WO2016185671A1 - Storage cell control device - Google Patents

Storage cell control device Download PDF

Info

Publication number
WO2016185671A1
WO2016185671A1 PCT/JP2016/002122 JP2016002122W WO2016185671A1 WO 2016185671 A1 WO2016185671 A1 WO 2016185671A1 JP 2016002122 W JP2016002122 W JP 2016002122W WO 2016185671 A1 WO2016185671 A1 WO 2016185671A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
period
storage battery
charging
rate
Prior art date
Application number
PCT/JP2016/002122
Other languages
French (fr)
Japanese (ja)
Inventor
遥 仲宗根
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2017518739A priority Critical patent/JP6688981B2/en
Publication of WO2016185671A1 publication Critical patent/WO2016185671A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells

Definitions

  • the present invention relates to a storage battery control device or the like used in a power distribution system that performs a power supply operation of supplying power to a load.
  • Patent Document 1 Conventionally, in a system in which a commercial power supply and a storage battery coexist, there is disclosed a configuration in which a charging rate is set so that charging is terminated at a predetermined time when constant-current charging the storage battery (for example, see Patent Document 1) .
  • the storage battery of Patent Document 1 has a role of backup and a role of peak shift.
  • the storage battery does not play a role of peak shift (peak suppression) unless control such as charging or discharging is performed for the storage battery for an appropriate period. And since a storage battery does not play a role of peak shift (peak suppression), a bad influence may occur in stable operation of an electric power system (commercial power supply).
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a storage battery control device and the like capable of performing control such as charging or discharging of a storage battery over an appropriate period.
  • a storage battery control apparatus supplies power to a load from each of a power system, a distributed power supply, and a power storage device, and charges the storage battery provided in the power storage device with generated power of the distributed power supply.
  • a storage battery control apparatus for use in a power distribution system that performs an operation and a reverse power flow operation in which power not charged by the storage battery and not consumed by the load among generated power of the distributed power source is reversely flowed to the power system,
  • a demand forecasting unit for predicting a demand transition which is a temporal transition of demand power consumed by a load and a temporal transition in a predetermined period, and a temporal transition of generated power of the dispersed power source which is a temporal transition in the predetermined period
  • a power generation prediction unit for The rate determining unit is configured to generate the power during the predetermined period based on the demand transition predicted by the demand predicting unit and the power generation transition predicted by the power generation predicting unit.
  • a period including the time when the surplus power obtained by removing the demand power from the power is at a peak is set as a charging period in which the charging operation is performed, and planned charging power scheduled as the amount of power charged by the storage battery in the charging period
  • a charging rate for charging the storage battery over the charging period is determined as the target charging rate in the charging period based on an amount and a time length of the charging period.
  • a storage battery control apparatus is used in a discharge operation for discharging a storage battery included in a storage device and a distribution system performing a power supply operation for supplying power from each of an electric power system and the storage device to a load.
  • a storage battery control apparatus comprising: a demand prediction unit that predicts a demand transition which is a temporal transition of demand power consumed by the load and is a temporal transition in a predetermined period; and discharging by the storage battery in a discharge period in which the discharge operation is performed
  • a storage status prediction unit that predicts a dischargeable amount that is a possible power amount and that is a power amount depending on the charge state of the storage battery at the start timing of the discharge period, and matches or approximates the discharge rate of the storage battery to a target discharge rate
  • a rate determining unit for determining the target discharge rate for the target, and the rate determining The period including the time when the power supplied from the power system to the load is peak when it is assumed that the power storage device does not supply power to the load within the predetermined period based on the demand transition
  • a discharge period is set, and the storage battery is discharged over the discharge period based on the dischargeable amount predicted by the storage state prediction unit with respect to the discharge period and the time length of the discharge period. Is determined as the
  • the storage battery control device or the like performs control such as charging or discharging of the storage battery over an appropriate period.
  • FIG. 1 is a block diagram showing the configuration of the power distribution system according to the first embodiment.
  • FIG. 2 is a schematic view showing prediction results of the required power and the generated power according to the first embodiment.
  • FIG. 3A is a schematic view showing storage battery control different from that of the first embodiment.
  • FIG. 3B is a schematic view showing equivalent demand different from that of the first embodiment.
  • FIG. 4A is a schematic view showing the storage battery control of the first embodiment.
  • FIG. 4B is a schematic view showing the equivalent demand of the first embodiment.
  • FIG. 5 is a schematic view showing the process of determining the charging period in the first embodiment.
  • FIG. 6 is a block diagram showing the configuration of the power distribution system according to the second embodiment.
  • FIG. 7 is a schematic view showing charge control of the second embodiment.
  • FIG. 8 is a schematic view showing another charge control of the second embodiment.
  • the amount of power usually means an integrated value of power in a predetermined period, and corresponds to energy.
  • the amount of power per unit time corresponds to the power (power). Since electric power (power) and electric energy (energy) correspond to each other, electric power may be used here in the meaning of electric energy (energy), and electric energy is used in the meaning of electric power (power) There is a case. Then, the amount of power may be referred to as the amount of power.
  • current, power and amount of power may mean their values.
  • charge and discharge correspond to at least one of charge and discharge.
  • the peak may be the maximum or the maximum in a predetermined period.
  • FIG. 1 shows the overall configuration of the power distribution system.
  • the power distribution system includes a storage battery control device 1, a distribution board 2, a solar power generation device 3, a power storage device 4, and power sensors 91 and 92, and supplies power to a load 6.
  • the solar power generation device 3 is a distributed power supply including a solar cell 31 and a power conditioner 32.
  • the storage device 4 includes a storage battery 41 and a power conditioner 42.
  • the distributed power supply of a power distribution system is not limited to the solar power generation device 3, For example, a wind power generator etc. may be sufficient.
  • the power distribution system is applied to a single dwelling unit, but the power distribution system may be applied to a building such as an apartment house or a business office.
  • the power distribution system uses the solar power generation device 3, the power storage device 4, and the commercial power supply 8 (electric power system 7) as a power supply for supplying power to the load 6.
  • the power system 7 is a system for supplying a building as shown in FIG. 1 and is operated by a power company or the like.
  • the commercial power source 8 is, for example, a power plant operated by a power company or the like.
  • the power system 7 may include a commercial power supply 8. Also, the power system 7 may mean a power network.
  • AC power (commercial power) is supplied from the commercial power source 8 to the distribution board 2 through the power system 7. Furthermore, alternating current power (generated power) is supplied to the distribution board 2 from the solar power generation device 3. Furthermore, AC power (discharge power) is supplied from the storage device 4 to the distribution board 2.
  • a master breaker a plurality of branch breakers, a switch, and the like are incorporated. Further, the plurality of branch breakers of the distribution board 2 are provided for the plurality of branch circuits. The distribution board 2 supplies AC power to the plurality of loads 6 through the plurality of branch circuits.
  • the plurality of loads 6 in FIG. 1 are electrical devices such as lighting devices, air conditioners, and information devices connected to a plurality of branch circuits.
  • the solar cell 31 receives sunlight and generates power.
  • the power conditioner 32 converts direct current power obtained by the solar cell 31 generating electric power into alternating current power, and outputs the alternating current power as generated power of the solar power generation device 3. Furthermore, the power conditioner 32 adjusts the frequency and output voltage of the AC power (generated power) output from the power conditioner 32 in order to perform grid connection with the power system 7.
  • the storage battery 41 is connected to the distribution board 2 via a power conditioner 42.
  • Power conditioner 42 charges and discharges storage battery 41. Specifically, the power conditioner 42 converts the AC power supplied from the distribution board 2 into DC power, and supplies the DC power to the storage battery 41 to charge the storage battery 41. Further, the power conditioner 42 discharges the storage battery 41, converts the DC power supplied from the storage battery 41 into AC power, and supplies the AC power to the distribution board 2.
  • the power conditioner 42 adjusts the frequency and output voltage of the AC power (discharge power) output from the power conditioner 42 in order to perform grid connection with the power system 7.
  • the generated power of the solar power generation device 3 is used for a part or all of demand power, charging power and reverse flow power.
  • the discharge power of power storage device 4 (storage battery 41) is used for demand power.
  • the demand power is the total power consumed by the entire load 6 (the sum of the power consumed by a plurality of loads 6).
  • the charging power is the power charged by the storage battery 41.
  • the reverse flow power is power that flows backward to the power system 7.
  • the power distribution system performs a power supply operation of supplying power to the load 6 from each of the power system 7, the solar power generation device 3 and the storage device 4.
  • the power distribution system charges the storage battery 41 with the power generated by the solar power generation device 3 (storage operation), and the power generated by the solar power generation device 3 is not charged by the storage battery 41 and consumed by the load 6
  • a reverse power flow operation is performed to reverse power flow to the power system 7.
  • the storage battery 41 may be charged with commercial power.
  • the power distribution system directly converts the DC power generated by the solar cell 31 into DC power for charging without converting the DC power generated by the solar cell 31 into AC power.
  • the storage battery 41 may be charged.
  • the power distribution system may convert the voltage of the DC power generated by the solar cell 31 into a voltage for charging to charge the storage battery 41.
  • the power sensor 91 measures the current (generated current) supplied from the solar power generation device 3 to the distribution board 2, and stores the generated power data indicating the generated power converted based on the predetermined value from the measured value of the generated current. Output to the control device 1 periodically (with a sampling cycle).
  • the generated power data indicates, for example, generated power obtained by multiplying the measured value of the generated current by a predetermined generated voltage.
  • Power sensor 91 may be provided in power conditioner 32.
  • the power sensor 92 measures the total current supplied from the distribution board 2 to the whole of the load 6 (the sum of the currents supplied to the plurality of loads 6: load current), and based on the measured value of the load current Demand power data indicating the converted demand power is output to the storage battery control device 1 periodically (with a sampling cycle).
  • the demand power data indicates, for example, demand power obtained by multiplying the measured value of the load current by a predetermined load voltage.
  • the storage battery control device 1 includes a demand prediction unit 11, a power generation prediction unit 12, a power storage state prediction unit 13, a rate determination unit 14, a data acquisition unit 15, a storage unit 16, and a communication unit 17. Then, the storage battery control device 1 controls the charging / discharging operation performed on the storage battery 41 by the power conditioner 42 by determining the target charge rate and the target discharge rate of the storage battery 41 to be charged / discharged by the power conditioner 42. .
  • the storage battery control device 1 sets the charging rate corresponding to the power charged by the storage battery 41 via the power conditioner 42, and the discharge rate corresponding to the power discharged by the storage battery 41 as the target charging rate and the target discharging. Control according to the rate. Then, the storage battery control device 1 controls the charge rate and the discharge rate to adjust the commercial power received from the power system 7 and the reverse flow power returned to the power system 7.
  • storage battery control device 1 transmits only the generated power of solar power generation device 3 to electric power system 7 among the generated power of solar power generation device 3 and the discharged power of storage battery 41. You may make it reverse power flow.
  • the storage battery control device 1 includes only a part of the demand prediction unit 11, the power generation prediction unit 12, the power storage state prediction unit 13, the rate determination unit 14, the data acquisition unit 15, the storage unit 16 and the communication unit 17. Good.
  • Other components may be included in a device separate from the storage battery control device 1.
  • the storage battery control device 1 may include only the demand prediction unit 11, the power generation prediction unit 12, and the rate determination unit 14 among them, or only the demand prediction unit 11, the power storage state prediction unit 13, and the rate determination unit 14 May be provided.
  • the data acquisition unit 15 is an acquisition unit that acquires generated power data from the power sensor 91 and acquires demand power data from the power sensor 92.
  • the data acquisition unit 15 stores the generated power data and the required power data in the storage unit 16 in association with the date and time data. Weather information at the time of measurement may be associated with the generated power data.
  • the storage unit 16 stores a history of generated power and required power. Specifically, the storage unit 16 stores power generation data and demand power data for a fixed period in the past (for example, past one week, one month, three months, etc.), and is earlier than the fixed period in the past The old data of are deleted sequentially.
  • the demand prediction unit 11 is a predictor that predicts a time transition of demand power on a day (target day) in which the storage battery 41 is controlled based on the history of demand power of the storage unit 16 at a fixed time every day.
  • the temporal transition of the demand power is a temporal transition of the power consumed by the load 6 in one day.
  • the time transition of demand power is also referred to as demand transition.
  • the demand prediction unit 11 predicts the time transition of the demand power on the target date, for example, by obtaining the average of the demand power at each time based on the history of the demand power. Furthermore, the demand forecasting unit 11 may forecast the time transition of the demand power using only the demand power data on the same day of the week as the target day among all the demand power data.
  • the power generation prediction unit 12 is a predictor that predicts the time transition of the generated power on the target date based on the history of the generated power of the storage unit 16 at a fixed time every day.
  • the time transition of the generated power is also referred to as the power generation transition.
  • the power generation prediction unit 12 predicts the time transition of the generated power on the target date using only the generated power data associated with the past weather information similar to the weather forecast on the target date among all the generated power data. May be In addition, the power generation prediction unit 12 may predict the time transition of the generated power on the target date by obtaining the average of the generated power at each time.
  • Each of the demand prediction unit 11 and the power generation prediction unit 12 may perform prediction on the night before the target day for which the storage battery 41 is controlled or on the morning of the target day.
  • FIG. 2 shows the demand transition predicted by the demand prediction unit 11 and the power generation transition predicted by the power generation prediction unit 12.
  • the time transition of the demand power X1 on one day is the demand transition predicted by the demand prediction unit 11
  • the time transition of the generated power X2 on one day is the power generation transition predicted by the power generation prediction unit 12.
  • the demand power X1 increases in the morning when the consumer starts to operate. Thereafter, in the daytime, the demand power X1 fluctuates in accordance with the use state of the load 6. Then, the demand power X1 increases again in the evening, for example, due to the preparation of dinner or the use of the load 6 by the returning customer. Thereafter, the demand power X1 decreases.
  • the generated power X2 increases from time t1 (around sunrise time) which is the operation start time of the power conditioner 32 in the case of weather where the amount of solar radiation is sufficiently ensured. Then, in the daytime, the generated power X2 decreases after reaching a maximum value around time t2, which is the south-middle time. And generated electric power X2 becomes 0 after time t3 (near sunset time) which is operation stop time of power conditioner 32.
  • FIG. 3A shows storage battery control performed on the demand power X1 and the generated power X2, and shows storage battery control different from the present embodiment.
  • the electric energy which can be discharged by the remaining capacity of the storage battery 41 may be called dischargeable amount.
  • the amount of power that can be charged in a portion obtained by subtracting (subtracting) the remaining capacity from the maximum battery capacity of the storage battery 41 may be called a chargeable amount.
  • the maximum battery capacity is the battery capacity of the storage battery 41 in consideration of the deterioration of the storage battery 41.
  • the maximum battery capacity is a rated capacity in an initial state in which the use of the storage battery 41 is started. The maximum battery capacity then decreases from the rated capacity in accordance with the degree of deterioration of the storage battery 41.
  • the dischargeable amount may be further limited by other conditions (conditions different from the charge state of the storage battery 41).
  • the chargeable amount may be further limited by other conditions (conditions different from the charge state of the storage battery 41).
  • the remaining capacity of the storage battery 41 is small, and the dischargeable amount is “0”.
  • the generated power X2 is supplied, and the generated power X2 is preferentially used for the demand power X1 (area A102 in FIG. 3A).
  • the remainder obtained by subtracting the generated power X2 from the required power X1 is the insufficient power, and this insufficient power is covered by the commercial power (area A101 in FIG. 3A) .
  • demand electric power X1 is covered only with generated electric power X2 from time t11 whose generated electric power X2 is more than demand electric power X1 to time t13. From time t11 to time t13, the remainder obtained by subtracting the demand power X1 from the generated power X2 is surplus power, and the surplus power is preferentially used for charging power of the storage battery 41 (area A103 in FIG. 3A). Then, at time t12, the storage battery 41 reaches a fully charged state. After time t12, the surplus power is reversely flowed to the power system 7 and sold to the power company (area A104 in FIG. 3A).
  • the generated power X2 falls below the required power X1.
  • the remainder obtained by subtracting the generated power X2 from the required power X1 is the insufficient power, and the insufficient power is covered by the discharged power of the storage battery 41 (area A105 in FIG. 3A).
  • the dischargeable amount of the storage battery 41 decreases to "0", and thereafter, the insufficient power is covered by the commercial power (area A106 in FIG. 3A).
  • FIG. 3B shows equivalent demand Y100 when the storage battery control of FIG. 3A is performed.
  • the equivalent demand Y100 corresponds to the power flowing from the power system 7 into the building (purchasing power) and the power flowing out of the building into the power system 7 (selling power).
  • equivalent demand Y100 shown by FIG. 3B is equivalent demand when storage battery control different from the present embodiment is performed.
  • the peak of electric power sale electric power (reverse flow electric power) is large, and the electric power grid
  • the unstable state of the power system 7 is a large fluctuation range of the grid voltage and frequency of the commercial power supplied from the commercial power supply 8 through the power system 7, and the supply and demand balance of the commercial power is broken. .
  • the remaining capacity of the storage battery 41 is small, and the dischargeable amount is “0”.
  • the generated power X2 is supplied, and the generated power X2 is preferentially used for the demand power X1 (area A2 in FIG. 4A).
  • the remainder obtained by subtracting the generated power X2 from the required power X1 is the insufficient power, and this insufficient power is covered by the commercial power (area A1 in FIG. 4A) .
  • demand electric power X1 is covered only with generated electric power X2 from time t11 whose generated electric power X2 is more than demand electric power X1 to time t13. From time t11 to time t13, surplus power, which is the remaining power obtained by subtracting the required power X1 from the generated power X2, is generated. The period in which the surplus power is generated is called a surplus power period T1. Then, rate determination unit 14 sets a charging period T11 for charging storage battery 41 so as to suppress reverse flow power within power surplus period T1.
  • the charging period T11 includes the peak of the surplus power. That is, charging period T11 includes the time when the reverse flow of electric power is a peak when the entire amount of surplus power is reversely flowed to electric power system 7.
  • the rate determination unit 14 is a determination unit that determines a target charge rate or a target discharge rate.
  • the target charge rate is a target charge rate that matches or approximates the charge rate of the storage battery 41.
  • the target discharge rate is a target discharge rate that matches or approximates the discharge rate of the storage battery 41.
  • the rate determination unit 14 sets the charging period T11, and determines the target charging rate based on the set charging period T11 and the like.
  • the charging period T11 may be the power surplus period T1 or a part of the power surplus period T1.
  • the rate determination unit 14 determines whether surplus power is generated for each unit time, for example, by comparing the average value per unit time of the demand power X1 and the generated power X2 with each other, and the power The surplus period T1 is determined.
  • the power surplus period T1 may be set to a plurality of fine periods due to the instantaneous fluctuation of the demand power X1 or the generated power X2.
  • the unit time may be set to, for example, about one hour.
  • the storage status prediction unit 13 is a predictor that predicts the chargeable amount and the dischargeable amount.
  • the chargeable amount is the amount of power that can be charged by the storage battery 41 in the charging period T11, and is the amount of power depending on the charging state of the storage battery 41 at time t11 that is the start time (start timing) of the charging period T11.
  • the dischargeable amount is the amount of power that can be discharged by the storage battery 41 in the discharge period T21, and is the amount of power depending on the charge state of the storage battery 41 at time t15 that is the start time (start timing) of the discharge period T21. is there.
  • the state of charge of the storage battery 41 may be the remaining capacity of the storage battery 41 or the ratio of the remaining capacity to the maximum battery capacity of the storage battery 41.
  • the ratio of the remaining capacity to the maximum battery capacity of the storage battery 41 is also called SOC.
  • the planned charging amount of power scheduled as the amount of power charged by the storage battery 41 in the charging period T11 may be the chargeable amount predicted by the storage state prediction unit 13. Note that the planned charging power amount may be part or all of the surplus power amount in the charging period T11.
  • the storage state prediction unit 13 holds data such as the maximum battery capacity of the storage battery 41 in advance. Further, the storage state prediction unit 13 acquires data of the current remaining capacity of the storage battery 41 from the power conditioner 42 via the communication unit 17. Then, based on the remaining capacity of storage battery 41, the maximum battery capacity of storage battery 41, the predicted result of demand power X1, and the predicted result of generated power X2, storage state prediction unit 13 determines the start time of charging period T11 (time The chargeable amount depending on the state of charge at t11) is predicted.
  • the communication unit 17 is a communication device that performs communication. Specifically, the communication unit 17 communicates with the power conditioner 42 in a wired or wireless manner. Further, the communication unit 17 acquires the current remaining capacity data of the storage battery 41 and the like from the power conditioner 42.
  • the rate determination unit 14 suppresses the peak of reverse flow power by determining the target charging rate in the charging period T11 so that the charging power of the storage battery 41 is averaged in the charging period T11.
  • the rate determination unit 14 divides the chargeable amount based on the charge state at the start time (time t11) of the charge period T11 by the time length of the charge period T11 to obtain the target charge rate in the charge period T11. To derive. Thus, the rate determination unit 14 derives a target charging rate of a constant value in the entire charging period T11.
  • the rate determining unit 14 transmits the data of the derived target charging rate to the power conditioner 42 via the communication unit 17. Specifically, the rate determination unit 14 transmits the data of the derived target charge rate to the power conditioner 42 from the start time (time t11) of the charge period T11 to the end time (time t13) of the charge period T11. Send regularly through.
  • rate determining unit 14 instructs power conditioner 42 to set a target charging rate of a constant value from time t11 to time t13.
  • Power conditioner 42 charges storage battery 41 based on the target charge rate instructed from rate determination unit 14.
  • the charge rate for charging storage battery 41 is It is substantially lower than the indicated target charge rate. Further, in the period from time t111 to time t131, since the surplus power is sufficiently large, the charging rate for charging the storage battery 41 becomes the instructed constant target charging rate.
  • the storage battery 41 is substantially fully charged at the end time of the charging period T11 (time t13) due to the charging in the charging period T11.
  • the surplus power corresponds to the charging power charged by the storage battery 41 (region A3 in FIG. 4A) and the reverse flow power sold (region A4 in FIG. 4A). It is used for both. Then, charging is performed according to the target charging rate determined by the rate determining unit 14 over the entire period of the power surplus period T1. Therefore, the reverse flow power is suppressed over the entire power surplus period T1.
  • FIG. 4B shows equivalent demand Y1 when the storage battery control of FIG. 4A is performed.
  • the peak of the power sale power (reverse flow power) becomes smaller than the equivalent demand Y100, and the peak of the power sale power is suppressed.
  • the peak of the power sale power is suppressed to the upper limit target value K1 or less.
  • the upper limit target value K1 is an index determined so that the power system 7 does not become unstable, and indicates a standard for suppressing an excessive increase in the peak of the sold power.
  • the upper limit target value K1 is a value designated at any time by a demand response signal (hereinafter referred to as a DR signal) transmitted from a power company or an aggregator.
  • the upper limit target value K1 may be a fixed value predetermined by a power company or an aggregator.
  • the storage battery control device 1 can suppress the peak of selling power (reverse flow power) when the surplus power of the solar power generation device 3 is reversely flowed. It can contribute to stabilization.
  • the generated power X2 decreases until it becomes equal to the required power X1. Then, after time t13, the remainder obtained by subtracting the generated power X2 from the required power X1 is the insufficient power, and the insufficient power is covered by the discharged power of the storage battery 41 and the commercial power.
  • equivalent demand Y100 shown in FIG. 3B the peak of purchased power (commercial power supplied to load 6) is large, and power system 7 may become unstable.
  • Rate determining unit 14 defines a period including a period in which commercial power (Y200 in FIG. 4B) supplied to load 6 exceeds upper limit target value K2 as discharge period T21 when all the insufficient power is supplied by commercial power.
  • the discharge period T21 includes a period in which the commercial power supplied to the load 6 exceeds the upper limit target value K2 when the discharge power of the storage battery 41 is not supplied to the load 6.
  • the discharge period T21 includes the time when the commercial power supplied to the load 6 is a peak when the discharge power of the storage battery 41 is not supplied to the load 6.
  • the commercial power supplied to the load 6 is the upper limit target value when all the insufficient power is supplied by the commercial power, that is, when the discharged power of the storage battery 41 is not supplied to the load 6. It may be a period exceeding K2.
  • the upper limit target value K2 is an index determined to prevent the power system 7 from becoming unstable, and indicates a standard for suppressing an excessive increase in the peak of purchased power.
  • the upper limit target value K2 is a value designated at any time by a DR signal transmitted from a power company or an aggregator.
  • the upper limit target value K2 may be a fixed value predetermined by a power company or an aggregator.
  • the rate determination unit 14 determines the target discharge rate in the discharge period T21 so that the discharge power of the storage battery 41 is averaged in the discharge period T21. Suppress the peak of).
  • the rate determination unit 14 divides the dischargeable amount based on the charge state at the start time (time t15) of the discharge period T21 by the time length of the discharge period T21 to obtain the target discharge rate in the discharge period T21. To derive.
  • the rate determination unit 14 transmits the data of the derived target discharge rate to the power conditioner 42 via the communication unit 17. Specifically, the rate determination unit 14 sends the data of the target discharge rate derived to the communication unit 17 from the start time (time t15) of the discharge period T21 to the end time (time t16) of the discharge period T21. Send regularly through.
  • the rate determination unit 14 instructs the power conditioner 42 on the target discharge rate during the period from time t15 to time t16.
  • Power conditioner 42 discharges storage battery 41 at the target discharge rate instructed from rate determination unit 14.
  • the peak of purchased power (commercial power supplied to the load 6) becomes smaller than equivalent demand Y100, and the peak of purchased power is suppressed.
  • the peak of purchased power is suppressed to the upper limit target value K2 or less.
  • the storage battery control device 1 can suppress the peak of purchased power (commercial power supplied to the load 6) when the insufficient power is covered by the commercial power. It can contribute to stabilization.
  • the storage battery control device 1 described above is used in a power distribution system that performs a power supply operation of supplying power to the load 6 from each of the power system 7 (commercial power supply 8), the distributed power supply (such as the solar power generation device 3), and the storage device 4 Be
  • the power distribution system includes a charging operation for charging the storage battery 41 of the storage device 4 with the generated power of the distributed power supply, and the power generated by the distributed power supply that is not charged by the storage battery 41 and not consumed by the load 6. Perform reverse flow operation to reverse flow.
  • the rate determination unit 14 determines surplus power obtained by removing demand power from generated power within a predetermined period based on the demand transition predicted by the demand prediction unit 11 and the power generation transition predicted by the power generation prediction unit 12. Is set as the charging period T11 in which the charging operation is performed.
  • rate determining unit 14 determines a target charging rate based on the scheduled charging power amount scheduled as the amount of power charged by storage battery 41 in charging period T11 and the time length of charging period T11. Specifically, rate determining unit 14 determines a charging rate for charging storage battery 41 over the charging period T11 as a target charging rate in charging period T11.
  • storage battery control device 1 can perform control of charge to storage battery 41 over a suitable period. Specifically, the storage battery control device 1 can suppress the peak of reverse flow power by charging the storage battery 41 in the charging period T11 including the time when the surplus power is at the peak. That is, when selling surplus power of the distributed power supply, the storage battery control device 1 can suppress the peak of the selling power (reverse flow power), and can contribute to the stabilization of the power system 7.
  • the storage battery control device 1 is further configured to estimate a chargeable amount which is an amount of power chargeable by the storage battery 41 in the charging period T11 and an amount of power depending on a charging state of the storage battery 41 at the start timing of the charging period T11.
  • the situation prediction unit 13 may be provided.
  • the rate determination unit 14 may set the chargeable amount as the scheduled charge amount.
  • the target charge rate is determined based on the chargeable amount. Therefore, storage battery control device 1 can continue charging appropriately until the end timing of charging period T11 based on the chargeable amount.
  • the rate determination unit 14 may determine the target charge rate as a constant value over the charge period T11.
  • the target charge rate is set to a constant value over the charge period T11. Therefore, charging control is simplified.
  • the rate determination unit 14 may determine the target charging rate by dividing the planned charging amount by the time length of the charging period T11.
  • storage battery control device 1 can average the power charged by storage battery 41 in charging period T11 including the time when the surplus power is at the peak.
  • the rate determination unit 14 may set a power surplus period T1 in which the generated power exceeds the demand power as the charging period T11.
  • the storage battery control device 1 described above performs a discharging operation for discharging the storage battery 41 included in the storage device 4 and a feeding operation for supplying power to the load 6 from each of the power system 7 (commercial power supply 8) and the storage device 4 Used in power distribution systems. Then, the storage battery control device 1 includes a demand prediction unit 11, a storage state prediction unit 13, and a rate determination unit 14.
  • the demand prediction unit 11 predicts a demand transition which is a temporal transition of demand power consumed by the load 6 and which is a temporal transition in a predetermined period (for example, one day).
  • the storage state prediction unit 13 predicts a dischargeable amount that is an amount of power that can be discharged by the storage battery 41 during the discharge period T21 in which the discharge operation is performed and that depends on the charge state of the storage battery 41 at the start timing of the discharge period T21. Do.
  • the rate determination unit 14 determines a target discharge rate for causing the discharge rate of the storage battery 41 to match or approach (match or approach) the target discharge rate.
  • the rate determination unit 14 sets the discharge period T21 based on the demand transition predicted by the demand prediction unit 11. Specifically, rate determining unit 14 determines that the time when the power supplied from power system 7 to load 6 is peak when it is assumed that power is not supplied from power storage device 4 to load 6 during a predetermined period. A period including is set as the discharge period T21.
  • the rate determination unit 14 determines a target discharge rate based on the dischargeable amount predicted by the storage state prediction unit 13 for the discharge period T21 and the time length of the discharge period T21. Specifically, rate determining unit 14 determines a discharge rate for discharging storage battery 41 over discharge period T21 as a target discharge rate in discharge period T21.
  • storage battery control device 1 can perform control of discharge to storage battery 41 over an appropriate period. Specifically, the storage battery control device 1 can discharge the storage battery 41 over the discharge period T21 including the time when the commercial power supplied to the load 6 is peak when the discharge is not performed. That is, the storage battery control device 1 can suppress the peak of purchased power and can contribute to the stabilization of the power system 7.
  • the rate determination unit 14 may determine the target discharge rate as a constant value over the discharge period T21.
  • the target discharge rate is set to a constant value over the discharge period T21. Therefore, discharge control is simplified.
  • the rate determination unit 14 may determine the target discharge rate by dividing the dischargeable amount by the time length of the discharge period T21.
  • storage battery control device 1 can average the power discharged by storage battery 41 in discharge period T21 including the time when commercial power supplied to load 6 is at a peak when discharge is not performed.
  • the storage battery control device 1 may further include a power generation prediction unit 12 that predicts a power generation transition that is a time transition of a generated power of the distributed power supply and that is a time transition in a predetermined period.
  • Rate determination unit 14 sets discharge period T21 within the power shortage period in which the generated power falls below demand power based on the demand transition predicted by demand prediction unit 11 and the power generation transition predicted by power generation prediction unit 12 You may
  • a discharge period T21 is set that includes the time when commercial power supplied to the load 6 is at a peak when discharge is not performed. Therefore, storage battery control device 1 can appropriately suppress the peak of commercial power by discharged power.
  • rate determination unit 14 sets, as discharge period T21, a period in which the power supplied from power system 7 to load 6 exceeds upper limit target value K2 when it is assumed that power is not supplied from power storage device 4 to load 6. You may
  • the storage battery control device 1 reduces the commercial power supplied to the load 6 and brings the peak of the commercial power supplied to the load 6 closer to the upper limit target value K2, or the commercial power supplied to the load 6 Can be suppressed to the upper limit target value K2 or less.
  • the distributed power supply in the above-mentioned distribution system may be the solar power generation device 3 which generates electric power by sunlight.
  • the storage battery control device 1 charges the storage battery 41 using the surplus power of the solar power generation device 3 and discharges the storage battery 41 at night when the solar power generation device 3 does not generate power. And, the peak of the commercial power supplied to the load 6 can be suppressed.
  • the rate determining unit 14 may determine the charging period T12 within the power surplus period T1 as shown in FIG. Specifically, rate determination unit 14 sets, as charging period T12, a period in which power Y300 (power sale power) reversely flowing when the entire amount of surplus power is reversely transmitted to power system 7 exceeds the upper limit target value K1. Do. Also in this case, the charging period T12 includes the time when the power Y300 reversely flowing when the total amount of surplus power is reversely flowed to the power system 7 is a peak.
  • the rate determination unit 14 derives a target charge rate in the charge period T12 by dividing the chargeable amount based on the charge state at the start time of the charge period T12 by the time length of the charge period T12.
  • the target charging rate derived by the rate determining unit 14 is constant throughout the charging period T12.
  • the storage battery control device 1 can reduce the peak of the selling power (reverse flow power) in the direction approaching the upper limit target value K1. That is, the storage battery control device 1 can bring the peak of the power sale power closer to the upper limit target value K1, or can suppress the peak of the power sale power to the upper limit target value K1 or less.
  • the rate determination unit 14 may set, as the charging period T12, a period in which the power reversely flowing when the surplus power is reversely flowed to the power system 7 exceeds the upper limit target value K1.
  • FIG. 6 shows the entire configuration of the power distribution system according to the present embodiment. It is assumed that storage battery 41 of the present embodiment is in a state where the chargeable amount is sufficiently secured. The state in which the chargeable amount is sufficiently ensured is a state in which the amount of chargeable power is large because the remaining capacity of storage battery 41 is small or the rated capacity of storage battery 41 is large.
  • the storage battery control apparatus 1A of the present embodiment does not include the storage state prediction unit 13 as compared with the storage battery control apparatus 1 of the first embodiment. Further, the rate determination unit 14 of the storage battery control device 1A differs from the first embodiment in that the surplus power amount obtained by integrating the surplus power over the charging period is used as the scheduled charging power amount. That is, in the present embodiment, the planned charging power amount is the surplus power amount obtained by integrating the surplus power over the charging period.
  • the same components as those of the first embodiment are denoted by the same reference numerals and the description thereof is omitted.
  • the rate determination unit 14 sets a power surplus period T1 in which the surplus power Y400 is generated as a charging period T13. And the rate determination part 14 uses the surplus electric energy (area A11 in FIG. 7) which is an integrated value of surplus electric power Y400 in the whole period of charge period T13 as electric charge planned electric energy. That is, the rate determination unit 14 derives the target charging rate in the charging period T13 by dividing the surplus power amount by the time length of the charging period T13. The target charge rate derived by the rate determination unit 14 is constant throughout the charging period T13.
  • the rate determination unit 14 instructs the power conditioner 42 on the target charging rate of the charging period T13.
  • Power conditioner 42 charges storage battery 41 based on the target charge rate instructed from rate determination unit 14.
  • the charging rate for charging the storage battery 41 is higher than the instructed target charging rate Is also substantially lower.
  • surplus power Y400 is sufficiently large, charging at a designated constant target charging rate is possible.
  • surplus power Y400 is larger than the target charging rate. Therefore, part of surplus power Y400 is used as reverse flow power without being charged.
  • the rate determination unit 14 may set the surplus power amount obtained by integrating the surplus power over the charging period T13 as the scheduled charging power amount.
  • the charge rate is set based on the amount of surplus power. Therefore, storage battery control apparatus 1A can appropriately continue charging until the end timing of charging period T13 based on the surplus power amount.
  • the rate determination unit 14 may determine the target charge rate as a constant value over the charge period T13.
  • the target charge rate is set to a constant value over the charge period T13. Therefore, charging control is simplified.
  • the rate determination unit 14 may determine the target charging rate by dividing the planned charging amount by the time length of the charging period T13.
  • storage battery control apparatus 1A can average the power charged by storage battery 41 in charging period T13 including the time when the surplus power is at the peak.
  • the rate determination unit 14 may set the power surplus period T1 in which the generated power exceeds the demand power as the charging period T13.
  • the rate determination unit 14 may determine the charging period T14 within the power surplus period T1. Specifically, rate determining unit 14 sets a period during which surplus power Y400 exceeds threshold value K11 as charging period T14. Also in this case, the charging period T14 includes the time when the reverse flow of electric power is a peak when the entire surplus power Y400 is reversely flowed to the electric power system 7.
  • rate determining unit 14 uses the surplus power amount (area A12 in FIG. 8), which is the integrated value of surplus power Y400 in charging period T14, as the planned charging amount, and uses the surplus power amount as the time length of charging period T14.
  • the target charging rate in the charging period T14 is derived by dividing by.
  • the target charging rate derived by the rate determining unit 14 is constant throughout the charging period T14.
  • the rate determination unit 14 may set, as the charging period T14, a period in which the surplus power exceeds the threshold K11 in the power surplus period T1 in which the generated power exceeds the demand power.
  • the maximum charge rate that can charge rechargeable battery 41 and the maximum discharge rate that can be discharged from rechargeable battery 41 are determined by the specifications and performance of storage battery 41 and power conditioner 42.
  • rate determiner 14 when the target charge rate derived by rate determiner 14 exceeds the maximum charge rate, rate determiner 14 instructs power conditioner 42 to finally designate the maximum charge rate. It may be determined as a target charging rate. Further, in the above-described first and second embodiments, when the target discharge rate derived by rate determining unit 14 exceeds the maximum discharge rate, rate determining unit 14 instructs power conditioner 42 to finally indicate the maximum discharge rate. It may be determined as a target discharge rate.
  • the minimum charge rate that can charge rechargeable battery 41 and the minimum discharge rate that can be discharged from storage battery 41 may be determined.
  • rate determiner 14 when the target charge rate derived by rate determiner 14 is less than the minimum charge rate, rate determiner 14 instructs power conditioner 42 to give a minimum charge rate. It may be determined as a typical target charge rate. Further, in the above-described first and second embodiments, when the target discharge rate derived by rate determining unit 14 falls below the minimum discharge rate, rate determining unit 14 instructs power conditioner 42 to finally indicate the minimum discharge rate. It may be determined as a target discharge rate.
  • the storage battery control devices 1 and 1A may be equipped with a computer.
  • the functions of the above-described storage battery control devices 1 and 1A (in particular, the functions of the demand prediction unit 11, the power generation prediction unit 12, the power storage condition prediction unit 13 and the rate determination unit 14) are realized.
  • this computer mainly includes a device provided with a processor for executing a program, a device for an interface for exchanging data with another device, and a device for storing data. It has as a component.
  • the device provided with the processor may be a central processing unit (CPU) or a micro processing unit (MPU) that is separate from the semiconductor memory, or may be a microcomputer integrally provided with the semiconductor memory.
  • the storage device may be a combination of a storage device having a short access time, such as a semiconductor memory, and a large-capacity storage device, such as a hard disk drive.
  • a form readable in a computer readable ROM Read Only Memory
  • a form stored in advance in a recording medium such as an optical disc
  • the program causes the computer to function as the storage battery control device 1 or 1A.
  • a program that causes a computer to function as storage battery control device 1 or 1A can also achieve the same effect as described above. That is, this program can perform control such as charging or discharging of the storage battery 41 for an appropriate period.
  • Photovoltaic generator distributed power supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A storage cell control device (1) is provided with the following: a demand prediction unit (11) that predicts a demand change which is the change over time of a demand power consumed by a load (6) and which is the change over time in a prescribed period; a power generation prediction unit (12) that predicts a power generation change which is the change over time of the power generated by a distribution power source (3) and which is the change over time in a prescribed period; and a rate determining unit (14) that determines a target charging rate. On the basis of the demand change predicted by the demand prediction unit (11) and the power generation change predicted by the power generation prediction unit (12), the rate determining unit (14) sets, as a charging period in which charging is carried out, a period, from among prescribed periods, that includes a time at which surplus power peaks, such surplus power being the power remaining after excluding demand power from generated power. On the basis of a power amount planned for charging, which is planned as a power amount to be charged by a storage cell (41) in a charging period, and on the basis of the duration of the charging period, the rate determining unit determines, as the target charging rate in the charging period, a charging rate for charging the storage cell (41) throughout the charging period.

Description

蓄電池制御装置Battery control unit
 本発明は、負荷へ電力を供給する給電動作を行う配電システムに用いられる蓄電池制御装置等に関する。 The present invention relates to a storage battery control device or the like used in a power distribution system that performs a power supply operation of supplying power to a load.
 従来、商用電源と蓄電池とが併存するシステムにおいて、蓄電池を定電流充電する場合に、所定時刻に充電が終了するように充電レートを設定する構成が開示されている(例えば、特許文献1参照)。特許文献1の蓄電池は、バックアップの役割と、ピークシフトの役割とを持つ。 Conventionally, in a system in which a commercial power supply and a storage battery coexist, there is disclosed a configuration in which a charging rate is set so that charging is terminated at a predetermined time when constant-current charging the storage battery (for example, see Patent Document 1) . The storage battery of Patent Document 1 has a role of backup and a role of peak shift.
特開2013-176190号公報JP, 2013-176190, A
 しかしながら、蓄電池に対して充電または放電などの制御が適切な期間に亘って行われなければ、蓄電池はピークシフト(ピーク抑制)の役割を果たさない。そして、蓄電池がピークシフト(ピーク抑制)の役割を果たさないことで、電力系統(商用電源)の安定稼働に弊害が発生する可能性がある。 However, the storage battery does not play a role of peak shift (peak suppression) unless control such as charging or discharging is performed for the storage battery for an appropriate period. And since a storage battery does not play a role of peak shift (peak suppression), a bad influence may occur in stable operation of an electric power system (commercial power supply).
 本発明は、上記事由に鑑みてなされたものであり、蓄電池に対して充電または放電などの制御を適切な期間に亘って行うことができる蓄電池制御装置等を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a storage battery control device and the like capable of performing control such as charging or discharging of a storage battery over an appropriate period.
 本発明の一態様に係る蓄電池制御装置は、電力系統と分散電源と蓄電装置とのそれぞれから負荷へ電力を供給する給電動作、前記分散電源の発電電力で前記蓄電装置が備える蓄電池を充電させる充電動作、および、前記分散電源の発電電力のうち前記蓄電池で充電されず前記負荷で消費されない電力を前記電力系統に逆潮流させる逆潮流動作を行う配電システムに用いられる蓄電池制御装置であって、前記負荷で消費される需要電力の時間推移であり所定期間における時間推移である需要推移を予測する需要予測部と、前記分散電源の発電電力の時間推移であり前記所定期間における時間推移である発電推移を予測する発電予測部と、目標充電レートに前記蓄電池の充電レートを一致または近づけるための前記目標充電レートを決定するレート決定部とを備え、前記レート決定部は、前記需要予測部で予測された前記需要推移と、前記発電予測部で予測された前記発電推移とに基づいて、前記所定期間のうち、前記発電電力から前記需要電力を除いた余剰電力がピークである時刻を含む期間を前記充電動作が行われる充電期間として設定し、前記充電期間に前記蓄電池によって充電される電力量として予定される充電予定電力量と、前記充電期間の時間長とに基づいて、前記充電期間に亘って前記蓄電池を充電させるための充電レートを前記充電期間における前記目標充電レートとして決定する。 A storage battery control apparatus according to an aspect of the present invention supplies power to a load from each of a power system, a distributed power supply, and a power storage device, and charges the storage battery provided in the power storage device with generated power of the distributed power supply. A storage battery control apparatus for use in a power distribution system that performs an operation and a reverse power flow operation in which power not charged by the storage battery and not consumed by the load among generated power of the distributed power source is reversely flowed to the power system, A demand forecasting unit for predicting a demand transition which is a temporal transition of demand power consumed by a load and a temporal transition in a predetermined period, and a temporal transition of generated power of the dispersed power source which is a temporal transition in the predetermined period A power generation prediction unit for The rate determining unit is configured to generate the power during the predetermined period based on the demand transition predicted by the demand predicting unit and the power generation transition predicted by the power generation predicting unit. A period including the time when the surplus power obtained by removing the demand power from the power is at a peak is set as a charging period in which the charging operation is performed, and planned charging power scheduled as the amount of power charged by the storage battery in the charging period A charging rate for charging the storage battery over the charging period is determined as the target charging rate in the charging period based on an amount and a time length of the charging period.
 本発明の一態様に係る蓄電池制御装置は、蓄電装置が備える蓄電池を放電させる放電動作、および、電力系統と前記蓄電装置とのそれぞれから負荷へ電力を供給する給電動作を行う配電システムに用いられる蓄電池制御装置であって、前記負荷で消費される需要電力の時間推移であり所定期間における時間推移である需要推移を予測する需要予測部と、前記放電動作が行われる放電期間に前記蓄電池により放電可能な電力量であり前記放電期間の開始タイミングにおける前記蓄電池の充電状態に依存する電力量である放電可能量を予測する蓄電状況予測部と、目標放電レートに前記蓄電池の放電レートを一致または近づけるための前記目標放電レートを決定するレート決定部とを備え、前記レート決定部は、前記需要予測部で予測された前記需要推移に基づいて、前記所定期間のうち、前記蓄電装置から前記負荷へ電力が供給されないと仮定された場合に前記電力系統から前記負荷へ供給される電力がピークである時刻を含む期間を前記放電期間として設定し、前記放電期間に対して前記蓄電状況予測部で予測される前記放電可能量と、前記放電期間の時間長とに基づいて、前記放電期間に亘って前記蓄電池を放電させるための放電レートを前記放電期間における前記目標放電レートとして決定する。 A storage battery control apparatus according to an aspect of the present invention is used in a discharge operation for discharging a storage battery included in a storage device and a distribution system performing a power supply operation for supplying power from each of an electric power system and the storage device to a load. A storage battery control apparatus, comprising: a demand prediction unit that predicts a demand transition which is a temporal transition of demand power consumed by the load and is a temporal transition in a predetermined period; and discharging by the storage battery in a discharge period in which the discharge operation is performed A storage status prediction unit that predicts a dischargeable amount that is a possible power amount and that is a power amount depending on the charge state of the storage battery at the start timing of the discharge period, and matches or approximates the discharge rate of the storage battery to a target discharge rate A rate determining unit for determining the target discharge rate for the target, and the rate determining The period including the time when the power supplied from the power system to the load is peak when it is assumed that the power storage device does not supply power to the load within the predetermined period based on the demand transition A discharge period is set, and the storage battery is discharged over the discharge period based on the dischargeable amount predicted by the storage state prediction unit with respect to the discharge period and the time length of the discharge period. Is determined as the target discharge rate in the discharge period.
 本発明の一態様に係る蓄電池制御装置等によって、蓄電池に対して充電または放電などの制御が適切な期間に亘って行われる。 The storage battery control device or the like according to one aspect of the present invention performs control such as charging or discharging of the storage battery over an appropriate period.
図1は、実施の形態1の配電システムの構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of the power distribution system according to the first embodiment. 図2は、実施の形態1の需要電力および発電電力の予測結果を示す模式図である。FIG. 2 is a schematic view showing prediction results of the required power and the generated power according to the first embodiment. 図3Aは、実施の形態1とは異なる蓄電池制御を示す模式図である。FIG. 3A is a schematic view showing storage battery control different from that of the first embodiment. 図3Bは、実施の形態1とは異なる等価需要を示す模式図である。FIG. 3B is a schematic view showing equivalent demand different from that of the first embodiment. 図4Aは、実施の形態1の蓄電池制御を示す模式図である。FIG. 4A is a schematic view showing the storage battery control of the first embodiment. 図4Bは、実施の形態1の等価需要を示す模式図である。FIG. 4B is a schematic view showing the equivalent demand of the first embodiment. 図5は、実施の形態1の充電期間の決定処理を示す模式図である。FIG. 5 is a schematic view showing the process of determining the charging period in the first embodiment. 図6は、実施の形態2の配電システムの構成を示すブロック図である。FIG. 6 is a block diagram showing the configuration of the power distribution system according to the second embodiment. 図7は、実施の形態2の充電制御を示す模式図である。FIG. 7 is a schematic view showing charge control of the second embodiment. 図8は、実施の形態2の別の充電制御を示す模式図である。FIG. 8 is a schematic view showing another charge control of the second embodiment.
 以下、本発明の実施の形態を図面に基づいて説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示す。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態、動作の順序等は、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素は、任意の構成要素として説明される。 Hereinafter, embodiments of the present invention will be described based on the drawings. The embodiments described below all show comprehensive or specific examples. Numerical values, shapes, materials, components, arrangement positions and connection forms of components, order of operations, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. In addition, among the components in the following embodiments, components that are not described in the independent claim indicating the highest concept are described as arbitrary components.
 また、電力量は、通常、所定期間における電力の積算値を意味し、エネルギーに対応する。そして、単位時間あたりの電力量が、電力(パワー)に対応する。電力(パワー)と電力量(エネルギー)とは互いに対応するため、ここでは、電力が、電力量(エネルギー)の意味で用いられる場合があり、電力量が、電力(パワー)の意味で用いられる場合がある。そして、電力の量を電力量と呼ぶ場合がある。 Further, the amount of power usually means an integrated value of power in a predetermined period, and corresponds to energy. The amount of power per unit time corresponds to the power (power). Since electric power (power) and electric energy (energy) correspond to each other, electric power may be used here in the meaning of electric energy (energy), and electric energy is used in the meaning of electric power (power) There is a case. Then, the amount of power may be referred to as the amount of power.
 また、電流、電力および電力量は、それらの値を意味する場合がある。また、充放電は、充電および放電の少なくとも一方に対応する。また、ピークは、所定期間における最大でもよいし、極大でもよい。 Also, current, power and amount of power may mean their values. In addition, charge and discharge correspond to at least one of charge and discharge. In addition, the peak may be the maximum or the maximum in a predetermined period.
 (実施の形態1)
 図1は、配電システムの全体構成を示す。配電システムは、蓄電池制御装置1、分電盤2、太陽光発電装置3、蓄電装置4、および、電力センサ91、92を備え、負荷6へ電力を供給する。太陽光発電装置3は、太陽電池31、および、パワーコンディショナ32を備える分散電源である。蓄電装置4は、蓄電池41、および、パワーコンディショナ42を備える。また、配電システムの分散電源は、太陽光発電装置3に限定されず、例えば風力発電装置などでもよい。
Embodiment 1
FIG. 1 shows the overall configuration of the power distribution system. The power distribution system includes a storage battery control device 1, a distribution board 2, a solar power generation device 3, a power storage device 4, and power sensors 91 and 92, and supplies power to a load 6. The solar power generation device 3 is a distributed power supply including a solar cell 31 and a power conditioner 32. The storage device 4 includes a storage battery 41 and a power conditioner 42. Moreover, the distributed power supply of a power distribution system is not limited to the solar power generation device 3, For example, a wind power generator etc. may be sufficient.
 なお、本実施の形態では、戸建ての住戸に配電システムが適用されているが、集合住宅または事業所などの建物に配電システムが適用されてもよい。 In the present embodiment, the power distribution system is applied to a single dwelling unit, but the power distribution system may be applied to a building such as an apartment house or a business office.
 配電システムは、負荷6に電力を供給する電源として、太陽光発電装置3と、蓄電装置4と、商用電源8(電力系統7)とを用いる。電力系統7は、図1に示されているような建物に供給するためのシステムであり、電力会社等によって運用される。商用電源8は、例えば、電力会社等によって運用される発電所である。電力系統7は、商用電源8を含んでもよい。また、電力系統7は、電力網を意味する場合もある。 The power distribution system uses the solar power generation device 3, the power storage device 4, and the commercial power supply 8 (electric power system 7) as a power supply for supplying power to the load 6. The power system 7 is a system for supplying a building as shown in FIG. 1 and is operated by a power company or the like. The commercial power source 8 is, for example, a power plant operated by a power company or the like. The power system 7 may include a commercial power supply 8. Also, the power system 7 may mean a power network.
 分電盤2には、商用電源8から電力系統7を介して交流電力(商用電力)が供給される。さらに、分電盤2には、太陽光発電装置3から交流電力(発電電力)を供給される。さらに、分電盤2には、蓄電装置4から交流電力(放電電力)が供給される。 AC power (commercial power) is supplied from the commercial power source 8 to the distribution board 2 through the power system 7. Furthermore, alternating current power (generated power) is supplied to the distribution board 2 from the solar power generation device 3. Furthermore, AC power (discharge power) is supplied from the storage device 4 to the distribution board 2.
 また、分電盤2の盤内には、主幹ブレーカ、複数の分岐ブレーカ、および、開閉器等が内蔵されている。また、分電盤2の複数の分岐ブレーカは、複数の分岐回路に対して設けられている。分電盤2は、複数の分岐回路を介して複数の負荷6に交流電力を供給する。 Further, in the panel of the distribution board 2, a master breaker, a plurality of branch breakers, a switch, and the like are incorporated. Further, the plurality of branch breakers of the distribution board 2 are provided for the plurality of branch circuits. The distribution board 2 supplies AC power to the plurality of loads 6 through the plurality of branch circuits.
 なお、図1の複数の負荷6は、複数の分岐回路に接続された照明装置、空調装置、および、情報機器などの電気機器である。 The plurality of loads 6 in FIG. 1 are electrical devices such as lighting devices, air conditioners, and information devices connected to a plurality of branch circuits.
 太陽電池31は、太陽光を受けて発電する。パワーコンディショナ32は、太陽電池31が発電することで得られた直流電力を交流電力に変換し、交流電力を太陽光発電装置3の発電電力として出力する。さらに、パワーコンディショナ32は、電力系統7と系統連系を行うため、パワーコンディショナ32が出力する交流電力(発電電力)の周波数および出力電圧を調節する。 The solar cell 31 receives sunlight and generates power. The power conditioner 32 converts direct current power obtained by the solar cell 31 generating electric power into alternating current power, and outputs the alternating current power as generated power of the solar power generation device 3. Furthermore, the power conditioner 32 adjusts the frequency and output voltage of the AC power (generated power) output from the power conditioner 32 in order to perform grid connection with the power system 7.
 蓄電池41は、パワーコンディショナ42を介して分電盤2に接続している。パワーコンディショナ42は、蓄電池41の充電および放電を行う。具体的には、パワーコンディショナ42は、分電盤2から供給される交流電力を直流電力に変換して、直流電力を蓄電池41に供給することで、蓄電池41を充電させる。また、パワーコンディショナ42は、蓄電池41を放電させ、蓄電池41から供給される直流電力を交流電力に変換し、交流電力を分電盤2へ供給する。 The storage battery 41 is connected to the distribution board 2 via a power conditioner 42. Power conditioner 42 charges and discharges storage battery 41. Specifically, the power conditioner 42 converts the AC power supplied from the distribution board 2 into DC power, and supplies the DC power to the storage battery 41 to charge the storage battery 41. Further, the power conditioner 42 discharges the storage battery 41, converts the DC power supplied from the storage battery 41 into AC power, and supplies the AC power to the distribution board 2.
 さらに、パワーコンディショナ42は、電力系統7と系統連系を行うため、パワーコンディショナ42が出力する交流電力(放電電力)の周波数および出力電圧を調節する。 Furthermore, the power conditioner 42 adjusts the frequency and output voltage of the AC power (discharge power) output from the power conditioner 42 in order to perform grid connection with the power system 7.
 太陽光発電装置3の発電電力は、需要電力、充電電力および逆潮流電力のうち、一部または全部に用いられる。蓄電装置4(蓄電池41)の放電電力は、需要電力に用いられる。需要電力は、負荷6の全体で消費される総電力(複数の負荷6で消費される電力の合計)である。充電電力は、蓄電池41によって充電される電力である。逆潮流電力は、電力系統7へ逆潮流する電力である。 The generated power of the solar power generation device 3 is used for a part or all of demand power, charging power and reverse flow power. The discharge power of power storage device 4 (storage battery 41) is used for demand power. The demand power is the total power consumed by the entire load 6 (the sum of the power consumed by a plurality of loads 6). The charging power is the power charged by the storage battery 41. The reverse flow power is power that flows backward to the power system 7.
 配電システムは、電力系統7と太陽光発電装置3と蓄電装置4とのそれぞれから負荷6へ電力を供給する給電動作を行う。また、配電システムは、太陽光発電装置3の発電電力で蓄電池41を充電させる充電動作(蓄電動作)、および、太陽光発電装置3の発電電力のうち蓄電池41で充電されず負荷6で消費されない電力を電力系統7に逆潮流させる逆潮流動作を行う。充電動作では、さらに、商用電力で蓄電池41を充電させてもよい。 The power distribution system performs a power supply operation of supplying power to the load 6 from each of the power system 7, the solar power generation device 3 and the storage device 4. In addition, the power distribution system charges the storage battery 41 with the power generated by the solar power generation device 3 (storage operation), and the power generated by the solar power generation device 3 is not charged by the storage battery 41 and consumed by the load 6 A reverse power flow operation is performed to reverse power flow to the power system 7. In the charging operation, the storage battery 41 may be charged with commercial power.
 なお、蓄電池41の充電について、配電システムは、太陽電池31によって生成された直流電力を交流電力に変換することなく、太陽電池31によって生成された直流電力を充電用の直流電力に直接変換して、蓄電池41を充電させてもよい。例えば、配電システムは、太陽電池31によって生成された直流電力の電圧を充電用の電圧に変換して、蓄電池41を充電させてもよい。 Regarding the charging of the storage battery 41, the power distribution system directly converts the DC power generated by the solar cell 31 into DC power for charging without converting the DC power generated by the solar cell 31 into AC power. The storage battery 41 may be charged. For example, the power distribution system may convert the voltage of the DC power generated by the solar cell 31 into a voltage for charging to charge the storage battery 41.
 電力センサ91は、太陽光発電装置3から分電盤2に供給される電流(発電電流)を測定し、発電電流の測定値から所定の基準で変換された発電電力を示す発電電力データを蓄電池制御装置1へ定期的に(サンプリング周期で)出力する。発電電力データは、例えば、発電電流の測定値に予め決められた発電電圧を乗算することで得られる発電電力を示す。電力センサ91は、パワーコンディショナ32内に設けられてもよい。 The power sensor 91 measures the current (generated current) supplied from the solar power generation device 3 to the distribution board 2, and stores the generated power data indicating the generated power converted based on the predetermined value from the measured value of the generated current. Output to the control device 1 periodically (with a sampling cycle). The generated power data indicates, for example, generated power obtained by multiplying the measured value of the generated current by a predetermined generated voltage. Power sensor 91 may be provided in power conditioner 32.
 電力センサ92は、分電盤2から負荷6の全体へ供給される総電流(複数の負荷6へ供給される電流の合計:負荷電流)を測定し、負荷電流の測定値から所定の基準で変換された需要電力を示す需要電力データを蓄電池制御装置1へ定期的に(サンプリング周期で)出力する。需要電力データは、例えば、負荷電流の測定値に予め決められた負荷電圧を乗算することで得られる需要電力を示す。 The power sensor 92 measures the total current supplied from the distribution board 2 to the whole of the load 6 (the sum of the currents supplied to the plurality of loads 6: load current), and based on the measured value of the load current Demand power data indicating the converted demand power is output to the storage battery control device 1 periodically (with a sampling cycle). The demand power data indicates, for example, demand power obtained by multiplying the measured value of the load current by a predetermined load voltage.
 蓄電池制御装置1は、需要予測部11、発電予測部12、蓄電状況予測部13、レート決定部14、データ取得部15、記憶部16、および、通信部17を備える。そして、蓄電池制御装置1は、パワーコンディショナ42が充放電させる蓄電池41の目標充電レートおよび目標放電レートを決定することで、パワーコンディショナ42によって蓄電池41に対して行われる充放電動作を制御する。 The storage battery control device 1 includes a demand prediction unit 11, a power generation prediction unit 12, a power storage state prediction unit 13, a rate determination unit 14, a data acquisition unit 15, a storage unit 16, and a communication unit 17. Then, the storage battery control device 1 controls the charging / discharging operation performed on the storage battery 41 by the power conditioner 42 by determining the target charge rate and the target discharge rate of the storage battery 41 to be charged / discharged by the power conditioner 42. .
 すなわち、蓄電池制御装置1は、パワーコンディショナ42を介して、蓄電池41により充電される電力に対応する充電レート、および、蓄電池41により放電される電力に対応する放電レートを目標充電レートおよび目標放電レートに従って制御する。そして、蓄電池制御装置1は、充電レートおよび放電レートを制御することで、電力系統7から受電する商用電力、および、電力系統7へ逆潮流する逆潮流電力を調整する。 That is, the storage battery control device 1 sets the charging rate corresponding to the power charged by the storage battery 41 via the power conditioner 42, and the discharge rate corresponding to the power discharged by the storage battery 41 as the target charging rate and the target discharging. Control according to the rate. Then, the storage battery control device 1 controls the charge rate and the discharge rate to adjust the commercial power received from the power system 7 and the reverse flow power returned to the power system 7.
 なお、本実施の形態の配電システムにおいて、蓄電池制御装置1は、太陽光発電装置3の発電電力、および、蓄電池41の放電電力のうち、太陽光発電装置3の発電電力のみを電力系統7へ逆潮流させてもよい。 In the power distribution system of the present embodiment, storage battery control device 1 transmits only the generated power of solar power generation device 3 to electric power system 7 among the generated power of solar power generation device 3 and the discharged power of storage battery 41. You may make it reverse power flow.
 また、蓄電池制御装置1は、需要予測部11、発電予測部12、蓄電状況予測部13、レート決定部14、データ取得部15、記憶部16および通信部17のうち一部のみを備えてもよい。その他の構成要素は、蓄電池制御装置1とは別の装置に含まれてもよい。例えば、蓄電池制御装置1は、これらのうち、需要予測部11、発電予測部12およびレート決定部14のみを備えてもよいし、需要予測部11、蓄電状況予測部13およびレート決定部14のみを備えてもよい。 In addition, even if the storage battery control device 1 includes only a part of the demand prediction unit 11, the power generation prediction unit 12, the power storage state prediction unit 13, the rate determination unit 14, the data acquisition unit 15, the storage unit 16 and the communication unit 17. Good. Other components may be included in a device separate from the storage battery control device 1. For example, the storage battery control device 1 may include only the demand prediction unit 11, the power generation prediction unit 12, and the rate determination unit 14 among them, or only the demand prediction unit 11, the power storage state prediction unit 13, and the rate determination unit 14 May be provided.
 データ取得部15は、電力センサ91から発電電力データを取得し、電力センサ92から需要電力データを取得する取得器である。例えば、データ取得部15は、発電電力データおよび需要電力データを日時データに対応付けて記憶部16に格納する。発電電力データには、測定時の天気情報が対応付けられていてもよい。 The data acquisition unit 15 is an acquisition unit that acquires generated power data from the power sensor 91 and acquires demand power data from the power sensor 92. For example, the data acquisition unit 15 stores the generated power data and the required power data in the storage unit 16 in association with the date and time data. Weather information at the time of measurement may be associated with the generated power data.
 記憶部16には、発電電力および需要電力の履歴が格納される。具体的には、記憶部16には、過去の一定期間(例えば、過去の1週間、1ヶ月または3ヶ月など)に亘る発電電力データおよび需要電力データが格納され、過去の一定期間よりも前の古いデータは順次削除される。 The storage unit 16 stores a history of generated power and required power. Specifically, the storage unit 16 stores power generation data and demand power data for a fixed period in the past (for example, past one week, one month, three months, etc.), and is earlier than the fixed period in the past The old data of are deleted sequentially.
 需要予測部11は、毎日の定時に、記憶部16の需要電力の履歴に基づいて、蓄電池41が制御される日(対象日)における需要電力の時間推移を予測する予測器である。この需要電力の時間推移は、負荷6が消費する電力の1日における時間推移である。ここでは、需要電力の時間推移を需要推移とも呼ぶ。 The demand prediction unit 11 is a predictor that predicts a time transition of demand power on a day (target day) in which the storage battery 41 is controlled based on the history of demand power of the storage unit 16 at a fixed time every day. The temporal transition of the demand power is a temporal transition of the power consumed by the load 6 in one day. Here, the time transition of demand power is also referred to as demand transition.
 需要予測部11は、例えば、需要電力の履歴に基づいて、各時刻における需要電力の平均を求めることで、対象日における需要電力の時間推移を予測する。さらに、需要予測部11は、全ての需要電力データのうち、対象日の曜日と同じ曜日の需要電力データのみを用いて、需要電力の時間推移を予測してもよい。 The demand prediction unit 11 predicts the time transition of the demand power on the target date, for example, by obtaining the average of the demand power at each time based on the history of the demand power. Furthermore, the demand forecasting unit 11 may forecast the time transition of the demand power using only the demand power data on the same day of the week as the target day among all the demand power data.
 発電予測部12は、毎日の定時に、記憶部16の発電電力の履歴に基づいて、対象日における発電電力の時間推移を予測する予測器である。ここでは、発電電力の時間推移を発電推移とも呼ぶ。発電予測部12は、全ての発電電力データのうち、対象日の天気予報に類似した過去の天気情報に対応付けられた発電電力データのみを用いて、対象日における発電電力の時間推移を予測してもよい。また、発電予測部12は、各時刻における発電電力の平均を求めることで、対象日における発電電力の時間推移を予測してもよい。 The power generation prediction unit 12 is a predictor that predicts the time transition of the generated power on the target date based on the history of the generated power of the storage unit 16 at a fixed time every day. Here, the time transition of the generated power is also referred to as the power generation transition. The power generation prediction unit 12 predicts the time transition of the generated power on the target date using only the generated power data associated with the past weather information similar to the weather forecast on the target date among all the generated power data. May be In addition, the power generation prediction unit 12 may predict the time transition of the generated power on the target date by obtaining the average of the generated power at each time.
 なお、需要予測部11および発電予測部12のそれぞれは、蓄電池41が制御される対象日の前日の夜、または、対象日の朝に、予測を行ってもよい。 Each of the demand prediction unit 11 and the power generation prediction unit 12 may perform prediction on the night before the target day for which the storage battery 41 is controlled or on the morning of the target day.
 図2は、需要予測部11によって予測された需要推移、および、発電予測部12によって予測された発電推移を示す。図2において、1日の需要電力X1の時間推移が需要予測部11によって予測された需要推移であり、1日の発電電力X2の時間推移が発電予測部12によって予測された発電推移である。 FIG. 2 shows the demand transition predicted by the demand prediction unit 11 and the power generation transition predicted by the power generation prediction unit 12. In FIG. 2, the time transition of the demand power X1 on one day is the demand transition predicted by the demand prediction unit 11, and the time transition of the generated power X2 on one day is the power generation transition predicted by the power generation prediction unit 12.
 需要電力X1は、需要者が活動を始める朝に増加する。その後、昼間において、負荷6の使用状態に応じて、需要電力X1は変動する。そして、夕食の支度、あるいは、帰宅した需要者が負荷6を使用することなどによって、夕方において、需要電力X1は再び増加する。その後、需要電力X1は減少する。 The demand power X1 increases in the morning when the consumer starts to operate. Thereafter, in the daytime, the demand power X1 fluctuates in accordance with the use state of the load 6. Then, the demand power X1 increases again in the evening, for example, due to the preparation of dinner or the use of the load 6 by the returning customer. Thereafter, the demand power X1 decreases.
 発電電力X2は、日射量が十分に確保される天候の場合、パワーコンディショナ32の運転開始時刻である時刻t1(日の出時刻付近)から増加する。そして、昼間において、発電電力X2は、南中時刻である時刻t2付近で最大値になった後に減少する。そして、発電電力X2は、パワーコンディショナ32の運転停止時刻である時刻t3(日没時刻付近)以降において、0となる。 The generated power X2 increases from time t1 (around sunrise time) which is the operation start time of the power conditioner 32 in the case of weather where the amount of solar radiation is sufficiently ensured. Then, in the daytime, the generated power X2 decreases after reaching a maximum value around time t2, which is the south-middle time. And generated electric power X2 becomes 0 after time t3 (near sunset time) which is operation stop time of power conditioner 32.
 図3Aは、需要電力X1および発電電力X2に対して行われる蓄電池制御を示し、本実施の形態とは異なる蓄電池制御を示す。なお、蓄電池41の残容量で放電可能な電力量を放電可能量と呼ぶ場合がある。また、蓄電池41の最大電池容量から残容量を除いた(減算した)部分で充電可能な電力量を充電可能量と呼ぶ場合がある。 FIG. 3A shows storage battery control performed on the demand power X1 and the generated power X2, and shows storage battery control different from the present embodiment. In addition, the electric energy which can be discharged by the remaining capacity of the storage battery 41 may be called dischargeable amount. Further, the amount of power that can be charged in a portion obtained by subtracting (subtracting) the remaining capacity from the maximum battery capacity of the storage battery 41 may be called a chargeable amount.
 なお、最大電池容量は、蓄電池41の劣化を考慮した蓄電池41の電池容量である。最大電池容量は、蓄電池41の使用が開始された初期状態では定格容量である。最大電池容量は、その後、蓄電池41の劣化度合いに応じて定格容量から低下する。また、放電可能量は、その他の条件(蓄電池41の充電状態とは別の条件)により、さらに制限されてもよい。同様に、充電可能量は、その他の条件(蓄電池41の充電状態とは別の条件)により、さらに制限されてもよい。 The maximum battery capacity is the battery capacity of the storage battery 41 in consideration of the deterioration of the storage battery 41. The maximum battery capacity is a rated capacity in an initial state in which the use of the storage battery 41 is started. The maximum battery capacity then decreases from the rated capacity in accordance with the degree of deterioration of the storage battery 41. Further, the dischargeable amount may be further limited by other conditions (conditions different from the charge state of the storage battery 41). Similarly, the chargeable amount may be further limited by other conditions (conditions different from the charge state of the storage battery 41).
 以下、具体的な動作例で説明する。ここでは、深夜において、蓄電池41の残容量が少なく、放電可能量が「0」である。朝の時刻t1の後、発電電力X2が供給され、発電電力X2は、需要電力X1に優先的に用いられる(図3A中の領域A102)。しかしながら、発電電力X2が需要電力X1に到達する時刻t11まで、需要電力X1から発電電力X2を減算した残りは不足電力であり、この不足電力は商用電力で賄われる(図3A中の領域A101)。 Hereinafter, a specific operation example will be described. Here, at midnight, the remaining capacity of the storage battery 41 is small, and the dischargeable amount is “0”. After morning time t1, the generated power X2 is supplied, and the generated power X2 is preferentially used for the demand power X1 (area A102 in FIG. 3A). However, until time t11 at which the generated power X2 reaches the required power X1, the remainder obtained by subtracting the generated power X2 from the required power X1 is the insufficient power, and this insufficient power is covered by the commercial power (area A101 in FIG. 3A) .
 そして、発電電力X2が需要電力X1以上である時刻t11から時刻t13まで、需要電力X1は発電電力X2のみで賄われる。時刻t11から時刻t13までにおいて、発電電力X2から需要電力X1を減算した残りは余剰電力であり、余剰電力は蓄電池41の充電電力に優先的に用いられる(図3A中の領域A103)。そして、時刻t12において、蓄電池41が満充電状態に到達する。時刻t12の後、余剰電力は電力系統7へ逆潮流されて、電力会社へ売電される(図3A中の領域A104)。 And demand electric power X1 is covered only with generated electric power X2 from time t11 whose generated electric power X2 is more than demand electric power X1 to time t13. From time t11 to time t13, the remainder obtained by subtracting the demand power X1 from the generated power X2 is surplus power, and the surplus power is preferentially used for charging power of the storage battery 41 (area A103 in FIG. 3A). Then, at time t12, the storage battery 41 reaches a fully charged state. After time t12, the surplus power is reversely flowed to the power system 7 and sold to the power company (area A104 in FIG. 3A).
 そして、時刻t13の後、発電電力X2が需要電力X1を下回る。時刻t13の後において、需要電力X1から発電電力X2を減算した残りは不足電力であり、不足電力は蓄電池41の放電電力で賄われる(図3A中の領域A105)。そして、時刻t14において、蓄電池41の放電可能量が「0」に低下し、その後、不足電力は商用電力で賄われる(図3A中の領域A106)。 Then, after time t13, the generated power X2 falls below the required power X1. After time t13, the remainder obtained by subtracting the generated power X2 from the required power X1 is the insufficient power, and the insufficient power is covered by the discharged power of the storage battery 41 (area A105 in FIG. 3A). Then, at time t14, the dischargeable amount of the storage battery 41 decreases to "0", and thereafter, the insufficient power is covered by the commercial power (area A106 in FIG. 3A).
 図3Bは、図3Aの蓄電池制御が行われた場合の等価需要Y100を示す。等価需要Y100は、電力系統7から建物へ流入する電力(買電電力)、および、電力系統7へ建物から流出する電力(売電電力)に対応する。また、図3Bに示された等価需要Y100は、本実施の形態とは異なる蓄電池制御が行われた場合の等価需要である。 FIG. 3B shows equivalent demand Y100 when the storage battery control of FIG. 3A is performed. The equivalent demand Y100 corresponds to the power flowing from the power system 7 into the building (purchasing power) and the power flowing out of the building into the power system 7 (selling power). Moreover, equivalent demand Y100 shown by FIG. 3B is equivalent demand when storage battery control different from the present embodiment is performed.
 図3Bのように、深夜から、発電電力X2が需要電力X1に到達する時刻t11まで、商用電力が買電される。そして、時刻t11から、蓄電池41が満充電状態に到達する時刻t12まで、充電が行われるため、等価需要Y100が「0」である。そして、時刻t12から、発電電力X2が需要電力X1まで低下する時刻t13まで、発電電力X2で売電が行われる。 As shown in FIG. 3B, commercial power is purchased from midnight until time t11 when the generated power X2 reaches the demand power X1. Then, since charging is performed from time t11 to time t12 when the storage battery 41 reaches the fully charged state, the equivalent demand Y100 is “0”. Then, from the time t12, power sale is performed with the generated power X2 until the time t13 when the generated power X2 decreases to the demand power X1.
 そして、時刻t13から、蓄電池41の放電可能量が「0」に低下する時刻t14まで、放電が行われるため、等価需要Y100が「0」である。そして、時刻t14の後、商用電力が買電される。 Then, since discharge is performed from time t13 until time t14 when the dischargeable amount of storage battery 41 decreases to "0", equivalent demand Y100 is "0". Then, after time t14, commercial power is purchased.
 図3Bに示す等価需要Y100では、売電電力(逆潮流電力)のピークが大きくなっており、電力系統7が不安定な状態になる可能性がある。電力系統7が不安定な状態は、商用電源8から電力系統7を介して供給される商用電力の系統電圧および周波数の変動幅が大きい状態であり、商用電力の需給バランスが崩れた状態である。 In equivalent demand Y100 shown to FIG. 3B, the peak of electric power sale electric power (reverse flow electric power) is large, and the electric power grid | system 7 may be in an unstable state. The unstable state of the power system 7 is a large fluctuation range of the grid voltage and frequency of the commercial power supplied from the commercial power supply 8 through the power system 7, and the supply and demand balance of the commercial power is broken. .
 そこで、本実施の形態では、図4Aに示す蓄電池制御を行う。 Therefore, in the present embodiment, storage battery control shown in FIG. 4A is performed.
 上述した動作例と同様に、ここでは、深夜において、蓄電池41の残容量が少なく、放電可能量が「0」である。朝の時刻t1の後、発電電力X2が供給され、発電電力X2は、需要電力X1に優先的に用いられる(図4A中の領域A2)。しかしながら、発電電力X2が需要電力X1に到達する時刻t11まで、需要電力X1から発電電力X2を減算した残りは不足電力であり、この不足電力は商用電力で賄われる(図4A中の領域A1)。 As in the above-described operation example, here, at midnight, the remaining capacity of the storage battery 41 is small, and the dischargeable amount is “0”. After morning time t1, the generated power X2 is supplied, and the generated power X2 is preferentially used for the demand power X1 (area A2 in FIG. 4A). However, until time t11 at which the generated power X2 reaches the required power X1, the remainder obtained by subtracting the generated power X2 from the required power X1 is the insufficient power, and this insufficient power is covered by the commercial power (area A1 in FIG. 4A) .
 そして、発電電力X2が需要電力X1以上である時刻t11から時刻t13まで、需要電力X1は発電電力X2のみで賄われる。時刻t11から時刻t13までにおいて、発電電力X2から需要電力X1を減算した残りである余剰電力が発生している。余剰電力が発生している期間を電力余剰期間T1と呼ぶ。そして、レート決定部14は、電力余剰期間T1内に、逆潮流電力が抑制されるように蓄電池41を充電させるための充電期間T11を設定する。 And demand electric power X1 is covered only with generated electric power X2 from time t11 whose generated electric power X2 is more than demand electric power X1 to time t13. From time t11 to time t13, surplus power, which is the remaining power obtained by subtracting the required power X1 from the generated power X2, is generated. The period in which the surplus power is generated is called a surplus power period T1. Then, rate determination unit 14 sets a charging period T11 for charging storage battery 41 so as to suppress reverse flow power within power surplus period T1.
 本実施の形態において、レート決定部14は、充電期間T11を電力余剰期間T1と同じ期間に設定する(T1=T11)。充電期間T11には、余剰電力のピークが含まれる。すなわち、充電期間T11は、余剰電力の全量を電力系統7に逆潮流させた場合に逆潮流する電力がピークである時刻を含む。 In the present embodiment, rate determining unit 14 sets charging period T11 to the same period as power surplus period T1 (T1 = T11). The charging period T11 includes the peak of the surplus power. That is, charging period T11 includes the time when the reverse flow of electric power is a peak when the entire amount of surplus power is reversely flowed to electric power system 7.
 レート決定部14は、目標充電レートまたは目標放電レートを決定する決定器である。目標充電レートは、蓄電池41の充電レートを一致または近づける目標の充電レートである。目標放電レートは、蓄電池41の放電レートを一致または近づける目標の放電レートである。例えば、レート決定部14は、充電期間T11を設定し、設定された充電期間T11等に基づいて、目標充電レートを決定する。充電期間T11は、電力余剰期間T1でもよいし、電力余剰期間T1の一部でもよい。 The rate determination unit 14 is a determination unit that determines a target charge rate or a target discharge rate. The target charge rate is a target charge rate that matches or approximates the charge rate of the storage battery 41. The target discharge rate is a target discharge rate that matches or approximates the discharge rate of the storage battery 41. For example, the rate determination unit 14 sets the charging period T11, and determines the target charging rate based on the set charging period T11 and the like. The charging period T11 may be the power surplus period T1 or a part of the power surplus period T1.
 なお、レート決定部14は、例えば、需要電力X1および発電電力X2のそれぞれの単位時間あたりの平均値を互いに比較することで、単位時間毎に余剰電力が発生するか否かを判定し、電力余剰期間T1を決定する。この単位時間が短い時間長に設定された場合、需要電力X1または発電電力X2の瞬時変動によって、電力余剰期間T1が細かい複数の期間に設定される場合がある。 The rate determination unit 14 determines whether surplus power is generated for each unit time, for example, by comparing the average value per unit time of the demand power X1 and the generated power X2 with each other, and the power The surplus period T1 is determined. When the unit time is set to a short time length, the power surplus period T1 may be set to a plurality of fine periods due to the instantaneous fluctuation of the demand power X1 or the generated power X2.
 そこで、単位時間は、例えば1時間程度に設定されてもよい。これにより、電力余剰期間T1が需要電力X1または発電電力X2の瞬時変動によって不必要に細かく分割されることが抑制される。 Therefore, the unit time may be set to, for example, about one hour. As a result, unnecessary surplus division of the power surplus period T1 due to the instantaneous fluctuation of the demand power X1 or the generated power X2 is suppressed.
 蓄電状況予測部13は、充電可能量および放電可能量を予測する予測器である。例えば、充電可能量は、充電期間T11に蓄電池41により充電可能な電力量であり、充電期間T11の開始時刻(開始タイミング)である時刻t11における蓄電池41の充電状態に依存する電力量である。また、例えば、放電可能量は、放電期間T21に蓄電池41により放電可能な電力量であり、放電期間T21の開始時刻(開始タイミング)である時刻t15における蓄電池41の充電状態に依存する電力量である。 The storage status prediction unit 13 is a predictor that predicts the chargeable amount and the dischargeable amount. For example, the chargeable amount is the amount of power that can be charged by the storage battery 41 in the charging period T11, and is the amount of power depending on the charging state of the storage battery 41 at time t11 that is the start time (start timing) of the charging period T11. Also, for example, the dischargeable amount is the amount of power that can be discharged by the storage battery 41 in the discharge period T21, and is the amount of power depending on the charge state of the storage battery 41 at time t15 that is the start time (start timing) of the discharge period T21. is there.
 蓄電池41の充電状態は、蓄電池41の残容量でもよいし、蓄電池41の最大電池容量に対する残容量の割合でもよい。蓄電池41の最大電池容量に対する残容量の割合は、SOCとも呼ばれる。 The state of charge of the storage battery 41 may be the remaining capacity of the storage battery 41 or the ratio of the remaining capacity to the maximum battery capacity of the storage battery 41. The ratio of the remaining capacity to the maximum battery capacity of the storage battery 41 is also called SOC.
 充電期間T11に蓄電池41によって充電される電力量として予定される充電予定電力量は、蓄電状況予測部13で予測される充電可能量でもよい。なお、充電予定電力量は、充電期間T11における余剰電力量の一部または全部でもよい。 The planned charging amount of power scheduled as the amount of power charged by the storage battery 41 in the charging period T11 may be the chargeable amount predicted by the storage state prediction unit 13. Note that the planned charging power amount may be part or all of the surplus power amount in the charging period T11.
 蓄電状況予測部13は、蓄電池41の最大電池容量などのデータを予め保持している。また、蓄電状況予測部13は、パワーコンディショナ42から通信部17を介して現在の蓄電池41の残容量のデータを取得する。そして、蓄電状況予測部13は、蓄電池41の残容量、蓄電池41の最大電池容量、需要電力X1の予測結果、および、発電電力X2の予測結果などに基づいて、充電期間T11の開始時刻(時刻t11)における充電状態に依存する充電可能量を予測する。 The storage state prediction unit 13 holds data such as the maximum battery capacity of the storage battery 41 in advance. Further, the storage state prediction unit 13 acquires data of the current remaining capacity of the storage battery 41 from the power conditioner 42 via the communication unit 17. Then, based on the remaining capacity of storage battery 41, the maximum battery capacity of storage battery 41, the predicted result of demand power X1, and the predicted result of generated power X2, storage state prediction unit 13 determines the start time of charging period T11 (time The chargeable amount depending on the state of charge at t11) is predicted.
 通信部17は、通信を行う通信器である。具体的には、通信部17は、パワーコンディショナ42と有線または無線で通信を行う。また、通信部17は、パワーコンディショナ42から現在の蓄電池41の残容量のデータなどを取得する。 The communication unit 17 is a communication device that performs communication. Specifically, the communication unit 17 communicates with the power conditioner 42 in a wired or wireless manner. Further, the communication unit 17 acquires the current remaining capacity data of the storage battery 41 and the like from the power conditioner 42.
 例えば、レート決定部14は、充電期間T11において蓄電池41の充電電力が平均化されるように、充電期間T11における目標充電レートを決定することで、逆潮流電力のピークを抑制する。 For example, the rate determination unit 14 suppresses the peak of reverse flow power by determining the target charging rate in the charging period T11 so that the charging power of the storage battery 41 is averaged in the charging period T11.
 具体的には、レート決定部14は、充電期間T11の開始時刻(時刻t11)における充電状態に基づく充電可能量を充電期間T11の時間長で除することで、充電期間T11における目標充電レートを導出する。これにより、レート決定部14は、充電期間T11の全期間において一定値の目標充電レートを導出する。 Specifically, the rate determination unit 14 divides the chargeable amount based on the charge state at the start time (time t11) of the charge period T11 by the time length of the charge period T11 to obtain the target charge rate in the charge period T11. To derive. Thus, the rate determination unit 14 derives a target charging rate of a constant value in the entire charging period T11.
 そして、現在時刻が充電期間T11の開始時刻(時刻t11)に達すると、レート決定部14は、導出した目標充電レートのデータをパワーコンディショナ42へ通信部17を介して送信する。具体的には、レート決定部14は、充電期間T11の開始時刻(時刻t11)から充電期間T11の終了時刻(時刻t13)まで、導出した目標充電レートのデータをパワーコンディショナ42へ通信部17を介して定期的に送信する。 Then, when the current time reaches the start time (time t11) of the charging period T11, the rate determining unit 14 transmits the data of the derived target charging rate to the power conditioner 42 via the communication unit 17. Specifically, the rate determination unit 14 transmits the data of the derived target charge rate to the power conditioner 42 from the start time (time t11) of the charge period T11 to the end time (time t13) of the charge period T11. Send regularly through.
 すなわち、レート決定部14は、時刻t11から時刻t13までの間、パワーコンディショナ42に対して一定値の目標充電レートを指示する。パワーコンディショナ42は、レート決定部14から指示された目標充電レートに基づいて蓄電池41を充電させる。 That is, rate determining unit 14 instructs power conditioner 42 to set a target charging rate of a constant value from time t11 to time t13. Power conditioner 42 charges storage battery 41 based on the target charge rate instructed from rate determination unit 14.
 ただし、充電期間T11の最初の期間(時刻t11~時刻t111)、および、充電期間T11の最後の期間(時刻t131~時刻t13)において、余剰電力が小さいため、蓄電池41を充電させる充電レートは、指示された目標充電レートよりも実質的に低くなる。また、時刻t111~時刻t131の期間では、余剰電力が十分に大きいので、蓄電池41を充電させる充電レートは、指示された一定の目標充電レートになる。 However, since the surplus power is small in the first period (time t11 to time t111) of charge period T11 and the last period (time t131 to time t13) of charge period T11, the charge rate for charging storage battery 41 is It is substantially lower than the indicated target charge rate. Further, in the period from time t111 to time t131, since the surplus power is sufficiently large, the charging rate for charging the storage battery 41 becomes the instructed constant target charging rate.
 そして、蓄電池41は、充電期間T11における充電によって、充電期間T11の終了時刻(時刻t13)において、ほぼ満充電状態になる。 Then, the storage battery 41 is substantially fully charged at the end time of the charging period T11 (time t13) due to the charging in the charging period T11.
 すなわち、充電期間T11のほぼ全期間において、余剰電力は、蓄電池41により充電される充電電力(図4A中の領域A3)と、売電される逆潮流電力(図4A中の領域A4)との両方に用いられる。そして、電力余剰期間T1の全期間に亘って、レート決定部14が決定した目標充電レートに従って充電が行われる。したがって、逆潮流電力は電力余剰期間T1の全期間に亘って抑制される。 That is, in almost the entire charging period T11, the surplus power corresponds to the charging power charged by the storage battery 41 (region A3 in FIG. 4A) and the reverse flow power sold (region A4 in FIG. 4A). It is used for both. Then, charging is performed according to the target charging rate determined by the rate determining unit 14 over the entire period of the power surplus period T1. Therefore, the reverse flow power is suppressed over the entire power surplus period T1.
 図4Bは、図4Aの蓄電池制御を行った場合の等価需要Y1を示す。等価需要Y1では、売電電力(逆潮流電力)のピークが等価需要Y100よりも小さくなり、売電電力のピークが抑制される。特に、図4Bでは、売電電力のピークが、上限目標値K1以下に抑制されている。 FIG. 4B shows equivalent demand Y1 when the storage battery control of FIG. 4A is performed. In the equivalent demand Y1, the peak of the power sale power (reverse flow power) becomes smaller than the equivalent demand Y100, and the peak of the power sale power is suppressed. In particular, in FIG. 4B, the peak of the power sale power is suppressed to the upper limit target value K1 or less.
 この上限目標値K1は、電力系統7が不安定にならないように決められている指標であり、売電電力のピークが大きくなりすぎることを抑制するための目安を示す。例えば、上限目標値K1は、電力会社またはアグリゲータなどから送信されたデマンドレスポンス信号(以降、DR信号と呼ぶ)によって、随時指示される値である。あるいは、上限目標値K1は、電力会社またはアグリゲータなどによって予め決められた一定値であってもよい。 The upper limit target value K1 is an index determined so that the power system 7 does not become unstable, and indicates a standard for suppressing an excessive increase in the peak of the sold power. For example, the upper limit target value K1 is a value designated at any time by a demand response signal (hereinafter referred to as a DR signal) transmitted from a power company or an aggregator. Alternatively, the upper limit target value K1 may be a fixed value predetermined by a power company or an aggregator.
 上述のように本実施の形態における蓄電池制御装置1は、太陽光発電装置3の余剰電力を逆潮流させる場合に、売電電力(逆潮流電力)のピークを抑えることができ、電力系統7の安定化に寄与することができる。 As described above, the storage battery control device 1 according to the present embodiment can suppress the peak of selling power (reverse flow power) when the surplus power of the solar power generation device 3 is reversely flowed. It can contribute to stabilization.
 次に、時刻t13に、発電電力X2が需要電力X1に等しくなるまで低下する。そして、時刻t13の後において、需要電力X1から発電電力X2を減算した残りは不足電力であり、不足電力は、蓄電池41の放電電力と商用電力とで賄われる。しかしながら、図3Bに示す等価需要Y100では、買電電力(負荷6へ供給される商用電力)のピークが大きくなっており、電力系統7が不安定になる可能性がある。 Next, at time t13, the generated power X2 decreases until it becomes equal to the required power X1. Then, after time t13, the remainder obtained by subtracting the generated power X2 from the required power X1 is the insufficient power, and the insufficient power is covered by the discharged power of the storage battery 41 and the commercial power. However, in equivalent demand Y100 shown in FIG. 3B, the peak of purchased power (commercial power supplied to load 6) is large, and power system 7 may become unstable.
 そこで、本実施の形態では、図4Aに示す蓄電池制御を行う。 Therefore, in the present embodiment, storage battery control shown in FIG. 4A is performed.
 時刻t13の後、不足電力は、蓄電池41の放電電力と商用電力とで賄われる。レート決定部14は、不足電力の全てを商用電力で賄った場合に、負荷6へ供給される商用電力(図4B中のY200)が上限目標値K2を上回る期間を含む期間を放電期間T21として設定する。つまり、この放電期間T21は、蓄電池41の放電電力を負荷6へ供給しなかった場合に負荷6へ供給される商用電力が上限目標値K2を上回る期間を含む。 After time t13, the insufficient power is covered by the discharged power of the storage battery 41 and the commercial power. Rate determining unit 14 defines a period including a period in which commercial power (Y200 in FIG. 4B) supplied to load 6 exceeds upper limit target value K2 as discharge period T21 when all the insufficient power is supplied by commercial power. Set That is, the discharge period T21 includes a period in which the commercial power supplied to the load 6 exceeds the upper limit target value K2 when the discharge power of the storage battery 41 is not supplied to the load 6.
 すなわち、放電期間T21は、蓄電池41の放電電力を負荷6へ供給しなかった場合に負荷6へ供給される商用電力がピークである時刻を含む。なお、放電期間T21は、不足電力の全てを商用電力で賄った場合に、つまり、蓄電池41の放電電力を負荷6へ供給しなかった場合に、負荷6へ供給される商用電力が上限目標値K2を上回る期間でもよい。 That is, the discharge period T21 includes the time when the commercial power supplied to the load 6 is a peak when the discharge power of the storage battery 41 is not supplied to the load 6. In the discharge period T21, the commercial power supplied to the load 6 is the upper limit target value when all the insufficient power is supplied by the commercial power, that is, when the discharged power of the storage battery 41 is not supplied to the load 6. It may be a period exceeding K2.
 この上限目標値K2は、電力系統7が不安定にならないように決められている指標であり、買電電力のピークが大きくなりすぎることを抑制するための目安を示す。例えば、上限目標値K2は、電力会社またはアグリゲータなどから送信されたDR信号によって、随時指示される値である。あるいは、上限目標値K2は、電力会社またはアグリゲータなどによって予め決められた一定値であってもよい。 The upper limit target value K2 is an index determined to prevent the power system 7 from becoming unstable, and indicates a standard for suppressing an excessive increase in the peak of purchased power. For example, the upper limit target value K2 is a value designated at any time by a DR signal transmitted from a power company or an aggregator. Alternatively, the upper limit target value K2 may be a fixed value predetermined by a power company or an aggregator.
 蓄電状況予測部13は、放電期間T21の開始時刻(時刻t15)における充電状態に基づく放電可能量を予測する。具体的には、蓄電状況予測部13は、蓄電池41の残容量、蓄電池41の最大電池容量、需要電力X1の予測結果、および、発電電力X2の予測結果などに基づいて、放電期間T21の開始時刻(時刻t15)における充電状態に依存する放電可能量を予測する。また、蓄電状況予測部13で予測される放電可能量に、上述の充電期間T11における充電予定電力量が反映されてもよい。 The storage state prediction unit 13 predicts the dischargeable amount based on the charge state at the start time (time t15) of the discharge period T21. Specifically, the storage state prediction unit 13 starts the discharge period T21 based on the remaining capacity of the storage battery 41, the maximum battery capacity of the storage battery 41, the prediction result of the demand power X1, the prediction result of the generated power X2, etc. The dischargeable amount dependent on the charge state at time (time t15) is predicted. Further, the estimated amount of charge in the charging period T11 described above may be reflected in the dischargeable amount predicted by the storage state prediction unit 13.
 例えば、レート決定部14は、放電期間T21において蓄電池41の放電電力が平均化されるように、放電期間T21における目標放電レートを決定することで、買電電力(負荷6へ供給される商用電力)のピークを抑制する。 For example, the rate determination unit 14 determines the target discharge rate in the discharge period T21 so that the discharge power of the storage battery 41 is averaged in the discharge period T21. Suppress the peak of).
 具体的には、レート決定部14は、放電期間T21の開始時刻(時刻t15)における充電状態に基づく放電可能量を放電期間T21の時間長で除することで、放電期間T21における目標放電レートを導出する。 Specifically, the rate determination unit 14 divides the dischargeable amount based on the charge state at the start time (time t15) of the discharge period T21 by the time length of the discharge period T21 to obtain the target discharge rate in the discharge period T21. To derive.
 そして、レート決定部14は、現在時刻が放電期間T21の開始時刻(時刻t15)に達すると、導出した目標放電レートのデータをパワーコンディショナ42へ通信部17を介して送信する。具体的には、レート決定部14は、放電期間T21の開始時刻(時刻t15)から放電期間T21の終了時刻(時刻t16)まで、導出した目標放電レートのデータをパワーコンディショナ42へ通信部17を介して定期的に送信する。 Then, when the current time reaches the start time (time t15) of the discharge period T21, the rate determination unit 14 transmits the data of the derived target discharge rate to the power conditioner 42 via the communication unit 17. Specifically, the rate determination unit 14 sends the data of the target discharge rate derived to the communication unit 17 from the start time (time t15) of the discharge period T21 to the end time (time t16) of the discharge period T21. Send regularly through.
 すなわち、レート決定部14は、時刻t15から時刻t16までの間、パワーコンディショナ42に対して目標放電レートを指示する。パワーコンディショナ42は、レート決定部14から指示された目標放電レートで蓄電池41を放電させる。 That is, the rate determination unit 14 instructs the power conditioner 42 on the target discharge rate during the period from time t15 to time t16. Power conditioner 42 discharges storage battery 41 at the target discharge rate instructed from rate determination unit 14.
 そして、放電期間T21の全期間において、不足電力は、蓄電池41により放電される放電電力(図4A中の領域A5)と、商用電力(図4A中の領域A6)とで賄われる。そして、放電期間T21の全期間に亘って、レート決定部14が決定した目標放電レートに従って放電が行われる。したがって、買電電力は放電期間T21の全期間に亘って抑制される。 Then, in the entire discharge period T21, the insufficient power is covered by the discharge power discharged by the storage battery 41 (region A5 in FIG. 4A) and the commercial power (region A6 in FIG. 4A). And discharge is performed according to the target discharge rate which the rate determination part 14 determined over the whole period of discharge period T21. Therefore, purchased power is suppressed over the entire discharge period T21.
 そして、図4Bに示すように、等価需要Y1は、買電電力(負荷6へ供給される商用電力)のピークが等価需要Y100よりも小さくなり、買電電力のピークが抑制される。特に、図4Bでは、買電電力のピークが、上限目標値K2以下に抑制されている。 And as shown to FIG. 4B, the peak of purchased power (commercial power supplied to the load 6) becomes smaller than equivalent demand Y100, and the peak of purchased power is suppressed. In particular, in FIG. 4B, the peak of purchased power is suppressed to the upper limit target value K2 or less.
 上述のように本実施の形態における蓄電池制御装置1は、不足電力を商用電力で賄う場合に、買電電力(負荷6へ供給される商用電力)のピークを抑えることができ、電力系統7の安定化に寄与することができる。 As described above, the storage battery control device 1 according to the present embodiment can suppress the peak of purchased power (commercial power supplied to the load 6) when the insufficient power is covered by the commercial power. It can contribute to stabilization.
 また、ユーザが電力会社またはアグリゲータと契約する電気料金プランには、買電電力のピーク値によって基本料金が変動するプランがある。一般に、買電電力のピーク値が高いほど、基本料金も高くなる。この場合、買電電力のピークが抑えられることによって、ユーザは、安い電力料金プランで契約することができ、電気料金が安くなって、経済的に有利になる。 In addition, in the electricity rate plan in which the user contracts with a power company or an aggregator, there is a plan in which the basic rate changes according to the peak value of purchased power. In general, the higher the peak value of purchased power, the higher the basic charge. In this case, by suppressing the peak of the purchased power, the user can contract with a cheap power rate plan, and the power rate is reduced, which is economically advantageous.
 上述の蓄電池制御装置1は、電力系統7(商用電源8)と分散電源(太陽光発電装置3など)と蓄電装置4とのそれぞれから負荷6へ電力を供給する給電動作を行う配電システムに用いられる。この配電システムは、分散電源の発電電力で蓄電装置4が備える蓄電池41を充電させる充電動作、および、分散電源の発電電力のうち蓄電池41で充電されず負荷6で消費されない電力を電力系統7に逆潮流させる逆潮流動作を行う。 The storage battery control device 1 described above is used in a power distribution system that performs a power supply operation of supplying power to the load 6 from each of the power system 7 (commercial power supply 8), the distributed power supply (such as the solar power generation device 3), and the storage device 4 Be The power distribution system includes a charging operation for charging the storage battery 41 of the storage device 4 with the generated power of the distributed power supply, and the power generated by the distributed power supply that is not charged by the storage battery 41 and not consumed by the load 6. Perform reverse flow operation to reverse flow.
 そして、蓄電池制御装置1は、需要予測部11と、発電予測部12と、レート決定部14とを備える。需要予測部11は、負荷6で消費される需要電力の時間推移であり所定期間(例えば1日)における時間推移である需要推移を予測する。発電予測部12は、分散電源の発電電力の時間推移であり所定期間における時間推移である発電推移を予測する。レート決定部14は、目標充電レートに蓄電池41の充電レートを一致または近づける(一致させる、または、近づける)ための目標充電レートを決定する。 The storage battery control device 1 includes a demand prediction unit 11, a power generation prediction unit 12, and a rate determination unit 14. The demand prediction unit 11 predicts a demand transition which is a temporal transition of demand power consumed by the load 6 and which is a temporal transition in a predetermined period (for example, one day). The power generation prediction unit 12 predicts a power generation transition which is a time transition of the generated power of the dispersed power source and a time transition in a predetermined period. The rate determination unit 14 determines a target charge rate for matching or bringing the charge rate of the storage battery 41 close to (coincident with or close to) the target charge rate.
 また、レート決定部14は、需要予測部11で予測された需要推移と、発電予測部12で予測された発電推移とに基づいて、所定期間のうち、発電電力から需要電力を除いた余剰電力がピークである時刻を含む期間を充電動作が行われる充電期間T11として設定する。 Further, the rate determination unit 14 determines surplus power obtained by removing demand power from generated power within a predetermined period based on the demand transition predicted by the demand prediction unit 11 and the power generation transition predicted by the power generation prediction unit 12. Is set as the charging period T11 in which the charging operation is performed.
 そして、レート決定部14は、充電期間T11に蓄電池41によって充電される電力量として予定される充電予定電力量と、充電期間T11の時間長とに基づいて、目標充電レートを決定する。具体的には、レート決定部14は、充電期間T11に亘って蓄電池41を充電させるための充電レートを充電期間T11における目標充電レートとして決定する。 Then, rate determining unit 14 determines a target charging rate based on the scheduled charging power amount scheduled as the amount of power charged by storage battery 41 in charging period T11 and the time length of charging period T11. Specifically, rate determining unit 14 determines a charging rate for charging storage battery 41 over the charging period T11 as a target charging rate in charging period T11.
 これにより、蓄電池制御装置1は、蓄電池41に対して充電の制御を適切な期間に亘って行うことができる。具体的には、蓄電池制御装置1は、余剰電力がピークである時刻を含む充電期間T11において蓄電池41を充電させることで、逆潮流電力のピークを抑制することができる。すなわち、蓄電池制御装置1は、分散電源の余剰電力を売電する場合に、売電電力(逆潮流電力)のピークを抑えることができ、電力系統7の安定化に寄与することができる。 Thereby, storage battery control device 1 can perform control of charge to storage battery 41 over a suitable period. Specifically, the storage battery control device 1 can suppress the peak of reverse flow power by charging the storage battery 41 in the charging period T11 including the time when the surplus power is at the peak. That is, when selling surplus power of the distributed power supply, the storage battery control device 1 can suppress the peak of the selling power (reverse flow power), and can contribute to the stabilization of the power system 7.
 また、蓄電池制御装置1は、さらに、充電期間T11に蓄電池41により充電可能な電力量であり充電期間T11の開始タイミングにおける蓄電池41の充電状態に依存する電力量である充電可能量を予測する蓄電状況予測部13を備えてもよい。そして、レート決定部14は、充電可能量を充電予定電力量として設定してもよい。 In addition, the storage battery control device 1 is further configured to estimate a chargeable amount which is an amount of power chargeable by the storage battery 41 in the charging period T11 and an amount of power depending on a charging state of the storage battery 41 at the start timing of the charging period T11. The situation prediction unit 13 may be provided. Then, the rate determination unit 14 may set the chargeable amount as the scheduled charge amount.
 これにより、充電可能量に基づいて目標充電レートが決定される。したがって、蓄電池制御装置1は、充電可能量に基づいて、充電期間T11の終了タイミングまで充電を適切に継続することができる。 Thereby, the target charge rate is determined based on the chargeable amount. Therefore, storage battery control device 1 can continue charging appropriately until the end timing of charging period T11 based on the chargeable amount.
 また、レート決定部14は、目標充電レートを充電期間T11に亘って一定値に決定してもよい。 Further, the rate determination unit 14 may determine the target charge rate as a constant value over the charge period T11.
 これにより、充電期間T11に亘って目標充電レートが一定値に設定される。したがって、充電制御が簡易になる。 Thereby, the target charge rate is set to a constant value over the charge period T11. Therefore, charging control is simplified.
 また、レート決定部14は、充電予定電力量を充電期間T11の時間長で除することで、目標充電レートを決定してもよい。 Further, the rate determination unit 14 may determine the target charging rate by dividing the planned charging amount by the time length of the charging period T11.
 これにより、蓄電池制御装置1は、余剰電力がピークである時刻を含む充電期間T11において蓄電池41により充電される電力を平均化することができる。 Thereby, storage battery control device 1 can average the power charged by storage battery 41 in charging period T11 including the time when the surplus power is at the peak.
 また、レート決定部14は、発電電力が需要電力を上回る電力余剰期間T1を充電期間T11として設定してもよい。 In addition, the rate determination unit 14 may set a power surplus period T1 in which the generated power exceeds the demand power as the charging period T11.
 これにより、電力余剰期間T1の全期間に亘って、レート決定部14が決定した目標充電レートに従って充電が行われるので、逆潮流電力は電力余剰期間T1の全期間に亘って抑制される。 As a result, charging is performed according to the target charging rate determined by the rate determination unit 14 over the entire period of the power surplus period T1, so reverse flow power is suppressed over the entire period of the power surplus period T1.
 上述の蓄電池制御装置1は、蓄電装置4が備える蓄電池41を放電させる放電動作と、電力系統7(商用電源8)と蓄電装置4とのそれぞれから負荷6へ電力を供給する給電動作とを行う配電システムに用いられる。そして、蓄電池制御装置1は、需要予測部11と、蓄電状況予測部13と、レート決定部14とを備える。 The storage battery control device 1 described above performs a discharging operation for discharging the storage battery 41 included in the storage device 4 and a feeding operation for supplying power to the load 6 from each of the power system 7 (commercial power supply 8) and the storage device 4 Used in power distribution systems. Then, the storage battery control device 1 includes a demand prediction unit 11, a storage state prediction unit 13, and a rate determination unit 14.
 需要予測部11は、負荷6で消費される需要電力の時間推移であり所定期間(例えば1日)における時間推移である需要推移を予測する。蓄電状況予測部13は、放電動作が行われる放電期間T21に蓄電池41により放電可能な電力量であり放電期間T21の開始タイミングにおける蓄電池41の充電状態に依存する電力量である放電可能量を予測する。レート決定部14は、目標放電レートに蓄電池41の放電レートを一致または近づける(一致させる、または、近づける)ための目標放電レートを決定する。 The demand prediction unit 11 predicts a demand transition which is a temporal transition of demand power consumed by the load 6 and which is a temporal transition in a predetermined period (for example, one day). The storage state prediction unit 13 predicts a dischargeable amount that is an amount of power that can be discharged by the storage battery 41 during the discharge period T21 in which the discharge operation is performed and that depends on the charge state of the storage battery 41 at the start timing of the discharge period T21. Do. The rate determination unit 14 determines a target discharge rate for causing the discharge rate of the storage battery 41 to match or approach (match or approach) the target discharge rate.
 また、レート決定部14は、需要予測部11で予測された需要推移に基づいて、放電期間T21を設定する。具体的には、レート決定部14は、所定期間のうち、蓄電装置4から負荷6へ電力が供給されないと仮定された場合に電力系統7から負荷6へ供給される電力がピークである時刻を含む期間を放電期間T21として設定する。 In addition, the rate determination unit 14 sets the discharge period T21 based on the demand transition predicted by the demand prediction unit 11. Specifically, rate determining unit 14 determines that the time when the power supplied from power system 7 to load 6 is peak when it is assumed that power is not supplied from power storage device 4 to load 6 during a predetermined period. A period including is set as the discharge period T21.
 そして、レート決定部14は、放電期間T21に対して蓄電状況予測部13で予測される放電可能量と、放電期間T21の時間長とに基づいて、目標放電レートを決定する。具体的には、レート決定部14は、放電期間T21に亘って蓄電池41を放電させるための放電レートを放電期間T21における目標放電レートとして決定する。 Then, the rate determination unit 14 determines a target discharge rate based on the dischargeable amount predicted by the storage state prediction unit 13 for the discharge period T21 and the time length of the discharge period T21. Specifically, rate determining unit 14 determines a discharge rate for discharging storage battery 41 over discharge period T21 as a target discharge rate in discharge period T21.
 これにより、蓄電池制御装置1は、蓄電池41に対して放電の制御を適切な期間に亘って行うことができる。具体的には、蓄電池制御装置1は、放電が行われない場合において負荷6へ供給される商用電力がピークである時刻を含む放電期間T21に亘って、蓄電池41を放電させることができる。すなわち、蓄電池制御装置1は、買電電力のピークを抑えることができ、電力系統7の安定化に寄与することができる。 Thereby, storage battery control device 1 can perform control of discharge to storage battery 41 over an appropriate period. Specifically, the storage battery control device 1 can discharge the storage battery 41 over the discharge period T21 including the time when the commercial power supplied to the load 6 is peak when the discharge is not performed. That is, the storage battery control device 1 can suppress the peak of purchased power and can contribute to the stabilization of the power system 7.
 また、レート決定部14は、目標放電レートを放電期間T21に亘って一定値に決定してもよい。 Further, the rate determination unit 14 may determine the target discharge rate as a constant value over the discharge period T21.
 これにより、放電期間T21に亘って目標放電レートが一定値に設定される。したがって、放電制御が簡易になる。 Thus, the target discharge rate is set to a constant value over the discharge period T21. Therefore, discharge control is simplified.
 また、レート決定部14は、放電可能量を放電期間T21の時間長で除することで、目標放電レートを決定してもよい。 Alternatively, the rate determination unit 14 may determine the target discharge rate by dividing the dischargeable amount by the time length of the discharge period T21.
 これにより、蓄電池制御装置1は、放電が行われない場合において負荷6へ供給される商用電力がピークである時刻を含む放電期間T21において蓄電池41により放電される電力を平均化することができる。 Thereby, storage battery control device 1 can average the power discharged by storage battery 41 in discharge period T21 including the time when commercial power supplied to load 6 is at a peak when discharge is not performed.
 また、給電動作では、さらに、分散電源(太陽光発電装置3など)から負荷6へ電力を供給してもよい。そして、蓄電池制御装置1は、さらに、分散電源の発電電力の時間推移であり所定期間における時間推移である発電推移を予測する発電予測部12を備えてもよい。レート決定部14は、需要予測部11で予測された需要推移と、発電予測部12で予測された発電推移とに基づいて、発電電力が需要電力を下回る電力不足期間内に放電期間T21を設定してもよい。 In addition, in the power supply operation, power may be supplied to the load 6 from a distributed power supply (such as the solar power generation device 3). Then, the storage battery control device 1 may further include a power generation prediction unit 12 that predicts a power generation transition that is a time transition of a generated power of the distributed power supply and that is a time transition in a predetermined period. Rate determination unit 14 sets discharge period T21 within the power shortage period in which the generated power falls below demand power based on the demand transition predicted by demand prediction unit 11 and the power generation transition predicted by power generation prediction unit 12 You may
 これにより、発電電力が不足している電力不足期間内において、放電が行われない場合に負荷6へ供給される商用電力がピークである時刻を含む放電期間T21が設定される。したがって、蓄電池制御装置1は、商用電力のピークを放電電力によって適切に抑制することができる。 As a result, within the power shortage period in which the generated power is insufficient, a discharge period T21 is set that includes the time when commercial power supplied to the load 6 is at a peak when discharge is not performed. Therefore, storage battery control device 1 can appropriately suppress the peak of commercial power by discharged power.
 また、レート決定部14は、蓄電装置4から負荷6へ電力が供給されないと仮定された場合に電力系統7から負荷6へ供給される電力が上限目標値K2を上回る期間を放電期間T21として設定してもよい。 Further, rate determination unit 14 sets, as discharge period T21, a period in which the power supplied from power system 7 to load 6 exceeds upper limit target value K2 when it is assumed that power is not supplied from power storage device 4 to load 6. You may
 これにより、蓄電池制御装置1は、負荷6へ供給される商用電力を低減させて、負荷6へ供給される商用電力のピークを上限目標値K2に近づける、または、負荷6へ供給される商用電力のピークを上限目標値K2以下に抑えることができる。 Thereby, the storage battery control device 1 reduces the commercial power supplied to the load 6 and brings the peak of the commercial power supplied to the load 6 closer to the upper limit target value K2, or the commercial power supplied to the load 6 Can be suppressed to the upper limit target value K2 or less.
 また、上述の配電システムにおける分散電源は、太陽光によって発電する太陽光発電装置3でもよい。 Moreover, the distributed power supply in the above-mentioned distribution system may be the solar power generation device 3 which generates electric power by sunlight.
 この場合、蓄電池制御装置1は、太陽光発電装置3の余剰電力を用いて蓄電池41を充電させ、太陽光発電装置3が発電しない夜間に蓄電池41を放電させることで、逆潮流電力のピーク、および、負荷6へ供給される商用電力のピークを抑制することができる。 In this case, the storage battery control device 1 charges the storage battery 41 using the surplus power of the solar power generation device 3 and discharges the storage battery 41 at night when the solar power generation device 3 does not generate power. And, the peak of the commercial power supplied to the load 6 can be suppressed.
 また、レート決定部14は、図5に示すように電力余剰期間T1内において充電期間T12を決定してもよい。具体的には、レート決定部14は、余剰電力の全量を電力系統7に逆潮流させた場合に逆潮流する電力Y300(売電電力)が上限目標値K1を上回る期間を充電期間T12として設定する。この場合も、充電期間T12は、余剰電力の全量を電力系統7に逆潮流させた場合に逆潮流する電力Y300がピークである時刻を含む。 Further, the rate determining unit 14 may determine the charging period T12 within the power surplus period T1 as shown in FIG. Specifically, rate determination unit 14 sets, as charging period T12, a period in which power Y300 (power sale power) reversely flowing when the entire amount of surplus power is reversely transmitted to power system 7 exceeds the upper limit target value K1. Do. Also in this case, the charging period T12 includes the time when the power Y300 reversely flowing when the total amount of surplus power is reversely flowed to the power system 7 is a peak.
 レート決定部14は、充電期間T12の開始時刻における充電状態に基づく充電可能量を充電期間T12の時間長で除することで、充電期間T12における目標充電レートを導出する。レート決定部14で導出された目標充電レートは、充電期間T12の全期間において一定である。 The rate determination unit 14 derives a target charge rate in the charge period T12 by dividing the chargeable amount based on the charge state at the start time of the charge period T12 by the time length of the charge period T12. The target charging rate derived by the rate determining unit 14 is constant throughout the charging period T12.
 そして、売電電力が上限目標値K1を上回る期間である充電期間T12の全期間に亘って、同様にレート決定部14で決定された目標充電レートに従って、充電が行われる。したがって、逆潮流電力は充電期間T12の全期間に亘って抑制される。この場合、充電期間T12では余剰電力が十分に大きいので、充電期間T12の全期間に亘って指示された一定の目標充電レートでの充電が可能である。 Then, charging is performed according to the target charging rate similarly determined by the rate determining unit 14 over the entire charging period T12, which is a period during which the selling power exceeds the upper limit target value K1. Therefore, the reverse flow power is suppressed over the entire charging period T12. In this case, since the surplus power is sufficiently large in the charging period T12, charging at a specified target charging rate can be performed over the entire charging period T12.
 したがって、蓄電池制御装置1は、分散電源の余剰電力を売電する場合に、売電電力(逆潮流電力)のピークを上限目標値K1に近づく方向に低減させることができる。すなわち、蓄電池制御装置1は、売電電力のピークを上限目標値K1に近づける、または、売電電力のピークを上限目標値K1以下に抑えることができる。 Therefore, when selling surplus power of the distributed power supply, the storage battery control device 1 can reduce the peak of the selling power (reverse flow power) in the direction approaching the upper limit target value K1. That is, the storage battery control device 1 can bring the peak of the power sale power closer to the upper limit target value K1, or can suppress the peak of the power sale power to the upper limit target value K1 or less.
 つまり、レート決定部14は、余剰電力を電力系統7に逆潮流させた場合に逆潮流する電力が上限目標値K1を上回る期間を充電期間T12として設定してもよい。 That is, the rate determination unit 14 may set, as the charging period T12, a period in which the power reversely flowing when the surplus power is reversely flowed to the power system 7 exceeds the upper limit target value K1.
 (実施の形態2)
 図6は、本実施の形態の配電システムの全体構成を示す。本実施の形態の蓄電池41は、充電可能量が十分に確保されている状態であると仮定する。充電可能量が十分に確保されている状態は、蓄電池41の残容量が少ないため、または、蓄電池41の定格容量が大きいため、充電可能な電力量が大きい状態である。
Second Embodiment
FIG. 6 shows the entire configuration of the power distribution system according to the present embodiment. It is assumed that storage battery 41 of the present embodiment is in a state where the chargeable amount is sufficiently secured. The state in which the chargeable amount is sufficiently ensured is a state in which the amount of chargeable power is large because the remaining capacity of storage battery 41 is small or the rated capacity of storage battery 41 is large.
 本実施の形態の蓄電池制御装置1Aは、実施の形態1の蓄電池制御装置1と比較して、蓄電状況予測部13を備えていない。そして、蓄電池制御装置1Aのレート決定部14は、余剰電力を充電期間に亘って積算した余剰電力量を充電予定電力量として用いることが、実施の形態1とは異なる。つまり、本実施の形態において、充電予定電力量は、余剰電力を充電期間に亘って積算した余剰電力量である。なお、実施の形態1と同様の構成には同一の符号を付して、説明は省略する。 The storage battery control apparatus 1A of the present embodiment does not include the storage state prediction unit 13 as compared with the storage battery control apparatus 1 of the first embodiment. Further, the rate determination unit 14 of the storage battery control device 1A differs from the first embodiment in that the surplus power amount obtained by integrating the surplus power over the charging period is used as the scheduled charging power amount. That is, in the present embodiment, the planned charging power amount is the surplus power amount obtained by integrating the surplus power over the charging period. The same components as those of the first embodiment are denoted by the same reference numerals and the description thereof is omitted.
 レート決定部14は、図7に示すように、余剰電力Y400が発生する電力余剰期間T1を充電期間T13とする。そして、レート決定部14は、充電期間T13の全期間における余剰電力Y400の積算値である余剰電力量(図7中の領域A11)を充電予定電力量として用いる。つまり、レート決定部14は、余剰電力量を充電期間T13の時間長で除することで、充電期間T13における目標充電レートを導出する。レート決定部14によって導出される目標充電レートは、充電期間T13の全期間において一定である。 As shown in FIG. 7, the rate determination unit 14 sets a power surplus period T1 in which the surplus power Y400 is generated as a charging period T13. And the rate determination part 14 uses the surplus electric energy (area A11 in FIG. 7) which is an integrated value of surplus electric power Y400 in the whole period of charge period T13 as electric charge planned electric energy. That is, the rate determination unit 14 derives the target charging rate in the charging period T13 by dividing the surplus power amount by the time length of the charging period T13. The target charge rate derived by the rate determination unit 14 is constant throughout the charging period T13.
 そして、レート決定部14は、パワーコンディショナ42に対して、充電期間T13の目標充電レートを指示する。パワーコンディショナ42は、レート決定部14から指示された目標充電レートに基づいて蓄電池41を充電させる。ただし、充電期間T13が始まった後の所定期間、および、充電期間T13が終了する前の所定期間は、余剰電力Y400が小さいため、蓄電池41を充電させる充電レートは、指示された目標充電レートよりも実質的に低くなる。 Then, the rate determination unit 14 instructs the power conditioner 42 on the target charging rate of the charging period T13. Power conditioner 42 charges storage battery 41 based on the target charge rate instructed from rate determination unit 14. However, since the surplus power Y400 is small in the predetermined period after the charging period T13 starts and the predetermined period before the charging period T13 ends, the charging rate for charging the storage battery 41 is higher than the instructed target charging rate Is also substantially lower.
 また、余剰電力Y400が十分に大きい期間では、指示された一定の目標充電レートでの充電が可能である。また、特に、余剰電力Y400のピーク付近では、余剰電力Y400が目標充電レートに比べて大きい。したがって、余剰電力Y400の一部は、充電されることなく、逆潮流電力として用いられる。 Further, in a period in which surplus power Y400 is sufficiently large, charging at a designated constant target charging rate is possible. In addition, particularly near the peak of surplus power Y400, surplus power Y400 is larger than the target charging rate. Therefore, part of surplus power Y400 is used as reverse flow power without being charged.
 すなわち、レート決定部14は、余剰電力を充電期間T13に亘って積算した余剰電力量を充電予定電力量として設定してもよい。 That is, the rate determination unit 14 may set the surplus power amount obtained by integrating the surplus power over the charging period T13 as the scheduled charging power amount.
 これにより、充電レートは、余剰電力量に基づいて設定される。したがって、蓄電池制御装置1Aは、余剰電力量に基づいて、充電期間T13の終了タイミングまで充電を適切に継続することができる。 Thereby, the charge rate is set based on the amount of surplus power. Therefore, storage battery control apparatus 1A can appropriately continue charging until the end timing of charging period T13 based on the surplus power amount.
 また、レート決定部14は、目標充電レートを充電期間T13に亘って一定値に決定してもよい。 Further, the rate determination unit 14 may determine the target charge rate as a constant value over the charge period T13.
 これにより、充電期間T13に亘って目標充電レートが一定値に設定される。したがって、充電制御が簡易になる。 Thereby, the target charge rate is set to a constant value over the charge period T13. Therefore, charging control is simplified.
 また、レート決定部14は、充電予定電力量を充電期間T13の時間長で除することで、目標充電レートを決定してもよい。 Further, the rate determination unit 14 may determine the target charging rate by dividing the planned charging amount by the time length of the charging period T13.
 これにより、蓄電池制御装置1Aは、余剰電力がピークである時刻を含む充電期間T13において蓄電池41により充電される電力を平均化することができる。 Thereby, storage battery control apparatus 1A can average the power charged by storage battery 41 in charging period T13 including the time when the surplus power is at the peak.
 また、レート決定部14は、発電電力が需要電力を上回る電力余剰期間T1を充電期間T13として設定してもよい。 In addition, the rate determination unit 14 may set the power surplus period T1 in which the generated power exceeds the demand power as the charging period T13.
 これにより、電力余剰期間T1の全期間に亘って、レート決定部14が決定した目標充電レートに従って充電が行われるので、逆潮流電力は電力余剰期間T1の全期間に亘って抑制される。 As a result, charging is performed according to the target charging rate determined by the rate determination unit 14 over the entire period of the power surplus period T1, so reverse flow power is suppressed over the entire period of the power surplus period T1.
 また、レート決定部14は、図8に示すように、電力余剰期間T1内において充電期間T14を決定してもよい。具体的には、レート決定部14は、余剰電力Y400が閾値K11を上回る期間を充電期間T14として設定する。この場合も、充電期間T14は、余剰電力Y400の全量を電力系統7に逆潮流させた場合に逆潮流する電力がピークである時刻を含む。 Further, as shown in FIG. 8, the rate determination unit 14 may determine the charging period T14 within the power surplus period T1. Specifically, rate determining unit 14 sets a period during which surplus power Y400 exceeds threshold value K11 as charging period T14. Also in this case, the charging period T14 includes the time when the reverse flow of electric power is a peak when the entire surplus power Y400 is reversely flowed to the electric power system 7.
 そして、レート決定部14は、充電期間T14における余剰電力Y400の積算値である余剰電力量(図8中の領域A12)を充電予定電力量として用いて、余剰電力量を充電期間T14の時間長で除することで、充電期間T14における目標充電レートを導出する。レート決定部14で導出された目標充電レートは、充電期間T14の全期間において一定である。 Then, rate determining unit 14 uses the surplus power amount (area A12 in FIG. 8), which is the integrated value of surplus power Y400 in charging period T14, as the planned charging amount, and uses the surplus power amount as the time length of charging period T14. The target charging rate in the charging period T14 is derived by dividing by. The target charging rate derived by the rate determining unit 14 is constant throughout the charging period T14.
 そして、余剰電力Y400が閾値K11を上回る期間である充電期間T14の全期間に亘って、レート決定部14で決定された目標充電レートに従って、充電が行われる。したがって、逆潮流電力は充電期間T14の全期間に亘って抑制される。この場合、充電期間T14では余剰電力Y400が十分に大きいので、充電期間T14の全期間に亘って指示された一定の目標充電レートでの充電が可能である。 Then, charging is performed according to the target charging rate determined by rate determining unit 14 over the entire charging period T14, which is a period in which surplus power Y400 exceeds threshold value K11. Therefore, the reverse flow power is suppressed over the entire charging period T14. In this case, since the surplus power Y400 is sufficiently large in the charging period T14, charging at a specified target charging rate can be performed over the entire charging period T14.
 すなわち、レート決定部14は、発電電力が需要電力を上回る電力余剰期間T1のうち、余剰電力が閾値K11を上回る期間を充電期間T14として設定してもよい。 That is, the rate determination unit 14 may set, as the charging period T14, a period in which the surplus power exceeds the threshold K11 in the power surplus period T1 in which the generated power exceeds the demand power.
 なお、一般に、蓄電池41およびパワーコンディショナ42の仕様および性能などによって、蓄電池41に充電可能な最大充電レート、および、蓄電池41から放電可能な最大放電レートが決まっている。 Generally, the maximum charge rate that can charge rechargeable battery 41 and the maximum discharge rate that can be discharged from rechargeable battery 41 are determined by the specifications and performance of storage battery 41 and power conditioner 42.
 そこで、上述の実施の形態1、2において、レート決定部14で導出された目標充電レートが最大充電レートを上回る場合、レート決定部14は、最大充電レートをパワーコンディショナ42に指示する最終的な目標充電レートとして決定してもよい。また、上述の実施の形態1、2において、レート決定部14で導出された目標放電レートが最大放電レートを上回る場合、レート決定部14は、最大放電レートをパワーコンディショナ42に指示する最終的な目標放電レートとして決定してもよい。 Therefore, in the above-described first and second embodiments, when the target charge rate derived by rate determiner 14 exceeds the maximum charge rate, rate determiner 14 instructs power conditioner 42 to finally designate the maximum charge rate. It may be determined as a target charging rate. Further, in the above-described first and second embodiments, when the target discharge rate derived by rate determining unit 14 exceeds the maximum discharge rate, rate determining unit 14 instructs power conditioner 42 to finally indicate the maximum discharge rate. It may be determined as a target discharge rate.
 さらに、蓄電池41およびパワーコンディショナ42の仕様および性能などによって、蓄電池41に充電可能な最小充電レート、および、蓄電池41から放電可能な最小放電レートが決まっている場合がある。 Furthermore, depending on the specifications and performance of storage battery 41 and power conditioner 42, the minimum charge rate that can charge rechargeable battery 41 and the minimum discharge rate that can be discharged from storage battery 41 may be determined.
 この場合、上述の実施の形態1、2において、レート決定部14で導出された目標充電レートが最小充電レートを下回る場合、レート決定部14は、最小充電レートをパワーコンディショナ42に指示する最終的な目標充電レートとして決定してもよい。また、上述の実施の形態1、2において、レート決定部14で導出された目標放電レートが最小放電レートを下回る場合、レート決定部14は、最小放電レートをパワーコンディショナ42に指示する最終的な目標放電レートとして決定してもよい。 In this case, in the above-described first and second embodiments, when the target charge rate derived by rate determiner 14 is less than the minimum charge rate, rate determiner 14 instructs power conditioner 42 to give a minimum charge rate. It may be determined as a typical target charge rate. Further, in the above-described first and second embodiments, when the target discharge rate derived by rate determining unit 14 falls below the minimum discharge rate, rate determining unit 14 instructs power conditioner 42 to finally indicate the minimum discharge rate. It may be determined as a target discharge rate.
 また、蓄電池制御装置1、1Aは、コンピュータを搭載してもよい。そして、コンピュータがプログラムを実行することによって、上述の蓄電池制御装置1、1Aの各部(特に、需要予測部11、発電予測部12、蓄電状況予測部13およびレート決定部14)の機能が実現されてもよい。例えば、このコンピュータは、プログラムを実行するプロセッサを備えたデバイスと、他の装置との間でデータを授受するためのインターフェイス用のデバイスと、データを記憶するための記憶用のデバイスとを主な構成要素として備える。 In addition, the storage battery control devices 1 and 1A may be equipped with a computer. When the computer executes the program, the functions of the above-described storage battery control devices 1 and 1A (in particular, the functions of the demand prediction unit 11, the power generation prediction unit 12, the power storage condition prediction unit 13 and the rate determination unit 14) are realized. May be For example, this computer mainly includes a device provided with a processor for executing a program, a device for an interface for exchanging data with another device, and a device for storing data. It has as a component.
 プロセッサを備えたデバイスは、半導体メモリと別体であるCPU(Central Processing Unit)またはMPU(Micro Processing Unit)でもよいし、半導体メモリを一体に備えるマイコンでもよい。記憶用のデバイスは、半導体メモリのようにアクセス時間が短い記憶装置と、ハードディスク装置のような大容量の記憶装置とが併用されてもよい。 The device provided with the processor may be a central processing unit (CPU) or a micro processing unit (MPU) that is separate from the semiconductor memory, or may be a microcomputer integrally provided with the semiconductor memory. The storage device may be a combination of a storage device having a short access time, such as a semiconductor memory, and a large-capacity storage device, such as a hard disk drive.
 プログラムの提供形態として、コンピュータに読み取り可能なROM(Read Only Memory)、光ディスク等の記録媒体に予め格納されている形態、および、インターネット等を含む広域通信網を介して記録媒体に供給される形態等がある。 As a form of provision of the program, a form readable in a computer readable ROM (Read Only Memory), a form stored in advance in a recording medium such as an optical disc, and a form supplied to the recording medium via a wide area communication network including the Internet etc. Etc.
 例えば、プログラムは、コンピュータを、蓄電池制御装置1または1Aとして機能させる。 For example, the program causes the computer to function as the storage battery control device 1 or 1A.
 コンピュータを蓄電池制御装置1または1Aとして機能させるプログラムも、上記と同様の効果を奏し得る。すなわち、このプログラムは、蓄電池41に対して充電または放電などの制御を適切な期間に亘って行うことができる。 A program that causes a computer to function as storage battery control device 1 or 1A can also achieve the same effect as described above. That is, this program can perform control such as charging or discharging of the storage battery 41 for an appropriate period.
 なお、上述の実施の形態は本発明の一例である。このため、本発明は、上述の実施の形態に限定されることはなく、この実施の形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。 The above embodiment is an example of the present invention. Therefore, the present invention is not limited to the above-described embodiment, and even if it is a range other than this embodiment, it does not deviate from the technical concept of the present invention, depending on the design etc. Of course, various modifications are possible.
 1、1A 蓄電池制御装置
 3 太陽光発電装置(分散電源)
 4 蓄電装置
 6 負荷
 7 電力系統
 11 需要予測部
 12 発電予測部
 13 蓄電状況予測部
 14 レート決定部
 41 蓄電池
1, 1A Storage battery control device 3 Photovoltaic generator (distributed power supply)
DESCRIPTION OF SYMBOLS 4 electrical storage apparatus 6 load 7 electric power system 11 demand forecasting part 12 power generation forecasting part 13 electrical storage condition forecasting part 14 rate determination part 41 storage battery

Claims (14)

  1.  電力系統と分散電源と蓄電装置とのそれぞれから負荷へ電力を供給する給電動作、前記分散電源の発電電力で前記蓄電装置が備える蓄電池を充電させる充電動作、および、前記分散電源の発電電力のうち前記蓄電池で充電されず前記負荷で消費されない電力を前記電力系統に逆潮流させる逆潮流動作を行う配電システムに用いられる蓄電池制御装置であって、
     前記負荷で消費される需要電力の時間推移であり所定期間における時間推移である需要推移を予測する需要予測部と、
     前記分散電源の発電電力の時間推移であり前記所定期間における時間推移である発電推移を予測する発電予測部と、
     目標充電レートに前記蓄電池の充電レートを一致または近づけるための前記目標充電レートを決定するレート決定部とを備え、
     前記レート決定部は、
     前記需要予測部で予測された前記需要推移と、前記発電予測部で予測された前記発電推移とに基づいて、前記所定期間のうち、前記発電電力から前記需要電力を除いた余剰電力がピークである時刻を含む期間を前記充電動作が行われる充電期間として設定し、
     前記充電期間に前記蓄電池によって充電される電力量として予定される充電予定電力量と、前記充電期間の時間長とに基づいて、前記充電期間に亘って前記蓄電池を充電させるための充電レートを前記充電期間における前記目標充電レートとして決定する
     蓄電池制御装置。
    Power supply operation for supplying power to the load from each of the power system, the distributed power supply and the storage device, charging operation for charging the storage battery provided in the storage device with the generated power of the distributed power supply, and the generated power of the distributed power supply A storage battery control apparatus for use in a power distribution system that performs reverse power flow operation in which power not charged by the storage battery and consumed by the load is reversely flowed to the power system,
    A demand prediction unit that predicts a demand transition that is a temporal transition of demand power consumed by the load and that is a temporal transition in a predetermined period;
    A power generation prediction unit that predicts a power generation transition that is a time transition of the generated power of the dispersed power source and that is a time transition in the predetermined period;
    A rate determination unit that determines the target charge rate for matching or bringing the charge rate of the storage battery to a target charge rate.
    The rate determination unit
    The surplus power obtained by removing the demand power from the generated power during the predetermined period is peaked in the predetermined period based on the demand transition predicted by the demand prediction unit and the power generation transition predicted by the power generation prediction unit. A period including a certain time is set as a charging period in which the charging operation is performed,
    The charging rate for charging the storage battery over the charging period is determined based on the scheduled charging power amount scheduled as the amount of power to be charged by the storage battery in the charging period and the time length of the charging period. A storage battery control device determined as the target charge rate in a charge period.
  2.  前記蓄電池制御装置は、さらに、前記充電期間に前記蓄電池により充電可能な電力量であり前記充電期間の開始タイミングにおける前記蓄電池の充電状態に依存する電力量である充電可能量を予測する蓄電状況予測部を備え、
     前記レート決定部は、前記充電可能量を前記充電予定電力量として設定する
     請求項1に記載の蓄電池制御装置。
    The storage battery control device further predicts a chargeable state, which is an amount of power chargeable by the storage battery during the charging period and an amount of power depending on a charging state of the storage battery at a start timing of the charging period. Equipped with
    The storage battery control device according to claim 1, wherein the rate determination unit sets the chargeable amount as the planned charge amount of charge.
  3.  前記レート決定部は、前記余剰電力を前記充電期間に亘って積算した余剰電力量を前記充電予定電力量として設定する
     請求項1に記載の蓄電池制御装置。
    The storage battery control device according to claim 1, wherein the rate determination unit sets a surplus power amount obtained by integrating the surplus power over the charging period as the planned charging power amount.
  4.  前記レート決定部は、前記目標充電レートを前記充電期間に亘って一定値に決定する
     請求項1~3のいずれか1項に記載の蓄電池制御装置。
    The storage battery control apparatus according to any one of claims 1 to 3, wherein the rate determination unit determines the target charge rate as a constant value over the charge period.
  5.  前記レート決定部は、前記充電予定電力量を前記充電期間の時間長で除することで、前記目標充電レートを決定する
     請求項4に記載の蓄電池制御装置。
    The storage battery control apparatus according to claim 4, wherein the rate determination unit determines the target charge rate by dividing the planned charge amount by the time length of the charge period.
  6.  前記レート決定部は、前記発電電力が前記需要電力を上回る電力余剰期間を前記充電期間として設定する
     請求項1~5のいずれか1項に記載の蓄電池制御装置。
    The storage battery control apparatus according to any one of claims 1 to 5, wherein the rate determination unit sets a power surplus period in which the generated power exceeds the demand power as the charging period.
  7.  前記レート決定部は、前記発電電力が前記需要電力を上回る電力余剰期間のうち、前記余剰電力が閾値を上回る期間を前記充電期間として設定する
     請求項1~5のいずれか1項に記載の蓄電池制御装置。
    The storage battery according to any one of claims 1 to 5, wherein the rate determining unit sets, as the charging period, a period in which the surplus power exceeds a threshold among the surplus periods in which the generated power exceeds the demand power. Control device.
  8.  前記レート決定部は、前記余剰電力を前記電力系統に逆潮流させた場合に逆潮流する電力が上限目標値を上回る期間を前記充電期間として設定する
     請求項7に記載の蓄電池制御装置。
    The storage battery control device according to claim 7, wherein the rate determination unit sets a period in which power reversely flowed when the surplus power is reversely flowed to the power system exceeds an upper limit target value as the charging period.
  9.  蓄電装置が備える蓄電池を放電させる放電動作、および、電力系統と前記蓄電装置とのそれぞれから負荷へ電力を供給する給電動作を行う配電システムに用いられる蓄電池制御装置であって、
     前記負荷で消費される需要電力の時間推移であり所定期間における時間推移である需要推移を予測する需要予測部と、
     前記放電動作が行われる放電期間に前記蓄電池により放電可能な電力量であり前記放電期間の開始タイミングにおける前記蓄電池の充電状態に依存する電力量である放電可能量を予測する蓄電状況予測部と、
     目標放電レートに前記蓄電池の放電レートを一致または近づけるための前記目標放電レートを決定するレート決定部とを備え、
     前記レート決定部は、
     前記需要予測部で予測された前記需要推移に基づいて、前記所定期間のうち、前記蓄電装置から前記負荷へ電力が供給されないと仮定された場合に前記電力系統から前記負荷へ供給される電力がピークである時刻を含む期間を前記放電期間として設定し、
     前記放電期間に対して前記蓄電状況予測部で予測される前記放電可能量と、前記放電期間の時間長とに基づいて、前記放電期間に亘って前記蓄電池を放電させるための放電レートを前記放電期間における前記目標放電レートとして決定する
     蓄電池制御装置。
    A storage battery control apparatus for use in a power distribution system that performs a discharging operation for discharging a storage battery included in a storage device and a power supply operation for supplying power from each of a power system and the storage device to a load,
    A demand prediction unit that predicts a demand transition that is a temporal transition of demand power consumed by the load and that is a temporal transition in a predetermined period;
    A storage state prediction unit that predicts a dischargeable amount that is an amount of power that can be discharged by the storage battery during a discharge period in which the discharge operation is performed and that is an amount of power depending on a charging state of the storage battery at the start timing of the discharge period;
    A rate determination unit configured to determine the target discharge rate for causing the discharge rate of the storage battery to match or approach the target discharge rate;
    The rate determination unit
    The electric power supplied from the electric power system to the load is assumed to be the electric power not supplied from the storage device to the load within the predetermined period based on the demand transition predicted by the demand prediction unit. A period including the time of peak is set as the discharge period,
    A discharge rate for discharging the storage battery over the discharge period is calculated based on the dischargeable amount predicted by the storage state prediction unit with respect to the discharge period and the time length of the discharge period. A storage battery control device determined as the target discharge rate in a period.
  10.  前記レート決定部は、前記目標放電レートを前記放電期間に亘って一定値に決定する
     請求項9に記載の蓄電池制御装置。
    The storage battery control apparatus according to claim 9, wherein the rate determination unit determines the target discharge rate as a constant value over the discharge period.
  11.  前記レート決定部は、前記放電可能量を前記放電期間の時間長で除することで、前記目標放電レートを決定する
     請求項10に記載の蓄電池制御装置。
    The storage battery control apparatus according to claim 10, wherein the rate determination unit determines the target discharge rate by dividing the dischargeable amount by a time length of the discharge period.
  12.  前記給電動作では、さらに、分散電源から前記負荷へ電力を供給し、
     前記蓄電池制御装置は、さらに、前記分散電源の発電電力の時間推移であり前記所定期間における時間推移である発電推移を予測する発電予測部を備え、
     前記レート決定部は、前記需要予測部で予測された前記需要推移と、前記発電予測部で予測された前記発電推移とに基づいて、前記発電電力が前記需要電力を下回る電力不足期間内に前記放電期間を設定する
     請求項9~11のいずれか1項に記載の蓄電池制御装置。
    In the feeding operation, the distributed power supply further supplies power to the load;
    The storage battery control apparatus further includes a power generation prediction unit that predicts a power generation transition that is a time transition of the generated power of the dispersed power source and is a time transition in the predetermined period,
    The rate determination unit is configured to set the power generation period within a power shortage period in which the generated power falls below the demand power based on the demand transition predicted by the demand prediction unit and the power generation transition predicted by the power generation prediction unit. The storage battery control device according to any one of claims 9 to 11, which sets a discharge period.
  13.  前記レート決定部は、前記蓄電装置から前記負荷へ電力が供給されないと仮定された場合に前記電力系統から前記負荷へ供給される電力が上限目標値を上回る期間を前記放電期間として設定する
     請求項9~12のいずれか1項に記載の蓄電池制御装置。
    The rate determination unit sets, as the discharge period, a period during which power supplied from the power system to the load exceeds an upper limit target value when it is assumed that power is not supplied from the storage device to the load. The storage battery control device according to any one of 9 to 12.
  14.  コンピュータを、請求項1~13のいずれか1項に記載の蓄電池制御装置として機能させる
     プログラム。
    A program that causes a computer to function as the storage battery control device according to any one of claims 1 to 13.
PCT/JP2016/002122 2015-05-19 2016-04-21 Storage cell control device WO2016185671A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017518739A JP6688981B2 (en) 2015-05-19 2016-04-21 Battery control device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015102072 2015-05-19
JP2015-102072 2015-05-19
JP2015136297 2015-07-07
JP2015-136297 2015-07-07

Publications (1)

Publication Number Publication Date
WO2016185671A1 true WO2016185671A1 (en) 2016-11-24

Family

ID=57319730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002122 WO2016185671A1 (en) 2015-05-19 2016-04-21 Storage cell control device

Country Status (2)

Country Link
JP (1) JP6688981B2 (en)
WO (1) WO2016185671A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018047415A1 (en) * 2016-09-12 2019-06-27 住友電気工業株式会社 Power storage device and power supply system
WO2020105019A3 (en) * 2018-11-23 2020-08-27 Aurora's Grid Sàrl A method and system for ageing-aware management of the charging and discharging of li-ions batteries
KR20210091969A (en) * 2020-01-15 2021-07-23 주식회사트레디오 Energy storage management system and management method for active energy storage of renewable energy of the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012057307A1 (en) * 2010-10-29 2012-05-03 三洋電機株式会社 Control device for power management
JP2013013240A (en) * 2011-06-29 2013-01-17 Hitachi Ltd Device and method for creating demand and supply plan of storage battery
JP2014187876A (en) * 2010-12-13 2014-10-02 Panasonic Corp Power control apparatus and power control system using the same
JP2014212637A (en) * 2013-04-19 2014-11-13 三菱電機株式会社 Management system for electrically-driven vehicle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000069673A (en) * 1998-08-25 2000-03-03 Hitachi Ltd Control apparatus and method for power storage apparatus
JP2001008385A (en) * 1999-06-22 2001-01-12 Sekisui Chem Co Ltd Power storing system
JP2010041883A (en) * 2008-08-07 2010-02-18 Panasonic Corp Energy storage system
JP2013143838A (en) * 2012-01-11 2013-07-22 Sanyo Electric Co Ltd Charge/discharge controller
JP2015142460A (en) * 2014-01-29 2015-08-03 京セラ株式会社 Power control device, power control system, and power control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012057307A1 (en) * 2010-10-29 2012-05-03 三洋電機株式会社 Control device for power management
JP2014187876A (en) * 2010-12-13 2014-10-02 Panasonic Corp Power control apparatus and power control system using the same
JP2013013240A (en) * 2011-06-29 2013-01-17 Hitachi Ltd Device and method for creating demand and supply plan of storage battery
JP2014212637A (en) * 2013-04-19 2014-11-13 三菱電機株式会社 Management system for electrically-driven vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018047415A1 (en) * 2016-09-12 2019-06-27 住友電気工業株式会社 Power storage device and power supply system
WO2020105019A3 (en) * 2018-11-23 2020-08-27 Aurora's Grid Sàrl A method and system for ageing-aware management of the charging and discharging of li-ions batteries
KR20210091969A (en) * 2020-01-15 2021-07-23 주식회사트레디오 Energy storage management system and management method for active energy storage of renewable energy of the same
KR102443567B1 (en) * 2020-01-15 2022-09-16 주식회사 트레디오 Energy storage management system and management method for active energy storage of renewable energy of the same

Also Published As

Publication number Publication date
JP6688981B2 (en) 2020-04-28
JPWO2016185671A1 (en) 2018-03-08

Similar Documents

Publication Publication Date Title
JP6202403B2 (en) Power supply system
US9007027B2 (en) Charge management for energy storage temperature control
JP5095495B2 (en) Electric power system and control method thereof
US9639074B2 (en) Power supply system
JP5807201B2 (en) Power control device
JP5663645B2 (en) Control apparatus and control method
JP6426922B2 (en) Electric power system, control device and charge / discharge control method
JP2011083082A (en) Power storage system
JP6369065B2 (en) Distributed power system controller, power conditioner, distributed power system, and distributed power system control method
JP6587336B2 (en) Renewable energy storage system
JP7032474B2 (en) Distribution control system, distribution control method
JP2002198079A (en) Control device of fuel cell system
JP2016063629A (en) Storage battery control device, storage battery control method and program
JP6361949B2 (en) Charge / discharge control device
WO2015059873A1 (en) Power management apparatus
JP5995653B2 (en) Charge / discharge control device, charge / discharge control method, program, and charge / discharge control system
WO2016185671A1 (en) Storage cell control device
JP7032248B2 (en) Power management equipment and programs
JP6225051B2 (en) Storage battery control device, storage battery control method and program
JP6789020B2 (en) Storage battery operation method and storage battery operation device
JP6705652B2 (en) Battery control method
JP2016015803A (en) Load leveler
JP7208095B2 (en) Server device and control method
JP6971158B2 (en) Power management equipment and programs
JP6543187B2 (en) Battery control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796068

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017518739

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16796068

Country of ref document: EP

Kind code of ref document: A1