JP2013013240A - Device and method for creating demand and supply plan of storage battery - Google Patents

Device and method for creating demand and supply plan of storage battery Download PDF

Info

Publication number
JP2013013240A
JP2013013240A JP2011144299A JP2011144299A JP2013013240A JP 2013013240 A JP2013013240 A JP 2013013240A JP 2011144299 A JP2011144299 A JP 2011144299A JP 2011144299 A JP2011144299 A JP 2011144299A JP 2013013240 A JP2013013240 A JP 2013013240A
Authority
JP
Japan
Prior art keywords
storage battery
power
value
transmission
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011144299A
Other languages
Japanese (ja)
Other versions
JP5639540B2 (en
Inventor
Kota Imai
浩太 今井
Mitsuo Tsurugai
満男 鶴貝
Yasutaka Kimura
泰崇 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011144299A priority Critical patent/JP5639540B2/en
Publication of JP2013013240A publication Critical patent/JP2013013240A/en
Application granted granted Critical
Publication of JP5639540B2 publication Critical patent/JP5639540B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Abstract

PROBLEM TO BE SOLVED: To suppress maximum transmitting/receiving electric power so as to control to bring the transmitting/receiving electric power of a small-scale system to/from an upper-level system close to a planned value.SOLUTION: A device 40 for creating a demand and supply plan of a storage battery executes arithmetic processing for minimizing an objective function using as variables the difference between transmitting/receiving electric power to/from an upper level system 2 and a planned value, and the square of the difference, to create operation plan information 50 of a storage battery 10, by applying as constraint conditions: a demand and supply balance using as variables an estimation value of power generated by natural energy power generation such as a photovoltaic power device 20 and a wind power generation device 21, charging/discharging electric power of the storage battery 10, an estimation value of power consumption of a load 30, and transmitting/receiving electric power to/from the upper level system 2; and upper/lower limit values of SOC (state of charge) of the battery 10.

Description

本発明は、自然エネルギ発電装置と蓄電池と負荷とを備えた小規模系統における、蓄電池の需給計画を作成する技術に関する。   The present invention relates to a technology for creating a storage battery supply and demand plan in a small-scale system including a natural energy power generation device, a storage battery, and a load.

地球温暖化の一要因と考えられている二酸化炭素の排出を低減させるために、発電段階で二酸化炭素を出さない太陽光発電、風力発電等の自然エネルギ発電の利用が増加してきている。このような自然エネルギ発電が分散して多数設置(分散型電源と言う。)されて上位系統に系統連系された場合、電力の品質等への悪影響が懸念されている。   In order to reduce the emission of carbon dioxide, which is considered to be a cause of global warming, the use of natural energy generation such as solar power generation and wind power generation that does not emit carbon dioxide at the power generation stage has been increasing. When such natural energy power generation is dispersed and installed in large numbers (referred to as a distributed power source) and connected to the upper system, there is a concern about adverse effects on power quality and the like.

自然エネルギ発電に伴う出力電力は、天候により変動する。そのため、自然エネルギ発電のみで、需要と供給のバランスを保つことは困難であり、時間帯によって電力の余剰や不足が発生する。自然エネルギ発電の出力電力に余剰がある場合、下位系統から上位系統に電力を逆流させることを逆潮流と言う。逆潮流が発生すると、上位系統に悪影響を及ぼす虞がある。   The output power accompanying natural energy generation varies depending on the weather. For this reason, it is difficult to maintain a balance between supply and demand with only natural energy power generation, and surplus or shortage of power occurs depending on the time of day. When there is a surplus in the output power of natural energy power generation, the reverse flow of power from the lower system to the upper system is called reverse power flow. If reverse power flow occurs, there is a risk of adversely affecting the host system.

そこで、電力系統への影響を少なくする運用形態の一つとして,小規模系統が注目されている。小規模系統は、対象エリアに分散している電源と負荷とを組み合わせて自立的に運用するもので、小規模系統内の需給制御が重要な課題となっている。   Therefore, a small-scale system is attracting attention as one of the operation modes that reduce the influence on the power system. The small-scale system is operated independently by combining power supplies and loads distributed in the target area, and supply and demand control in the small-scale system is an important issue.

例えば、特許文献1では、逆潮流を目標値以下に抑えるために蓄電池を備えて、分散型電源によって発電された電力を蓄電池に充電させて需給を制御する技術が開示されている。   For example, Patent Document 1 discloses a technology that includes a storage battery in order to suppress the reverse power flow to a target value or less, and controls the supply and demand by charging the storage battery with power generated by a distributed power source.

また、特許文献2では、電力を使用する需要家のために充放電を行う複数の二次電池を備えて、電力系統に対する二次電池の制御効果の大きさを計算し、制御効果の大きい順に各二次電池に配分する充放電量を決定する技術が開示されている。   Moreover, in patent document 2, it has the some secondary battery which charges / discharges for the consumer who uses electric power, calculates the magnitude | size of the control effect of the secondary battery with respect to an electric power grid | system, A technique for determining a charge / discharge amount to be distributed to each secondary battery is disclosed.

特開2009−268247号公報JP 2009-268247 A 特開2009−273359号公報JP 2009-273359 A

しかしながら、蓄電池は比較的高価であり、すべての余剰電力を蓄電し、電力が不足する時間帯に放電するほどの大容量のものを備えることは費用対効果が小さい。したがって、ある程度は、上位系統と電力を売買した方が費用対効果が向上する。その際、1台以上の蓄電池を効率良く運用するだけでなく、上位系統との間の送受電電力を計画値に近づけるように制御して最大送受電電力を小さく抑えることができれば、上位系統に対しては、悪影響を小さくすることができる。また、最大送受電電力を小さく抑えられるため、小規模系統の設備コストも低減できる。なお、特許文献1,2では、前記したような、上位系統との間の送受電電力を計画値に近づけるように制御して最大送受電電力を小さく抑えるような観点からの検討はされていない。   However, storage batteries are relatively expensive, and it is less cost-effective to have a large capacity that stores all surplus power and discharges it during a time when power is insufficient. Therefore, to some extent, it is more cost-effective to buy and sell power with the host system. In that case, if not only efficiently operating one or more storage batteries, but also controlling the power transmission / reception power with the upper system closer to the planned value to keep the maximum power transmission / reception power small, On the other hand, adverse effects can be reduced. Moreover, since the maximum power transmission / reception power can be kept small, the equipment cost of a small-scale system can also be reduced. In Patent Documents 1 and 2, as described above, there is no examination from the viewpoint of suppressing the maximum power transmission / reception power by controlling the power transmission / reception power with the host system so as to approach the planned value. .

そこで、本発明では、小規模系統において、上位系統との間の送受電電力を計画値に近づけるように制御して最大送受電電力を小さく抑えることを課題とする。   Therefore, an object of the present invention is to control the power transmission / reception power with the higher-order system so as to approach the planned value in a small-scale system so as to keep the maximum power transmission / reception power small.

前記課題を解決するために、本発明に係る蓄電池需給計画作成装置は、少なくとも、自然エネルギ発電による発電電力の推定値、蓄電池の充放電電力、負荷の使用電力の推定値、および上位系統との間の送受電電力を変数とする需給バランスと、蓄電池のSOC(State of Charge)の上下限値とを制約条件とし、上位系統との間の送受電電力と計画値との差分および前記差分の二乗を変数とする目的関数を最小化する演算処理を実行することによって、上位系統との間の送受電電力を計画値に近づけるように制御して最大送受電電力を小さく抑えるための蓄電池の運用計画を作成することを特徴とする。   In order to solve the above problems, a storage battery supply and demand plan creation device according to the present invention includes at least an estimated value of power generated by natural energy power generation, a charge / discharge power of a storage battery, an estimated value of power used by a load, and an upper system. The constraint between the supply and demand balance with the power transmission / reception power as a variable and the upper and lower limit values of the SOC (State of Charge) of the storage battery, the difference between the power transmission / reception power with the upper system and the planned value, and the difference Operation of a storage battery to keep the maximum power transmission / reception power small by controlling the power transmission / reception power to / from the upper system closer to the planned value by executing an arithmetic process that minimizes the objective function with square as a variable It is characterized by creating a plan.

本発明によれば、小規模系統において、上位系統との間の送受電電力を計画値に近づけるように制御して最大送受電電力を小さく抑えることができる。   According to the present invention, in a small-scale system, it is possible to control the transmission / reception power with the higher-order system so as to be close to the planned value, and to keep the maximum transmission / reception power small.

小規模系統の構成例を示す図である。It is a figure which shows the structural example of a small scale system | strain. 蓄電池需給計画作成装置の構成例を示す図である。It is a figure which shows the structural example of a storage battery supply-and-demand plan preparation apparatus. 蓄電池需給計画作成装置の処理フロー例を示す図である。It is a figure which shows the example of a processing flow of a storage battery supply-and-demand plan preparation apparatus. シミュレーションの前提条件のグラフを示す図である。It is a figure which shows the graph of the precondition of simulation. シミュレーションにおいて、上位系統送受電電力の計画値を0に設定した場合を示す図であり、(a)は蓄電池放電電力を表し、(b)はSOCを表し、(c)は上位系統送電融通電力を表す。In a simulation, it is a figure which shows the case where the plan value of upper system transmission / reception power is set to 0, (a) represents storage battery discharge power, (b) represents SOC, (c) represents upper system transmission interchange power. Represents. シミュレーションにおいて、上位系統送受電電力の計画値を0以外に設定した場合を示す図であり、(a)は蓄電池放電電力を表し、(b)はSOCを表し、(c)は上位系統送電融通電力を表す。In a simulation, it is a figure which shows the case where the plan value of upper system transmission / reception electric power is set to other than 0, (a) represents storage battery discharge electric power, (b) represents SOC, (c) is upper system electric power transmission interchange. Represents power. シミュレーションにおいて、蓄電池の放電電力を抑えた場合を示す図であり、(a)は蓄電池放電電力を表し、(b)はSOCを表し、(c)は上位系統送電融通電力を表す。In simulation, it is a figure which shows the case where the discharge electric power of a storage battery is suppressed, (a) represents storage battery discharge electric power, (b) represents SOC, (c) represents upper system transmission interchange power. シミュレーションにおいて、蓄電池の目標残電力を設定した場合を示す図であり、(a)は蓄電池放電電力を表し、(b)はSOCを表し、(c)は上位系統送電融通電力を表す。In a simulation, it is a figure which shows the case where the target remaining power of a storage battery is set, (a) represents storage battery discharge power, (b) represents SOC, (c) represents upper system transmission interchange power.

次に、本発明を実施するための形態(以降、「本実施形態」と称す。)について、適宜図面を参照しながら詳細に説明する。   Next, a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail with reference to the drawings as appropriate.

本実施形態における小規模系統の構成例について、図1を用いて説明する。
図1に示すように、小規模系統1は、自然エネルギ発電装置として、太陽光発電装置20および/または風力発電装置21を備えている。また、小規模系統1は、自然エネルギ発電装置の出力が天候によって変動するため、余剰の電力を蓄電し、電力が不足する時間帯に放電して電力供給を行う蓄電池10を備えている。また、小規模系統1内には、電力を消費する負荷30が含まれている。太陽光発電装置20、風力発電装置21、蓄電池10、および負荷30は、配電線を介して相互に接続されている。そして、小規模系統1は、連系点を介して、上位系統2に接続している。なお、図1には、太陽光発電装置20、風力発電装置21、蓄電池10、および負荷30は、それぞれ1台ずつしか明記していないが、2台以上であっても構わない。
A configuration example of a small-scale system in this embodiment will be described with reference to FIG.
As shown in FIG. 1, the small-scale system 1 includes a solar power generation device 20 and / or a wind power generation device 21 as a natural energy power generation device. Moreover, since the output of the natural energy power generation apparatus fluctuates depending on the weather, the small-scale system 1 includes a storage battery 10 that stores surplus power and discharges power during a time period when power is insufficient. The small scale system 1 includes a load 30 that consumes power. The solar power generation device 20, the wind power generation device 21, the storage battery 10, and the load 30 are connected to each other via a distribution line. The small-scale system 1 is connected to the upper system 2 via a connection point. In FIG. 1, only one solar power generation device 20, wind power generation device 21, storage battery 10, and load 30 are clearly shown, but two or more may be used.

また、小規模系統1には、蓄電池需給計画作成装置40が設置されている。蓄電池需給計画作成装置40は、蓄電池10の充放電効率や最大充放電電力等の情報、太陽光発電装置20の発電容量や発電特性等の情報、風力発電装置21の発電容量や発電特性等の情報、負荷30の負荷特性等の情報、気象予報情報等を取得し、取得した情報に基づいて、蓄電池10を効率良く運用するだけでなく、上位系統2との間の送受電電力を計画値に近づけるように制御して最大送受電電力を小さく抑えるように、蓄電池10の運用計画を作成する。そして、蓄電池需給計画作成装置40は、作成した運用計画を運用計画情報50として蓄電池10に送信し、蓄電池10に対して運用計画情報50に基づいた制御を行う。   Further, a storage battery supply and demand plan creation device 40 is installed in the small-scale system 1. The storage battery supply and demand plan creation device 40 includes information such as the charge / discharge efficiency and maximum charge / discharge power of the storage battery 10, information such as the power generation capacity and power generation characteristics of the solar power generation apparatus 20, and the power generation capacity and power generation characteristics of the wind power generation apparatus 21. Information, information on load characteristics of the load 30, weather forecast information, and the like, and based on the acquired information, not only efficiently operating the storage battery 10, but also the transmission / reception power with the upper system 2 is a planned value The operation plan of the storage battery 10 is created so that the maximum power transmission / reception power is kept small by controlling the power consumption to be close to. Then, the storage battery supply and demand plan creation device 40 transmits the created operation plan to the storage battery 10 as operation plan information 50, and performs control based on the operation plan information 50 for the storage battery 10.

次に、蓄電池需給計画作成装置40の構成例について、図2を用いて説明する。
蓄電池需給計画作成装置40は、図示しないCPU(Central Processing Unit)およびメインメモリによって構成される処理部41と、アプリケーションプログラム等を記憶する記憶部42と、通信部43と、入力部44とを備えている。入力部44は、キーボードやマウス等の入力装置を接続するインタフェースであり、管理者や保守者の操作に基づいて、気象予報情報等の種々の情報の入力を受け付ける機能を有する。また、通信部43は、ネットワーク(不図示)を接続する通信インタフェースであり、処理部41の処理結果を蓄電池10へ出力したり、気象予報情報等の種々の情報を受信したりする機能を有する。ただし、図2は、入力部44を介して気性予報情報を受け付ける場合を表している。
Next, a configuration example of the storage battery supply and demand plan creation device 40 will be described with reference to FIG.
The storage battery supply and demand plan creation device 40 includes a processing unit 41 including a CPU (Central Processing Unit) and a main memory (not shown), a storage unit 42 that stores application programs and the like, a communication unit 43, and an input unit 44. ing. The input unit 44 is an interface for connecting an input device such as a keyboard and a mouse, and has a function of accepting input of various information such as weather forecast information based on an operation of an administrator or a maintenance person. The communication unit 43 is a communication interface for connecting a network (not shown), and has a function of outputting the processing result of the processing unit 41 to the storage battery 10 and receiving various information such as weather forecast information. . However, FIG. 2 shows a case where temperament forecast information is received via the input unit 44.

処理部41は、記憶部42に記憶されているアプリケーションプログラムをメインメモリに展開して、太陽光発電電力推定部110、風力発電電力推定部120、使用電力推定部130、および蓄電池スケジュール作成部140を具現化する。
太陽光発電電力推定部110は、入力部44または通信部43を介して気温予測値、日射量予測値等の気象予報情報を取得し、太陽光発電機情報記憶部111に記憶された発電容量、気温や日射量ごとの発電特性を参照して、時間帯ごとの発電電力を推定し、推定結果を推定太陽光発電電力として蓄電池スケジュール作成部140に出力する。
The processing unit 41 develops the application program stored in the storage unit 42 in the main memory, and the photovoltaic power generation estimation unit 110, the wind power generation power estimation unit 120, the used power estimation unit 130, and the storage battery schedule creation unit 140. Embody.
The photovoltaic power generation estimation unit 110 acquires weather forecast information such as a temperature predicted value and a solar radiation amount predicted value via the input unit 44 or the communication unit 43, and the power generation capacity stored in the solar power generator information storage unit 111. The power generation characteristics for each time zone are estimated with reference to the power generation characteristics for each temperature and solar radiation amount, and the estimation results are output to the storage battery schedule creation unit 140 as estimated solar power generation power.

風力発電電力推定部120は、入力部44または通信部43を介して風速予測値、風向予測値等の気象予報情報を取得し、風力発電機情報記憶部121に記憶された発電容量、風速や風向ごとの発電特性を参照して、時間帯ごとの発電電力を推定し、推定結果を推定風力発電電力として蓄電池スケジュール作成部140に出力する。
使用電力推定部130は、入力部44または通信部43を介して気温予測値、湿度予測値等の気象予報情報を取得し、負荷情報記憶部131に記憶された気温や湿度ごとの負荷特性を参照して、時間帯ごとの使用電力を推定し、推定結果を推定使用電力として蓄電池スケジュール作成部140に出力する。
The wind power generation power estimation unit 120 acquires weather forecast information such as a wind speed prediction value and a wind direction prediction value via the input unit 44 or the communication unit 43, and stores the power generation capacity, wind speed, and the like stored in the wind power generator information storage unit 121. The generated power for each time zone is estimated with reference to the power generation characteristics for each wind direction, and the estimation result is output to the storage battery schedule creation unit 140 as estimated wind generated power.
The power usage estimation unit 130 acquires weather forecast information such as a predicted temperature value and a predicted humidity value via the input unit 44 or the communication unit 43, and obtains load characteristics for each temperature and humidity stored in the load information storage unit 131. With reference, the power consumption for each time zone is estimated, and the estimation result is output to storage battery schedule creation unit 140 as the estimated power consumption.

蓄電池スケジュール作成部140は、推定太陽光発電電力、推定風力発電電力、推定使用電力、蓄電池情報記憶部141に記憶された蓄電池10の充放電効率や最大充放電電力、小規模系統1の管理者または保守者によって設定されるSOC初期値やSOC上下限値やSOC目標値(目標残電力量)を用いて、所定の演算を実行することによって、蓄電池10の運用計画を作成する。   The storage battery schedule creation unit 140 includes estimated solar power generation, estimated wind power generation, estimated power usage, charge / discharge efficiency and maximum charge / discharge power of the storage battery 10 stored in the storage battery information storage unit 141, and a manager of the small-scale system 1. Or the operation plan of the storage battery 10 is created by performing predetermined | prescribed calculation using the SOC initial value, SOC upper / lower limit value, and SOC target value (target remaining electric energy) set by the maintenance person.

ここで、蓄電池スケジュール作成部140における所定の演算について説明する。
まず、目的関数は、
min{Σ(上位系統送受電電力(t)−上位系統送受電計画電力(t))
+α×Σ(Σ蓄電池放電電力(i,t))
+β×Σ(上位系統送受電電力(t)−上位系統送受電計画電力(t))
・・式(1)
と設定する。
ただし、min{}は、{}内の値の最小値を算出する関数である。{}内の第1項は、上位系統送受電電力(t)を計画値に近づけるための項である。{}内の第2項は、蓄電池放電電力(i,t)の変化を小さく抑えるための項である。{}内の第3項は、上位系統送受電電力(t)のピーク(最大送受電電力)を小さく抑えるための項である。また、α,βは重み係数であり、目的関数内の各項の優先順位に応じて、適宜設定される。また、iは、i番目の装置を表す。また、tは時間帯を表す。また、上位系統送受電電力(t)の符号は、正のときは小規模系統1が上位系統2へ送電することを表し、負のときは小規模系統1が上位系統2から受電することを表す。また、Σは、装置全体にわたって累積することおよび計画を作成する期間にわたって累積することを表す。
Here, the predetermined calculation in the storage battery schedule creation unit 140 will be described.
First, the objective function is
min {Σ (upper system transmission / reception power (t) −upper system transmission / reception planned power (t))
+ Α × Σ (Σ battery discharge power (i, t))
+ Β × Σ (Upper system transmission / reception power (t) −Upper system transmission / reception planned power (t)) 2 }
..Formula (1)
And set.
Here, min {} is a function for calculating the minimum value in {}. The first term in {} is a term for bringing the upper system transmission / reception power (t) closer to the planned value. The second term in {} is a term for minimizing the change in the battery discharge power (i, t). The third term in {} is a term for minimizing the peak (maximum transmission / reception power) of the higher system transmission / reception power (t). Α and β are weighting factors, which are appropriately set according to the priority order of each term in the objective function. I represents the i-th device. T represents a time zone. The sign of the upper system transmission / reception power (t) indicates that the small system 1 transmits power to the upper system 2 when positive, and that the small system 1 receives power from the upper system 2 when negative. Represent. Moreover, Σ represents accumulation over the entire apparatus and accumulation over a period for creating a plan.

次に、制約条件として、需給バランス、蓄電池充放電上下限値、SOCレベル、SOC上下限値、およびSOC目標値を設定する。以下に、各項目について、説明をする。なお、制約条件は、管理者や保守者によって設定され、記憶部42に記憶される。   Next, the supply and demand balance, the storage battery charge / discharge upper / lower limit value, the SOC level, the SOC upper / lower limit value, and the SOC target value are set as constraint conditions. Each item will be described below. The constraint conditions are set by an administrator or a maintenance person and stored in the storage unit 42.

需給バランスは、
Σ推定太陽光発電電力(i,t)+Σ推定風力発電電力(i,t)
+Σ蓄電池放電電力(i,t)−Σ蓄電池充電電力(i,t)
−Σ推定使用電力(i,t)+上位系統送受電電力(t)=0 ・・式(2)
と設定する。
Supply-demand balance is
Σ Estimated Solar Power (i, t) + Σ Estimated Wind Power (i, t)
+ Σ battery discharge power (i, t) −Σ battery charge power (i, t)
-Σ Estimated power used (i, t) + Upper system power transmission / reception power (t) = 0 Equation (2)
And set.

蓄電池充放電上下限値は、
蓄電池放電下限値(i)≦蓄電池放電電力(i,t)≦蓄電池放電上限値(i)
・・式(3)
蓄電池充電下限値(i)≦蓄電池充電電力(i,t)≦蓄電池充電上限値(i)
・・式(4)
と設定する。
The battery charge / discharge upper and lower limits are
Storage battery discharge lower limit (i) ≦ storage battery discharge power (i, t) ≦ storage battery discharge upper limit (i)
..Formula (3)
Storage battery charge lower limit (i) ≤ storage battery charge power (i, t) ≤ storage battery charge upper limit (i)
..Formula (4)
And set.

SOCレベルは、
SOC(i,t)=SOC(i,t−1)+η(i)×蓄電池充電電力(i,t)
−蓄電池放電電力(i,t)/μ(i) ・・式(5)
と設定する。
ただし、η(i)は、i番目の蓄電池の充電効率を表す。μ(i)は、i番目の蓄電池の放電効率を表す。
The SOC level is
SOC (i, t) = SOC (i, t−1) + η (i) × Battery charging power (i, t)
-Storage battery discharge power (i, t) / μ (i) (5)
And set.
However, η (i) represents the charging efficiency of the i-th storage battery. μ (i) represents the discharge efficiency of the i-th storage battery.

SOC上下限値は、
SOC下限値(i)≦SOC(i,t)≦SOC上限値(i) ・・式(6)
と設定する。
The SOC upper and lower limits are
SOC lower limit value (i) ≦ SOC (i, t) ≦ SOC upper limit value (i) Equation (6)
And set.

SOC目標値は、
SOC(i,t)≧SOC目標値(i,t) ・・式(7)
と設定する。
The SOC target value is
SOC (i, t) ≧ SOC target value (i, t) (7)
And set.

また、記憶部42は、太陽光発電機情報記憶部111、風力発電機情報記憶部121、負荷情報記憶部131、および蓄電池情報記憶部141を有する。
太陽光発電機情報記憶部111は、各太陽光発電装置20の発電容量、気温や日射量ごとの発電特性を記憶している。
風力発電機情報記憶部121は、各風力発電装置21の発電容量、風速や風向ごとの発電特性を記憶している。
負荷情報記憶部131は、各負荷30の気温や湿度ごとの負荷特性を記憶している。
蓄電池情報記憶部141は、各蓄電池10の充放電効率や最大充放電電力を記憶している。
The storage unit 42 includes a solar power generator information storage unit 111, a wind power generator information storage unit 121, a load information storage unit 131, and a storage battery information storage unit 141.
The solar power generator information storage unit 111 stores the power generation capacity of each solar power generation device 20, the power generation characteristics for each temperature and the amount of solar radiation.
The wind power generator information storage unit 121 stores the power generation capacity, the wind speed, and the power generation characteristics for each wind direction of each wind power generator 21.
The load information storage unit 131 stores load characteristics of each load 30 for each temperature and humidity.
The storage battery information storage unit 141 stores the charge / discharge efficiency and the maximum charge / discharge power of each storage battery 10.

次に、蓄電池需給計画作成装置40の処理フロー例について、図3を用いて説明する(適宜、図2参照)。
ステップS301では、太陽光発電電力推定部110は、推定太陽光発電電力を算出する。また、風力発電電力推定部120は、推定風力発電電力を算出する。また、使用電力推定部130は、推定使用電力を算出する。
ステップS302では、蓄電池スケジュール作成部140は、式(1)に示す目的関数を生成する。このとき、例えば、α,βの値を変えて各項の重みを変更したり、上位系統送受電計画電力(t)の値を変更したりして、目的に合致した蓄電池10の制御が行えるようにする。また、目的関数の上位系統送受電計画電力(t)(計画値)は、入力部44を介して取得される。
Next, an example of the processing flow of the storage battery supply and demand plan creation device 40 will be described with reference to FIG. 3 (see FIG. 2 as appropriate).
In step S301, the photovoltaic power generation estimation unit 110 calculates estimated photovoltaic power generation. Further, the wind power generation estimation unit 120 calculates estimated wind power generation. In addition, the used power estimation unit 130 calculates estimated used power.
In step S302, the storage battery schedule creation unit 140 generates an objective function shown in Expression (1). At this time, for example, the weight of each term can be changed by changing the values of α and β, or the value of the upper system power transmission / reception planned power (t) can be changed to control the storage battery 10 that meets the purpose. Like that. In addition, the higher-order power transmission / reception planned power (t) (planned value) of the objective function is acquired via the input unit 44.

ステップS303では、蓄電池スケジュール作成部140は、制約条件を入力部44を介して取得するか、または記憶部42から取得する。
ステップS304では、蓄電池スケジュール作成部140は、目的関数の演算を実行する。この目的関数の演算には、線形計画法等の最適化計算法を用いるか、またはタブーサーチ等の近似解法を用いることができる。
ステップS305では、蓄電池スケジュール作成部140は、演算結果である運用計画を運用計画情報50として蓄電池10に送信する。
In step S <b> 303, the storage battery schedule creation unit 140 acquires the constraint condition via the input unit 44 or acquires it from the storage unit 42.
In step S304, the storage battery schedule creation unit 140 executes an objective function calculation. For the calculation of the objective function, an optimization calculation method such as linear programming or an approximate solution method such as tabu search can be used.
In step S <b> 305, the storage battery schedule creation unit 140 transmits an operation plan as a calculation result to the storage battery 10 as operation plan information 50.

次に、シミュレーションを実行した結果を以下に説明する。シミュレーションは、4つのケースについて実行している。第1のケースは、蓄電池10を最大限に活用して、上位系統送受電電力および最大送受電電力を小さく抑える場合である。第2のケースは、蓄電池10を最大限に活用して、上位系統送受電電力をできる限り計画値通りに設定するとともに最大送受電電力を小さく抑える場合である。第3のケースは、蓄電池10の放電電力の変化を抑えつつ、上位系統送受電電力をできる限り計画値通りに設定するとともに最大送受電電力を小さく抑える場合である。第4のケースは、蓄電池10の目標残電力量を設定した上で、蓄電池10の放電電力を抑えつつ、上位系統送受電電力をできる限り計画値通りに設定するとともに最大送受電電力を小さく抑える場合である。   Next, the result of executing the simulation will be described below. The simulation is performed for four cases. The first case is a case where the storage battery 10 is maximally utilized to suppress the higher-order system transmission / reception power and the maximum transmission / reception power. The second case is a case where the storage battery 10 is utilized to the maximum to set the upper system transmission / reception power as much as possible as much as possible while keeping the maximum transmission / reception power small. The third case is a case where the upper system transmission / reception power is set as much as possible as much as possible while suppressing the change in the discharge power of the storage battery 10 and the maximum transmission / reception power is reduced. In the fourth case, the target remaining power amount of the storage battery 10 is set, and while suppressing the discharge power of the storage battery 10, the higher-order system power transmission / reception power is set as much as possible and the maximum power transmission / reception power is kept low. Is the case.

(シミュレーションの諸条件)
シミュレーションの条件は、小規模系統1内に、太陽光発電装置20、風力発電装置21、および蓄電池10を1台ずつ備え、蓄電池10の充電電力および放電電力を0〜50kW、SOCの上下限値を0〜300kWhとし、また、運用計画の対象期間は、24時間先までとした。そして、シミュレーションのための気象予測値には、過去の一日の気象データを用いた。
その結果、推定太陽光発電電力、推定風力発電電力、推定使用電力それぞれは、図4に示すように求められた。
(Simulation conditions)
The simulation conditions are that each of the small-scale system 1 includes a solar power generation device 20, a wind power generation device 21, and a storage battery 10, each of which has a charging power and a discharging power of 0 to 50 kW, and upper and lower limit values of the SOC. 0 to 300 kWh, and the target period of the operation plan is up to 24 hours ahead. The weather data for the past day was used as the weather forecast value for the simulation.
As a result, the estimated solar power generation power, the estimated wind power generation power, and the estimated usage power were each obtained as shown in FIG.

(第1のケース)
第1のケースは、蓄電池10を最大限に活用して、上位系統送受電電力および最大送受電電力を小さく抑える場合である。具体的には、式(1)に示す目的関数において、α=0および上位系統送受電計画電力(t)=0と設定した場合である。すなわち、第1のケースの目的関数は、min{Σ上位系統送受電電力(t)+β×Σ上位系統送受電電力(t)}である。ただし、β=0.2であり、第1項の方が第2項より優先順位が高くなる(第1項を強く抑制する)ようにした。また、制約条件には、前記式(2)〜(6)を用いた。
(First case)
The first case is a case where the storage battery 10 is maximally utilized to suppress the higher-order system transmission / reception power and the maximum transmission / reception power. Specifically, in the objective function shown in Expression (1), α = 0 and upper system power transmission / reception planned power (t) = 0 are set. That is, the objective function of the first case is min {Σ upper system transmission / reception power (t) + β × Σ upper system transmission / reception power (t) 2 }. However, β = 0.2, and the first term has a higher priority than the second term (the first term is strongly suppressed). Moreover, said restrictions (2)-(6) were used for the constraint conditions.

第1のケースのシミュレーション結果について、図5を用いて説明する。図5(a)は蓄電池放電電力を表し、(b)はSOCを表し、(c)は上位系統送電融通電力を表している。図5(a)において、正方向は放電していることを表し、負方向は充電していることを表す。また、図5(c)において、正方向は小規模系統1が上位系統2へ送電していることを表し、負方向は小規模系統1が上位系統2から受電していることを表す。また、実線は、本実施形態の蓄電池需給計画作成装置40が作成した運用計画に基づいて調整した時(調整時)を表し、点線は、上位系統2との間の送受電電力の演算をその時の情報に基づいて実行する無調整の時(無調整時)を表す。   The simulation result of the first case will be described with reference to FIG. FIG. 5A shows the storage battery discharge power, FIG. 5B shows the SOC, and FIG. 5C shows the upper system transmission power. In FIG. 5A, the positive direction represents discharging and the negative direction represents charging. 5C, the positive direction indicates that the small-scale system 1 is transmitting power to the upper system 2, and the negative direction indicates that the small-scale system 1 is receiving power from the upper system 2. In addition, the solid line represents the time (adjustment time) adjusted based on the operation plan created by the storage battery supply and demand plan creation device 40 of the present embodiment, and the dotted line represents the calculation of transmission / reception power with the upper system 2 at that time. This represents the time of no adjustment (no adjustment) to be executed based on the information.

図5(c)に示すように、上位系統2との間の送受電電力を示す上位系統送電融通電力は、調整時(実線)には、上位系統2との間の最大送受電電力が突出することはないが、無調整時(点線)には、15時ごろに上位系統2との間の最大送受電電力が突出している。この理由は、図5(b)に示すように、無調整時にはSOCが飽和状態となってしまっていることから、蓄電池10が満充電となってしまったためであることが分かる。それに対して、調整時の蓄電池10は、図5(b)に示すように、運用計画情報50に基づいて電力量が調整されていて、SOCが飽和状態となってしまうことがないため、上位系統2との間の最大送受電電力が突出することを防止できる。また、図5(c)に示すように、調整時には、上位系統送電融通電力はほぼ0近辺となっており、小規模系統1において、上位系統2との間の送受電電力を小さく抑えることができていることが分かる。すなわち、調整時には、小規模系統1において、上位系統2との間の送受電電力および最大送受電電力を小さく抑えることができる。   As shown in FIG. 5 (c), the upper transmission / reception power indicating the transmission / reception power to / from the higher-order system 2 is the maximum transmission / reception power to / from the higher-order system 2 at the time of adjustment (solid line). However, when no adjustment is made (dotted line), the maximum power transmission / reception between the upper system 2 and the upper system 2 protrudes around 15:00. This is because, as shown in FIG. 5B, the SOC is saturated when there is no adjustment, and thus it is understood that the storage battery 10 is fully charged. On the other hand, as shown in FIG. 5 (b), the storage battery 10 at the time of adjustment has its power adjusted based on the operation plan information 50, and the SOC does not become saturated. It can prevent that the maximum transmission / reception electric power between the systems 2 protrudes. Further, as shown in FIG. 5C, at the time of adjustment, the upper system transmission interchange power is almost in the vicinity of 0, and in the small scale system 1, it is possible to keep the transmission / reception power between the upper system 2 small. You can see that it is made. That is, at the time of adjustment, in the small-scale system 1, the transmission / reception power and the maximum transmission / reception power with the upper system 2 can be kept small.

(第2のケース)
第2のケースは、蓄電池10を最大限に活用して、上位系統送受電電力をできる限り計画値通りに設定するとともに最大送受電電力を小さく抑える場合である。具体的には、式(1)に示す目的関数において、α=0と設定したものである。すなわち、第2のケースの目的関数は、min{Σ(上位系統送受電電力(t)−上位系統送受電計画電力(t))+β×Σ(上位系統送受電電力(t)−上位系統送受電計画電力(t))}である。ただし、β=0.2であり、第1項の方が第2項より優先順位が高くなる(第1項を強く抑制する)ようにした。また、上位系統送受電計画電力(t)は、11時〜14時までの時間帯を50kWとし、その他の時間帯を−10kWとした。また、制約条件には、前記式(2)〜(6)を用いた。
(Second case)
The second case is a case where the storage battery 10 is utilized to the maximum to set the upper system transmission / reception power as much as possible as much as possible while keeping the maximum transmission / reception power small. Specifically, in the objective function shown in Expression (1), α = 0 is set. That is, the objective function of the second case is min {Σ (upper system transmission / reception power (t) −upper system transmission / reception planned power (t)) + β × Σ (upper system transmission / reception power (t) −upper system transmission / reception). Planned power reception (t)) 2 }. However, β = 0.2, and the first term has a higher priority than the second term (the first term is strongly suppressed). In addition, the upper system transmission / reception planned power (t) was set to 50 kW in the time zone from 11:00 to 14:00, and -10 kW in the other time zones. Moreover, said restrictions (2)-(6) were used for the constraint conditions.

第2のケースのシミュレーション結果について、図6を用いて説明する。図6(a)は蓄電池放電電力を表し、(b)はSOCを表し、(c)は上位系統送電融通電力を表している。図6(a)において、正方向は放電していることを表し、負方向は充電していることを表す。また、図6(c)において、正方向は小規模系統1が上位系統2へ送電していることを表し、負方向は小規模系統1が上位系統2から受電していることを表す。また、実線は、本実施形態の蓄電池需給計画作成装置40が作成した運用計画に基づいて調整した時(調整時)を表し、点線は、上位系統2との間の送受電電力の演算をその時の情報に基づいて実行する無調整の時(無調整時)を表す。   The simulation result of the second case will be described with reference to FIG. FIG. 6A shows the battery discharge power, FIG. 6B shows the SOC, and FIG. 6C shows the upper system transmission power. In FIG. 6A, the positive direction represents discharging, and the negative direction represents charging. In FIG. 6C, the positive direction indicates that the small-scale system 1 is transmitting power to the upper system 2, and the negative direction indicates that the small-scale system 1 is receiving power from the upper system 2. In addition, the solid line represents the time (adjustment time) adjusted based on the operation plan created by the storage battery supply and demand plan creation device 40 of the present embodiment, and the dotted line represents the calculation of transmission / reception power with the upper system 2 at that time. This represents the time of no adjustment (no adjustment) to be executed based on the information.

図6(c)に示すように、上位系統2との間の送受電電力を示す上位系統送電融通電力は、調整時(実線)には、上位系統2との間の送受電電力が計画値と大きく異なることはないが、無調整時(点線)には、15時〜16時に上位系統2との間の送受電電力が計画値と大きく異なっている。この理由は、図6(b)に示すように、無調整時にはSOCが飽和状態となってしまっていることから、蓄電池10が満充電となってしまったためであることが分かる。それに対して、調整時の蓄電池10のSOCは、図6(b)に示すように、運用計画情報50に基づいて電力量が調整されていて、SOCが飽和状態となってしまうことがないため、上位系統2との間の送受電電力が計画値と大きく異なることを防止できている。例えば、計画値と算出値との剥離を二乗平均平方根誤差で表すと、調整時には52.6であり、無調整時の99.1の半分程度に小さくなっていた。また、調整時には、図6(c)に示すように、最大送受電電力が突出することは見られない。すなわち、調整時には、小規模系統1において、上位系統2との間の送受電電力を計画値に近づけるように制御して最大送受電電力を小さく抑えることができる。   As shown in FIG. 6 (c), the upper system transmission interchange power indicating the transmission / reception power between the upper system 2 is the planned value when adjusted (solid line). However, at the time of no adjustment (dotted line), the transmission / reception power between the upper system 2 and the planned value is greatly different from 15:00 to 16:00. The reason for this is that, as shown in FIG. 6 (b), the SOC is saturated when there is no adjustment, and thus it is understood that the storage battery 10 is fully charged. On the other hand, as shown in FIG. 6B, the SOC of the storage battery 10 at the time of adjustment is adjusted based on the operation plan information 50, so that the SOC does not become saturated. Thus, it is possible to prevent the transmission / reception power between the upper system 2 and the planned value from being greatly different. For example, when the separation between the planned value and the calculated value is expressed by the root mean square error, it is 52.6 at the time of adjustment, and is about half of 99.1 at the time of no adjustment. Moreover, at the time of adjustment, as shown in FIG.6 (c), it is not seen that the maximum transmission / reception power protrudes. That is, at the time of adjustment, the maximum transmission / reception power can be kept small by controlling the transmission / reception power to / from the higher-order system 2 to be close to the planned value in the small-scale system 1.

(第3のケース)
第3のケースは、蓄電池10の放電電力の変化を抑えつつ、上位系統送受電電力をできる限り計画値通りに設定するとともに最大送受電電力を小さく抑える場合である。具体的には、式(1)に示す目的関数において、α=5、β=0.2と設定したものであり、第1項、第2項、第3項の順に優先順位が高くなる(第1項を最も強く抑制し、次に第2項を強く抑制する)ようにした。上位系統送受電計画電力(t)は、11時〜14時までの時間帯を50kWとし、その他の時間帯を−10kWとした。また、制約条件には、前記式(2)〜(6)を用いた。ケース3は、蓄電池10の放電電力の変化を抑えることによって、蓄電池の寿命を延ばすことを考慮したものである。
(Third case)
The third case is a case where the upper system transmission / reception power is set as much as possible as much as possible while suppressing the change in the discharge power of the storage battery 10 and the maximum transmission / reception power is reduced. Specifically, in the objective function shown in Equation (1), α = 5 and β = 0.2 are set, and the order of priority increases in the order of the first term, the second term, and the third term ( The first term is most strongly suppressed and then the second term is strongly suppressed). The upper system transmission / reception planned power (t) was set to 50 kW in the time zone from 11:00 to 14:00, and -10 kW in the other time zones. Moreover, said restrictions (2)-(6) were used for the constraint conditions. Case 3 considers extending the life of the storage battery by suppressing the change in the discharge power of the storage battery 10.

第3のケースのシミュレーション結果について、図7を用いて説明する。図7(a)は蓄電池放電電力を表し、(b)はSOCを表し、(c)は上位系統送電融通電力を表している。図7(a)において、正方向は放電していることを表し、負方向は充電していることを表す。また、図7(c)において、正方向は小規模系統1が上位系統2へ送電していることを表し、負方向は小規模系統1が上位系統2から受電していることを表す。また、実線は、本実施形態の蓄電池需給計画作成装置40が作成した運用計画に基づいて調整した時(調整時)を表し、点線は、上位系統2との間の送受電電力の演算をその時の情報に基づいて実行する無調整の時(無調整時)を表す。   The simulation result of the third case will be described with reference to FIG. FIG. 7A shows the battery discharge power, FIG. 7B shows the SOC, and FIG. 7C shows the upper-system transmission power. In FIG. 7A, the positive direction represents discharging and the negative direction represents charging. In FIG. 7C, the positive direction indicates that the small-scale system 1 is transmitting power to the upper system 2, and the negative direction indicates that the small-scale system 1 is receiving power from the upper system 2. In addition, the solid line represents the time (adjustment time) adjusted based on the operation plan created by the storage battery supply and demand plan creation device 40 of the present embodiment, and the dotted line represents the calculation of transmission / reception power with the upper system 2 at that time. This represents the time of no adjustment (no adjustment) to be executed based on the information.

図7(c)に示すように、上位系統2との間の送受電電力を示す上位系統送電融通電力は、調整時(実線)には、上位系統2との間の送受電電力が計画値と大きく異なることはないが、無調整時(点線)には、15時〜16時に上位系統2との間の送受電電力が計画値と大きく異なっている。この理由は、図7(b)に示すように、無調整時にはSOCが飽和状態となってしまっていることから、蓄電池10が満充電となってしまったためであることが分かる。それに対して、調整時の蓄電池10のSOCは、図7(b)に示すように、運用計画情報50に基づいて電力量が調整されていて、SOCが飽和状態となってしまうことがないため、上位系統2との間の送受電電力が計画値と大きく異なることを防止できている。例えば、計画値と算出値との剥離を二乗平均平方根誤差で表すと、調整時には58.2であり、無調整時の99.1のほぼ半分程度に小さくなっていた。また、調整時には、図7(c)に示すように、最大送受電電力が突出することは見られない。
また、調整時のSOCについて図7(b)と図6(b)とを比較すると、図7(b)に示す調整時のSOCの方が、変化幅が小さくなっていることが分かる。以上のことから、調整時には、蓄電池10の放電電力の変化を抑制しても、小規模系統1において、上位系統2との間の送受電電力を計画値に近づけるように制御して最大送受電電力を小さく抑えることができる。
As shown in FIG. 7 (c), the upper system transmission interchange power indicating the transmission / reception power to / from the upper system 2 is the planned value at the time of adjustment (solid line). However, at the time of no adjustment (dotted line), the transmission / reception power between the upper system 2 and the planned value is greatly different from 15:00 to 16:00. This is because, as shown in FIG. 7B, the SOC is saturated when there is no adjustment, and thus it is understood that the storage battery 10 is fully charged. On the other hand, as shown in FIG. 7B, the SOC of the storage battery 10 at the time of adjustment is adjusted based on the operation plan information 50, so that the SOC does not become saturated. Thus, it is possible to prevent the transmission / reception power between the upper system 2 and the planned value from being greatly different. For example, when the separation between the planned value and the calculated value is expressed by the root mean square error, it is 58.2 at the time of adjustment, and is about half of 99.1 at the time of no adjustment. Moreover, at the time of adjustment, as shown in FIG.7 (c), it is not seen that the maximum transmission / reception power protrudes.
Further, when FIG. 7B and FIG. 6B are compared with respect to the SOC at the time of adjustment, it can be seen that the change width is smaller in the SOC at the time of adjustment shown in FIG. 7B. From the above, at the time of adjustment, even if the change in the discharge power of the storage battery 10 is suppressed, in the small-scale system 1, the power transmission / reception power with the upper system 2 is controlled so as to be close to the planned value. Electric power can be kept small.

(第4のケース)
第4のケースは、蓄電池10の目標残電力量(SOC目標値)を設定した上で、蓄電池10の放電電力の変化を抑えつつ、上位系統送受電電力をできる限り計画値通りに設定するとともに最大送受電電力を小さく抑える場合である。具体的には、式(1)に示す目的関数において、α=5、β=0.2と設定したものであり、第1項、第2項、第3項の順に優先順位が高くなる(第1項を最も強く抑制し、次に第2項を強く抑制する)ようにした。上位系統送受電計画電力(t)は、11時〜14時までの時間帯を50kWとし、その他の時間帯を−10kWとした。また、制約条件には、ケース3の場合とは異なって、前記式(2)〜(7)を用いた。そして、式(7)のSOC目標値には、23時を200kWh、その他の時間を0kWhと設定した。このSOC目標値は、23時以降に発電が行われない状況が続いても、しばらくの間は小規模系統1内の使用電力を賄うことを可能とするものである。
(Fourth case)
In the fourth case, after setting the target remaining power amount (SOC target value) of the storage battery 10, while setting the upper system transmission / reception power as much as possible while suppressing the change in the discharge power of the storage battery 10, This is a case where the maximum transmission / reception power is kept small. Specifically, in the objective function shown in Equation (1), α = 5 and β = 0.2 are set, and the order of priority increases in the order of the first term, the second term, and the third term ( The first term is most strongly suppressed and then the second term is strongly suppressed). The upper system transmission / reception planned power (t) was set to 50 kW in the time zone from 11:00 to 14:00, and -10 kW in the other time zones. Further, unlike the case 3, the expressions (2) to (7) were used as the constraint conditions. In the SOC target value of Equation (7), 23:00 was set to 200 kWh, and other times were set to 0 kWh. This SOC target value makes it possible to cover the power used in the small-scale system 1 for a while even if the situation where power generation is not performed after 23:00 continues.

第4のケースのシミュレーション結果について、図8を用いて説明する。図8(a)は蓄電池放電電力を表し、(b)はSOCを表し、(c)は上位系統送電融通電力を表している。図8(a)において、正方向は放電していることを表し、負方向は充電していることを表す。また、図8(c)において、正方向は小規模系統1が上位系統2へ送電していることを表し、負方向は小規模系統1が上位系統2から受電していることを表す。また、実線は、本実施形態の蓄電池需給計画作成装置40が作成した運用計画に基づいて調整した時(調整時)を表し、点線は、上位系統2との間の送受電電力の演算をその時の情報に基づいて実行する無調整の時(無調整時)を表す。   The simulation result of the fourth case will be described with reference to FIG. FIG. 8A shows the battery discharge power, FIG. 8B shows the SOC, and FIG. 8C shows the higher-order system transmission power. In FIG. 8A, the positive direction represents discharging and the negative direction represents charging. In FIG. 8C, the positive direction indicates that the small-scale system 1 is transmitting power to the upper system 2, and the negative direction indicates that the small-scale system 1 is receiving power from the upper system 2. In addition, the solid line represents the time (adjustment time) adjusted based on the operation plan created by the storage battery supply and demand plan creation device 40 of the present embodiment, and the dotted line represents the calculation of transmission / reception power with the upper system 2 at that time. This represents the time of no adjustment (no adjustment) to be executed based on the information.

図8(b)に示すように、SOCは、調整時(実線)には、23時にはSOC目標値として設定した200kWhに到達している。また、図8(c)に示すように、上位系統2との間の送受電電力を示す上位系統送電融通電力は、調整時(実線)には、上位系統2との間の送受電電力が計画値と大きく異なることはないが、無調整時(点線)には、15時〜16時に上位系統2との間の送受電電力が計画値と大きく異なっている。この理由は、図8(b)に示すように、無調整時にはSOCが飽和状態となってしまっていることから、蓄電池10が満充電となってしまったためであることが分かる。それに対して、調整時の蓄電池10のSOCは、図8(b)に示すように、運用計画情報50に基づいて電力量が調整されていて、SOCが飽和状態となってしまうことがないため、上位系統2との間の送受電電力が計画値と大きく異なることを防止できている。例えば、計画値と算出値との剥離を二乗平均平方根誤差で表すと、調整時には71.1であり、無調整時の99.1より小さくなっていた。また、調整時には、図8(c)に示すように、最大送受電電力が突出することは見られない。
また、調整時のSOCについて図8(b)と図6(b)とを比較すると、図8(b)に示す調整時のSOCの方が、変化幅が小さくなっていることが分かる。以上のことから、調整時には、蓄電池10の放電電力を抑制しても、小規模系統1において、上位系統2との間の送受電電力を計画値に近づけるように制御して最大送受電電力を小さく抑えることができる。
As shown in FIG. 8B, at the time of adjustment (solid line), the SOC has reached 200 kWh set as the SOC target value at 23:00. Further, as shown in FIG. 8 (c), the upper system transmission interchange power indicating the transmission / reception power with the upper system 2 is the transmission / reception power with the upper system 2 at the time of adjustment (solid line). Although it does not differ greatly from the planned value, when no adjustment is made (dotted line), the power transmission / reception power with the upper system 2 is significantly different from the planned value at 15:00 to 16:00. This is because, as shown in FIG. 8B, the SOC is saturated when there is no adjustment, and thus it is understood that the storage battery 10 is fully charged. On the other hand, as shown in FIG. 8B, the SOC of the storage battery 10 at the time of adjustment is adjusted based on the operation plan information 50, so that the SOC does not become saturated. Thus, it is possible to prevent the transmission / reception power between the upper system 2 and the planned value from being greatly different. For example, when the separation between the planned value and the calculated value is expressed by the root mean square error, it is 71.1 at the time of adjustment, and is smaller than 99.1 at the time of no adjustment. Moreover, at the time of adjustment, as shown in FIG.8 (c), it is not seen that the maximum transmission / reception power protrudes.
Further, when FIG. 8B and FIG. 6B are compared with respect to the SOC at the time of adjustment, it can be seen that the change width of the SOC at the time of adjustment shown in FIG. 8B is smaller. From the above, at the time of adjustment, even if the discharge power of the storage battery 10 is suppressed, in the small-scale system 1, the transmission / reception power with the upper system 2 is controlled so as to be close to the planned value, and the maximum transmission / reception power is increased. It can be kept small.

以上、本実施形態の蓄電池需給計画作成装置40は、少なくとも、自然エネルギ発電による発電電力の推定値、蓄電池の充放電電力、負荷の使用電力の推定値、および上位系統2との間の送受電電力を変数とする需給バランスと、蓄電池のSOC(State of Charge)の上下限値を制約条件とし、上位系統2との間の送受電電力と計画値との差分および前記差分の二乗を変数とする目的関数を最小化する演算処理を実行することによって、上位系統2との間の送受電電力を計画値に近づけるように制御して最大送受電電力を小さく抑えるための蓄電池の運用計画を作成することができる。   As described above, the storage battery supply and demand plan creation device 40 of this embodiment has at least the estimated value of the generated power by natural energy power generation, the charge / discharge power of the storage battery, the estimated value of the used power of the load, and the power transmission / reception with the upper system 2. The supply and demand balance with electric power as a variable and the upper and lower limits of SOC (State of Charge) of the storage battery are set as constraints, and the difference between the power transmission and reception power with the upper system 2 and the planned value and the square of the difference as variables A storage battery operation plan is created to minimize the maximum power transmission / reception power by controlling the power transmission / reception power with the upper system 2 to be closer to the planned value by executing an arithmetic process that minimizes the objective function to be performed can do.

また、蓄電池需給計画作成装置40は、前記した目的関数に蓄電池10の放電電力を変数として加えることによって、蓄電池10の放電電力の変化を抑制しつつ、上位系統2との間の送受電電力を計画値に近づけるように制御して最大送受電電力を小さく抑えるための蓄電池の運用計画を作成することができる。   In addition, the storage battery supply and demand plan creation device 40 adds the discharge power of the storage battery 10 as a variable to the above-described objective function, thereby suppressing the change in the discharge power of the storage battery 10 and the power transmission / reception power with the host system 2. It is possible to create an operation plan for a storage battery for controlling the power to approach the planned value and keeping the maximum transmitted / received power small.

さらに、蓄電池需給計画作成装置40は、前記した目的関数に蓄電池10の放電電力を変数として加えて、蓄電池10の蓄電残量を制約条件とすることによって、蓄電池10の蓄電残量の満足しつつ、上位系統2との間の送受電電力を計画値に近づけるように制御して最大送受電電力を小さく抑えるための蓄電池の運用計画を作成することができる。   Furthermore, the storage battery supply and demand plan creation device 40 adds the discharged power of the storage battery 10 as a variable to the above-described objective function, and uses the remaining storage amount of the storage battery 10 as a constraint condition, while satisfying the remaining storage amount of the storage battery 10. In addition, it is possible to create a storage battery operation plan for controlling the transmission / reception power to / from the higher-order system 2 so as to approach the planned value to keep the maximum transmission / reception power small.

1 小規模系統
2 上位系統
10 蓄電池
20 太陽光発電装置(自然エネルギ発電装置)
21 風力発電装置(自然エネルギ発電装置)
30 負荷
40 蓄電池需給計画作成装置
41 処理部
42 記憶部
43 通信部
44 入力部
50 運用計画情報
110 太陽光発電電力推定部(発電電力推定部)
111 太陽光発電機情報記憶部
120 風力発電電力推定部(発電電力推定部)
121 風力発電機情報記憶部
130 使用電力推定部
131 負荷情報記憶部
140 蓄電池スケジュール作成部
141 蓄電池情報記憶部
DESCRIPTION OF SYMBOLS 1 Small scale system 2 Upper system 10 Storage battery 20 Solar power generation device (natural energy power generation device)
21 Wind power generator (natural energy generator)
DESCRIPTION OF SYMBOLS 30 Load 40 Storage battery supply-and-demand plan preparation apparatus 41 Processing part 42 Storage part 43 Communication part 44 Input part 50 Operation plan information 110 Solar power generation electric power estimation part (generated electric power estimation part)
111 Photovoltaic generator information storage unit 120 Wind power generation power estimation unit (power generation estimation unit)
121 wind power generator information storage unit 130 power consumption estimation unit 131 load information storage unit 140 storage battery schedule creation unit 141 storage battery information storage unit

Claims (8)

上位系統と連系点で接続され、自然エネルギ発電装置、蓄電池、および電力を消費する負荷が配電線を介して相互に接続される小規模系統に設置される蓄電池需給計画作成装置であって、
気象予報情報と計画値とを取得する入力部と、
気象情報と発電電力との関係を示す前記自然エネルギ発電装置の発電特性、気象情報と使用電力との関係を示す前記負荷の負荷特性を記憶する記憶部と、
前記自然エネルギ発電装置の発電電力を前記発電特性および前記気象予報情報を用いて推定する発電電力推定部と、
前記負荷の使用電力を前記負荷特性および前記気象予報情報を用いて推定する使用電力推定部と、
前記発電電力と前記蓄電池の充放電電力と前記使用電力と前記上位系統と前記小規模系統との間の送受電電力とを変数とする需給バランスの関係、および前記蓄電池のSOC(State of Charge)の上下限値を制約条件とし、前記送受電電力を前記計画値に近づけるための変数と前記送受電電力の最大値を小さくするための変数とを用いた目的関数の値を最小化する演算処理を実行し、前記蓄電池の運用計画情報を作成する蓄電池スケジュール作成部と
を備えることを特徴とする蓄電池需給計画作成装置。
A storage battery supply and demand plan creation device installed in a small-scale system that is connected to an upper grid and connected to a natural energy power generation device, a storage battery, and a load that consumes power via a distribution line,
An input unit for obtaining weather forecast information and plan values;
A storage unit for storing power generation characteristics of the natural energy power generation device indicating a relationship between weather information and generated power, load characteristics of the load indicating a relationship between weather information and power used;
A generated power estimation unit that estimates the generated power of the natural energy power generation device using the power generation characteristics and the weather forecast information;
A power usage estimation unit that estimates the power usage of the load using the load characteristics and the weather forecast information;
Supply-demand balance relationship using the generated power, the charge / discharge power of the storage battery, the used power, and the power transmission / reception power between the upper system and the small system, and the SOC (State of Charge) of the storage battery Arithmetic processing for minimizing the value of the objective function using a variable for making the transmission / reception power close to the plan value and a variable for reducing the maximum value of the transmission / reception power, with the upper and lower limit values as constraints A storage battery supply and demand plan creation device comprising: a storage battery schedule creation unit that executes the storage battery and creates the operation plan information of the storage battery.
前記蓄電池スケジュール作成部は、前記目的関数に前記蓄電池の放電電力を変数として加えて新たな目的関数を生成し、前記新たな目的関数の値を最小化する演算処理を実行し、前記蓄電池の運用計画情報を作成する
ことを特徴とする請求項1に記載の蓄電池需給計画作成装置。
The storage battery schedule creation unit generates a new objective function by adding the discharge power of the storage battery as a variable to the objective function, executes arithmetic processing to minimize the value of the new objective function, and operates the storage battery. The storage battery supply and demand plan creation device according to claim 1, wherein the plan information is created.
前記蓄電池スケジュール作成部は、前記入力部を介して取得した前記蓄電池のSOC目標値を前記制約条件に加えて、前記新たな目的関数の値を最小化する演算処理を実行し、前記蓄電池の運用計画情報を作成する
ことを特徴とする請求項2に記載の蓄電池需給計画作成装置。
The storage battery schedule creation unit adds the SOC target value of the storage battery acquired via the input unit to the constraint condition, and executes a calculation process that minimizes the value of the new objective function, and operates the storage battery. 3. The storage battery supply and demand plan creation device according to claim 2, wherein the plan information is created.
前記蓄電池スケジュール作成部は、前記入力部を介して取得した前記蓄電池のSOC目標値を前記制約条件に加えて、前記目的関数の値を最小化する演算処理を実行し、前記蓄電池の運用計画情報を作成する
ことを特徴とする請求項1に記載の蓄電池需給計画作成装置。
The storage battery schedule creation unit adds the SOC target value of the storage battery acquired via the input unit to the constraint condition, and executes arithmetic processing to minimize the value of the objective function, and the operation plan information of the storage battery The storage battery supply and demand plan creation device according to claim 1, wherein:
上位系統と連系点で接続され、自然エネルギ発電装置、蓄電池、および電力を消費する負荷が配電線を介して相互に接続される小規模系統に設置される蓄電池需給計画作成装置の蓄電池需給計画作成方法であって、
前記蓄電池需給計画作成装置は、
気象予報情報と計画値とを取得する入力部と、
気象情報と発電電力との関係を示す前記自然エネルギ発電装置の発電特性、気象情報と使用電力との関係を示す前記負荷の負荷特性を記憶する記憶部と、
を備え、
前記自然エネルギ発電装置の発電電力を前記発電特性および前記気象予報情報を用いて推定する発電電力推定ステップと、
前記負荷の使用電力を前記負荷特性および前記気象予報情報を用いて推定する使用電力推定ステップと、
前記発電電力と前記蓄電池の充放電電力と前記使用電力と前記上位系統と前記小規模系統との間の送受電電力とを変数とする需給バランスの関係、および前記蓄電池のSOC(State of Charge)の上下限値を制約条件とし、前記送受電電力を前記計画値に近づけるための変数と前記送受電電力の最大値を小さくするための変数とを用いた目的関数の値を最小化する演算処理を実行し、前記蓄電池の運用計画情報を作成する蓄電池スケジュール作成ステップと
を実行することを特徴とする蓄電池需給計画作成方法。
Storage battery supply and demand plan of storage battery supply and demand plan creation device installed in a small scale system connected to the upper grid and connected to a natural energy power generation device, storage battery, and a load that consumes power via a distribution line A creation method,
The storage battery supply and demand plan creation device,
An input unit for obtaining weather forecast information and plan values;
A storage unit for storing power generation characteristics of the natural energy power generation device indicating a relationship between weather information and generated power, load characteristics of the load indicating a relationship between weather information and power used;
With
A generated power estimation step for estimating the generated power of the natural energy power generation device using the power generation characteristics and the weather forecast information;
A power consumption estimation step of estimating the power consumption of the load using the load characteristics and the weather forecast information;
Supply-demand balance relationship using the generated power, the charge / discharge power of the storage battery, the used power, and the power transmission / reception power between the upper system and the small system, and the SOC (State of Charge) of the storage battery Arithmetic processing for minimizing the value of the objective function using a variable for making the transmission / reception power close to the plan value and a variable for reducing the maximum value of the transmission / reception power, with the upper and lower limit values as constraints And executing a storage battery schedule creation step of creating the storage battery operation plan information.
前記蓄電池スケジュール作成ステップでは、前記目的関数に前記蓄電池の放電電力を変数として加えて新たな目的関数を生成し、前記新たな目的関数の値を最小化する演算処理を実行し、前記蓄電池の運用計画情報を作成する
ことを特徴とする請求項5に記載の蓄電池需給計画作成方法。
In the storage battery schedule creation step, a new objective function is generated by adding the discharge power of the storage battery as a variable to the objective function, and an arithmetic process for minimizing the value of the new objective function is executed, and the operation of the storage battery is performed. 6. The storage battery supply and demand plan creation method according to claim 5, wherein the plan information is created.
前記蓄電池スケジュール作成ステップでは、前記入力部を介して取得した前記蓄電池のSOC目標値を前記制約条件に加えて、前記新たな目的関数の値を最小化する演算処理を実行し、前記蓄電池の運用計画情報を作成する
ことを特徴とする請求項6に記載の蓄電池需給計画作成方法。
In the storage battery schedule creation step, the SOC target value of the storage battery acquired via the input unit is added to the constraint condition, and a calculation process for minimizing the value of the new objective function is executed, and the operation of the storage battery is performed. 7. The storage battery supply and demand plan creation method according to claim 6, wherein the plan information is created.
前記蓄電池スケジュール作成ステップでは、前記入力部を介して取得した前記蓄電池のSOC目標値を前記制約条件に加えて、前記目的関数の値を最小化する演算処理を実行し、前記蓄電池の運用計画情報を作成する
ことを特徴とする請求項5に記載の蓄電池需給計画作成方法。
In the storage battery schedule creation step, the SOC target value of the storage battery acquired via the input unit is added to the constraint condition, and an arithmetic process for minimizing the value of the objective function is executed, and the operation plan information of the storage battery The storage battery supply and demand plan creation method according to claim 5, wherein:
JP2011144299A 2011-06-29 2011-06-29 Storage battery supply and demand plan creation device and storage battery supply and demand plan creation method Active JP5639540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011144299A JP5639540B2 (en) 2011-06-29 2011-06-29 Storage battery supply and demand plan creation device and storage battery supply and demand plan creation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011144299A JP5639540B2 (en) 2011-06-29 2011-06-29 Storage battery supply and demand plan creation device and storage battery supply and demand plan creation method

Publications (2)

Publication Number Publication Date
JP2013013240A true JP2013013240A (en) 2013-01-17
JP5639540B2 JP5639540B2 (en) 2014-12-10

Family

ID=47686603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011144299A Active JP5639540B2 (en) 2011-06-29 2011-06-29 Storage battery supply and demand plan creation device and storage battery supply and demand plan creation method

Country Status (1)

Country Link
JP (1) JP5639540B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129045A1 (en) * 2013-02-19 2014-08-28 日本電気株式会社 Power flow control system and power flow control method
JP2014192968A (en) * 2013-03-26 2014-10-06 Chugoku Electric Power Co Inc:The Power adjustment device
CN104218875A (en) * 2014-09-10 2014-12-17 中铁第一勘察设计院集团有限公司 Independent photovoltaic power generation railway power supply control system and control method thereof
CN104682408A (en) * 2015-03-04 2015-06-03 华南理工大学 Energy management method of off-grid type scenery storage micro-grid comprising various energy storage units
JP2016032336A (en) * 2014-07-28 2016-03-07 株式会社Ihi Energy management system and power demand plan optimization method
JP2016039648A (en) * 2014-08-05 2016-03-22 富士電機株式会社 Operation schedule generation device, operation schedule generation method, and program
JP2016042748A (en) * 2014-08-14 2016-03-31 株式会社Ihi Energy management system and power demand plan optimization method
JP5994027B2 (en) * 2014-01-22 2016-09-21 株式会社日立製作所 Power supply system and energy management system used therefor
WO2016185671A1 (en) * 2015-05-19 2016-11-24 パナソニックIpマネジメント株式会社 Storage cell control device
JP2017097582A (en) * 2015-11-24 2017-06-01 株式会社日立製作所 Business evaluation system and business evaluation method
JP6417063B1 (en) * 2018-03-13 2018-10-31 株式会社日立パワーソリューションズ Power generation system, control device, and control method
US10170915B2 (en) 2014-02-25 2019-01-01 Sumitomo Electric Industries, Ltd. Energy management system, energy management method and computer program

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107579545B (en) * 2017-09-12 2021-04-06 中国矿业大学 Economic dispatching method for power system with wind power plant based on improved radial movement algorithm
CN110460101A (en) * 2019-09-05 2019-11-15 北京双登慧峰聚能科技有限公司 Island microgrid energy storage subsystem and control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141918A (en) * 2006-12-05 2008-06-19 Nippon Telegr & Teleph Corp <Ntt> Device, method, and program for evaluating photovoltaic power generation system
JP2009284586A (en) * 2008-05-20 2009-12-03 Nippon Telegr & Teleph Corp <Ntt> Power system and its control method
JP2011114945A (en) * 2009-11-26 2011-06-09 Fuji Electric Systems Co Ltd Power supply planning system, and program of the same
JP2012205490A (en) * 2011-03-28 2012-10-22 Toshiba Corp Management system for composite storage battery energy and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141918A (en) * 2006-12-05 2008-06-19 Nippon Telegr & Teleph Corp <Ntt> Device, method, and program for evaluating photovoltaic power generation system
JP2009284586A (en) * 2008-05-20 2009-12-03 Nippon Telegr & Teleph Corp <Ntt> Power system and its control method
JP2011114945A (en) * 2009-11-26 2011-06-09 Fuji Electric Systems Co Ltd Power supply planning system, and program of the same
JP2012205490A (en) * 2011-03-28 2012-10-22 Toshiba Corp Management system for composite storage battery energy and method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014129045A1 (en) * 2013-02-19 2017-02-02 日本電気株式会社 Power flow control system and power flow control method
US10069302B2 (en) 2013-02-19 2018-09-04 Nec Corporation Power flow control system and power flow control method
WO2014129045A1 (en) * 2013-02-19 2014-08-28 日本電気株式会社 Power flow control system and power flow control method
JP2014192968A (en) * 2013-03-26 2014-10-06 Chugoku Electric Power Co Inc:The Power adjustment device
JP5994027B2 (en) * 2014-01-22 2016-09-21 株式会社日立製作所 Power supply system and energy management system used therefor
US10170915B2 (en) 2014-02-25 2019-01-01 Sumitomo Electric Industries, Ltd. Energy management system, energy management method and computer program
JP2016032336A (en) * 2014-07-28 2016-03-07 株式会社Ihi Energy management system and power demand plan optimization method
JP2016039648A (en) * 2014-08-05 2016-03-22 富士電機株式会社 Operation schedule generation device, operation schedule generation method, and program
JP2016042748A (en) * 2014-08-14 2016-03-31 株式会社Ihi Energy management system and power demand plan optimization method
CN104218875A (en) * 2014-09-10 2014-12-17 中铁第一勘察设计院集团有限公司 Independent photovoltaic power generation railway power supply control system and control method thereof
CN104682408A (en) * 2015-03-04 2015-06-03 华南理工大学 Energy management method of off-grid type scenery storage micro-grid comprising various energy storage units
WO2016185671A1 (en) * 2015-05-19 2016-11-24 パナソニックIpマネジメント株式会社 Storage cell control device
JP2017097582A (en) * 2015-11-24 2017-06-01 株式会社日立製作所 Business evaluation system and business evaluation method
JP6417063B1 (en) * 2018-03-13 2018-10-31 株式会社日立パワーソリューションズ Power generation system, control device, and control method
JP2019161863A (en) * 2018-03-13 2019-09-19 株式会社日立パワーソリューションズ Power generation system, control device, and control method

Also Published As

Publication number Publication date
JP5639540B2 (en) 2014-12-10

Similar Documents

Publication Publication Date Title
JP5639540B2 (en) Storage battery supply and demand plan creation device and storage battery supply and demand plan creation method
KR102346944B1 (en) Method and system for management charge and discharge of electric energy by prediction photovoltaic power generation and load
WO2009107373A1 (en) Operation plan creatiion method and device for energy storage device
JP4808754B2 (en) Natural energy power generation control system
JP4064334B2 (en) Energy system control device and control method
JP3980541B2 (en) Distributed energy community control system, central controller, distributed controller, and control method thereof
WO2019098235A1 (en) Energy management system, power demand plan optimization method, and power demand plan optimization program
US20150324935A1 (en) Control system for power system
US9543775B2 (en) Battery controller, management system, battery control method, battery control program, and storage medium
WO2016084347A1 (en) Energy management apparatus, energy management method, and program recording medium
JP6192531B2 (en) Power management system, power management apparatus, power management method, and program
Luna et al. Economic power dispatch of distributed generators in a grid-connected microgrid
JP2011002929A (en) Distributed power supply system and method of controlling the same
US9627910B2 (en) Peak-cut control device
JP5452714B2 (en) Power generation plan creation device
WO2015118744A1 (en) Energy management system
Jabir et al. Optimal battery and fuel cell operation for energy management strategy in MG
WO2015118747A1 (en) Energy management system
WO2022054442A1 (en) Power regulation method and power regulation device
WO2017163934A1 (en) Power control system, control device, control method, and computer program
JP2003284242A (en) Device and method for creating start and stop program of generator
KR102136195B1 (en) Prediction system and method for efficiently supplying power to a plurality of customers and selling the remaining power
JP2013179735A (en) Community control apparatus, power storage system, power storage device distributing method, and program
Braun Intelligent energy management system for virtual power plants
Wu et al. Economic asset management of microgrids

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141024

R150 Certificate of patent or registration of utility model

Ref document number: 5639540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150