JP2010078387A - Lane determining apparatus - Google Patents

Lane determining apparatus Download PDF

Info

Publication number
JP2010078387A
JP2010078387A JP2008245111A JP2008245111A JP2010078387A JP 2010078387 A JP2010078387 A JP 2010078387A JP 2008245111 A JP2008245111 A JP 2008245111A JP 2008245111 A JP2008245111 A JP 2008245111A JP 2010078387 A JP2010078387 A JP 2010078387A
Authority
JP
Japan
Prior art keywords
lane
trajectory
vehicle
traveling
locus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008245111A
Other languages
Japanese (ja)
Other versions
JP4832489B2 (en
Inventor
Masato Imai
正人 今井
Masatoshi Hoshino
雅俊 星野
Masao Sakata
雅男 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Faurecia Clarion Electronics Co Ltd
Original Assignee
Clarion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clarion Co Ltd filed Critical Clarion Co Ltd
Priority to JP2008245111A priority Critical patent/JP4832489B2/en
Priority to US13/055,603 priority patent/US8363104B2/en
Priority to EP09816196.1A priority patent/EP2333484B1/en
Priority to PCT/JP2009/066639 priority patent/WO2010035781A1/en
Publication of JP2010078387A publication Critical patent/JP2010078387A/en
Application granted granted Critical
Publication of JP4832489B2 publication Critical patent/JP4832489B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve such a problem that the own vehicle is difficult to determine its traveling lane for a short time. <P>SOLUTION: A lane determining apparatus for determining the traveling lane of the own vehicle traveling on a one-side multilane road is provided, which includes: a photographing means for photographing the road; a partition line recognizing means for recognizing a partition line from an image photographed by the photographing means; a first locus calculating means for calculating a first locus of the own vehicle by repeatedly calculating distances up to the photographing means from the partition line recognized by the partition line recognizing means; a second locus calculating means for calculating a second locus of the own vehicle on the basis of an autonomous navigation; a third locus calculating means for calculating a third locus of the own vehicle on the basis of the first locus calculated by the first locus calculating means and the second locus calculated by the second locus calculating means; and a traveling lane determining means for determining the lane on which the vehicle travels on the basis of the third locus calculated by the third locus calculating means. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、自車が走行する車線を判定する車線判定装置に関する。   The present invention relates to a lane determination device that determines a lane in which a host vehicle travels.

自動車に搭載されるナビゲーションシステムは、GPS(Global Positioning System:全地球測位システム)やジャイロシステム等の自律的な手法により検出される自車位置を、その付近の地図情報とともに表示する機能を有する。   A navigation system mounted on an automobile has a function of displaying a vehicle position detected by an autonomous method such as GPS (Global Positioning System) or a gyro system together with map information in the vicinity thereof.

そして、ナビゲーションシステムに表示される自車位置が実際の自車位置と近いほど、位置精度は高くなり、高精度な自車位置を出力することで、乗員は実際の自車位置における適切な道路情報を把握でき、乗員に対する快適性を向上させることができる。   The closer the vehicle position displayed in the navigation system is to the actual vehicle position, the higher the position accuracy, and by outputting a highly accurate vehicle position, the occupant can select the appropriate road at the actual vehicle position. Information can be grasped, and comfort for passengers can be improved.

従来のナビゲーションシステムは、自車位置の推定精度が低く、片側複数車線の道路において自車の走行する車線を判定することは困難であった。従って、高速道路における分岐の案内や交差点における進行方向の案内を行う場合、車線毎に異なる経路誘導を行うことができずに、乗員に対しての快適性を向上することが困難であった。即ち、高度な経路誘導を実現するためには、自車の走行する車線を正確に判定する必要がある。   The conventional navigation system has low estimation accuracy of the own vehicle position, and it is difficult to determine the lane in which the own vehicle is traveling on a road with multiple lanes on one side. Therefore, when performing guidance on a branch on an expressway or guidance in the direction of travel at an intersection, it is difficult to perform different route guidance for each lane and it is difficult to improve comfort for passengers. That is, in order to realize advanced route guidance, it is necessary to accurately determine the lane in which the vehicle is traveling.

ここで、ウィンカ操作信号と区画線検知部からの信号(区画線またぎ)により車線変更を判定し、自車両が走行中の車線位置を判定し、また、前方の分岐を検出し、判定された車線に基づき、所定の距離手前位置で、運転者に分岐案内を行う車載用ナビゲーション装置がある(特許文献1参照)。また、区画線の種類(実線か破線か)から走行している車線を判定する車両制御装置がある(特許文献2参照)。   Here, the lane change is determined by the winker operation signal and the signal from the lane line detection unit (the lane line crossing), the lane position where the host vehicle is traveling is determined, and the front branch is detected and determined. There is an in-vehicle navigation device that provides branch guidance to a driver at a position a predetermined distance before a lane (see Patent Document 1). In addition, there is a vehicle control device that determines a lane that is traveling from the type of lane marking (solid line or broken line) (see Patent Document 2).

特開2006−23278号公報JP 2006-23278 A 特開2000−105898号公報JP 2000-105898 A

特許文献1では、ウィンカ操作と区画線またぎの両方を検出して車線変更を判定するので、ウィンカの出し忘れや区画線またぎの未検知により自車両が走行中の車線位置を見失うおそれがある。実際に片側複数車線の道路の場合、区画線は破線の場合が多く、車線変更中に区画線を見失うことが多い。そのため、区画線またぎの未検知が発生する。   In Patent Document 1, since both the blinker operation and the lane line crossing are detected and the lane change is determined, there is a possibility that the lane position where the host vehicle is traveling may be lost due to forgetting to turn the blinker or undetection of the lane line crossing. In fact, in the case of a road with multiple lanes on one side, the lane marking is often a broken line, and the lane marking is often lost during lane change. For this reason, undetected crossing between lane markings occurs.

また、特許文献2では、区画線の種別(実線,破線,点線など)を認識するには、何本かのペイントを検出する必要があり、車線を判定するまでに時間がかかるという問題がある。また、ペイントがかすれていたりすると、未検知や誤検知の原因にもなる。更に、国や地域によって区画線の規格が異なるため、この方法では仕向け地ごとの対応が必要で必ずしも実用的ではない。   Moreover, in patent document 2, in order to recognize the division line type (a solid line, a broken line, a dotted line, etc.), it is necessary to detect some paints, and there exists a problem that it takes time to determine a lane. . Also, if the paint is faint, it may cause undetected or erroneous detection. Furthermore, since the lane marking standards differ depending on the country or region, this method requires correspondence for each destination and is not always practical.

そこで、本発明の目的は、片側複数車線の道路を走行している自車の走行車線を迅速且つ正確に判定することができる車線判定装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a lane determination device that can quickly and accurately determine the traveling lane of a host vehicle traveling on a road having a plurality of lanes on one side.

上記課題を解決するため、本発明の望ましい態様の一つは次の通りである。   In order to solve the above problems, one of the desirable embodiments of the present invention is as follows.

片側複数車線道路を走行している自車の走行車線を判定する車線判定装置は、道路を撮像する撮像手段と、撮像手段により撮像された画像から区画線を認識する区画線認識手段と、区画線認識手段により認識された区画線から撮像手段までの距離を繰り返し算出して自車の軌跡を算出する第一の軌跡算出手段と、自律航法に基づいて自車の軌跡を算出する第二の軌跡算出手段と、第一の軌跡算出手段により算出された第一の軌跡及び第二の軌跡算出手段により算出された第二の軌跡に基づいて自車の軌跡を算出する第三の軌跡算出手段と、第三の軌跡算出手段により算出された第三の軌跡に基づいて自車の走行している車線を判定する走行車線判定手段と、を備え、第三の軌跡算出手段は、区画線認識手段が区画線を認識できた場合は第一の軌跡に基づいて第三の軌跡を算出し、区画線認識手段が区画線を認識できなかった場合は第二の軌跡に基づいて第三の軌跡を算出する。   A lane determination device that determines a traveling lane of a host vehicle traveling on a one-sided multiple lane road includes: an imaging unit that images a road; a lane line recognition unit that recognizes a lane line from an image captured by the imaging unit; A first trajectory calculating means for calculating a trajectory of the own vehicle by repeatedly calculating a distance from the lane marking recognized by the line recognizing means to a second trajectory of the own vehicle based on autonomous navigation; Trajectory calculating means and third trajectory calculating means for calculating the trajectory of the vehicle based on the first trajectory calculated by the first trajectory calculating means and the second trajectory calculated by the second trajectory calculating means. And travel lane determining means for determining the lane in which the host vehicle is traveling based on the third trajectory calculated by the third trajectory calculating means, and the third trajectory calculating means is lane marking recognition If the means can recognize the lane marking, Calculating a third path based on trace, if the partition line recognizing means does not recognize the division line calculating the third path on the basis of the second locus.

本発明によれば、片側複数車線の道路を走行している自車の走行車線を迅速且つ正確に判定することができる車線判定装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the lane determination apparatus which can determine the driving lane of the own vehicle which is drive | working the road of one side multiple lanes quickly and correctly can be provided.

以下、実施形態について図面を用いて詳細に説明する。   Hereinafter, embodiments will be described in detail with reference to the drawings.

図1は、車線判定装置の機能を示すブロック図である。   FIG. 1 is a block diagram illustrating functions of the lane determination device.

まず、車線判定装置100の構成と処理内容について説明する。   First, the configuration and processing contents of the lane determination device 100 will be described.

車線判定装置100は、撮像手段1,区画線認識手段2,第一の軌跡算出手段3,車速検出手段4,方位検出手段5,第二の軌跡算出手段6,進行方向推定手段7,初期化手段8,第三の軌跡算出手段9,走行車線判定手段10,情報報知手段11によって構成され、車線判定装置100の図示しないコンピュータにプログラミングされ、予め定められた周期で繰り返し実行される。   The lane determination device 100 includes an imaging means 1, a lane marking recognition means 2, a first trajectory calculation means 3, a vehicle speed detection means 4, an orientation detection means 5, a second trajectory calculation means 6, a traveling direction estimation means 7, and an initialization. The means 8, the third trajectory calculating means 9, the traveling lane determining means 10, and the information notifying means 11 are programmed in a computer (not shown) of the lane determining device 100 and repeatedly executed at a predetermined cycle.

撮像手段1は、CCD(Charge Coupled Device)イメージセンサなどの撮像素子によって自車外の画像を取得するものであり、例えばカメラを用いることができ、その撮像方向は、車両前方(フロントビューカメラ),車両側方(サイドビューカメラ),車両後方(リアビューカメラ)もしくは斜め方向のいずれでもよく、また、全方位を撮像する全方位カメラでもよい。また、カメラの種類に関しては、1つのカメラで撮像する単眼カメラ,2つのカメラで撮像するステレオカメラであってもよく、搭載数に関しても、車両の前後左右方向のそれぞれに配置してもよい。   The image pickup means 1 acquires an image outside the host vehicle by an image pickup device such as a CCD (Charge Coupled Device) image sensor. For example, a camera can be used, and the image pickup direction is the front of the vehicle (front view camera), Any one of a vehicle side (side view camera), a vehicle rear (rear view camera), or an oblique direction may be used, and an omnidirectional camera that images all directions may be used. Moreover, regarding the kind of camera, the monocular camera imaged with one camera and the stereo camera imaged with two cameras may be sufficient, and also regarding the number of mounting, you may arrange | position in the front-back, left-right direction of a vehicle, respectively.

区画線認識手段2は、撮像手段1により取得された画像情報を処理して画像内の区画線を認識する。ここで、区画線とは、道路管理者が設置する、道路の路面に描かれた道路鋲,ペイント,石等による線であり、道路標示の一種である。具体的には、車道中央線や車線境界線がある。また、認識した区画線から撮像手段までの距離を繰り返し演算し、更に、区画線の種別(実線,破線,点線など)を判別する機能(以下、線種判別という)を有する。   The lane marking recognition means 2 processes the image information acquired by the imaging means 1 and recognizes the lane marking in the image. Here, the lane marking is a line that is set by a road manager and is made of road fences, paint, stones, etc. drawn on the road surface of the road, and is a kind of road marking. Specifically, there are a roadway center line and a lane boundary line. It also has a function (hereinafter referred to as line type discrimination) for repeatedly calculating the distance from the recognized lane line to the imaging means and discriminating the type of lane line (solid line, broken line, dotted line, etc.).

第一の軌跡算出手段3は、区画線認識手段2により演算された区画線から撮像手段までの距離に基づいて自車の走行軌跡を算出する。第一の軌跡算出手段の性能は区画線の有無やかすれなど区画線の状態の他、自車の運動にも左右される。直進時は車線内の自車の走行軌跡を精度良く描くことができるが、車線変更などで自車が旋回して自車と区画線との角度やその変化が大きくなると区画線の認識ができず軌跡が途切れてしまうため、車線変更の直後には自車がどの車線を走行しているかは認識できない。   The first trajectory calculation unit 3 calculates the travel trajectory of the host vehicle based on the distance from the lane line calculated by the lane line recognition unit 2 to the imaging unit. The performance of the first trajectory calculation means depends on the movement of the vehicle in addition to the presence of the lane line and the state of the lane line such as fading. When traveling straight, you can accurately draw the trajectory of the vehicle in the lane, but if the vehicle turns due to lane changes, etc., the angle between the vehicle and the lane marking and the change in the lane can be recognized. Since the trajectory is interrupted, it is impossible to recognize which lane the host vehicle is traveling immediately after the lane change.

車速検出手段4は、自車の車速を検出するものであり、例えば車両の前後左右各輪に装着された車輪速センサにより得られる値を平均して車速を検出する方法や、自車に搭載する加速度センサにより得られる自車の加速度の値を積分して車速を算出する方法などが採用可能である。   The vehicle speed detection means 4 detects the vehicle speed of the host vehicle. For example, the vehicle speed detection means 4 detects the vehicle speed by averaging the values obtained by the wheel speed sensors mounted on the front, rear, left, and right wheels of the vehicle. For example, a method of calculating the vehicle speed by integrating the acceleration value of the own vehicle obtained by the acceleration sensor is applicable.

方位検出手段5は、自車の方位を検出するものであり、ジャイロセンサやヨーレイトセンサにより得られる値から自車の方位を算出する方法などが採用可能である。   The direction detection means 5 detects the direction of the own vehicle, and a method of calculating the direction of the own vehicle from a value obtained by a gyro sensor or a yaw rate sensor can be employed.

第二の軌跡算出手段6は、車速検出手段4により検出した車速と方位検出手段5により検出した自車の方位を用いて自律航法により自車の走行軌跡を算出する。第二の軌跡算出手段は自律航法を用いて自車の運動に基づいた軌跡を描くので、軌跡が途切れることはないが、車速や方位の誤差が時間の経過とともに蓄積するので補正しないで使用できるのは短時間である。また、方位と位置は相対的なものであるので初期化が重要である。   The second locus calculating means 6 calculates the traveling locus of the own vehicle by autonomous navigation using the vehicle speed detected by the vehicle speed detecting means 4 and the direction of the own vehicle detected by the direction detecting means 5. The second trajectory calculation means draws a trajectory based on the movement of the host vehicle using autonomous navigation, so the trajectory will not be interrupted, but it can be used without correction because errors in vehicle speed and direction accumulate over time. It is a short time. Also, since the azimuth and position are relative, initialization is important.

進行方向推定手段7は、第一の軌跡算出手段3により算出された自車の走行軌跡に基づいて自車の進行方向を推定する。   The traveling direction estimating means 7 estimates the traveling direction of the own vehicle based on the traveling locus of the own vehicle calculated by the first locus calculating means 3.

初期化手段8は、進行方向推定手段7により推定された自車の進行方向,車速検出手段4により検出された車速,方位検出手段5により検出された自車の方位に基づいて自律航法を初期化するか否かを判断し、進行方向推定手段7により推定された自車の進行方向の精度が高い場合は初期化する。   The initializing means 8 initializes the autonomous navigation based on the traveling direction of the own vehicle estimated by the traveling direction estimating means 7, the vehicle speed detected by the vehicle speed detecting means 4, and the direction of the own vehicle detected by the direction detecting means 5. If the accuracy of the traveling direction of the host vehicle estimated by the traveling direction estimation means 7 is high, initialization is performed.

第三の軌跡算出手段9は、第一の軌跡算出手段3により算出された第一の軌跡と第二の軌跡算出手段6により算出された第二の軌跡に基づいて最終的な自車の走行軌跡を算出する。具体的には、上記の第一および第二の軌跡算出手段の特性に基づいて、第一の軌跡が有効(区画線認識手段2において区画線を認識している場合)の場合は第一の軌跡を最終的な自車の走行軌跡とし、第一の軌跡が無効(区画線認識手段2において区画線を認識していない場合)の場合は第二の軌跡で外挿して最終的な自車の走行軌跡とする。これにより、自車の走行状態に関わらず連続した走行軌跡が得られる。   The third trajectory calculation means 9 is based on the first trajectory calculated by the first trajectory calculation means 3 and the second trajectory calculated by the second trajectory calculation means 6 and finally travels by the host vehicle. Calculate the trajectory. Specifically, based on the characteristics of the first and second trajectory calculation means, the first trajectory is valid (when the lane marking is recognized by the lane marking recognition means 2). If the trajectory is the final travel trajectory of the vehicle, and the first trajectory is invalid (if the lane line recognition means 2 does not recognize the lane line), the final vehicle is extrapolated with the second trajectory. The traveling locus of Thereby, a continuous traveling locus is obtained regardless of the traveling state of the host vehicle.

走行車線判定手段10は、第三の軌跡算出手段9により算出された最終的な自車の走行軌跡に基づいて複数車線道路の中で自車が走行している車線を判定する。   The traveling lane determining means 10 determines the lane in which the vehicle is traveling in the multi-lane road based on the final traveling locus of the own vehicle calculated by the third locus calculating means 9.

情報報知部11は、走行車線判定手段10から得られる情報を乗員に分かり易く音声やモニター画面で報知する処理を行う。また、走行車線判定手段10から得られる、自車が走行している車線に基づいて乗員に報知する内容を切り替えることで、より分かり易く親切な案内を実施することが可能である。   The information notification unit 11 performs a process of notifying the passenger of information obtained from the traveling lane determination means 10 with a voice or a monitor screen in an easily understandable manner. In addition, it is possible to provide easy-to-understand and kind guidance by switching the content to be notified to the occupant based on the lane in which the host vehicle is traveling, which is obtained from the traveling lane determining means 10.

次に、車線判定装置全体の処理内容について説明する。   Next, processing contents of the entire lane determination device will be described.

図2は、本実施の形態における車線判定装置の処理内容を示すフローチャートである。   FIG. 2 is a flowchart showing the processing contents of the lane determination device in the present embodiment.

まず、処理201において、区画線認識手段2により認識した区画線から撮像手段までの距離を繰り返し演算し、更に、区画線の種別(実線,破線,点線など)を判別する。   First, in the process 201, the distance from the lane marking recognized by the lane marking recognition means 2 to the imaging means is repeatedly calculated, and the type of the lane marking (solid line, broken line, dotted line, etc.) is determined.

次に、処理202において、自律航法が初期化済みか否かを判定し、自律航法が初期化済みの場合には処理203に進み、自律航法が初期化済みではない場合には処理210に進む。   Next, in process 202, it is determined whether or not the autonomous navigation has been initialized. If the autonomous navigation has been initialized, the process proceeds to process 203, and if the autonomous navigation has not been initialized, the process proceeds to process 210. .

処理203において、処理201にて演算された区画線から撮像手段までの距離に基づいて自車の走行軌跡(第一の軌跡)を算出する。   In process 203, the travel locus (first locus) of the host vehicle is calculated based on the distance from the lane marking calculated in process 201 to the imaging means.

次に、処理204において、自律航法により自車の走行軌跡(第二の軌跡)を算出する。   Next, in process 204, the traveling locus (second locus) of the own vehicle is calculated by autonomous navigation.

次に、処理205において、自車が直進中か否かを判定し、自車が直進中の場合には処理206に進み、自車が直進中でない場合は処理207に進む。ここで、自車が直進中か否かの判定は、進行方向推定手段7により推定された自車の進行方向と区画線認識手段2により認識された区画線の方向との角度差が所定の角度以内(例えば2度以内)あるいは角度差の変化が所定値(例えば1度/秒)以内でかつ、車速検出手段4により検出された車速が所定の速度以上(例えば10km/h以上)でかつ、方位検出手段5により検出された自車の方位の変化率(角速度)が所定の範囲内(例えば0.2deg/s以内)の条件の下で実施する。   Next, in process 205, it is determined whether or not the host vehicle is traveling straight. If the host vehicle is traveling straight, the process proceeds to process 206. If the host vehicle is not traveling straight, the process proceeds to process 207. Here, the determination as to whether or not the host vehicle is traveling straight is made based on whether the angle difference between the traveling direction of the host vehicle estimated by the traveling direction estimation unit 7 and the direction of the lane line recognized by the lane line recognition unit 2 is a predetermined value. Within an angle (for example, within 2 degrees) or a change in angle difference is within a predetermined value (for example, 1 degree / second), and the vehicle speed detected by the vehicle speed detecting means 4 is at or above a predetermined speed (for example, at least 10 km / h) This is performed under the condition that the rate of change (angular velocity) of the direction of the vehicle detected by the direction detection means 5 is within a predetermined range (for example, within 0.2 deg / s).

処理206において、自車は直進中で方位と位置の推定精度が高いと考えられるため自律航法を初期化する。この初期化の方法は、道路上の横位置(後述する図3のy)に関しては第一の軌跡の値を代入し、方位は進行方向推定手段7により推定された自車の進行方向を代入する。具体的には、自車の走行軌跡を所定時間遡り、最小二乗法に基づく回帰直線の傾きを進行方向とする。   In process 206, since the vehicle is traveling straight and it is considered that the direction and position estimation accuracy is high, the autonomous navigation is initialized. This initialization method substitutes the value of the first trajectory for the lateral position on the road (y in FIG. 3 to be described later), and substitutes the traveling direction of the host vehicle estimated by the traveling direction estimating means 7 for the heading. To do. Specifically, the traveling locus of the host vehicle is traced back for a predetermined time, and the inclination of the regression line based on the least square method is defined as the traveling direction.

次に、処理207において、第一の軌跡が有効か否かを判定し、第一の軌跡が有効の場合には処理208に進み、第一の軌跡を第三の軌跡として算出する。一方、第一の軌跡が有効でない場合には処理209に進み、第二の軌跡を第三の軌跡として算出する。ここで、第一の軌跡が有効とは、区画線認識手段2において区画線を認識している場合を示し、第一の軌跡が有効でないとは、区画線認識手段2において区画線を認識していない場合を示す。   Next, in process 207, it is determined whether or not the first trajectory is valid. If the first trajectory is valid, the process proceeds to process 208 to calculate the first trajectory as a third trajectory. On the other hand, if the first trajectory is not valid, the process proceeds to process 209, and the second trajectory is calculated as the third trajectory. Here, the first trajectory is valid indicates that the lane marking is recognized by the lane marking recognition means 2, and the lane marking recognition means 2 recognizes the lane marking when the first trajectory is not valid. Indicates the case where it is not.

次に、処理210において、線種判別に基づく車線判定処理を実施する。ここでは、区画線認識手段2において認識した区画線の種別(実線,破線,点線など)を利用して自車が走行している車線を判定する。例えば日本の高速道路で片側3車線の場合、区画線の種別は一番左から実線,破線,破線,実線の順に並んでいるため、自車の両側の区画線の種別が認識できるとおのずと自車が走行している車線が判定可能である。   Next, in processing 210, lane determination processing based on line type determination is performed. Here, the lane in which the host vehicle is traveling is determined using the type of lane marking recognized by the lane marking recognition means 2 (solid line, broken line, dotted line, etc.). For example, in the case of a Japanese highway with three lanes on one side, the lane markings are arranged in the order of solid line, broken line, broken line, and solid line from the left. The lane in which the vehicle is traveling can be determined.

次に、処理211において、処理208もしくは処理209で算出した第三の軌跡を用いて自車が走行している車線を判定する。具体的には、第三の軌跡の横位置が複数車線道路のどの位置にあるかを判定すればよく、車線幅の情報を用いて決定する。なお、処理210で線種判別により自車が走行している車線が判定されている場合には、第三の軌跡を用いて判定した車線を採用せずに、線種判別により判定した車線を優先して採用する。このとき、線種判別により判定した車線と第三の軌跡により判定した車線が異なる場合は、第三の軌跡の横位置を線種判別により判定した車線位置に補正する。先に述べたように、線種の判別には所定の距離を走行することが必要で応答は遅いが、信頼性は高い。一方,自車が蛇行運転を繰り返すなどして、第一の軌跡が無効になってから長時間が経過した場合は自律航法に基づく第二の軌跡に誤差が蓄積する。その後、区画線を認識しても、区画線から撮像手段までの距離からの距離に基づく方法では、どの区画線かを特定できないので走行軌跡は描けない。このため,特別な運転条件のバックアップとして上記の線種判別による補正を用いる。   Next, in process 211, the lane in which the host vehicle is traveling is determined using the third trajectory calculated in process 208 or 209. Specifically, it is only necessary to determine which position on the multi-lane road the horizontal position of the third trajectory is, and the determination is made using the information on the lane width. If the lane in which the vehicle is traveling is determined by the line type determination in the process 210, the lane determined by the line type determination is not adopted without adopting the lane determined using the third trajectory. Adopt with priority. At this time, if the lane determined by the line type discrimination and the lane determined by the third trajectory are different, the lateral position of the third trajectory is corrected to the lane position determined by the line type discrimination. As described above, it is necessary to travel a predetermined distance to determine the line type and the response is slow, but the reliability is high. On the other hand, if a long time has passed since the first locus becomes invalid due to repeated meandering of the vehicle, an error accumulates in the second locus based on autonomous navigation. After that, even if the lane line is recognized, the method based on the distance from the lane line to the imaging unit cannot identify the lane line, so the travel locus cannot be drawn. For this reason, the above-described correction by line type discrimination is used as a backup for special operating conditions.

最後に、処理212において、処理211にて求めた自車の走行している車線の情報に基づいて、道路案内を切り替えて乗員に音声や画面を用いて情報を報知する。   Finally, in process 212, based on the information on the lane in which the host vehicle is traveling obtained in process 211, the road guidance is switched and information is notified to the occupant using voice or a screen.

以上説明したように、上記の車線判定装置100によれば、片側複数車線道路に設置された区画線を検出して、この区画線と自車との相対関係及び自律航法により算出した自車の走行軌跡に基づいて自車が走行している車線を判定しているので、走行車線を判定するまでの走行距離を短くすることができ、走行距離に応じて累積される誤差を小さくすることができる。従って、自車の走行車線を迅速且つ正確に判定することができる。   As described above, according to the lane determination device 100 described above, a lane line installed on a multi-lane road on one side is detected, and a relative relationship between the lane line and the own vehicle and an autonomous navigation calculated by the autonomous navigation are used. Since the lane in which the vehicle is traveling is determined based on the travel locus, the travel distance until the travel lane is determined can be shortened, and the accumulated error can be reduced according to the travel distance. it can. Therefore, the traveling lane of the own vehicle can be determined quickly and accurately.

従って、例えばナビゲーションシステムにより、高速道路における分岐の案内や、車両前方に位置する交差点で進行方向の案内を行う場合に、車線毎に異なる経路誘導を行うことができ、乗員に対する高度な経路誘導を実現し、乗員の快適性を向上させることができる。   Therefore, for example, when a navigation system guides a branch on an expressway or guides the direction of travel at an intersection located in front of the vehicle, different route guidance can be performed for each lane, and advanced route guidance for passengers is possible. Realize and improve passenger comfort.

次に、図3を用いて、車線判定装置100における車線判定処理の具体例について、所定の道路状況に当てはめて説明する。   Next, a specific example of the lane determination process in the lane determination device 100 will be described with reference to FIG.

図3は、片側2車線の道路において、自車300が左車線から右車線に点線矢印301の軌跡を描いて車線変更した場合を示す図である。   FIG. 3 is a diagram showing a case where the own vehicle 300 changes the lane by drawing a locus of a dotted arrow 301 from the left lane to the right lane on a two-lane road on one side.

図3において、D1は車両中心から左に見える区画線までの距離、D2は車両中心から右に見える区画線までの距離であり、自車300が左車線に存在する場合と右車線に存在する場合では対象となる区画線が異なる。また、一番左の区画線から自車300までの距離をyで表す。更に、車線幅はWとする。   In FIG. 3, D1 is the distance from the vehicle center to the lane line visible to the left, D2 is the distance from the vehicle center to the lane line visible to the right, and the vehicle 300 exists in the left lane and in the right lane. In some cases, the target lane markings are different. In addition, the distance from the leftmost lane line to the vehicle 300 is represented by y. Further, the lane width is assumed to be W.

まず、自車300が地点Aに存在するとき、自車300は直進中であると判定され(処理205でYES)、自律航法の初期化処理を実施する(処理206)。このとき、D1とD2が両方とも有効な場合には、例えばD1を優先して第一の軌跡312を算出し、自律航法の横位置をy1に、方位を第一の軌跡312で求めた方位に設定すると、自律航法で算出した軌跡は第二の軌跡314のようになる。更に、第一の軌跡が有効であるため(処理207でYES)、第三の軌跡に第一の軌跡を代入し(処理208)、自車が走行している車線を判定する(処理211)。この場合、y1<Wであるため、自車が走行している車線は車線位置318で示すように1(左車線)となる。また、自車300が地点Aから地点Bに達するまでは自車300は直進中であると判定(自律航法初期化フラグ311がON)されるため、その後の処理は地点Aに存在する場合と同じである。   First, when the own vehicle 300 exists at the point A, it is determined that the own vehicle 300 is traveling straight (YES in processing 205), and an initialization process of autonomous navigation is performed (processing 206). At this time, when both D1 and D2 are valid, for example, the first trajectory 312 is calculated with priority given to D1, the lateral position of autonomous navigation is set to y1, and the orientation is obtained from the first trajectory 312. When set to, the locus calculated by the autonomous navigation becomes the second locus 314. Further, since the first track is valid (YES in process 207), the first track is substituted for the third track (process 208), and the lane in which the host vehicle is traveling is determined (process 211). . In this case, since y1 <W, the lane in which the vehicle is traveling is 1 (left lane) as indicated by the lane position 318. In addition, since the vehicle 300 is determined to be traveling straight ahead until the vehicle 300 reaches the point B from the point A (the autonomous navigation initialization flag 311 is ON), the subsequent processing exists at the point A. The same.

次に、自車300が地点Bに到達すると、自車300は車線変更動作を開始しているため、直進中でないと判定され(処理205でNO)、自律航法初期化フラグがOFFになる。そして、自車300が地点Cに到達するまではD1,D2がそれぞれ変化するが、第一の軌跡が有効であるため(処理207でYES)、第三の軌跡に第一の軌跡を代入し(処理208)、自車が走行している車線を判定する(処理211)。従って、地点AからCまでは第一の軌跡と第三の軌跡は同一である。   Next, when the own vehicle 300 reaches the point B, it is determined that the own vehicle 300 is not moving straight because the lane change operation has started (NO in the process 205), and the autonomous navigation initialization flag is turned OFF. D1 and D2 change until the own vehicle 300 reaches point C. However, since the first locus is valid (YES in process 207), the first locus is substituted into the third locus. (Processing 208), the lane in which the host vehicle is traveling is determined (Processing 211). Therefore, from the points A to C, the first trajectory and the third trajectory are the same.

次に、自車300が地点Cに到達して、D1とD2がロストすると(処理207でNO)、第二の軌跡で第三の軌跡を外挿する(処理209)。更に、自車300が地点Dに到達すると、第三の軌跡の横位置が車線幅Wを超えてくるため、自車が走行している車線位置318は2に変化する(処理211)。   Next, when the host vehicle 300 reaches the point C and D1 and D2 are lost (NO in process 207), the third trajectory is extrapolated by the second trajectory (process 209). Further, when the own vehicle 300 reaches the point D, the lateral position of the third trajectory exceeds the lane width W, so the lane position 318 in which the own vehicle is traveling changes to 2 (processing 211).

次に、自車300が地点Eに到達して、D1とD2が再び有効になると(処理207でYES)、第三の軌跡は第一の軌跡に戻すため(処理208)、第二の軌跡に誤差があった場合、領域317のように第三の軌跡がジャンプする。   Next, when the host vehicle 300 reaches the point E and D1 and D2 become valid again (YES in process 207), the third trajectory returns to the first trajectory (process 208), so the second trajectory. If there is an error, the third trajectory jumps as shown in region 317.

次に、自車300が地点Fに到達すると、自律航法初期化フラグが再びONになり、自律航法を初期化する(処理206)。このとき第二の軌跡に誤差があった場合、領域315のように第二の軌跡がジャンプする。   Next, when the vehicle 300 reaches the point F, the autonomous navigation initialization flag is turned ON again, and the autonomous navigation is initialized (processing 206). At this time, if there is an error in the second trajectory, the second trajectory jumps as in the region 315.

その後、自車300が地点Gに到達するまでは自車300は直進中であると判定(自律航法初期化フラグ311がON)される。   Thereafter, it is determined that the host vehicle 300 is traveling straight ahead until the host vehicle 300 reaches the point G (the autonomous navigation initialization flag 311 is turned ON).

以上説明したように、自車から区画線までの距離と自律航法を組合せることで、正確な走行軌跡を途切れなく描くことが可能となり、自車の走行車線を迅速且つ正確に判定することができる。   As described above, by combining the distance from the own vehicle to the lane marking and autonomous navigation, it becomes possible to draw an accurate traveling locus without any interruption, and the traveling lane of the own vehicle can be determined quickly and accurately. it can.

なお、図3においては片側2車線道路における例を示したが、車線数は3車線以上でも適用できることは言うまでもない。   In addition, although the example in the one-side two-lane road was shown in FIG. 3, it cannot be overemphasized that the number of lanes is applicable even if it is three or more lanes.

以上のように、本発明の趣旨を逸脱しない範囲において、種々の様態で実施することができる。   As described above, the present invention can be implemented in various modes without departing from the spirit of the present invention.

以上によれば、片側複数車線道路に設置された区画線を検出して、この区画線と自車との相対関係及び自律航法により算出した自車の走行軌跡に基づいて自車が走行している車線を判定しているので、走行車線を判定するまでに必要な走行距離を特許文献2の方法より短くすることができ、走行距離に応じて累積される誤差を小さくすることができる。従って、自車の走行車線を迅速且つ正確に判定することができる。従って、ナビゲーションシステムによる高度な経路誘導が可能になる。   According to the above, a lane line installed on a multi-lane road on one side is detected, and the vehicle travels based on the relative relationship between the lane line and the vehicle and the travel locus of the vehicle calculated by autonomous navigation. Since the lane is determined, the travel distance required until the travel lane is determined can be made shorter than the method of Patent Document 2, and the accumulated error can be reduced according to the travel distance. Therefore, the traveling lane of the own vehicle can be determined quickly and accurately. Therefore, advanced route guidance by the navigation system is possible.

車線判定装置のブロック図。The block diagram of a lane determination apparatus. 車線判定装置の処理内容を示すフローチャート。The flowchart which shows the processing content of a lane determination apparatus. 具体例を説明する図。The figure explaining a specific example.

符号の説明Explanation of symbols

100 車線判定装置
300 自車
301 走行軌跡
100 lane determination device 300 own vehicle 301 travel locus

Claims (7)

片側複数車線道路を走行している自車の走行車線を判定する車線判定装置において、
前記片側複数車線道路に設置された区画線を検出し、該区画線と自車との相対関係及び自車の走行軌跡に基づいて前記走行車線を判定する、車線判定装置。
In the lane determination device for determining the traveling lane of the own vehicle traveling on one side multiple lane road,
A lane determination device that detects a lane line installed on the one-side multiple lane road and determines the travel lane based on a relative relationship between the lane line and the host vehicle and a travel locus of the host vehicle.
片側複数車線道路を走行している自車の走行車線を判定する車線判定装置において、
道路を撮像する撮像手段と、前記撮像手段により撮像された画像から区画線を認識する区画線認識手段と、前記区画線認識手段により認識された区画線から前記撮像手段までの距離を繰り返し算出して自車の軌跡を算出する第一の軌跡算出手段と、自律航法に基づいて自車の軌跡を算出する第二の軌跡算出手段と、前記第一の軌跡算出手段により算出された第一の軌跡及び前記第二の軌跡算出手段により算出された第二の軌跡に基づいて自車の軌跡を算出する第三の軌跡算出手段と、前記第三の軌跡算出手段により算出された第三の軌跡に基づいて自車の走行している車線を判定する走行車線判定手段と、を備え、
前記第三の軌跡算出手段は、前記区画線認識手段が区画線を認識できた場合は前記第一の軌跡に基づいて前記第三の軌跡を算出し、前記区画線認識手段が区画線を認識できなかった場合は前記第二の軌跡に基づいて前記第三の軌跡を算出する、車線判定装置。
In the lane determination device for determining the traveling lane of the own vehicle traveling on one side multiple lane road,
An imaging unit that images a road, a lane line recognition unit that recognizes a lane line from an image captured by the imaging unit, and a distance from the lane line recognized by the lane line recognition unit to the imaging unit is repeatedly calculated. First trajectory calculating means for calculating the trajectory of the own vehicle, second trajectory calculating means for calculating the trajectory of the own vehicle based on autonomous navigation, and the first trajectory calculated by the first trajectory calculating means. A third trajectory calculating means for calculating the trajectory of the host vehicle based on the trajectory and the second trajectory calculated by the second trajectory calculating means; and a third trajectory calculated by the third trajectory calculating means. Driving lane determining means for determining the lane in which the vehicle is traveling based on
The third trajectory calculation means calculates the third trajectory based on the first trajectory when the lane marking recognition means can recognize the lane marking, and the lane marking recognition means recognizes the lane marking. A lane determination device that calculates the third trajectory based on the second trajectory if it is not possible.
自車の速度を検出する車速検出手段と、自車の方位を検出する方位検出手段と、を備え、
前記自律航法は、前記車速検出手段により検出された車速と、前記方位検出手段により検出された方位に基づいて自車の軌跡を算出する、請求項2記載の車線判定装置。
Vehicle speed detection means for detecting the speed of the host vehicle, and direction detection means for detecting the direction of the host vehicle,
The lane determination device according to claim 2, wherein the autonomous navigation calculates a trajectory of the own vehicle based on a vehicle speed detected by the vehicle speed detection unit and a direction detected by the direction detection unit.
前記第一の軌跡算出手段により算出された第一の軌跡に基づいて自車の進行方向を推定する進行方向推定手段と、前記進行方向推定手段により推定された自車の進行方向と前記第一の軌跡とに基づいて自律航法の方位と位置の少なくともいずれか一方を初期化する初期化手段と、を備え、
前記初期化手段は、前記進行方向推定手段により推定された自車の進行方向と前記区画線認識手段により認識された区画線の方向との差が所定の角度以内の場合、あるいは前記方向の差の変化が所定の期間または走行距離にわたって所定値より少ない場合、前記第一の軌跡算出手段により算出された第一の軌跡を自律航法の軌跡の初期値とする、請求項3記載の車線判定装置。
Based on the first trajectory calculated by the first trajectory calculating means, a traveling direction estimating means for estimating the traveling direction of the own vehicle, the traveling direction of the own vehicle estimated by the traveling direction estimating means, and the first Initializing means for initializing at least one of the direction and position of autonomous navigation based on the locus of
The initialization unit is configured so that the difference between the traveling direction of the host vehicle estimated by the traveling direction estimation unit and the direction of the lane marking recognized by the lane marking recognition unit is within a predetermined angle, or the difference between the directions. 4. The lane determination device according to claim 3, wherein when the change of the vehicle is less than a predetermined value over a predetermined period or a travel distance, the first trajectory calculated by the first trajectory calculating means is used as an initial value of the autonomous navigation trajectory. .
前記走行車線判定手段は、前記区画線認識手段により認識された区画線の種別に基づいて自車の走行している車線を判定し、前記第三の軌跡算出手段により算出された第三の軌跡を補正する、請求項4記載の車線判定装置。   The travel lane determining means determines the lane in which the host vehicle is traveling based on the type of the lane line recognized by the lane line recognition means, and the third trajectory calculated by the third trajectory calculation means. The lane judgment device according to claim 4 which corrects. 画面や音声を用いて乗員に情報を報知する情報報知手段を備え、
前記情報報知手段は、前記走行車線判定手段により判定された自車が走行している車線に基づいて乗員に報知する情報の内容を切り替える、請求項5記載の車線判定装置。
Comprising information notifying means for notifying the occupant of information using a screen or sound;
The lane determination device according to claim 5, wherein the information notification unit switches contents of information notified to the occupant based on a lane in which the host vehicle is traveling determined by the travel lane determination unit.
請求項1から請求項6に記載の車線判定装置を有するナビゲーションシステム。   A navigation system having the lane determination device according to claim 1.
JP2008245111A 2008-09-25 2008-09-25 Lane judgment device Expired - Fee Related JP4832489B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008245111A JP4832489B2 (en) 2008-09-25 2008-09-25 Lane judgment device
US13/055,603 US8363104B2 (en) 2008-09-25 2009-09-25 Lane determining device and navigation system
EP09816196.1A EP2333484B1 (en) 2008-09-25 2009-09-25 Lane determining device and navigation system
PCT/JP2009/066639 WO2010035781A1 (en) 2008-09-25 2009-09-25 Lane determining device and navigation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008245111A JP4832489B2 (en) 2008-09-25 2008-09-25 Lane judgment device

Publications (2)

Publication Number Publication Date
JP2010078387A true JP2010078387A (en) 2010-04-08
JP4832489B2 JP4832489B2 (en) 2011-12-07

Family

ID=42209018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008245111A Expired - Fee Related JP4832489B2 (en) 2008-09-25 2008-09-25 Lane judgment device

Country Status (1)

Country Link
JP (1) JP4832489B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012965A (en) * 2009-06-30 2011-01-20 Clarion Co Ltd Lane determination device and navigation system
US8363104B2 (en) 2008-09-25 2013-01-29 Clarion Co., Ltd. Lane determining device and navigation system
US8594890B2 (en) 2011-06-17 2013-11-26 Clarion Co., Ltd. Lane departure warning device
JP2016206868A (en) * 2015-04-21 2016-12-08 アルパイン株式会社 Electronic system, travel lane identification system and travel lane identification method
JP2016218737A (en) * 2015-05-20 2016-12-22 株式会社豊田中央研究所 Preceding vehicle estimation device and program
WO2018168956A1 (en) * 2017-03-16 2018-09-20 株式会社デンソー Own-position estimating device
JP2018155732A (en) * 2017-03-16 2018-10-04 株式会社デンソー Self position estimation device
CN108688659A (en) * 2017-03-31 2018-10-23 株式会社斯巴鲁 The travel controlling system of vehicle
US10984551B2 (en) 2016-03-07 2021-04-20 Denso Corporation Traveling position detection apparatus and traveling position detection method
EP4030378A1 (en) * 2015-05-10 2022-07-20 Mobileye Vision Technologies Ltd. Road profile along a predicted path
CN116749968A (en) * 2023-08-16 2023-09-15 知行汽车科技(苏州)股份有限公司 Target vehicle detection method, device, equipment and medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006151123A (en) * 2004-11-26 2006-06-15 Aisin Seiki Co Ltd Vehicular traveling support device
JP2007178271A (en) * 2005-12-28 2007-07-12 Aisin Aw Co Ltd Own position recognition system
JP2007178270A (en) * 2005-12-28 2007-07-12 Aisin Aw Co Ltd Own position recognition system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006151123A (en) * 2004-11-26 2006-06-15 Aisin Seiki Co Ltd Vehicular traveling support device
JP2007178271A (en) * 2005-12-28 2007-07-12 Aisin Aw Co Ltd Own position recognition system
JP2007178270A (en) * 2005-12-28 2007-07-12 Aisin Aw Co Ltd Own position recognition system

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8363104B2 (en) 2008-09-25 2013-01-29 Clarion Co., Ltd. Lane determining device and navigation system
JP2011012965A (en) * 2009-06-30 2011-01-20 Clarion Co Ltd Lane determination device and navigation system
US8594890B2 (en) 2011-06-17 2013-11-26 Clarion Co., Ltd. Lane departure warning device
US10204277B2 (en) 2015-04-21 2019-02-12 Alpine Electronics, Inc. Electronic device, traveling lane identifying system, and traveling lane identifying method
JP2016206868A (en) * 2015-04-21 2016-12-08 アルパイン株式会社 Electronic system, travel lane identification system and travel lane identification method
EP4030378A1 (en) * 2015-05-10 2022-07-20 Mobileye Vision Technologies Ltd. Road profile along a predicted path
JP2016218737A (en) * 2015-05-20 2016-12-22 株式会社豊田中央研究所 Preceding vehicle estimation device and program
US10984551B2 (en) 2016-03-07 2021-04-20 Denso Corporation Traveling position detection apparatus and traveling position detection method
US11408741B2 (en) 2017-03-16 2022-08-09 Denso Corporation Self-localization estimation device
JP2018155731A (en) * 2017-03-16 2018-10-04 株式会社デンソー Self-position estimation device
JP2018155732A (en) * 2017-03-16 2018-10-04 株式会社デンソー Self position estimation device
WO2018168956A1 (en) * 2017-03-16 2018-09-20 株式会社デンソー Own-position estimating device
US11639853B2 (en) 2017-03-16 2023-05-02 Denso Corporation Self-localization estimation device
CN108688659A (en) * 2017-03-31 2018-10-23 株式会社斯巴鲁 The travel controlling system of vehicle
CN116749968A (en) * 2023-08-16 2023-09-15 知行汽车科技(苏州)股份有限公司 Target vehicle detection method, device, equipment and medium
CN116749968B (en) * 2023-08-16 2023-11-03 知行汽车科技(苏州)股份有限公司 Target vehicle detection method, device, equipment and medium

Also Published As

Publication number Publication date
JP4832489B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
JP4832489B2 (en) Lane judgment device
WO2010035781A1 (en) Lane determining device and navigation system
CN105984464B (en) Controller of vehicle
CN111066071B (en) Position error correction method and position error correction device for driving assistance vehicle
CN111226267B (en) Driving control method and driving control device for driving support vehicle
JP5172314B2 (en) Stereo camera device
CN108216023B (en) Attention-calling device for vehicle and attention-calling method
CN107251127B (en) Vehicle travel control device and travel control method
JP4420011B2 (en) Object detection device
JP3912416B2 (en) Vehicle departure prevention control device
JP4923520B2 (en) VEHICLE POSITION ESTIMATION DEVICE, VEHICLE TRAVEL SUPPORT DEVICE, AND VEHICLE POSITION ESTIMATION METHOD
JP4876147B2 (en) Lane judgment device and navigation system
WO2007132860A1 (en) Object recognition device
JP2011013039A (en) Lane determination device and navigation system
JP2012171562A (en) Lane departure warning apparatus and lane departure warning system
JP2009245120A (en) Intersection visibility detection device
JP6129268B2 (en) Vehicle driving support system and driving support method
JP4225190B2 (en) Vehicle driving support device
JP2009298362A (en) Lane departure warning device of vehicle
JP2012234373A (en) Driving support device
JP4020071B2 (en) Ambient condition display device
US20230150499A1 (en) Vehicle control system and vehicle driving method using the vehicle control system
JP2007058326A (en) Vehicular moving body detection device
JP2008185554A (en) Route guidance device for vehicle
JP2019156308A (en) Parking support device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100428

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20100907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110408

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110408

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110920

R150 Certificate of patent or registration of utility model

Ref document number: 4832489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees