC01-appb-M000003
となる。ここで、φ(E)は、自然界中性子スペクトル14を数式で表したものである。単位時間当たりのエラー数、即ちエラー率を自然界での中性子ソフトエラー率15として出力する。ただし、一般的にソフトエラー率は、FIT(Failures In Time)単位(10時間あたりのエラー数)で表すことが多い。そこで、例えば、全ての物理量がMKS単位系で表されているとすると、前記単位時間当たりのエラー数に3600×10を乗じてFIT単位へ(式4)で換算できる。
Figure JPOXMLDOC01-appb-M000004
上記結果を自然界での中性子ソフトエラー率15として出力してもよい。
 図2は、本実施例の半導体LSIの中性子耐性評価フローの例である。まず、本実施例の半導体LSIのソフトエラー計算装置に入力するデータを取得する。中性子ビームスペクトルの実測又は、施設を模擬したシミュレーションにより、低エネルギー中性子スペクトル13を得る(202)。ここでは低エネルギーとして、50MeV以下としているが、それ以上でも構わない。次に、半導体LSIに対して前記の中性子ビームを照射する。この時、照射時間及び照射時のエラー数を計数しておく(203)。これらのステップで取得したデータを用い、ソフトエラー率の計算を実施する。まず、中性子照射時間と照射時のエラー数から、単位時間当たりのエラー数を計算する(204)。次に、照射中性子のエネルギースペクトルとSEU断面積関数の外形から、単位時間当たりのエラー数基本値を計算し(205)、実測値との比を計算することで、SEU断面積関数比例係数σを計算し(206)、SEU断面積関数を導出する(207)。最後に、自然界における中性子スペクトルとSEU断面積関数を掛け合わせ、ソフトエラー率を計算する(208)。
 図3は、実施例1における半導体LSIのソフトエラー率計算時のユーザ操作画面401の例を示す。本画面401に、エラー率計算対象の半導体LSIのソフトエラー率計算の操作ウィンドウ402を表示する。操作ウィンドウ402において、情報として、低エネルギー中性子パラメータ403と自然界中性子パラメータ404とソフトエラー率計算結果405を有する。
 低エネルギー中性子パラメータ403では、ソフトエラー率計算装置100の照射した低エネルギー中性子のパラメータを表示し、ユーザによる入力・設定が可能である。本実施例では、パラメータの例として、低エネルギー中性子照射時間11に相当する「照射時間」、低エネルギー中性子照射時のエラー数12に相当する「照射時のエラー数」、低エネルギー中性子スペクトル13に相当する「中性子スペクトル(中性子エネルギー[MeV],フラックス[/s/cm2])」がある。
 自然界中性子パラメータ404では、ソフトエラー率を計算する際に使用する自然界における中性子スペクトルを表示し、ユーザによる入力・設定が可能である。本実施例では、パラメータの例として、自然界中性子スペクトル14に相当する「中性子スペクトル(中性子エネルギー[MeV],フラックス[/s/cm2])」がある。
 ソフトエラー率計算結果405では、本実施例を利用して計算した自然界での中性子ソフトエラー率15が、「中性子ソフトエラー率」として表示される。その他の表示内容として、SEU断面積関数比例係数123が表示される。
 図4は、第二の実施形態に係る半導体LSIのソフトエラー率計算装置の構成図の例である。図1と同じ部分には同じ符号を付してあり、構成、動作が同じであるので、説明を省略する。
 本耐性評価フローにおいて、SEU断面積関数の外形値は普遍であり、また、照射中性子ビームスペクトルは中性子照射施設に固有であることから、使用する中性子耐性評価施設が同一であれば、予め単位時間当たりのエラー数基本値を計算し流用することで、計算時間を削減できる。第二の実施形態に係る半導体LSIのソフトエラー率計算装置300では、照射施設固有の数値である単位時間当たりのエラー数基本値を予め計算し記録したエラー数基本値データベース302を半導体LSIのソフトエラー率計算装置300が備える。
 エラー数基本値データベース302は、入力された中性子照射施設名301におけるエラー数基本値119を出力する。エラー数基本値データベース302の実装方法としては、例えば、中性子照射施設名301とエラー数基本値119との対応を記録したルックアップテーブルによる実装が考えられる。関数同士の数値積分演算と比較して、ルックアップテーブル内の検索は高速に行えるため、計算時間の短縮効果がある。
11・・・低エネルギー中性子照射時間、12・・・低エネルギー中性子照射時のエラー数、13・・・低エネルギー中性子スペクトル、14・・・自然界中性子スペクトル、15・・・自然界での中性子ソフトエラー率、100・・・半導体LSIのソフトエラー率計算装置、110・・・SEU断面積関数計算部、111・・・エラー数実測値計算部、112・・・エラー数基本値計算部、113・・・SEU断面積関数外形保持部、114・・・SEU断面積関数比例係数計算部、120・・・自然界ソフトエラー率計算部、121・・・自然界中性子スペクトル保持部、122・・・エラー率計算部

Claims (6)

  1.  与えられた中性子エネルギー値に対応する、SEU断面積関数の外形値を出力するSEU断面積関数外形保持部と、
     前記SEU断面積関数の外形値と低エネルギー中性子スペクトルデータから単位時間当たりに発生するエラー数基本値を計算するエラー数基本値計算部と、
     低エネルギー中性子照射時のエラー数と低エネルギー中性子照射時間から単位時間当たりのエラー数実測値を計算するエラー数実測値計算部と、
     前記単位時間当たりのエラー数基本値と前記単位時間当たりのエラー数実測値からSEU断面積関数の比例係数を計算するSEU断面積関数比例係数計算部と、
     自然界中性子スペクトルを保持しエラー率計算部から送られる中性子エネルギー値に応じた中性子フラックスを出力する自然界中性子スペクトル保持部と、
     前記SEU断面積外形と前記比例定数とから定まるSEU断面積関数と、前記自然界中性子スペクトルと、を掛け積分演算を実行し、自然界における前記半導体デバイスのソフトエラー率を計算するエラー率計算部を備え、
     低エネルギー中性子照射結果から自然界における中性子起因ソフトエラー率を推定することを特徴とする半導体LSIのソフトエラー率計算装置。
  2.  請求項1において、
     前記エラー数基本値計算部は、中性子照射施設名とエラー数基本値との対応を記録したルックアップテーブルを有し、
     前記ルックアップテーブル内検索によりエラー数基本値を取得し出力することを特徴とする半導体LSIのソフトエラー率計算装置。
  3.  請求項1または2において、
     前記低エネルギー中性子のエネルギーが50MeV以下であることを特徴とする半導体LSIのソフトエラー率計算装置。
  4.  低エネルギー中性子照射結果から自然界における中性子起因ソフトエラー率を計算装置で推定する半導体LSIのソフトエラー率計算方法であって、
     与えられた中性子エネルギー値に対応する、SEU断面積関数の外形値を出力し、
     前記SEU断面積関数の外形値と低エネルギー中性子スペクトルデータから単位時間当たりに発生するエラー数基本値を計算し、
     低エネルギー中性子照射時のエラー数と低エネルギー中性子照射時間から単位時間当たりのエラー数実測値を計算し、
     前記単位時間当たりのエラー数基本値と前記単位時間当たりのエラー数実測値からSEU断面積関数の比例係数を計算し、
     自然界中性子スペクトルを保持しエラー率計算部から送られる中性子エネルギー値に応じた中性子フラックスを出力し、
     前記SEU断面積外形と前記比例定数とから定まるSEU断面積関数と、前記自然界中性子スペクトルと、を掛け積分演算を実行し、自然界における前記半導体デバイスのソフトエラー率を計算することを特徴とする半導体LSIのソフトエラー率計算方法。
  5.  請求項4において、
     中性子照射施設名とエラー数基本値との対応を記録したルックアップテーブルを用意しておき、
     前記ルックアップテーブル内検索により前記エラー数基本値を取得し出力することを特徴とする半導体LSIのソフトエラー率計算方法。
  6.  請求項4または5において、
     前記低エネルギー中性子のエネルギーが50MeV以下であることを特徴とする半導体LSIのソフトエラー率計算方法。
PCT/JP2016/061191 2015-05-21 2016-04-06 半導体LSI(Large Scale Integration)のソフトエラー率計算装置および計算方法 WO2016185818A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/576,144 US10401424B2 (en) 2015-05-21 2016-04-06 Soft error rate calculation device and calculation method for semiconductor large scale integration (LSI)
JP2017519065A JP6475828B2 (ja) 2015-05-21 2016-04-06 半導体LSI(Large Scale Integration)のソフトエラー率計算装置および計算方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-103319 2015-05-21
JP2015103319 2015-05-21

Publications (1)

Publication Number Publication Date
WO2016185818A1 true WO2016185818A1 (ja) 2016-11-24

Family

ID=57320154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061191 WO2016185818A1 (ja) 2015-05-21 2016-04-06 半導体LSI(Large Scale Integration)のソフトエラー率計算装置および計算方法

Country Status (3)

Country Link
US (1) US10401424B2 (ja)
JP (1) JP6475828B2 (ja)
WO (1) WO2016185818A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107144776A (zh) * 2017-04-17 2017-09-08 深圳先进技术研究院 一种总剂量效应的探测方法及装置
CN108008289A (zh) * 2017-11-22 2018-05-08 西北核技术研究所 一种器件质子单粒子效应截面的获取方法
CN108957283A (zh) * 2017-05-19 2018-12-07 龙芯中科技术有限公司 辐照实验板、监控终端、asic芯片辐照实验系统
CN110058104A (zh) * 2019-05-31 2019-07-26 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 异地智能单粒子效应测试系统、方法以及装置
CN110221143A (zh) * 2019-05-29 2019-09-10 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 一种被测器件软错误甄别方法、装置及计算机设备
CN114880984A (zh) * 2022-04-14 2022-08-09 中国人民解放军国防科技大学 集成电路中重离子致单粒子翻转软错误率的检测方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10901097B1 (en) * 2018-03-05 2021-01-26 Xilinx, Inc. Method and apparatus for electronics-harmful-radiation (EHR) measurement and monitoring
CN109581186B (zh) * 2018-11-19 2021-06-08 北京时代民芯科技有限公司 视觉信息处理电路的单粒子效应测试方法、装置、系统及电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004125633A (ja) * 2002-10-03 2004-04-22 Renesas Technology Corp 半導体デバイスの宇宙線中性子ソフトエラー耐性評価方法
JP2005276360A (ja) * 2004-03-25 2005-10-06 Renesas Technology Corp 半導体デバイスのエラー評価支援方法および装置
JP2008282516A (ja) * 2007-03-21 2008-11-20 Internatl Business Mach Corp <Ibm> プログラム可能な感知検出器、ソフト・エラーを検出する方法及びdramアレイ(高速のdramソフト・エラー検出のためのプログラム可能な重イオン感知デバイス)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5192214A (en) * 1992-02-10 1993-03-09 Digital Equipment Corporation Planar interconnect with electrical alignment indicator
JP3789136B2 (ja) * 1995-07-28 2006-06-21 ユニリード インターナショナル インコーポレイテッド 使い捨て皮膚電気装置
JP3792092B2 (ja) 2000-02-02 2006-06-28 株式会社ルネサステクノロジ 半導体デバイスの宇宙線ソフトエラー耐性評価方法及び評価装置
US7967644B2 (en) * 2009-08-25 2011-06-28 Tyco Electronics Corporation Electrical connector with separable contacts
WO2016074946A1 (en) * 2014-11-14 2016-05-19 Koninklijke Philips N.V. Magnetic resonance fingerprinting in slices along a one-dimensional extension
DE102014226262B4 (de) * 2014-12-17 2016-08-04 Siemens Healthcare Gmbh Untersuchungsobjekt-spezifisches Erfassen von Magnetresonanz-Bilddaten mittels einer Magnetresonanz-Sequenz, welche zumindest einen adiabatischen Hochfrequenz-Puls umfasst
US10495709B2 (en) * 2016-07-25 2019-12-03 Siemens Healthcare Gmbh Multi-contrast simultaneous multislice magnetic resonance imaging with binomial radio-frequency pulses

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004125633A (ja) * 2002-10-03 2004-04-22 Renesas Technology Corp 半導体デバイスの宇宙線中性子ソフトエラー耐性評価方法
JP2005276360A (ja) * 2004-03-25 2005-10-06 Renesas Technology Corp 半導体デバイスのエラー評価支援方法および装置
JP2008282516A (ja) * 2007-03-21 2008-11-20 Internatl Business Mach Corp <Ibm> プログラム可能な感知検出器、ソフト・エラーを検出する方法及びdramアレイ(高速のdramソフト・エラー検出のためのプログラム可能な重イオン感知デバイス)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107144776A (zh) * 2017-04-17 2017-09-08 深圳先进技术研究院 一种总剂量效应的探测方法及装置
CN107144776B (zh) * 2017-04-17 2019-10-08 深圳先进技术研究院 一种总剂量效应的探测方法及装置
CN108957283A (zh) * 2017-05-19 2018-12-07 龙芯中科技术有限公司 辐照实验板、监控终端、asic芯片辐照实验系统
CN108957283B (zh) * 2017-05-19 2021-08-03 龙芯中科技术股份有限公司 辐照实验板、监控终端、asic芯片辐照实验系统
CN108008289A (zh) * 2017-11-22 2018-05-08 西北核技术研究所 一种器件质子单粒子效应截面的获取方法
CN108008289B (zh) * 2017-11-22 2019-12-27 西北核技术研究所 一种器件质子单粒子效应截面的获取方法
CN110221143A (zh) * 2019-05-29 2019-09-10 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 一种被测器件软错误甄别方法、装置及计算机设备
CN110058104A (zh) * 2019-05-31 2019-07-26 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 异地智能单粒子效应测试系统、方法以及装置
CN114880984A (zh) * 2022-04-14 2022-08-09 中国人民解放军国防科技大学 集成电路中重离子致单粒子翻转软错误率的检测方法
CN114880984B (zh) * 2022-04-14 2024-09-20 中国人民解放军国防科技大学 集成电路中重离子致单粒子翻转软错误率的检测方法

Also Published As

Publication number Publication date
US20180149695A1 (en) 2018-05-31
JPWO2016185818A1 (ja) 2018-03-22
JP6475828B2 (ja) 2019-02-27
US10401424B2 (en) 2019-09-03

Similar Documents

Publication Publication Date Title
JP6475828B2 (ja) 半導体LSI(Large Scale Integration)のソフトエラー率計算装置および計算方法
CN105607111B (zh) 一种γ核素识别方法
Ismail et al. Neutral current neutrino interactions at FASER ν
Gómez-Ros et al. Designing an extended energy range single-sphere multi-detector neutron spectrometer
Marcotulli et al. NuSTAR perspective on high-redshift MeV blazars
Maurchev et al. RUSCOSMIC-the new software toolbox for detailed analysis of cosmic ray interactions with matter
Agosteo et al. Characterization of extended range Bonner Sphere Spectrometers in the CERF high-energy broad neutron field at CERN
Ihantola et al. Advanced alpha spectrum analysis based on the fitting and covariance analysis of dependent variables
JP6169888B2 (ja) 放射能測定装置
CN105676103A (zh) 获取大气中子单粒子效应敏感器件敏感截面的方法及装置
Semikh et al. The Plateau de Bure neutron monitor: design, operation and Monte Carlo simulation
CN113466915A (zh) 一种基于高纯锗探测器的辐射剂量率测量系统及方法
CN111111018A (zh) 一种涉核人员器官辐射剂量快速计算方法
JP2010066071A (ja) オフアングル中性子積分フラックス測定演算装置及びその方法
Persson et al. Peak Area Consistency Evaluation in Gamma Spectrometry
Juste et al. Uncertainty and sensitivity analysis of the effect of the mean energy and FWHM of the initial electron fluence on the Bremsstrahlung photon spectra of linear accelerators
Neuer et al. Machine learning algorithms for improving the dose rate measurement in handheld homeland security instrumentation
Acero et al. The 1st Fermi Lat Supernova Remnant Catalog
CN117409975B (zh) 放射防护评价方法、装置、终端及存储介质
Wender et al. Neutron beam attenuation through semiconductor devices during SEU testing
Griffin et al. Rigorous Uncertainty Propagation Using a Dosimetry Transfer Calibration-Distribution Format.
Maurchev et al. Transport of solar protons through the atmosphere during GLE
Gersey et al. Comparison of a tissue equivalent and a silicon equivalent proportional counter microdosimeter to high-energy proton and neutron fields
Gutierrez et al. Analytic variance estimates of Swank and Fano factors
CN108152845B (zh) 基于脉冲高度谱的空气吸收剂量率测量方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796212

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017519065

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15576144

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16796212

Country of ref document: EP

Kind code of ref document: A1