WO2016185659A1 - Mobile-body position detecting apparatus, mobile-body position detecting method - Google Patents

Mobile-body position detecting apparatus, mobile-body position detecting method Download PDF

Info

Publication number
WO2016185659A1
WO2016185659A1 PCT/JP2016/001969 JP2016001969W WO2016185659A1 WO 2016185659 A1 WO2016185659 A1 WO 2016185659A1 JP 2016001969 W JP2016001969 W JP 2016001969W WO 2016185659 A1 WO2016185659 A1 WO 2016185659A1
Authority
WO
WIPO (PCT)
Prior art keywords
current position
positioning
moving body
vehicle
positioning result
Prior art date
Application number
PCT/JP2016/001969
Other languages
French (fr)
Japanese (ja)
Inventor
健 式町
潔 鶴見
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016014211A external-priority patent/JP6421764B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US15/569,856 priority Critical patent/US20180120115A1/en
Priority to DE112016002192.5T priority patent/DE112016002192T5/en
Publication of WO2016185659A1 publication Critical patent/WO2016185659A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram
    • G09B29/10Map spot or coordinate position indicators; Map reading aids

Definitions

  • the present disclosure is applied to a moving body including an azimuth sensor that detects a traveling direction, a distance sensor that detects a moving distance, and a receiving device that receives a positioning signal from a positioning satellite, and detects the current position of the moving body. It relates to a device (Apparatus) and a method (Method).
  • Today's moving bodies such as vehicles are equipped with an orientation sensor such as a gyro sensor and a distance sensor that detects the moving distance of the vehicle such as a vehicle speed sensor. Therefore, for example, if the position and direction at which the vehicle is stopped are stored, information on the traveling direction of the vehicle obtained from the direction sensor and information on the moving distance of the vehicle obtained from the distance sensor are accumulated. Thus, the current position of the host vehicle can be detected autonomously.
  • a method for detecting the current position of the host vehicle in this way is called dead reckoning navigation.
  • map matching corrects misalignment due to error accumulation by comparing information on the travel route of the vehicle obtained by dead reckoning with the road shape obtained from the map information.
  • This disclosure is intended to provide a technique that makes it possible to further utilize the detection result of the current position for driving support.
  • a moving body position detection device and a moving body position detection method include a current position obtained based on a result of accumulating a traveling direction and a moving distance of a moving body, a moving locus of the moving body, and a road. Reliability information is given to the corrected current position by comparing the current position (corrected current position) corrected by checking the shape.
  • the mobile object position detection device and the mobile object position detection method according to the second aspect of the present disclosure are based on the current position obtained based on the result of accumulating the traveling direction and the movement distance of the mobile object, and the positioning signal. By comparing the obtained positioning result, reliability information is given to the current position.
  • FIG. 1 shows a rough configuration of a vehicle 1 on which the moving body position detection device 100 according to the first embodiment is mounted.
  • the vehicle 1 is also referred to as a host vehicle.
  • the vehicle 1 in addition to the moving body position detecting device 100, the vehicle 1 is equipped with an orientation sensor 10, a distance sensor 12, a receiving device 16, a display device 14, an external storage device 20, and the like. Yes.
  • the azimuth sensor 10 is a sensor used for detecting the traveling direction of the vehicle 1, and a geomagnetic sensor, a gyro sensor, or the like can be used.
  • the distance sensor 12 is a sensor used for detecting the moving distance of the vehicle 1. In this embodiment, a vehicle speed sensor that generates a certain number of pulses as the tire rotates is used as the distance sensor 12.
  • the receiving device 16 can determine the current position of the vehicle 1 by receiving positioning signals from a plurality of positioning satellites 50.
  • a GNSS satellite such as a GPS satellite is known.
  • latitude and longitude information can be acquired.
  • altitude (height position) information can also be acquired.
  • Information is used not only as countable nouns but also as countable nouns.
  • the plurality of information is equivalent to the plurality of information items.
  • the display device 14 is used to display the current position of the vehicle 1, and various display devices such as a liquid crystal display device can be used.
  • the external storage device 20 stores map information including road shapes. Since the map information including the road shape is stored in the so-called navigation device, the navigation device can be used as the external storage device 20.
  • FIG. 2 shows an internal configuration of the moving body position detection apparatus 100 according to the first embodiment.
  • the moving body position detection apparatus 100 of the first embodiment includes a traveling direction detection unit 101, a movement distance detection unit 102, a sensor characteristic correction unit 103, a positioning result acquisition unit 104, and a current position detection unit. 105, a movement locus generation unit 106, a corrected current position acquisition unit 107, a road shape reading unit 108, and a reliability providing unit 109.
  • these “parts” are abstractly classified for convenience in the interior of the mobile body position detection device 100, focusing on the functions provided for the mobile body position detection device 100 to detect the current position of the vehicle 1. It is a concept.
  • the moving body position detection apparatus 100 is physically divided into these “parts”.
  • These “units” can be realized as a computer program executed by the CPU, can be realized as an electronic circuit including an LSI or a memory, or can be realized by combining them.
  • the detection unit can also be referred to as a detection module, a detection device, or a detector (detector).
  • the traveling direction detection unit 101 receives the output from the direction sensor 10 and detects the traveling direction of the vehicle 1.
  • the direction sensor 10 is a type of sensor that outputs the direction itself like a geomagnetic sensor
  • the direction of the vehicle 1 is detected using the output of the direction sensor 10.
  • the direction of the vehicle 1 is detected by accumulating the direction change from the initial direction.
  • the initial azimuth the azimuth of the vehicle 1 can be stored when the power of the moving body position detecting apparatus 100 is turned off, and the azimuth can be read and used.
  • the traveling direction of the vehicle 1 can be detected from the positioning result using the positioning signal from the positioning satellite 50 and used as the initial direction.
  • the moving distance detection unit 102 receives the output from the distance sensor 12 and detects the moving distance of the vehicle 1. Since the traveling direction of the vehicle 1 is detected by the traveling direction detection unit 101, if the moving distance is known, it can be determined how much the vehicle 1 has moved in which direction. Further, the traveling direction of the vehicle 1 changes every moment, but the traveling direction can be regarded as constant for a short time. Therefore, the current position detection unit 105 detects the current position of the vehicle 1 by acquiring the traveling direction and the moving distance of the vehicle 1 at predetermined short time intervals and accumulating them.
  • the current position detected by the current position detection unit 105 can be so-called latitude and longitude information, but in addition to these, the altitude (height position) and the direction indicating the traveling direction of the vehicle 1 (current (Direction) can also be used as information.
  • the positioning result acquisition unit 104 acquires a positioning result from the receiving device 16.
  • the receiving device 16 receives the positioning signals from the plurality of positioning satellites 50 to determine the current position of the vehicle 1. Therefore, the positioning result acquisition unit 104 acquires the positioning result from the receiving device 16.
  • the receiving device 16 may output a positioning signal to the positioning result acquisition unit 104, and the positioning result acquisition unit 104 may acquire the positioning result based on the positioning signal.
  • the sensor characteristic correction unit 103 Correct the sensor characteristics. This is the following process. First, errors are included in the outputs of the azimuth sensor 10 and the distance sensor 12. Therefore, these errors are accumulated in the current position of the vehicle 1 obtained by the current position detection unit 105. For example, if the output of the distance sensor 12 is slightly smaller, even if the error is a small value, it appears as a large error at a long distance. The same applies to the output of the direction sensor 10. That is, if errors are included in the output of the direction sensor 10, these errors are accumulated in the current position of the vehicle 1 obtained by the current position detection unit 105. In addition, when an azimuth indicating the traveling direction of the vehicle 1 is detected as the current position of the vehicle 1, a large error may appear in the detected azimuth.
  • the sensor characteristic correcting unit 103 accumulates the outputs of the direction sensor 10 and the distance sensor 12, and the vehicle 1 obtained from the current position of the vehicle 1 (output of the current position detecting unit 105) obtained from the positioning signal.
  • the positioning result (output of the positioning result acquisition unit 104) is compared.
  • the current position and positioning result of the vehicle 1 to be compared here can be information on longitude and latitude, but in addition to these, information on altitude (height position) and the traveling direction of the vehicle 1 are represented. It can be information including information on the direction (current direction). If they are greatly different, the sensor characteristics of the direction sensor 10 and the distance sensor 12 are corrected little by little.
  • the correction does not immediately eliminate the difference between the current position of the vehicle 1 obtained by accumulating the sensor output and the positioning result. This is because an error is included in the positioning result obtained from the positioning signal, so that erroneous correction of the sensor characteristics due to the influence of the error is avoided.
  • the movement trajectory generation unit 106 generates a movement trajectory of the vehicle 1 by accumulating the current position obtained by the current position detection unit 105, and stores the movement trajectory for a certain distance or a certain time. If the current position obtained by the current position detection unit 105 includes altitude information, a three-dimensional movement trajectory is stored.
  • the road shape reading unit 108 reads the road shape (and the position of the road) from the map information stored in the external storage device 20 and outputs it to the corrected current position acquisition unit 107.
  • the corrected current position acquisition unit 107 collates the movement locus of the vehicle 1 generated by the movement locus generation unit 106 with the road shape obtained from the correction current position acquisition unit 107, and performs so-called map matching, thereby The current position (corrected current position) of the vehicle 1 corrected in consideration of the shape is acquired.
  • the reason why the current position of the vehicle 1 obtained by correcting the sensor characteristics is further corrected in consideration of the road shape is as follows. First, the sensor characteristics are corrected based on the positioning result, but this positioning result also includes an error. Therefore, even if the sensor characteristics are corrected based on the positioning result, a certain amount of error remains in the current position obtained by the current position detection unit 105. Therefore, the error of the current position of the vehicle 1 is further reduced by correcting the road shape in consideration.
  • the reliability assigning unit 109 acquires the correction current position from the correction current position acquisition unit 107, further acquires the current position before correction from the current position detection unit 105, and compares the two. And based on the result, after giving the reliability information to the correction current position, the correction current position to which the reliability is given is output to the display device 14.
  • the target for outputting the corrected current position is not limited to the display device 14 and may be output to a control device (not shown) mounted on the vehicle 1.
  • the corrected current position displayed on the display device 14 as the current position of the vehicle 1 can be believed or should be kept to a reference level.
  • FIGS. 3 and 4 show a flowchart of the current position detection process executed by the mobile object position detection apparatus 100 according to the first embodiment.
  • the described flowchart includes a plurality of sections (or referred to as steps), and each section is expressed as S100, for example. Further, each section can be divided into a plurality of subsections, while a plurality of sections can be combined into one section.
  • Each section can be referred to as a device, a module, or a unique name, for example, a detection section can be referred to as a detection device, a detection module, or a detector.
  • the section includes (i) not only a section of software combined with a hardware unit (eg, a computer) but also (ii) a section of hardware (eg, an integrated circuit, a wiring logic circuit) and related devices. It can be realized with or without the function.
  • the hardware section can be included inside the microcomputer.
  • the initial position and initial direction of the vehicle 1 are acquired (S100).
  • the current position of the vehicle 1 and the direction (azimuth) of the vehicle 1 are stored in a memory (not shown) and stored when the operation is started.
  • the current position and orientation are read out and set as the initial position and initial direction, respectively.
  • the present invention is not limited to this, and the initial position and the initial direction of the vehicle 1 may be detected based on positioning results at a plurality of points.
  • the current position of the vehicle 1 can include altitude (height position) information.
  • the current position including the altitude at which the vehicle 1 exists and the direction (azimuth) of the vehicle 1 are stored.
  • working what is necessary is just to read the present position and direction containing an altitude, and to make it an initial position and an initial direction, respectively.
  • the traveling direction of the vehicle 1 is acquired based on the output of the direction sensor 10, and the moving distance of the vehicle 1 is acquired based on the output of the distance sensor 12 (S101).
  • the current position of the vehicle 1 is updated assuming that the vehicle has moved by the acquired distance in the acquired traveling direction (S102).
  • the movement locus of the vehicle 1 is generated by connecting the current position of the vehicle 1 obtained so far and the newly obtained current position (S103).
  • FIG. 5 shows how the movement position is generated by updating the current position of the vehicle 1 in this way.
  • the arrows shown in FIG. 5A represent the traveling direction and the moving distance of the vehicle 1 within a predetermined short time.
  • the current position of the vehicle 1 is updated one arrow at a time.
  • the movement locus shown by the solid line in FIG. 5B can be obtained by connecting the current positions updated in this way. It should be noted that the movement trajectory obtained in this way is sufficient if it is a fixed distance (for example, 5 km) or a fixed time (for example, 10 minutes), and the previous trajectory may be discarded. Further, the meanings of the star shown in FIG. 5A, the circle indicated by the broken line, and the black arrow will be described later.
  • the receiving device 16 performs positioning, and in S103, it is determined whether or not a positioning result has been obtained by the receiving device 16.
  • the positioning result is obtained (S104: YES)
  • the positioning result is acquired from the receiving device 16 (S105).
  • S106 by comparing the obtained positioning result with the current position of the vehicle 1 obtained in S102, it is determined whether or not the sensor characteristics of the direction sensor 10 or the distance sensor 12 need to be corrected (S106). This determination will be described with reference to FIG.
  • the current position of the vehicle 1 is updated for each arrow shown in FIG.
  • positioning results based on positioning signals are generally obtained at regular intervals.
  • the positioning result obtained by the positioning signal is represented by an asterisk.
  • each positioning result is numbered as g1, g2, g3, g4, g5, g6, g7, g8, g9 according to the order in which the positioning results are obtained.
  • the current position of the vehicle 1 when the positioning results are obtained can be considered. For example, immediately before the positioning result g1 is obtained, if the current position is updated as indicated by the black arrow a1 in FIG.
  • the current position of the vehicle 1 corresponding to the positioning result g1 is This is the position indicated by the tip of the black arrow a1.
  • the current position of the vehicle 1 corresponding to the positioning result g2 is the position indicated by the tip of the black arrow a2.
  • the timing at which the positioning result based on the positioning signal is obtained may be an intermediate timing at which the current position of the vehicle 1 is updated, or may be immediately before the current position of the vehicle 1 is updated.
  • the current position of the vehicle 1 at the timing when the positioning result is obtained may be estimated based on the current position of the vehicle 1 at the timing before and after the positioning result is obtained.
  • it may be as follows. First, the time difference between the timing at which the positioning result is obtained and the timing at which the current position of the vehicle 1 is updated immediately before and immediately after that is calculated. If there is a current position where the time difference is smaller than the threshold time, the current position is adopted as the current position of the vehicle 1 at the timing when the positioning result is obtained. On the other hand, when there is no current position where the time difference is smaller than the threshold time, the current position of the vehicle 1 at the timing when the positioning result is obtained is estimated from the current position of the vehicle 1 immediately before and immediately after. May be.
  • any of the positioning results g1 to g9 indicated by stars in FIG. 5A does not match the current position of the vehicle 1 indicated at the tip of the black arrows a1 to a9. .
  • the positioning signal includes an error
  • the positioning result also includes some error.
  • the magnitude of the positioning result error can be predicted based on the type of positioning signal used for positioning and the number of positioning signals that can be used for positioning. Even if the current position of the vehicle 1 does not match the positioning result, the current position of the vehicle 1 is deviated if it is within the range of a predicted error (hereinafter referred to as “prediction error”). It is not possible.
  • the range of the prediction error centered on the positioning result is represented by a broken-line circle. Although illustration is omitted, a similar prediction error range can be considered for the current direction indicating the traveling direction of the vehicle 1.
  • the current position of the vehicle 1 indicated at the tip of each of the black arrows a1 to a9 is within the prediction error range indicated by the broken line. It is considered that the current position is detected almost correctly. Therefore, even if the sensor characteristics of the azimuth sensor 10 and the distance sensor 12 are corrected, no significant improvement can be expected, and it can be determined that correction is not necessary.
  • the magnitude of the prediction error can be made smaller than the error included in each positioning result. Accordingly, whether or not the sensor characteristic needs to be corrected is determined by determining whether or not the current position acquired in S102 exists within the range of the prediction error obtained using the multiple positioning results in this way. May be.
  • the sensor characteristic is corrected by a predetermined amount in the direction in which the current position obtained in S102 approaches the positioning result acquired in S105 (S107). .
  • the sensor characteristics in S107 not only the sensor characteristics are corrected but also the current position obtained in S102 may be corrected by a predetermined amount so as to approach the positioning result obtained in S105. Good.
  • correction current position a road shape within a predetermined range including the current position of the vehicle 1 is read out from the map information stored in the external storage device 20 (S108). Then, the current position of the vehicle 1 corrected by matching the movement trajectory of the vehicle 1 generated in S103 with the read road shape and correcting the current position of the vehicle 1 to the current position considered to be more correct is performed. (Hereinafter referred to as “correction current position”) is generated (S109).
  • Fig. 6 shows an overview of map matching.
  • a characteristic road shape as illustrated in FIG. 6A exists in the road shape read from the map information.
  • This road shape is very similar in overall shape to the movement trajectory of the vehicle 1 illustrated in FIG.
  • the movement locus can be overlapped without protruding from the road.
  • the vehicle 1 can determine the current position of the vehicle 1 with high accuracy such that the vehicle 1 turns right at the intersection P shown in FIG. 6B and exists at a distance Lc. .
  • the vehicle 1 does not run on the center of the road.
  • the way of traveling at intersections and curves varies depending on the driver.
  • the vehicle 1 may travel on the shoulder portion of the road.
  • the movement locus of the vehicle 1 when it is applied to the road shape, it may be applied at a slightly shifted position or angle.
  • difference arises, inconsistency may arise in the movement locus
  • the vehicle 1 passes through a position greatly deviated toward the inside of the road at the first intersection at the left end in the figure.
  • map matching corrects the position of the vehicle 1 so as to be pulled into the road, as shown in FIG.
  • a corrected current position in which the current position is corrected is generated by performing map matching as described above on the current position of the vehicle 1 obtained in S102.
  • the outputs of the direction sensor 10 and the distance sensor 12 are within a normal range (S110 in FIG. 4). For example, if a problem such as the sensor itself is damaged or the wiring from the sensor is disconnected, the output from the sensor deviates from the normal range. It is determined whether or not. As a result, if it is determined that the sensor output is not within the normal range (S110: NO), some problem has occurred in the direction sensor 10 or the distance sensor 12, and the corrected current obtained based on the output of those sensors. The position is considered unreliable. Therefore, in this case (S110: NO), after the corrected current position is replaced with the positioning result obtained at that time (S111), the reliability to be given to the corrected current position is set to “low” (S115). .
  • the corrected current position obtained by map matching is predicted centered on the current position of the vehicle 1 obtained in S102. It is determined whether it is within the error range (S112).
  • the prediction error is an error generated in the positioning result due to an error included in the positioning signal.
  • the magnitude of the prediction error can be predicted based on the type of positioning signal, the number of positioning signals used for positioning, and the like. Further, instead of using an error included in each positioning result as a prediction error, an error reduced by averaging a plurality of positioning results can be used as a prediction error.
  • the prediction error is an error that occurs in the positioning result due to an error included in the positioning signal, it is natural to set the range of the prediction error around the position obtained by the positioning result. Nevertheless, in S112, a prediction error range is set around the current position of the vehicle 1 obtained in S102, and whether or not the corrected current position obtained by map matching exists within the prediction error range. Judging whether or not. This is due to the following reason.
  • the positioning result is not always obtained.
  • the current position of the vehicle 1 obtained by accumulating the outputs of the direction sensor 10 and the distance sensor 12 can always be obtained.
  • the sensor characteristics of the azimuth sensor 10 and the distance sensor 12 are based on the range of prediction errors of the positioning results obtained in S105 when the current position of the vehicle 1 obtained in S102 is obtained. It is corrected to be inside. Therefore, even if the positioning result cannot be obtained at a certain moment, it may be considered that the positioning result exists within the range of the prediction error around the current position of the vehicle 1 obtained in S102. Therefore, in S112, a prediction error range centered on the current position of the vehicle 1 obtained in S102 is set as a range in which the positioning result will be obtained.
  • the corrected current position is not within the range of the prediction error (S112: NO)
  • the map matching result is not supported by the positioning result based on the positioning signal.
  • the reliability to be set is set to “low” (S115).
  • the corrected current position is within the range of the prediction error (S112: YES)
  • the reliability to be given to the corrected current position is set to “low” (S115).
  • the sensor output is within the normal range (S110: YES)
  • the corrected current position is within the prediction error range (S112: YES).
  • the sensor characteristics are sufficiently learned (S113: YES). In such a case, it may be considered that the map matching result is supported by the positioning result based on the positioning signal. Therefore, the reliability assigned to the current correction position is set to “high” (S114).
  • FIG. 7 shows a state in which the position of the vehicle 1 obtained by map matching (that is, the corrected current position) is displayed on the screen of the display device 14.
  • the vehicle 1 and the movement trajectory indicated by a thick solid line in the figure represent the position of the vehicle 1 obtained by map matching (that is, the corrected current position generated in S109 in FIG. 3) and the movement trajectory.
  • the vehicle 1 and the movement trajectory indicated by the thin broken lines in the figure indicate the current position of the vehicle 1 obtained by accumulating the outputs of the direction sensor 10 and the distance sensor 12 (that is, the current position obtained in S102 of FIG. Position) and a movement locus (that is, the movement locus generated in S103).
  • the current position obtained in S102 is referred to as “current position by dead reckoning navigation”.
  • a circle indicated by a thin broken line in the figure represents a prediction error range centered on the current position by dead reckoning navigation.
  • the vehicle 1 when the vehicle 1 enters the parking lot at an angle, the vehicle 1 gradually moves away from the road. For this reason, the position of the vehicle 1 is drawn to the road side by map matching, and it is displayed as if the vehicle 1 is still traveling on the road even though it actually entered the parking lot. It can happen. However, even in such a case, if the current position (that is, the corrected current position) of the vehicle 1 obtained by the map matching is outside the prediction error range centered on the current position by dead reckoning navigation, the display device 14 The vehicle 1 displayed on the screen changes from a reliability “high” to a reliability “low” display mode. For this reason, the driver can recognize that he / she is not actually traveling on the road (thus deviating from the road).
  • the vehicle 1 has entered the parking lot with a clearly different direction of travel from when the vehicle 1 was traveling on the road. For this reason, the position of the vehicle 1 is not drawn to the road side by map matching, and as a result, on the screen of the display device 14, the vehicle 1 is traveling outside the road.
  • the current position of the vehicle 1 obtained by map matching (that is, the corrected current position) is within the prediction error range centered on the current position by dead reckoning navigation.
  • the display on the screen of the display device 14 remains at a high reliability level. Therefore, the driver can recognize that the vehicle 1 is actually traveling outside the road even if the position of the vehicle 1 on the screen is off the road.
  • FIG. 8 shows the internal configuration of the moving body position detecting apparatus 200 of the second embodiment.
  • the moving body position detection device 200 of the second embodiment includes a traveling direction detection unit 101, a movement distance detection unit 102, a sensor characteristic correction unit 103, a positioning result acquisition unit 104, and a current position detection unit. 105 and a reliability providing unit 209.
  • the traveling direction detection unit 101, the movement distance detection unit 102, the sensor characteristic correction unit 103, the positioning result acquisition unit 104, and the current position detection unit 105 are the same as those of the moving body position detection device 100 of the first embodiment described above. Therefore, the description is omitted here.
  • the reliability assigning unit 209 acquires the current position of the vehicle 1 from the current position detection unit 105, acquires the positioning result of the vehicle 1 from the positioning result acquisition unit 104, and compares the two. Then, depending on whether the current position of the vehicle 1 obtained by the current position detection unit 105 is supported by the positioning result acquired by the positioning result acquisition unit 104 within the error range, reliability information is displayed on the current position. After the assignment, the current position to which the reliability is assigned is output to the outside (for example, the display device 14). In this way, it is possible to determine whether the current position (or direction) displayed as the current position of the vehicle 1 on the display device 14 can be believed, or whether it should be kept to a reference level. The displayed current position of the vehicle 1 can be further utilized to drive.
  • FIGS. 9 and 10 show a flowchart of the current position detection process executed by the moving body position detection apparatus 200 of the second embodiment.
  • the initial position and the initial direction of the vehicle 1 are first acquired in the same manner as the current position detection process of the first embodiment described above (S200).
  • the traveling direction of the vehicle 1 is acquired based on the output of the direction sensor 10
  • the moving distance of the vehicle 1 is acquired based on the output of the distance sensor 12 (S201).
  • the current position of the vehicle 1 is updated assuming that the vehicle has moved by the acquired distance in the acquired traveling direction (S202).
  • the receiving device 16 performs positioning, and it is determined whether or not the positioning device 16 has obtained a positioning result.
  • the positioning result is obtained (S203: YES)
  • the positioning result is acquired from the receiving device 16 (S204), and it is determined whether or not the sensor characteristics of the direction sensor 10 or the distance sensor 12 need to be corrected. Judgment is made (S205). This determination is the same as that of the first embodiment described above with reference to FIG.
  • the deviation between the current position of the vehicle 1 obtained in S202 and the positioning result obtained in S204 is determined as positioning. It is determined whether or not the result is within a prediction error range (S209).
  • the prediction error is an error generated in the positioning result due to an error included in the positioning signal. Further, instead of using an error included in each positioning result as a prediction error, an error reduced by averaging a plurality of positioning results can be used as a prediction error.
  • the sensor characteristics are sufficiently learned (S210).
  • S210 the number of times the sensor characteristics have been corrected has reached a sufficient number of times, it is determined that learning of the sensor characteristics is sufficient (S210: YES), and if the number of times has not been reached, learning of the sensor characteristics is performed. Is not sufficient (S210: NO).
  • the sensor characteristics can also be learned. You may make it judge that it is enough.
  • the current position is corrected using the positioning result (S211), and then the reliability to be given to the current position is set to “low”. (S212).
  • the sensor output is within the normal range (S207: YES), and the current position is within the prediction error range (S209: YES).
  • learning of sensor characteristics is sufficiently advanced (S210: YES). In such a case, it can be considered that the current position obtained by accumulating the outputs of the direction sensor 10 and the distance sensor 12 (that is, the current position by dead reckoning navigation) is supported by the positioning result based on the positioning signal. . Therefore, in this case, the reliability assigned to the current position is set to “high” (S213).
  • FIG. 11 illustrates a state where the current position obtained by the current position detection process of the second embodiment described above is displayed on the screen of the display device 14.
  • the positioning result obtained from the positioning signal is represented by an asterisk.
  • each positioning result is numbered as g1, g2, g3, g4, g5, g6, g7, g8, g9 according to the order in which the positioning results are obtained.
  • a circle indicated by a broken line represents a prediction error range for each positioning result.
  • the current position of the vehicle 1 detected by dead reckoning navigation can be considered as in the first embodiment. In FIG. 11, these are represented by p1, p2, p3, p4, p5, p6, p7, p8, and p9.
  • the current positions p1, p2, and p3 corresponding to the positioning results g1, g2, and g3 are within the prediction error ranges of the positioning results g1, g2, and g3, respectively. Accordingly, since the current position obtained by dead reckoning is supported by the positioning result based on the positioning signal, it can be determined that the reliability of the current position is high.
  • the current position p4 based on dead reckoning navigation at the time when the positioning result g4 is obtained is outside the range of the prediction error of the positioning result g4, and the current position obtained by dead reckoning navigation is the positioning result based on the positioning signal. Therefore, it can be determined that the reliability of the current position is low. Therefore, when the positioning result g4 is obtained, the display of the current position p4 of the vehicle 1 is changed from the display mode with the reliability “high” to the display mode with the reliability “low”.
  • the current position is detected by dead reckoning navigation by accumulating the outputs of the direction sensor 10 and the distance sensor 12 from the corrected position m4. continue.
  • the current position p5 by dead reckoning navigation at the time when the positioning result g5 is obtained is within the range of the prediction error of the positioning result g5.
  • the display mode of the current position is returned from the reliability “low” to the display mode of reliability “high”. In this way, it can be determined whether the current position (or direction) of the vehicle 1 displayed on the screen of the display device 14 can be believed, or whether it should be kept at a reference level. In the example shown in FIG. 11, the position of the vehicle 1 between m4 and p5 should be kept at a reference level, but in other cases, it can be determined that the display on the screen can be trusted. In this way, the detection result of the current position of the vehicle 1 can be used more effectively.
  • the reliability given to the current correction position is either “high” or “low”. Further, in the second embodiment described above, the reliability given to the current position is described as being either “high” or “low”. However, the reliability to be given does not need to be in two stages of “high” or “low”, and the reliability may be given in multiple stages of three or more stages, and furthermore, the reliability changes continuously. A degree may be given.
  • FIG. 12 illustrates a method for assigning multi-level reliability.
  • the magnitude of the prediction error obtained for the positioning result g is ES.
  • the distance A from the positioning result g is larger than the distance ES, and the distance from the positioning result g as shown in FIG.
  • the reliability to be given to the corrected current position is determined depending on in which region the corrected current position of the vehicle 1 exists. That is, when the corrected current position exists in the area A1, the reliability is determined to be the smallest reliability 1, and when the corrected current position exists in the area A2, the reliability is higher than the reliability 1. A certain reliability 2 is determined. Further, when the current correction position exists in the area A3, the reliability 3 is determined to be greater than the reliability 2, and when the current correction position exists in the area A4, the reliability 4 greater than the reliability 3 is determined. To decide.
  • the reliability to be given to the corrected current position is determined depending on in which region the current position of the vehicle 1 exists. In this way, four levels of reliability can be set according to the deviation between the corrected current position (or current position) of the vehicle 1 and the positioning result. Of course, the number of stages of reliability is not limited to four, and a larger number of stages may be set.
  • continuously changing reliability may be given.
  • the magnitude of the prediction error obtained for the positioning result g is ES.
  • the reliability is given by a normal distribution having the distance ES as a standard deviation.
  • the reliability can be set so as to change continuously according to the distance.
  • the method of using the reliability given to the detection result of the current position of the vehicle 1 is changed by changing the display mode of the vehicle 1 on the screen of the display device 14.
  • the present invention is not limited to presenting to the driver, and may be utilized for control such as driving assistance. That is, with respect to the current position detection result to which high reliability is given, it is possible to apply the current position detection result to advanced driving assistance that could not be applied conventionally.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Navigation (AREA)

Abstract

In this apparatus for detecting a mobile-body position, a current position which is obtained on the basis of a result of accumulating directions advanced and distances moved of a mobile body is compared with a current position (modified current position) to which a modification has been made by collating the moved path of the mobile body with a road shape, and reliability information is added to the modified current position. Alternatively, a current position which is obtained on the basis of a result of accumulating directions advanced and distances moved of a mobile body is compared with a positioning result which is obtained on the basis of a positioning satellite, and reliability information is added to the current position.

Description

移動体位置検出装置、移動体位置検出方法Moving body position detecting device and moving body position detecting method 関連出願の相互参照Cross-reference of related applications
 本出願は、2015年5月15日に出願された日本出願番号2015-100270号と、2016年1月28日に出願された日本出願番号2016-14211号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2015-100270 filed on May 15, 2015 and Japanese Application No. 2016-14142 filed on January 28, 2016. Is used.
 本開示は、進行方向を検出する方位センサーと、移動距離を検出する距離センサーと、測位衛星からの測位信号を受信する受信装置とを備える移動体に適用されて、移動体の現在位置を検出する装置(Apparatus)と方法(Method)に関する。 The present disclosure is applied to a moving body including an azimuth sensor that detects a traveling direction, a distance sensor that detects a moving distance, and a receiving device that receives a positioning signal from a positioning satellite, and detects the current position of the moving body. It relates to a device (Apparatus) and a method (Method).
 今日の車両などの移動体には、ジャイロセンサーなどの方位センサーと、車速センサーなどのように車両の移動距離を検出する距離センサーとが搭載されている。従って、例えば、車両を停止した位置および方位を記憶しておくなどしておけば、方位センサーから得られる車両の進行方向の情報と、距離センサーから得られる車両の移動距離の情報とを累積することで、自車両の現在位置を自律的に検出することができる。このようにして自車両の現在位置を検出する方法は、推測航法と呼ばれる。 Today's moving bodies such as vehicles are equipped with an orientation sensor such as a gyro sensor and a distance sensor that detects the moving distance of the vehicle such as a vehicle speed sensor. Therefore, for example, if the position and direction at which the vehicle is stopped are stored, information on the traveling direction of the vehicle obtained from the direction sensor and information on the moving distance of the vehicle obtained from the distance sensor are accumulated. Thus, the current position of the host vehicle can be detected autonomously. A method for detecting the current position of the host vehicle in this way is called dead reckoning navigation.
 この推測航法は、車両が長い距離を移動すると、方位センサーや距離センサーに含まれる誤差が蓄積されてしまうので、現在位置の検出結果にズレが生じる。そこで、推測航法によって得られた現在位置の位置ズレを、GNSS(全地球測位システム:Global Navigation Satellite System)による測位結果を用いて補正する技術が開発されている。GNSSでは、複数の測位衛星からの測位信号を受信することによって、一定の精度で現在位置を測位することができる。 In this dead reckoning navigation, when the vehicle moves a long distance, errors included in the direction sensor and the distance sensor are accumulated, so that the current position detection result is shifted. In view of this, a technique has been developed that corrects the position shift of the current position obtained by dead reckoning using a positioning result obtained by a GNSS (Global Navigation System). In GNSS, the current position can be measured with a certain degree of accuracy by receiving positioning signals from a plurality of positioning satellites.
 また、推測航法によって得られた自車の移動経路の情報を、地図情報から得られる道路形状と照合することによって、誤差の蓄積による位置ずれを補正する「マップマッチング」と呼ばれる技術も開発されている(特許文献1)。そして、これらの技術を用いて自車の現在位置を正確に検出することができれば、例えば交差点で車を減速させるなどの高度な運転支援を行うことも可能と考えられる。 In addition, a technology called “map matching” has been developed that corrects misalignment due to error accumulation by comparing information on the travel route of the vehicle obtained by dead reckoning with the road shape obtained from the map information. (Patent Document 1). If it is possible to accurately detect the current position of the vehicle using these techniques, it is possible to provide advanced driving assistance such as decelerating the vehicle at an intersection.
JP 4140559 B2JP 4140559 B2
 しかし、実際には、推測航法によって検出した自車両の現在位置を、GNSSによる測位結果やマップマッチングを用いて補正した場合でも、現在位置の検出結果に基づいて実施可能な運転支援の対象が限定されてしまうという問題があった。これは、GNSSによる測位結果や、マップマッチングによる現在位置の検出結果にも誤差が含まれているため、運転支援の対象を、補正後の現在位置に誤差が含まれていても大きな問題とならない範囲に限定する必要があるためである。 However, in practice, even if the current position of the host vehicle detected by dead reckoning is corrected using the positioning result by GNSS or map matching, the target of driving assistance that can be performed based on the detection result of the current position is limited. There was a problem of being. This also includes errors in the positioning results by GNSS and the current position detection results by map matching, so there is no major problem even if the current position after correction is included in the driving support target. This is because it is necessary to limit the range.
 この開示は、現在位置の検出結果をより一層、運転支援に活用することを可能とする技術の提供を目的とする。 This disclosure is intended to provide a technique that makes it possible to further utilize the detection result of the current position for driving support.
 本開示の第1の観点による移動体位置検出装置および移動体位置検出方法は、移動体の進行方向および移動距離を累積した結果に基づいて得られた現在位置と、移動体の移動軌跡と道路形状とを照合することによって修正した現在位置(修正現在位置)とを比較することによって、修正現在位置に信頼度の情報を付与する。 A moving body position detection device and a moving body position detection method according to a first aspect of the present disclosure include a current position obtained based on a result of accumulating a traveling direction and a moving distance of a moving body, a moving locus of the moving body, and a road. Reliability information is given to the corrected current position by comparing the current position (corrected current position) corrected by checking the shape.
 こうすれば、得られた修正現在位置をどの程度まで信じて良いのかが分かるので、修正現在位置をより一層、運転支援に活用することが可能となる。 In this way, it is possible to know to what extent the obtained corrected current position can be believed, so that the corrected current position can be further utilized for driving support.
 また、本開示の第2の観点による移動体位置検出装置および移動体位置検出方法は、移動体の進行方向および移動距離を累積した結果に基づいて得られた現在位置と、測位信号に基づいて得られた測位結果とを比較することによって、現在位置に信頼度の情報を付与する。 In addition, the mobile object position detection device and the mobile object position detection method according to the second aspect of the present disclosure are based on the current position obtained based on the result of accumulating the traveling direction and the movement distance of the mobile object, and the positioning signal. By comparing the obtained positioning result, reliability information is given to the current position.
 こうしても、得られた現在位置をどの程度まで信じて良いのかが分かるので、現在位置をより一層、運転支援に活用することが可能となる。 Even in this way, it is possible to know how much the obtained current position can be believed, so that the current position can be further utilized for driving support.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
第1実施例の移動体位置検出装置を搭載した車両1を示す説明図である。 第1実施例の移動体位置検出装置の内部構成を示すブロック図である。 第1実施例の移動体位置検出装置が実行する現在位置検出処理の前半部分のフローチャートである。 第1実施例の移動体位置検出装置が実行する現在位置検出処理の後半部分のフローチャートである。 推測航法によって自車両の現在位置および移動軌跡を取得する様子を示す説明図である。 マップマッチングによって現在位置を修正する様子を示す説明図である。 第1実施例の移動体位置検出装置が自車両の位置に信頼度を付与する様子を示す説明図である。 第2実施例の移動体位置検出装置の内部構成を示すブロック図である。 第2実施例の移動体位置検出装置が実行する現在位置検出処理の前半部分のフローチャートである。 第2実施例の移動体位置検出装置が実行する現在位置検出処理の後半部分のフローチャートである。 第2実施例の移動体位置検出装置が自車両の現在位置に信頼度を付与する様子を示す説明図である。 信頼度が多段階に変化する変形例についての説明図である。 信頼度が連続的に変化する変形例についての説明図である。
The above and other objects, features, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings.
It is explanatory drawing which shows the vehicle 1 carrying the moving body position detection apparatus of 1st Example. It is a block diagram which shows the internal structure of the mobile body position detection apparatus of 1st Example. It is a flowchart of the first half part of the present position detection process which the mobile body position detection apparatus of 1st Example performs. It is a flowchart of the second half part of the present position detection process which the mobile body position detection apparatus of 1st Example performs. It is explanatory drawing which shows a mode that the present position and movement locus | trajectory of the own vehicle are acquired by dead reckoning. It is explanatory drawing which shows a mode that the present position is corrected by map matching. It is explanatory drawing which shows a mode that the mobile body position detection apparatus of 1st Example provides the reliability to the position of the own vehicle. It is a block diagram which shows the internal structure of the mobile body position detection apparatus of 2nd Example. It is a flowchart of the first half part of the present position detection process which the mobile body position detection apparatus of 2nd Example performs. It is a flowchart of the latter half part of the present position detection process which the mobile body position detection apparatus of 2nd Example performs. It is explanatory drawing which shows a mode that the mobile body position detection apparatus of 2nd Example provides reliability to the present position of the own vehicle. It is explanatory drawing about the modification from which reliability changes in multistep. It is explanatory drawing about the modification in which reliability changes continuously.
 以下では、上述した本開示の内容を明確にするために実施例について説明する。 Hereinafter, examples will be described in order to clarify the contents of the present disclosure described above.
 A.第1実施例:
 A-1.第1実施例の装置構成:
 図1には、第1実施例の移動体位置検出装置100を搭載した車両1の大まかな構成が示されている。尚、この車両1は、自車(host vehicle)とも言及される。図示されるように、車両1には、移動体位置検出装置100に加えて、方位センサー10と、距離センサー12と、受信装置16と、表示装置14と、外部記憶装置20などが搭載されている。
A. First embodiment:
A-1. Apparatus configuration of the first embodiment:
FIG. 1 shows a rough configuration of a vehicle 1 on which the moving body position detection device 100 according to the first embodiment is mounted. The vehicle 1 is also referred to as a host vehicle. As shown in the drawing, in addition to the moving body position detecting device 100, the vehicle 1 is equipped with an orientation sensor 10, a distance sensor 12, a receiving device 16, a display device 14, an external storage device 20, and the like. Yes.
 方位センサー10は、車両1の進行方向を検出するために用いられるセンサーであり、地磁気センサーやジャイロセンサーなどを用いることができる。距離センサー12は、車両1の移動距離を検出するために用いられるセンサーである。本実施例では、タイヤの回転に伴って一定数のパルスを発生させる車速センサーを距離センサー12として使用する。受信装置16は、複数の測位衛星50からの測位信号を受信することによって車両1の現在位置を測位することができる。尚、測位衛星50としては、GPS衛星などをGNSS衛星が知られている。また、測位信号に基づいて測位する車両1の現在位置としては、いわゆる緯度および経度の情報を取得することができるが、これに加えて、高度(高さ位置)の情報も取得することができる。尚、情報は、不可算名詞のみならず、可算名詞としても使用される。複数の情報は、複数の情報項目と同等である。 The azimuth sensor 10 is a sensor used for detecting the traveling direction of the vehicle 1, and a geomagnetic sensor, a gyro sensor, or the like can be used. The distance sensor 12 is a sensor used for detecting the moving distance of the vehicle 1. In this embodiment, a vehicle speed sensor that generates a certain number of pulses as the tire rotates is used as the distance sensor 12. The receiving device 16 can determine the current position of the vehicle 1 by receiving positioning signals from a plurality of positioning satellites 50. As the positioning satellite 50, a GNSS satellite such as a GPS satellite is known. Further, as the current position of the vehicle 1 to be measured based on the positioning signal, so-called latitude and longitude information can be acquired. In addition, altitude (height position) information can also be acquired. . Information is used not only as countable nouns but also as countable nouns. The plurality of information is equivalent to the plurality of information items.
 表示装置14は、車両1の現在位置を表示するために用いられ、液晶表示装置などの種々の表示装置を用いることができる。外部記憶装置20には、道路形状を含んだ地図情報が記憶されている。いわゆるナビゲーション装置には道路形状を含んだ地図情報が記憶されているので、ナビゲーション装置を外部記憶装置20として流用することもできる。尚、本実施例の車両1は、「移動体」に対応する。 The display device 14 is used to display the current position of the vehicle 1, and various display devices such as a liquid crystal display device can be used. The external storage device 20 stores map information including road shapes. Since the map information including the road shape is stored in the so-called navigation device, the navigation device can be used as the external storage device 20. In addition, the vehicle 1 of a present Example respond | corresponds to a "mobile body."
 図2には、第1実施例の移動体位置検出装置100の内部構成が示されている。図示されるように第1実施例の移動体位置検出装置100は、進行方向検出部101と、移動距離検出部102と、センサー特性補正部103と、測位結果取得部104と、現在位置検出部105と、移動軌跡生成部106と、修正現在位置取得部107と、道路形状読出部108と、信頼度付与部109とを備えている。 尚、これらの「部」は、移動体位置検出装置100が車両1の現在位置を検出するために備える機能に着目して、移動体位置検出装置100の内部を便宜的に分類した抽象的な概念である。従って、移動体位置検出装置100がこれらの「部」に物理的に区分されることを表すものではない。これらの「部」は、CPUで実行されるコンピュータープログラムとして実現することもできるし、LSIやメモリーを含む電子回路として実現することもできるし、更にはこれらを組合せることによって実現することもできる。また、例えば、検出部は、検出モジュール、検出デバイス、あるいは、検出機(ディテクター)とも言及することができる。 FIG. 2 shows an internal configuration of the moving body position detection apparatus 100 according to the first embodiment. As shown in the figure, the moving body position detection apparatus 100 of the first embodiment includes a traveling direction detection unit 101, a movement distance detection unit 102, a sensor characteristic correction unit 103, a positioning result acquisition unit 104, and a current position detection unit. 105, a movement locus generation unit 106, a corrected current position acquisition unit 107, a road shape reading unit 108, and a reliability providing unit 109. Note that these “parts” are abstractly classified for convenience in the interior of the mobile body position detection device 100, focusing on the functions provided for the mobile body position detection device 100 to detect the current position of the vehicle 1. It is a concept. Therefore, it does not represent that the moving body position detection apparatus 100 is physically divided into these “parts”. These “units” can be realized as a computer program executed by the CPU, can be realized as an electronic circuit including an LSI or a memory, or can be realized by combining them. . For example, the detection unit can also be referred to as a detection module, a detection device, or a detector (detector).
 進行方向検出部101は、方位センサー10からの出力を受け取って車両1の進行方向を検出する。方位センサー10が、地磁気センサーのように方位そのものを出力するタイプのセンサーである場合には、方位センサー10の出力を用いて車両1の方位を検出する。これに対して、ジャイロセンサーのように方位の変化を出力するタイプのセンサーである場合は、初期方位からの方位変化を累積することによって車両1の方位を検出する。ここで、初期方位は、移動体位置検出装置100の電源を切断時に車両1の方位を記憶しておき、その方位を読み出して使用することができる。あるいは、測位衛星50からの測位信号を用いた測位結果から車両1の進行方向を検出して、初期方位として使用することもできる。 The traveling direction detection unit 101 receives the output from the direction sensor 10 and detects the traveling direction of the vehicle 1. When the direction sensor 10 is a type of sensor that outputs the direction itself like a geomagnetic sensor, the direction of the vehicle 1 is detected using the output of the direction sensor 10. On the other hand, in the case of a sensor that outputs a change in direction such as a gyro sensor, the direction of the vehicle 1 is detected by accumulating the direction change from the initial direction. Here, as the initial azimuth, the azimuth of the vehicle 1 can be stored when the power of the moving body position detecting apparatus 100 is turned off, and the azimuth can be read and used. Alternatively, the traveling direction of the vehicle 1 can be detected from the positioning result using the positioning signal from the positioning satellite 50 and used as the initial direction.
 移動距離検出部102は、距離センサー12からの出力を受け取って車両1の移動距離を検出する。車両1の進行方向は進行方向検出部101によって検出されているから、移動距離が分かれば、車両1がどちらの方向にどれだけ移動したかが分かる。また、車両1の進行方向は刻々と変化していくが、短い時間であれば進行方向は一定とみなすことができる。そこで、現在位置検出部105は、所定の短い時間間隔で車両1の進行方向と移動距離とを取得して、それらを累積することによって車両1の現在位置を検出する。尚、現在位置検出部105が検出する現在位置は、いわゆる緯度および経度の情報とすることができるが、これらに加えて、高度(高さ位置)や、車両1の進行方向を示す方位(現在方位)を含む情報とすることもできる。 The moving distance detection unit 102 receives the output from the distance sensor 12 and detects the moving distance of the vehicle 1. Since the traveling direction of the vehicle 1 is detected by the traveling direction detection unit 101, if the moving distance is known, it can be determined how much the vehicle 1 has moved in which direction. Further, the traveling direction of the vehicle 1 changes every moment, but the traveling direction can be regarded as constant for a short time. Therefore, the current position detection unit 105 detects the current position of the vehicle 1 by acquiring the traveling direction and the moving distance of the vehicle 1 at predetermined short time intervals and accumulating them. Note that the current position detected by the current position detection unit 105 can be so-called latitude and longitude information, but in addition to these, the altitude (height position) and the direction indicating the traveling direction of the vehicle 1 (current (Direction) can also be used as information.
 測位結果取得部104は、受信装置16から測位結果を取得する。前述したように本実施例では、受信装置16が複数の測位衛星50からの測位信号を受信することによって、車両1の現在位置を測位している。そこで、測位結果取得部104は、受信装置16から測位結果を取得する。もちろん、これに限らず、受信装置16が測位信号を測位結果取得部104に出力して、その測位信号に基づいて測位結果取得部104が測位結果を取得しても構わない。 The positioning result acquisition unit 104 acquires a positioning result from the receiving device 16. As described above, in the present embodiment, the receiving device 16 receives the positioning signals from the plurality of positioning satellites 50 to determine the current position of the vehicle 1. Therefore, the positioning result acquisition unit 104 acquires the positioning result from the receiving device 16. Of course, not limited to this, the receiving device 16 may output a positioning signal to the positioning result acquisition unit 104, and the positioning result acquisition unit 104 may acquire the positioning result based on the positioning signal.
 センサー特性補正部103は、測位結果取得部104によって得られた車両1の測位結果と、現在位置検出部105によって得られた車両1の現在位置とに基づいて、方位センサー10および距離センサー12のセンサー特性を補正する。 これは次のような処理である。先ず、方位センサー10および距離センサー12の出力には誤差が含まれている。従って、現在位置検出部105によって得られる車両1の現在位置には、これらの誤差が蓄積される。たとえば、距離センサー12の出力が少しだけ小さく出るとすると、たとえその誤差が小さな値であっても、長い距離では大きな誤差となって現れる。 方位センサー10の出力についても全く同様なことが当て嵌まる。すなわち、方位センサー10の出力に誤差が含まれていると、現在位置検出部105によって得られる車両1の現在位置には、これらの誤差が蓄積される。また、車両1の現在位置として、車両1の進行方向を示す方位を検出している場合には、検出された方位にも大きな誤差が現れることがある。 Based on the positioning result of the vehicle 1 obtained by the positioning result acquisition unit 104 and the current position of the vehicle 1 obtained by the current position detection unit 105, the sensor characteristic correction unit 103 Correct the sensor characteristics. This is the following process. First, errors are included in the outputs of the azimuth sensor 10 and the distance sensor 12. Therefore, these errors are accumulated in the current position of the vehicle 1 obtained by the current position detection unit 105. For example, if the output of the distance sensor 12 is slightly smaller, even if the error is a small value, it appears as a large error at a long distance. The same applies to the output of the direction sensor 10. That is, if errors are included in the output of the direction sensor 10, these errors are accumulated in the current position of the vehicle 1 obtained by the current position detection unit 105. In addition, when an azimuth indicating the traveling direction of the vehicle 1 is detected as the current position of the vehicle 1, a large error may appear in the detected azimuth.
 そこで、センサー特性補正部103は、方位センサー10および距離センサー12の出力を累積して得られた車両1の現在位置(現在位置検出部105の出力)と、測位信号から得られた車両1の測位結果(測位結果取得部104の出力)とを比較する。尚、ここで比較する車両1の現在位置および測位結果は、経度や緯度の情報とすることができるが、これらに加えて、高度(高さ位置)の情報や、車両1の進行方向を表す方位(現在方位)の情報を含めた情報とすることができる。そして、それらが大きく異なっている場合には、方位センサー10および距離センサー12のセンサー特性を少しずつ補正する。尚、センサー特性は少しずつ補正されるので、補正したからといって、センサー出力を累積して求めた車両1の現在位置と、測位結果との差が直ぐに解消されるわけではない。これは、測位信号から得られる測位結果にも誤差が含まれているので、この誤差の影響でセンサー特性を誤って補正することを回避するためである。 Therefore, the sensor characteristic correcting unit 103 accumulates the outputs of the direction sensor 10 and the distance sensor 12, and the vehicle 1 obtained from the current position of the vehicle 1 (output of the current position detecting unit 105) obtained from the positioning signal. The positioning result (output of the positioning result acquisition unit 104) is compared. The current position and positioning result of the vehicle 1 to be compared here can be information on longitude and latitude, but in addition to these, information on altitude (height position) and the traveling direction of the vehicle 1 are represented. It can be information including information on the direction (current direction). If they are greatly different, the sensor characteristics of the direction sensor 10 and the distance sensor 12 are corrected little by little. Since the sensor characteristics are corrected little by little, the correction does not immediately eliminate the difference between the current position of the vehicle 1 obtained by accumulating the sensor output and the positioning result. This is because an error is included in the positioning result obtained from the positioning signal, so that erroneous correction of the sensor characteristics due to the influence of the error is avoided.
 移動軌跡生成部106は、現在位置検出部105で得られた現在位置を蓄積することによって車両1の移動軌跡を生成して、一定距離分あるいは一定時間分の移動軌跡を記憶する。尚、現在位置検出部105で得られた現在位置に高度の情報が含まれている場合には、三次元的な移動軌跡が記憶されることになる。 道路形状読出部108は、外部記憶装置20に記憶されている地図情報の中から道路形状(および道路の位置)を読み出して、修正現在位置取得部107に出力する。 The movement trajectory generation unit 106 generates a movement trajectory of the vehicle 1 by accumulating the current position obtained by the current position detection unit 105, and stores the movement trajectory for a certain distance or a certain time. If the current position obtained by the current position detection unit 105 includes altitude information, a three-dimensional movement trajectory is stored. The road shape reading unit 108 reads the road shape (and the position of the road) from the map information stored in the external storage device 20 and outputs it to the corrected current position acquisition unit 107.
 修正現在位置取得部107は、移動軌跡生成部106で生成した車両1の移動軌跡と、修正現在位置取得部107から得られた道路形状とを照合して、いわゆるマップマッチングを行うことにより、道路形状を考慮して修正した車両1の現在位置(修正現在位置)を取得する。 ここで、センサー特性を修正して得られた車両1の現在位置を、更に道路形状を考慮して修正するのは、次のような理由による。先ず、センサー特性は測位結果に基づいて補正するが、この測位結果にも誤差が含まれている。従って、測位結果に基づいてセンサー特性を補正したとしても、現在位置検出部105で得られる現在位置には、ある程度の誤差が残ってしまう。そこで、道路形状を考慮して修正することによって、車両1の現在位置の誤差を更に小さくしている。 The corrected current position acquisition unit 107 collates the movement locus of the vehicle 1 generated by the movement locus generation unit 106 with the road shape obtained from the correction current position acquisition unit 107, and performs so-called map matching, thereby The current position (corrected current position) of the vehicle 1 corrected in consideration of the shape is acquired. Here, the reason why the current position of the vehicle 1 obtained by correcting the sensor characteristics is further corrected in consideration of the road shape is as follows. First, the sensor characteristics are corrected based on the positioning result, but this positioning result also includes an error. Therefore, even if the sensor characteristics are corrected based on the positioning result, a certain amount of error remains in the current position obtained by the current position detection unit 105. Therefore, the error of the current position of the vehicle 1 is further reduced by correcting the road shape in consideration.
 もっとも、道路形状を考慮して現在位置を修正する際に、誤って修正してしまう可能性もある。そこで、信頼度付与部109は、修正現在位置取得部107から修正現在位置を取得し、更に現在位置検出部105からは修正前の現在位置を取得して、両者を比較する。そして、その結果に基づいて、修正現在位置に信頼度の情報を付与した後、信頼度が付与された修正現在位置を表示装置14に出力する。もちろん、修正現在位置を出力する対象は表示装置14に限られるものではなく、車両1に搭載された図示しない制御装置に出力しても良い。 However, when the current position is corrected in consideration of the road shape, there is a possibility that it will be corrected by mistake. Therefore, the reliability assigning unit 109 acquires the correction current position from the correction current position acquisition unit 107, further acquires the current position before correction from the current position detection unit 105, and compares the two. And based on the result, after giving the reliability information to the correction current position, the correction current position to which the reliability is given is output to the display device 14. Of course, the target for outputting the corrected current position is not limited to the display device 14 and may be output to a control device (not shown) mounted on the vehicle 1.
 こうすれば、表示装置14に車両1の現在位置として表示された修正現在位置を信じて良いのか、あるいは参考程度に止めておくべきなのかを判断することができる。あるいは、修正現在位置に基づいて、車両1の制御を行って良いか否かを判断することもできる。すなわち、車両1の現在位置として得られた修正現在位置を信じて良い場合には、その修正現在位置に基づいて、例えばカーブへの進入に先立って自動的に減速したり、カーブを抜けた後に自動的に加速したりする制御を行うことができる。逆に、修正現在位置を参考程度に止めておくべきである場合には、カーブへの進入に先立って自動的に減速したり、カーブを抜けた後に自動的に加速したりする制御は行わないようにすることができる。以下では、上述した第1実施例の移動体位置検出装置100が現在位置を検出する処理について詳細に説明する。 In this way, it can be determined whether the corrected current position displayed on the display device 14 as the current position of the vehicle 1 can be believed or should be kept to a reference level. Alternatively, it can be determined whether or not the vehicle 1 can be controlled based on the corrected current position. That is, when it is acceptable to believe the corrected current position obtained as the current position of the vehicle 1, based on the corrected current position, for example, after decelerating automatically before entering the curve, or after exiting the curve Control that automatically accelerates can be performed. On the other hand, if the current correction position should be kept at a reference level, control that automatically decelerates before entering the curve or automatically accelerates after exiting the curve is not performed. Can be. Below, the process which the mobile body position detection apparatus 100 of 1st Example mentioned above detects a present position is demonstrated in detail.
 A-2.第1実施例の現在位置検出処理:
 図3および図4には、第1実施例の移動体位置検出装置100が実行する現在位置検出処理のフローチャートが示されている。
A-2. Current position detection processing of the first embodiment:
FIGS. 3 and 4 show a flowchart of the current position detection process executed by the mobile object position detection apparatus 100 according to the first embodiment.
 記載されるフローチャートは、複数のセクション(あるいはステップと言及される)を含み、各セクションは、たとえば、S100と表現される。さらに、各セクションは、複数のサブセクションに分割されることができる、一方、複数のセクションが合わさって一つのセクションにすることも可能である。各セクションは、デバイス、モジュール、あるいは、固有名として、例えば、検出セクションは、検出デバイス、検出モジュール、検出機(ディテクター)として、言及されることができる。また、セクションは、(i)ハードウエアユニット(例えば、コンピュータ)と組み合わさったソフトウエアのセクションのみならず、(ii)ハードウエア(例えば、集積回路、配線論理回路)のセクションとして、関連する装置の機能を含みあるいは含まずに実現できる。さらに、ハードウエアのセクションは、マイクロコンピュータの内部に含まれることもできる。 The described flowchart includes a plurality of sections (or referred to as steps), and each section is expressed as S100, for example. Further, each section can be divided into a plurality of subsections, while a plurality of sections can be combined into one section. Each section can be referred to as a device, a module, or a unique name, for example, a detection section can be referred to as a detection device, a detection module, or a detector. In addition, the section includes (i) not only a section of software combined with a hardware unit (eg, a computer) but also (ii) a section of hardware (eg, an integrated circuit, a wiring logic circuit) and related devices. It can be realized with or without the function. Furthermore, the hardware section can be included inside the microcomputer.
 図示されるように、第1実施例の現在位置検出処理では、先ず始めに、車両1の初期位置および初期方向を取得する(S100)。本実施例では、車両1の運転を終了する際に、車両1の現在位置と車両1の向き(方位)とを、図示しないメモリーに記憶しておき、運転を開始する際には、記憶しておいた現在位置および向きを読み出して、それぞれ初期位置および初期方向とする。 尚、これに限らず、複数地点での測位結果に基づいて、車両1の初期位置および初期方向を検出するようにしても良い。すなわち、車両1を走行させることによって複数地点での測位を行い、複数地点での測位結果に基づいて車両1の現在位置および進行方向を求めて、それぞれ初期位置および初期方向としてもよい。 また、車両1の現在位置としては、高度(高さ位置)の情報も含めることができる。この場合は、車両1の運転を終了する際に、車両1が存在する高度を含めた現在位置と、車両1の向き(方位)とを記憶しておく。そして、運転を開始する際には、高度を含む現在位置と向きとを読み出して、それぞれ初期位置および初期方向とすればよい。 As shown in the drawing, in the current position detection process of the first embodiment, first, the initial position and initial direction of the vehicle 1 are acquired (S100). In this embodiment, when the operation of the vehicle 1 is finished, the current position of the vehicle 1 and the direction (azimuth) of the vehicle 1 are stored in a memory (not shown) and stored when the operation is started. The current position and orientation are read out and set as the initial position and initial direction, respectively. Note that the present invention is not limited to this, and the initial position and the initial direction of the vehicle 1 may be detected based on positioning results at a plurality of points. That is, it is possible to perform positioning at a plurality of points by running the vehicle 1, obtain the current position and traveling direction of the vehicle 1 based on the positioning results at the plurality of points, and set the initial position and the initial direction, respectively. Also, the current position of the vehicle 1 can include altitude (height position) information. In this case, when the driving of the vehicle 1 is finished, the current position including the altitude at which the vehicle 1 exists and the direction (azimuth) of the vehicle 1 are stored. And when driving | running | working, what is necessary is just to read the present position and direction containing an altitude, and to make it an initial position and an initial direction, respectively.
 続いて、方位センサー10の出力に基づいて車両1の進行方向を取得し、距離センサー12の出力に基づいて車両1の移動距離を取得する(S101)。そして、取得した進行方向に向かって、取得した距離だけ移動したものとして、車両1の現在位置を更新する(S102)。更に、それまでに得られた車両1の現在位置と、新たに得られた現在位置とを結ぶことによって、車両1の移動軌跡を生成する(S103)。 Subsequently, the traveling direction of the vehicle 1 is acquired based on the output of the direction sensor 10, and the moving distance of the vehicle 1 is acquired based on the output of the distance sensor 12 (S101). Then, the current position of the vehicle 1 is updated assuming that the vehicle has moved by the acquired distance in the acquired traveling direction (S102). Furthermore, the movement locus of the vehicle 1 is generated by connecting the current position of the vehicle 1 obtained so far and the newly obtained current position (S103).
 図5には、このようにして車両1の現在位置を更新して移動軌跡を生成する様子が示されている。図5の(a)中に示した矢印は、所定の短時間の間での車両1の進行方向および移動距離を表している。車両1の現在位置は矢印ひとつ分ずつ更新されていく。そして、こうして更新される現在位置を繋ぐことによって、図5の(b)に実線で示した移動軌跡を得ることができる。 尚、こうして得られた移動軌跡は、一定距離(例えば5km)あるいは一定時間(例えば10分)程度あれば十分であり、それ以前の軌跡は破棄しても構わない。また、図5の(a)中に示した星印や、破線で表示した円形や、黒塗りの矢印の意味するところについては後述する。 FIG. 5 shows how the movement position is generated by updating the current position of the vehicle 1 in this way. The arrows shown in FIG. 5A represent the traveling direction and the moving distance of the vehicle 1 within a predetermined short time. The current position of the vehicle 1 is updated one arrow at a time. And the movement locus shown by the solid line in FIG. 5B can be obtained by connecting the current positions updated in this way. It should be noted that the movement trajectory obtained in this way is sufficient if it is a fixed distance (for example, 5 km) or a fixed time (for example, 10 minutes), and the previous trajectory may be discarded. Further, the meanings of the star shown in FIG. 5A, the circle indicated by the broken line, and the black arrow will be described later.
 その後、測位信号に基づく車両1の測位結果が得られたか否かを判断する(S104)。図2を用いて前述したように、本実施例では受信装置16が測位を行っており、S103では、受信装置16で測位結果が得られたか否かを判断する。 その結果、測位結果が得られている場合は(S104:YES)、受信装置16から測位結果を取得する(S105)。そして、取得した測位結果と、S102で得られた車両1の現在位置とを比較することによって、方位センサー10あるいは距離センサー12のセンサー特性の補正が必要か否かを判断する(S106)。この判断について、図5の(a)を参照して説明する。 Thereafter, it is determined whether or not the positioning result of the vehicle 1 based on the positioning signal is obtained (S104). As described above with reference to FIG. 2, in the present embodiment, the receiving device 16 performs positioning, and in S103, it is determined whether or not a positioning result has been obtained by the receiving device 16. As a result, when the positioning result is obtained (S104: YES), the positioning result is acquired from the receiving device 16 (S105). Then, by comparing the obtained positioning result with the current position of the vehicle 1 obtained in S102, it is determined whether or not the sensor characteristics of the direction sensor 10 or the distance sensor 12 need to be corrected (S106). This determination will be described with reference to FIG.
 前述したように車両1の現在位置は、図5の(a)中に示した矢印ひとつ分ずつ、更新されていく。また、測位信号による測位結果も、一般的には一定の時間毎に得られることが通常である。図5の(a)中では、測位信号によって得られた測位結果を星印で表している。また、それぞれの測位結果には、測位結果が得られた順番に従って、g1、g2、g3、g4、g5、g6、g7、g8、g9と符番されている。 これらの測位結果に対しては、その測位結果が得られた時点での車両1の現在位置を考えることができる。例えば、測位結果g1が得られる直前には、図5の(a)の黒塗りの矢印a1で示すように現在位置が更新されていたとすると、測位結果g1に対応する車両1の現在位置は、黒塗りの矢印a1の先端が示す位置となる。測位結果g2についても同様に、測位結果g2に対応する車両1の現在位置は、黒塗りの矢印a2の先端が示す位置となる。以下の測位結果g3~g9についても同様である。 As described above, the current position of the vehicle 1 is updated for each arrow shown in FIG. In general, positioning results based on positioning signals are generally obtained at regular intervals. In (a) of FIG. 5, the positioning result obtained by the positioning signal is represented by an asterisk. Also, each positioning result is numbered as g1, g2, g3, g4, g5, g6, g7, g8, g9 according to the order in which the positioning results are obtained. For these positioning results, the current position of the vehicle 1 when the positioning results are obtained can be considered. For example, immediately before the positioning result g1 is obtained, if the current position is updated as indicated by the black arrow a1 in FIG. 5A, the current position of the vehicle 1 corresponding to the positioning result g1 is This is the position indicated by the tip of the black arrow a1. Similarly, for the positioning result g2, the current position of the vehicle 1 corresponding to the positioning result g2 is the position indicated by the tip of the black arrow a2. The same applies to the following positioning results g3 to g9.
 尚、測位信号による測位結果が得られたタイミングは、車両1の現在位置が更新されていく中間のタイミングとなることや、車両1の現在位置が更新される直前となることも起こり得る。このような場合は、測位結果が得られた前後のタイミングでの車両1の現在位置に基づいて、測位結果が得られたタイミングでの車両1の現在位置を推定するようにしても良い。 あるいは、次のようにしても良い。先ず、測位結果が得られたタイミングと、その直前および直後で車両1の現在位置が更新されたタイミングとの時間差を算出する。そして、時間差が閾値時間よりも小さくなる現在位置が存在する場合には、その現在位置を、測位結果が得られたタイミングでの車両1の現在位置として採用する。これに対して、時間差が閾値時間よりも小さくなる現在位置が存在しない場合には、直前および直後で車両1の現在位置から、測位結果が得られたタイミングでの車両1の現在位置を推定しても良い。 Note that the timing at which the positioning result based on the positioning signal is obtained may be an intermediate timing at which the current position of the vehicle 1 is updated, or may be immediately before the current position of the vehicle 1 is updated. In such a case, the current position of the vehicle 1 at the timing when the positioning result is obtained may be estimated based on the current position of the vehicle 1 at the timing before and after the positioning result is obtained. Alternatively, it may be as follows. First, the time difference between the timing at which the positioning result is obtained and the timing at which the current position of the vehicle 1 is updated immediately before and immediately after that is calculated. If there is a current position where the time difference is smaller than the threshold time, the current position is adopted as the current position of the vehicle 1 at the timing when the positioning result is obtained. On the other hand, when there is no current position where the time difference is smaller than the threshold time, the current position of the vehicle 1 at the timing when the positioning result is obtained is estimated from the current position of the vehicle 1 immediately before and immediately after. May be.
 図示されるように、図5の(a)中に星印で示した何れの測位結果g1~g9についても、黒塗りの矢印a1~a9の先端に示した車両1の現在位置とは一致しない。 しかし、測位信号にも誤差が含まれているので、測位結果にも何某かの誤差が含まれている。測位結果の誤差の大きさは、測位に用いる測位信号の種類や、測位に用いることができた測位信号の数によって予測することができる。そして、車両1の現在位置と測位結果とが一致していなくても、予測された誤差(以下、「予測誤差」と称する)の範囲内であれば、車両1の現在位置がずれているということはできない。換言すれば、車両1の現在位置(あるいは現在方位)が、測位結果を中心とする予測誤差の範囲内にあれば、車両1の現在位置と測位結果とが一致していなくても、大きな問題が生じる虞は少ないと考えられる。 As shown in the figure, any of the positioning results g1 to g9 indicated by stars in FIG. 5A does not match the current position of the vehicle 1 indicated at the tip of the black arrows a1 to a9. . However, since the positioning signal includes an error, the positioning result also includes some error. The magnitude of the positioning result error can be predicted based on the type of positioning signal used for positioning and the number of positioning signals that can be used for positioning. Even if the current position of the vehicle 1 does not match the positioning result, the current position of the vehicle 1 is deviated if it is within the range of a predicted error (hereinafter referred to as “prediction error”). It is not possible. In other words, if the current position (or current azimuth) of the vehicle 1 is within the range of the prediction error centered on the positioning result, even if the current position of the vehicle 1 and the positioning result do not coincide with each other, it is a big problem. It is considered that there is little risk of occurrence of
 図5の(a)では、測位結果を中心とする予測誤差の範囲を、破線の円形で表している。図示は省略するが、車両1の進行方向を示す現在方位についても、同様な予測誤差の範囲を考えることができる。図5の(a)に示した例では、黒塗りの矢印a1~a9の何れについても、矢印の先端に示した車両1の現在位置は、破線で示した予測誤差の範囲内にあるので、概ね正しく現在位置が検出されていると考えられる。従って、方位センサー10や距離センサー12のセンサー特性を補正しても大きな改善は期待することができず、無理に補正する必要は無いと判断できる。 これに対して、車両1の現在位置が、測位結果を中心とする予測誤差の範囲外にある場合には、車両1の現在位置が正しい位置からずれていると考えられるので、方位センサー10や距離センサー12のセンサー特性を補正する必要があると判断できる。 In FIG. 5A, the range of the prediction error centered on the positioning result is represented by a broken-line circle. Although illustration is omitted, a similar prediction error range can be considered for the current direction indicating the traveling direction of the vehicle 1. In the example shown in FIG. 5A, the current position of the vehicle 1 indicated at the tip of each of the black arrows a1 to a9 is within the prediction error range indicated by the broken line. It is considered that the current position is detected almost correctly. Therefore, even if the sensor characteristics of the azimuth sensor 10 and the distance sensor 12 are corrected, no significant improvement can be expected, and it can be determined that correction is not necessary. On the other hand, when the current position of the vehicle 1 is outside the range of the prediction error centered on the positioning result, it is considered that the current position of the vehicle 1 is deviated from the correct position. It can be determined that the sensor characteristics of the distance sensor 12 need to be corrected.
 図3に示した現在位置検出処理のS106では、以上のようにして、センサー特性の要否を判断する。すなわち、S102で得られた現在位置が、S105で取得した測位結果を中心とする予測誤差の範囲内か否かを判断する。その結果、S102で得られた現在位置が予測誤差の範囲内に無かった場合には、センサー特性の補正が必要と判断し(S106:YES)、逆に、予測誤差の範囲内に存在していた場合には、センサー特性の補正は不要と判断する(S106:NO)。 尚、以上の説明では、個々の測位結果に含まれる誤差が予測誤差であるものとして説明した。しかし、複数回の測位結果を平均するなどすれば、予測誤差の大きさを、個々の測位結果に含まれる誤差よりも小さくすることもできる。従って、このように複数回の測位結果を用いて求めた予測誤差の範囲内に、S102で取得した現在位置が存在するか否かを判断することによって、センサー特性の補正の要否を判断しても良い。 In S106 of the current position detection process shown in FIG. 3, whether or not the sensor characteristic is necessary is determined as described above. That is, it is determined whether or not the current position obtained in S102 is within a prediction error range centered on the positioning result obtained in S105. As a result, when the current position obtained in S102 is not within the range of the prediction error, it is determined that the sensor characteristic needs to be corrected (S106: YES), and conversely, it exists within the range of the prediction error. If it is detected, it is determined that correction of the sensor characteristics is unnecessary (S106: NO). In the above description, the error included in each positioning result is assumed to be a prediction error. However, if the positioning results of a plurality of times are averaged, the magnitude of the prediction error can be made smaller than the error included in each positioning result. Accordingly, whether or not the sensor characteristic needs to be corrected is determined by determining whether or not the current position acquired in S102 exists within the range of the prediction error obtained using the multiple positioning results in this way. May be.
 そして、センサー特性の補正を要すると判断した場合は(S106:YES)、S102で得られた現在位置が、S105で取得した測位結果に近付く方向に、所定量ずつセンサー特性を補正する(S107)。 尚、S107でセンサー特性を補正する際には、単にセンサー特性を補正するだけでなく、S102で得られた現在位置についても、S105で取得した測位結果に近付くように所定量ずつ補正してもよい。 If it is determined that the sensor characteristic needs to be corrected (S106: YES), the sensor characteristic is corrected by a predetermined amount in the direction in which the current position obtained in S102 approaches the positioning result acquired in S105 (S107). . When correcting the sensor characteristics in S107, not only the sensor characteristics are corrected but also the current position obtained in S102 may be corrected by a predetermined amount so as to approach the positioning result obtained in S105. Good.
 これに対して、センサー特性の補正を要しないと判断した場合は(S106:NO)、センサー特性の補正は行わない。 また、S104で測位結果が得られていないと判断した場合は(S104:NO)、測位結果を取得して、センサー特性を補正するまでの上述した一連の処理(S105~S107)は省略する。 On the other hand, if it is determined that sensor characteristic correction is not required (S106: NO), sensor characteristic correction is not performed. If it is determined that the positioning result is not obtained in S104 (S104: NO), the above-described series of processing (S105 to S107) from obtaining the positioning result to correcting the sensor characteristics is omitted.
 続いて、外部記憶装置20に記憶されている地図情報の中から、車両1の現在位置を含んだ所定範囲内の道路形状を読み出す(S108)。そして、S103で生成した車両1の移動軌跡と、読み出した道路形状とを照合させて、車両1の現在位置をより正しいと考えられる現在位置に修正するマップマッチングを行うことにより、修正した現在位置(以下、「修正現在位置」と称する)を生成する(S109)。 Subsequently, a road shape within a predetermined range including the current position of the vehicle 1 is read out from the map information stored in the external storage device 20 (S108). Then, the current position of the vehicle 1 corrected by matching the movement trajectory of the vehicle 1 generated in S103 with the read road shape and correcting the current position of the vehicle 1 to the current position considered to be more correct is performed. (Hereinafter referred to as “correction current position”) is generated (S109).
 図6には、マップマッチングの概要が示されている。例えば、地図情報から読み出した道路形状の中に、図6の(a)に例示するような特徴的な道路形状が存在していたとする。この道路形状は、図5の(b)に例示した車両1の移動軌跡と全体的な形状がよく似ている。更に、図6の(b)に示したように、道路形状に移動軌跡を重ねてみると、道路からはみ出すことなく移動軌跡を重ねることができる。このような場合には、車両1は、図6の(b)に示す交差点Pを右折して距離Lcの処に存在するといったように、高い精度で車両1の現在位置を決定することができる。 Fig. 6 shows an overview of map matching. For example, it is assumed that a characteristic road shape as illustrated in FIG. 6A exists in the road shape read from the map information. This road shape is very similar in overall shape to the movement trajectory of the vehicle 1 illustrated in FIG. Furthermore, as shown in FIG. 6B, when the movement locus is overlapped on the road shape, the movement locus can be overlapped without protruding from the road. In such a case, the vehicle 1 can determine the current position of the vehicle 1 with high accuracy such that the vehicle 1 turns right at the intersection P shown in FIG. 6B and exists at a distance Lc. .
 もっとも、車両1は道路の中心を走行するわけではない。また、交差点やカーブでの走行の仕方は運転者によって異なることが考えられる。更に、道路上での障害物や他の車両などを避けるために、車両1が道路の路肩部分を走行する場合もある。このような場合には、車両1の移動軌跡を道路形状に当て嵌める際に、少しずれた位置あるいは角度で当て嵌めてしまうことが考えられる。そして、このようなずれが生じると、その後の車両1の移動軌跡に矛盾が生じる可能性がある。例えば、図6の(b)に示した例では、図上で左端にある最初の交差点で、車両1が道路の内側に大きく偏った位置を通過している。このため、車両1の移動軌跡を道路形状に当て嵌める際に、移動軌跡を図面上で少し右側にずらして当て嵌めてしまい、その結果、交差点Pで右折した際に、車両1が道路からはみ出している。そこで、このような場合にマップマッチングでは、図6の(c)に示したように、車両1の位置を道路に引き込むように補正する。 図3に示した現在位置検出処理のS109では、S102で得られた車両1の現在位置に対して以上のようなマップマッチングを行うことにより、現在位置を修正した修正現在位置を生成する。 However, the vehicle 1 does not run on the center of the road. In addition, it is conceivable that the way of traveling at intersections and curves varies depending on the driver. Furthermore, in order to avoid obstacles or other vehicles on the road, the vehicle 1 may travel on the shoulder portion of the road. In such a case, when the movement locus of the vehicle 1 is applied to the road shape, it may be applied at a slightly shifted position or angle. And when such a shift | offset | difference arises, inconsistency may arise in the movement locus | trajectory of the vehicle 1 after that. For example, in the example shown in FIG. 6B, the vehicle 1 passes through a position greatly deviated toward the inside of the road at the first intersection at the left end in the figure. For this reason, when the movement trajectory of the vehicle 1 is applied to the road shape, the movement trajectory is slightly shifted to the right side in the drawing, and as a result, when the vehicle 1 turns right at the intersection P, the vehicle 1 protrudes from the road. ing. Therefore, in such a case, map matching corrects the position of the vehicle 1 so as to be pulled into the road, as shown in FIG. In S109 of the current position detection process shown in FIG. 3, a corrected current position in which the current position is corrected is generated by performing map matching as described above on the current position of the vehicle 1 obtained in S102.
 続いて、方位センサー10や距離センサー12の出力が正常な範囲内にあるか否かを判断する(図4のS110)。例えば、センサー自体が破損したり、センサーからの配線が断線したりするなどの問題が生じると、センサーからの出力が正常な範囲から逸脱した出力となるので、このような問題が生じていないか否かを判断するのである。 その結果、センサー出力が正常範囲内に無いと判断した場合は(S110:NO)、方位センサー10や距離センサー12で何らかの問題が発生しており、それらセンサーの出力に基づいて得られた修正現在位置は信用できないと考えられる。そこで、この場合(S110:NO)は、その時点で得られている測位結果で修正現在位置を置き換えた後(S111)、修正現在位置に付与する信頼度を「低」に設定する(S115)。 Subsequently, it is determined whether or not the outputs of the direction sensor 10 and the distance sensor 12 are within a normal range (S110 in FIG. 4). For example, if a problem such as the sensor itself is damaged or the wiring from the sensor is disconnected, the output from the sensor deviates from the normal range. It is determined whether or not. As a result, if it is determined that the sensor output is not within the normal range (S110: NO), some problem has occurred in the direction sensor 10 or the distance sensor 12, and the corrected current obtained based on the output of those sensors. The position is considered unreliable. Therefore, in this case (S110: NO), after the corrected current position is replaced with the positioning result obtained at that time (S111), the reliability to be given to the corrected current position is set to “low” (S115). .
 これに対して、センサー出力が正常範囲内にあると判断した場合は(S110:YES)、マップマッチングによって得られた修正現在位置が、S102で得られた車両1の現在位置を中心とする予測誤差の範囲内か否かを判断する(S112)。前述したように予測誤差とは、測位信号に含まれる誤差に起因して測位結果に生じる誤差である。予測誤差の大きさは、測位信号の種類や、測位に用いた測位信号の数などによって予測することができる。また、個々の測位結果に含まれる誤差を予測誤差として用いるのではなく、複数回の測位結果を平均するなどして小さくした誤差を予測誤差として用いることもできる。 On the other hand, when it is determined that the sensor output is within the normal range (S110: YES), the corrected current position obtained by map matching is predicted centered on the current position of the vehicle 1 obtained in S102. It is determined whether it is within the error range (S112). As described above, the prediction error is an error generated in the positioning result due to an error included in the positioning signal. The magnitude of the prediction error can be predicted based on the type of positioning signal, the number of positioning signals used for positioning, and the like. Further, instead of using an error included in each positioning result as a prediction error, an error reduced by averaging a plurality of positioning results can be used as a prediction error.
 尚、予測誤差は、測位信号に含まれる誤差に起因して測位結果に生じる誤差であるから、予測誤差の範囲は、測位結果によって得られた位置を中心に設定することが自然である。それにも拘わらず、S112では、S102で得られた車両1の現在位置を中心として予測誤差の範囲を設定して、予測誤差の範囲内に、マップマッチングによって得られた修正現在位置が存在するか否かを判断している。これは次のような理由による。 Note that since the prediction error is an error that occurs in the positioning result due to an error included in the positioning signal, it is natural to set the range of the prediction error around the position obtained by the positioning result. Nevertheless, in S112, a prediction error range is set around the current position of the vehicle 1 obtained in S102, and whether or not the corrected current position obtained by map matching exists within the prediction error range. Judging whether or not. This is due to the following reason.
 先ず、車両1の位置を測位するためには複数の測位信号が必要なので、測位結果は常に得られるとは限らない。これに対して、方位センサー10および距離センサー12の出力を累積して得られる車両1の現在位置は、常に得ることができる。 更に、方位センサー10および距離センサー12のセンサー特性は、図5の(a)を用いて前述したように、S102で得られる車両1の現在位置が、S105で取得した測位結果の予測誤差の範囲内となるように補正されている。従って、ある瞬間で測位結果が得られなかったとしても、S102で得られる車両1の現在位置を中心として予測誤差の範囲内に測位結果が存在すると考えて良い。そこで、S112では、測位結果が得られるであろう範囲として、S102で得られた車両1の現在位置を中心とする予測誤差の範囲を設定している。 First, since a plurality of positioning signals are necessary to determine the position of the vehicle 1, the positioning result is not always obtained. In contrast, the current position of the vehicle 1 obtained by accumulating the outputs of the direction sensor 10 and the distance sensor 12 can always be obtained. Further, as described above with reference to FIG. 5A, the sensor characteristics of the azimuth sensor 10 and the distance sensor 12 are based on the range of prediction errors of the positioning results obtained in S105 when the current position of the vehicle 1 obtained in S102 is obtained. It is corrected to be inside. Therefore, even if the positioning result cannot be obtained at a certain moment, it may be considered that the positioning result exists within the range of the prediction error around the current position of the vehicle 1 obtained in S102. Therefore, in S112, a prediction error range centered on the current position of the vehicle 1 obtained in S102 is set as a range in which the positioning result will be obtained.
 その結果、修正現在位置が予測誤差の範囲内になかった場合は(S112:NO)、マップマッチングの結果が、測位信号に基づく測位結果によって裏付けられていないことになるので、修正現在位置に付与する信頼度を「低」に設定する(S115)。 これに対して、修正現在位置が予測誤差の範囲内であった場合は(S112:YES)、センサー特性の学習が十分か否かを判断する(S113)。すなわち、前述したように現在位置検出処理では、センサー特性の補正を要すると判断すると(図3のS106:YES)、センサー特性(例えば方位センサー10の感度や、距離センサー12の1パルスあたりの距離)を、一定量ずつ補正していく(S107)。これは、一度に多くの補正を行うと過補正になってしまう可能性があるので、一回の補正量を小さくすることで、センサー特性を少しずつ適切な特性に近付けるためである。しかし、このことは、補正回数が少ない場合には、未だ適切なセンサー特性が得られていない可能性が高いということでもある。 そこで、図4のS113では、それまでにセンサー特性を補正した回数が十分な回数に達しているか否かを判断する。そして、十分な回数に達していれば、センサー特性の学習が十分と判断し(S113:YES)、十分な回数に達していなければ、センサー特性の学習が十分ではないと判断する(S113:NO)。 As a result, if the corrected current position is not within the range of the prediction error (S112: NO), the map matching result is not supported by the positioning result based on the positioning signal. The reliability to be set is set to “low” (S115). On the other hand, if the corrected current position is within the range of the prediction error (S112: YES), it is determined whether or not the sensor characteristics are sufficiently learned (S113). That is, as described above, in the current position detection process, if it is determined that the sensor characteristic needs to be corrected (S106: YES in FIG. 3), the sensor characteristic (for example, the sensitivity of the direction sensor 10 and the distance per pulse of the distance sensor 12). ) Is corrected by a certain amount (S107). This is because if a large number of corrections are made at one time, there is a possibility of overcorrection, so by reducing the correction amount at a time, the sensor characteristics are gradually brought closer to appropriate characteristics. However, this also means that if the number of corrections is small, there is a high possibility that appropriate sensor characteristics are not yet obtained. Therefore, in S113 of FIG. 4, it is determined whether or not the number of times the sensor characteristics have been corrected has reached a sufficient number. If the sufficient number of times has been reached, it is determined that learning of the sensor characteristics is sufficient (S113: YES), and if the sufficient number of times has not been reached, it is determined that the learning of the sensor characteristics is not sufficient (S113: NO). ).
 尚、ここでは、センサー特性を補正した回数に基づいて、センサー特性の学習が十分か否かを判断するものとして説明したが、次のようにして判断しても良い。先ず、S106で前述したように、センサー特性の要否を判断するに際しては、S102で得られた車両1の現在位置と、S105で取得した測位結果との偏差が、予測誤差の範囲内か否かに基づいて判断している。そこで、この偏差が、予測誤差の大きさに比べて十分に小さければ、センサー特性の学習も十分であると判断するようにしても良い。 In addition, although it demonstrated as what judges whether the learning of a sensor characteristic is enough based on the frequency | count which corrected the sensor characteristic here, you may judge as follows. First, as described above in S106, when determining whether or not the sensor characteristic is necessary, whether or not the deviation between the current position of the vehicle 1 obtained in S102 and the positioning result obtained in S105 is within the prediction error range. Judgment based on. Therefore, if the deviation is sufficiently smaller than the magnitude of the prediction error, it may be determined that the sensor characteristics are sufficiently learned.
 S113で、センサー特性の学習が十分ではないと判断した場合は(S113:NO)、修正現在位置に付与する信頼度を「低」に設定する(S115)。 これに対して、センサー特性の学習が十分と判断した場合は(S113:YES)、センサー出力が正常範囲内であり(S110:YES)、修正現在位置が予測誤差範囲内であり(S112:YES)、更に、センサー特性も十分に学習が進んでいる(S113:YES)ことになる。このような場合は、マップマッチングの結果が、測位信号に基づく測位結果によって裏付けられていると考えて良い。そこで、修正現在位置に付与する信頼度を「高」に設定する(S114)。 If it is determined in S113 that the sensor characteristics are not sufficiently learned (S113: NO), the reliability to be given to the corrected current position is set to “low” (S115). On the other hand, when it is determined that the learning of the sensor characteristics is sufficient (S113: YES), the sensor output is within the normal range (S110: YES), and the corrected current position is within the prediction error range (S112: YES). In addition, the sensor characteristics are sufficiently learned (S113: YES). In such a case, it may be considered that the map matching result is supported by the positioning result based on the positioning signal. Therefore, the reliability assigned to the current correction position is set to “high” (S114).
 こうして、マップマッチングによって得られた修正現在位置に対して信頼度を付与したら(S114、S115)、信頼度が付与された状態で修正現在位置を外部(ここでは表示装置14)に出力した後(S116)、現在位置の検出を終了するか否かを判断する(S117)。その結果、終了しない場合は(S117:NO)、図3のS101に戻って、車両1の進行方向および移動距離を取得した後、上述した続く一連の処理(S102~S117)を実行する。これに対して、現在位置の検出を終了する場合は(S117:YES)、図3および図4に示す第1実施例の現在位置検出処理を終了する。 Thus, when the reliability is given to the corrected current position obtained by the map matching (S114, S115), after the corrected current position is output to the outside (here, the display device 14) with the reliability added ( S116), it is determined whether or not to end the detection of the current position (S117). As a result, if not completed (S117: NO), the process returns to S101 in FIG. 3, and after acquiring the traveling direction and the moving distance of the vehicle 1, the above-described series of processes (S102 to S117) are executed. On the other hand, when the detection of the current position is ended (S117: YES), the current position detection process of the first embodiment shown in FIGS. 3 and 4 is ended.
 以上のようにして、マップマッチングによって得られた車両1の現在位置に信頼度を付与することができれば、得られた現在位置(あるいは方位)を信じて良いのか、あるいは参考程度に止めておくべきなのかを判断することができる。このため、マップマッチングによって得られた現在位置を、より一層有効に活用することが可能となる。 例えば、道路を走行中の車両1が、道路脇の駐車場に乗り入れる場合を考える。図7には、マップマッチングによって得られた車両1の位置(すなわち、修正現在位置)が表示装置14の画面上に表示されている様子が示されている。図中に太い実線で示した車両1および移動軌跡は、マップマッチングによって得られた車両1の位置(すなわち、図3のS109で生成した修正現在位置)および移動軌跡を表している。また、図中に細い破線で示した車両1および移動軌跡は、方位センサー10および距離センサー12の出力を累積して得られた車両1の現在位置(すなわち、図3のS102で得られた現在位置)および移動軌跡(すなわち、S103で生成した移動軌跡)を表している。尚、以下では、S102で得られた現在位置を「推測航法による現在位置」と称する。更に、図中に細い破線で示した円形は、推測航法による現在位置を中心とする予測誤差範囲を表している。 As described above, if reliability can be given to the current position of the vehicle 1 obtained by map matching, the obtained current position (or direction) can be believed or should be kept to a reference level. It can be judged. For this reason, the current position obtained by map matching can be used more effectively. For example, consider a case where a vehicle 1 traveling on a road enters a parking lot beside the road. FIG. 7 shows a state in which the position of the vehicle 1 obtained by map matching (that is, the corrected current position) is displayed on the screen of the display device 14. The vehicle 1 and the movement trajectory indicated by a thick solid line in the figure represent the position of the vehicle 1 obtained by map matching (that is, the corrected current position generated in S109 in FIG. 3) and the movement trajectory. Further, the vehicle 1 and the movement trajectory indicated by the thin broken lines in the figure indicate the current position of the vehicle 1 obtained by accumulating the outputs of the direction sensor 10 and the distance sensor 12 (that is, the current position obtained in S102 of FIG. Position) and a movement locus (that is, the movement locus generated in S103). In the following, the current position obtained in S102 is referred to as “current position by dead reckoning navigation”. Furthermore, a circle indicated by a thin broken line in the figure represents a prediction error range centered on the current position by dead reckoning navigation.
 図7の(a)に示されるように、車両1が駐車場に対して斜めに侵入する場合には、車両1は道路から少しずつ離れていく。このため、マップマッチングによって車両1の位置が道路側に引き込まれてしまい、実際には駐車場内に侵入しているにも拘わらず、車両1が依然として道路上を走行しているかのように表示されてしまうことが起こり得る。 しかし、このような場合でも、マップマッチングによって得られた車両1の現在位置(すなわち、修正現在位置)が、推測航法による現在位置を中心とした予測誤差範囲の範囲外になると、表示装置14の画面に表示されている車両1が、信頼度「高」から信頼度「低」の表示態様に変化する。このため運転者は、実際には道路を走行していない(従って、道路から逸れている)ことを認識することができる。 As shown in FIG. 7A, when the vehicle 1 enters the parking lot at an angle, the vehicle 1 gradually moves away from the road. For this reason, the position of the vehicle 1 is drawn to the road side by map matching, and it is displayed as if the vehicle 1 is still traveling on the road even though it actually entered the parking lot. It can happen. However, even in such a case, if the current position (that is, the corrected current position) of the vehicle 1 obtained by the map matching is outside the prediction error range centered on the current position by dead reckoning navigation, the display device 14 The vehicle 1 displayed on the screen changes from a reliability “high” to a reliability “low” display mode. For this reason, the driver can recognize that he / she is not actually traveling on the road (thus deviating from the road).
 また、図7の(b)に示した例では、車両1が道路を走行していた時とは明確に進行方向を変えて駐車場に侵入している。このため、マップマッチングによって車両1の位置が道路側に引き込まれることがなく、その結果、表示装置14の画面上では、車両1が道路外を走行している表示となる。 しかし、このような場合でも、マップマッチングによって得られた車両1の現在位置(すなわち、修正現在位置)は、推測航法による現在位置を中心とした予測誤差範囲の範囲内に存在しているので、表示装置14の画面上での表示は信頼度「高」のままとなる。このため運転者は、画面上での車両1の位置が道路から外れていても、本当に道路外を走行していることを認識することが可能となる。 Also, in the example shown in FIG. 7B, the vehicle 1 has entered the parking lot with a clearly different direction of travel from when the vehicle 1 was traveling on the road. For this reason, the position of the vehicle 1 is not drawn to the road side by map matching, and as a result, on the screen of the display device 14, the vehicle 1 is traveling outside the road. However, even in such a case, the current position of the vehicle 1 obtained by map matching (that is, the corrected current position) is within the prediction error range centered on the current position by dead reckoning navigation. The display on the screen of the display device 14 remains at a high reliability level. Therefore, the driver can recognize that the vehicle 1 is actually traveling outside the road even if the position of the vehicle 1 on the screen is off the road.
 B.第2実施例:
 B-1.第2実施例の装置構成:
 上述した第1実施例では、測位信号の誤差に起因して生じる予測誤差に基づいて、マップマッチングによって得られた車両1の修正現在位置に信頼度を付与するものとして説明した。こうして信頼度を付与しておけば、マップマッチングによって得られた車両1の修正現在位置を、より一層活用することができる。 もっとも、車両1の現在位置を検出する方法としては、マップマッチング以外にも種々の方法が存在しており、それらの方法で検出した現在位置に対しても、上述した方法を適用することができる。以下では、このような第2実施例について説明する。
B. Second embodiment:
B-1. Apparatus configuration of the second embodiment:
In the first embodiment described above, it has been described that the reliability is given to the corrected current position of the vehicle 1 obtained by the map matching based on the prediction error caused by the error of the positioning signal. If the reliability is given in this way, the corrected current position of the vehicle 1 obtained by map matching can be further utilized. However, there are various methods other than map matching for detecting the current position of the vehicle 1, and the above-described method can be applied to the current position detected by these methods. . Hereinafter, such a second embodiment will be described.
 図8には、第2実施例の移動体位置検出装置200の内部構成が示されている。図示されるように第2実施例の移動体位置検出装置200は、進行方向検出部101と、移動距離検出部102と、センサー特性補正部103と、測位結果取得部104と、現在位置検出部105と、信頼度付与部209とを備えている。 このうちの進行方向検出部101、移動距離検出部102、センサー特性補正部103、測位結果取得部104、現在位置検出部105については、前述した第1実施例の移動体位置検出装置100と同様であるため、ここでは説明を省略する。 FIG. 8 shows the internal configuration of the moving body position detecting apparatus 200 of the second embodiment. As shown in the figure, the moving body position detection device 200 of the second embodiment includes a traveling direction detection unit 101, a movement distance detection unit 102, a sensor characteristic correction unit 103, a positioning result acquisition unit 104, and a current position detection unit. 105 and a reliability providing unit 209. Among these, the traveling direction detection unit 101, the movement distance detection unit 102, the sensor characteristic correction unit 103, the positioning result acquisition unit 104, and the current position detection unit 105 are the same as those of the moving body position detection device 100 of the first embodiment described above. Therefore, the description is omitted here.
 信頼度付与部209は、現在位置検出部105から車両1の現在位置を取得し、測位結果取得部104から車両1の測位結果を取得して両者を比較する。そして、現在位置検出部105で得られた車両1の現在位置が、測位結果取得部104で取得した測位結果によって、誤差の範囲で裏付けられているか否かによって、現在位置に信頼度の情報を付与した後、信頼度が付与された現在位置を外部(例えば、表示装置14)に出力する。 こうすれば、表示装置14に車両1の現在位置として表示された現在位置(あるいは方位)を信じて良いのか、参考程度に止めておくべきなのかを判断することができるので、表示装置14に表示された車両1の現在位置をより一層活用して運転することが可能となる。 The reliability assigning unit 209 acquires the current position of the vehicle 1 from the current position detection unit 105, acquires the positioning result of the vehicle 1 from the positioning result acquisition unit 104, and compares the two. Then, depending on whether the current position of the vehicle 1 obtained by the current position detection unit 105 is supported by the positioning result acquired by the positioning result acquisition unit 104 within the error range, reliability information is displayed on the current position. After the assignment, the current position to which the reliability is assigned is output to the outside (for example, the display device 14). In this way, it is possible to determine whether the current position (or direction) displayed as the current position of the vehicle 1 on the display device 14 can be believed, or whether it should be kept to a reference level. The displayed current position of the vehicle 1 can be further utilized to drive.
 B-2.第2実施例の現在位置検出処理:
 図9および図10には、第2実施例の移動体位置検出装置200が実行する現在位置検出処理のフローチャートが示されている。 図示されるように、第2実施例の現在位置検出処理においても、前述した第1実施例の現在位置検出処理と同様に、先ず始めに車両1の初期位置および初期方向を取得する(S200)。 続いて、方位センサー10の出力に基づいて車両1の進行方向を取得し、距離センサー12の出力に基づいて車両1の移動距離を取得する(S201)。そして、取得した進行方向に向かって、取得した距離だけ移動したものとして、車両1の現在位置を更新する(S202)。
B-2. Current position detection processing of the second embodiment:
FIGS. 9 and 10 show a flowchart of the current position detection process executed by the moving body position detection apparatus 200 of the second embodiment. As shown in the drawing, also in the current position detection process of the second embodiment, the initial position and the initial direction of the vehicle 1 are first acquired in the same manner as the current position detection process of the first embodiment described above (S200). . Subsequently, the traveling direction of the vehicle 1 is acquired based on the output of the direction sensor 10, and the moving distance of the vehicle 1 is acquired based on the output of the distance sensor 12 (S201). Then, the current position of the vehicle 1 is updated assuming that the vehicle has moved by the acquired distance in the acquired traveling direction (S202).
 その後、測位信号に基づく車両1の測位結果が得られたか否かを判断する(S203)。第2実施例でも、前述した第1実施例と同様に、受信装置16が測位を行っており、受信装置16で測位結果が得られたか否かを判断する。 その結果、測位結果が得られている場合は(S203:YES)、受信装置16から測位結果を取得して(S204)、方位センサー10あるいは距離センサー12のセンサー特性の補正が必要か否かを判断する(S205)。この判断については、図5の(a)を用いて前述した第1実施例と同様であるため説明を省略する。 Thereafter, it is determined whether or not a positioning result of the vehicle 1 based on the positioning signal is obtained (S203). Also in the second embodiment, as in the first embodiment described above, the receiving device 16 performs positioning, and it is determined whether or not the positioning device 16 has obtained a positioning result. As a result, when the positioning result is obtained (S203: YES), the positioning result is acquired from the receiving device 16 (S204), and it is determined whether or not the sensor characteristics of the direction sensor 10 or the distance sensor 12 need to be corrected. Judgment is made (S205). This determination is the same as that of the first embodiment described above with reference to FIG.
 その結果、センサー特性の補正を要すると判断した場合は(S205:YES)、S202で得られた現在位置が、S204で取得した測位結果に近付く方向に、所定量ずつセンサー特性を補正する(S206)。 これに対して、センサー特性の補正を要しないと判断した場合は(S205:NO)、センサー特性の補正は行わない。 As a result, when it is determined that the sensor characteristic needs to be corrected (S205: YES), the sensor characteristic is corrected by a predetermined amount in the direction in which the current position obtained in S202 approaches the positioning result acquired in S204 (S206). ). On the other hand, when it is determined that the correction of the sensor characteristic is not required (S205: NO), the correction of the sensor characteristic is not performed.
 続いて、方位センサー10や距離センサー12の出力が正常な範囲内にあるか否かを判断する(図10のS207)。 その結果、センサー出力が正常範囲内に無いと判断した場合は(S207:NO)、センサー自体の破損やセンサーからの配線の断線など、何らかの問題が発生しており、現在位置は信用できないと考えられる。そこで、この場合(S207:NO)は、その時点で得られている測位結果で現在位置を置き換えた後(S208)、現在位置に付与する信頼度を「低」に設定する(S212)。 Subsequently, it is determined whether or not the outputs of the direction sensor 10 and the distance sensor 12 are within a normal range (S207 in FIG. 10). As a result, if it is determined that the sensor output is not within the normal range (S207: NO), it is considered that there is some problem such as damage to the sensor itself or disconnection of the wiring from the sensor, and the current position cannot be trusted. It is done. Therefore, in this case (S207: NO), after replacing the current position with the positioning result obtained at that time (S208), the reliability to be given to the current position is set to “low” (S212).
 これに対して、センサー出力が正常範囲内にあると判断した場合は(S207:YES)、S202で得られた車両1の現在位置と、S204で取得した測位結果との間の偏差が、測位結果の予測誤差の範囲内か否かを判断する(S209)。前述したように予測誤差とは、測位信号に含まれる誤差に起因して測位結果に生じる誤差である。また、個々の測位結果に含まれる誤差を予測誤差として用いるのではなく、複数回の測位結果を平均するなどして小さくした誤差を予測誤差として用いることもできる。 On the other hand, when it is determined that the sensor output is within the normal range (S207: YES), the deviation between the current position of the vehicle 1 obtained in S202 and the positioning result obtained in S204 is determined as positioning. It is determined whether or not the result is within a prediction error range (S209). As described above, the prediction error is an error generated in the positioning result due to an error included in the positioning signal. Further, instead of using an error included in each positioning result as a prediction error, an error reduced by averaging a plurality of positioning results can be used as a prediction error.
 その結果、推測航法による現在位置が予測誤差の範囲内になかった場合は(S209:NO)、推測航法による現在位置が、測位信号に基づく測位結果によっては裏付けられていないことになる。そこでこの場合は、推測航法によって得られた現在位置(S202で得られた現在位置)を、測位信号に基づく測位結果(S204で取得した測位結果)に近付くように補正した後(S211)、現在位置に付与する信頼度を「低」に設定する(S212)。 As a result, if the current position by dead reckoning is not within the prediction error range (S209: NO), the current position by dead reckoning is not supported by the positioning result based on the positioning signal. Therefore, in this case, after correcting the current position obtained by dead reckoning (the current position obtained in S202) to approach the positioning result based on the positioning signal (the positioning result acquired in S204) (S211), The reliability given to the position is set to “low” (S212).
 これに対して、車両1の現在位置と測位結果との偏差が、予測誤差の範囲内であった場合は(S209:YES)、センサー特性の学習が十分か否かを判断する(S210)。ここでは、それまでにセンサー特性を補正した回数が十分な回数に達していれば、センサー特性の学習が十分と判断し(S210:YES)、十分な回数に達していなければ、センサー特性の学習が十分ではないと判断する(S210:NO)。もちろん、S202で得られた車両1の現在位置と、S204で取得した測位結果との偏差を取得して、この偏差が、予測誤差の大きさに比べて十分に小さければ、センサー特性の学習も十分であると判断するようにしても良い。 On the other hand, when the deviation between the current position of the vehicle 1 and the positioning result is within the range of the prediction error (S209: YES), it is determined whether or not the sensor characteristics are sufficiently learned (S210). Here, if the number of times the sensor characteristics have been corrected has reached a sufficient number of times, it is determined that learning of the sensor characteristics is sufficient (S210: YES), and if the number of times has not been reached, learning of the sensor characteristics is performed. Is not sufficient (S210: NO). Of course, if the deviation between the current position of the vehicle 1 obtained in S202 and the positioning result obtained in S204 is acquired and this deviation is sufficiently smaller than the magnitude of the prediction error, the sensor characteristics can also be learned. You may make it judge that it is enough.
 S210で、センサー特性の学習が十分ではないと判断した場合は(S210:NO)、測位結果を用いて現在位置を補正した後(S211)、現在位置に付与する信頼度を「低」に設定する(S212)。 これに対して、センサー特性の学習が十分と判断した場合は(S210:YES)、センサー出力が正常範囲内であり(S207:YES)、現在位置が予測誤差範囲内であり(S209:YES)、更に、センサー特性も十分に学習が進んでいる(S210:YES)ことになる。このような場合は、方位センサー10および距離センサー12の出力を累積して得られた現在位置(すなわち、推測航法による現在位置)が、測位信号に基づく測位結果によって裏付けられていると考えて良い。そこでこの場合は、現在位置に付与する信頼度を「高」に設定する(S213)。 If it is determined in S210 that the sensor characteristics are not sufficiently learned (S210: NO), the current position is corrected using the positioning result (S211), and then the reliability to be given to the current position is set to “low”. (S212). On the other hand, when it is determined that learning of the sensor characteristics is sufficient (S210: YES), the sensor output is within the normal range (S207: YES), and the current position is within the prediction error range (S209: YES). Furthermore, learning of sensor characteristics is sufficiently advanced (S210: YES). In such a case, it can be considered that the current position obtained by accumulating the outputs of the direction sensor 10 and the distance sensor 12 (that is, the current position by dead reckoning navigation) is supported by the positioning result based on the positioning signal. . Therefore, in this case, the reliability assigned to the current position is set to “high” (S213).
 こうして、推測航法による現在位置に対して信頼度を付与したら(S213、S212)、信頼度が付与された現在位置を外部(ここでは表示装置14)に出力した後(S214)、現在位置の検出を終了するか否かを判断する(S215)。その結果、終了しない場合は(S215:NO)、図9のS201に戻って、車両1の進行方向および移動距離を取得した後、上述した続く一連の処理(S202~S215)を実行する。これに対して、現在位置の検出を終了する場合は(S215:YES)、図9および図10に示す第2実施例の現在位置検出処理を終了する。 When reliability is given to the current position by dead reckoning navigation (S213, S212), the current position to which the reliability is given is output to the outside (here, the display device 14) (S214), and then the current position is detected. It is determined whether or not to end (S215). As a result, if not finished (S215: NO), the process returns to S201 in FIG. 9, and after acquiring the traveling direction and moving distance of the vehicle 1, the above-described series of processes (S202 to S215) are executed. On the other hand, when the detection of the current position is finished (S215: YES), the current position detection process of the second embodiment shown in FIGS. 9 and 10 is finished.
 図11には、上述した第2実施例の現在位置検出処理によって得られた現在位置を、表示装置14の画面上に表示する様子が例示されている。図中では、測位信号によって得られた測位結果を星印で表している。また、それぞれの測位結果には、測位結果が得られた順番に従って、g1、g2、g3、g4、g5、g6、g7、g8、g9と符番されている。更に、破線で示した円形は、それぞれの測位結果についての予測誤差範囲を表している。また、これらの測位結果に対しても、前述した第1実施例と同様に、推測航法によって検出した車両1の現在位置を考えることができる。図11では、これらをp1、p2、p3、p4、p5、p6、p7、p8、p9で表している。 FIG. 11 illustrates a state where the current position obtained by the current position detection process of the second embodiment described above is displayed on the screen of the display device 14. In the figure, the positioning result obtained from the positioning signal is represented by an asterisk. Also, each positioning result is numbered as g1, g2, g3, g4, g5, g6, g7, g8, g9 according to the order in which the positioning results are obtained. Furthermore, a circle indicated by a broken line represents a prediction error range for each positioning result. Also for these positioning results, the current position of the vehicle 1 detected by dead reckoning navigation can be considered as in the first embodiment. In FIG. 11, these are represented by p1, p2, p3, p4, p5, p6, p7, p8, and p9.
 例えば、測位結果g1、g2、g3に対応する現在位置p1、p2、p3は、それぞれ測位結果g1、g2、g3の予測誤差の範囲内に存在する。従って、推測航法によって得られた現在位置が、測位信号に基づく測位結果で裏付けられているので、現在位置の信頼性が高いと判断できる。 For example, the current positions p1, p2, and p3 corresponding to the positioning results g1, g2, and g3 are within the prediction error ranges of the positioning results g1, g2, and g3, respectively. Accordingly, since the current position obtained by dead reckoning is supported by the positioning result based on the positioning signal, it can be determined that the reliability of the current position is high.
 これに対して測位結果g4が得られた時点での、推測航法に基づく現在位置p4は、測位結果g4の予測誤差の範囲外に存在しており、推測航法による現在位置は測位信号による測位結果で裏付けられていないので、現在位置の信頼性は低いと判断できる。そこで、測位結果g4が得られた時点で、車両1の現在位置p4の表示を、信頼度「高」の表示態様から信頼度「低」の表示態様に変更する。 更に、現在位置p4を、測位結果g4の位置に近付けた位置m4に補正した後、補正した位置m4から方位センサー10および距離センサー12の出力を累積することによって、推測航法による現在位置の検出を継続する。 On the other hand, the current position p4 based on dead reckoning navigation at the time when the positioning result g4 is obtained is outside the range of the prediction error of the positioning result g4, and the current position obtained by dead reckoning navigation is the positioning result based on the positioning signal. Therefore, it can be determined that the reliability of the current position is low. Therefore, when the positioning result g4 is obtained, the display of the current position p4 of the vehicle 1 is changed from the display mode with the reliability “high” to the display mode with the reliability “low”. Further, after correcting the current position p4 to a position m4 that is close to the position of the positioning result g4, the current position is detected by dead reckoning navigation by accumulating the outputs of the direction sensor 10 and the distance sensor 12 from the corrected position m4. continue.
 その後、測位結果g5が得られた時点での推測航法による現在位置p5は、測位結果g5の予測誤差の範囲内に入っている。このため、推測航法による現在位置が、測位信号に基づく測位結果で裏付けられたことになるので、現在位置の表示態様を信頼度「低」から信頼度「高」の表示態様に復帰させる。 このようにすれば、表示装置14の画面上に表示された車両1の現在位置(あるいは方位)を信じて良いのか、あるいは参考程度に止めておくべきなのかを判断することができる。図11に示した例では、m4~p5の間の車両1の位置は参考程度に止めておくべきだが、それ以外については、画面上の表示を信頼して良いと判断することができる。こうすれば、車両1の現在位置の検出結果を、より一層有効に活用することが可能となる。 After that, the current position p5 by dead reckoning navigation at the time when the positioning result g5 is obtained is within the range of the prediction error of the positioning result g5. For this reason, since the current position by dead reckoning navigation is supported by the positioning result based on the positioning signal, the display mode of the current position is returned from the reliability “low” to the display mode of reliability “high”. In this way, it can be determined whether the current position (or direction) of the vehicle 1 displayed on the screen of the display device 14 can be believed, or whether it should be kept at a reference level. In the example shown in FIG. 11, the position of the vehicle 1 between m4 and p5 should be kept at a reference level, but in other cases, it can be determined that the display on the screen can be trusted. In this way, the detection result of the current position of the vehicle 1 can be used more effectively.
 C.変形例:
 前述した第1実施例では、修正現在位置に付与する信頼度が「高」または「低」の何れかであるものとして説明した。また、上述した第2実施例では、現在位置に付与する信頼度が「高」または「低」の何れかであるものとして説明した。しかし、付与する信頼度は「高」または「低」の2段階である必要は無く、3段階以上の多段階で信頼度を付与してもよく、更には、連続的に変化するような信頼度を付与しても良い。
C. Variations:
In the first embodiment described above, it has been described that the reliability given to the current correction position is either “high” or “low”. Further, in the second embodiment described above, the reliability given to the current position is described as being either “high” or “low”. However, the reliability to be given does not need to be in two stages of “high” or “low”, and the reliability may be given in multiple stages of three or more stages, and furthermore, the reliability changes continuously. A degree may be given.
 図12には、多段階の信頼度を付与する方法が例示されている。例えば、図12の(a)に示すように、測位結果gに対して得られた予測誤差の大きさがESであったとする。この場合、図12の(b)に示すように、測位結果gからの距離が、距離ESよりも大きな領域A1と、図12の(c)に示すように、測位結果gからの距離が、距離ESのr1倍(但し、r1<1)よりは大きいが、距離ESよりは小さい領域A2と、図12の(d)に示すように、測位結果gからの距離が、距離ESのr2倍(但し、r2<r1<1)よりは大きいが、距離ESのr1倍よりは小さい領域A3と、図12の(e)に示すように、測位結果gからの距離が、距離ESのr2倍よりも小さい領域A4とを生成する。 FIG. 12 illustrates a method for assigning multi-level reliability. For example, as shown in FIG. 12A, it is assumed that the magnitude of the prediction error obtained for the positioning result g is ES. In this case, as shown in FIG. 12B, the distance A from the positioning result g is larger than the distance ES, and the distance from the positioning result g as shown in FIG. An area A2 that is larger than r1 times the distance ES (where r1 <1) but smaller than the distance ES, and the distance from the positioning result g is r2 times the distance ES, as shown in FIG. (However, the area A3 which is larger than r2 <r1 <1) but smaller than r1 times the distance ES, and the distance from the positioning result g is r2 times the distance ES, as shown in FIG. Smaller area A4.
 そして、第1実施例であれば、車両1の修正現在位置が何れの領域に存在するかによって、修正現在位置に付与する信頼度を決定する。すなわち、修正現在位置が領域A1に存在する場合には、最も小さな信頼度である信頼度1に決定し、修正現在位置が領域A2に存在する場合には、信頼度1よりも大きな信頼度である信頼度2に決定する。更に、修正現在位置が領域A3に存在する場合には、信頼度2よりも大きな信頼度3に決定し、修正現在位置が領域A4に存在する場合には、信頼度3よりも大きな信頼度4に決定する。 また、第2実施例であれば、車両1の現在位置が何れの領域に存在するかによって、修正現在位置に付与する信頼度を決定する。 こうすれば、車両1の修正現在位置(あるいは現在位置)と測位結果との偏差に応じて、4段階の信頼度を設定することができる。もちろん、信頼度の段数は4段階に限らず、より多くの段数を設定しても良い。 In the first embodiment, the reliability to be given to the corrected current position is determined depending on in which region the corrected current position of the vehicle 1 exists. That is, when the corrected current position exists in the area A1, the reliability is determined to be the smallest reliability 1, and when the corrected current position exists in the area A2, the reliability is higher than the reliability 1. A certain reliability 2 is determined. Further, when the current correction position exists in the area A3, the reliability 3 is determined to be greater than the reliability 2, and when the current correction position exists in the area A4, the reliability 4 greater than the reliability 3 is determined. To decide. In the second embodiment, the reliability to be given to the corrected current position is determined depending on in which region the current position of the vehicle 1 exists. In this way, four levels of reliability can be set according to the deviation between the corrected current position (or current position) of the vehicle 1 and the positioning result. Of course, the number of stages of reliability is not limited to four, and a larger number of stages may be set.
 あるいは、図13に例示したように、連続的に変化する信頼度を付与することとしても良い。例えば、図13の(a)に示すように、測位結果gに対して得られた予測誤差の大きさがESであったとする。そして、図13の(b)に示すように、距離ESを標準偏差とする正規分布で信頼度が与えられるものと仮定する。こうすれば、例えば第1実施例の場合には、車両1の修正現在位置と測位結果との距離に応じて、また、第2実施例の場合には、車両1の現在位置と測位結果との距離に応じて、連続的に変化するような信頼度を設定することができる。 Alternatively, as illustrated in FIG. 13, continuously changing reliability may be given. For example, as shown in FIG. 13A, it is assumed that the magnitude of the prediction error obtained for the positioning result g is ES. Then, as shown in FIG. 13B, it is assumed that the reliability is given by a normal distribution having the distance ES as a standard deviation. In this case, for example, in the case of the first embodiment, according to the distance between the corrected current position of the vehicle 1 and the positioning result, and in the case of the second embodiment, the current position of the vehicle 1 and the positioning result. The reliability can be set so as to change continuously according to the distance.
  本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described in accordance with an embodiment, it is understood that the present disclosure is not limited to the embodiment or the structure. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.
 例えば、上述した実施例および変形例では、車両1の現在位置の検出結果に付与した信頼度の利用方法は、表示装置14の画面上での車両1の表示態様を変更することによって、運転者に提示するものとして説明した。しかし、運転者に提示することに限らず、運転支援などの制御に活用してもよい。すなわち、高い信頼度が付与された現在位置の検出結果については、従来では適用できなかった高度な運転支援に対しても、現在位置の検出結果を適用することが可能となる。 For example, in the embodiment and the modification described above, the method of using the reliability given to the detection result of the current position of the vehicle 1 is changed by changing the display mode of the vehicle 1 on the screen of the display device 14. Explained as presented. However, the present invention is not limited to presenting to the driver, and may be utilized for control such as driving assistance. That is, with respect to the current position detection result to which high reliability is given, it is possible to apply the current position detection result to advanced driving assistance that could not be applied conventionally.

Claims (11)

  1.  進行方向を検出するための方位センサー(10)と、移動距離を検出するための距離センサー(12)と、測位衛星(50)からの測位信号を受信する受信装置(16)とを備える移動体(1)に搭載されて、該移動体の現在位置を検出する移動体位置検出装置(100)であって、
     前記進行方向および前記移動距離を累積することによって前記移動体の現在位置を検出する現在位置検出部(105)と、
     複数の前記測位衛星から受信した前記測位信号に基づく前記移動体の現在位置の測位結果を取得する測位結果取得部(104)と、
     前記現在位置検出部によって得られた前記現在位置の検出結果と、前記測位結果取得部によって取得した前記現在位置の測位結果とを比較することによって、前記方位センサーまたは前記距離センサーの少なくとも一方の特性を補正するセンサー特性補正部(103)と、
     前記現在位置検出部によって得られた前記現在位置の検出結果を蓄積することによって前記移動体の移動軌跡を生成する移動軌跡生成部(106)と、
     予め記憶されている地図情報の中から道路形状を読み出す道路形状読出部(108)と、
     前記移動体の移動軌跡と前記道路形状とを照合することによって、該移動体の前記現在位置を修正した修正現在位置を取得する修正現在位置取得部(107)と、
     前記修正現在位置と、前記現在位置検出部によって検出された前記現在位置との間の偏差に基づいて、前記修正現在位置に信頼度を付与する信頼度付与部(109)と
     を備える移動体位置検出装置。
    A moving body comprising an azimuth sensor (10) for detecting a traveling direction, a distance sensor (12) for detecting a moving distance, and a receiving device (16) for receiving a positioning signal from a positioning satellite (50). A moving body position detecting device (100) mounted on (1) for detecting the current position of the moving body,
    A current position detector (105) for detecting a current position of the moving body by accumulating the traveling direction and the moving distance;
    A positioning result acquisition unit (104) for acquiring a positioning result of the current position of the mobile body based on the positioning signals received from a plurality of the positioning satellites;
    By comparing the detection result of the current position obtained by the current position detection unit with the positioning result of the current position acquired by the positioning result acquisition unit, characteristics of at least one of the direction sensor or the distance sensor A sensor characteristic correction unit (103) for correcting
    A movement trajectory generation unit (106) that generates a movement trajectory of the moving body by accumulating the detection result of the current position obtained by the current position detection unit;
    A road shape reading unit (108) for reading a road shape from map information stored in advance;
    A corrected current position acquisition unit (107) for acquiring a corrected current position obtained by correcting the current position of the moving body by comparing the movement locus of the moving body with the road shape;
    A moving body position comprising: a reliability providing unit (109) that provides reliability to the corrected current position based on a deviation between the corrected current position and the current position detected by the current position detecting unit. Detection device.
  2.  請求項1に記載の移動体位置検出装置であって、
     前記現在位置検出部は、前記移動体の高さ位置を含めた前記現在位置を検出する検出部であり、
     前記測位結果取得部は、前記移動体の高さ位置を含めた前記現在位置の前記測位結果を取得する取得部である
     移動体位置検出装置。
    It is a mobile body position detection apparatus of Claim 1, Comprising:
    The current position detection unit is a detection unit that detects the current position including a height position of the moving body,
    The positioning result acquisition unit is an acquisition unit that acquires the positioning result of the current position including a height position of the moving body.
  3.  請求項1または請求項2に記載の移動体位置検出装置であって、
     前記現在位置検出部は、前記移動体の進行方向を示す現在方位を含めた前記現在位置を検出する検出部である
     移動体位置検出装置。
    The moving body position detecting device according to claim 1 or 2,
    The current position detection unit is a detection unit that detects the current position including a current direction indicating a traveling direction of the moving object.
  4.  請求項1ないし請求項3の何れか一項に記載の移動体位置検出装置であって、
     前記信頼度付与部は、前記偏差を、前記測位信号に含まれる誤差に起因して前記現在位置検出部の前記検出結果に生じる予測誤差と比較することによって、前記修正現在位置に信頼度を付与する付与部である
     移動体位置検出装置。
    It is a mobile body position detection apparatus as described in any one of Claims 1 thru | or 3, Comprising:
    The reliability adding unit adds reliability to the corrected current position by comparing the deviation with a prediction error caused in the detection result of the current position detecting unit due to an error included in the positioning signal. A moving body position detecting device which is an attaching unit.
  5.  進行方向を検出するための方位センサー(10)と、移動距離を検出するための距離センサー(12)と、測位衛星(50)からの測位信号を受信する受信装置(16)とを備える移動体(1)に搭載されて、該移動体の現在位置を検出する移動体位置検出装置(200)であって、
     前記進行方向および前記移動距離を累積することによって前記移動体の現在位置を検出する現在位置検出部(105)と、
     複数の前記測位衛星から受信した前記測位信号に基づく前記移動体の現在位置の測位結果を取得する測位結果取得部(104)と、
     前記現在位置検出部によって得られた前記現在位置の検出結果と前記測位結果取得部によって取得した前記現在位置の測位結果との間の偏差に基づいて、前記現在位置に信頼度を付与する信頼度付与部(209)と
     を備える移動体位置検出装置。
    A moving body comprising an azimuth sensor (10) for detecting a traveling direction, a distance sensor (12) for detecting a moving distance, and a receiving device (16) for receiving a positioning signal from a positioning satellite (50). A mobile body position detection device (200) mounted on (1) for detecting the current position of the mobile body,
    A current position detector (105) for detecting a current position of the moving body by accumulating the traveling direction and the moving distance;
    A positioning result acquisition unit (104) for acquiring a positioning result of the current position of the mobile body based on the positioning signals received from a plurality of the positioning satellites;
    A reliability that gives reliability to the current position based on a deviation between the detection result of the current position obtained by the current position detection unit and the positioning result of the current position acquired by the positioning result acquisition unit. A moving body position detecting device comprising: an assigning unit (209).
  6.  請求項5に記載の移動体位置検出装置であって、
     前記現在位置検出部は、前記移動体の高さ位置を含めた前記現在位置を検出する検出部であり、
     前記測位結果取得部は、前記移動体の高さ位置を含めた前記現在位置の前記測位結果を取得する取得部である
     移動体位置検出装置。
    It is a moving body position detection apparatus of Claim 5, Comprising:
    The current position detection unit is a detection unit that detects the current position including a height position of the moving body,
    The positioning result acquisition unit is an acquisition unit that acquires the positioning result of the current position including a height position of the moving body.
  7.  請求項5または請求項6に記載の移動体位置検出装置であって、
     前記現在位置検出部は、前記移動体の進行方向を示す現在方位を含めた前記現在位置を検出する検出部である
     移動体位置検出装置。
    The moving body position detecting device according to claim 5 or 6,
    The current position detection unit is a detection unit that detects the current position including a current direction indicating a traveling direction of the moving object.
  8.  請求項5ないし請求項7の何れか一項に記載の移動体位置検出装置であって、
     前記信頼度付与部は、前記偏差を、前記測位信号に含まれる誤差に起因して前記現在位置検出部の前記検出結果に生じる予測誤差と比較することによって、前記現在位置に信頼度を付与する付与部である
     移動体位置検出装置。
    It is a mobile body position detection apparatus as described in any one of Claim 5 thru | or 7, Comprising:
    The reliability adding unit adds the reliability to the current position by comparing the deviation with a prediction error generated in the detection result of the current position detecting unit due to an error included in the positioning signal. A moving body position detecting device which is an attaching unit.
  9.  請求項5ないし請求項8の何れか一項に記載の移動体位置検出装置であって、
     前記現在位置検出部によって得られた前記現在位置の検出結果と、前記測位結果取得部によって得られた前記現在位置の測位結果とを比較することによって、前記方位センサーまたは前記距離センサーの少なくとも一方の特性を補正するセンサー特性補正部(103)を備える
     移動体位置検出装置。
    It is a mobile body position detection apparatus as described in any one of Claim 5 thru | or 8, Comprising:
    By comparing the detection result of the current position obtained by the current position detection unit and the positioning result of the current position obtained by the positioning result acquisition unit, at least one of the direction sensor or the distance sensor A moving body position detection apparatus comprising a sensor characteristic correction unit (103) for correcting characteristics.
  10.  進行方向を検出するための方位センサー(10)と、移動距離を検出するための距離センサー(12)と、測位衛星(50)からの測位信号を受信する受信装置(16)とを備える移動体(1)に適用されて、該移動体の現在位置を検出する移動体位置検出方法であって、
     前記進行方向および前記移動距離を累積することによって前記移動体の現在位置を検出する現在位置検出工程(S102)と、
     複数の前記測位衛星から受信した前記測位信号に基づく前記移動体の現在位置の測位結果を取得する測位結果取得工程(S105)と、
     前記現在位置検出工程で得られた前記現在位置の検出結果と、前記測位結果取得工程で得られた前記現在位置の測位結果とを比較することによって、前記方位センサーまたは前記距離センサーの少なくとも一方の特性を補正するセンサー特性補正工程(S107)と、
     前記現在位置検出工程で得られた前記現在位置の検出結果を蓄積することによって前記移動体の移動軌跡を生成する移動軌跡生成工程(S103)と、
     予め記憶されている地図情報の中から道路形状を読み出す道路形状読出工程(S108)と、
     前記移動体の移動軌跡と前記道路形状とを照合することによって、該移動体の前記現在位置を修正した修正現在位置を取得する修正現在位置取得工程(S109)と、
     前記修正現在位置と、前記現在位置検出工程で検出された前記現在位置との間の偏差に基づいて、前記修正現在位置に信頼度を付与する信頼度付与工程(S114、S115)と
     を備える移動体位置検出方法。
    A moving body comprising an azimuth sensor (10) for detecting a traveling direction, a distance sensor (12) for detecting a moving distance, and a receiving device (16) for receiving a positioning signal from a positioning satellite (50). A moving body position detection method applied to (1) to detect a current position of the moving body,
    A current position detecting step (S102) for detecting a current position of the moving body by accumulating the traveling direction and the moving distance;
    A positioning result acquisition step (S105) for acquiring a positioning result of the current position of the mobile body based on the positioning signals received from a plurality of positioning satellites;
    By comparing the detection result of the current position obtained in the current position detection step and the positioning result of the current position obtained in the positioning result acquisition step, at least one of the direction sensor or the distance sensor A sensor characteristic correcting step (S107) for correcting the characteristics;
    A movement locus generation step (S103) for generating a movement locus of the moving body by accumulating the detection result of the current position obtained in the current position detection step;
    A road shape reading step (S108) for reading a road shape from map information stored in advance;
    A corrected current position acquisition step (S109) of acquiring a corrected current position by correcting the current position of the moving body by comparing the moving locus of the moving body with the road shape;
    A reliability providing step (S114, S115) for providing a reliability to the corrected current position based on a deviation between the corrected current position and the current position detected in the current position detecting step. Body position detection method.
  11.  進行方向を検出するための方位センサー(10)と、移動距離を検出するための距離センサー(12)と、測位衛星(50)からの測位信号を受信する受信装置(16)とを備える移動体(1)に適用されて、該移動体の現在位置を検出する移動体位置検出方法であって、
     前記進行方向および前記移動距離を累積することによって前記移動体の現在位置を検出する現在位置検出工程(S202)と、
     複数の前記測位衛星から受信した前記測位信号に基づく前記移動体の現在位置の測位結果を取得する測位結果取得工程(S204)と、
     前記現在位置検出工程で得られた前記現在位置の検出結果と前記測位結果取得工程で取得した前記現在位置の測位結果との間の偏差に基づいて、前記現在位置に信頼度を付与する信頼度付与工程(S213、S212)と
     を備える移動体位置検出方法。
    A moving body comprising an azimuth sensor (10) for detecting a traveling direction, a distance sensor (12) for detecting a moving distance, and a receiving device (16) for receiving a positioning signal from a positioning satellite (50). A moving body position detection method applied to (1) to detect a current position of the moving body,
    A current position detecting step (S202) for detecting a current position of the moving body by accumulating the traveling direction and the moving distance;
    A positioning result acquisition step (S204) for acquiring a positioning result of the current position of the mobile body based on the positioning signals received from a plurality of positioning satellites;
    Reliability that gives reliability to the current position based on a deviation between the detection result of the current position obtained in the current position detection step and the positioning result of the current position acquired in the positioning result acquisition step A moving body position detecting method comprising: applying steps (S213, S212).
PCT/JP2016/001969 2015-05-15 2016-04-11 Mobile-body position detecting apparatus, mobile-body position detecting method WO2016185659A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/569,856 US20180120115A1 (en) 2015-05-15 2016-04-11 Mobile-body position detecting apparatus and mobile-body position detecting method
DE112016002192.5T DE112016002192T5 (en) 2015-05-15 2016-04-11 Mobile body position detecting device and mobile body position detecting method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-100270 2015-05-15
JP2015100270 2015-05-15
JP2016014211A JP6421764B2 (en) 2015-05-15 2016-01-28 Moving body position detecting device and moving body position detecting method
JP2016-014211 2016-01-28

Publications (1)

Publication Number Publication Date
WO2016185659A1 true WO2016185659A1 (en) 2016-11-24

Family

ID=57319775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001969 WO2016185659A1 (en) 2015-05-15 2016-04-11 Mobile-body position detecting apparatus, mobile-body position detecting method

Country Status (1)

Country Link
WO (1) WO2016185659A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111738047A (en) * 2019-03-25 2020-10-02 本田技研工业株式会社 Self-position estimation method
EP3580524A4 (en) * 2017-02-07 2021-03-24 Bayerische Motoren Werke Aktiengesellschaft Method, device and system for localizing a moving object
US11204243B2 (en) * 2017-02-28 2021-12-21 Topcon Corporation Point cloud data extraction method and point cloud data extraction device
US20220026213A1 (en) * 2021-03-25 2022-01-27 Beijing Baidu Netcom Science Technology Co., Ltd. Method and apparatus for determining positioning information of vehicle, electronic device, storage medium and program product
WO2023119430A1 (en) * 2021-12-21 2023-06-29 日本電信電話株式会社 Signal processing device, signal processing method, and program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000292170A (en) * 1999-04-13 2000-10-20 Nec Corp Moving body attitude angle detecting device
JP2001041753A (en) * 1999-08-03 2001-02-16 Suzuki Motor Corp On-vehicle navigation system and recording medium
JP2002090150A (en) * 2000-09-11 2002-03-27 Kawasaki Heavy Ind Ltd Direction estimation device and position estimation device for mobile
JP2007218848A (en) * 2006-02-20 2007-08-30 Denso Corp Positional information acquisition system for mobile body
JP2008249555A (en) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp Position-specifying device, position-specifying method, and position-specifying program
JP2009041932A (en) * 2007-08-06 2009-02-26 Toyota Motor Corp Mobile object positioning apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000292170A (en) * 1999-04-13 2000-10-20 Nec Corp Moving body attitude angle detecting device
JP2001041753A (en) * 1999-08-03 2001-02-16 Suzuki Motor Corp On-vehicle navigation system and recording medium
JP2002090150A (en) * 2000-09-11 2002-03-27 Kawasaki Heavy Ind Ltd Direction estimation device and position estimation device for mobile
JP2007218848A (en) * 2006-02-20 2007-08-30 Denso Corp Positional information acquisition system for mobile body
JP2008249555A (en) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp Position-specifying device, position-specifying method, and position-specifying program
JP2009041932A (en) * 2007-08-06 2009-02-26 Toyota Motor Corp Mobile object positioning apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3580524A4 (en) * 2017-02-07 2021-03-24 Bayerische Motoren Werke Aktiengesellschaft Method, device and system for localizing a moving object
US11204243B2 (en) * 2017-02-28 2021-12-21 Topcon Corporation Point cloud data extraction method and point cloud data extraction device
CN111738047A (en) * 2019-03-25 2020-10-02 本田技研工业株式会社 Self-position estimation method
US20220026213A1 (en) * 2021-03-25 2022-01-27 Beijing Baidu Netcom Science Technology Co., Ltd. Method and apparatus for determining positioning information of vehicle, electronic device, storage medium and program product
WO2023119430A1 (en) * 2021-12-21 2023-06-29 日本電信電話株式会社 Signal processing device, signal processing method, and program

Similar Documents

Publication Publication Date Title
JP6421764B2 (en) Moving body position detecting device and moving body position detecting method
WO2016185659A1 (en) Mobile-body position detecting apparatus, mobile-body position detecting method
US9897454B2 (en) Host-vehicle-travel-position specification apparatus and host-vehicle-travel-position specification program product
EP2400269B1 (en) Track information generating device, track information generating method, and computer-readable storage medium
US10794709B2 (en) Apparatus of compensating for a sensing value of a gyroscope sensor, a system having the same, and a method thereof
JP2018155731A (en) Self-position estimation device
JP6142707B2 (en) Vehicle position correction device
US10267638B2 (en) Method and system for adapting a navigation system
US7764192B2 (en) Traveling safety device for vehicle
WO2018168956A1 (en) Own-position estimating device
JP2010223824A (en) Road map data learning device
EP2146183B1 (en) Navigation apparatus and positioning method thereof
US20220089180A1 (en) Control method for driving u-turn using high-definition map
JP2010190721A (en) On-vehicle navigation device and vehicle orientation change part determination program
CN110637211B (en) Information processing device for vehicle
JP6468060B2 (en) Vehicle position detection device and vehicle position detection method
JPH05142996A (en) Navigation device
JP7163013B2 (en) Reverse run warning system, reverse run warning method and program
JP3550901B2 (en) Navigation device
KR20050049071A (en) Method for discriminating stop state of car and method and device for creating car navigation information using the same
JP2017138207A (en) Own vehicle position detection device and own vehicle position detection method
JP7064001B2 (en) Vehicle control unit
JP2019095279A (en) System and program for identifying vehicle position
WO2022070458A1 (en) Vehicle position estimation device and vehicle position estimation method
US11859983B2 (en) Lane information generating method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796056

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15569856

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016002192

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16796056

Country of ref document: EP

Kind code of ref document: A1