WO2016185674A1 - Solder alloy and package structure using same - Google Patents

Solder alloy and package structure using same Download PDF

Info

Publication number
WO2016185674A1
WO2016185674A1 PCT/JP2016/002195 JP2016002195W WO2016185674A1 WO 2016185674 A1 WO2016185674 A1 WO 2016185674A1 JP 2016002195 W JP2016002195 W JP 2016002195W WO 2016185674 A1 WO2016185674 A1 WO 2016185674A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
content
solder alloy
less
solder
Prior art date
Application number
PCT/JP2016/002195
Other languages
French (fr)
Japanese (ja)
Inventor
清裕 日根
彰男 古澤
秀敏 北浦
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016021113A external-priority patent/JP6135885B2/en
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US15/511,231 priority Critical patent/US20170282305A1/en
Priority to CN201680002769.4A priority patent/CN106715040B/en
Priority to EP16796071.5A priority patent/EP3299113B1/en
Publication of WO2016185674A1 publication Critical patent/WO2016185674A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering

Definitions

  • the present invention mainly relates to a solder alloy used for soldering an electronic component to an electronic circuit board and a mounting structure using the same.
  • the electronic control of automobiles is advancing from the viewpoint of safety and comfort of automobiles and environmental impact.
  • Electronic devices mounted on automobiles are required to have high reliability with respect to loads such as heat, vibration and shock in automobiles.
  • solder alloys used for mounting circuit boards of automotive electronic devices are required to have high reliability and ductility in a high-temperature environment. Since a solder alloy has a lower melting point than a printed circuit board or an electronic component as a member to be joined, the mechanical properties thereof are remarkably deteriorated in a high temperature environment. Also, since the solder alloy has a low elastic modulus, strain due to differences in linear expansion coefficient between components due to temperature changes in the automobile environment, loads due to vibration and impact are concentrated on the solder joints soldered with the solder alloy. Will be added. In particular, when a strain due to a difference in linear expansion coefficient between the constituent members is repeatedly applied, a crack may be generated in the solder joint portion, which may ultimately cause a disconnection. For this reason, solder alloys used in electronic equipment for automobiles are required to have heat-resistant fatigue characteristics against repeated strain generated by temperature changes, and require high strength and ductility in a high-temperature environment.
  • solder alloy having excellent heat fatigue resistance that can be used in conventional electronic equipment for automobiles
  • Ag is 1.0 to 4.0% by mass
  • In is 4.0 to 6.0% by mass
  • Bi is 0.1 to 1%.
  • Solder alloy consisting of 0.0 mass%, the total of one or more elements selected from the group consisting of Cu, Ni, Co, Fe and Sb being 1 mass% or less (excluding 0 mass%), and the balance of Sn
  • the electrode part containing copper of the electronic component is joined to the electrode land containing copper of the substrate by the joint part formed using such a solder alloy.
  • Patent Document 1 describes that such a configuration can prevent the generation and extension of cracks in a temperature cycle test between ⁇ 40 ° C. and 150 ° C.
  • solder alloy having excellent heat fatigue resistance
  • Sn—Ag—In containing 0.5 to 5% by mass of Ag, 0.5 to 20% by mass of In, and 0.1 to 3% by mass of Bi, with the balance being Sn.
  • Sn-based solder alloy characterized by containing 3% by mass or less of at least one selected from Sb, Zn, Ni, Ga, Ge and Cu (patent) Reference 2).
  • Patent Document 2 describes that according to such a solder alloy, deformation of the solder alloy can be prevented in a temperature (cooling) cycle test between ⁇ 40 ° C. and 125 ° C.
  • An object of the present invention is to provide a solder alloy capable of obtaining sufficient reliability to withstand use at 175 ° C.
  • the present inventors have added both Sb and Cu to the Sn—Ag—Bi—In based solder alloy, and have strictly controlled the In content with respect to the Sb content.
  • the inventors independently found that high reliability was obtained even at a high temperature that was not assumed, specifically, 175 ° C., and as a result of further intensive studies, the present invention was completed.
  • a predetermined content is selected for each element except Sn, and in particular, the Sb content is 0.5 mass% or more. , 1.25 mass% or less, the In content is selected in relation to the Sb content so as to satisfy the above formula (I) or (II), and the Cu content is 0.5 mass% or more, 1.2
  • the mass% or less By setting the mass% or less, a solder alloy capable of obtaining sufficient reliability to withstand use at 175 ° C. is realized.
  • solder alloys are not considered for use at such high temperatures. More specifically, the solder alloy described in Patent Document 1 is only supposed to be used up to 150 ° C., and the solder alloy described in Patent Document 2 is only supposed to be used up to 125 ° C. In such a conventional solder alloy, sufficient reliability cannot always be obtained at a temperature of 175 ° C.
  • the solder alloy of this embodiment is 0.5% by mass or more and 1.25% by mass or less of Sb;
  • solder alloy (sample) having a predetermined composition was prepared and evaluated.
  • the sample evaluated in this embodiment was manufactured by the following method.
  • Sn, Ag, Bi, In, Cu, and Sb contained in the solder alloy Ag is 3.5% by mass
  • Bi is 0.5% by mass
  • In is 6.0% by mass
  • Cu is 0.8% by mass.
  • Sb was 0.5 mass%
  • the balance was Sn, and weighed so that the total amount was 100 g.
  • the weighed Sn was put into a ceramic crucible, adjusted to a temperature of 500 ° C. and a nitrogen atmosphere, and placed in an electric jacket heater.
  • a Ag was added and further stirred for 3 minutes.
  • the crucible was taken out from the electric jacket heater and immersed in a container filled with water at 25 ° C. to cool, thereby producing a solder alloy.
  • solder alloy A the alloy composition is represented by Sn-3.5Ag-0.5Bi-6.0In-0.8Cu-0.5Sb.
  • the transformation temperature which is the temperature at which the ⁇ -Sn and ⁇ phase transformations proceed rapidly
  • 10 mg of the solder alloy produced above was taken out and subjected to differential scanning calorimetry (DSC).
  • the temperature increase rate at the time of measurement was 10 ° C./min, and the temperature was measured in the range from 25 ° C. to 250 ° C. The results are shown in FIG.
  • the transformation temperature was determined from the inflection point of a small peak (part A) generated from the low temperature (solid) side to the peak showing the melting point, and the transformation temperature of solder alloy A was 175 ° C.
  • the transformation temperature of Conventional Example 1 was 165 ° C.
  • a tensile test was performed in a 175 ° C. environment using a tensile test piece.
  • the tensile test piece was produced by putting the solder alloy produced above into a crucible, heating it to 250 ° C. with an electric jacket heater, melting it, and pouring it into a graphite mold processed into the shape of a tensile test piece.
  • the tensile test piece had a round bar shape with a constricted portion having a diameter of 3 mm and a length of 15 mm.
  • the result of the tensile test in a 175 degreeC environment is shown in FIG.
  • the horizontal axis indicates the stroke strain of the tensile tester, and the vertical axis indicates the tensile stress.
  • the maximum values are measured as elongation at break and tensile strength, respectively. From FIG. 2, it can be seen that the solder alloy A has a tensile strength equal to or higher than that of the conventional example 1 even in the 175 ° C. environment. It can be seen that the breaking elongation of the solder alloy A is improved by several tens of percent compared to the conventional example 1, and the ductility at high temperature is improved.
  • the solder alloy A does not self-deform even when repeatedly exposed to a high temperature of 175 ° C., and is excellent in the mechanical properties of the solder alloy such as strength and ductility at a high temperature. It becomes possible to improve the heat fatigue resistance.
  • an alloy ( ⁇ -Sn phase) in which In is dissolved in Sn is formed in a low In content region where the In content is about 15% by mass or less.
  • Solid solution is a phenomenon in which a part of the crystal lattice of the base metal is replaced with a solid solution element at the atomic level.
  • the effect of solid solution elements is to suppress the movement of crystal defects such as transitions when stress is applied by generating strain in the crystal lattice of the parent element due to the difference in atomic diameter between the parent metal element and the solid solution element. Can do.
  • the strength of the metal can be improved, while the ductility during stress loading is reduced.
  • the strength improvement of the solder alloy by solid solution increases as the solid solution element content increases.
  • Sb increases the transformation temperature in the Sn—In alloy, such as the transformation temperature of 165 ° C. in Conventional Example 1 and the transformation temperature of solder alloy A of 175 ° C.
  • the mechanical properties of the solder alloy improve the strength of the solder alloy by dissolving Sb in the same manner as the In solid solution.
  • the present inventors have newly found that the solid solution of Sb further promotes the improvement in ductility at a high temperature seen at a specific In content.
  • solder alloys having the metal compositions shown in Table 1 were prepared and evaluated.
  • the method for producing the solder alloy is the same as described above.
  • the transformation temperature of the produced solder alloy is evaluated at 175 ° C. and the mechanical properties (tensile strength and elongation) are evaluated and the results of comprehensive judgment are also shown. Judgment is made when the transformation temperature is 175 ° C. or higher and the mechanical properties are improved as compared with the case of the conventional example 1, especially when the elongation at 175 ° C. is improved by 30% or more. “ ⁇ ” and the effect of the present invention is expressed. The case where the transformation temperature is less than 175 ° C. and the mechanical property value is less than the value in Conventional Example 1 is determined as “x”.
  • Example 2-2 where the Sb content is 0.5 mass%, is compared with Conventional Example 1, it can be seen that the transformation temperature increases due to the Sb content.
  • the In content increases, the transformation temperature decreases, and in Comparative Examples 2-2 and 2-3 where the In content is 6.5% by mass and 7.5% by mass, respectively, the mechanical properties at high temperatures are good. However, since the transformation temperature is less than 175 ° C., the determination is “x”.
  • Comparative Example 2-4 having a large In content of 7.5% by mass, both the transformation temperature and the mechanical properties at 175 ° C. are not sufficient, and the determination is “x”.
  • Comparative Example 2-1 with an In content of 5.0% by mass has a small effect due to the solid solution of In and is 175 compared with Conventional Example 1. The tensile strength at 0 ° C. is small, and the judgment is “x”.
  • solder alloy was prepared and evaluated in the case where the upper limit of the Sb content was 1.25% by mass.
  • the method for producing and evaluating the solder alloy is the same as described above.
  • Example 3-2 when Example 3-2 is compared with Conventional Example 1, it can be seen that the transformation temperature increases due to the Sb content. As in the case of the results shown in Table 2, the transformation temperature decreases as the In content increases, and in Comparative Examples 3-2 and 3-3 where the In content is 7.0% by mass or more, the transformation temperature is 175. Since it is less than ° C., the determination is “x”. Further, focusing on the mechanical properties of tensile strength and elongation, in the case of Comparative Example 3-1, in which the In content is 5.0% by mass, the In-solution effect is not sufficiently exhibited, and the tensile strength in an environment of 175 ° C. Since the intensity is smaller than Conventional Example 1, the determination is “x”.
  • FIG. 3 is a diagram showing the relationship between the In content and the transformation temperature when the Sb content shown in Table 2 is 0.50 mass%.
  • the horizontal axis indicates the In content (% by mass), and the vertical axis indicates the transformation temperature (° C.).
  • a material obtained by subjecting the base material Cu or Ni to various plating or preflux treatment is mainly used.
  • the base material of the member to be joined is Ni
  • the base material of the member to be joined is Ni
  • various electronic components are mounted on a single circuit board. Therefore, when an electronic component of Cu or Ni is mounted on the base material, the In content ratio is determined in advance. Adjustment is difficult.
  • Cu in the solder alloy forms a Cu 6 Sn 5 based alloy layer in the interface reaction layer at the time of soldering, and can prevent the incorporation of In.
  • the selectivity of the joining member is improved.
  • the melting point increases, so that it is desirable that the content be 1.2% by mass or less.
  • the Cu content is 0.5 mass% or more and 1.2 mass% or less.
  • Bi content is contained for the purpose of improving the mechanical strength of the solder material and lowering the melting point.
  • the Bi content is relatively small at 3.0% by mass or less, it dissolves in ⁇ -Sn, and when the Bi content increases, Bi or Bi compounds are present in a precipitated form.
  • the Bi content is preferably 0.1% by mass or more.
  • the upper limit of the Bi content is desirably set to 3.0% by mass or less so that precipitation of Bi or Bi compound does not occur.
  • the Bi content is 0.1 mass% or more and 3.0 mass% or less.
  • Ag content is contained for the purpose of improving wettability during soldering and lowering the melting point, and is present in the form of Ag 3 Sn compound and Ag 2 In in the solder alloy.
  • the reflow peak temperature of the liquidus temperature of the solder alloy + 10 ° C. or more is preferably 240 ° C. or lower.
  • the liquidus temperature of the solder alloy is preferably set to 230 ° C. or less.
  • the Ag content is set to 1.0% by mass or more and 4.0% by mass or less.
  • examples, comparative examples, and conventional solder alloys having the metal compositions shown in Table 5 were prepared, and the heat fatigue resistance was evaluated.
  • the method for producing the solder alloy is the same as described above.
  • the evaluation method of heat fatigue resistance is as follows.
  • solder alloy was processed into solder powder having a particle size of several tens of ⁇ m, the solder powder and the flux were weighed so as to have a weight ratio of 90:10, and these were kneaded to produce a solder paste. .
  • This solder paste was printed on the circuit board electrode on the circuit board using a metal mask having a thickness of 150 ⁇ m.
  • a chip resistor was mounted on the printed solder paste, and reflow heating was performed at a maximum temperature of 240 ° C. to produce a mounting structure.
  • the base material of the circuit board electrode of the used circuit board was Cu and Ni.
  • the mounting structure thus fabricated was subjected to a temperature cycle test of ⁇ 40 ° C./175° C., and the deformation of the solder joint after 2000 cycles was visually observed.
  • the electrical connection is evaluated, and when there is a change in the resistance value of 10% or more from the initial value, the electrical failure is “present”, and there is no change or 10% Those that were less than were judged as electrical failure “none”. Note that “ ⁇ ” in the electrical failure column of Table 5 indicates that no evaluation was performed.
  • Comparative Example 5-6 with a Cu content of 1.5% by mass, Comparative Example 5-7 without Bi, Comparative Example 5-8 with a Bi content of 3.5% by mass, Comparative Example without Ag In 5-9, an electrical failure occurred.
  • solder alloy containing 1.0 mass% or more and 4.0 mass% or less of Ag and the balance being Sn.
  • a solder alloy can be composed of an alloy structure including at least a ⁇ phase and a ⁇ -Sn phase in which Sb is dissolved at 150 ° C. or higher, and forms a joint having excellent heat fatigue resistance even in an environment of 175 ° C. It becomes possible.
  • the solder alloy is 0.5% by mass or more and 1.0% by mass or less of Sb;
  • Such a solder alloy can be composed of an alloy structure including at least a ⁇ phase and a ⁇ -Sn phase in which Sb is dissolved at 150 ° C. or higher, and has a solder joint portion having further excellent heat fatigue resistance even in an environment of 175 ° C. It becomes possible to form.
  • the solder alloy is 0.5% by mass or more and 1.0% by mass or less of Sb;
  • Such a solder alloy can be composed of an alloy structure including a ⁇ phase and a ⁇ -Sn phase in which at least Sb is dissolved at 150 ° C. or higher, and has a particularly excellent solder joint property even in an environment of 175 ° C. It becomes possible to form.
  • the mounting structure of the present invention is characterized in that an electrode part of an electronic component and an electrode part of a circuit board are joined by the solder alloy described above. According to this, even in an environment of 175 ° C., it is possible to provide a mounting structure having a bonding superior in thermal fatigue resistance.
  • the electrode part of the electronic component and the electrode part of the circuit board may be made of any appropriate conductive material, and these may contain Cu and / or Ni as described above as the members to be joined. Good.
  • the solder alloy can have any form, alone (eg, in the form of powder, yarn solder, melt, preform solder, etc.) or together with flux (eg, solder paste or solder containing solder) Can be used for soldering. The soldering conditions can be appropriately selected.
  • the solder alloy may have an Sb content of 0.5% by mass or more and 1.0% by mass or less, and an In content satisfying the above formula (I).
  • the In content may further satisfy that it is 6.1% by mass or less.
  • the solder alloy of the present invention preferably has an alloy structure including a ⁇ phase and a ⁇ -Sn phase in which at least Sb is dissolved at 150 ° C. or higher.
  • a mounting structure in which an electronic component is mounted on a circuit board, and the electrode portion of the electronic component and the electrode portion of the circuit board are joined by the solder alloy of the present invention.
  • the “solder alloy” may contain unavoidably mixed trace metals as long as the metal composition is substantially composed of the enumerated metals.
  • the solder alloy can have any form and can be used for soldering, for example, alone or together with other components other than metal (eg, flux, etc.).
  • solder alloy and mounting structure of the present invention can realize a solder joint having excellent mechanical characteristics even in a high temperature environment of 175 ° C. It is useful for use in a mounting structure of an automobile electrical component that is required to ensure conduction.

Abstract

A solder alloy which contains from 0.5% by mass to 1.25% by mass (inclusive) of Sb, In in an amount satisfying 5.5 ≤ [In] ≤ 5.50 + 1.06[Sb] in cases where 0.5 ≤ [Sb] ≤ 1.0, while satisfying 5.5 ≤ [In] ≤ 6.35 + 0.212[Sb] in cases where 1.0 < [Sb] ≤ 1.25 (in the formulae, [Sb] represents the Sb content (mass%) and [In] represents the In content (mass%)), from 0.5% by mass to 1.2% by mass (inclusive) of Cu, from 0.1% by mass to 3.0% by mass (inclusive) of Bi and from 1.0% by mass to 4.0% by mass (inclusive) of Ag, with the balance made up of Sn.

Description

はんだ合金およびそれを用いた実装構造体Solder alloy and mounting structure using the same
 本発明は、主として電子回路基板への電子部品のはんだ付けに用いられるはんだ合金およびそれを用いた実装構造体に関するものである。 The present invention mainly relates to a solder alloy used for soldering an electronic component to an electronic circuit board and a mounting structure using the same.
 自動車の安全性や快適性、環境への影響などの観点から自動車の電子制御化が進展している。自動車に搭載される電子機器は、自動車における熱や振動、衝撃などの負荷に対する高い信頼性が必要とされる。 The electronic control of automobiles is advancing from the viewpoint of safety and comfort of automobiles and environmental impact. Electronic devices mounted on automobiles are required to have high reliability with respect to loads such as heat, vibration and shock in automobiles.
 このような自動車用電子機器の要求に対して、自動車用電子機器の回路基板の実装に用いられるはんだ合金には高い信頼性が必要とされる。はんだ合金は、被接合部材のプリント基板や電子部品と比較して融点が低いため、高温環境においてその機械的特性の低下が顕著である。また、はんだ合金は弾性率も小さいため、自動車環境での温度変化に伴う構成部材間の線膨張係数の違いによるひずみや、振動、衝撃による負荷が、はんだ合金ではんだ付けしたはんだ接合部に集中的に加わることとなる。特に、構成部材間の線膨張係数の違いによるひずみが繰り返し負荷されることによって、はんだ接合部にクラックが発生し得、これは、最終的に断線を招く可能性が考えられ得る。そのため、自動車用電子機器に用いられるはんだ合金は、温度変化によって発生する繰り返しひずみに対する耐熱疲労特性が重要であり、高温環境での高い強度や延性が必要である。 In response to such demands for automotive electronic devices, high reliability is required for solder alloys used for mounting circuit boards of automotive electronic devices. Since a solder alloy has a lower melting point than a printed circuit board or an electronic component as a member to be joined, the mechanical properties thereof are remarkably deteriorated in a high temperature environment. Also, since the solder alloy has a low elastic modulus, strain due to differences in linear expansion coefficient between components due to temperature changes in the automobile environment, loads due to vibration and impact are concentrated on the solder joints soldered with the solder alloy. Will be added. In particular, when a strain due to a difference in linear expansion coefficient between the constituent members is repeatedly applied, a crack may be generated in the solder joint portion, which may ultimately cause a disconnection. For this reason, solder alloys used in electronic equipment for automobiles are required to have heat-resistant fatigue characteristics against repeated strain generated by temperature changes, and require high strength and ductility in a high-temperature environment.
 従来の自動車用電子機器に使用可能な耐熱疲労特性に優れるはんだ合金として、Agを1.0~4.0質量%、Inを4.0~6.0質量%、Biを0.1~1.0質量%、Cu、Ni、Co、FeおよびSbからなる群より選択される1種類以上の元素の合計を1質量%以下(但し0質量%を除く)、および残部のSnから成るはんだ合金が知られており、かかるはんだ合金を用いて形成された接合部によって、電子部品の銅を含む電極部が、基板の銅を含む電極ランドに接合される。この接合部において電子部品の電極部と基板の電極ランドとの間がCu-Sn金属間化合物で少なくとも部分的に閉塞されている、電子部品接合体(実装構造体)が知られている(特許文献1)。特許文献1には、かかる構成により、-40℃と150℃の間での温度サイクル試験における亀裂(クラック)の発生および伸張を防止できることが記載されている。 As a solder alloy having excellent heat fatigue resistance that can be used in conventional electronic equipment for automobiles, Ag is 1.0 to 4.0% by mass, In is 4.0 to 6.0% by mass, and Bi is 0.1 to 1%. Solder alloy consisting of 0.0 mass%, the total of one or more elements selected from the group consisting of Cu, Ni, Co, Fe and Sb being 1 mass% or less (excluding 0 mass%), and the balance of Sn The electrode part containing copper of the electronic component is joined to the electrode land containing copper of the substrate by the joint part formed using such a solder alloy. There is known an electronic component bonded body (mounting structure) in which the electrode portion of the electronic component and the electrode land of the substrate are at least partially blocked by the Cu—Sn intermetallic compound in this bonded portion (patent) Reference 1). Patent Document 1 describes that such a configuration can prevent the generation and extension of cracks in a temperature cycle test between −40 ° C. and 150 ° C.
 また、耐熱疲労特性に優れる他のはんだ合金として、Ag0.5~5質量%、In0.5~20質量%、Bi0.1~3質量%を含有し、残部がSnであるSn-Ag-In-Bi系はんだ合金であって、さらにSb、Zn、Ni、Ga、GeおよびCuから選ばれる少なくとも1種を3質量%以下含有したことを特徴とするSn系はんだ合金も知られている(特許文献2)。特許文献2には、かかるはんだ合金によれば、-40℃と125℃の間での温度(冷熱)サイクル試験においてはんだ合金の変形を防止できることが記載されている。 In addition, as another solder alloy having excellent heat fatigue resistance, Sn—Ag—In containing 0.5 to 5% by mass of Ag, 0.5 to 20% by mass of In, and 0.1 to 3% by mass of Bi, with the balance being Sn. There is also known a Sn-based solder alloy characterized by containing 3% by mass or less of at least one selected from Sb, Zn, Ni, Ga, Ge and Cu (patent) Reference 2). Patent Document 2 describes that according to such a solder alloy, deformation of the solder alloy can be prevented in a temperature (cooling) cycle test between −40 ° C. and 125 ° C.
特許第5280520号公報Japanese Patent No. 5280520 特開2004-188453号公報JP 2004-188453 A 特開2015-100833号公報Japanese Unexamined Patent Publication No. 2015-1000083
 本発明は、175℃での使用に耐える十分な信頼性を得ることが可能なはんだ合金を提供することを目的とする。 An object of the present invention is to provide a solder alloy capable of obtaining sufficient reliability to withstand use at 175 ° C.
 本発明者らは、Sn-Ag-Bi-In系はんだ合金に対して、SbとCuの双方を必須添加し、かつ、In含有率をSb含有率に対して厳密に制御することによって、従来想定されていなかったような高い温度、具体的には175℃においても高い信頼性が得られることを独自に見いだし、更なる鋭意検討の結果、本発明を完成するに至った。 The present inventors have added both Sb and Cu to the Sn—Ag—Bi—In based solder alloy, and have strictly controlled the In content with respect to the Sb content. The inventors independently found that high reliability was obtained even at a high temperature that was not assumed, specifically, 175 ° C., and as a result of further intensive studies, the present invention was completed.
 本発明の1つの要旨によれば、
 0.5質量%以上、1.25質量%以下のSbと、
 以下の式(I)または(II):
  0.5≦[Sb]≦1.0の場合
   5.5≦[In]≦5.50+1.06[Sb]   ・・・(I)
  1.0<[Sb]≦1.25の場合
   5.5≦[In]≦6.35+0.212[Sb]  ・・・(II)
(式中、[Sb]はSb含有率(質量%)、[In]はIn含有率(質量%)を表す)を満たすInと、
 0.5質量%以上、1.2質量%以下のCuと、
 0.1質量%以上、3.0質量%以下のBiと、
 1.0質量%以上、4.0質量%以下のAgと
を含有し、残部がSnから成る、はんだ合金が提供される。
According to one aspect of the present invention,
0.5% by mass or more and 1.25% by mass or less of Sb;
The following formula (I) or (II):
In the case of 0.5 ≦ [Sb] ≦ 1.0 5.5 ≦ [In] ≦ 5.50 + 1.06 [Sb] (I)
When 1.0 <[Sb] ≦ 1.25 5.5 ≦ [In] ≦ 6.35 + 0.212 [Sb] (II)
(In the formula, [Sb] represents the Sb content (mass%), [In] represents the In content (mass%)), and
0.5% by mass or more and 1.2% by mass or less of Cu;
Bi of 0.1 mass% or more and 3.0 mass% or less;
There is provided a solder alloy containing 1.0% by mass or more and 4.0% by mass or less of Ag, the balance being Sn.
 本発明によれば、Sn、Ag、Bi、In、CuおよびSbからなるはんだ合金において、Snを除く各元素につき所定の含有率を選択すること、とりわけ、Sb含有率を0.5質量%以上、1.25質量%以下とし、In含有率を上記式(I)または(II)を満たすようにSb含有率との関係において選択し、Cu含有率を0.5質量%以上、1.2質量%以下とすることによって、175℃での使用に耐える十分な信頼性を得ることが可能なはんだ合金が実現される。 According to the present invention, in a solder alloy composed of Sn, Ag, Bi, In, Cu and Sb, a predetermined content is selected for each element except Sn, and in particular, the Sb content is 0.5 mass% or more. , 1.25 mass% or less, the In content is selected in relation to the Sb content so as to satisfy the above formula (I) or (II), and the Cu content is 0.5 mass% or more, 1.2 By setting the mass% or less, a solder alloy capable of obtaining sufficient reliability to withstand use at 175 ° C. is realized.
本発明の実施形態にかかるはんだ合金のDSC測定結果を表すグラフである。It is a graph showing the DSC measurement result of the solder alloy concerning embodiment of this invention. 本発明の実施形態にかかるはんだ合金の175℃環境での引張試験の結果を示すグラフである。It is a graph which shows the result of the tension test in the 175 degreeC environment of the solder alloy concerning embodiment of this invention. 本発明の実施形態にかかるはんだ合金のIn含有率と変態温度との関係(Sb含有率が0.5質量%の場合)を示すグラフである。It is a graph which shows the relationship (when Sb content rate is 0.5 mass%) of In content rate and the transformation temperature of the solder alloy concerning embodiment of this invention.
 本発明の実施の形態の説明に先立ち、従来のはんだ合金における問題点を簡単に説明する。自動車に搭載される電子機器の数は増加の一途をたどっており、自動車の限られた空間において電子機器の搭載スペースを確保することが難しくなっている。そのため、電子機器の小型化によってスペースを相対的に拡大することや、エンジンルーム内のような、高温となるために信頼性の観点から従来搭載を控えていた箇所に電子機器を搭載することが進められている。これらの結果、小型化による電子機器の発熱密度の増大や、周囲環境温度の上昇が発生しており、電子機器はより高温に曝されるようになっている。そして、今後の電子機器の進化に対応するためには、従来の目安とされていた125℃や150℃よりも更に高い温度、具体的には175℃の温度においても、高い信頼性、例えば耐熱疲労特性を示すはんだ合金が求められる。 Prior to the description of the embodiment of the present invention, problems in the conventional solder alloy will be briefly described. The number of electronic devices mounted on automobiles is steadily increasing, and it is difficult to secure a mounting space for electronic devices in a limited space of automobiles. Therefore, it is possible to relatively expand the space by downsizing the electronic device, or to install the electronic device in a place where the conventional mounting was refrained from the viewpoint of reliability due to high temperatures such as in the engine room. It is being advanced. As a result, an increase in heat generation density of electronic devices due to miniaturization and an increase in ambient environment temperature occur, and electronic devices are exposed to higher temperatures. In order to cope with the future evolution of electronic devices, high reliability such as heat resistance, for example, even at temperatures higher than 125 ° C. and 150 ° C., specifically 175 ° C., which has been a standard for the past. There is a need for solder alloys that exhibit fatigue properties.
 しかしながら、従来のはんだ合金は、このように高い温度での使用について考慮されていない。より詳細には、特許文献1に記載のはんだ合金は150℃までの使用しか想定されておらず、特許文献2に記載のはんだ合金は125℃までの使用しか想定されていない。かかる従来のはんだ合金では、175℃の温度では必ずしも十分な信頼性を得ることができない。 However, conventional solder alloys are not considered for use at such high temperatures. More specifically, the solder alloy described in Patent Document 1 is only supposed to be used up to 150 ° C., and the solder alloy described in Patent Document 2 is only supposed to be used up to 125 ° C. In such a conventional solder alloy, sufficient reliability cannot always be obtained at a temperature of 175 ° C.
 特開2015-100833号(US2015144388A1)の内容は、本明細書により組み込まれる。 The contents of Japanese Patent Application Laid-Open No. 2015-1000083 (US2015144388A1) are incorporated herein.
 以下、本発明の1つの実施形態におけるはんだ合金およびこれを用いた実装構造体について、図面を参照しながら詳述する。 Hereinafter, a solder alloy and a mounting structure using the same according to an embodiment of the present invention will be described in detail with reference to the drawings.
 尚、本明細書中、はんだ合金を構成する元素記号に[ ]を付したものは、はんだ合金中の当該元素の含有率(質量%)を意味するものとする。 In addition, in this specification, what added [] to the element symbol which comprises a solder alloy shall mean the content rate (mass%) of the said element in a solder alloy.
 また、本明細書中、はんだ合金の金属組成を説明するのに、Sn以外の金属元素の直前に数値または数値範囲を示すことがあるが、これは、当該技術分野において一般的に使用されているように、金属組成中に占める各元素の質量%(=重量%)を数値または数値範囲で示しており、残部がSnから成ることを意味する。 Further, in the present specification, in order to describe the metal composition of a solder alloy, a numerical value or a numerical range may be shown immediately before a metal element other than Sn, which is generally used in the technical field. As shown in the figure, the mass% (=% by weight) of each element in the metal composition is indicated by a numerical value or a numerical range, which means that the balance is made of Sn.
 本実施形態のはんだ合金は、
 0.5質量%以上、1.25質量%以下のSbと、
 以下の式(I)または(II):
  0.5≦[Sb]≦1.0の場合
   5.5≦[In]≦5.50+1.06[Sb]   ・・・(I)
  1.0<[Sb]≦1.25の場合
   5.5≦[In]≦6.35+0.212[Sb]  ・・・(II)
(式中、[Sb]はSb含有率(質量%)、[In]はIn含有率(質量%)を表す)
を満たすInと、
 0.5質量%以上、1.2質量%以下のCuと、
 0.1質量%以上、3.0質量%以下のBiと、
 1.0質量%以上、4.0質量%以下のAgと
を含有し、残部がSnから成る。
The solder alloy of this embodiment is
0.5% by mass or more and 1.25% by mass or less of Sb;
The following formula (I) or (II):
In the case of 0.5 ≦ [Sb] ≦ 1.0 5.5 ≦ [In] ≦ 5.50 + 1.06 [Sb] (I)
When 1.0 <[Sb] ≦ 1.25 5.5 ≦ [In] ≦ 6.35 + 0.212 [Sb] (II)
(In the formula, [Sb] represents the Sb content (mass%), and [In] represents the In content (mass%)).
In that satisfies
0.5% by mass or more and 1.2% by mass or less of Cu;
Bi of 0.1 mass% or more and 3.0 mass% or less;
1.0 mass% or more and 4.0 mass% or less of Ag are contained, and the remainder consists of Sn.
 従来、はんだ合金自体の強度や延性といった、耐熱疲労特性に影響する物性への効果については判明していない。また、CuおよびSbを組合せて含有した場合の複合的な効果についても検証されていない。かかる状況下、本発明者らは、自動車用電子機器に必要な高温環境での機械的特性について研究開発を行った結果、In、Cu、Sbのそれぞれをある特定の関係性を持った範囲で含有することにより、これまでに明らかでなかった、高温での機械的特性、特に高温での延性が著しく改善し、ひいては耐熱疲労強度が向上することを新たに見出した。 Conventionally, the effects on the physical properties that affect the heat fatigue characteristics such as the strength and ductility of the solder alloy itself have not been clarified. Further, the combined effect when Cu and Sb are combined is not verified. Under such circumstances, the present inventors conducted research and development on mechanical properties in a high-temperature environment required for automotive electronic devices, and as a result, each of In, Cu, and Sb has a certain relationship. It has been newly found that by containing it, mechanical properties at high temperatures, particularly ductility at high temperatures, which have not been clarified so far, are remarkably improved, and as a result, the thermal fatigue strength is improved.
 本実施形態のはんだ合金の効果を明らかにするために、所定の組成を有するはんだ合金(試料)を作製し、評価を行った。 In order to clarify the effect of the solder alloy of this embodiment, a solder alloy (sample) having a predetermined composition was prepared and evaluated.
 本実施形態で評価した試料は、次の方法で作製するものとした。 The sample evaluated in this embodiment was manufactured by the following method.
 はんだ合金に含有されるSn、Ag、Bi、In、Cu、Sbを、Agが3.5質量%、Biが0.5質量%、Inが6.0質量%、Cuが0.8質量%、Sbが0.5質量%、残部がSnとなり、合計で100gとなるように秤量した。 Sn, Ag, Bi, In, Cu, and Sb contained in the solder alloy, Ag is 3.5% by mass, Bi is 0.5% by mass, In is 6.0% by mass, and Cu is 0.8% by mass. , Sb was 0.5 mass%, the balance was Sn, and weighed so that the total amount was 100 g.
 秤量したSnを、セラミック製のるつぼ内に投入し、500℃の温度および窒素雰囲気に調整して、電気式ジャケットヒータの中に設置した。 The weighed Sn was put into a ceramic crucible, adjusted to a temperature of 500 ° C. and a nitrogen atmosphere, and placed in an electric jacket heater.
 Snが溶融したことを確認した後、Inを投入し、3分間攪拌した。 After confirming that Sn was melted, In was added and stirred for 3 minutes.
 Biを投入し、更に3分間攪拌した。 Bi was added and the mixture was further stirred for 3 minutes.
 Agを投入し、更に3分間攪拌した。 A Ag was added and further stirred for 3 minutes.
 Sbを投入し、更に3分間攪拌した。 Sb was added and further stirred for 3 minutes.
 Cuを投入し、更に3分間攪拌した。 Cu was added and further stirred for 3 minutes.
 その後、るつぼを電気式ジャケットヒータから取り出して、25℃の水が満たされた容器に浸漬して冷却し、これによりはんだ合金を作製した。 Thereafter, the crucible was taken out from the electric jacket heater and immersed in a container filled with water at 25 ° C. to cool, thereby producing a solder alloy.
 以下、これを「はんだ合金A」と称し、その合金組成はSn-3.5Ag-0.5Bi-6.0In-0.8Cu-0.5Sbで表される。 Hereinafter, this is referred to as “solder alloy A”, and the alloy composition is represented by Sn-3.5Ag-0.5Bi-6.0In-0.8Cu-0.5Sb.
 また、比較のために、従来のはんだ合金の例として、Sbを含まないSn-3.5Ag-0.5Bi-6.0In-0.5Cuの組成を有するはんだ合金を上記と同様にして作製した。これを「従来例1」と称する。 For comparison, as an example of a conventional solder alloy, a solder alloy having a composition of Sn-3.5Ag-0.5Bi-6.0In-0.5Cu not containing Sb was produced in the same manner as described above. . This is referred to as “Conventional Example 1”.
 β-Snとγの相変態が急激に進行する温度である変態温度を評価するために、上記で作製したはんだ合金を10mg取り出し、示差走査熱量測定(Differential Scanning Calorimetry:DSC)を行った。測定時の昇温レートは10℃/分とし、25℃から250℃までの範囲で測定した。結果を図1に示す。 In order to evaluate the transformation temperature, which is the temperature at which the β-Sn and γ phase transformations proceed rapidly, 10 mg of the solder alloy produced above was taken out and subjected to differential scanning calorimetry (DSC). The temperature increase rate at the time of measurement was 10 ° C./min, and the temperature was measured in the range from 25 ° C. to 250 ° C. The results are shown in FIG.
 図1において、変態温度は、低温(固体)側から融点を示すピークまでの間に生じる小さなピーク(A部)の変曲点により求められ、はんだ合金Aの変態温度は175℃であった。一方、従来例1の変態温度は165℃であった。 In FIG. 1, the transformation temperature was determined from the inflection point of a small peak (part A) generated from the low temperature (solid) side to the peak showing the melting point, and the transformation temperature of solder alloy A was 175 ° C. On the other hand, the transformation temperature of Conventional Example 1 was 165 ° C.
 次に、上記で作製したはんだ合金を1g取り出し、Cu板上に市販のフラックスを用いて250℃ではんだ付けし、温度サイクル試験を行った。試験条件は、-40℃と175℃の間の温度とし、1サイクルにつき-40℃および175℃でそれぞれ30分間保持し(かかる条件の試験を「-40/175℃の温度サイクル試験」と称す)、500サイクル実施した。 Next, 1 g of the solder alloy produced above was taken out and soldered at 250 ° C. using a commercially available flux on a Cu plate, and a temperature cycle test was conducted. The test condition is a temperature between −40 ° C. and 175 ° C., and each cycle is held at −40 ° C. and 175 ° C. for 30 minutes, respectively (the test under such conditions is referred to as “−40 / 175 ° C. temperature cycle test”). ), 500 cycles were performed.
 その結果、はんだ合金Aでは500サイクル後の段階で自己変形が見られないのに対し、従来例1では自己変形が生じていた。上記の結果とあわせれば、175℃以上の変態温度を有するはんだ合金では、-40℃/175℃の温度サイクル試験で自己変形せず、175℃環境での使用に耐えるものと理解される。 As a result, in the solder alloy A, self-deformation was not observed at the stage after 500 cycles, whereas in the conventional example 1, self-deformation occurred. Together with the above results, it is understood that a solder alloy having a transformation temperature of 175 ° C. or higher does not self-deform in a temperature cycle test of −40 ° C./175° C. and can withstand use in a 175 ° C. environment.
 次に、はんだ合金の機械的特性を評価するために、引張試験片を用いて175℃環境での引張試験を行った。引張試験片は、上記で作製したはんだ合金をるつぼに投入し、電気式ジャケットヒータで250℃に加熱して溶融させ、引張試験片形状に加工されたグラファイト製の鋳型に流し込むことにより作製した。引張試験片は、直径3mm、長さ15mmのくびれ部を有する丸棒形状を有するものとした。175℃環境での引張試験の結果を図2に示す。 Next, in order to evaluate the mechanical properties of the solder alloy, a tensile test was performed in a 175 ° C. environment using a tensile test piece. The tensile test piece was produced by putting the solder alloy produced above into a crucible, heating it to 250 ° C. with an electric jacket heater, melting it, and pouring it into a graphite mold processed into the shape of a tensile test piece. The tensile test piece had a round bar shape with a constricted portion having a diameter of 3 mm and a length of 15 mm. The result of the tensile test in a 175 degreeC environment is shown in FIG.
 図2において、横軸は引張試験機のストロークひずみを、縦軸は引張応力を示しており、それぞれの最大値をそれぞれ破断伸び、引張強度として測定している。図2から、はんだ合金Aは、175℃環境においても、従来例1と比較して同等またはそれ以上の引張強度を有することが分かる。はんだ合金Aの破断伸びは、従来例1と比較して数十%の大きな改善が見られ、高温での延性が改善されていることが分かる。 2. In FIG. 2, the horizontal axis indicates the stroke strain of the tensile tester, and the vertical axis indicates the tensile stress. The maximum values are measured as elongation at break and tensile strength, respectively. From FIG. 2, it can be seen that the solder alloy A has a tensile strength equal to or higher than that of the conventional example 1 even in the 175 ° C. environment. It can be seen that the breaking elongation of the solder alloy A is improved by several tens of percent compared to the conventional example 1, and the ductility at high temperature is improved.
 以上から、はんだ合金Aは、175℃の高温に繰り返し曝されても自己変形せず、かつ高温での強度や延性というはんだ合金の機械的特性に優れていることが確認され、はんだ接合部の耐熱疲労特性を向上させることが可能となる。 From the above, it is confirmed that the solder alloy A does not self-deform even when repeatedly exposed to a high temperature of 175 ° C., and is excellent in the mechanical properties of the solder alloy such as strength and ductility at a high temperature. It becomes possible to improve the heat fatigue resistance.
 次に、本実施形態のはんだ合金について、その効果を発現するための合金組成について説明する。 Next, the alloy composition for expressing the effect of the solder alloy of this embodiment will be described.
 (In含有率、Sb含有率)
 まず、はんだ合金におけるIn含有率およびSb含有率について説明する。
(In content, Sb content)
First, the In content and the Sb content in the solder alloy will be described.
 Snを主成分とするはんだ合金では、In含有率が約15質量%以下の低In含有率領域において、SnにInが固溶した合金(β-Sn相)を形成する。 In a solder alloy containing Sn as a main component, an alloy (β-Sn phase) in which In is dissolved in Sn is formed in a low In content region where the In content is about 15% by mass or less.
 固溶とは、母金属の結晶格子中の一部が固溶元素に原子レベルで置き換わる現象である。一般的に固溶元素の効果は、母金属元素と固溶元素の原子径の差により母元素の結晶格子にひずみを発生させることによって、応力負荷時に転移などの結晶欠陥の移動を抑制することができる。その結果、金属の強度を向上させることができる一方、応力負荷時の延性は低下する。固溶によるはんだ合金の強度向上は、固溶元素の含有率が大きいほど大きくなる。 Solid solution is a phenomenon in which a part of the crystal lattice of the base metal is replaced with a solid solution element at the atomic level. In general, the effect of solid solution elements is to suppress the movement of crystal defects such as transitions when stress is applied by generating strain in the crystal lattice of the parent element due to the difference in atomic diameter between the parent metal element and the solid solution element. Can do. As a result, the strength of the metal can be improved, while the ductility during stress loading is reduced. The strength improvement of the solder alloy by solid solution increases as the solid solution element content increases.
 しかしながら、Sn系はんだにInを固溶させた場合は、In含有率にもよるが、温度を次第に高くしていった場合、約100℃以上に高くなるころから、β-Sn相から、異なる構造のγ相(InSn)への相変態が進む。つまり、異なる2相が同程度共存する状態(γ+β-Sn)となる。この2相共存状態になることで、粒界でのすべりの寄与が大きくなり、高温での延性は向上する。 However, when In is dissolved in Sn-based solder, it depends on the In content, but when the temperature is gradually increased, it differs from the β-Sn phase from about 100 ° C or higher. Phase transformation to the γ phase (InSn 4 ) of the structure proceeds. In other words, two different phases coexist to the same extent (γ + β-Sn). By being in this two-phase coexistence state, the contribution of slip at the grain boundary is increased, and ductility at high temperatures is improved.
 一方で、In含有率が大きい場合、β-Sn相からγ相への変態が過剰に発生する。この場合、γ相とβ-Sn相の結晶格子構造の体積が異なるため、繰り返し熱サイクルがかかることではんだ合金の自己変形が生じる。これは、はんだ接合部内部における破断や、異なるはんだ接合部間の短絡を生じさせるため問題となる。 On the other hand, when the In content is large, excessive transformation from β-Sn phase to γ phase occurs. In this case, since the volume of the crystal lattice structure of the γ phase and that of the β-Sn phase are different, the solder alloy undergoes self-deformation due to repeated thermal cycles. This is a problem because it causes a breakage in the solder joints and a short circuit between different solder joints.
 また、Sbは、例えば前述した従来例1の変態温度165℃とはんだ合金Aの変態温度175℃のように、Sn-In系合金における変態温度を上昇させる。 In addition, Sb increases the transformation temperature in the Sn—In alloy, such as the transformation temperature of 165 ° C. in Conventional Example 1 and the transformation temperature of solder alloy A of 175 ° C.
 これは、Sb含有によって合金組織の状態が変化するためである。Sb含有率が比較的小さい場合、SbはSn-In系合金においてInと同様にSnに固溶する。更にSb含有率が大きくなると、Inと化合物(InSn)を形成して合金組織中に析出する。 This is because the state of the alloy structure is changed by containing Sb. When the Sb content is relatively small, Sb dissolves in Sn in the same manner as In in the Sn—In alloy. When the Sb content is further increased, In and a compound (InSn) are formed and precipitated in the alloy structure.
 Inと共にSbがSnに固溶することにより、温度変化時のSnやInの元素の移動が抑制され、β-Sn相とγ相の変態開始温度を変化させる。 When Sb is dissolved in Sn together with In, the movement of Sn and In elements at the time of temperature change is suppressed, and the transformation start temperature of β-Sn phase and γ phase is changed.
 はんだ合金の機械的特性は、Sbが固溶することで、In固溶と同様にはんだ合金の強度を向上させる。加えて、後述するが、ある特定のIn含有率の際に見られる高温での延性向上を、Sbの固溶は更に促進することを、本発明者らは新たに見出している。 The mechanical properties of the solder alloy improve the strength of the solder alloy by dissolving Sb in the same manner as the In solid solution. In addition, as will be described later, the present inventors have newly found that the solid solution of Sb further promotes the improvement in ductility at a high temperature seen at a specific In content.
 更にSb含有率が大きくなると、結晶組織間にピンのようにInSnが析出し、変形を抑制する。一方で、InSbの析出により延性は低下するため、耐熱疲労特性向上には過度のInSbの析出は不適である。 When the Sb content is further increased, InSn precipitates like a pin between the crystal structures and suppresses deformation. On the other hand, since the ductility is lowered by the precipitation of InSb, excessive precipitation of InSb is not suitable for improving the thermal fatigue resistance.
 Sb含有率によるSn-In系はんだ合金の変態温度への影響を明らかにするために、表1に示す金属組成を有するはんだ合金を作製し評価した。はんだ合金の作製方法は上述したものと同様である。 In order to clarify the influence of the Sb content on the transformation temperature of the Sn—In solder alloy, solder alloys having the metal compositions shown in Table 1 were prepared and evaluated. The method for producing the solder alloy is the same as described above.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (表中、「bal.」は残部を表す。以下の表においても同様とする。)
 表中、作製したはんだ合金の変態温度について、175℃以上である場合を「○」、175℃未満である場合を「×」として評価した。また、175℃における機械的特性(引張強度および伸び)について、従来例1の場合と比較して改善されている場合を「○」、同等またはそれ未満である場合を「×」として評価し、特に175℃での伸びが30%以上改善されている場合を「◎」として評価した。
(In the table, “bal.” Represents the remainder. The same applies to the following tables.)
In the table, the transformation temperature of the produced solder alloy was evaluated as “◯” when the temperature was 175 ° C. or higher, and “X” when the temperature was less than 175 ° C. Further, regarding mechanical properties (tensile strength and elongation) at 175 ° C., the case where it was improved compared to the case of Conventional Example 1 was evaluated as “◯”, and the case where it was equal or less than “X” was evaluated, In particular, the case where the elongation at 175 ° C. was improved by 30% or more was evaluated as “◎”.
 更に、表中、作製したはんだ合金の変態温度、175℃における機械的特性(引張強度および伸び)を評価して、総合的に判定した結果を併せて示す。変態温度が175℃以上、かつ機械的特性が従来例1の場合と比較して改善されている場合を判定「○」、特に175℃での伸びが30%以上改善されている場合を判定「◎」とし、本発明の効果が発現されているとしている。変態温度が175℃未満、機械的特性の値が従来例1の場合の値未満のいずれかに該当する場合を判定「×」とする。 Furthermore, in the table, the transformation temperature of the produced solder alloy is evaluated at 175 ° C. and the mechanical properties (tensile strength and elongation) are evaluated and the results of comprehensive judgment are also shown. Judgment is made when the transformation temperature is 175 ° C. or higher and the mechanical properties are improved as compared with the case of the conventional example 1, especially when the elongation at 175 ° C. is improved by 30% or more. “◎” and the effect of the present invention is expressed. The case where the transformation temperature is less than 175 ° C. and the mechanical property value is less than the value in Conventional Example 1 is determined as “x”.
 実施例1-1~1-4に示すように、Sbを0.50~1.25質量%で含有する場合に変態温度が175℃以上、かつ機械的特性が改善されており、本発明の効果が発現されている。他方、比較例1-1および1-2に示すSb含有率が0.25質量%以下の場合は、175℃での機械的特性は良好であるものの、変態温度の上昇が不十分であり変態温度が175℃未満であるため、判定は「×」である。比較例1-3に示すSb含有率が1.5質量%の場合、InSbの生成が顕著になり、高温での延性が悪化し、判定は「×」である。 As shown in Examples 1-1 to 1-4, when Sb is contained in an amount of 0.50 to 1.25% by mass, the transformation temperature is 175 ° C. or more and the mechanical properties are improved. The effect is expressed. On the other hand, when the Sb content shown in Comparative Examples 1-1 and 1-2 is 0.25% by mass or less, the mechanical properties at 175 ° C. are good, but the transformation temperature is not sufficiently increased, and the transformation Since the temperature is less than 175 ° C., the determination is “x”. When the Sb content shown in Comparative Example 1-3 is 1.5% by mass, the generation of InSb becomes remarkable, the ductility at high temperature deteriorates, and the determination is “x”.
 表1に示す結果より、Sb含有率は0.5質量%以上、1.25質量%以下の範囲である場合に本発明の効果を発現することが分かる。 From the results shown in Table 1, it can be seen that the effect of the present invention is exhibited when the Sb content is in the range of 0.5 mass% or more and 1.25 mass% or less.
 また、実施例1-1~1-4および比較例1-1から、Sbを含有しない場合からのSb含有率と変態温度の上昇は、次の式(1)に示すような関係があることが分かる。 Further, from Examples 1-1 to 1-4 and Comparative Example 1-1, the increase in Sb content and the transformation temperature from the case where no Sb is contained have a relationship as shown in the following formula (1). I understand.
 (式1)
 0.5≦[Sb]≦1.0の場合:
  ΔT=20×[Sb]
 1.0<[Sb]≦1.25の場合:
  ΔT=4×[Sb]+16
 (式中、ΔTは、変態温度上昇量(℃)を表す。)
 次に、In含有率の影響を明確にするために、表2に示す金属組成を有するはんだ合金を作製し評価した。Sb含有率は上述の最小である0.50質量%とし、はんだ合金の作製方法および評価方法は上述したものと同様である。
(Formula 1)
When 0.5 ≦ [Sb] ≦ 1.0:
ΔT t = 20 × [Sb]
When 1.0 <[Sb] ≦ 1.25:
ΔT t = 4 × [Sb] +16
(In the formula, ΔT t represents the transformation temperature increase (° C.).)
Next, in order to clarify the influence of the In content, solder alloys having the metal compositions shown in Table 2 were prepared and evaluated. The Sb content is 0.50% by mass, which is the above-mentioned minimum, and the method for producing and evaluating the solder alloy is the same as that described above.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、Sb含有率が0.5質量%の場合である実施例2-2と従来例1を比較すると、Sb含有によって変態温度が上昇することが分かる。Sb含有率が0.5質量%の場合、In含有率がそれぞれ5.5質量%、6.0質量%の実施例2-1、2-2において、変態温度および175℃での機械的特性(引張強度および伸び)がいずれも向上している。In含有率の増加と共に変態温度は低下し、In含有率がそれぞれ6.5質量%、7.5質量%である比較例2-2、2-3においては、高温での機械的特性は良好であるが、変態温度が175℃未満であるため、判定は「×」である。更に、In含有率の大きい7.5質量%である比較例2-4では、変態温度および175℃での機械的特性は共に十分でなく、判定は「×」である。一方、機械的特性(引張強度および伸び)の評価の結果から、In含有率が5.0質量%の比較例2-1では、Inの固溶による効果が小さく従来例1と比較して175℃での引張強度が小さく、判定は「×」である。 As shown in Table 2, when Example 2-2, where the Sb content is 0.5 mass%, is compared with Conventional Example 1, it can be seen that the transformation temperature increases due to the Sb content. When the Sb content was 0.5% by mass, the mechanical properties at the transformation temperature and 175 ° C. in Examples 2-1 and 2-2 in which the In content was 5.5% by mass and 6.0% by mass, respectively. Both (tensile strength and elongation) are improved. As the In content increases, the transformation temperature decreases, and in Comparative Examples 2-2 and 2-3 where the In content is 6.5% by mass and 7.5% by mass, respectively, the mechanical properties at high temperatures are good. However, since the transformation temperature is less than 175 ° C., the determination is “x”. Furthermore, in Comparative Example 2-4 having a large In content of 7.5% by mass, both the transformation temperature and the mechanical properties at 175 ° C. are not sufficient, and the determination is “x”. On the other hand, from the results of the evaluation of the mechanical properties (tensile strength and elongation), Comparative Example 2-1 with an In content of 5.0% by mass has a small effect due to the solid solution of In and is 175 compared with Conventional Example 1. The tensile strength at 0 ° C. is small, and the judgment is “x”.
 次に、表3に示すような、Sb含有率の上限である1.25質量%とした場合のはんだ合金を作製し評価した。はんだ合金の作製方法および評価方法は上述したものと同様である。 Next, as shown in Table 3, a solder alloy was prepared and evaluated in the case where the upper limit of the Sb content was 1.25% by mass. The method for producing and evaluating the solder alloy is the same as described above.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、実施例3-2と従来例1を比較すると、Sb含有によって変態温度が上昇することが分かる。表2に示す結果の場合と同様に、In含有率の増加と共に変態温度は低下し、In含有率が7.0質量%以上である比較例3-2、3-3においては変態温度が175℃未満であるため判定は「×」である。また、引張強度および伸びの機械的特性に着目すると、In含有率が5.0質量%の比較例3-1の場合、Inの固溶効果が十分に発揮されず、175℃環境での引張強度が従来例1より小さいため判定は「×」である。 As shown in Table 3, when Example 3-2 is compared with Conventional Example 1, it can be seen that the transformation temperature increases due to the Sb content. As in the case of the results shown in Table 2, the transformation temperature decreases as the In content increases, and in Comparative Examples 3-2 and 3-3 where the In content is 7.0% by mass or more, the transformation temperature is 175. Since it is less than ° C., the determination is “x”. Further, focusing on the mechanical properties of tensile strength and elongation, in the case of Comparative Example 3-1, in which the In content is 5.0% by mass, the In-solution effect is not sufficiently exhibited, and the tensile strength in an environment of 175 ° C. Since the intensity is smaller than Conventional Example 1, the determination is “x”.
 表2、3に示すそれぞれの結果を基に、本発明の効果を発現するIn含有率の範囲は次のようになる。 Based on the results shown in Tables 2 and 3, the range of the In content that exhibits the effect of the present invention is as follows.
 Sb含有率が0.5≦[Sb]≦1.25の場合において、In含有率と機械的特性の関係に着目すると、本発明の効果を発現するためにはIn含有率が5.5質量%以上である必要があり、(式2)の関係となる。 When the Sb content is 0.5 ≦ [Sb] ≦ 1.25, when attention is paid to the relationship between the In content and the mechanical properties, the In content is 5.5% in order to exhibit the effects of the present invention. % Or more, which is the relationship of (Equation 2).
 (式2)
 [In]≧5.5
 次に、In含有率と変態温度との関係に着目する。
(Formula 2)
[In] ≧ 5.5
Next, attention is focused on the relationship between the In content and the transformation temperature.
 図3は、表2に示すSb含有率が0.50質量%の場合のIn含有率と変態温度との関係を示す図である。図3中、横軸はIn含有率(質量%)を、縦軸は変態温度(℃)を示している。 FIG. 3 is a diagram showing the relationship between the In content and the transformation temperature when the Sb content shown in Table 2 is 0.50 mass%. In FIG. 3, the horizontal axis indicates the In content (% by mass), and the vertical axis indicates the transformation temperature (° C.).
 Sb含有率が0.50質量%の場合、In含有率と変態温度の関係は次の式3の関係となる。 When the Sb content is 0.50% by mass, the relationship between the In content and the transformation temperature is expressed by the following formula 3.
 (式3)
   T=-18.9×[In]+289
(式中、Tは、変態温度(℃)を表す。)
 式1より、Sb含有による変態温度上昇効果は10℃であるため、Sbを含有しない場合は次の式4のような関係となる。
(Formula 3)
T t = −18.9 × [In] +289
(In the formula, T t represents the transformation temperature (° C.).)
From Equation 1, the effect of increasing the transformation temperature due to the inclusion of Sb is 10 ° C. Therefore, when Sb is not contained, the relationship is as shown in the following Equation 4.
 (式4)
   T=-18.9×[In]+279
 (式中、Tは、変態温度(℃)を表す。)
 これらの結果から、変態温度が175℃以上、かつはんだ合金の機械的特性を向上する本発明の効果を発現するためには、式5のような関係が必要である。
(Formula 4)
T t = −18.9 × [In] +279
(In the formula, T t represents the transformation temperature (° C.).)
From these results, in order to develop the effect of the present invention that improves the mechanical properties of the solder alloy with a transformation temperature of 175 ° C. or higher, the relationship shown in Equation 5 is necessary.
 (式5)
  5.5≦[In]≦6.5
 かつ
 0.5≦[Sb]≦1.0の場合:
  -18.9×[In]+279+20×[Sb]≧175
 1.0<[Sb]≦1.25の場合:
  -18.9×[In]+279+4×[Sb]+16≧175
 式1、式2、式5より、本発明の効果を発現するIn含有率(質量%)とSb含有率(質量%)には、次の式6の関係を満たす必要がある。
(Formula 5)
5.5 ≦ [In] ≦ 6.5
And 0.5 ≦ [Sb] ≦ 1.0:
−18.9 × [In] + 279 + 20 × [Sb] ≧ 175
When 1.0 <[Sb] ≦ 1.25:
−18.9 × [In] + 279 + 4 × [Sb] + 16 ≧ 175
From Formula 1, Formula 2, and Formula 5, it is necessary to satisfy | fill the relationship of following Formula 6 to In content rate (mass%) and Sb content rate (mass%) which express the effect of this invention.
 (式6)
  0.5≦[Sb]≦1.25
 かつ
 0.5≦[Sb]≦1.0の場合:
  5.5≦[In]≦5.50+1.06×[Sb]
 1.0<[Sb]≦1.25の場合:
  5.5≦[In]≦6.35+0.212×[Sb]
 本発明の効果の一つである、高温での延性の改善を特に発現する組成範囲を明確にするために、表4に示すような、Sb含有率が0.75質量%および1.0質量%であり、かつIn含有率が式6の関係を満たす場合のはんだ合金を作製し、In含有率との関係を詳細に評価した。はんだ合金の作製方法及び評価方法は上述したものと同様である。
(Formula 6)
0.5 ≦ [Sb] ≦ 1.25
And 0.5 ≦ [Sb] ≦ 1.0:
5.5 ≦ [In] ≦ 5.50 + 1.06 × [Sb]
When 1.0 <[Sb] ≦ 1.25:
5.5 ≦ [In] ≦ 6.35 + 0.212 × [Sb]
In order to clarify the composition range in which the improvement of ductility at high temperature, which is one of the effects of the present invention, is clarified, the Sb content as shown in Table 4 is 0.75 mass% and 1.0 mass. %, And a solder alloy in which the In content satisfies the relationship of Formula 6 was prepared, and the relationship with the In content was evaluated in detail. The method for producing and evaluating the solder alloy is the same as described above.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、実施例4-1~4-9のいずれの場合にも、従来例1と比較して、変態温度および機械的特性が上昇している。また、175℃での伸びに着目すると、In含有率が6.0質量%以上ではIn含有率が小さいほど伸びは高い値を示すことが分かり、なかでもIn含有率が6.1質量%以下の場合、175℃での伸びが特に大きく判定が◎であった。 As shown in Table 4, in any of Examples 4-1 to 4-9, the transformation temperature and mechanical properties are increased as compared with Conventional Example 1. Further, focusing on the elongation at 175 ° C., it can be seen that when the In content is 6.0% by mass or more, the smaller the In content, the higher the elongation is. In particular, the In content is 6.1% by mass or less. In this case, the elongation at 175 ° C. was particularly large, and the evaluation was ◎.
 表4に示す結果より、本発明の効果を発現するためには、In含有率(質量%)とSb含有率(質量%)は、次の式7の関係を満たすことが特に望ましい。 From the results shown in Table 4, it is particularly desirable that the In content (mass%) and the Sb content (mass%) satisfy the relationship of the following formula 7 in order to exhibit the effects of the present invention.
 (式7)
  0.5≦[Sb]≦1.0
 かつ
  5.5≦[In]≦5.50+1.06×[Sb]
 かつ
  [In]≦6.1
 (Cu含有率)
 Cuは、はんだ付け時の融点の低下および被接合部材の材質の選択性向上の目的で含有している。
(Formula 7)
0.5 ≦ [Sb] ≦ 1.0
And 5.5 ≦ [In] ≦ 5.50 + 1.06 × [Sb]
And [In] ≦ 6.1
(Cu content)
Cu is contained for the purpose of lowering the melting point during soldering and improving the selectivity of the material of the member to be joined.
 はんだ付けにおける被接合部材としては、母材のCuまたはNiに、各種めっきやプリフラックス処理を施されたものが主である。 As a member to be joined in soldering, a material obtained by subjecting the base material Cu or Ni to various plating or preflux treatment is mainly used.
 このうち、被接合部材の母材がNiの場合は、Inを含みかつCuを含まないまたは少量含むはんだ合金を用いてはんだ付けを行った際に、界面反応層(NiSn)においてInが一部取り込まれる。そのため、はんだ付け後のはんだ接合部の機械的特性の変化が生じる。被接合部材の母材がNiの場合、界面反応層に一部取り込まれる量だけInを予め多く含有する必要がある。しかしながら、実際の回路基板においては、一枚の回路基板上に様々な電子部品が搭載されるため、母材がCu、Niそれぞれの電子部品が搭載される場合には、In含有率の予めの調整は困難である。 Among these, in the case where the base material of the member to be joined is Ni, when soldering is performed using a solder alloy containing In and not containing Cu or containing a small amount, In in the interface reaction layer (Ni 3 Sn 4 ) Is partially captured. Therefore, a change in the mechanical characteristics of the solder joint after soldering occurs. When the base material of the member to be joined is Ni, it is necessary to contain a large amount of In in advance by an amount that is partially taken into the interface reaction layer. However, in an actual circuit board, various electronic components are mounted on a single circuit board. Therefore, when an electronic component of Cu or Ni is mounted on the base material, the In content ratio is determined in advance. Adjustment is difficult.
 しかし、はんだ合金に一定量のCuを含有することで、はんだ付け時にはんだ合金中のCuが界面反応層にCuSn系の合金層を形成し、Inの取り込みを防ぐことができ、被接合部材の選択性が向上する。 However, when a certain amount of Cu is contained in the solder alloy, Cu in the solder alloy forms a Cu 6 Sn 5 based alloy layer in the interface reaction layer at the time of soldering, and can prevent the incorporation of In. The selectivity of the joining member is improved.
 このようなCu含有の効果を発現するためには、Cu含有率が0.5質量%以上であることを、本出願人による特開2015-100833号で明らかにしている。よって、Cu含有率の下限値は0.5質量%である。 In order to express such an effect of containing Cu, it is clarified in Japanese Patent Application Laid-Open No. 2015-1000083 that the present applicant has a Cu content of 0.5% by mass or more. Therefore, the lower limit of the Cu content is 0.5% by mass.
 他方、Cuを過剰に含有すると、融点が上昇するため、1.2質量%以下であることが望ましい。 On the other hand, when Cu is excessively contained, the melting point increases, so that it is desirable that the content be 1.2% by mass or less.
 よって、本発明のはんだ合金では、Cu含有率を0.5質量%以上、1.2質量%以下とする。 Therefore, in the solder alloy of the present invention, the Cu content is 0.5 mass% or more and 1.2 mass% or less.
 (Bi含有率)
 Biは、はんだ材料の機械的強度の向上と融点の低下の目的で含有している。はんだ合金中では、Bi含有率が3.0質量%以下の比較的小さい場合はβ-Snに固溶し、Bi含有率が大きくなるとBiまたはBi化合物が析出する形で存在する。
(Bi content)
Bi is contained for the purpose of improving the mechanical strength of the solder material and lowering the melting point. In the solder alloy, when the Bi content is relatively small at 3.0% by mass or less, it dissolves in β-Sn, and when the Bi content increases, Bi or Bi compounds are present in a precipitated form.
 Bi含有による機械的強度の向上の効果が得られるには、Biを0.1質量%以上含有している必要があり、Bi含有率は0.1質量%以上であることが望ましい。 In order to obtain the effect of improving the mechanical strength due to the Bi content, it is necessary to contain Bi by 0.1% by mass or more, and the Bi content is preferably 0.1% by mass or more.
 また、BiまたはBi化合物の析出が生じる場合、粒界のすべりを妨げる働きを示すため、高温での延性が著しく低下する。そのため、Bi含有率の上限は、BiまたはBi化合物の析出が発生しない3.0質量%以下とすることが望ましい。 In addition, when precipitation of Bi or Bi compound occurs, the ductility at a high temperature is remarkably lowered because it shows a function of preventing the grain boundary from sliding. For this reason, the upper limit of the Bi content is desirably set to 3.0% by mass or less so that precipitation of Bi or Bi compound does not occur.
 以上より、本発明のはんだ合金では、Bi含有率を0.1質量%以上、3.0質量%以下とする。 From the above, in the solder alloy of the present invention, the Bi content is 0.1 mass% or more and 3.0 mass% or less.
 (Ag含有率)
 Agは、はんだ付け時のぬれ性の改善、融点の低下の目的で含有しており、はんだ合金中ではAgSn化合物およびAgInの形態で存在する。
(Ag content)
Ag is contained for the purpose of improving wettability during soldering and lowering the melting point, and is present in the form of Ag 3 Sn compound and Ag 2 In in the solder alloy.
 通常、リフローはんだ付けによりはんだ合金を均一に溶融させるためには、はんだ合金の液相線温度+10℃以上のリフローピーク温度を設定することが好ましい。かつ、電子部品の耐熱温度から考えると、リフローピーク温度は240℃以下とすることが好ましい。 Usually, in order to uniformly melt the solder alloy by reflow soldering, it is preferable to set the reflow peak temperature of the liquidus temperature of the solder alloy + 10 ° C. or more. In view of the heat resistance temperature of the electronic component, the reflow peak temperature is preferably 240 ° C. or lower.
 従って、はんだ合金の液相線温度を230℃以下とすることが好ましく、本発明のはんだ合金では、Ag含有率を1.0質量%以上、4.0質量%以下とする。 Therefore, the liquidus temperature of the solder alloy is preferably set to 230 ° C. or less. In the solder alloy of the present invention, the Ag content is set to 1.0% by mass or more and 4.0% by mass or less.
 以上のようにして決定した各元素の含有率に基づいて、表5に示す金属組成を有する実施例、比較例および従来例のはんだ合金を作製し、耐熱疲労特性を評価した。はんだ合金の作製方法は上述したものと同様である。 Based on the content of each element determined as described above, examples, comparative examples, and conventional solder alloys having the metal compositions shown in Table 5 were prepared, and the heat fatigue resistance was evaluated. The method for producing the solder alloy is the same as described above.
 耐熱疲労特性の評価方法は次の通りである。 The evaluation method of heat fatigue resistance is as follows.
 まず、作製したはんだ合金を、粒径数十μmのはんだ粉に加工し、はんだ粉とフラックスとを90:10の重量比となるように秤量し、これらを混練することではんだペーストを作製した。このはんだペーストを、厚さ150μmのメタルマスクを用いて回路基板上の回路基板電極に印刷した。印刷したはんだペースト上に、チップ抵抗を搭載し、最高240℃の条件でリフロー加熱を行い、実装構造体を作製した。使用した回路基板の回路基板電極の母材は、CuおよびNiであった。 First, the produced solder alloy was processed into solder powder having a particle size of several tens of μm, the solder powder and the flux were weighed so as to have a weight ratio of 90:10, and these were kneaded to produce a solder paste. . This solder paste was printed on the circuit board electrode on the circuit board using a metal mask having a thickness of 150 μm. A chip resistor was mounted on the printed solder paste, and reflow heating was performed at a maximum temperature of 240 ° C. to produce a mounting structure. The base material of the circuit board electrode of the used circuit board was Cu and Ni.
 このようにして作製した実装構造体を-40℃/175℃の温度サイクル試験に付して、2000サイクル後のはんだ接合部の変形を目視観察した。目視観察で変形が認められなかった場合に電気的接続の評価を行い、初期との抵抗値の変化が10%以上あったものを電気的不良「あり」とし、変化が無かったものまたは10%未満であったものを電気的不良「なし」として判定した。なお、表5の電気的不良欄における「-」は評価を行わなかったことを示す。 The mounting structure thus fabricated was subjected to a temperature cycle test of −40 ° C./175° C., and the deformation of the solder joint after 2000 cycles was visually observed. When no deformation is observed by visual observation, the electrical connection is evaluated, and when there is a change in the resistance value of 10% or more from the initial value, the electrical failure is “present”, and there is no change or 10% Those that were less than were judged as electrical failure “none”. Note that “−” in the electrical failure column of Table 5 indicates that no evaluation was performed.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、上述のようにして決定したはんだ合金の組成範囲に含まれる実施例5-1~5-11では、はんだ接合部の自己変形が発生せず、かつ、短絡や断線の電気的不良が発生しなかった。 As shown in Table 5, in Examples 5-1 to 5-11 included in the composition range of the solder alloy determined as described above, self-deformation of the solder joint does not occur, and short-circuiting or disconnection occurs. There was no electrical failure.
 他方、In、Sb含有率が異なる比較例5-1~5-4では、はんだ接合部の自己変形および電気的不良のいずれかが発生した。 On the other hand, in Comparative Examples 5-1 to 5-4 having different In and Sb contents, either self-deformation or electrical failure of the solder joint occurred.
 Cuを含有しない比較例5-5では、はんだ接合部の自己変形は発生しないものの、回路基板電極の母材がNiの場合に断線が発生した。 In Comparative Example 5-5 that does not contain Cu, self-deformation of the solder joint did not occur, but disconnection occurred when the base material of the circuit board electrode was Ni.
 また、Cu含有率が1.5質量%の比較例5-6、Biを含有しない比較例5-7、Bi含有率が3.5質量%の比較例5-8、Agを含有しない比較例5-9では、電気的不良が発生した。 Comparative Example 5-6 with a Cu content of 1.5% by mass, Comparative Example 5-7 without Bi, Comparative Example 5-8 with a Bi content of 3.5% by mass, Comparative Example without Ag In 5-9, an electrical failure occurred.
 また、従来例1~5では、いずれもはんだ接合部の自己変形が発生した。 Also, in all of the conventional examples 1 to 5, self-deformation of the solder joint occurred.
 従って、表1~5に示す評価結果から、
 0.5質量%以上、1.25質量%以下のSbと、
 以下の式(I)または(II):
  0.5≦[Sb]≦1.0の場合
   5.5≦[In]≦5.50+1.06[Sb]   ・・・(I)
  1.0<[Sb]≦1.25の場合
   5.5≦[In]≦6.35+0.212[Sb]  ・・・(II)
(式中、[Sb]はSb含有率(質量%)、[In]はIn含有率(質量%)を表す)
を満たすInと、
 0.5質量%以上、1.2質量%以下のCuと、
 0.1質量%以上、3.0質量%以下のBiと、
 1.0質量%以上、4.0質量%以下のAgと
を含有し、残部がSnから成るはんだ合金において、本発明の効果を奏することが確認された。かかるはんだ合金は、150℃以上において、少なくともSbが固溶したγ相およびβ-Sn相を含む合金組織で構成され得、175℃の環境においても、耐熱疲労特性に優れた接合部を形成することが可能となる。
Therefore, from the evaluation results shown in Tables 1 to 5,
0.5% by mass or more and 1.25% by mass or less of Sb;
The following formula (I) or (II):
In the case of 0.5 ≦ [Sb] ≦ 1.0 5.5 ≦ [In] ≦ 5.50 + 1.06 [Sb] (I)
When 1.0 <[Sb] ≦ 1.25 5.5 ≦ [In] ≦ 6.35 + 0.212 [Sb] (II)
(In the formula, [Sb] represents the Sb content (mass%), and [In] represents the In content (mass%)).
In that satisfies
0.5% by mass or more and 1.2% by mass or less of Cu;
Bi of 0.1 mass% or more and 3.0 mass% or less;
It was confirmed that the effect of the present invention is exhibited in a solder alloy containing 1.0 mass% or more and 4.0 mass% or less of Ag and the balance being Sn. Such a solder alloy can be composed of an alloy structure including at least a γ phase and a β-Sn phase in which Sb is dissolved at 150 ° C. or higher, and forms a joint having excellent heat fatigue resistance even in an environment of 175 ° C. It becomes possible.
 より望ましくは、はんだ合金は、
 0.5質量%以上、1.0質量%以下のSbと、
 以下の式(I):
  5.5≦[In]≦5.50+1.06[Sb]   ・・・(I)
を満たすInと、
 0.5質量%以上、1.2質量%以下のCuと、
 0.1質量%以上、3.0質量%以下のBiと、
 1.0質量%以上、4.0質量%以下のAgと
を含有し、残部がSnから成る。かかるはんだ合金は、150℃以上において、少なくともSbが固溶したγ相およびβ-Sn相を含む合金組織で構成され得、175℃の環境においても、更に耐熱疲労特性に優れたはんだ接合部を形成することが可能となる。
More preferably, the solder alloy is
0.5% by mass or more and 1.0% by mass or less of Sb;
The following formula (I):
5.5 ≦ [In] ≦ 5.50 + 1.06 [Sb] (I)
In that satisfies
0.5% by mass or more and 1.2% by mass or less of Cu;
Bi of 0.1 mass% or more and 3.0 mass% or less;
1.0 mass% or more and 4.0 mass% or less of Ag are contained, and the remainder consists of Sn. Such a solder alloy can be composed of an alloy structure including at least a γ phase and a β-Sn phase in which Sb is dissolved at 150 ° C. or higher, and has a solder joint portion having further excellent heat fatigue resistance even in an environment of 175 ° C. It becomes possible to form.
 更により望ましくは、はんだ合金は、
 0.5質量%以上、1.0質量%以下のSbと、
 以下の式(I):
  5.5≦[In]≦5.50+1.06[Sb]   ・・・(I)
を満たし、かつ、6.1質量%以下であるInと、
 0.5質量%以上、1.2質量%以下のCuと、
 0.1質量%以上、3.0質量%以下のBiと、
 1.0質量%以上、4.0質量%以下のAgと
を含有し、残部がSnから成る。かかるはんだ合金は、150℃以上において、少なくともSbが固溶したγ相およびβ-Sn相を含む合金組織で構成され得、175℃の環境においても、特に耐熱疲労特性に優れたはんだ接合部を形成することが可能となる。
Even more preferably, the solder alloy is
0.5% by mass or more and 1.0% by mass or less of Sb;
The following formula (I):
5.5 ≦ [In] ≦ 5.50 + 1.06 [Sb] (I)
And In which is 6.1% by mass or less,
0.5% by mass or more and 1.2% by mass or less of Cu;
Bi of 0.1 mass% or more and 3.0 mass% or less;
1.0 mass% or more and 4.0 mass% or less of Ag are contained, and the remainder consists of Sn. Such a solder alloy can be composed of an alloy structure including a γ phase and a β-Sn phase in which at least Sb is dissolved at 150 ° C. or higher, and has a particularly excellent solder joint property even in an environment of 175 ° C. It becomes possible to form.
 本発明の実装構造体は、電子部品の電極部と回路基板の電極部とが、前述のはんだ合金によって接合されていることを特徴とする。これによれば、175℃の環境においても、耐熱疲労特性により優れた接合を有する実装構造体を提供することができる。 The mounting structure of the present invention is characterized in that an electrode part of an electronic component and an electrode part of a circuit board are joined by the solder alloy described above. According to this, even in an environment of 175 ° C., it is possible to provide a mounting structure having a bonding superior in thermal fatigue resistance.
 電子部品および回路基板には任意のものを使用することが可能である。電子部品の電極部および回路基板の電極部は、任意の適切な導電性材料から成っていてよく、これらは、被接合部材として上述したように、Cuおよび/またはNiを含むものであってもよい。また、はんだ合金は、任意の形態を有し得、単独で(例えば粉末、糸ハンダ、溶融液、プリフォームはんだなどの形態で)、またはフラックスなどと一緒に(例えばはんだペーストやヤニ入りはんだなどの形態で)、はんだ付けに使用され得る。はんだ付けの条件は、適宜選択され得る。 任意 Electronic components and circuit boards can be used arbitrarily. The electrode part of the electronic component and the electrode part of the circuit board may be made of any appropriate conductive material, and these may contain Cu and / or Ni as described above as the members to be joined. Good. Also, the solder alloy can have any form, alone (eg, in the form of powder, yarn solder, melt, preform solder, etc.) or together with flux (eg, solder paste or solder containing solder) Can be used for soldering. The soldering conditions can be appropriately selected.
 本発明の1つの態様において、上記はんだ合金は、Sb含有率が0.5質量%以上、1.0質量%以下であり、In含有率が上記式(I)を満たすものであり得る。 In one embodiment of the present invention, the solder alloy may have an Sb content of 0.5% by mass or more and 1.0% by mass or less, and an In content satisfying the above formula (I).
 本発明の上記態様において、In含有率は、6.1質量%以下であることを更に満たすものであり得る。 In the above aspect of the present invention, the In content may further satisfy that it is 6.1% by mass or less.
 本発明の上記はんだ合金は、好ましくは、150℃以上において、少なくともSbが固溶したγ相およびβ-Sn相を含む合金組織を有するものである。 The solder alloy of the present invention preferably has an alloy structure including a γ phase and a β-Sn phase in which at least Sb is dissolved at 150 ° C. or higher.
 本発明のもう1つの要旨によれば、電子部品が回路基板に実装された実装構造体であって、電子部品の電極部と回路基板の電極部とが、本発明の上記はんだ合金によって接合されている、実装構造体が提供される。 According to another aspect of the present invention, there is provided a mounting structure in which an electronic component is mounted on a circuit board, and the electrode portion of the electronic component and the electrode portion of the circuit board are joined by the solder alloy of the present invention. An implementation structure is provided.
 尚、本発明において「はんだ合金」とは、その金属組成が、列挙した金属で実質的に構成されている限り、不可避的に混入する微量金属を含んでいてもよい。はんだ合金は、任意の形態を有し得、例えば単独で、または金属以外の他の成分(例えばフラックスなど)と一緒に、はんだ付けに使用され得る。 In the present invention, the “solder alloy” may contain unavoidably mixed trace metals as long as the metal composition is substantially composed of the enumerated metals. The solder alloy can have any form and can be used for soldering, for example, alone or together with other components other than metal (eg, flux, etc.).
 本発明のはんだ合金および実装構造体は、175℃の高温環境においても機械的特性に優れたはんだ接合部を実現することが可能であり、例えば、エンジンルームなどの高温環境で長期間の電気的導通確保が求められる自動車電装品の実装構造体等に利用するために有用である。 The solder alloy and mounting structure of the present invention can realize a solder joint having excellent mechanical characteristics even in a high temperature environment of 175 ° C. It is useful for use in a mounting structure of an automobile electrical component that is required to ensure conduction.

Claims (5)

  1.  0.5質量%以上、1.25質量%以下のSbと、
     以下の式(I)または(II):
      0.5≦[Sb]≦1.0の場合
       5.5≦[In]≦5.50+1.06[Sb]   ・・・(I)
      1.0<[Sb]≦1.25の場合
       5.5≦[In]≦6.35+0.212[Sb]  ・・・(II)
    (式中、[Sb]はSb含有率(質量%)、[In]はIn含有率(質量%)を表す)
    を満たすInと、
     0.5質量%以上、1.2質量%以下のCuと、
     0.1質量%以上、3.0質量%以下のBiと、
     1.0質量%以上、4.0質量%以下のAgと
    を含有し、残部がSnから成る、はんだ合金。
    0.5% by mass or more and 1.25% by mass or less of Sb;
    The following formula (I) or (II):
    In the case of 0.5 ≦ [Sb] ≦ 1.0 5.5 ≦ [In] ≦ 5.50 + 1.06 [Sb] (I)
    When 1.0 <[Sb] ≦ 1.25 5.5 ≦ [In] ≦ 6.35 + 0.212 [Sb] (II)
    (In the formula, [Sb] represents the Sb content (mass%), and [In] represents the In content (mass%)).
    In that satisfies
    0.5% by mass or more and 1.2% by mass or less of Cu;
    Bi of 0.1 mass% or more and 3.0 mass% or less;
    A solder alloy containing 1.0% by mass or more and 4.0% by mass or less of Ag, the balance being Sn.
  2.  Sb含有率が0.5質量%以上、1.0質量%以下であり、In含有率が前記式(I)を満たす、請求項1に記載のはんだ合金。 The solder alloy according to claim 1, wherein the Sb content is 0.5 mass% or more and 1.0 mass% or less, and the In content satisfies the formula (I).
  3.  In含有率が6.1質量%以下であることを更に満たす、請求項2に記載のはんだ合金。 The solder alloy according to claim 2, further satisfying that the In content is 6.1% by mass or less.
  4.  150℃以上において、少なくともSbが固溶したγ相およびβ-Sn相を含む合金組織を有する、請求項1~3のいずれかに記載のはんだ合金。 The solder alloy according to any one of claims 1 to 3, which has an alloy structure including at least a γ phase and a β-Sn phase in which Sb is dissolved at 150 ° C or higher.
  5.  電子部品が回路基板に実装された実装構造体であって、電子部品の電極部と回路基板の電極部とが、請求項1~4のいずれかに記載のはんだ合金によって接合されている、実装構造体。 A mounting structure in which an electronic component is mounted on a circuit board, wherein the electrode part of the electronic component and the electrode part of the circuit board are joined by the solder alloy according to any one of claims 1 to 4. Structure.
PCT/JP2016/002195 2015-05-19 2016-04-26 Solder alloy and package structure using same WO2016185674A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/511,231 US20170282305A1 (en) 2015-05-19 2016-04-26 Solder alloy and package structure using same
CN201680002769.4A CN106715040B (en) 2015-05-19 2016-04-26 Solder alloy and the assembling structure for using it
EP16796071.5A EP3299113B1 (en) 2015-05-19 2016-04-26 Solder alloy and package structure using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015102180 2015-05-19
JP2015-102180 2015-05-19
JP2016-021113 2016-02-05
JP2016021113A JP6135885B2 (en) 2015-05-19 2016-02-05 Solder alloy and mounting structure using the same

Publications (1)

Publication Number Publication Date
WO2016185674A1 true WO2016185674A1 (en) 2016-11-24

Family

ID=57319725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002195 WO2016185674A1 (en) 2015-05-19 2016-04-26 Solder alloy and package structure using same

Country Status (1)

Country Link
WO (1) WO2016185674A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186218A1 (en) * 2017-04-07 2018-10-11 株式会社ケーヒン Solder material
EP3593937A4 (en) * 2017-03-10 2020-08-05 Tamura Corporation Lead-free solder alloy, solder paste, and electronic circuit board

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1346728A (en) * 2001-09-19 2002-05-01 大连理工大学 Lead-free alloy solder containing rare-earth and more alloy components
WO2002040213A1 (en) * 2000-11-16 2002-05-23 Singapore Asahi Chemical And Solder Industries Pte. Ltd. Lead-free solders
JP2013252548A (en) * 2012-06-08 2013-12-19 Nihon Almit Co Ltd Solder paste for joining micro component
JP5654716B1 (en) * 2014-06-24 2015-01-14 ハリマ化成株式会社 Solder alloy, solder paste and electronic circuit board
JP2015020182A (en) * 2013-07-17 2015-02-02 ハリマ化成株式会社 Solder composition, solder paste, and electronic circuit board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002040213A1 (en) * 2000-11-16 2002-05-23 Singapore Asahi Chemical And Solder Industries Pte. Ltd. Lead-free solders
CN1346728A (en) * 2001-09-19 2002-05-01 大连理工大学 Lead-free alloy solder containing rare-earth and more alloy components
JP2013252548A (en) * 2012-06-08 2013-12-19 Nihon Almit Co Ltd Solder paste for joining micro component
JP2015020182A (en) * 2013-07-17 2015-02-02 ハリマ化成株式会社 Solder composition, solder paste, and electronic circuit board
JP5654716B1 (en) * 2014-06-24 2015-01-14 ハリマ化成株式会社 Solder alloy, solder paste and electronic circuit board

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3593937A4 (en) * 2017-03-10 2020-08-05 Tamura Corporation Lead-free solder alloy, solder paste, and electronic circuit board
WO2018186218A1 (en) * 2017-04-07 2018-10-11 株式会社ケーヒン Solder material
JP2018176191A (en) * 2017-04-07 2018-11-15 株式会社ケーヒン Solder material
EP3608050A4 (en) * 2017-04-07 2020-08-05 Keihin Corporation Solder material

Similar Documents

Publication Publication Date Title
KR102207301B1 (en) Lead-free solder alloy with high reliability
KR20180006928A (en) High reliability lead-free solder alloy for electronic applications in harsh environments
KR102133347B1 (en) Solder alloy, solder ball, solder preform, solder paste and solder joint
JP4770733B2 (en) Solder and mounted products using it
TWI677581B (en) Solder alloy, solder paste, solder ball, flux-cored solder and solder joint
JP2006255784A (en) Unleaded solder alloy
WO2018174162A1 (en) Solder joint
JP6135885B2 (en) Solder alloy and mounting structure using the same
JP6719443B2 (en) Lead-free solder alloy, electronic circuit mounting board and electronic control unit
JP7133397B2 (en) Lead-free solder alloy, electronic circuit board and electronic control device
KR20200122980A (en) Lead-free solder alloy, electronic circuit mounting board and electronic control device
WO2016185674A1 (en) Solder alloy and package structure using same
KR20240013669A (en) Solder alloy, solder ball, solder paste and solder joint
KR102373856B1 (en) Lead-free solder alloy, electronic circuit board and electronic control unit
ES2921678T3 (en) Lead-free solder alloy, electronic circuit substrate and electronic control device
JP2019136776A (en) Solder joint method
JP6745453B2 (en) Solder alloy and mounting structure using the same
JP6504401B2 (en) Solder alloy and mounting structure using the same
JP5051633B2 (en) Solder alloy
JP4979120B2 (en) Lead-free solder alloy
JP2019155466A (en) Solder alloy and on-vehicle electronic circuit
JP7421157B1 (en) Solder alloys, solder pastes and solder joints
TW202405196A (en) Solder alloys, solder balls, solder pastes and solder joints

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796071

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016796071

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2016796071

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15511231

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE