WO2018168956A1 - Own-position estimating device - Google Patents

Own-position estimating device Download PDF

Info

Publication number
WO2018168956A1
WO2018168956A1 PCT/JP2018/010057 JP2018010057W WO2018168956A1 WO 2018168956 A1 WO2018168956 A1 WO 2018168956A1 JP 2018010057 W JP2018010057 W JP 2018010057W WO 2018168956 A1 WO2018168956 A1 WO 2018168956A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
self
corrected
position estimation
lane
Prior art date
Application number
PCT/JP2018/010057
Other languages
French (fr)
Japanese (ja)
Inventor
健司 三宅
雄一 南口
謙太 高橋
稔 岡田
和美 伊佐治
竜巳 杉山
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017248744A external-priority patent/JP6693496B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2018168956A1 publication Critical patent/WO2018168956A1/en
Priority to US16/568,637 priority Critical patent/US11408741B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram
    • G09B29/10Map spot or coordinate position indicators; Map reading aids

Definitions

  • This disclosure relates to a self-position estimation apparatus.
  • a self-localization device described in Patent Document 1 below is known as an apparatus for estimating a self-position of a vehicle.
  • the self-localization device described in Patent Document 1 below uses existing road infrastructure such as white lines and road signs on the road for position calculation using GPS (Global Positioning System), inertial devices, and vehicle speed pulses. This will increase the orientation accuracy.
  • GPS Global Positioning System
  • inertial devices Inertial devices
  • vehicle speed pulses This will increase the orientation accuracy.
  • the azimuth angle of the white line reflected in the image captured using the camera is calculated, and the difference between the azimuth angle of the white line stored in the azimuth database by the Kalman filter and the azimuth angle of the white line calculated from the image is calculated. Based on this, error estimation is performed.
  • Patent Document 1 since an image captured using a camera is used, an error cannot be estimated when an image cannot be clearly obtained, such as when the weather is bad. In particular, if position estimation at the lane level is required, the technique described in Patent Document 1 cannot cope with it. In hard driving support and automatic driving, it is necessary to specify the lane and the driving position in the lane, so that more accurate self-position estimation is required.
  • This disclosure aims to provide a self-position estimation device capable of highly accurate position estimation at the lane level.
  • the present disclosure is a self-position estimation device, and includes a map information acquisition unit (109) that acquires map information including lane information on which a vehicle can travel, and a navigation signal received from a plurality of navigation satellites. Based on the position calculation unit (101, 102, 106) that calculates the absolute position of the own vehicle and the map information and the absolute position of the own vehicle, the corrected own vehicle position that is the corrected position of the own vehicle is estimated. A position estimation unit (108). The position estimation unit estimates the corrected vehicle position by superimposing the accuracy of the map information and the accuracy of the vehicle absolute position.
  • the corrected own vehicle position can be estimated with higher accuracy than when only the own vehicle absolute position is used.
  • FIG. 1 is a block configuration diagram illustrating a functional configuration of the self-position estimation apparatus according to the embodiment.
  • FIG. 2 is a diagram for describing self-position estimation according to the present embodiment.
  • FIG. 3 is a diagram for describing self-position estimation according to the present embodiment.
  • FIG. 4 is a diagram for describing self-position estimation according to the present embodiment.
  • FIG. 5 is a diagram for explaining the lane change probability in the present embodiment.
  • FIG. 6 is a diagram for explaining the relationship between the lane change probability and the reliability of the lane center line.
  • FIG. 7 is a diagram for explaining the relationship between the vehicle position probability distribution and the map probability distribution.
  • FIG. 8 is a diagram for explaining the superposition of the vehicle position probability distribution and the map probability distribution when the lane change probability is low.
  • FIG. 1 is a block configuration diagram illustrating a functional configuration of the self-position estimation apparatus according to the embodiment.
  • FIG. 2 is a diagram for describing self-position estimation according to the present embodiment.
  • FIG. 9 is a diagram for explaining the superposition of the vehicle position probability distribution and the map probability distribution when the lane change probability is high.
  • FIG. 10 is a diagram for explaining the case where the lateral deviation probability distribution is taken into account.
  • FIG. 11 is a diagram for explaining the case where the line type probability distribution is taken into account.
  • FIG. 12 is a diagram for explaining the deviation of the estimated position when the vehicle position estimation according to the present embodiment is not performed.
  • FIG. 13 is a diagram for explaining an estimated position when the vehicle position is estimated according to the present embodiment.
  • FIG. 14 is a diagram for explaining the deviation of the estimated position when the vehicle position estimation according to the present embodiment is not performed.
  • FIG. 15 is a diagram for explaining an estimated position when the vehicle position is estimated according to the present embodiment.
  • FIG. 16 is a diagram for explaining the relationship between the estimated position correction amount and the estimated error correction amount.
  • FIG. 16 is a diagram for explaining the relationship between the estimated position correction amount and the estimated error correction amount.
  • FIG. 17 is a diagram for explaining the relationship between the initialization of the correction amount integrated value and the vehicle position candidate.
  • FIG. 19 is a diagram for explaining the relationship between the initialization of the correction amount integrated value and the vehicle position candidate.
  • FIG. 20 is a diagram for explaining the relationship between the initialization of the correction amount integrated value and the vehicle position candidate.
  • FIG. 21 is a diagram for explaining the transition of the number of vehicle position candidates.
  • FIG. 22 is a diagram for explaining the transition of the number of vehicle position candidates.
  • FIG. 23 is a diagram for explaining the transition of the number of vehicle position candidates.
  • FIG. 24 is a flowchart illustrating the process described with reference to FIGS. 16 to 23.
  • FIG. 25 is a flowchart illustrating the processing described with reference to FIGS. 16 to 23.
  • the self-position estimation apparatus 10 is configured as a computer including a calculation unit such as a CPU, a storage unit such as a RAM and a ROM, and an interface unit for exchanging data with various sensors as hardware components. Subsequently, functional components of the self-position estimation apparatus 10 will be described.
  • the self-position estimation apparatus 10 includes a self-position measurement unit 101, a vehicle momentum measurement unit 102, a white line recognition unit 103, a surrounding environment measurement unit 104, a route information acquisition unit 105, a dead reckoning 106, and a position estimation unit 108.
  • the self-position measuring unit 101 is a part for measuring the position of the own vehicle by GNSS (Global Navigation Satellite System).
  • the self-position measuring unit 101 calculates the own vehicle absolute position, which is the absolute position of the own vehicle, based on navigation signals received from a plurality of navigation satellites.
  • the self-position measuring unit 101 outputs the calculated own vehicle absolute position to the dead reckoning 106 and the position estimating unit 108.
  • the self-position measuring unit 101 corresponds to the position calculating unit of the present disclosure.
  • the vehicle momentum measuring unit 102 is a part that receives signals from sensors such as an acceleration sensor, a vehicle speed sensor, and a gyro sensor and measures the amount of movement of the vehicle.
  • the vehicle momentum measuring unit 102 outputs information on the momentum such as the vehicle speed, the azimuth angle, the yaw rate, and the acceleration to the dead reckoning 106 and the position estimating unit 108.
  • the vehicle momentum measurement unit 102 corresponds to the position calculation unit of the present disclosure.
  • the white line recognition unit 103 is a part for recognizing a white line that divides a lane using image data captured by the camera.
  • the white line recognition unit 103 outputs information on the presence or absence of a white line and information on the type of white line to the position estimation unit 108.
  • the surrounding environment measurement unit 104 is a part that measures the weather and satellite arrangement information.
  • the surrounding environment measurement unit 104 outputs weather and satellite arrangement information to the position estimation unit 108.
  • the route information acquisition unit 105 is a part that acquires the destination of the vehicle and the route to the destination from the navigation system.
  • the route information acquisition unit 105 outputs information indicating the destination and the route to the travel lane estimation unit 110.
  • the dead reckoning 106 is based on the absolute position of the own vehicle output from the self-position measuring unit 101 and the information on the momentum output from the vehicle momentum measuring unit 102. This is the part to calculate.
  • the dead reckoning 106 outputs the calculated position of the host vehicle to the position estimation unit 108.
  • the dead reckoning 106 corresponds to the position calculation unit of the present disclosure.
  • the self-position measuring unit 101, the vehicle momentum measuring unit 102, and the dead reckoning 106 as a position calculating unit have a function of calculating the own vehicle absolute position, which is the absolute position of the own vehicle, based on navigation signals received from a plurality of navigation satellites. Plays.
  • the map information acquisition unit 109 is a part that acquires map information including lane information on which the vehicle can travel.
  • the map information acquisition unit reads the map information stored in the map information storage unit 120 and outputs the read map information to the position estimation unit 108 and the traveling lane estimation unit 110.
  • the position estimation unit 108 is a part that estimates a corrected vehicle position that is a corrected position of the vehicle based on the map information and the vehicle absolute position.
  • the position estimation unit 108 estimates the corrected vehicle position by superimposing the accuracy of the map information and the accuracy of the vehicle absolute position.
  • a probability distribution representing the probability may be used, or a numerical value representing the certainty may be used.
  • a solid white line SLa is provided on the left side in the traveling direction of the lane L1.
  • a broken line white line BLa is provided between the lane L1 and the lane L2.
  • a broken line white line BLb is provided between the lane L2 and the lane L3.
  • a solid white line SLb is provided on the right side in the traveling direction of the lane L3.
  • the lane center line L1c is a line indicating the center of the lane L1.
  • the lane center line L2c is a line indicating the center of the lane L2.
  • the lane center line L3c is a line indicating the center of the lane L3.
  • the map probability distribution PDm of the lane center line L1c, the lane center line L2c, and the lane center line L3c is regarded as the likelihood of the map information.
  • the host vehicle is at the host vehicle absolute position Pa.
  • the host vehicle is traveling along the lane L1 from the host vehicle absolute position Pa.
  • the position estimation unit 108 estimates the corrected vehicle position Pb by superimposing the vehicle position probability distribution PDca and the map information probability distribution PDm at the vehicle absolute position Pa at the first estimation timing.
  • the corrected host vehicle position Pb is corrected to the lane center line L1c side by the distance d1 as compared with the case where the correction is not performed from the host vehicle absolute position Pa.
  • the position estimation unit 108 estimates the corrected vehicle position Pc by superimposing the vehicle position probability distribution PDcb at the corrected vehicle position Pb and the map information probability distribution PDm at the next estimation timing.
  • the corrected vehicle position Pc is corrected to the lane center line L1c side by the distance d2 as compared to the case where no correction is made from the corrected vehicle position Pb.
  • the map probability distribution is not limited to the probability distribution of the lane center line, but a probability distribution indicating the certainty of the map information is used. Further, a map probability distribution offset by the driver's bag or road shape may be used.
  • the road shape includes information such as the road width and the presence or absence of an adjacent lane.
  • the map probability distribution PDmA offset from the lane center line L1c, the lane center line L2c, and the lane center line L3c to the left in the traveling direction is assumed to be the accuracy of the map information.
  • the position estimation unit 108 estimates the corrected vehicle position PbA by superimposing the vehicle position probability distribution PDcaA and the map information probability distribution PDmA at the vehicle absolute position PaA at the first estimation timing.
  • the corrected host vehicle position PbA is corrected to the lane center line L1c side by the distance d1A as compared to the case where the correction is not performed from the host vehicle absolute position PaA.
  • the position estimation unit 108 estimates the corrected vehicle position PcA by superimposing the vehicle position probability distribution PDcbA at the corrected vehicle position PbA and the map information probability distribution PDmA at the next estimation timing.
  • the corrected host vehicle position PcA is corrected to the lane center line L1c side by a distance d2A as compared to the case where no correction is made from the corrected host vehicle position PbA.
  • the corrected vehicle position is estimated to approach the left side.
  • the position estimation unit 108 estimates at least one of the accuracy of the map information and the accuracy of the absolute position of the host vehicle, changes the relative weight of the map information and the absolute position of the host vehicle, and estimates the corrected host vehicle position. can do.
  • the probability of the map probability distribution PDmB of the lane center line L1c, the lane center line L2c, and the lane center line L3c is relative to the probability of the own vehicle position probability distributions PDcaB, PDcbB, and PDccB.
  • the weighting is changed to be higher.
  • the position estimation unit 108 estimates the corrected vehicle position PbB by superimposing the vehicle position probability distribution PDcaB and the map information probability distribution PDmB at the vehicle absolute position PaB at the first estimation timing.
  • the corrected host vehicle position PbB is corrected to the lane center line L1c side by the distance d1B as compared with the case where the correction is not performed from the host vehicle absolute position PaB.
  • the distance d1B is longer than the distance d1 shown in FIG. 2, and the corrected vehicle position PbB is closer to the lane center line L1c side than the corrected vehicle position Pb.
  • the position estimation unit 108 estimates the corrected vehicle position PcB by superimposing the vehicle position probability distribution PDcbB at the corrected vehicle position PbB and the map information probability distribution PDmB at the next estimation timing.
  • the corrected host vehicle position PcB is corrected to the lane center line L1c side by a distance d2B as compared to the case where no correction is made from the corrected host vehicle position PbB.
  • the distance d2B is longer than the distance d2 shown in FIG. 2, and the corrected vehicle position PcB is closer to the lane center line L1c side than the corrected vehicle position Pc.
  • the estimation of the corrected host vehicle position described with reference to FIG. 4 is highly accurate.
  • the host vehicle may change lanes, and even in that case, it is necessary to increase the accuracy of the corrected host vehicle position.
  • the position estimation unit 108 uses a lane change probability (hereinafter, also referred to as “LC probability”) that is a probability indicating the degree to which the host vehicle is estimated to move to a lane different from the currently traveling lane, and uses a map.
  • the certainty of information can be varied. More specifically, the position estimation unit 108 can decrease the probability of the map information when the lane change probability is increased, and can increase the probability of the map information when the lane change probability is decreased. Further, the position estimation unit 108 calculates the lane change probability based on the lane deviation amount that is the deviation amount of the traveling state of the host vehicle with respect to the extended state of the lane in which the host vehicle is traveling.
  • the position estimation unit 108 determines the amount of lane deviation as an azimuth angle deviation that is a difference between the azimuth angle of the lane and the traveling direction of the host vehicle, the yaw rate of the host vehicle, the turning angle of the host vehicle, the steering angle of the host vehicle, It can be calculated based on at least one of the surrounding environment information of the place where the host vehicle is traveling.
  • the position estimation unit 108 estimates the corrected vehicle position based on the calculated lane change probability, the lane information, and the vehicle absolute position.
  • the position estimation unit 108 increases the contribution degree of the lane information when the lane change probability does not indicate the lane change of the own vehicle, and the lane information indicates that the lane change probability indicates the lane change of the own vehicle. Perform correction to reduce the contribution.
  • the corrected vehicle position can be estimated to be close to the vehicle position.
  • the position estimation is made to be in the lane before the lane change despite actually changing the lane by reducing the lane information contribution degree. Such an erroneous estimation of the corrected vehicle position can be avoided.
  • the position estimation unit 108 calculates the own vehicle absolute position as the own vehicle position probability distribution.
  • the position estimation unit 108 calculates the lane center position in the lane information as a lane center probability distribution.
  • the position estimation unit 108 estimates the corrected vehicle position by superimposing the vehicle position probability distribution and the lane center probability distribution.
  • the position estimation unit 108 increases the reliability of the lane center probability distribution when the lane change probability does not indicate the lane change of the host vehicle.
  • the position estimation unit 108 estimates the corrected host vehicle position by reducing the reliability of the lane center probability distribution.
  • the position estimation unit 108 determines that the lane keep is being performed, increases the reliability of the lane center line, and narrows the lane center probability distribution. If the lane change probability indicates the lane change of the host vehicle, the position estimation unit 108 determines that the lane change is being performed, reduces the reliability of the lane center line, and widens the lane center probability distribution.
  • FIG. 8 is a diagram for explaining superposition of probability distributions during lane keeping.
  • the own vehicle position probability distribution and the lane center probability distribution are calculated. Since it is determined that the lane is being maintained, the reliability of the lane center line is high, and the lane center probability distribution is narrowed.
  • the corrected vehicle position probability distribution is obtained by superimposing the vehicle position probability distribution and the lane center probability distribution. Since the reliability of the lane center line is increased, the corrected vehicle position is corrected so as to be close to the lane center, and the change in the lateral position is suppressed.
  • FIG. 9 is a diagram for explaining superposition of probability distributions during a lane change.
  • the own vehicle position probability distribution and the lane center probability distribution are calculated. Since it is determined that the lane is being changed, the reliability of the lane center line is low, and the lane center probability distribution is widened.
  • the probability distribution of the corrected vehicle position is obtained by superimposing the vehicle position probability distribution and the lane center probability distribution. Since the reliability of the lane center line is lowered, the corrected vehicle position is corrected to be close to the vehicle position, and the change in the lateral position is maintained.
  • FIG. 10 shows an example in which the probability distribution of lateral deviation is reflected.
  • a lateral deviation probability distribution is calculated in addition to the own vehicle position probability distribution and the lane center probability distribution.
  • the lateral deviation probability distribution is a probability distribution indicating which of the lane the vehicle tends to locate based on the white line recognition result of the white line recognition unit 103.
  • the corrected vehicle position and the corrected amount taking the lateral deviation into account are obtained by superimposing the lateral deviation probability distribution. Can be calculated.
  • FIG. 11 shows an example in which the probability distribution of line types is reflected.
  • a line type probability distribution is calculated.
  • the line type probability distribution is a probability distribution indicating, for example, whether the lane is a continuous line or a broken line based on the white line recognition result of the white line recognition unit 103.
  • the corrected own vehicle position and correction amount taking the line type into account are obtained by superimposing the line type probability distribution. Can be calculated.
  • the position estimation unit 108 outputs the estimated corrected vehicle position to the travel lane estimation unit 110.
  • the travel lane estimation unit 110 is a part that estimates a travel lane that is a lane in which the host vehicle is traveling in the map information using the host vehicle absolute position or the corrected host vehicle position.
  • the actual running line 21 that is the actual running state is indicated by a solid line
  • the measurement line 22 that is the locus of the absolute position of the vehicle by the self-position measuring unit 101 and dead reckoning 106 is indicated by a broken line.
  • the traveling lane 23 estimated with a dashed-dotted line is shown.
  • FIG. 12 shows an example when the position estimation unit 108 does not estimate the corrected vehicle position.
  • the lane In the actual running line 21, the lane is changed to the right lane after running in the left lane. However, since the measurement line 22 has an error that shifts to the left as a whole, the estimation of the travel lane 23 is deviated, and it is estimated that the vehicle is traveling without changing the lane in the left lane.
  • FIG. 13 shows an example in which the position estimation unit 108 estimates the corrected vehicle position.
  • the vehicle In the area 30, the vehicle is traveling in the left lane without changing lanes. Therefore, the measurement line 22 is corrected and arranged so as to approach the lane center.
  • the traveling lane estimation unit 110 estimates that the host vehicle is traveling in the left lane in the region 30.
  • FIG. 14 shows an example in which the corrected vehicle position is not estimated by the position estimating unit 108 at the time of a lane change.
  • the vehicle In the region 31, the vehicle is traveling with a lane change and a lane change from the left lane to the right lane.
  • FIG. 15 shows an example of the case where the corrected vehicle position is estimated by the position estimation unit 108 at the time of a lane change. Since the lane change in the region 31 of FIG. 14 is reflected, the measurement line 22 is corrected and arranged so as to approach the lane center of the left lane. This correction continues even if the lane curves. Therefore, the traveling lane estimation unit 110 estimates that the host vehicle is traveling in the right lane in the region 32.
  • the self-position measuring unit 101, the vehicle motion measuring unit 102, and the dead reckoning 106 of the present embodiment correspond to a position calculating unit of the present disclosure.
  • the self-position estimation apparatus 10 is based on the map information acquisition unit 109 that acquires map information including lane information that the vehicle can travel and the navigation signals received from a plurality of navigation satellites.
  • a self-position measuring unit 10 a vehicle motion measuring unit 102, a dead reckoning 106 as a position calculating unit for calculating the absolute position of the own vehicle, which is the absolute position of the vehicle, and the corrected self based on the map information and the own vehicle absolute position.
  • a position estimation unit 108 that estimates the corrected vehicle position that is the position of the vehicle.
  • the position estimation unit 108 estimates the corrected vehicle position by superimposing the accuracy of the map information and the accuracy of the vehicle absolute position. Since the certainty of the map information and the certainty of the absolute position of the own vehicle are superimposed, the corrected own vehicle position can be estimated with higher accuracy than when only the absolute position of the own vehicle is used.
  • the position estimation unit 108 changes at least one of the certainty of the map information and the certainty of the absolute position of the own vehicle, changes the relative weighting of the map information and the absolute position of the own vehicle, and performs correction.
  • the own vehicle position can be estimated.
  • the position estimation unit 108 changes the probability of the map information using a lane change probability that is a probability indicating a degree that the host vehicle is estimated to move to a lane different from the currently traveling lane. Can be made. More specifically, the position estimation unit 108 can maintain or decrease the probability of the map information when the lane change probability increases, while increasing the probability of the map information when the lane change probability decreases. When the host vehicle does not change lanes, it is possible to estimate the position of the host vehicle along the actual lane by increasing the probability of the map information. On the other hand, when the host vehicle makes a lane change, the influence of excessive map information is eliminated by maintaining or reducing the likelihood of the map information, and the position of the host vehicle reflecting the lane change is estimated. Can do. In this way, by reflecting the lane change probability in the estimation of the corrected vehicle position, it is determined that the lane has been changed to the next lane even though it is in the lane keep state, or the lane change state is not changed. Can be reduced.
  • the position estimation unit 108 can calculate the lane change probability based on a lane deviation amount that is a deviation amount of the traveling state of the host vehicle with respect to the extended state of the lane in which the host vehicle is traveling. . More specifically, the position estimation unit 108 determines the amount of lane deviation as an azimuth angle deviation that is a difference between the azimuth angle of the lane and the traveling direction of the host vehicle, the yaw rate of the host vehicle, the turning angle of the host vehicle, It can be calculated based on at least one of the steering angle of the host vehicle and the surrounding environment information of the place where the host vehicle is traveling.
  • the position estimation unit 108 represents the probability of the map information with a map probability distribution, the probability of the own vehicle absolute position with the own vehicle position probability distribution, and the corrected own vehicle position with the map probability distribution.
  • the vehicle position probability distribution can be estimated.
  • the map probability distribution includes a probability distribution of a lane in which the vehicle is traveling or a lane center position.
  • the position estimation unit 108 can estimate the corrected vehicle position by reflecting the line type information obtained by the camera.
  • the position estimation unit 108 can estimate the corrected vehicle position by reflecting the peripheral information from the camera.
  • the position estimation unit 108 can estimate the corrected vehicle position by reflecting the blinker information. For example, when the winker is on the right, the possibility of a lane change to the right lane is high, so the lane change probability can be increased to cope with it.
  • the position estimation unit 108 can also estimate the corrected vehicle position by reflecting the driver's state.
  • the position estimation unit 108 can also estimate the corrected vehicle position by reflecting the operation by the driver. By reflecting the state and operation of the driver, the possibility of a lane change can be accurately estimated.
  • the position estimation unit 108 can execute reliability adjustment control that reduces the reliability of the corrected vehicle position according to the correction amount for correcting the vehicle absolute position to the corrected vehicle position. .
  • the corrected vehicle position As the amount of correction increases, the difference between the vehicle's absolute position and the corrected vehicle position increases. Therefore, if the position close to the vehicle's absolute position before correction is the true vehicle position, the corrected vehicle There is a possibility that the true vehicle position will not enter within a predetermined reliability from the position. Therefore, by reducing the reliability of the corrected vehicle position in accordance with the correction amount, it is possible to increase the possibility that the true vehicle position falls within a predetermined reliability from the corrected vehicle position.
  • the position estimation unit 108 in this embodiment can reduce the reliability of the corrected vehicle position according to the correction amount integrated value obtained by integrating the correction amounts.
  • the correction amount integrated value By using the correction amount integrated value, it is possible to cope with a case where the absolute position of the vehicle is continuously corrected to the corrected vehicle position along the time series. Even when the correction is continuously performed and the deviation between the absolute position of the vehicle and the corrected vehicle position becomes large, the reliability of the corrected vehicle position is lowered according to the correction amount integrated value. Thus, it is possible to increase the possibility that the true vehicle position will enter the predetermined reliability from the corrected vehicle position.
  • the own vehicle absolute positions 40 (a) and 40 (b) and the reliability 50 (a) and 50 (b) corresponding to each are shown. It is assumed that the vehicle's absolute position 40 (b) is reached after a predetermined time from the vehicle's absolute position 40 (a). As the own vehicle absolute position after the next predetermined time, the self-position measuring unit 101, the vehicle momentum measuring unit 102, and the dead reckoning 106, which are position calculating units, calculate the own vehicle absolute position 40 (c2). The position estimation unit 108 calculates the corrected host vehicle position 40 (c1) as the corrected host vehicle position.
  • the estimated position correction amount increases, the lateral position correction amount and the turning angle correction amount also increase, so that the estimated error correction amount is also set to be large.
  • the position estimation unit 108 in the present embodiment can initialize the correction amount integrated value when the correction amount integrated value does not exceed the integration threshold value provided corresponding to the predetermined elapsed time.
  • the correction amount integrated value does not exceed the integration threshold during the predetermined elapsed time, it is possible to suppress the accumulation of lateral errors by initializing the correction amount integrated value.
  • FIG. 18A shows changes in the position of the host vehicle and changes in reliability.
  • FIG. 18B shows the transition of the lane change probability.
  • FIG. 18C shows the transition of the correction amount integrated value.
  • FIG. 18D shows the change in the number of own vehicle position candidates.
  • FIG. 18 shows the own vehicle absolute positions 40 (a) and 40 (b) and the corresponding degrees of reliability 50 (a) and 50 (b). It is assumed that the vehicle absolute position 40 (b) is reached at a time Tb after a predetermined time from the vehicle absolute position 40 (a) corresponding to the time Ta.
  • the position estimation unit 108 calculates the corrected host vehicle position 40 (c1) as the corrected host vehicle position.
  • the reliability adjustment control is executed so that the estimated error correction amount also increases.
  • the execution contents of the reliability adjustment control are the same as those described with reference to FIGS. 16 and 17, and the reliability 50 (c1) is expanded to the reliability 50 (c2).
  • the position estimation unit 108 initializes the correction amount integrated value, and generates two corrected vehicle position candidates. At time Td, the corrected host vehicle position 40 (d1) and the corresponding reliability 50 (d1), and the corrected host vehicle position 40 (d2) and the corresponding reliability 50 (d2) in the adjacent lane are generated. To do.
  • FIG. 19A shows changes in the position of the host vehicle and changes in reliability.
  • FIG. 19B shows the transition of the lane change probability.
  • FIG. 19C shows the transition of the correction amount integrated value.
  • FIG. 19D shows the change in the number of vehicle position candidates.
  • FIG. 19 shows the own vehicle absolute positions 40 (a) and 40 (b) and the corresponding degrees of reliability 50 (a) and 50 (b). It is assumed that the vehicle absolute position 40 (b) is reached at a time Tb after a predetermined time from the vehicle absolute position 40 (a) corresponding to the time Ta.
  • the position estimation unit 108 calculates the corrected host vehicle position 40 (c1) as the corrected host vehicle position.
  • the reliability adjustment control is executed so that the estimated error correction amount also increases.
  • the execution contents of the reliability adjustment control are the same as those described with reference to FIGS. 16 and 17, and the reliability 50 (c1) is expanded to the reliability 50 (c2).
  • the correction amount integrated value does not exceed the integration threshold even at time Tc.
  • the position estimation unit 108 initializes the correction amount integrated value. Since the correction amount integrated value does not exceed the integration threshold value, the corrected vehicle position candidate remains one. At time Td, the corrected vehicle position 40 (d1) and the corresponding reliability 50 (d1) are generated.
  • FIG. 20A shows the transition of the position of the host vehicle and the transition of the reliability.
  • FIG. 20B shows the transition of the lane change probability.
  • FIG. 20C shows the transition of the correction amount integrated value.
  • FIG. 20D shows the transition of the number of vehicle position candidates.
  • FIG. 20 shows the own vehicle absolute positions 40 (a) and 40 (b) and the corresponding reliability 50 (a) and 50 (b). It is assumed that the vehicle absolute position 40 (b) is reached at a time Tb after a predetermined time from the vehicle absolute position 40 (a) corresponding to the time Ta.
  • the position estimation unit 108 calculates the corrected host vehicle position 40 (c1) as the corrected host vehicle position.
  • the reliability adjustment control is executed so that the estimated error correction amount also increases.
  • the execution contents of the reliability adjustment control are the same as those described with reference to FIGS. 16 and 17, and the reliability 50 (c1) is expanded to the reliability 50 (c2).
  • the correction amount integrated value does not exceed the integration threshold even at time Tc.
  • the position estimation unit 108 initializes the correction amount integrated value.
  • the own vehicle absolute position calculated by a calculation method different from the calculation method for calculating the own vehicle absolute position for example, a calculation method such as line type detection, GNSS, or lateral position detection is the reliability 50 (c3).
  • the reliability 50 (c3) can be prioritized.
  • the corrected vehicle position 40 (d2) and the corresponding reliability 50 (d2) are generated.
  • the position estimation unit 108 in the present embodiment the vehicle absolute position calculated by a calculation method different from the vehicle absolute position calculation method used for the reliability adjustment control, the corrected vehicle position, and the corrected vehicle
  • the correction amount integrated value can be initialized. By initializing the correction amount integrated value, it is possible to give priority to the own vehicle absolute position calculated by a calculation method different from the calculation method used for the reliability adjustment control.
  • the position estimation unit 108 is a hypothesis in which the first corrected host vehicle position for correcting the host vehicle absolute position by the first correction amount and the host vehicle absolute position are different from the first correction amount. It is possible to hold the second corrected vehicle position corrected by the second correction amount based on the above.
  • the first correction amount and the second correction amount that are different from each other it is possible to hold the first corrected vehicle position and the second corrected vehicle position with different correction degrees. Even if the deviation between the own vehicle absolute position and the corrected own vehicle position becomes large, tracking based on a plurality of hypotheses can be performed, and the first corrected own vehicle position and the second corrected own vehicle position. Therefore, the possibility that the true vehicle position enters within a predetermined reliability can be increased.
  • FIG. 21A shows the transition of the position of the host vehicle and the transition of the reliability.
  • FIG. 21B shows the transition of the lane change probability.
  • FIG. 21C shows the transition of the number of vehicle position candidates.
  • FIG. 21D shows the change in the number of lane candidates.
  • FIG. 21 shows the absolute positions 40 (a) and 40 (b) of the own vehicle and the corresponding reliability 50 (a) and 50 (b). It is assumed that the vehicle absolute position 40 (b) is reached at a time Tb after a predetermined time from the vehicle absolute position 40 (a) corresponding to the time Ta.
  • the position estimation unit 108 starts the reliability adjustment control. Specifically, the number of vehicle position candidates is set to two, and the number of lane candidates is also set to two.
  • the first corrected vehicle position 40 (c1) is generated on the assumption that the vehicle is traveling in the left lane in the traveling direction, and is held together with the reliability 50 (c1).
  • the second corrected vehicle position 40 (c2) is generated on the assumption that the vehicle is traveling in the right lane in the traveling direction, and is held together with the reliability 50 (c2).
  • the corrected amount is This is the first correction amount. Since the second corrected host vehicle position 40 (c2) corrects the host vehicle absolute position with respect to the information specifying the position of the right lane in the traveling direction, the corrected host vehicle position is generated. The second correction amount is based on a hypothesis different from the first correction amount.
  • the position estimating unit 108 in the present embodiment is configured to perform the first corrected host vehicle position or the second corrected vehicle position.
  • the corrected vehicle position can be rejected.
  • at least one of the first corrected host vehicle position and the second corrected host vehicle position is rejected.
  • the position estimation unit 108 executes the reliability adjustment control when the lane change probability, which is the probability that the vehicle is estimated to move to a lane different from the currently running lane, exceeds a predetermined probability. Can start. Since the reliability adjustment control is started when it is estimated that the host vehicle moves to a lane different from the lane in which the host vehicle is currently traveling, the host vehicle after the first correction is made in accordance with the possibility that the host vehicle changes the lane. Since the vehicle position and the second corrected vehicle position are calculated, it is possible to suppress unnecessary tracking based on a plurality of hypotheses.
  • the lane change probability which is the probability that the vehicle is estimated to move to a lane different from the currently running lane
  • FIG. 22 an example of rejecting the second corrected vehicle position while leaving the first corrected vehicle position will be described.
  • the own vehicle absolute positions 40 (a), 40 (b) and the corresponding reliability 50 (a), 50 (b) are shown. It is assumed that the vehicle absolute position 40 (b) is reached at a time Tb after a predetermined time from the vehicle absolute position 40 (a) corresponding to the time Ta.
  • the position estimation unit 108 starts the reliability adjustment control. Specifically, the number of vehicle position candidates is set to two, and the number of lane candidates is also set to two.
  • the first corrected vehicle position 40 (c1) is generated on the assumption that the vehicle is traveling in the left lane in the traveling direction, and is held together with the reliability 50 (c1).
  • the second corrected vehicle position 40 (c2) is generated on the assumption that the vehicle is traveling in the right lane in the traveling direction, and is held together with the reliability 50 (c2).
  • the position estimation unit 108 rejects the second corrected host vehicle position 40 (c2).
  • the first corrected vehicle position 40 (d1) and the reliability 50 (d1) are maintained.
  • the position estimation unit 108 in the present embodiment the vehicle absolute position calculated by a calculation method different from the vehicle absolute position calculation method used for the reliability adjustment control, the first corrected vehicle position, and the first vehicle position
  • the first corrected vehicle position is rejected and the vehicle absolute position calculation method used for the reliability adjustment control is calculated. If the vehicle absolute position calculated by a different calculation method from the vehicle position and the vehicle position specified by a predetermined reliability from the second corrected vehicle position and the second corrected vehicle position are different, 2 The vehicle position after correction can be rejected. By rejecting the corrected vehicle position away from the vehicle absolute position calculated by a calculation method different from the calculation method used for the reliability adjustment control, it is possible to reduce the load of multiple tracking.
  • FIG. 23 an example of rejecting the first corrected vehicle position while leaving the second corrected vehicle position will be described.
  • the own vehicle absolute positions 40 (a) and 40 (b) and the corresponding reliability 50 (a) and 50 (b) are shown. It is assumed that the vehicle absolute position 40 (b) is reached at a time Tb after a predetermined time from the vehicle absolute position 40 (a) corresponding to the time Ta.
  • the position estimation unit 108 starts the reliability adjustment control. Specifically, the number of vehicle position candidates is set to two and the number of lane candidates is also set to two.
  • the first corrected vehicle position 40 (c1) is generated on the assumption that the vehicle is traveling in the left lane in the traveling direction, and is held together with the reliability 50 (c1).
  • the second corrected vehicle position 40 (c2) is generated on the assumption that the vehicle is traveling in the right lane in the traveling direction, and is held together with the reliability 50 (c2).
  • a calculation method different from the calculation method for calculating the own vehicle absolute position for example, a self-calculation method calculated by a calculation method such as line type detection, GNSS, or lateral position detection.
  • the vehicle absolute position has a reliability of 50 (c3)
  • the reliability of 50 (c3) can be prioritized.
  • the position estimation unit 108 leaves the second corrected host vehicle position 40 (c2) close to the reliability 50 (c3). Based on the second corrected host vehicle position 40 (c2), the position estimation unit 108 generates a corrected host vehicle position 40 (d2) and a corresponding reliability 50 (d2) at time Td.
  • step S101 the self-position measuring unit 101, the vehicle momentum measuring unit 102, and the dead reckoning 106, which are position calculating units, calculate the own vehicle absolute position.
  • step S102 the map information acquisition unit 109 acquires surrounding map data.
  • step S103 the position estimation unit 108 calculates the corrected vehicle position in consideration of the lane shape.
  • step S104 the correction amount calculated in step S103 is added to the correction amount integrated value.
  • step S105 it is determined whether the correction amount integrated value exceeds the threshold value. If the correction amount integrated value exceeds the threshold value, the process proceeds to step S107. If the correction amount integrated value does not exceed the threshold value, the process proceeds to step S106.
  • step S106 the correction amount integrated value is initialized on condition that the predetermined condition is satisfied.
  • step S107 it is determined whether the own vehicle absolute position is calculated by another method different from step S101. If the own vehicle absolute position is calculated by another method, the process proceeds to step S108. If the own vehicle absolute position has not been calculated by another method, the process proceeds to step S110.
  • step S108 an estimation error is calculated.
  • step S109 following step S108 the correction amount integrated value is initialized.
  • step S110 it is determined whether the correction amount integrated value exceeds a threshold value. If the correction amount integrated value exceeds the threshold value, the process proceeds to step S111. If the correction amount integrated value does not exceed the threshold value, the process proceeds to step S113.
  • step S111 the estimated position candidates are increased.
  • step S112 following step S111 the correction amount integrated value is initialized.
  • step S113 it is determined whether or not there are a plurality of estimated position candidates. If there are a plurality of estimated position candidates, the process proceeds to step S114. If there are not a plurality of estimated position candidates, the process returns. In step S114, rejection determination is executed.
  • step S201 the self-position measuring unit 101, the vehicle momentum measuring unit 102, and the dead reckoning 106, which are position calculating units, calculate the absolute position of the own vehicle.
  • step S202 the map information acquisition unit 109 acquires surrounding map data.
  • step S203 a lane change probability is calculated.
  • step S204 it is determined whether or not there is a single estimated position candidate. If there is a single estimated position candidate, the process proceeds to step S205. If there is a single estimated position candidate, the process proceeds to step S208.
  • step S205 it is determined whether or not the lane change probability exceeds a threshold value. If the lane change probability exceeds the threshold, the process proceeds to step S206. If the lane change probability does not exceed the threshold value, the process proceeds to step S207.
  • step S206 an estimated position candidate with a modified correction parameter is created.
  • step S207 position correction based on the lane shape is executed.
  • step S208 position correction based on the lane shape is executed for all estimated position candidates.
  • step S209 it is determined whether the lateral movement distance per unit travel distance exceeds a threshold value. If the lateral movement distance per unit travel distance exceeds the threshold value, the process proceeds to step S210. If the lateral movement distance per unit travel distance does not exceed the threshold value, the process proceeds to step S211.
  • step S210 the estimated position candidate is rejected.
  • step S211 it is determined whether the own vehicle absolute position is calculated by another method different from step S201. If the own vehicle absolute position is calculated by another method, the process proceeds to step S212. If the vehicle's absolute position has not been calculated by another method, the process returns. In step S212, the estimated position candidate is rejected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mathematical Physics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Automation & Control Theory (AREA)
  • Navigation (AREA)

Abstract

An own-position estimating device (10) is provided with: a map information acquiring unit (109) which acquires map information including lane information of lanes along which a vehicle is capable of traveling; an own-position measuring unit (101), a vehicle movement amount measuring unit (102) and a dead reckoning (106), serving as a position calculating unit which calculates a host vehicle absolute position, which is the absolute position of a host vehicle, on the basis of navigation signals received from a plurality of navigation satellites; and a position estimating unit (108) which estimates a corrected host vehicle position, which is the position of the host vehicle after correction, on the basis of the map information and the host vehicle absolute position. The position estimating unit (108) estimates the corrected host vehicle position by superimposing a degree of certainty of the map information and a degree of certainty of the host vehicle absolute position.

Description

自己位置推定装置Self-position estimation device 関連出願の相互参照Cross-reference of related applications
 本出願は、2017年3月16日に出願された日本国特許出願2017-051066号と、2017年12月26日に出願された日本国特許出願2017-248745号と、2017年12月26日に出願された日本国特許出願2017-248744号と、に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application consists of Japanese Patent Application No. 2017-051066 filed on March 16, 2017, Japanese Patent Application No. 2017-248745 filed on December 26, 2017, and December 26, 2017. Japanese Patent Application No. 2017-248744 filed in Japan and claims the benefit of its priority, the entire contents of which are incorporated herein by reference .
 本開示は、自己位置推定装置に関する。 This disclosure relates to a self-position estimation apparatus.
 車両の自己位置推定をするものとして下記特許文献1に記載の自己位置標定装置が知られている。下記特許文献1に記載の自己位置標定装置は、GPS(Global Positioning System)や慣性装置や車速パルスを用いた位置算出に対し、道路上の白線や道路標識といった既存の道路インフラを利用して、標定精度を上げるものである。 2. Description of the Related Art A self-localization device described in Patent Document 1 below is known as an apparatus for estimating a self-position of a vehicle. The self-localization device described in Patent Document 1 below uses existing road infrastructure such as white lines and road signs on the road for position calculation using GPS (Global Positioning System), inertial devices, and vehicle speed pulses. This will increase the orientation accuracy.
 具体的には、カメラを用いて撮像した画像に映った白線の方位角を算出し、カルマンフィルタが方位角データベースに記憶されている白線の方位角と画像から算出した白線の方位角との差分に基づいて誤差推定を行っている。 Specifically, the azimuth angle of the white line reflected in the image captured using the camera is calculated, and the difference between the azimuth angle of the white line stored in the azimuth database by the Kalman filter and the azimuth angle of the white line calculated from the image is calculated. Based on this, error estimation is performed.
特開2008-249639号公報JP 2008-249639 A
 特許文献1では、カメラを用いて撮像した画像を用いているので、天候が悪い場合のように画像が鮮明に取得できない場合には誤差を推定することができない。特に車線レベルでの位置推定が必要となると、特許文献1に記載の技術では対応することができない。硬度な運転支援や自動運転においては、レーン特定やレーン内走行位置の特定をすることが必要になるので、より高精度な自己位置推定が求められる。 In Patent Document 1, since an image captured using a camera is used, an error cannot be estimated when an image cannot be clearly obtained, such as when the weather is bad. In particular, if position estimation at the lane level is required, the technique described in Patent Document 1 cannot cope with it. In hard driving support and automatic driving, it is necessary to specify the lane and the driving position in the lane, so that more accurate self-position estimation is required.
 本開示は、車線レベルでの高精度な位置推定が可能な自己位置推定装置を提供することを目的とする。 This disclosure aims to provide a self-position estimation device capable of highly accurate position estimation at the lane level.
 本開示は、自己位置推定装置であって、車両が走行可能な車線情報を含む地図情報を取得する地図情報取得部(109)と、複数の航法衛星から受信する航法信号に基づいて自車両の絶対位置である自車絶対位置を算出する位置算出部(101,102,106)と、地図情報と自車絶対位置とに基づいて補正後の自車両の位置である補正後自車位置を推定する位置推定部(108)と、を備える。位置推定部は、地図情報の確からしさと、自車絶対位置の確からしさとを重ね合わせて、補正後自車位置を推定する。 The present disclosure is a self-position estimation device, and includes a map information acquisition unit (109) that acquires map information including lane information on which a vehicle can travel, and a navigation signal received from a plurality of navigation satellites. Based on the position calculation unit (101, 102, 106) that calculates the absolute position of the own vehicle and the map information and the absolute position of the own vehicle, the corrected own vehicle position that is the corrected position of the own vehicle is estimated. A position estimation unit (108). The position estimation unit estimates the corrected vehicle position by superimposing the accuracy of the map information and the accuracy of the vehicle absolute position.
 本開示では、地図情報の確からしさと自車絶対位置の確からしさとを重ね合わせるので、自車絶対位置のみを用いる場合よりも精度良く補正後自車位置を推定することができる。 In the present disclosure, since the certainty of the map information and the certainty of the absolute position of the own vehicle are overlapped, the corrected own vehicle position can be estimated with higher accuracy than when only the own vehicle absolute position is used.
 尚、「発明の概要」及び「請求の範囲」に記載した括弧内の符号は、後述する「発明を実施するための形態」との対応関係を示すものであって、「発明の概要」及び「請求の範囲」が、後述する「発明を実施するための形態」に限定されることを示すものではない。 The reference numerals in parentheses described in the “Summary of the Invention” and “Claims” indicate the correspondence with the “Mode for Carrying Out the Invention” to be described later. It does not indicate that the “claims” are limited to the “modes for carrying out the invention” described below.
図1は、実施形態である自己位置推定装置の機能的な構成を示すブロック構成図である。FIG. 1 is a block configuration diagram illustrating a functional configuration of the self-position estimation apparatus according to the embodiment. 図2は、本実施形態の自己位置推定について説明するための図である。FIG. 2 is a diagram for describing self-position estimation according to the present embodiment. 図3は、本実施形態の自己位置推定について説明するための図である。FIG. 3 is a diagram for describing self-position estimation according to the present embodiment. 図4は、本実施形態の自己位置推定について説明するための図である。FIG. 4 is a diagram for describing self-position estimation according to the present embodiment. 図5は、本実施形態におけるレーンチェンジ確率を説明するための図である。FIG. 5 is a diagram for explaining the lane change probability in the present embodiment. 図6は、レーンチェンジ確率と車線中心線の信頼度との関係を説明するための図である。FIG. 6 is a diagram for explaining the relationship between the lane change probability and the reliability of the lane center line. 図7は、自車位置確率分布と地図確率分布との関係を説明するための図である。FIG. 7 is a diagram for explaining the relationship between the vehicle position probability distribution and the map probability distribution. 図8は、レーンチェンジ確率が低い場合の自車位置確率分布と地図確率分布との重ね合わせについて説明するための図である。FIG. 8 is a diagram for explaining the superposition of the vehicle position probability distribution and the map probability distribution when the lane change probability is low. 図9は、レーンチェンジ確率が高い場合の自車位置確率分布と地図確率分布との重ね合わせについて説明するための図である。FIG. 9 is a diagram for explaining the superposition of the vehicle position probability distribution and the map probability distribution when the lane change probability is high. 図10は、横偏差確率分布を加味する場合を説明するための図である。FIG. 10 is a diagram for explaining the case where the lateral deviation probability distribution is taken into account. 図11は、線種確率分布を加味する場合を説明するための図である。FIG. 11 is a diagram for explaining the case where the line type probability distribution is taken into account. 図12は、本実施形態による自車位置推定を行わない場合の推定位置のずれを説明するための図である。FIG. 12 is a diagram for explaining the deviation of the estimated position when the vehicle position estimation according to the present embodiment is not performed. 図13は、本実施形態による自車位置推定を行った場合の推定位置を説明するための図である。FIG. 13 is a diagram for explaining an estimated position when the vehicle position is estimated according to the present embodiment. 図14は、本実施形態による自車位置推定を行わない場合の推定位置のずれを説明するための図である。FIG. 14 is a diagram for explaining the deviation of the estimated position when the vehicle position estimation according to the present embodiment is not performed. 図15は、本実施形態による自車位置推定を行った場合の推定位置を説明するための図である。FIG. 15 is a diagram for explaining an estimated position when the vehicle position is estimated according to the present embodiment. 図16は、推定位置補正量と推定誤差補正量との関係を説明するための図である。FIG. 16 is a diagram for explaining the relationship between the estimated position correction amount and the estimated error correction amount. 図16は、推定位置補正量と推定誤差補正量との関係を説明するための図である。FIG. 16 is a diagram for explaining the relationship between the estimated position correction amount and the estimated error correction amount. 図17は、補正量積算値の初期化と自車位置候補との関係を説明するための図である。FIG. 17 is a diagram for explaining the relationship between the initialization of the correction amount integrated value and the vehicle position candidate. 図19は、補正量積算値の初期化と自車位置候補との関係を説明するための図である。FIG. 19 is a diagram for explaining the relationship between the initialization of the correction amount integrated value and the vehicle position candidate. 図20は、補正量積算値の初期化と自車位置候補との関係を説明するための図である。FIG. 20 is a diagram for explaining the relationship between the initialization of the correction amount integrated value and the vehicle position candidate. 図21は、自車位置候補数の変遷を説明するための図である。FIG. 21 is a diagram for explaining the transition of the number of vehicle position candidates. 図22は、自車位置候補数の変遷を説明するための図である。FIG. 22 is a diagram for explaining the transition of the number of vehicle position candidates. 図23は、自車位置候補数の変遷を説明するための図である。FIG. 23 is a diagram for explaining the transition of the number of vehicle position candidates. 図24は、図16から図23を参照しながら説明した処理をフローチャートとして示す図である。FIG. 24 is a flowchart illustrating the process described with reference to FIGS. 16 to 23. 図25は、図16から図23を参照しながら説明した処理をフローチャートとして示す図である。FIG. 25 is a flowchart illustrating the processing described with reference to FIGS. 16 to 23.
 以下、添付図面を参照しながら本実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。 Hereinafter, the present embodiment will be described with reference to the accompanying drawings. In order to facilitate the understanding of the description, the same constituent elements in the drawings will be denoted by the same reference numerals as much as possible, and redundant description will be omitted.
 図1を参照しながら、本実施形態に係る自己位置推定装置10について説明する。自己位置推定装置10は、ハードウェア的な構成要素として、CPUといった演算部、RAMやROMといった記憶部、各種センサとデータの授受を行うためのインターフェイス部を備えるコンピュータとして構成されている。続いて、自己位置推定装置10の機能的な構成要素について説明する。 The self-position estimation apparatus 10 according to the present embodiment will be described with reference to FIG. The self-position estimation apparatus 10 is configured as a computer including a calculation unit such as a CPU, a storage unit such as a RAM and a ROM, and an interface unit for exchanging data with various sensors as hardware components. Subsequently, functional components of the self-position estimation apparatus 10 will be described.
 自己位置推定装置10は、自己位置計測部101と、車両運動量計測部102と、白線認識部103と、周辺環境計測部104と、経路情報取得部105と、デッドレコニング106と、位置推定部108と、地図情報取得部109と、走行車線推定部110と、地図情報格納部120と、を備えている。 The self-position estimation apparatus 10 includes a self-position measurement unit 101, a vehicle momentum measurement unit 102, a white line recognition unit 103, a surrounding environment measurement unit 104, a route information acquisition unit 105, a dead reckoning 106, and a position estimation unit 108. A map information acquisition unit 109, a travel lane estimation unit 110, and a map information storage unit 120.
 自己位置計測部101は、GNSS(Grobal Navigation Satellite System)によって自車の位置を計測する部分である。自己位置計測部101は、複数の航法衛星から受信する航法信号に基づいて自車両の絶対位置である自車絶対位置を算出する。自己位置計測部101は、算出した自車絶対位置をデッドレコニング106及び位置推定部108に出力する。自己位置計測部101は、本開示の位置算出部に相当する。 The self-position measuring unit 101 is a part for measuring the position of the own vehicle by GNSS (Global Navigation Satellite System). The self-position measuring unit 101 calculates the own vehicle absolute position, which is the absolute position of the own vehicle, based on navigation signals received from a plurality of navigation satellites. The self-position measuring unit 101 outputs the calculated own vehicle absolute position to the dead reckoning 106 and the position estimating unit 108. The self-position measuring unit 101 corresponds to the position calculating unit of the present disclosure.
 車両運動量計測部102は、加速度センサ、車速センサ、ジャイロセンサといったセンサ類から信号を受信し、自車の運動量を計測する部分である。車両運動量計測部102は、車速、方位角、ヨーレート、加速度といった運動量の情報をデッドレコニング106及び位置推定部108に出力する。車両運動量計測部102は、本開示の位置算出部に相当する。 The vehicle momentum measuring unit 102 is a part that receives signals from sensors such as an acceleration sensor, a vehicle speed sensor, and a gyro sensor and measures the amount of movement of the vehicle. The vehicle momentum measuring unit 102 outputs information on the momentum such as the vehicle speed, the azimuth angle, the yaw rate, and the acceleration to the dead reckoning 106 and the position estimating unit 108. The vehicle momentum measurement unit 102 corresponds to the position calculation unit of the present disclosure.
 白線認識部103は、カメラが撮像した画像データを用いて、車線を区切る白線を認識する部分である。白線認識部103は、白線の有無の情報や白線の種類の情報を位置推定部108に出力する。 The white line recognition unit 103 is a part for recognizing a white line that divides a lane using image data captured by the camera. The white line recognition unit 103 outputs information on the presence or absence of a white line and information on the type of white line to the position estimation unit 108.
 周辺環境計測部104は、天候や衛星配置の情報を計測する部分である。周辺環境計測部104は、天候や衛星配置の情報を位置推定部108に出力する。 The surrounding environment measurement unit 104 is a part that measures the weather and satellite arrangement information. The surrounding environment measurement unit 104 outputs weather and satellite arrangement information to the position estimation unit 108.
 経路情報取得部105は、ナビゲーションシステムから車両の目的地及びその目的地への経路を取得する部分である。経路情報取得部105は、目的地及び経路を示す情報を走行車線推定部110に出力する。 The route information acquisition unit 105 is a part that acquires the destination of the vehicle and the route to the destination from the navigation system. The route information acquisition unit 105 outputs information indicating the destination and the route to the travel lane estimation unit 110.
 デッドレコニング106は、自己位置計測部101から出力される自車両の絶対位置及び車両運動量計測部102から出力される運動量の情報に基づいて、GNSSのみでは測位が難しい場所での自車両の位置を算出する部分である。デッドレコニング106は、算出した自車両の位置を位置推定部108に出力する。デッドレコニング106は、本開示の位置算出部に相当する。位置算出部としての自己位置計測部101、車両運動量計測部102及びデッドレコニング106は、複数の航法衛星から受信する航法信号に基づいて自車両の絶対位置である自車絶対位置を算出する機能を果たしている。 The dead reckoning 106 is based on the absolute position of the own vehicle output from the self-position measuring unit 101 and the information on the momentum output from the vehicle momentum measuring unit 102. This is the part to calculate. The dead reckoning 106 outputs the calculated position of the host vehicle to the position estimation unit 108. The dead reckoning 106 corresponds to the position calculation unit of the present disclosure. The self-position measuring unit 101, the vehicle momentum measuring unit 102, and the dead reckoning 106 as a position calculating unit have a function of calculating the own vehicle absolute position, which is the absolute position of the own vehicle, based on navigation signals received from a plurality of navigation satellites. Plays.
 地図情報取得部109は、車両が走行可能な車線情報を含む地図情報を取得する部分である。地図情報取得部は、地図情報格納部120に格納されている地図情報を読み取り、読み取った地図情報を位置推定部108及び走行車線推定部110に出力する。 The map information acquisition unit 109 is a part that acquires map information including lane information on which the vehicle can travel. The map information acquisition unit reads the map information stored in the map information storage unit 120 and outputs the read map information to the position estimation unit 108 and the traveling lane estimation unit 110.
 位置推定部108は、地図情報と自車絶対位置とに基づいて補正後の自車両の位置である補正後自車位置を推定する部分である。位置推定部108は、地図情報の確からしさと、自車絶対位置の確からしさとを重ね合わせて、補正後自車位置を推定する。地図情報の確からしさ及び自車絶対位置の確からしさは、確からしさを表す確率分布を用いてもよく、確からしさを表す数値を用いてもよい。 The position estimation unit 108 is a part that estimates a corrected vehicle position that is a corrected position of the vehicle based on the map information and the vehicle absolute position. The position estimation unit 108 estimates the corrected vehicle position by superimposing the accuracy of the map information and the accuracy of the vehicle absolute position. As the probability of the map information and the accuracy of the absolute position of the vehicle, a probability distribution representing the probability may be used, or a numerical value representing the certainty may be used.
 図2を参照しながら、位置推定部108の補正後自車位置の推定手法の一例について説明する。図2においては、3本の車線L1,L2,L3が設定されている。車線L1の進行方向左側には、実線白線SLaが設けられている。車線L1と車線L2との間には、破線白線BLaが設けられている。車線L2と車線L3との間には、破線白線BLbが設けられている。車線L3の進行方向右側には、実線白線SLbが設けられている。車線中心線L1cは、車線L1の中心を示す線である。車線中心線L2cは、車線L2の中心を示す線である。車線中心線L3cは、車線L3の中心を示す線である。 An example of a method for estimating the corrected vehicle position of the position estimation unit 108 will be described with reference to FIG. In FIG. 2, three lanes L1, L2, and L3 are set. A solid white line SLa is provided on the left side in the traveling direction of the lane L1. A broken line white line BLa is provided between the lane L1 and the lane L2. A broken line white line BLb is provided between the lane L2 and the lane L3. A solid white line SLb is provided on the right side in the traveling direction of the lane L3. The lane center line L1c is a line indicating the center of the lane L1. The lane center line L2c is a line indicating the center of the lane L2. The lane center line L3c is a line indicating the center of the lane L3.
 図2に示される例では、車線中心線L1c、車線中心線L2c、車線中心線L3cの地図確率分布PDmをもって、地図情報の確からしさとしている。最初に自車両は、自車絶対位置Paにいるものとする。説明の便宜上、自車両は、自車絶対位置Paから車線L1に沿って進行しているものとする。 In the example shown in FIG. 2, the map probability distribution PDm of the lane center line L1c, the lane center line L2c, and the lane center line L3c is regarded as the likelihood of the map information. First, it is assumed that the host vehicle is at the host vehicle absolute position Pa. For convenience of explanation, it is assumed that the host vehicle is traveling along the lane L1 from the host vehicle absolute position Pa.
 位置推定部108は、最初の推定タイミングにおいて、自車絶対位置Paにおける自車位置確率分布PDcaと、地図情報確率分布PDmを重ね合わせて、補正後自車位置Pbを推定している。補正後自車位置Pbは、自車絶対位置Paから補正を行わなかった場合に比較して、距離d1だけ車線中心線L1c側に補正されている。 The position estimation unit 108 estimates the corrected vehicle position Pb by superimposing the vehicle position probability distribution PDca and the map information probability distribution PDm at the vehicle absolute position Pa at the first estimation timing. The corrected host vehicle position Pb is corrected to the lane center line L1c side by the distance d1 as compared with the case where the correction is not performed from the host vehicle absolute position Pa.
 位置推定部108は、次の推定タイミングにおいて、補正後自車位置Pbにおける自車位置確率分布PDcbと、地図情報確率分布PDmを重ね合わせて、補正後自車位置Pcを推定している。補正後自車位置Pcは、補正後自車位置Pbから補正を行わなかった場合に比較して、距離d2だけ車線中心線L1c側に補正されている。 The position estimation unit 108 estimates the corrected vehicle position Pc by superimposing the vehicle position probability distribution PDcb at the corrected vehicle position Pb and the map information probability distribution PDm at the next estimation timing. The corrected vehicle position Pc is corrected to the lane center line L1c side by the distance d2 as compared to the case where no correction is made from the corrected vehicle position Pb.
 地図確率分布としては、車線中心線の確率分布に限らず、地図情報の確からしさを示す確率分布が用いられる。また、運転者の癖や道路形状によってオフセットさせた地図確率分布を用いてもよい。道路形状とは、道幅や隣接車線の有無といった情報が含まれる。 The map probability distribution is not limited to the probability distribution of the lane center line, but a probability distribution indicating the certainty of the map information is used. Further, a map probability distribution offset by the driver's bag or road shape may be used. The road shape includes information such as the road width and the presence or absence of an adjacent lane.
 図3に示される例では、車線中心線L1c、車線中心線L2c、車線中心線L3cから進行方向左側にオフセットさせた地図確率分布PDmAをもって、地図情報の確からしさとしている。 In the example shown in FIG. 3, the map probability distribution PDmA offset from the lane center line L1c, the lane center line L2c, and the lane center line L3c to the left in the traveling direction is assumed to be the accuracy of the map information.
 位置推定部108は、最初の推定タイミングにおいて、自車絶対位置PaAにおける自車位置確率分布PDcaAと、地図情報確率分布PDmAを重ね合わせて、補正後自車位置PbAを推定している。補正後自車位置PbAは、自車絶対位置PaAから補正を行わなかった場合に比較して、距離d1Aだけ車線中心線L1c側に補正されている。 The position estimation unit 108 estimates the corrected vehicle position PbA by superimposing the vehicle position probability distribution PDcaA and the map information probability distribution PDmA at the vehicle absolute position PaA at the first estimation timing. The corrected host vehicle position PbA is corrected to the lane center line L1c side by the distance d1A as compared to the case where the correction is not performed from the host vehicle absolute position PaA.
 位置推定部108は、次の推定タイミングにおいて、補正後自車位置PbAにおける自車位置確率分布PDcbAと、地図情報確率分布PDmAを重ね合わせて、補正後自車位置PcAを推定している。補正後自車位置PcAは、補正後自車位置PbAから補正を行わなかった場合に比較して、距離d2Aだけ車線中心線L1c側に補正されている。 The position estimation unit 108 estimates the corrected vehicle position PcA by superimposing the vehicle position probability distribution PDcbA at the corrected vehicle position PbA and the map information probability distribution PDmA at the next estimation timing. The corrected host vehicle position PcA is corrected to the lane center line L1c side by a distance d2A as compared to the case where no correction is made from the corrected host vehicle position PbA.
 図2を参照しながら説明した、車線中心線L1c、車線中心線L2c、車線中心線L3cの地図確率分布PDmを用いる場合に比較して、図3を参照しながら説明した例では、車線L1の左側に寄るように補正後自車位置が推定されている。 Compared to the case where the map probability distribution PDm of the lane center line L1c, the lane center line L2c, and the lane center line L3c described with reference to FIG. 2 is used, in the example described with reference to FIG. The corrected vehicle position is estimated to approach the left side.
 位置推定部108は、地図情報の確からしさ及び前記自車絶対位置の確からしさの少なくとも一方を変動させ、地図情報及び自車絶対位置の相対的な重み付けを変更して補正後自車位置を推定することができる。 The position estimation unit 108 estimates at least one of the accuracy of the map information and the accuracy of the absolute position of the host vehicle, changes the relative weight of the map information and the absolute position of the host vehicle, and estimates the corrected host vehicle position. can do.
 図4に示される例では、車線中心線L1c、車線中心線L2c、車線中心線L3cの地図確率分布PDmBの確からしさを、自車位置確率分布PDcaB,PDcbB,PDccBの確からしさよりも相対的に高くなるように重み付けを変更している。 In the example shown in FIG. 4, the probability of the map probability distribution PDmB of the lane center line L1c, the lane center line L2c, and the lane center line L3c is relative to the probability of the own vehicle position probability distributions PDcaB, PDcbB, and PDccB. The weighting is changed to be higher.
 位置推定部108は、最初の推定タイミングにおいて、自車絶対位置PaBにおける自車位置確率分布PDcaBと、地図情報確率分布PDmBを重ね合わせて、補正後自車位置PbBを推定している。補正後自車位置PbBは、自車絶対位置PaBから補正を行わなかった場合に比較して、距離d1Bだけ車線中心線L1c側に補正されている。距離d1Bは、図2に示される距離d1よりも長くなっており、補正後自車位置PbBは、補正後自車位置Pbよりも車線中心線L1c側により近くなっている。 The position estimation unit 108 estimates the corrected vehicle position PbB by superimposing the vehicle position probability distribution PDcaB and the map information probability distribution PDmB at the vehicle absolute position PaB at the first estimation timing. The corrected host vehicle position PbB is corrected to the lane center line L1c side by the distance d1B as compared with the case where the correction is not performed from the host vehicle absolute position PaB. The distance d1B is longer than the distance d1 shown in FIG. 2, and the corrected vehicle position PbB is closer to the lane center line L1c side than the corrected vehicle position Pb.
 位置推定部108は、次の推定タイミングにおいて、補正後自車位置PbBにおける自車位置確率分布PDcbBと、地図情報確率分布PDmBを重ね合わせて、補正後自車位置PcBを推定している。補正後自車位置PcBは、補正後自車位置PbBから補正を行わなかった場合に比較して、距離d2Bだけ車線中心線L1c側に補正されている。距離d2Bは、図2に示される距離d2よりも長くなっており、補正後自車位置PcBは、補正後自車位置Pcよりも車線中心線L1c側により近くなっている。 The position estimation unit 108 estimates the corrected vehicle position PcB by superimposing the vehicle position probability distribution PDcbB at the corrected vehicle position PbB and the map information probability distribution PDmB at the next estimation timing. The corrected host vehicle position PcB is corrected to the lane center line L1c side by a distance d2B as compared to the case where no correction is made from the corrected host vehicle position PbB. The distance d2B is longer than the distance d2 shown in FIG. 2, and the corrected vehicle position PcB is closer to the lane center line L1c side than the corrected vehicle position Pc.
 このように、地図確率分布PDmBの確からしさを高め、地図確率分布PDmBの山の中央を高くすることで、車線中心線L1cへの収束速度を高めた補正を行うことが可能となる。 Thus, by increasing the probability of the map probability distribution PDmB and increasing the center of the mountain of the map probability distribution PDmB, it is possible to perform correction with an increased convergence speed to the lane center line L1c.
 ところで、自車両がレーンチェンジを行わず、車線L1を走行し続けるのであれば、図4を参照しながら説明した補正後自車位置の推定は精度の高いものとなる。しかしながら、実際には自車両はレーンチェンジを行う場合があり、その場合にも補正後自車位置の精度を高める必要がある。 By the way, if the host vehicle continues to travel in the lane L1 without performing a lane change, the estimation of the corrected host vehicle position described with reference to FIG. 4 is highly accurate. However, in fact, the host vehicle may change lanes, and even in that case, it is necessary to increase the accuracy of the corrected host vehicle position.
 そこで、位置推定部108は、自車両が現在走行中の車線とは別の車線に移動すると推定される度合いを示す確率であるレーンチェンジ確率(以下、「LC確率」ともいう)を用い、地図情報の確からしさを変動させることができる。より具体的には、位置推定部108は、レーンチェンジ確率が上昇すると地図情報の確からしさを低下させる一方で、レーンチェンジ確率が低下すると地図情報の確からしさを上昇させることができる。また、位置推定部108は、レーンチェンジ確率を、自車両が走行している車線の延伸状態に対する自車両の走行状態の乖離量である車線乖離量に基づいて算出する。位置推定部108は、車線乖離量を、車線の方位角と自車両の進行方向の方位角との差である方位角偏差、自車両のヨーレート、自車両の回頭角、自車両のステア角、自車両が走行している場の周辺環境情報の少なくともいずれか1つに基づいて算出することができる。 Accordingly, the position estimation unit 108 uses a lane change probability (hereinafter, also referred to as “LC probability”) that is a probability indicating the degree to which the host vehicle is estimated to move to a lane different from the currently traveling lane, and uses a map. The certainty of information can be varied. More specifically, the position estimation unit 108 can decrease the probability of the map information when the lane change probability is increased, and can increase the probability of the map information when the lane change probability is decreased. Further, the position estimation unit 108 calculates the lane change probability based on the lane deviation amount that is the deviation amount of the traveling state of the host vehicle with respect to the extended state of the lane in which the host vehicle is traveling. The position estimation unit 108 determines the amount of lane deviation as an azimuth angle deviation that is a difference between the azimuth angle of the lane and the traveling direction of the host vehicle, the yaw rate of the host vehicle, the turning angle of the host vehicle, the steering angle of the host vehicle, It can be calculated based on at least one of the surrounding environment information of the place where the host vehicle is traveling.
 図5の(A)に示されるように、車線方向の方位角と自車両の進行方向の方位角との差である方位角偏差θが大きくなると、LC確率が高いものと判断する。一方、図5の(B)に示されるように、車線方向の方位角と自車両の進行方向の方位角との差である方位角偏差が小さいか0の場合、LC確率が低いものと判断する。方位角偏差とLC確率との関係は、一例として図5の(C)に示されるようになる。 As shown in FIG. 5A, if the azimuth deviation θ, which is the difference between the azimuth angle in the lane direction and the azimuth angle in the traveling direction of the host vehicle, increases, it is determined that the LC probability is high. On the other hand, as shown in FIG. 5B, when the azimuth deviation, which is the difference between the azimuth angle in the lane direction and the azimuth angle in the traveling direction of the host vehicle, is small or zero, it is determined that the LC probability is low. To do. The relationship between the azimuth deviation and the LC probability is as shown in FIG. 5C as an example.
 位置推定部108は、算出したレーンチェンジ確率と車線情報及び自車絶対位置とに基づいて補正後自車位置を推定する。位置推定部108は、レーンチェンジ確率が自車両の車線変更を示すものではない場合は車線情報の寄与度を高くし、レーンチェンジ確率が自車両の車線変更を示すものである場合は車線情報の寄与度を低くする補正を行う。レーンチェンジ確率が自車両の車線変更を示すものではない場合に車線情報の寄与度を高くすることで、自車絶対位置が実際の自車位置からずれた場合でも、車線情報による補正により実際の自車位置に近いものに補正後自車位置を推定することができる。一方、レーンチェンジ確率が自車両の車線変更を示すものである場合に車線情報寄与度を低くすることで、実際には車線変更したにも関わらず車線変更前の車線にいるように位置推定するような誤った補正後自車位置の推定を行うことを回避できる。 The position estimation unit 108 estimates the corrected vehicle position based on the calculated lane change probability, the lane information, and the vehicle absolute position. The position estimation unit 108 increases the contribution degree of the lane information when the lane change probability does not indicate the lane change of the own vehicle, and the lane information indicates that the lane change probability indicates the lane change of the own vehicle. Perform correction to reduce the contribution. By increasing the contribution of the lane information when the lane change probability does not indicate the lane change of the own vehicle, even if the own vehicle absolute position deviates from the actual own vehicle position, the actual lane information is corrected by the lane information correction. The corrected vehicle position can be estimated to be close to the vehicle position. On the other hand, if the lane change probability indicates the lane change of the host vehicle, the position estimation is made to be in the lane before the lane change despite actually changing the lane by reducing the lane information contribution degree. Such an erroneous estimation of the corrected vehicle position can be avoided.
 図6に示されるように、位置推定部108は、自車絶対位置を自車位置確率分布として算出する。位置推定部108は、車線情報における車線中心位置を車線中心確率分布として算出する。位置推定部108は、自車位置確率分布と車線中心確率分布とを重ね合わせることで補正後自車位置を推定する。 As shown in FIG. 6, the position estimation unit 108 calculates the own vehicle absolute position as the own vehicle position probability distribution. The position estimation unit 108 calculates the lane center position in the lane information as a lane center probability distribution. The position estimation unit 108 estimates the corrected vehicle position by superimposing the vehicle position probability distribution and the lane center probability distribution.
 図7に示されるように、位置推定部108は、レーンチェンジ確率が自車両の車線変更を示すものではない場合の車線中心確率分布の信頼度を上げる。位置推定部108は、レーンチェンジ確率が自車両の車線変更を示すものである場合は、車線中心確率分布の信頼度を下げることで補正後自車位置を推定する。 7, the position estimation unit 108 increases the reliability of the lane center probability distribution when the lane change probability does not indicate the lane change of the host vehicle. When the lane change probability indicates the lane change of the host vehicle, the position estimation unit 108 estimates the corrected host vehicle position by reducing the reliability of the lane center probability distribution.
 位置推定部108は、レーンチェンジ確率が自車両の車線変更を示すものではない場合に、レーンキープ中であると判断し、車線中心線の信頼度を高くし、車線中心確率分布を狭める。位置推定部108は、レーンチェンジ確率が自車両の車線変更を示すものである場合に、レーンチェンジ中であると判断し、車線中心線の信頼度を低くし、車線中心確率分布を広げる。 If the lane change probability does not indicate the lane change of the host vehicle, the position estimation unit 108 determines that the lane keep is being performed, increases the reliability of the lane center line, and narrows the lane center probability distribution. If the lane change probability indicates the lane change of the host vehicle, the position estimation unit 108 determines that the lane change is being performed, reduces the reliability of the lane center line, and widens the lane center probability distribution.
 図8は、レーンキープ中の場合の確率分布の重ね合わせについて説明する図である。図8の(A)に示されるように、自車位置確率分布と車線中心確率分布とがそれぞれ算出される。レーンキープ中との判断なので、車線中心線の信頼度は高くなり、車線中心確率分布は狭まっている。図8の(B)に示されるように、自車位置確率分布と車線中心確率分布とを重ね合わせて補正後自車位置の確率分布が求められる。車線中心線の信頼度を高くしているので、補正後自車位置は車線中心に近くなるように補正され、横位置の変化が抑制される。 FIG. 8 is a diagram for explaining superposition of probability distributions during lane keeping. As shown in FIG. 8A, the own vehicle position probability distribution and the lane center probability distribution are calculated. Since it is determined that the lane is being maintained, the reliability of the lane center line is high, and the lane center probability distribution is narrowed. As shown in FIG. 8B, the corrected vehicle position probability distribution is obtained by superimposing the vehicle position probability distribution and the lane center probability distribution. Since the reliability of the lane center line is increased, the corrected vehicle position is corrected so as to be close to the lane center, and the change in the lateral position is suppressed.
 図9は、レーンチェンジ中の場合の確率分布の重ね合わせについて説明する図である。図9の(A)に示されるように、自車位置確率分布と車線中心確率分布とがそれぞれ算出される。レーンチェンジ中との判断なので、車線中心線の信頼度は低くなり、車線中心確率分布は広がっている。図9の(B)に示されるように、自車位置確率分布と車線中心確率分布とを重ね合わせて補正後自車位置の確率分布が求められる。車線中心線の信頼度を低くしているので、補正後自車位置は自車位置に近くなるように補正され、横位置の変化が保持される。 FIG. 9 is a diagram for explaining superposition of probability distributions during a lane change. As shown in FIG. 9A, the own vehicle position probability distribution and the lane center probability distribution are calculated. Since it is determined that the lane is being changed, the reliability of the lane center line is low, and the lane center probability distribution is widened. As shown in FIG. 9B, the probability distribution of the corrected vehicle position is obtained by superimposing the vehicle position probability distribution and the lane center probability distribution. Since the reliability of the lane center line is lowered, the corrected vehicle position is corrected to be close to the vehicle position, and the change in the lateral position is maintained.
 このような確率分布の重ね合わせにより補正後自車位置を求める考え方は、他の要因を補正後自車位置に反映させることに応用することができる。図10は、横偏差の確率分布を反映させる例である。図10の(A)に示されるように、自車位置確率分布及び車線中心確率分布に加えて、横偏差確率分布が算出される。横偏差確率分布は、白線認識部103の白線認識結果に基づいて、自車両が車線のどちらよりに位置取りをする傾向にあるかを示す確率分布である。図10の(B)に示されるように、自車位置確率分布及び車線中心確率分布に加えて、横偏差確率分布を重ね合わせることで、横偏差を加味した補正後自車位置及び補正量を算出することができる。 The concept of obtaining the corrected vehicle position by superimposing such probability distributions can be applied to reflect other factors in the corrected vehicle position. FIG. 10 shows an example in which the probability distribution of lateral deviation is reflected. As shown in FIG. 10A, a lateral deviation probability distribution is calculated in addition to the own vehicle position probability distribution and the lane center probability distribution. The lateral deviation probability distribution is a probability distribution indicating which of the lane the vehicle tends to locate based on the white line recognition result of the white line recognition unit 103. As shown in FIG. 10 (B), in addition to the vehicle position probability distribution and the lane center probability distribution, the corrected vehicle position and the corrected amount taking the lateral deviation into account are obtained by superimposing the lateral deviation probability distribution. Can be calculated.
 図11は、線種の確率分布を反映させる例である。図11の(A)に示されるように、自車位置確率分布及び車線中心確率分布に加えて、線種確率分布が算出される。線種確率分布は、白線認識部103の白線認識結果に基づいて、例えば車線が連続線なのか破線なのかを示す確率分布である。図11の(B)に示されるように、自車位置確率分布及び車線中心確率分布に加えて、線種確率分布を重ね合わせることで、線種を加味した補正後自車位置及び補正量を算出することができる。 FIG. 11 shows an example in which the probability distribution of line types is reflected. As shown in FIG. 11A, in addition to the vehicle position probability distribution and the lane center probability distribution, a line type probability distribution is calculated. The line type probability distribution is a probability distribution indicating, for example, whether the lane is a continuous line or a broken line based on the white line recognition result of the white line recognition unit 103. As shown in FIG. 11B, in addition to the own vehicle position probability distribution and the lane center probability distribution, the corrected own vehicle position and correction amount taking the line type into account are obtained by superimposing the line type probability distribution. Can be calculated.
 位置推定部108は、推定した補正後自車位置を走行車線推定部110に出力する。走行車線推定部110は、自車絶対位置又は補正後自車位置を用いて、地図情報において自車両が走行している車線である走行車線を推定する部分である。 The position estimation unit 108 outputs the estimated corrected vehicle position to the travel lane estimation unit 110. The travel lane estimation unit 110 is a part that estimates a travel lane that is a lane in which the host vehicle is traveling in the map information using the host vehicle absolute position or the corrected host vehicle position.
 図12から図15を参照しながら、位置推定部108による補正後自車位置の推定と、走行車線推定部110による走行車線の推定とについて説明する。図12から図15においては、実線で実際の走行状態である実走線21を示し、破線で自己位置計測部101及びデッドレコニング106による自車絶対位置の軌跡である計測線22を示し、二点鎖線で推定される走行車線23を示している。 With reference to FIGS. 12 to 15, estimation of the corrected vehicle position by the position estimation unit 108 and estimation of the travel lane by the travel lane estimation unit 110 will be described. In FIGS. 12 to 15, the actual running line 21 that is the actual running state is indicated by a solid line, and the measurement line 22 that is the locus of the absolute position of the vehicle by the self-position measuring unit 101 and dead reckoning 106 is indicated by a broken line. The traveling lane 23 estimated with a dashed-dotted line is shown.
 図12は、位置推定部108による補正後自車位置の推定をしない場合の例を示すものである。実走線21では、左車線を走行した後に右車線にレーンチェンジしている。しかしながら、計測線22は全体として左寄りにずれる誤差が発生しているので、走行車線23の推定がずれてしまい、左車線をレーンチェンジせずに走行しているものと推定されている。 FIG. 12 shows an example when the position estimation unit 108 does not estimate the corrected vehicle position. In the actual running line 21, the lane is changed to the right lane after running in the left lane. However, since the measurement line 22 has an error that shifts to the left as a whole, the estimation of the travel lane 23 is deviated, and it is estimated that the vehicle is traveling without changing the lane in the left lane.
 図13は、位置推定部108による補正後自車位置の推定をする場合の例を示すものである。領域30においては、レーンチェンジをせずに左車線を走行している状態である。従って、計測線22が補正され、車線中心に近寄るように配置される。走行車線推定部110は、領域30において自車両は左車線を走行しているものと推定する。 FIG. 13 shows an example in which the position estimation unit 108 estimates the corrected vehicle position. In the area 30, the vehicle is traveling in the left lane without changing lanes. Therefore, the measurement line 22 is corrected and arranged so as to approach the lane center. The traveling lane estimation unit 110 estimates that the host vehicle is traveling in the left lane in the region 30.
 図14は、レーンチェンジの際に、位置推定部108による補正後自車位置の推定をしない場合の例を示すものである。領域31においては、レーンチェンジをして左車線から右車線にレーンチェンジをして走行している状態である。これに対して、図15は、レーンチェンジの際に、位置推定部108による補正後自車位置の推定をしている場合の例を示すものである。図14の領域31におけるレーンチェンジが反映されるので、計測線22が補正され、左車線の車線中心に近寄るように配置される。この補正は車線がカーブしても継続される。そのため、走行車線推定部110は、領域32において自車両は右車線を走行しているものと推定する。 FIG. 14 shows an example in which the corrected vehicle position is not estimated by the position estimating unit 108 at the time of a lane change. In the region 31, the vehicle is traveling with a lane change and a lane change from the left lane to the right lane. On the other hand, FIG. 15 shows an example of the case where the corrected vehicle position is estimated by the position estimation unit 108 at the time of a lane change. Since the lane change in the region 31 of FIG. 14 is reflected, the measurement line 22 is corrected and arranged so as to approach the lane center of the left lane. This correction continues even if the lane curves. Therefore, the traveling lane estimation unit 110 estimates that the host vehicle is traveling in the right lane in the region 32.
 上記説明した本実施形態と本開示の対応関係について説明する。本実施形態の自己位置計測部101、車両運動計測部102、及びデッドレコニング106は、本開示の位置算出部に相当する。 The correspondence relationship between the present embodiment described above and the present disclosure will be described. The self-position measuring unit 101, the vehicle motion measuring unit 102, and the dead reckoning 106 of the present embodiment correspond to a position calculating unit of the present disclosure.
 上記したように本実施形態に係る自己位置推定装置10は、車両が走行可能な車線情報を含む地図情報を取得する地図情報取得部109と、複数の航法衛星から受信する航法信号に基づいて自車両の絶対位置である自車絶対位置を算出する位置算出部としての自己位置計測部10,車両運動計測部102,デッドレコニング106と、地図情報と自車絶対位置とに基づいて補正後の自車両の位置である補正後自車位置を推定する位置推定部108と、を備えている。位置推定部108は、地図情報の確からしさと、自車絶対位置の確からしさとを重ね合わせて、補正後自車位置を推定する。地図情報の確からしさと自車絶対位置の確からしさとを重ね合わせるので、自車絶対位置のみを用いる場合よりも精度良く補正後自車位置を推定することができる。 As described above, the self-position estimation apparatus 10 according to the present embodiment is based on the map information acquisition unit 109 that acquires map information including lane information that the vehicle can travel and the navigation signals received from a plurality of navigation satellites. A self-position measuring unit 10, a vehicle motion measuring unit 102, a dead reckoning 106 as a position calculating unit for calculating the absolute position of the own vehicle, which is the absolute position of the vehicle, and the corrected self based on the map information and the own vehicle absolute position. And a position estimation unit 108 that estimates the corrected vehicle position that is the position of the vehicle. The position estimation unit 108 estimates the corrected vehicle position by superimposing the accuracy of the map information and the accuracy of the vehicle absolute position. Since the certainty of the map information and the certainty of the absolute position of the own vehicle are superimposed, the corrected own vehicle position can be estimated with higher accuracy than when only the absolute position of the own vehicle is used.
 また本実施形態において、位置推定部108は、地図情報の確からしさ及び自車絶対位置の確からしさの少なくとも一方を変動させ、地図情報及び自車絶対位置の相対的な重み付けを変更して補正後自車位置を推定することができる。地図情報及び自車絶対位置の相対的な重み付けを変更することで、より確かな情報の影響度を高め、位置推定の精度を向上させることができる。 Further, in the present embodiment, the position estimation unit 108 changes at least one of the certainty of the map information and the certainty of the absolute position of the own vehicle, changes the relative weighting of the map information and the absolute position of the own vehicle, and performs correction. The own vehicle position can be estimated. By changing the relative weights of the map information and the absolute position of the vehicle, the influence of more reliable information can be increased and the accuracy of position estimation can be improved.
 また本実施形態において、位置推定部108は、自車両が現在走行中の車線とは別の車線に移動すると推定される度合いを示す確率であるレーンチェンジ確率を用い、地図情報の確からしさを変動させることができる。より具体的には、位置推定部108は、レーンチェンジ確率が上昇すると地図情報の確からしさを維持又は低下させる一方で、レーンチェンジ確率が低下すると地図情報の確からしさを上昇させることができる。自車両がレーンチェンジをしない場合には、地図情報の確からしさを上昇させることで、実際の車線に沿った自車両の位置を推定することができる。一方、自車両がレーンチェンジをする場合には、地図情報の確からしさを維持又は低下させることで、過度な地図情報の影響を排除し、レーンチェンジを反映させた自車両の位置を推定することができる。このように、補正後自車位置の推定にレーンチェンジ確率を反映させることで、レーンキープ状態であるのに隣の車線に車線変更したと判断したり、レーンチェンジ状態であるのに車線変更しないと判断したりすることを低減できる。 Further, in the present embodiment, the position estimation unit 108 changes the probability of the map information using a lane change probability that is a probability indicating a degree that the host vehicle is estimated to move to a lane different from the currently traveling lane. Can be made. More specifically, the position estimation unit 108 can maintain or decrease the probability of the map information when the lane change probability increases, while increasing the probability of the map information when the lane change probability decreases. When the host vehicle does not change lanes, it is possible to estimate the position of the host vehicle along the actual lane by increasing the probability of the map information. On the other hand, when the host vehicle makes a lane change, the influence of excessive map information is eliminated by maintaining or reducing the likelihood of the map information, and the position of the host vehicle reflecting the lane change is estimated. Can do. In this way, by reflecting the lane change probability in the estimation of the corrected vehicle position, it is determined that the lane has been changed to the next lane even though it is in the lane keep state, or the lane change state is not changed. Can be reduced.
 また本実施形態において、位置推定部108は、レーンチェンジ確率を、自車両が走行している車線の延伸状態に対する自車両の走行状態の乖離量である車線乖離量に基づいて算出することができる。より具体的には、位置推定部108は、車線乖離量を、車線の方位角と自車両の進行方向の方位角との差である方位角偏差、自車両のヨーレート、自車両の回頭角、自車両のステア角、自車両が走行している場の周辺環境情報の少なくともいずれか1つに基づいて算出することができる。 Further, in the present embodiment, the position estimation unit 108 can calculate the lane change probability based on a lane deviation amount that is a deviation amount of the traveling state of the host vehicle with respect to the extended state of the lane in which the host vehicle is traveling. . More specifically, the position estimation unit 108 determines the amount of lane deviation as an azimuth angle deviation that is a difference between the azimuth angle of the lane and the traveling direction of the host vehicle, the yaw rate of the host vehicle, the turning angle of the host vehicle, It can be calculated based on at least one of the steering angle of the host vehicle and the surrounding environment information of the place where the host vehicle is traveling.
 また本実施形態において、位置推定部108は、地図情報の確からしさを地図確率分布で表すと共に、自車絶対位置の確からしさを自車位置確率分布で表し、補正後自車位置を地図確率分布と自車位置確率分布との重ね合わせで推定することができる。地図確率分布は、前記車両が走行中の車線若しくは車線中心位置の確率分布を含む。 Further, in the present embodiment, the position estimation unit 108 represents the probability of the map information with a map probability distribution, the probability of the own vehicle absolute position with the own vehicle position probability distribution, and the corrected own vehicle position with the map probability distribution. And the vehicle position probability distribution can be estimated. The map probability distribution includes a probability distribution of a lane in which the vehicle is traveling or a lane center position.
 また本実施形態では、位置推定部108は、カメラによる線種情報を反映させて補正後自車位置を推定することができる。位置推定部108は、カメラによる周辺情報を反映させて補正後自車位置を推定することができる。 In the present embodiment, the position estimation unit 108 can estimate the corrected vehicle position by reflecting the line type information obtained by the camera. The position estimation unit 108 can estimate the corrected vehicle position by reflecting the peripheral information from the camera.
 位置推定部108は、ウィンカ情報を反映させて補正後自車位置を推定することができる。例えば、右にウィンカを出している場合には、右車線にレーンチェンジする可能性が高いので、レーンチェンジ確率を高めて対応することができる。 The position estimation unit 108 can estimate the corrected vehicle position by reflecting the blinker information. For example, when the winker is on the right, the possibility of a lane change to the right lane is high, so the lane change probability can be increased to cope with it.
 位置推定部108は、ドライバの状態を反映させて補正後自車位置を推定することもできる。位置推定部108は、ドライバによる操作を反映させて補正後自車位置を推定することもできる。ドライバの状態や操作を反映させることで、レーンチェンジの可能性を精度良く推定することができる。 The position estimation unit 108 can also estimate the corrected vehicle position by reflecting the driver's state. The position estimation unit 108 can also estimate the corrected vehicle position by reflecting the operation by the driver. By reflecting the state and operation of the driver, the possibility of a lane change can be accurately estimated.
 本実施形態における位置推定部108は、自車絶対位置を補正後自車位置に補正する補正量に応じて、補正後自車位置の信頼度を低下させる信頼度調整制御を実行することができる。 The position estimation unit 108 according to the present embodiment can execute reliability adjustment control that reduces the reliability of the corrected vehicle position according to the correction amount for correcting the vehicle absolute position to the corrected vehicle position. .
 補正量が多くなると、自車絶対位置と補正後自車位置との乖離が大きくなるため、仮に補正前の自車絶対位置に近い位置が真の自車位置である場合に、補正後自車位置から所定の信頼度内に真の自車位置が入らなくなる虞がある。そこで、補正量に応じて補正後自車位置の信頼度を低下させることで、補正後自車位置から所定の信頼度内に真の自車位置が入る可能性を高めることができる。 As the amount of correction increases, the difference between the vehicle's absolute position and the corrected vehicle position increases. Therefore, if the position close to the vehicle's absolute position before correction is the true vehicle position, the corrected vehicle There is a possibility that the true vehicle position will not enter within a predetermined reliability from the position. Therefore, by reducing the reliability of the corrected vehicle position in accordance with the correction amount, it is possible to increase the possibility that the true vehicle position falls within a predetermined reliability from the corrected vehicle position.
 本実施形態における位置推定部108は、前記補正量を積算した補正量積算値に応じて、補正後自車位置の信頼度を低下させることができる。 The position estimation unit 108 in this embodiment can reduce the reliability of the corrected vehicle position according to the correction amount integrated value obtained by integrating the correction amounts.
 補正量積算値を用いることで、時系列に沿って継続的に自車絶対位置を補正後自車位置に補正する場合に対応することができる。継続的に補正している場合であって、自車絶対位置と補正後自車位置との乖離が大きくなる場合にも、補正量積算値に応じて補正後自車位置の信頼度を低下させることで、補正後自車位置から所定の信頼度内に真の自車位置が入る可能性を高めることができる。 By using the correction amount integrated value, it is possible to cope with a case where the absolute position of the vehicle is continuously corrected to the corrected vehicle position along the time series. Even when the correction is continuously performed and the deviation between the absolute position of the vehicle and the corrected vehicle position becomes large, the reliability of the corrected vehicle position is lowered according to the correction amount integrated value. Thus, it is possible to increase the possibility that the true vehicle position will enter the predetermined reliability from the corrected vehicle position.
 図16を参照しながら説明する。図16においては、自車絶対位置40(a),40(b)と、それぞれに対応する信頼度50(a),50(b)が示されている。自車絶対位置40(a)から所定時間後に自車絶対位置40(b)に至るものとしている。次の所定時間後の自車絶対位置として、位置算出部である自己位置計測部101,車両運動量計測部102,デッドレコニング106は、自車絶対位置40(c2)を算出する。位置推定部108は、補正後自車位置として補正後自車位置40(c1)を算出する。 This will be described with reference to FIG. In FIG. 16, the own vehicle absolute positions 40 (a) and 40 (b) and the reliability 50 (a) and 50 (b) corresponding to each are shown. It is assumed that the vehicle's absolute position 40 (b) is reached after a predetermined time from the vehicle's absolute position 40 (a). As the own vehicle absolute position after the next predetermined time, the self-position measuring unit 101, the vehicle momentum measuring unit 102, and the dead reckoning 106, which are position calculating units, calculate the own vehicle absolute position 40 (c2). The position estimation unit 108 calculates the corrected host vehicle position 40 (c1) as the corrected host vehicle position.
 自車絶対位置40(c2)を補正後自車位置40(c1)に補正すると、推定位置補正量が大きくなるので、推定誤差補正量も大きくなるように信頼度調整制御を実行する。推定位置補正量と推定誤差補正量との関係の一例を図17に示す。 When the host vehicle absolute position 40 (c2) is corrected to the corrected host vehicle position 40 (c1), the estimated position correction amount increases, so the reliability adjustment control is executed so that the estimated error correction amount also increases. An example of the relationship between the estimated position correction amount and the estimated error correction amount is shown in FIG.
 図17に示されているように、推定位置補正量が増大すると、横位置補正量及び回頭角補正量も増大するので、推定誤差補正量も大きくなるように設定されている。 As shown in FIG. 17, when the estimated position correction amount increases, the lateral position correction amount and the turning angle correction amount also increase, so that the estimated error correction amount is also set to be large.
 図16においては、補正後自車位置40(c2)の信頼度が信頼度調整制御を実行しない場合には信頼度50(c1)の範囲であるものが、信頼度調整制御を実行することで信頼度50(c2)に拡張されている。 In FIG. 16, when the reliability of the corrected vehicle position 40 (c2) is within the range of the reliability 50 (c1) when the reliability adjustment control is not executed, the reliability adjustment control is executed. The reliability is expanded to 50 (c2).
 本実施形態における位置推定部108は、補正量積算値が所定経過時間に対応して設けられる積算閾値を超えない場合、補正量積算値を初期化することができる。補正量積算値が所定経過時間の間に積算閾値を超えない場合、補正量積算値を初期化することで、横方向の誤差が積み上がってしまうことを抑制できる。 The position estimation unit 108 in the present embodiment can initialize the correction amount integrated value when the correction amount integrated value does not exceed the integration threshold value provided corresponding to the predetermined elapsed time. When the correction amount integrated value does not exceed the integration threshold during the predetermined elapsed time, it is possible to suppress the accumulation of lateral errors by initializing the correction amount integrated value.
 図18を参照しながら、補正量積算値を初期化する一態様について説明する。図18の(A)は、自車両の位置の変遷及び信頼度の変遷を示している。図18の(B)は、レーンチェンジ確率の変遷を示している。図18の(C)は、補正量積算値の変遷を示している。図18の(D)は、自車位置候補数の変遷を示している。 Referring to FIG. 18, one mode for initializing the correction amount integrated value will be described. FIG. 18A shows changes in the position of the host vehicle and changes in reliability. FIG. 18B shows the transition of the lane change probability. FIG. 18C shows the transition of the correction amount integrated value. FIG. 18D shows the change in the number of own vehicle position candidates.
 図18においては、自車絶対位置40(a),40(b)と、それぞれに対応する信頼度50(a),50(b)が示されている。時刻Taに対応する自車絶対位置40(a)から所定時間後の時刻Tbに自車絶対位置40(b)に至るものとしている。次の所定時間後である時刻Tcにおける自車絶対位置として、位置算出部である自己位置計測部101,車両運動量計測部102,デッドレコニング106は、自車絶対位置40(c2)を算出する。位置推定部108は、補正後自車位置として補正後自車位置40(c1)を算出する。 FIG. 18 shows the own vehicle absolute positions 40 (a) and 40 (b) and the corresponding degrees of reliability 50 (a) and 50 (b). It is assumed that the vehicle absolute position 40 (b) is reached at a time Tb after a predetermined time from the vehicle absolute position 40 (a) corresponding to the time Ta. The self-position measuring unit 101, the vehicle momentum measuring unit 102, and the dead reckoning 106, which are position calculation units, calculate the own vehicle absolute position 40 (c2) as the own vehicle absolute position at time Tc, which is the next predetermined time. The position estimation unit 108 calculates the corrected host vehicle position 40 (c1) as the corrected host vehicle position.
 自車絶対位置40(c2)を補正後自車位置40(c1)に補正すると、推定位置補正量が大きくなるので、推定誤差補正量も大きくなるように信頼度調整制御を実行する。信頼度調整制御の実行内容は、図16及び図17を参照しながら説明したものと同様であって、信頼度50(c1)が信頼度50(c2)に拡張される。 When the host vehicle absolute position 40 (c2) is corrected to the corrected host vehicle position 40 (c1), the estimated position correction amount increases, so the reliability adjustment control is executed so that the estimated error correction amount also increases. The execution contents of the reliability adjustment control are the same as those described with reference to FIGS. 16 and 17, and the reliability 50 (c1) is expanded to the reliability 50 (c2).
 時刻Tcにおいて推定誤差補正量が大きくなることに伴って、補正量積算値が積算閾値を超える。位置推定部108は、補正量積算値を初期化すると共に、補正後自車位置の候補を2つ生成する。時刻Tdにおいては、補正後自車位置40(d1)及び対応する信頼度50(d1)と、隣接レーンにおける補正後自車位置40(d2)及び対応する信頼度50(d2)と、を生成する。 As the estimated error correction amount increases at time Tc, the correction amount integrated value exceeds the integration threshold. The position estimation unit 108 initializes the correction amount integrated value, and generates two corrected vehicle position candidates. At time Td, the corrected host vehicle position 40 (d1) and the corresponding reliability 50 (d1), and the corrected host vehicle position 40 (d2) and the corresponding reliability 50 (d2) in the adjacent lane are generated. To do.
 図19を参照しながら、補正量積算値を初期化する別の一態様について説明する。図19の(A)は、自車両の位置の変遷及び信頼度の変遷を示している。図19の(B)は、レーンチェンジ確率の変遷を示している。図19の(C)は、補正量積算値の変遷を示している。図19の(D)は、自車位置候補数の変遷を示している。 Referring to FIG. 19, another aspect of initializing the correction amount integrated value will be described. FIG. 19A shows changes in the position of the host vehicle and changes in reliability. FIG. 19B shows the transition of the lane change probability. FIG. 19C shows the transition of the correction amount integrated value. FIG. 19D shows the change in the number of vehicle position candidates.
 図19においては、自車絶対位置40(a),40(b)と、それぞれに対応する信頼度50(a),50(b)が示されている。時刻Taに対応する自車絶対位置40(a)から所定時間後の時刻Tbに自車絶対位置40(b)に至るものとしている。次の所定時間後である時刻Tcにおける自車絶対位置として、位置算出部である自己位置計測部101,車両運動量計測部102,デッドレコニング106は、自車絶対位置40(c2)を算出する。位置推定部108は、補正後自車位置として補正後自車位置40(c1)を算出する。 FIG. 19 shows the own vehicle absolute positions 40 (a) and 40 (b) and the corresponding degrees of reliability 50 (a) and 50 (b). It is assumed that the vehicle absolute position 40 (b) is reached at a time Tb after a predetermined time from the vehicle absolute position 40 (a) corresponding to the time Ta. The self-position measuring unit 101, the vehicle momentum measuring unit 102, and the dead reckoning 106, which are position calculation units, calculate the own vehicle absolute position 40 (c2) as the own vehicle absolute position at time Tc, which is the next predetermined time. The position estimation unit 108 calculates the corrected host vehicle position 40 (c1) as the corrected host vehicle position.
 自車絶対位置40(c2)を補正後自車位置40(c1)に補正すると、推定位置補正量が大きくなるので、推定誤差補正量も大きくなるように信頼度調整制御を実行する。信頼度調整制御の実行内容は、図16及び図17を参照しながら説明したものと同様であって、信頼度50(c1)が信頼度50(c2)に拡張される。 When the host vehicle absolute position 40 (c2) is corrected to the corrected host vehicle position 40 (c1), the estimated position correction amount increases, so the reliability adjustment control is executed so that the estimated error correction amount also increases. The execution contents of the reliability adjustment control are the same as those described with reference to FIGS. 16 and 17, and the reliability 50 (c1) is expanded to the reliability 50 (c2).
 図19に示される例の場合、時刻Tcにおいても補正量積算値は積算閾値を超えない。このように所定時間が経過した場合であって補正量積算値が積算閾値を超えない場合には、位置推定部108は、補正量積算値を初期化する。補正量積算値が積算閾値を超えていないので、補正後自車位置の候補は1つのままである。時刻Tdにおいては、補正後自車位置40(d1)及び対応する信頼度50(d1)を生成する。 In the case of the example shown in FIG. 19, the correction amount integrated value does not exceed the integration threshold even at time Tc. As described above, when the predetermined time has elapsed and the correction amount integrated value does not exceed the integration threshold value, the position estimation unit 108 initializes the correction amount integrated value. Since the correction amount integrated value does not exceed the integration threshold value, the corrected vehicle position candidate remains one. At time Td, the corrected vehicle position 40 (d1) and the corresponding reliability 50 (d1) are generated.
 図20を参照しながら、補正量積算値を初期化する別の一態様について説明する。図20の(A)は、自車両の位置の変遷及び信頼度の変遷を示している。図20の(B)は、レーンチェンジ確率の変遷を示している。図20の(C)は、補正量積算値の変遷を示している。図20の(D)は、自車位置候補数の変遷を示している。 Referring to FIG. 20, another aspect of initializing the correction amount integrated value will be described. FIG. 20A shows the transition of the position of the host vehicle and the transition of the reliability. FIG. 20B shows the transition of the lane change probability. FIG. 20C shows the transition of the correction amount integrated value. FIG. 20D shows the transition of the number of vehicle position candidates.
 図20においては、自車絶対位置40(a),40(b)と、それぞれに対応する信頼度50(a),50(b)が示されている。時刻Taに対応する自車絶対位置40(a)から所定時間後の時刻Tbに自車絶対位置40(b)に至るものとしている。次の所定時間後である時刻Tcにおける自車絶対位置として、位置算出部である自己位置計測部101,車両運動量計測部102,デッドレコニング106は、自車絶対位置40(c2)を算出する。位置推定部108は、補正後自車位置として補正後自車位置40(c1)を算出する。 FIG. 20 shows the own vehicle absolute positions 40 (a) and 40 (b) and the corresponding reliability 50 (a) and 50 (b). It is assumed that the vehicle absolute position 40 (b) is reached at a time Tb after a predetermined time from the vehicle absolute position 40 (a) corresponding to the time Ta. The self-position measuring unit 101, the vehicle momentum measuring unit 102, and the dead reckoning 106, which are position calculation units, calculate the own vehicle absolute position 40 (c2) as the own vehicle absolute position at time Tc, which is the next predetermined time. The position estimation unit 108 calculates the corrected host vehicle position 40 (c1) as the corrected host vehicle position.
 自車絶対位置40(c2)を補正後自車位置40(c1)に補正すると、推定位置補正量が大きくなるので、推定誤差補正量も大きくなるように信頼度調整制御を実行する。信頼度調整制御の実行内容は、図16及び図17を参照しながら説明したものと同様であって、信頼度50(c1)が信頼度50(c2)に拡張される。 When the host vehicle absolute position 40 (c2) is corrected to the corrected host vehicle position 40 (c1), the estimated position correction amount increases, so the reliability adjustment control is executed so that the estimated error correction amount also increases. The execution contents of the reliability adjustment control are the same as those described with reference to FIGS. 16 and 17, and the reliability 50 (c1) is expanded to the reliability 50 (c2).
 図20に示される例の場合、時刻Tcにおいても補正量積算値は積算閾値を超えない。このように所定時間が経過した場合でも補正量積算値が積算閾値を超えない場合、位置推定部108は、補正量積算値を初期化する。更に、自車絶対位置を算出した算出手法とは異なる算出手法、例えば線種検出やGNSSや横位置検出等の算出手法によって算出される自車絶対位置が信頼度50(c3)である場合、信頼度50(c3)を優先させることができる。時刻Tdにおいては、補正後自車位置40(d2)及び対応する信頼度50(d2)を生成する。 In the case of the example shown in FIG. 20, the correction amount integrated value does not exceed the integration threshold even at time Tc. In this way, when the correction amount integrated value does not exceed the integration threshold even when the predetermined time has elapsed, the position estimation unit 108 initializes the correction amount integrated value. Furthermore, when the own vehicle absolute position calculated by a calculation method different from the calculation method for calculating the own vehicle absolute position, for example, a calculation method such as line type detection, GNSS, or lateral position detection is the reliability 50 (c3), The reliability 50 (c3) can be prioritized. At time Td, the corrected vehicle position 40 (d2) and the corresponding reliability 50 (d2) are generated.
 本実施形態における位置推定部108は、信頼度調整制御に用いられた自車絶対位置の算出手法とは異なる算出手法によって算出された自車絶対位置と、補正後自車位置及び補正後自車位置から所定の信頼度によって特定される自車位置と、が異なる場合、補正量積算値を初期化することができる。補正量積算値を初期化することで、信頼度調整制御に用いられた算出手法とは異なる算出手法によって算出された自車絶対位置を優先させることができる。 The position estimation unit 108 in the present embodiment, the vehicle absolute position calculated by a calculation method different from the vehicle absolute position calculation method used for the reliability adjustment control, the corrected vehicle position, and the corrected vehicle When the vehicle position specified by the predetermined reliability from the position is different, the correction amount integrated value can be initialized. By initializing the correction amount integrated value, it is possible to give priority to the own vehicle absolute position calculated by a calculation method different from the calculation method used for the reliability adjustment control.
 続いて、信頼度調整制御の別態様について説明する。本実施形態における位置推定部108は、信頼度調整制御において、自車絶対位置を第1補正量によって補正する第1補正後自車位置と、自車絶対位置を第1補正量とは異なる仮説に基づく第2補正量によって補正する第2補正後自車位置とを保持することができる。 Subsequently, another aspect of the reliability adjustment control will be described. In the reliability adjustment control, the position estimation unit 108 according to the present embodiment is a hypothesis in which the first corrected host vehicle position for correcting the host vehicle absolute position by the first correction amount and the host vehicle absolute position are different from the first correction amount. It is possible to hold the second corrected vehicle position corrected by the second correction amount based on the above.
 互いに相違する第1補正量及び第2補正量を用いることで、補正度合いを異ならせた第1補正後自車位置及び第2補正後自車位置を保持することができる。自車絶対位置と補正後自車位置との乖離が大きくなる場合であっても、複数の仮説に基づいたトラッキングを行うことができ、第1補正後自車位置及び第2補正後自車位置のそれぞれから所定の信頼度内に真の自車位置が入る可能性を高めることができる。 By using the first correction amount and the second correction amount that are different from each other, it is possible to hold the first corrected vehicle position and the second corrected vehicle position with different correction degrees. Even if the deviation between the own vehicle absolute position and the corrected own vehicle position becomes large, tracking based on a plurality of hypotheses can be performed, and the first corrected own vehicle position and the second corrected own vehicle position. Therefore, the possibility that the true vehicle position enters within a predetermined reliability can be increased.
 図21を参照しながら具体的に説明する。図21の(A)は、自車両の位置の変遷及び信頼度の変遷を示している。図21の(B)は、レーンチェンジ確率の変遷を示している。図21の(C)は、自車位置候補数の変遷を示している。図21の(D)は、車線候補数の変遷を示している。 Specific description will be given with reference to FIG. FIG. 21A shows the transition of the position of the host vehicle and the transition of the reliability. FIG. 21B shows the transition of the lane change probability. FIG. 21C shows the transition of the number of vehicle position candidates. FIG. 21D shows the change in the number of lane candidates.
 図21においては、自車絶対位置40(a),40(b)と、それぞれに対応する信頼度50(a),50(b)が示されている。時刻Taに対応する自車絶対位置40(a)から所定時間後の時刻Tbに自車絶対位置40(b)に至るものとしている。 FIG. 21 shows the absolute positions 40 (a) and 40 (b) of the own vehicle and the corresponding reliability 50 (a) and 50 (b). It is assumed that the vehicle absolute position 40 (b) is reached at a time Tb after a predetermined time from the vehicle absolute position 40 (a) corresponding to the time Ta.
 時刻Tbにおいてレーンチェンジ確率が所定確率を上回っているので、位置推定部108は、信頼度調整制御を開始する。具体的には、自車位置候補数を2つにすると共に、車線候補数も2つにしている。時刻Tcにおいては、進行方向左車線を走行していることを前提に第1補正後自車位置40(c1)を生成し、信頼度50(c1)と共に保持する。同時に、進行方向右車線を走行していることを前提に第2補正後自車位置40(c2)を生成し、信頼度50(c2)と共に保持する。 Since the lane change probability exceeds the predetermined probability at time Tb, the position estimation unit 108 starts the reliability adjustment control. Specifically, the number of vehicle position candidates is set to two, and the number of lane candidates is also set to two. At time Tc, the first corrected vehicle position 40 (c1) is generated on the assumption that the vehicle is traveling in the left lane in the traveling direction, and is held together with the reliability 50 (c1). At the same time, the second corrected vehicle position 40 (c2) is generated on the assumption that the vehicle is traveling in the right lane in the traveling direction, and is held together with the reliability 50 (c2).
 第1補正後自車位置40(c1)は、進行方向左車線の位置を特定する情報に対して自車絶対位置を補正して補正後自車位置を生成しているので、その補正量は第1補正量となる。第2補正後自車位置40(c2)は、進行方向右車線の位置を特定する情報に対して自車絶対位置を補正して補正後自車位置を生成しているので、その補正量は第1補正量とは異なる仮説に基づく第2補正量となる。 Since the corrected first vehicle position 40 (c1) is generated by correcting the absolute vehicle position with respect to the information specifying the position of the left lane in the traveling direction, the corrected amount is This is the first correction amount. Since the second corrected host vehicle position 40 (c2) corrects the host vehicle absolute position with respect to the information specifying the position of the right lane in the traveling direction, the corrected host vehicle position is generated. The second correction amount is based on a hypothesis different from the first correction amount.
 本実施形態における位置推定部108は、第1補正後自車位置と第2補正後自車位置との横方向の差分が横方向閾値を超えない場合、第1補正後自車位置又は第2補正後自車位置を棄却することができる。第1補正後自車位置と第2補正後自車位置との横方向の差分が横方向閾値を超えない場合、第1補正後自車位置及び第2補正後自車位置の少なくとも一方を棄却することで、複数の仮説に基づいたトラッキングを解消し、複数トラッキングの負荷を低減することができる。 When the lateral difference between the first corrected host vehicle position and the second corrected host vehicle position does not exceed the lateral threshold, the position estimating unit 108 in the present embodiment is configured to perform the first corrected host vehicle position or the second corrected vehicle position. The corrected vehicle position can be rejected. When the lateral difference between the first corrected host vehicle position and the second corrected host vehicle position does not exceed the lateral threshold, at least one of the first corrected host vehicle position and the second corrected host vehicle position is rejected By doing so, tracking based on a plurality of hypotheses can be eliminated, and the load of the plurality of tracking can be reduced.
 本実施形態における位置推定部108は、自車両が現在走行中の車線とは別の車線に移動すると推定される度合いを示す確率であるレーンチェンジ確率が所定確率を上回ると信頼度調整制御の実行を開始することができる。自車両が現在走行中の車線とは別の車線に移動すると推定された場合に信頼度調整制御を開始するので、自車両が車線変更する可能性が高まったのに合わせて第1補正後自車位置及び第2補正後自車位置を算出することになり、不要に複数の仮説に基づいたトラッキングを行うことを抑制することができる。 In this embodiment, the position estimation unit 108 executes the reliability adjustment control when the lane change probability, which is the probability that the vehicle is estimated to move to a lane different from the currently running lane, exceeds a predetermined probability. Can start. Since the reliability adjustment control is started when it is estimated that the host vehicle moves to a lane different from the lane in which the host vehicle is currently traveling, the host vehicle after the first correction is made in accordance with the possibility that the host vehicle changes the lane. Since the vehicle position and the second corrected vehicle position are calculated, it is possible to suppress unnecessary tracking based on a plurality of hypotheses.
 図22を参照しながら、第1補正後自車位置を残して第2補正後自車位置を棄却する例について説明する。図22においては、自車絶対位置40(a),40(b)と、それぞれに対応する信頼度50(a),50(b)が示されている。時刻Taに対応する自車絶対位置40(a)から所定時間後の時刻Tbに自車絶対位置40(b)に至るものとしている。 Referring to FIG. 22, an example of rejecting the second corrected vehicle position while leaving the first corrected vehicle position will be described. In FIG. 22, the own vehicle absolute positions 40 (a), 40 (b) and the corresponding reliability 50 (a), 50 (b) are shown. It is assumed that the vehicle absolute position 40 (b) is reached at a time Tb after a predetermined time from the vehicle absolute position 40 (a) corresponding to the time Ta.
 時刻Tbにおいてレーンチェンジ確率が所定確率を上回っているので、位置推定部108は、信頼度調整制御を開始する。具体的には、自車位置候補数を2つにすると共に、車線候補数も2つにしている。時刻Tcにおいては、進行方向左車線を走行していることを前提に第1補正後自車位置40(c1)を生成し、信頼度50(c1)と共に保持する。同時に、進行方向右車線を走行していることを前提に第2補正後自車位置40(c2)を生成し、信頼度50(c2)と共に保持する。 Since the lane change probability exceeds the predetermined probability at time Tb, the position estimation unit 108 starts the reliability adjustment control. Specifically, the number of vehicle position candidates is set to two, and the number of lane candidates is also set to two. At time Tc, the first corrected vehicle position 40 (c1) is generated on the assumption that the vehicle is traveling in the left lane in the traveling direction, and is held together with the reliability 50 (c1). At the same time, the second corrected vehicle position 40 (c2) is generated on the assumption that the vehicle is traveling in the right lane in the traveling direction, and is held together with the reliability 50 (c2).
 図22の(A)に示されるように、時刻Tcにおいて、第1補正後自車位置40(c1)に対する第2補正後自車位置40(c2)の横方向の偏倚が小さく、横方向の差分が横方向閾値を超えていない。そこで、位置推定部108は、第2補正後自車位置40(c2)を棄却する。時刻Tdにおいては、第1補正後自車位置40(d1)及び信頼度50(d1)が保持されている。 As shown in FIG. 22A, at time Tc, the lateral deviation of the second corrected vehicle position 40 (c2) with respect to the first corrected vehicle position 40 (c1) is small, and the horizontal direction The difference does not exceed the horizontal threshold. Accordingly, the position estimation unit 108 rejects the second corrected host vehicle position 40 (c2). At time Td, the first corrected vehicle position 40 (d1) and the reliability 50 (d1) are maintained.
 本実施形態における位置推定部108は、信頼度調整制御に用いられた自車絶対位置の算出手法とは異なる算出手法によって算出された自車絶対位置と、第1補正後自車位置及び第1補正後自車位置から所定の信頼度によって特定される自車位置と、が異なる場合は、第1補正後自車位置を棄却し、信頼度調整制御に用いられた自車絶対位置の算出手法とは異なる算出手法によって算出された自車絶対位置と、第2補正後自車位置及び第2正後自車位置から所定の信頼度によって特定される自車位置と、が異なる場合は、第2補正後自車位置を棄却することができる。信頼度調整制御に用いられた算出手法とは異なる算出手法によって算出された自車絶対位置から離れた補正後自車位置を棄却することで、複数トラッキングの負荷を低減することができる。 The position estimation unit 108 in the present embodiment, the vehicle absolute position calculated by a calculation method different from the vehicle absolute position calculation method used for the reliability adjustment control, the first corrected vehicle position, and the first vehicle position When the corrected vehicle position is different from the corrected vehicle position by the predetermined reliability, the first corrected vehicle position is rejected and the vehicle absolute position calculation method used for the reliability adjustment control is calculated. If the vehicle absolute position calculated by a different calculation method from the vehicle position and the vehicle position specified by a predetermined reliability from the second corrected vehicle position and the second corrected vehicle position are different, 2 The vehicle position after correction can be rejected. By rejecting the corrected vehicle position away from the vehicle absolute position calculated by a calculation method different from the calculation method used for the reliability adjustment control, it is possible to reduce the load of multiple tracking.
 図23を参照しながら、第2補正後自車位置を残して第1補正後自車位置を棄却する例について説明する。図23においては、自車絶対位置40(a),40(b)と、それぞれに対応する信頼度50(a),50(b)が示されている。時刻Taに対応する自車絶対位置40(a)から所定時間後の時刻Tbに自車絶対位置40(b)に至るものとしている。 Referring to FIG. 23, an example of rejecting the first corrected vehicle position while leaving the second corrected vehicle position will be described. In FIG. 23, the own vehicle absolute positions 40 (a) and 40 (b) and the corresponding reliability 50 (a) and 50 (b) are shown. It is assumed that the vehicle absolute position 40 (b) is reached at a time Tb after a predetermined time from the vehicle absolute position 40 (a) corresponding to the time Ta.
 時刻Tbにおいてレーンチェンジ確率が所定確率を上回っているので、位置推定部108は、信頼度調整制御を開始する。具体的には、自車位置候補数を2つにすると共に、車線候補数も2つにしている。時刻Tcにおいては、進行方向左車線を走行していることを前提に第1補正後自車位置40(c1)を生成し、信頼度50(c1)と共に保持する。同時に、進行方向右車線を走行していることを前提に第2補正後自車位置40(c2)を生成し、信頼度50(c2)と共に保持する。 Since the lane change probability exceeds the predetermined probability at time Tb, the position estimation unit 108 starts the reliability adjustment control. Specifically, the number of vehicle position candidates is set to two and the number of lane candidates is also set to two. At time Tc, the first corrected vehicle position 40 (c1) is generated on the assumption that the vehicle is traveling in the left lane in the traveling direction, and is held together with the reliability 50 (c1). At the same time, the second corrected vehicle position 40 (c2) is generated on the assumption that the vehicle is traveling in the right lane in the traveling direction, and is held together with the reliability 50 (c2).
 図23の(A)に示されるように、時刻Tcにおいて、自車絶対位置を算出した算出手法とは異なる算出手法、例えば線種検出やGNSSや横位置検出等の算出手法によって算出される自車絶対位置が信頼度50(c3)である場合、信頼度50(c3)を優先させることができる。位置推定部108は、信頼度50(c3)に近い第2補正後自車位置40(c2)を残す。位置推定部108は、第2補正後自車位置40(c2)に基づいて、時刻Tdにおける補正後自車位置40(d2)及び対応する信頼度50(d2)を生成する。 As shown in FIG. 23A, at time Tc, a calculation method different from the calculation method for calculating the own vehicle absolute position, for example, a self-calculation method calculated by a calculation method such as line type detection, GNSS, or lateral position detection. When the vehicle absolute position has a reliability of 50 (c3), the reliability of 50 (c3) can be prioritized. The position estimation unit 108 leaves the second corrected host vehicle position 40 (c2) close to the reliability 50 (c3). Based on the second corrected host vehicle position 40 (c2), the position estimation unit 108 generates a corrected host vehicle position 40 (d2) and a corresponding reliability 50 (d2) at time Td.
 図24に示されるフローチャートを参照しながら、自己位置推定装置10の動作について説明する。ステップS101では、位置算出部である自己位置計測部101,車両運動量計測部102,デッドレコニング106が、自車絶対位置を算出する。 The operation of the self-position estimation apparatus 10 will be described with reference to the flowchart shown in FIG. In step S101, the self-position measuring unit 101, the vehicle momentum measuring unit 102, and the dead reckoning 106, which are position calculating units, calculate the own vehicle absolute position.
 ステップS101に続くステップS102では、地図情報取得部109が、周辺地図データを取得する。ステップS102に続くステップS103では、位置推定部108が、車線形状を考慮し、補正後自車位置を算出する。 In step S102 following step S101, the map information acquisition unit 109 acquires surrounding map data. In step S103 following step S102, the position estimation unit 108 calculates the corrected vehicle position in consideration of the lane shape.
 ステップS103に続くステップS104では、補正量積算値にステップS103で算出した補正量を加算する。ステップS104に続くステップS105では、補正量積算値が閾値を上回っているか判断する。補正量積算値が閾値を上回っていれば、ステップS107の処理に進む。補正量積算値が閾値を上回っていなければ、ステップS106の処理に進む。 In step S104 following step S103, the correction amount calculated in step S103 is added to the correction amount integrated value. In step S105 subsequent to step S104, it is determined whether the correction amount integrated value exceeds the threshold value. If the correction amount integrated value exceeds the threshold value, the process proceeds to step S107. If the correction amount integrated value does not exceed the threshold value, the process proceeds to step S106.
 ステップS106では、所定条件を満たしていることを条件として、補正量積算値を初期化する。ステップS107では、ステップS101とは異なる他手法で自車絶対位置を算出しているか判断する。他手法で自車絶対位置を算出していれば、ステップS108の処理に進む。他手法で自車絶対位置を算出していなければ、ステップS110の処理に進む。 In step S106, the correction amount integrated value is initialized on condition that the predetermined condition is satisfied. In step S107, it is determined whether the own vehicle absolute position is calculated by another method different from step S101. If the own vehicle absolute position is calculated by another method, the process proceeds to step S108. If the own vehicle absolute position has not been calculated by another method, the process proceeds to step S110.
 ステップS108では、推定誤差を算出する。ステップS108に続くステップS109では、補正量積算値を初期化する。ステップS110では、補正量積算値が閾値を上回っているか判断する。補正量積算値が閾値を上回っていれば、ステップS111の処理に進む。補正量積算値が閾値を上回っていなければ、ステップS113の処理に進む。 In step S108, an estimation error is calculated. In step S109 following step S108, the correction amount integrated value is initialized. In step S110, it is determined whether the correction amount integrated value exceeds a threshold value. If the correction amount integrated value exceeds the threshold value, the process proceeds to step S111. If the correction amount integrated value does not exceed the threshold value, the process proceeds to step S113.
 ステップS111では、推定位置候補を増加させる。ステップS111に続くステップS112では、補正量積算値を初期化する。 In step S111, the estimated position candidates are increased. In step S112 following step S111, the correction amount integrated value is initialized.
 ステップS113では、推定位置候補が複数であるか否かを判断する。推定位置候補が複数であれば、ステップS114の処理に進む。推定位置候補が複数でなければリターンする。ステップS114では、棄却判定を実行する。 In step S113, it is determined whether or not there are a plurality of estimated position candidates. If there are a plurality of estimated position candidates, the process proceeds to step S114. If there are not a plurality of estimated position candidates, the process returns. In step S114, rejection determination is executed.
 図25に示されるフローチャートを参照しながら、自己位置推定装置10の動作について説明する。ステップS201では、位置算出部である自己位置計測部101,車両運動量計測部102,デッドレコニング106が、自車絶対位置を算出する。 The operation of the self-position estimation apparatus 10 will be described with reference to the flowchart shown in FIG. In step S201, the self-position measuring unit 101, the vehicle momentum measuring unit 102, and the dead reckoning 106, which are position calculating units, calculate the absolute position of the own vehicle.
 ステップS201に続くステップS202では、地図情報取得部109が、周辺地図データを取得する。ステップS202に続くステップS203では、レーンチェンジ確率を算出する。 In step S202 following step S201, the map information acquisition unit 109 acquires surrounding map data. In step S203 following step S202, a lane change probability is calculated.
 ステップS203に続くステップS204では、推定位置候補が単数であるか否かを判断する。推定位置候補が単数であれば、ステップS205の処理に進む。推定位置候補が単数であれば、ステップS208の処理に進む。 In step S204 following step S203, it is determined whether or not there is a single estimated position candidate. If there is a single estimated position candidate, the process proceeds to step S205. If there is a single estimated position candidate, the process proceeds to step S208.
 ステップS205では、レーンチェンジ確率が閾値を超えたか否かを判断する。レーンチェンジ確率が閾値を超えていれば、ステップS206の処理に進む。レーンチェンジ確率が閾値を超えていなければ、ステップS207の処理に進む。 In step S205, it is determined whether or not the lane change probability exceeds a threshold value. If the lane change probability exceeds the threshold, the process proceeds to step S206. If the lane change probability does not exceed the threshold value, the process proceeds to step S207.
 ステップS206では、補正パラメータを変更した推定位置候補を作成する。ステップS207では、車線形状による位置補正を実行する。 In step S206, an estimated position candidate with a modified correction parameter is created. In step S207, position correction based on the lane shape is executed.
 ステップS206及びステップS207に続くステップS208では、全ての推定位置候補に対して車線形状による位置補正を実行する。ステップS208に続くステップS209では、単位進行距離当たりの横移動距離が閾値を上回っているか判断する。単位進行距離当たりの横移動距離が閾値を上回っていれば、ステップS210の処理に進む。単位進行距離当たりの横移動距離が閾値を上回っていなければ、ステップS211の処理に進む。 In step S208 following step S206 and step S207, position correction based on the lane shape is executed for all estimated position candidates. In step S209 following step S208, it is determined whether the lateral movement distance per unit travel distance exceeds a threshold value. If the lateral movement distance per unit travel distance exceeds the threshold value, the process proceeds to step S210. If the lateral movement distance per unit travel distance does not exceed the threshold value, the process proceeds to step S211.
 ステップS210では、推定位置候補を棄却する。ステップS211では、ステップS201とは異なる他手法で自車絶対位置を算出しているか判断する。他手法で自車絶対位置を算出していれば、ステップS212の処理に進む。他手法で自車絶対位置を算出していなければ、リターンする。ステップS212では、推定位置候補を棄却する。 In step S210, the estimated position candidate is rejected. In step S211, it is determined whether the own vehicle absolute position is calculated by another method different from step S201. If the own vehicle absolute position is calculated by another method, the process proceeds to step S212. If the vehicle's absolute position has not been calculated by another method, the process returns. In step S212, the estimated position candidate is rejected.
 以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。 The embodiment has been described above with reference to specific examples. However, the present disclosure is not limited to these specific examples. Those in which those skilled in the art appropriately modify the design of these specific examples are also included in the scope of the present disclosure as long as they have the features of the present disclosure. Each element included in each of the specific examples described above and their arrangement, conditions, shape, and the like are not limited to those illustrated, and can be changed as appropriate. Each element included in each of the specific examples described above can be appropriately combined as long as no technical contradiction occurs.

Claims (21)

  1.  自己位置推定装置であって、
     車両が走行可能な車線情報を含む地図情報を取得する地図情報取得部(109)と、
     自車両の絶対位置である自車絶対位置を算出する位置算出部(101,102,106)と、
     前記地図情報と前記自車絶対位置とに基づいて補正後の前記自車両の位置である補正後自車位置を推定する位置推定部(108)と、を備え、
     前記位置推定部は、前記地図情報の確からしさと、前記自車絶対位置の確からしさとを重ね合わせて、前記補正後自車位置を推定する、自己位置推定装置。
    A self-position estimation device,
    A map information acquisition unit (109) for acquiring map information including lane information in which the vehicle can travel;
    A position calculation unit (101, 102, 106) for calculating the absolute position of the host vehicle, which is the absolute position of the host vehicle;
    A position estimation unit (108) for estimating a corrected host vehicle position that is a corrected position of the host vehicle based on the map information and the host vehicle absolute position;
    The position estimation unit is a self-position estimation device that estimates the corrected vehicle position by superimposing the accuracy of the map information and the accuracy of the vehicle absolute position.
  2.  請求項1に記載の自己位置推定装置であって、
     前記位置推定部は、前記地図情報の確からしさ及び前記自車絶対位置の確からしさの少なくとも一方を変動させ、前記地図情報及び前記自車絶対位置の相対的な重み付けを変更して前記補正後自車位置を推定する、自己位置推定装置。
    The self-position estimation apparatus according to claim 1,
    The position estimation unit varies at least one of the probability of the map information and the accuracy of the vehicle absolute position, and changes the relative weighting of the map information and the vehicle absolute position to change the corrected vehicle Self-position estimation device that estimates vehicle position.
  3.  請求項2に記載の自己位置推定装置であって、
     前記位置推定部は、前記自車両が現在走行中の車線とは別の車線に移動すると推定される度合いを示す確率であるレーンチェンジ確率を用い、前記地図情報の確からしさを変動させる、自己位置推定装置。
    The self-position estimation apparatus according to claim 2,
    The position estimation unit uses a lane change probability, which is a probability indicating a degree that the own vehicle is estimated to move to a lane different from the currently running lane, and varies the probability of the map information. Estimating device.
  4.  請求項3に記載の自己位置推定装置であって、
     前記位置推定部は、前記レーンチェンジ確率が上昇すると前記地図情報の確からしさを維持又は低下させる一方で、前記レーンチェンジ確率が低下すると前記地図情報の確からしさを上昇させる、自己位置推定装置。
    The self-position estimation apparatus according to claim 3,
    The position estimation unit maintains or decreases the probability of the map information when the lane change probability increases, and increases the probability of the map information when the lane change probability decreases.
  5.  請求項3又は4に記載の自己位置推定装置であって、
     前記位置推定部は、前記レーンチェンジ確率を、前記自車両が走行している車線の延伸状態に対する前記自車両の走行状態の乖離量である車線乖離量に基づいて算出する、自己位置推定装置。
    The self-position estimation apparatus according to claim 3 or 4,
    The said position estimation part is a self-position estimation apparatus which calculates the said lane change probability based on the amount of lane deviation which is the amount of deviation of the driving state of the said vehicle with respect to the extending | stretching state of the lane where the said host vehicle is drive | working.
  6.  請求項5に記載の自己位置推定装置であって、
     前記位置推定部は、前記車線乖離量を、前記車線の方位角と前記自車両の進行方向の方位角との差である方位角偏差、前記自車両のヨーレート、前記自車両の回頭角、前記自車両のステア角、前記自車両が走行している場の周辺環境情報の少なくともいずれか1つに基づいて算出する、自己位置推定装置。
    The self-position estimation apparatus according to claim 5,
    The position estimation unit determines the amount of lane deviation, an azimuth angle deviation that is a difference between an azimuth angle of the lane and an azimuth angle of the traveling direction of the host vehicle, a yaw rate of the host vehicle, a turning angle of the host vehicle, A self-position estimating device that calculates based on at least one of a steer angle of the host vehicle and surrounding environment information of a place where the host vehicle is traveling.
  7.  請求項1から6のいずれか1項に記載の自己位置推定装置であって、
     前記位置推定部は、前記地図情報の確からしさを地図確率分布で表すと共に、前記自車絶対位置の確からしさを自車位置確率分布で表し、前記補正後自車位置を前記地図確率分布と前記自車位置確率分布との重ね合わせで推定する、自己位置推定装置。
    The self-position estimation apparatus according to any one of claims 1 to 6,
    The position estimation unit represents the likelihood of the map information by a map probability distribution, the probability of the absolute position of the vehicle by a vehicle position probability distribution, and the corrected vehicle position is represented by the map probability distribution and the map probability distribution. Self-position estimation device that estimates by superimposition with the own vehicle position probability distribution.
  8.  請求項7に記載の自己位置推定装置であって、
     前記地図確率分布は、前記車両が走行中の車線若しくは車線中心位置の確率分布を含む、自己位置推定装置。
    The self-position estimation apparatus according to claim 7,
    The said map probability distribution is a self-position estimation apparatus containing the probability distribution of the lane which the said vehicle is drive | working, or a lane center position.
  9.  請求項1から8のいずれか1項に記載の自己位置推定装置であって、
     前記位置推定部は、カメラによる線種情報を反映させて前記補正後自車位置を推定する、自己位置推定装置。
    The self-position estimation apparatus according to any one of claims 1 to 8,
    The position estimation unit is a self-position estimation apparatus that estimates the corrected vehicle position by reflecting line type information obtained by a camera.
  10.  請求項1から8のいずれか1項に記載の自己位置推定装置であって、
     前記位置推定部は、カメラによる周辺情報を反映させて前記補正後自車位置を推定する、自己位置推定装置。
    The self-position estimation apparatus according to any one of claims 1 to 8,
    The said position estimation part is a self-position estimation apparatus which estimates the said corrected vehicle position reflecting the surrounding information by a camera.
  11.  請求項1から8のいずれか1項に記載の自己位置推定装置であって、
     前記位置推定部は、ウィンカ情報を反映させて前記補正後自車位置を推定する、自己位置推定装置。
    The self-position estimation apparatus according to any one of claims 1 to 8,
    The position estimation unit is a self-position estimation apparatus that estimates the corrected vehicle position by reflecting turn signal information.
  12.  請求項1から8のいずれか1項に記載の自己位置推定装置であって、
     前記位置推定部は、ドライバの状態を反映させて前記補正後自車位置を推定する、自己位置推定装置。
    The self-position estimation apparatus according to any one of claims 1 to 8,
    The said position estimation part is a self-position estimation apparatus which estimates the said corrected vehicle position reflecting a driver's state.
  13.  請求項1から8のいずれか1項に記載の自己位置推定装置であって、
     前記位置推定部は、ドライバによる操作を反映させて前記補正後自車位置を推定する、自己位置推定装置。
    The self-position estimation apparatus according to any one of claims 1 to 8,
    The said position estimation part is a self-position estimation apparatus which estimates the said corrected vehicle position reflecting the operation by a driver.
  14.  請求項1から13のいずれか1項に記載の自己位置推定装置であって、
     前記位置推定部は、前記自車絶対位置を前記補正後自車位置に補正する補正量に応じて、前記補正後自車位置の信頼度を低下させる信頼度調整制御を実行する、自己位置推定装置。
    The self-position estimation apparatus according to any one of claims 1 to 13,
    The position estimation unit executes reliability adjustment control for reducing reliability of the corrected vehicle position according to a correction amount for correcting the vehicle absolute position to the corrected vehicle position. apparatus.
  15.  請求項14に記載の自己位置推定装置であって、
     前記位置推定部は、前記補正量を積算した補正量積算値に応じて、前記補正後自車位置の信頼度を低下させる、自己位置推定装置。
    The self-position estimation apparatus according to claim 14,
    The said position estimation part is a self-position estimation apparatus which reduces the reliability of the said vehicle position after correction | amendment according to the correction amount integrated value which integrated | accumulated the said correction amount.
  16.  請求項15に記載の自己位置推定装置であって、
     前記位置推定部は、前記補正量積算値が所定経過時間に対応して設けられる積算閾値を超えない場合、前記補正量積算値を初期化する、自己位置推定装置。
    The self-position estimation apparatus according to claim 15,
    The position estimation unit is a self-position estimation apparatus that initializes the correction amount integrated value when the correction amount integrated value does not exceed an integration threshold value provided corresponding to a predetermined elapsed time.
  17.  請求項15に記載の自己位置推定装置であって、
     前記位置推定部は、前記信頼度調整制御に用いられた前記自車絶対位置の算出手法とは異なる算出手法によって算出された自車絶対位置と、前記補正後自車位置及び前記補正後自車位置から所定の信頼度によって特定される自車位置と、が異なる場合、前記補正量積算値を初期化する、自己位置推定装置。
    The self-position estimation apparatus according to claim 15,
    The position estimation unit is configured to calculate the vehicle absolute position calculated by a calculation method different from the vehicle absolute position calculation method used for the reliability adjustment control, the corrected vehicle position, and the corrected vehicle. A self-position estimation device that initializes the correction amount integrated value when a vehicle position that is specified by a predetermined reliability differs from a position.
  18.  請求項14に記載の自己位置推定装置であって、
     前記位置推定部は、前記信頼度調整制御において、前記自車絶対位置を第1補正量によって補正する第1補正後自車位置と、前記自車絶対位置を前記第1補正量とは異なる仮説に基づく第2補正量によって補正する第2補正後自車位置とを保持する、自己位置推定装置。
    The self-position estimation apparatus according to claim 14,
    In the reliability adjustment control, the position estimation unit is a hypothesis that the first corrected self-vehicle position for correcting the own vehicle absolute position by a first correction amount and the own vehicle absolute position different from the first correction amount. A self-position estimating apparatus that holds a second corrected self-vehicle position that is corrected by a second correction amount based on.
  19.  請求項18に記載の自己位置推定装置であって、
     前記位置推定部は、前記第1補正後自車位置と前記第2補正後自車位置との横方向の差分が横方向閾値を超えない場合、前記第1補正後自車位置又は前記第2補正後自車位置を棄却する、自己位置推定装置。
    The self-position estimation apparatus according to claim 18, wherein
    When the lateral difference between the first corrected host vehicle position and the second corrected host vehicle position does not exceed a lateral threshold, the position estimation unit or the second corrected host vehicle position or the second Self-position estimation device that rejects the corrected vehicle position.
  20.  請求項18に記載の自己位置推定装置であって、
     前記位置推定部は、前記信頼度調整制御に用いられた前記自車絶対位置の算出手法とは異なる算出手法によって算出された自車絶対位置と、前記第1補正後自車位置及び前記第1補正後自車位置から所定の信頼度によって特定される自車位置と、が異なる場合は、前記第1補正後自車位置を棄却し、
     前記信頼度調整制御に用いられた前記自車絶対位置の算出手法とは異なる算出手法によって算出された自車絶対位置と、前記第2補正後自車位置及び前記第2正後自車位置から所定の信頼度によって特定される自車位置と、が異なる場合は、前記第2補正後自車位置を棄却する、自己位置推定装置。
    The self-position estimation apparatus according to claim 18, wherein
    The position estimator includes a vehicle absolute position calculated by a calculation method different from the vehicle absolute position calculation method used in the reliability adjustment control, the first corrected vehicle position, and the first vehicle position. When the corrected vehicle position is different from the corrected vehicle position by the predetermined reliability, the first corrected vehicle position is rejected,
    From the own vehicle absolute position calculated by a calculation method different from the calculation method of the own vehicle absolute position used for the reliability adjustment control, the second corrected own vehicle position, and the second right after own vehicle position. A self-position estimation device that rejects the second corrected self-vehicle position when the self-vehicle position specified by a predetermined reliability is different.
  21.  請求項18に記載の自己位置推定装置であって、
     前記位置推定部は、前記自車両が現在走行中の車線とは別の車線に移動すると推定される度合いを示す確率であるレーンチェンジ確率が所定確率を上回ると前記信頼度調整制御の実行を開始する、自己位置推定装置。
    The self-position estimation apparatus according to claim 18, wherein
    The position estimator starts execution of the reliability adjustment control when a lane change probability, which is a probability indicating a degree that the own vehicle moves to a lane different from the currently running lane, exceeds a predetermined probability. A self-position estimation device.
PCT/JP2018/010057 2017-03-16 2018-03-14 Own-position estimating device WO2018168956A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/568,637 US11408741B2 (en) 2017-03-16 2019-09-12 Self-localization estimation device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017-051066 2017-03-16
JP2017051066 2017-03-16
JP2017-248745 2017-12-26
JP2017248744A JP6693496B2 (en) 2017-03-16 2017-12-26 Self-location estimation device
JP2017248745A JP6870604B2 (en) 2017-03-16 2017-12-26 Self-position estimator
JP2017-248744 2017-12-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/568,637 Continuation US11408741B2 (en) 2017-03-16 2019-09-12 Self-localization estimation device

Publications (1)

Publication Number Publication Date
WO2018168956A1 true WO2018168956A1 (en) 2018-09-20

Family

ID=63522498

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/010068 WO2018168961A1 (en) 2017-03-16 2018-03-14 Own-position estimating device
PCT/JP2018/010057 WO2018168956A1 (en) 2017-03-16 2018-03-14 Own-position estimating device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010068 WO2018168961A1 (en) 2017-03-16 2018-03-14 Own-position estimating device

Country Status (1)

Country Link
WO (2) WO2018168961A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220230452A1 (en) * 2019-05-13 2022-07-21 Hitachi Astemo, Ltd. On-vehicle system, externality recognition sensor, electronic control device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3882885A4 (en) * 2019-03-12 2022-11-23 Hitachi Astemo, Ltd. Vehicle control device
JP7120170B2 (en) * 2019-07-05 2022-08-17 トヨタ自動車株式会社 Lane estimation device
MX2023000658A (en) 2020-07-13 2023-02-23 Univ Pennsylvania Compositions useful for treatment of charcot-marie-tooth disease.
WO2022221276A1 (en) 2021-04-12 2022-10-20 The Trustees Of The University Of Pennsylvania Compositions useful for treating spinal and bulbar muscular atrophy (sbma)
AR128239A1 (en) 2022-01-10 2024-04-10 Univ Pennsylvania COMPOSITIONS AND USEFUL METHODS FOR THE TREATMENT OF DISORDERS MEDIATED BY C9ORF72

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010078387A (en) * 2008-09-25 2010-04-08 Clarion Co Ltd Lane determining apparatus
JP2011002324A (en) * 2009-06-18 2011-01-06 Clarion Co Ltd Device and program for detecting position
JP2012127845A (en) * 2010-12-16 2012-07-05 Yupiteru Corp On-vehicle electronic device and program
US20160368505A1 (en) * 2015-06-16 2016-12-22 Volvo Car Corporation System and method for adjusting a road boundary

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3431110B2 (en) * 1995-02-27 2003-07-28 日本電信電話株式会社 Moving object position detection device
JP4499524B2 (en) * 2004-10-14 2010-07-07 アルパイン株式会社 Navigation device
EP2491344B1 (en) * 2009-10-22 2016-11-30 TomTom Global Content B.V. System and method for vehicle navigation using lateral offsets
CN107924625B (en) * 2015-08-19 2021-11-12 三菱电机株式会社 Lane recognition device and lane recognition method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010078387A (en) * 2008-09-25 2010-04-08 Clarion Co Ltd Lane determining apparatus
JP2011002324A (en) * 2009-06-18 2011-01-06 Clarion Co Ltd Device and program for detecting position
JP2012127845A (en) * 2010-12-16 2012-07-05 Yupiteru Corp On-vehicle electronic device and program
US20160368505A1 (en) * 2015-06-16 2016-12-22 Volvo Car Corporation System and method for adjusting a road boundary

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220230452A1 (en) * 2019-05-13 2022-07-21 Hitachi Astemo, Ltd. On-vehicle system, externality recognition sensor, electronic control device
US11961311B2 (en) * 2019-05-13 2024-04-16 Hitachi Astemo, Ltd. On-vehicle system, externality recognition sensor, electronic control device

Also Published As

Publication number Publication date
WO2018168961A1 (en) 2018-09-20

Similar Documents

Publication Publication Date Title
JP6693496B2 (en) Self-location estimation device
WO2018168956A1 (en) Own-position estimating device
US10800451B2 (en) Vehicle drive assist apparatus
US10988139B2 (en) Vehicle position control method and device vehicle position control device for correcting position in drive-assisted vehicle
US11440537B2 (en) Apparatus and method for estimating position in automated valet parking system
RU2758225C1 (en) Driving assistance method and driving assistance device
US8706417B2 (en) Anchor lane selection method using navigation input in road change scenarios
US11287524B2 (en) System and method for fusing surrounding V2V signal and sensing signal of ego vehicle
WO2015122121A1 (en) Host vehicle travel position specification device and host vehicle travel position specification program product
US10794709B2 (en) Apparatus of compensating for a sensing value of a gyroscope sensor, a system having the same, and a method thereof
WO2019230038A1 (en) Self-position estimation device
TWI522258B (en) Based on electronic map, global navigation satellite system and vehicle motion detection technology Lane identification method
JP6982430B2 (en) Vehicle lane identification device
JP4689486B2 (en) Vehicle control device
JP6539129B2 (en) Vehicle position estimation device, steering control device using the same, and vehicle position estimation method
KR20210073281A (en) Method and apparatus for estimating motion information
JP6836446B2 (en) Vehicle lane estimation device
CN113165661A (en) Method and system for determining a modified trajectory of a vehicle
US20220326021A1 (en) Course generation apparatus and vehicle control apparatus
JP7378591B2 (en) Travel route generation device
JP7407947B2 (en) Vehicle control device
JP7414683B2 (en) Own vehicle position estimation device and own vehicle position estimation method
JP2018189462A (en) Travel lane specifying device
WO2020235029A1 (en) Map data processing system and map data processing method
KR20230053054A (en) System and method for determining location of a vehicle using historical information of roads and lanes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18768577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18768577

Country of ref document: EP

Kind code of ref document: A1